
LinearLabTools Step­by­step installation for Matlab users

February, 2017

This document shows all steps for the installation of LinearLabTools for Matlab users, including

the installation of PScope.

Step 1: Linear Tech converter evaluation software installation

Install the software required by the demo board being evaluated. This is PScope for Analog to

Digital converters, or LTDACgen for high­speed DACs such as the LTC2000. This document will

use PScope as an example. The procedure for LTDACgen is similar.

Run the installer and follow the directions:

PScope will then open. Follow the procedure in the data converter evaluation board’s Demo

Manual. This will include board configuration, connection of power supplies, clock signals,

analog signals, and any other requirements.

IMPORTANT: Both PScope and LinearLabTools programs will show errors if the demo boards

are not connected properly.

Once the hardware is set up properly, PScope should be able to collect data properly as shown

below.

At this point the hardware is working properly and communicating with the host computer. Quit

PScope before proceeding to avoid communication conflicts with LinearLabTools programs.

Step 2: Install LinearLabTools

Note that both 32­bit and 64­bit installers are provided. The choice depends on the Matlab

environment. If using a 32-bit Matlab on a 64-bit system, use the 32-bit installer.

32-bit installer

64-bit installer

Run the installer and follow the directions.

http://www.linear.com/docs/47271
http://www.linear.com/docs/47270

Step 3: Prepare Matlab Mex

Matlab requires mex-setup to be run in order to use external native libraries.

Run "mex ­setup" and chose a compiler from the options listed as shown below.

32-bit:

Matlab includes the Lcc-Win32 compiler so this option can always be used.

64-bit:

64-bit Matlab does not provide a compiler. If a compiler is not installed or listed in the

available options, follow the instructions in the following link to install a compatible

compiler:

https://www.mathworks.com/matlabcentral/answers/101105-how-do-i-install-microsoft-

windows-sdk-7-1

Step 4: Matlab Path

Add the absolute path to the "linear_lab_tools\matlab" or "linear_lab_tools64\matlab"

folder before running any scripts. This can be added to the startup.m:

https://www.mathworks.com/help/matlab/ref/startup.html?requestedDomain=www.mathworks.co

m

Or use the Set Path icon in the environment section of the home tab of the top ribbon

menu.

Step 5: Communicating with the Hardware

The figure below shows the organization of LinearLabTools:

https://www.mathworks.com/matlabcentral/answers/101105-how-do-i-install-microsoft-windows-sdk-7-1
https://www.mathworks.com/matlabcentral/answers/101105-how-do-i-install-microsoft-windows-sdk-7-1
https://www.mathworks.com/help/matlab/ref/startup.html?requestedDomain=www.mathworks.com
https://www.mathworks.com/help/matlab/ref/startup.html?requestedDomain=www.mathworks.com

To run the example Matlab script for your demo board type:

llt.demo_board_examples.(ltc##xx).(part number).(example file) e.g.

llt.demo_board_examples.ltc23xx.ltc2378.ltc2378_20_dc2135a

Press the enter key.

The script will go through the basic operations of capturing data from the board, then display time

and frequency domain plots. Exact operations may vary from board to board. You should see

plots similar to those below:

When run with no outputs as above, each demo-board example makes a time domain plot and a

frequency domain plot for each channel and writes the data to a text file. You can also call the

function passing it several parameters and returning the data for each channel.

For example:

num_samples = 16*1024;

spi_registers = [];

is_verbose = false;

do_plot = true;

do_write_to_file = false;

data = ltc2378_20_dc2135a(num_samples, spi_registers, is_verbose, do_plot,

do_write_to_file);

Most functions have a signature similar to the one above. See the code for additional

information. Many parts do not have SPI configuration, for these pass [] for the SPI registers.

For other parts, look at the code for an example of correct SPI register format. For parts with

multiple channels replace data with something like [ch0, ch1, … chn] for the function output.

At this point, data from the demo board is stored in an array in the program. You can then extend

the functionality of the program as required for your evaluation, incorporate other test hardware

such as signal generators, etc.

