Switch-mode Power Rectifier 45 V, 20 A ## MBR20L45CTG, MBRF20L45CTG #### **Features and Benefits** - Low Forward Voltage - Low Power Loss/High Efficiency - High Surge Capacity - 150°C Operating Junction Temperature - 20 A Total (10 A Per Diode Leg) - Guard-Ring for Stress Protection #### **Applications** - Power Supply Output Rectification - Power Management - Instrumentation #### **Mechanical Characteristics:** - Case: Epoxy, Molded - Epoxy Meets UL 94 V-0 @ 0.125 in - Weight (Approximately): 1.9 Grams - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds - Shipped 50 Units Per Plastic Tube - These Devices are Pb-Free and are RoHS Compliant* ON Semiconductor® www.onsemi.com ### **DUAL SCHOTTKY BARRIER RECTIFIERS** 20 AMPERES, 45 VOLTS B20L45 = Device Code = Assembly Location = Year WW = Work Week = Polarity Designator **AKA** = Pb-Free Device #### **ORDERING INFORMATION** | Device | Package | Shipping | |--------------|-----------------------|---------------| | MBR20L45CTG | TO-220
(Pb-Free) | 50 Units/Rail | | MBRF20L45CTG | TO-220FP
(Pb-Free) | 50 Units/Rail | 1 ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### MAXIMUM RATINGS (Per Diode Leg) | Rating | Symbol | Value | Unit | | |--|--|-----------------|------|--| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | V _{RRM}
V _{RWM}
V _R | 45 | V | | | Average Rectified Forward Current (Rated V_R) $T_C = 141$ °C | I _{F(AV)} | 10 | Α | | | Peak Repetitive Forward Current
(Rated V _R , Square Wave, 20 kHz) | I _{FRM} | 20 | Α | | | Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) | I _{FSM} | 180 | Α | | | Operating Junction Temperature (Note 1) | T _J | -55 to +150 | °C | | | Storage Temperature | T _{stg} | -55 to +175 | °C | | | Voltage Rate of Change (Rated V _R) | dv/dt | 10,000 | V/μs | | | ESD Ratings: Machine Model = C
Human Body Model = 3B | | > 400
> 8000 | V | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteri | stic | Symbol | Value | Unit | |----------------------------|---------------------|----------------|-------|------| | Maximum Thermal Resistance | | | | °C/W | | (MBR20L45CTG) | Junction-to-Case | $R_{ heta JC}$ | 1.9 | | | | Junction-to-Ambient | $R_{ hetaJA}$ | 45 | | | (MBRF20L45CTG) | Junction-to-Case | $R_{ hetaJC}$ | 2.2 | | #### **ELECTRICAL CHARACTERISTICS** (Per Diode Leg) | Characteristic | Symbol | Value | Unit | |--|----------------|------------------------------|------| | Maximum Instantaneous Forward Voltage (Note 2) $ \begin{aligned} &(I_F=10 \text{ A, } T_C=25^\circ\text{C})\\ &(I_F=10 \text{ A, } T_C=125^\circ\text{C})\\ &(I_F=20 \text{ A, } T_C=25^\circ\text{C})\\ &(I_F=20 \text{ A, } T_C=125^\circ\text{C}) \end{aligned} $ | VF | 0.50
0.47
0.63
0.62 | V | | Maximum Instantaneous Reverse Current (Note 2) (Rated DC Voltage, $T_C = 25^{\circ}C$) (Rated DC Voltage, $T_C = 125^{\circ}C$) | i _R | 0.5
170 | mA | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ^{1.} The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$. ^{2.} Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤2.0%. #### **TYPICAL CHARACTERISTICS** Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage **Figure 3. Typical Reverse Current** **Figure 4. Maximum Reverse Current** Figure 5. Current Derating #### **TYPICAL CHARACTERISTICS** Figure 6. Forward Power Dissipation Figure 7. Typical Capacitance Figure 8. Thermal Response Junction-to-Ambient for MBR20L45CTG Figure 9. Thermal Response Junction-to-Case for MBR20L45CTG Figure 10. Thermal Response Junction-to-Case for MBRF20L45CTG ### **MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS** #### **DATE 05 NOV 2019** - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009. - 2. CONTROLLING DIMENSION: INCHES NOTES: 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. #### 4. MAX WIDTH FOR F102 DEVICE = 1.35MM | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN. | MAX. | MIN. | MAX. | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.415 | 9.66 | 10.53 | | С | 0.160 | 0.190 | 4.07 | 4.83 | | D | 0.025 | 0.038 | 0.64 | 0.96 | | F | 0.142 | 0.161 | 3.60 | 4.09 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.161 | 2.80 | 4.10 | | J | 0.014 | 0.024 | 0.36 | 0.61 | | К | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.41 | | Т | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | V | 0.045 | | 1.15 | | | Z | | 0.080 | | 2.04 | | STYLE 1: | | STYLE 2: | | STYLE 3: | | STYLE 4: | | |----------|-----------|-----------|-----------|-----------|---------|----------|--------------------| | PIN 1. | BASE | PIN 1. | BASE | PIN 1. | CATHODE | PIN 1. | MAIN TERMINAL 1 | | 2. | COLLECTOR | 2. | EMITTER | 2. | ANODE | 2. | MAIN TERMINAL 2 | | 3. | EMITTER | 3. | COLLECTOR | 3. | GATE | 3. | GATE | | 4. | COLLECTOR | 4. | EMITTER | 4. | ANODE | 4. | MAIN TERMINAL 2 | | STYLE 5: | | STYLE 6: | | STYLE 7: | | STYLE 8: | | | PIN 1. | GATE | PIN 1. | ANODE | PIN 1. | CATHODE | PIN 1. | CATHODE | | 2. | DRAIN | 2. | CATHODE | 2. | ANODE | 2. | ANODE | | 3. | SOURCE | 3. | ANODE | 3. | CATHODE | 3. | EXTERNAL TRIP/DELA | | 4. | DRAIN | 4. | CATHODE | 4. | ANODE | 4. | ANODE | | STYLE 9: | | STYLE 10: | | STYLE 11: | | STYLE 12 | : | | PIN 1. | GATE | PIN 1. | GATE | PIN 1. | DRAIN | PIN 1. | MAIN TERMINAL 1 | | 2. | COLLECTOR | 2. | SOURCE | 2. | SOURCE | 2. | MAIN TERMINAL 2 | | 3. | EMITTER | 3. | DRAIN | 3. | GATE | 3. | GATE | | 4. | COLLECTOR | 4. | SOURCE | 4. | SOURCE | 4. | NOT CONNECTED | | | | | | | | | | | DOCUMENT NUMBER: | 98ASB42148B | Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TO-220 | | PAGE 1 OF 1 | | ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ### **MECHANICAL CASE OUTLINE** SCALE 1:1 3. CATHODE #### TO-220 FULLPAK CASE 221D-03 ISSUE K **DATE 27 FEB 2009** 0 **AYWW** xxxxxxG AKA - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH - 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03. | | INCHES | | MILLIN | IETERS | |-----|--------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.617 | 0.635 | 15.67 | 16.12 | | В | 0.392 | 0.419 | 9.96 | 10.63 | | C | 0.177 | 0.193 | 4.50 | 4.90 | | D | 0.024 | 0.039 | 0.60 | 1.00 | | F | 0.116 | 0.129 | 2.95 | 3.28 | | G | 0.100 | BSC | 2.54 BSC | | | Н | 0.118 | 0.135 | 3.00 | 3.43 | | J | 0.018 | 0.025 | 0.45 | 0.63 | | K | 0.503 | 0.541 | 12.78 | 13.73 | | L | 0.048 | 0.058 | 1.23 | 1.47 | | N | 0.200 | BSC | 5.08 BSC | | | Q | 0.122 | 0.138 | 3.10 | 3.50 | | R | 0.099 | 0.117 | 2.51 | 2.96 | | S | 0.092 | 0.113 | 2.34 | 2.87 | | U | 0.239 | 0.271 | 6.06 | 6.88 | #### **MARKING DIAGRAMS** STYLE 1: PIN 1. GATE STYLE 2: PIN 1. BASE STYLE 3: PIN 1. ANODE 2. COLLECTOR 3. EMITTER CATHODE ANODE 2. DRAIN 2. 3. SOURCE STYLE 6: PIN 1. MT 1 2. MT 2 3. GATE STYLE 4: PIN 1. CATHODE STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE ANODE = Assembly Location xxxxxx = Specific Device Code G = Pb-Free Package Υ = Year Α = Assembly Location WW = Work Week Υ = Year XXXXXX = Device Code = Work Week = Pb-Free Package WW G AKA = Polarity Designator | DOCUMENT NUMBER: | 98ASB42514B | Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|----------------|---|-------------|--| | DESCRIPTION: | TO-220 FULLPAK | | PAGE 1 OF 1 | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative