

AN-1840 USB I²C Interface Board Reference Manual

This application note discusses the features, requirements, and usages of the USB I²C Interface board.

		Contents	
1	Introdu	uction	2
2	USB I ² C Interface Board Key Features		
3	Block Diagram		
4	Syster	System Requirements	
	4.1	Hardware Requirements	2
5 Serial Interface and Programming Connectors		Interface and Programming Connectors	3
	5.1	Serial Interface "J"	3
	5.2	Electrical Characteristics of I ² C	4
6	I ² C Cc	mpatible Interface	4
-	6.1	I ² C Signals	4
	6.2	I ² C Data Validity	4
	6.3	I ² C Start and Stop Conditions	4
	6.4	Transferring Data	5

List of Figures

1	Block Diagram	2
2	USB I ² C Interface Module	3
3	I ² C Signals: Data Validity	4
4	START and STOP Conditions	5
5	I ² C Chip Address	5
6	I ² C Write Cycle	5
7	I ² C Read Cycle	6

All trademarks are the property of their respective owners.

www.ti.com

Introduction

1 Introduction

The USB I²C Interface board interacts with your application hardware via an USB port in a PC. The microcontroller with flash memory enables to control your application hardware and develop specific application functions via software. (*Texas Instruments does not provide interaction software, which networks both application board and I²C board*).

2 USB I²C Interface Board Key Features

- TI's COP8CBE9 microcontroller in a TSSOP package
- TI's USBN9604 IC in a 28-pin PLGA package
- USB 2.0 compatible
- Bus powered
- 24 MHz clock from crystal
- 8-pin analog inputs for A/D converter

3 Block Diagram

Figure 1 shows basic connections between the PC, USB I²C Interface Module, and application board.

Figure 1. Block Diagram

4 System Requirements

The following requirements are vital in order to use the USB I²C Interface Module: System Requirements

- Windows Operating System (Win98/ME/2000/XP)
- 32 MB RAM minimum)
- 2 MB available for disk space

4.1 Hardware Requirements

• 5-Pin Mini-B USB 2.0 cable (sold separately)

www.ti.com

Figure 2. USB I²C Interface Module

5 Serial Interface and Programming Connectors

5.1 Serial Interface "J"

The table below shows the pin configuration for the COP8 controller for all interface modes.

Pin Name	I2C Board Pin/COP8 Pin	Comment
SDA (Data out)	SDA / 40	$R = 2 k \Omega^{(1)}$
SCL (Clock)	SCL / 39	$R = 2 k \Omega^{(1)}$
Analog Ch. 6/GPIO	A5 / 38	(2)
Analog Ch. 5/GPIO	A4 / 37	(2)
Analog Ch. 4/GPIO	A3 / 36	(2)
Analog Ch. 3/GPIO	A2 / 35	(2)
Analog Ch. 2/GPIO	A1 / 34	(2)
Analog Ch. 1/GPIO	A0 / 33	(2)

⁽¹⁾ Must have a pull-up resistor on application hardware for SCL and SDA lines.

⁽²⁾ Do not use any of A5 - A0 pins as a ground connection. Connect both application and I²C grounds together to make a good ground connection between the two boards. (Refer to I²C picture for GND pin.)

PC Compatible Interface

5.2 Electrical Characteristics of ^PC

The USB I²C board requires 5V from a computer to function correctly. The maximum current that the I²C board will draw from the computer is 500 mA. This I²C board will function within the temperature range of $0^{\circ}C \le T_A \le 70^{\circ}C$.

For further information about the devices on the I²C board, refer to the following links:

COP8CBE9/CCE9 8-Bit CMOS Flash Microcontroller with 8k Memory, Virtual EEPROM, 10- Bit A/D and Brownout Reset (SNOS978)

150-mA Low-Noise, Low-Dropout Regulator With Shutdown (SLVS522)

6 I²C Compatible Interface

6.1 **FC** Signals

In I²C-compatible mode, the SCL pin is used for the I²C clock and the SDA pin is used for the I²C data. Each of these signals need a pull-up resistor according to I²C specification. The values of the pull-up resistors are determined by the capacitance of the bus (typ. ~2k). See I²C specification from Phillips for further details. Signal timing specifications are according to the I²C bus specification. Maximum frequency is 400 KHz.

6.2 *f* C Data Validity

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when CLK is LOW.

Figure 3. I²C Signals: Data Validity

6.3 **PC Start and Stop Conditions**

START and STOP bits signify the beginning and the end of the I²C session. START condition is defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The I²C master always generates START and STOP bits. The I²C bus is considered busy after START condition and free after STOP condition. During data transmission, I²C master can generate repeated START conditions. First START and repeated START conditions are equivalent, function-wise.

www.ti.com

Figure 4. START and STOP Conditions

6.4 Transferring Data

Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. All clock pulses are generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the 9th clock pulse, signifying an acknowledge. A receiver which has been addressed must generate an acknowledge after each byte has been received.

After the START condition, the I^2C master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

Figure 5. I²C Chip Address

PC Compatible Interface

www.ti.com

When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle waveform.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications		
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications	
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers	
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps	
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy	
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial	
Interface	interface.ti.com	Medical	www.ti.com/medical	
Logic	logic.ti.com	Security	www.ti.com/security	
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense	
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video	
RFID	www.ti-rfid.com			
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com	
Wireless Connectivity	www.ti.com/wirelessconnectivity			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated