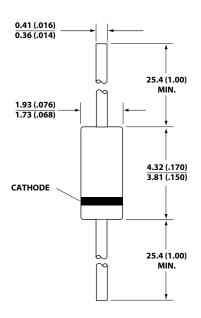
# 1N5711, 1N5712, 5082-2800 Series

Schottky Barrier Diodes for General Purpose Applications



## **Data Sheet**

#### **Description/Applications**


The 1N5711, 1N5712, 5082-2800/10/11 are passivated Schottky barrier diodes which use a patented "guard ring" design to achieve a high breakdown voltage. Packaged in a low cost glass package, they are well suited for high level detecting, mixing, switching, gating, log or A-D converting, video detecting, frequency discriminating, sampling, and wave shaping.

The 5082-2835 is a passivated Schottky diode in a low cost glass package. It is optimized for low turn-on voltage. The 5082-2835 is particularly well suited for the UHF mixing needs of the CATV marketplace.

#### **Features**

- Low Turn-On Voltage As Low as 0.34 V at 1 mA
- Pico Second Switching Speed
- High Breakdown Voltage Up to 70 V
- Matched Characteristics Available

#### Outline 15



DIMENSIONS IN MILLIMETERS AND (INCHES).

#### **Maximum Ratings**

| -                                       |                         |
|-----------------------------------------|-------------------------|
| Junction Operating and Storage Tempe    | erature Range           |
| 1N5711, 1N5712, 5082-2800/10/11         | 65°C to +200°C          |
| 5082-2835                               | 60°C to +150°C          |
| DC Power Dissipation                    |                         |
| (Measured in an infinite heat sink at T | $_{CASE} = 25^{\circ}C$ |
| Derate linearly to zero at maximum ra   | ted temp.               |
| 1N5711, 1N5712, 5082-2800/10/11         | 250 mW                  |
| 5082-2835                               | 150 mW                  |
| Peak Inverse Voltage                    | V <sub>BR</sub>         |
|                                         |                         |

### **Package Characteristics**

|                             | Outline 15      |
|-----------------------------|-----------------|
| Lead Material               | Dumet           |
| Lead Finish                 | 95-5% Tin-Lead  |
| Max. Soldering Temperature  | 260°C for 5 sec |
| Min. Lead Strength          | 4 pounds pull   |
| Typical Package Inductance  |                 |
| 1N5711, 1N5712:             | 2.0 nH          |
| 2800 Series:                | 2.0 nH          |
| Typical Package Capacitance |                 |
| 1N5711, 1N5712:             | 0.2 pF          |
| 2800 Series:                | 0.2 pF          |
|                             |                 |

The leads on the Outline 15 package should be restricted so that the bend starts at least 1/16 inch from the glass body. Outline 15 diodes are available on tape and reel. The tape and reel specification is patterned after RS-296-D.

## Electrical Specifications at $T_A = 25$ °C

**General Purpose Diodes** 

| Part<br>Number     | Package<br>Outline | Min.<br>Breakdown<br>Voltage<br>V <sub>BR</sub> (V) | Max.<br>Forward<br>Voltage<br>V <sub>F</sub> (mV) | $V_F = 1 \text{ V Max.}$ at Forward Current $I_F$ (mA) | Ma<br>Reverse I<br>Curr<br>I <sub>R</sub> (nA) a | Leakage<br>ent | Max.<br>Capacitance<br>C <sub>T</sub> (pF) |
|--------------------|--------------------|-----------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|----------------|--------------------------------------------|
| 5082-2800          | 15                 | 70                                                  | 410                                               | 15                                                     | 200                                              | 50             | 2.0                                        |
| 1N5711             | 15                 | 70                                                  | 410                                               | 15                                                     | 200                                              | 50             | 2.0                                        |
| 5082-2810          | 15                 | 20                                                  | 410                                               | 35                                                     | 100                                              | 15             | 1.2                                        |
| 1N5712             | 15                 | 20                                                  | 550                                               | 35                                                     | 150                                              | 16             | 1.2                                        |
| 5082-2811          | 15                 | 15                                                  | 410                                               | 20                                                     | 100                                              | 8              | 1.2                                        |
| 5082-2835          | 15                 | 8*                                                  | 340                                               | 10*                                                    | 100                                              | 1              | 1.0                                        |
| Test<br>Conditions |                    | I <sub>R</sub> = 10 μΑ<br>*I <sub>R</sub> = 100 μΑ  | $I_F = 1 \text{ mA}$                              | $^*V_F = 0.45 \text{ V}$                               |                                                  |                | $V_R = 0 V$<br>f = 1.0 MHz                 |

Note: Effective Carrier Lifetime ( $\tau$ ) for all these diodes is 100 ps maximum measured with Krakauer method at 5 mA except for 5082-2835 which is measured at 20 mA.

### **Matched Pairs and Quads**

| Basic<br>Part Number<br>5082- | Matched<br>Pair<br>Unconnected              | Matched<br>Quad<br>Unconnected              | Batch<br>Matched <sup>[1]</sup>                                            | Test Conditions                                                                                               |
|-------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 2800                          | 5082-2804<br>$\Delta V_{F} = 20 \text{ mV}$ | 5082-2805<br>$\Delta V_{F} = 20 \text{ mV}$ |                                                                            | $\Delta V_F$ at $I_F = 0.5, 5 \text{ m}$ .<br>$*I_F = 10 \text{ mA}$<br>$\Delta C_O$ at $f = 1.0 \text{ MHz}$ |
| 2811                          |                                             |                                             | 5082-2826<br>$\Delta V_F = 10 \text{ mV}$<br>$\Delta C_O = 0.1 \text{ pF}$ | $\Delta V_F$ at $I_F = 10 \text{ mA}$<br>$\Delta C_O$ at $f = 1.0 \text{ MH}$                                 |
| 2835                          |                                             |                                             | 5082-2080<br>$\Delta V_F = 10 \text{ mV}$<br>$\Delta C_O = 0.1 \text{ pF}$ | $\Delta V_F$ at $I_F = 10 \text{ mA}$<br>$\Delta C_O$ at $f = 1.0 \text{ MH}$                                 |

Note:

### **SPICE Parameters**

| Parameter       | Units | 5082-2800               | 5082-2810               | 5082-2811               | 5082-2835               |
|-----------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| $B_V$           | V     | 75                      | 25                      | 18                      | 9                       |
| $C_{J0}$        | рF    | 1.6                     | 0.8                     | 1.0                     | 0.7                     |
| $E_{G}$         | eV    | 0.69                    | 0.69                    | 0.69                    | 0.69                    |
| I <sub>BV</sub> | Α     | 10E-5                   | 10E-5                   | 10E-5                   | 10E-5                   |
| I <sub>s</sub>  | Α     | 2.2 x 10E <sup>-9</sup> | 1.1 x 10E <sup>-9</sup> | 0.3 x 10E <sup>-8</sup> | 2.2 x 10E <sup>-8</sup> |
| N               |       | 1.08                    | 1.08                    | 1.08                    | 1.08                    |
| $R_s$           | Ω     | 25                      | 10                      | 10                      | 5                       |
| $P_{_{B}}$      | V     | 0.6                     | 0.6                     | 0.6                     | 0.56                    |
| P <sub>T</sub>  |       | 2                       | 2                       | 2                       | 2                       |
| M               |       | 0.5                     | 0.5                     | 0.5                     | 0.5                     |

<sup>1.</sup> Batch matched devices have a minimum batch size of 50 devices.

### **Typical Parameters**

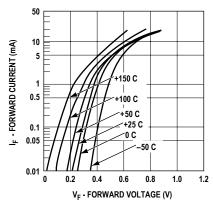



Figure 1. I-V Curve Showing Typical Temperature Variation for 5082-2800 or 1N5711 Schottky Diodes.

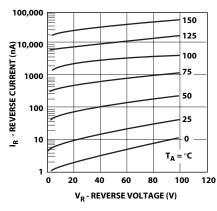



Figure 2. (5082-2800 OR 1N5711) Typical Variation of Reverse Current ( $I_R$ ) vs. Reverse Voltage ( $V_R$ ) at Various Temperatures.

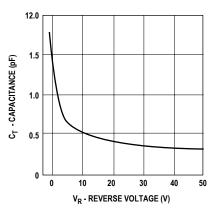



Figure 3. (5082-2800 or 1N5711) Typical Capacitance (C<sub>T</sub>) vs. Reverse Voltage (V<sub>R</sub>).

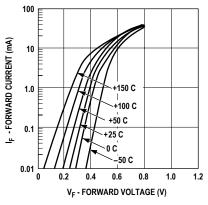



Figure 4. I-V Curve Showing Typical Temperature Variation for the 5082-2810 or 1N5712 Schottky Diode.

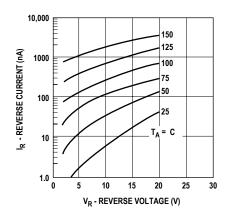



Figure 5. (5082-2810 or 1N5712) Typical Variation of Reverse Current ( $I_R$ ) vs. Reverse Voltage ( $V_R$ ) at Various Temperatures.

#### Notes:

Typical values were derived using limited samples during initial product characterization and may not be representative of the overall distribution

#### **Typical Parameters**, continued

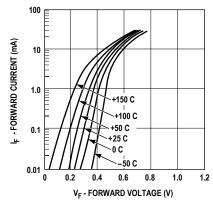



Figure 6. I-V Curve Showing Typical Temperature Variation for the 5082-2811 Schottky Diode.

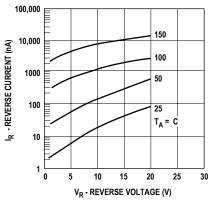



Figure 7. (5082-2811) Typical Variation of Reverse Current (I<sub>R</sub>) vs. Reverse Voltage (V<sub>R</sub>) at Various Temperatures.

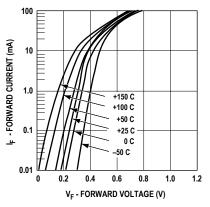



Figure 8. I-V Curve Showing Typical Temperature Variations for 5082-2835 Schottky Diode.

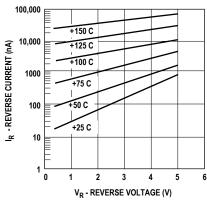



Figure 9. (5082-2835) Typical Variation of Reverse Current (I $_R$ ) vs. Reverse Voltage (V $_R$ ) at Various Temperatures.

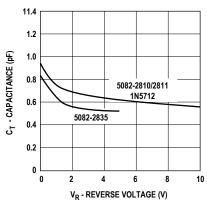



Figure 10. Typical Capacitance ( $C_T$ ) vs. Reverse Voltage ( $V_R$ ).

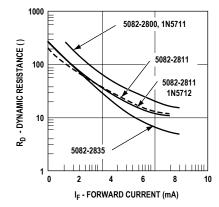



Figure 11. Typical Dynamic Resistance (R<sub>D</sub>) vs. Forward Current (I<sub>F</sub>).

#### Notes

Typical values were derived using limited samples during initial product characterization and may not be representative of the overall distribution

## **Tape Dimensions and Product Orientation**

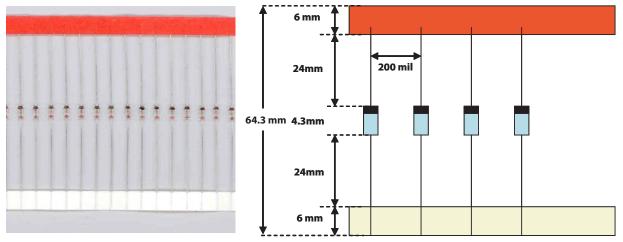



Figure 13.

### RFD Reel Dimensions for T25/T50

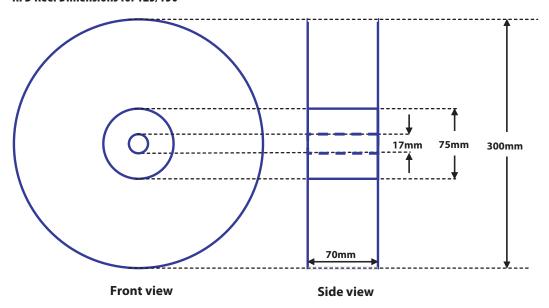



Figure 14.

### **Diode Package Marking**

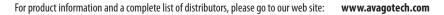
1N5xxx 5082-xxxx

would be marked:

1Nx xx
xxx xx
YWW YWW

where xxxx are the last four digits of the 1Nxxxx or the 5082-xxxx part number. Y is the last digit of the calendar year. WW is the work week of manufacture.

Examples of diodes manufactured during workweek 45 of 1999:


1N5712 5082-3080

would be marked:

1N5 30 712 80 945 945

### Part Number Ordering Information

| Part Number               | No. of devices | Container      |  |
|---------------------------|----------------|----------------|--|
| 5082-28xx#T25/1N57xx#T25  | 2500           | Tape & Reel    |  |
| 5082-28xx#T50/ 1N57xx#T50 | 5000           | Tape & Reel    |  |
| 5082-28xx/ 1N57xx         | 100            | Antistatic bag |  |



