Stellaris® Ethernet-Enabled Intelligent Display Module (IDM) Reference Design Kit

User's Manual

Copyright

Copyright © 2008–2010 Texas Instruments, Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments. ARM and Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Texas Instruments 108 Wild Basin, Suite 350 Austin, TX 78746 http://www.ti.com/stellaris

Table of Contents

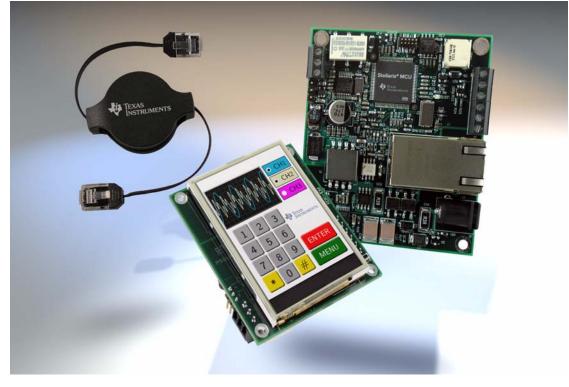
Chapter 1: Stellaris® Ethernet-Enabled Intelligent Display Module	
Kit Contents	
Using the RDK	
Board Overview	5
Chapter 2: Hardware Description11	
Block Diagram11	
Functional Description	2
Microcontroller and Networking (Schematic page 1)12)
Microcontroller12	2
Debugging12)
Ethernet12	
LCD Panel and Peripherals (Schematic page 2)12	
LCD Panel	
Touch Panel13	
RS232 Serial Port	
Relay13	
Analog Inputs	
Audio Transducer	
MicroSD Card Slot	
Power Supplies (Schematic page 3)14	
PoE Operation (applies to MDL-IDM only)14	
+5 V Operation (applies to MDL-IDM28 only)14	
Chapter 3: Software Development	
Software Description	
Source Code	
Tool Options	;
Programming the IDM	5
Appendix A: Schematics)
Appendix B: Bill of Materials (BOM)	\$
Appendix C: Component Details)

List of Figures

Figure 1-1.	Intelligent Display Module	. 7
	IDM Board Overview Diagram	
Figure 2-1.	Intelligent Display Module Block Diagram	11
Figure 2-2.	Debug Connection Pinout	12
Figure C-1.	Component Placement Plot for Top	29
Figure C-2.	Component Placement Plot for Bottom	30

List of Tables

Table B-1.	MDL-IDM28 Bill of Materials	. 23
Table B-2.	RDK-IDM Bill of Materials	. 26


Stellaris® Ethernet-Enabled Intelligent Display Module

The Stellaris Intelligent Display Module (IDM) Reference Design (RDK-IDM) is a compact QVGA touch-panel module for automation and instrumentation applications. The design is based on the Stellaris® LM3S6918 microcontroller; a highly integrated controller incorporating a 32-bit ARM® Cortex[™]-M3 core.

A key feature of the standard IDM is the Power over Ethernet (PoE) power system that facilitates both network and power connections with a single CAT5 cable. 10/100 Ethernet capability connects the IDM to an array of networks—from dedicated industrial networks to the internet. The IDM example software application includes source code for an embedded web server. In addition to the POE-equipped IDM included in the RDK, there is also an IDM28 available. IDM28 has an identical feature set, including 10/100baseT Ethernet, but without the Power over Ethernet capability. Users should start development with the standard RDK-IDM and transition to MDL-IDM28 for production if PoE is not required.

Development of software for the RDK-IDM is simplified by using the StellarisWare® comprehensive graphics library and ARM development tools from our tools partners. The IDM Reference Design Kit includes the touch panel module (MDL-IDM), a documentation CD, power supply, and cables.

This user's manual provides comprehensive information on the reference design hardware and software.

Figure 1-1. Intelligent Display Module

Kit Contents

The RDK-IDM reference design kit supports both the MDL-IDM and the MDL-IDM28, and comes with the following:

- MDL-IDM Intelligent QVGA Touch Panel with Ethernet
- Power supply
 - 24 V/15 W
 - Plug adaptors for US, UK, EU, and Australia
- Retractable Ethernet cable
 - 10/100baseT
- Debug adapter
 - Adapts 10-pin fine-pitch ARM JTAG connector to standard 20-pin connector
- Reference Design Kit CD
 - Complete documentation, including Quickstart and User's Guides
 - Graphical User Interface (GUI) installer
 - Complete source code, schematics, and PCB gerber files

The source code can be modified and compiled using any of the following tools:

- Keil[™] RealView[®] Microcontroller Development Kit (MDK-ARM)
- IAR Embedded Workbench
- Code Sourcery GCC development tools
- Code Red Technologies development tools
- Texas Instruments' Code Composer Studio[™] IDE

Using the RDK

The recommended steps for using the RDK are:

- Follow the Quickstart guide included in the kit. The Quickstart guide will help get the display module up and running in minutes.
- Use your preferred ARM tool-chain and the Stellaris Graphics library to develop a touch-panel application. Software applications are loaded into IDM flash memory using a JTAG/SWD debug interface. See Chapter 3, "Software Development," for the programming procedure. The Stellaris Graphics Library Software Reference Manual and the Stellaris Peripheral Driver Library Software Reference Manual each contain specific information on software structure and function.
- Customize and integrate the hardware to suit an end application. This user's manual is an important reference for understand circuit operation and completing hardware modification.

Board Overview

Figure 1-2 shows an overview of the board.

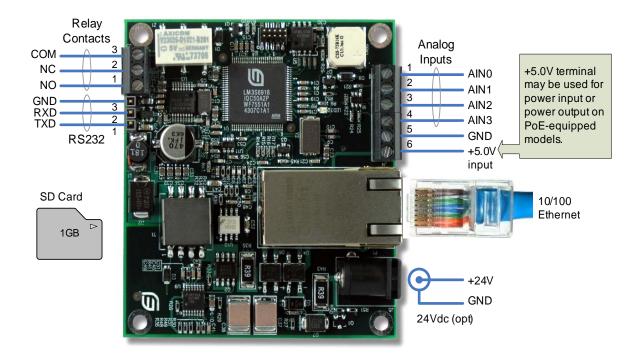
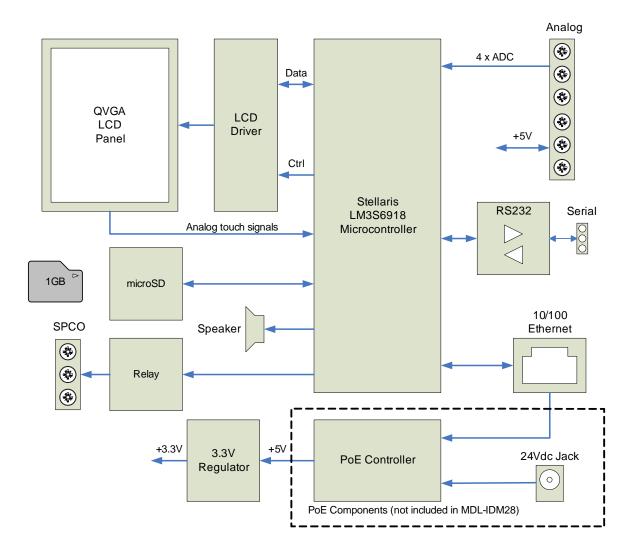


Figure 1-2. IDM Board Overview Diagram


Hardware Description

The IDM design uses a Stellaris® LM3S6918 microcontroller to handle display functions, touch-screen control, networking, and peripheral functions. Only a few additional ICs are needed to complete the design. The entire circuit is built on a compact four-layer printed circuit board. All design files are provided on the RDK-IDM CD.

Block Diagram

Figure 2-1 shows the IDM block diagram.

Functional Description

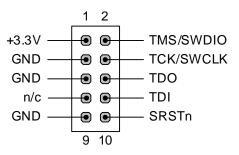
This section describes the IDM's hardware design in detail.

Microcontroller and Networking (Schematic page 1)

Page 1 of the schematics details the microcontroller, Ethernet, and debug interfaces.

Microcontroller

At the core of the IDM is the Stellaris LM3S6918 microcontroller with integrated Ethernet MAC and PHY. The Stellaris microcontroller operates at up to 50 MHz using an internal PLL.


The LM3S6918 microcontroller has an internal LDO voltage regulator that supplies 2.5 V power for internal use. This rail requires only three capacitors for decoupling and is not connected to any other circuits.

A reset switch and R-C network connect to the microcontroller's RSTn input. An external reset circuit is not required by the LM3S6918 microcontroller, so the R-C components simply serve to filter any noise on the reset line.

Debugging

The microcontroller supports JTAG and SWD debugging as well as SWO trace capabilities. To minimize board area, the RDK uses a 0.050" pitch header which matches ARM's fine-pitch definition (Figure 2-2). Some in-circuit debuggers provide a matching connector. Other debuggers can be used with the ADA1 adaptor board included in the RDK.

Figure 2-2. Debug Connection Pinout

Ethernet

The Ethernet jack (P1) integrates a RJ-45 connector, Ethernet magnetics, surge suppression, and additional pins for Ethernet power connection. The jack supports power over the two unused CAT-5 pairs as well as the signal pairs. The Power over Ethernet (PoE) circuit is covered on page 3 of the schematic.

A single LED provides Ethernet link and traffic information. Refer to the LM3S6918 microcontroller data sheet for information on the display modes for this LED. The schematic and PCB have provision for an LED to be mounted on the LCD side of the display. This capability would allow a short light-pipe to provide front-panel display of Ethernet traffic.

LCD Panel and Peripherals (Schematic page 2)

Page 2 of the schematics contains the LCD panel connections, serial communication, relay, speaker, analog inputs, and a microSD card slot.

LCD Panel

The LCD panel (U2) is a 2.8" TFT panel with an integrated controller (ILI9320). The display memory resides in the LCD panel, allowing the microcontroller to access the panel as a peripheral. The LCD panel requires only a 3 V power supply which also simplifies system design.

A 16-bit data path is used to improve access rates. Only two control lines (RDn, WRn) are required for reading and writing to the panel. A third signal (RS) selects between memory and control register access. In order to meet reset signal timing requirements. The microcontroller also controls the panel's reset signal (RSTn).

The LCD panel incorporates a white LED backlight which is controlled by the microcontroller using PC6/CCP3 and MOSFET Q3. Most applications will use backlighting at full brightness by setting GPIO PC6 HIGH. Because the forward voltage of each LED is typically 3.5 V, the 75 Ω resistors set LED current to 20mA for a total panel current of 80mA.

For additional LCD panel information, refer to the data sheets on the RDK-IDM CD and LCD driver source code in the StellarisWare Graphics library.

Touch Panel

Four ADC channels and four GPIO lines connect directly to the resistive touch panel, allowing the microcontroller to manage all aspects of operation.

X and Y axis position measurements are made independently.

For X-axis measurement, GPIO pins PC4 and PC5 are set HIGH and LOW respectively to form a resistor divider between 3 V and 0 V. The voltage on ADC6 and ADC7 indicates the X-axis position.

To measure the Y-axis position, PD0 and PD1 are set HIGH and LOW respectively and the voltage on ADC4 or ADC5 is measured.

Software controls calibration and finger press detection functions.

RS232 Serial Port

The MAX2331 (U3) line transceiver interfaces between UART 1 and the RS232 port pins. The transceiver incorporates a power saving feature that turns off its internal power supply if a valid RS232 level is not present on its receive pin. This feature should be considered if connecting to a device other than a PC serial port.

Relay

A single-pole, double-throw relay is available for general-purpose use. When connecting an external load, do not exceed the ratings listed in the MDL-IDM data sheet. If an inductive load is used and powered from a DC source, a flywheel diode should be connected across the load to reduce arcing as the relay switches off.

Analog Inputs

Four analog inputs add measurement capability to the IDM. Refer to the MDL-IDM data sheet for electrical limits for these inputs. A transient voltage suppressor (U6) adds electrostatic discharge (ESD) protection.

Audio Transducer

SPK1 is a small magnetic audio transducer which is driven by PC7/CCP4 through a small power MOSFET. CCP4 can be configured to generate a free running tone at the required frequency. Note that the audio transducer is polarized.

MicroSD Card Slot

Standard microSD media may be used for image or data storage. The SD card is wired for use in SPI mode, rather than the 1-bit or 4-bit SD modes.

Power Supplies (Schematic page 3)

The third schematic page contains the complete Power over Ethernet (PoE) power supply circuit.

PoE Operation (applies to MDL-IDM only)

PoE (IEEE 802.3af) is a specification for supplying 48 V at up to 15 W to a device over a standard CAT5 cable. The IDM can operate in Mode A, where power is received from Ethernet signal lines, or in Mode B, where power is received from the unused signal pairs.

All PoE signaling, including device class identification, is handled by an LM5071 controller. Implementation of the 802.3af standard does not require software or Ethernet transactions.

The PoE controller's under-voltage lock-out circuit prevents the IDM from operating at less than 35 V. In order to support an alternative 24 Vdc power source, a simple circuit using transistor Q6, changes the under-voltage lock-out to around 12 V when a local supply is present.

The IDM's PoE circuit is fully isolated to 250 Vdc. The voltage potential between the Ethernet signals and GND on the module must not exceed this limit under both normal and fault conditions.

The PoE switching power supply generates 5 Vdc power for backlighting, audio transducer, and the relay. A 5 Vdc power output is available on the terminal block for powering external sensors. A 3.3 V LDO voltage regulator provides microcontroller and digital circuit power.

+5 V Operation (applies to MDL-IDM28 only)

MDL-IDM28 does not support PoE operation. Instead, an external +5 V supply must be provided to the terminal block (see Figure 1-2 on page 9). The power supply should provide +5 V \pm 5% at 300 mA.

Software Development

This chapter provides general information on software development as well as instructions for Flash memory programming.

Software Description

The software provided with the IDM provides access to all of the peripheral devices supplied in the design. The Stellaris Peripheral Driver Library is used to operate the on-chip peripherals, the Stellaris Graphics Library is used to render graphical displays on the touch screen, and a set of board-specific drivers are provided to access the off-chip functionality on the IDM.

The Stellaris Graphics Library provides two levels of support for rendering graphical elements. In the lowest level, basic drawing primitives are provided, such as lines, circles, rectangles, and text rendering. Each primitive supports clipping to a single clipping rectangle, allowing only a portion of the display to be affected by the drawing primitives. Building upon the drawing primitives is a widget set, which combines the drawing of graphical elements with reactions to pointer events (in this case, presses on the touch screen). The widget set includes push buttons, check boxes, radio buttons, and drawing canvases. By using the widget set, complex interactive graphical displays can be constructed quickly.

A set of drivers for the on-board peripherals is also provided. This includes a driver for the touch screen, the audio transducer, the relay, the analog inputs, and the MicroSD card. Since the PoE signaling is handled entirely in hardware and, therefore, imposes no requirements upon the software, any of the TCP/IP stacks that support the Stellaris Ethernet interface can be used on the module.

The IDM is also supplied with a set of example applications that utilize the Stellaris Peripheral Driver Library and the Stellaris Graphics Library, along with the board-specific drivers for the on-board peripherals. These applications demonstrate the capabilities of the IDM, and provide a starting point for the development of the final application for use on the IDM. All example applications are integrated with the Stellaris boot loader to allow automatic firmware updates to be performed over Ethernet using the LM Flash Programmer application.

Source Code

The complete source code for the IDM is included on the RDK-IDM CD. Refer to the Quickstart Guide for a detailed description of initial RDK hardware set up and how to install the source code. The source code and binary files are installed in the DriverLib tree.

Tool Options

The source code installation includes directories containing projects and/or makefiles for the following tool-chains:

- Keil[™] RealView[®] Microcontroller Development Kit (MDK-ARM)
- IAR Embedded Workbench
- Code Sourcery GCC development tools
- Code Red Technologies development tools
- Texas Instruments' Code Composer Studio[™] IDE

Evaluation versions of these tools may be downloaded from www.ti.com/stellaris. Note that, due to code size restrictions, the evaluation tools may not build all example programs for the IDM. A full license is necessary to re-build or debug all examples.

Instructions on installing and using each of the evaluation tools can be found in the Quickstart guides (for example, Quickstart-Keil, Quickstart-IAR) which are available for download from the evaluation kit section of our web site at www.ti.com/stellaris.

For detailed information on using the tools, refer to the documentation included in the tool chain installation or visit the website of the tools supplier.

Programming the IDM

The IDM software package includes pre-built binaries for each of the example applications. If you installed DriverLib to the default installation path of C:/DriverLib, you can find the example applications for the IDM in "C:/DriverLib/boards/rdk-idm".

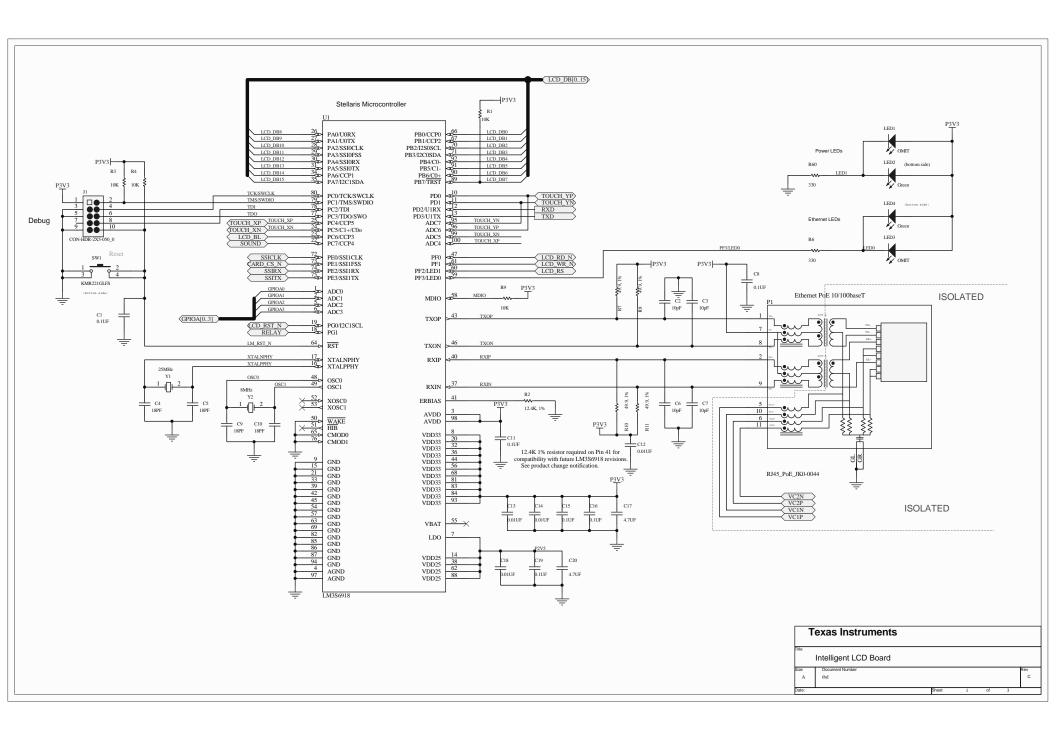
The LM Flash Programmer is a free tool for programming Stellaris microcontrollers. It can be used in two modes to update the firmware on the IDM. All IDM example applications are designed for use with the Stellaris boot loader which supports updating of the main application firmware over Ethernet. Alternatively, the LM Flash Programmer utility can be used in conjunction with any Stellaris evaluation board to program the IDM. The Stellaris evaluation board acts as a USB-to-JTAG/SWD hardware interface and should be used in cases where the boot loader image is not present or where the main application image is not behaving correctly and cannot receive the Ethernet signal telling it to transfer control to the boot loader. However, in normal operation, it is more convenient to program via Ethernet.

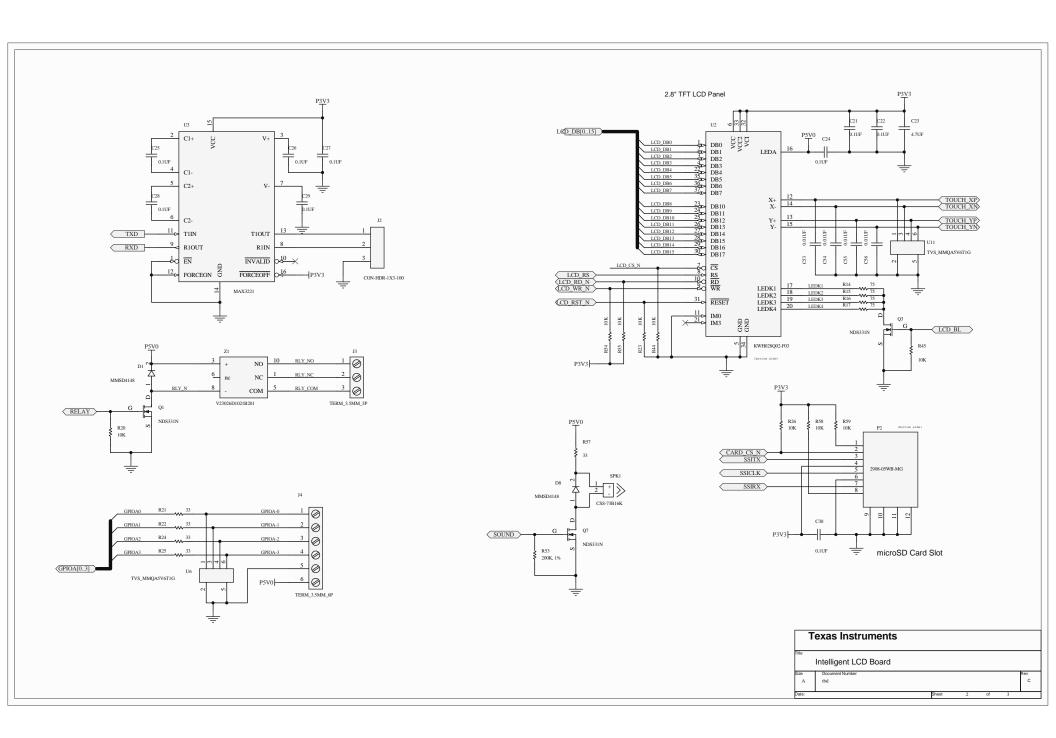
To program example applications into the IDM using the Ethernet-based firmware update:

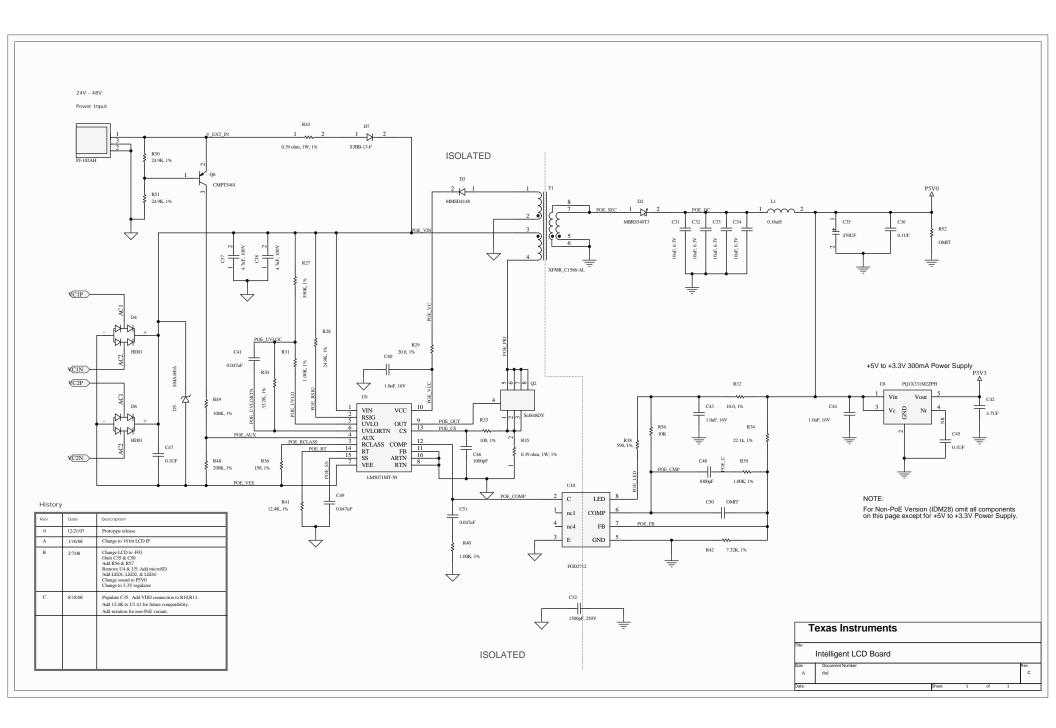
- 1. Install the LM Flash Programmer utility on a Windows PC.
- 2. Ensure that the IDM is connected to the same subnet of your Ethernet as the Windows PC that will be used to program the device.
- 3. Apply power to the IDM.
- 4. Run LM Flash Programmer.
- 5. In the Configuration tab, select "Manual Configuration see below" in the "Quick Set" list.
- 6. Select "Ethernet Interface" in the list below "Interface" and fill in the IP and MAC addresses for the IDM you are trying to program. Each example application shows this information somewhere on the IDM display. Note that it may take several seconds for the IP address to be allocated.
- 7. If your PC has multiple network adapters, select the appropriate adapter in the "Ethernet Adapter" list.
- 8. Move to the Program tab and click the Browse button. Navigate to the example applications directory (the default location is "C:/DriverLib/boards/rdk-idm/").
- 9. Each example application has its own directory. Navigate into the example directory that you want to load and then go to the /gcc directory which contains the binary (*.bin) files. Select the application binary file and click Open. Files that start with a "bl_" prefix are boot loader images and cannot be updated using this method.
- **10.** Click the Program button to start the download process.
- **11.** The program starts once the download is complete.

To replace the boot loader image or to program example applications into the IDM using a Stellaris evaluation board to provide JTAG/SWD functionality:

- 1. Install LM Flash Programmer on a Windows PC.
- 2. Connect the 10-pin to 20-pin adapter (included in the RDK) to the evaluation board ribbon cable. This converts the standard 20-pin ARM header on the evaluation board to a fine pitch ARM header.
- 3. Carefully connect the socket of the adaptor board to J1 on the IDM.
- 4. Apply power to the IDM and connect the evaluation board (available separately) to a USB port.
- 5. Run LM Flash Programmer.
- **6.** In the Configuration Tab use the Quick Set control to select LM3S6965. These settings are compatible with the LM3S6918 implementation on the IDM.
- 7. Move to the Program Tab and click the Browse button. Navigate to the example applications directory (the default location is "C:/DriverLib/boards/rdk-idm/).
- 8. Each example application has its own directory. Navigate into the example directory that you wish to load and then into the /gcc directory which contains the binary (*.bin) files. Files named with a "bl_" prefix are Stellaris boot loader images while those without the prefix are main application images. Select the binary file and click Open.
- **9.** Set the "Erase Method" to "Erase Necessary Pages" and check the "Verify After Program" box.
- **NOTE:** Setting "Erase Entire Flash" when attempting to replace a main application image will erase the boot loader image and result in a hang when the IDM next boots. If this occurs, reflash a boot loader image using these instructions.
- **10.** If flashing a boot loader image, set the "Program Address Offset:" value to 0x0000. If programming a main application image, set this value to 0x1000.
- **11.** Next, click on the Program button to start the Erase, Download, and Verify process.
- 12. Program execution will start once Verify is complete.


The Debuggers in each of the tool-chains also include Flash programming capabilities, including support for high-performance in-circuit debug interfaces.


The IDM design uses a Stellaris® LM3S6918 microcontroller to handle display functions, touchscreen control, networking, and peripheral functions. Only a few additional ICs are necessary to complete the design. The entire circuit is built on a compact four-layer printed circuit board. All design files are provided on the RDK-IDM CD.


Schematics

This sections contains the schematic diagrams for the Intelligent Display Module.

- IDM Microcontroller and Networking on page 20
- IDM LCD Panel and Peripherals on page 21
- IDM Power over Ethernet Circuit on page 22

Bill of Materials (BOM)

Table B-1 provides the BOM for the IDM28 module (MDL-IDM28) and Table B-2 on page 26 provides the BOM for the IDM RDK (RDK-IDM).

Table B-1. MDL-IDM28 Bill of Materials

Item	Ref	Qty	Part Number	Description	Mfg	Supplier	Stock No
1	C2,C3,C6,C7	4	C0603C100J5GACTU	Capacitor 10pF 50V 5% Ceramic NPO/COG 0603	Kemet	Mouser	80-C0603C100J5G
2	C4,C5,C9,C1 0	4	C0603C180J5GACTU	Capacitor 18pF 50V 5% Ceramic NPO/COG 0603	Kemet	Mouser	80-C0603C180J5G
3	C1,C8,C11, C15,C16,C19 ,C21,C22,C2 4,C25,C26, C27,C28, C29,C30, C36,C45,C47	18	ECJ-1VB1H104K	Capacitor 0.1uF 00603 50V X7R 5%	Panasonic	Digikey	PCC2398CT-ND
4	C12,C13, C14,C18, C53,C54, C55,C56	8	C0603C103J5RACTU	Capacitor, 0.01uF 50V 5% 0603 X7R	Kemet	Mouser	80-C0603C103J5R
5	C17,C20, C23,C42	4	LMK212BJ475KG-T	Capacitor 4.7uF 16V X5R 0805	Taiyo Yuden	Digikey	587-1298-2-ND
6	C31,C32, C33,C34	4	C0805C106K9PACTU	Capacitor 10uF 6.3V X5R 0805	Kemet	Mouser	80-C0805C106K9P
7	C35	1	EEE-FK0J471GP	Capacitor, 470uF 6.3V Electro, Low Z, SMT Size F	Panasonic	Digikey	PCE4308CT-ND
8	C37,C38	2	C5750X7R2A475M	Capacitor 4.7uF 100V X7R 2220	TDK	Digikey	445-1450-2-ND
9	C40,C43, C44	3	C0805C105Z4VACTU	Capacitor 1uF 16V Y5V 0805	Kemet	Mouser	80-C0805C105Z4V
10	C41,C49,C51	3	ECJ-1VB1H473K	Capacitor 0.047uF 50V X7R 0603	Panasonic	Digikey	PCC2286CT-ND
11	C46,C48	2	C0603C102K5RACTU	Capacitor 1000pF 0603 X7R 50V 10%	Kemet	Digikey	399-1082-1-ND
13	C52	1	GRM188R72E152KW07D	Capacitor 1500pF 250V X7R 0603	Murata	Digikey	490-3528-1-ND
14	D1,D3,D8	3	MMSD4148T1G	Diode, Switching 200mA 100V SOD-123	OnSemi	Digikey	MMSD4148T1GOSCT-ND
15	D2	1	MBRS540T3	Diode, Schottky 5A 40V SMC	OnSemi	Digikey	MBRS540T3GOSCT-ND
16	D4,D6	2	HD01-T	Rectifier, Bridge 0.8A 100V MiniDIP SMT	Diodes	Digikey	HD01DICT-ND
17	D5	1	SMAJ60A-E3/1	TVS 60V 400W DO-214AC	Vishay	Digikey	SMAJ60A-E3/1GI-ND
18	D7	1	S3BB-13-F	Diode, 3A 100V SMB	Diodes	Digikey	S3BB-FDICT-ND
19	J1	1	M50-3600542	Connector, 2x5 Header 1.27mm pitch, SMT	Harwin	Mouser	855-M50-3600542

ltem	Ref	Qty	Part Number	Description	Mfg	Supplier	Stock No
20	J2	1	90120-0763	Header 1x3 0.1" pitch un- shrouded	Molex	Digikey	WM8085-ND
21	J3	1	ED555/3DS	Terminal Block 3 pos LP 3.5mm black	On Shore Tech	Digikey	ED1515-ND
22	J4	1	ED555/6DS	Terminal Block 6 pos LP 3.5mm black	On Shore Tech	Digikey	ED1518-ND
23	J5	1	PJ-102AH	Connector, 2.1mm DC power socket high-current	CUI	Digikey	CP-102AH-ND
24	LED1,LED3	2	LTST-C171GKT	LED, 0805 SMT Green	LiteOn	Mouser / Arrow	LTST-C171GKT
25	L1	1	DO1813H-181MLB	Inductor 0.18uH 10A DO1813H	Coilcraft	Coilcraft	DO1813H-181MLB
27	P1	1	JK0-0044	Connector, RJ45 with PoE 10/100 magnetics, shielded TH	Pulse	Sager	JK0-0044
28	Q1,Q3,Q7	3	NDS331N	Mosfet N-Ch SOT-23 20V 1.3A	Fairchild	Arrow	NDS331N
29	Q2	1	Si4848DY	Mosfet N-Ch SO-8 150V 3.7A	Vishay	Digikey	SI4848DY-T1-E3CT-ND
31	Q6	1	CMPT5401	Transistor, PNP 150V 500mA SOT-23	Central Semi	Mouser	610-CMPT5401
32	R1,R3,R4,R9, R20,R23,R26 ,R44,R45,R5 4,R55,R56,R 58, R59	14	ERJ-3GEYJ103V	Resistor, 10K 5% 0603	Panasonic	Digikey	P10KGCT-ND
33	R6,R60	2	ERJ-3GEYJ331V	Resistor 330 ohms 5% 0603	Panasonic	Digikey	P330GCT-ND
34	R7,R8,R10,R 11	4	ERJ-3EKF49R9V	Resistor 49.9 Ohms 1% 0603	Panasonic	Digikey	P49.9HCT-ND
35	R14,R15,R16 ,R17	4	ERJ-3GEYJ750V	Resistor, 75 ohms 5% 0603	Panasonic	Digikey	P75GCT-ND
36	R21,R22,R24 ,R25,R57	5	ERJ-3GEYJ330V	Resistor, 33 ohms 5% 0603	Panasonic	Digikey	P33GCT-ND
37	R27	1	ERJ-3EKF5903V	Resistor 590K 1% 0603	Panasonic	Digikey	P590KHCT-ND
38	R28,R50,R51	3	ERJ-3EKF2492V	Resistor 24.9K 1% 0603	Panasonic	Digikey	P24.9KHCT-ND
39	R29	1	ERJ-3EKF20R0V	Resistor 20.0 1% 0603	Panasonic	Digikey	P20.0HCT-ND
40	R30	1	ERJ-3EKF3322V	Resistor 33.2K 1% 0603	Panasonic	Digikey	P33.2KHCT-ND
41	R31,R39,R40	3	ERJ-3EKF1001V	Resistor 1.00K 1% 0603	Panasonic	Digikey	P1.00KHCT-ND
42	R32	1	ERJ-3EKF10R0V	Resistor 10.0 1% 0603	Panasonic	Digikey	P10.0HCT-ND
43	R33	1	ERJ-3EKF1000V	Resistor 100 1% 0603	Panasonic	Digikey	P100HCT-ND
44	R34	1	ERJ-3EKF2212V	Resistor 22.1K 1% 0603	Panasonic	Digikey	P22.1KHCT-ND
45	R35,R43	2	ERJ-1TRQFR39U	Resistor 0.39 1% 2512	Panasonic	Digikey	PT.39YCT-ND
46	R36	1	ERJ-3EKF1500V	Resistor 150 1% 0603	Panasonic	Digikey	P150HCT-ND
47	R38	1	ERJ-3EKF5900V	Resistor 590 1% 0603	Panasonic	Digikey	P590HCT-ND
48	R2, R41	2	ERJ-3EKF1242V	Resistor 12.4K 1% 0603	Panasonic	Digikey	P12.4KHCT-ND
49	R42	1	ERJ-3EKF7321V	Resistor 7.32K 1% 0603	Panasonic	Digikey	P7.32KHCT-ND
50	R48,R53	2	ERJ-3EKF2003V	Resistor 200K 1% 0603	Panasonic	Digikey	P200KHCT-ND

Table B-1.	MDL-IDM28	Bill of Materials	(Continued)
------------	-----------	--------------------------	-------------

ltem	Ref	Qty	Part Number	Description	Mfg	Supplier	Stock No
51	R49	1	ERJ-3EKF1003V	Resistor 100K 1% 0603	Panasonic	Digikey	P100KHCT-ND
52	SPK1	1	CSS-73B16K	Transducer, Audio 2.5-4.5V 16ohm 8.5mm SMD	CUI	Digikey	102-1197-1-ND
53	SW1	1	KMR221GLFS	Switch, Momentary Tact 200gmf 2.8x4.6mm	C&K / ITT	Digikey	401-1427-1-ND
54	T1	1	C1588-AL	Transformer, Flyback 7W for LM5070	Coilcraft	Coilcraft	C1588-AL
55	U1	1	LM3S6918	IC, Microcontroller ARM Cortex TQFP-100	Luminary	Luminary	LM3S6918
56	U2	1	KWH028Q02-F03	LCD Panel, 2.8" with Touch Screen	Formike	Formike	KWH028Q02-F03
57	U3	1	MAX3221CAE+	IC, RS232 Driver/Receiver 1/1 SSOP-16	Maxim	Digikey	MAX3221CAE+-ND
58	U4	1	AT45DB081D-SU	IC, Data Flash 1Mbit 2.7V SOIC-8	Atmel	Digikey	AT45DB081D-SU-ND
59	U6,U11	2	MMQA5V6T1G	TVS, Quad 5.6V 50W SC- 74	On Semi	Digikey	MMQA5V6T1GOSCT-ND
60	U8	1	PQ1X331M2ZPH	IC, Voltage regulator 3.3V 300mA SOT23-5	Sharp	Digikey	425-2333-2-ND
61	U9	1	LM5071MT- 50/NOPB	IC, PoE PD Interface w/AUX & PWM controller	National Semi	Future Electronics	LM5071MT-50-LF
62	U10	1	FOD2712R1V	Optically Isolated Error Amplifier	Fairchild	Digikey	FOD2712R1VCT-ND
63	Y1	1	NX5032GA- 25.000000MHZ	Crystal, 25.00MHz 5.0x3.2mm SMT	NDK	Digikey	644-1041-2-ND
64	Y2	1	NX8045GB- 8.000000MHZ	Crystal, 8.00MHz 8.0x4.5mm SMT	NDK	Digikey	644-1018-2-ND
65	Z1	1	V23026D1021B201	Relay 1C 1A 5V	Тусо	Digikey	PB285CT-ND
66		1	tbd	PCB, RDK-IDM-B	tbd	tbd	tbd
67		2	4008	Tape, Double-sided adhesive 0.125" thick 1.0" x 2.0" cut piece	3M	Digikey	3M4008-ND for 36 yd roll
68	P2	1	2908-05WB-MG	Socket, microSD	3M	Mouser	517-2908-05WB-MG
69		1	D1002861	LCD Screen Decal, "Luminary Micro"	Drake	Drake	D1002861
	_	146	_	_	_	_	TOTAL PCB ITEMS

Table B-1.	MDL-IDM28	Bill of Materials	(Continued)
------------	-----------	--------------------------	-------------

	Additional Parts for Reference Design Kit								
70	z	4	2028	Standoff, 0.625" long 0.187" round aluminum 4-40	Keystone	Mouser	534-2028		
71	P2	4		Machine Screw 4-40 x 0.25" nylon phillips or equivalent lead-free 4-40 machine screw	Richco	Digikey	NSP-4-4-01-ND H542-ND		

Table B-2 provides the	BOM for the RDK-IDM.
------------------------	----------------------

 Table B-2.
 RDK-IDM Bill of Materials

ltem	Ref	Qty	Part Number	Description	Mfg	Supplier	Stock No
1	C2,C3,C6, C7	4	C0603C100J5GACTU	Capacitor 10pF 50V 5% Ceramic NPO/COG 0603	Kemet	Mouser	80-C0603C100J5G
2	C4,C5,C9, C10	4	C0603C180J5GACTU	Capacitor 18pF 50V 5% Ceramic NPO/COG 0603	Kemet	Mouser	80-C0603C180J5G
3	C1, C8, C11, C15, C16, C19, C21, C22, C24, C25, C26, C27, C28, C29, C30, C36, C45	17	ECJ-1VB1H104K	Capacitor 0.1uF 00603 50V X7R 5%	Panasonic	Digikey	PCC2398CT-ND
4	C12,C13,C 14,C18,C5 3,C54,C55, C56	8	C0603C103J5RACTU	Capacitor, 0.01uF 50V 5% 0603 X7R	Kemet	Mouser	80-C0603C103J5R
5	C17,C20,C 23,C42	4	LMK212BJ475KG-T	Capacitor 4.7uF 16V X5R 0805	Taiyo Yuden	Digikey	587-1298-2-ND
7	C35	1	EEE-FK0J471GP	Capacitor, 470uF 6.3V Electro, Low Z, SMT Size F	Panasonic	Digikey	PCE4308CT-ND
9	C44	1	C0805C105Z4VACTU	Capacitor 1uF 16V Y5V 0805	Kemet	Mouser	80-C0805C105Z4V
14	D1,D8	2	MMSD4148T1G	Diode, Switching 200mA 100V SOD-123	OnSemi	Digikey	MMSD4148T1GOSCT- ND
19	J1	1	M50-3600542	Connector, 2x5 Header 1.27mm pitch, SMT	Harwin	Mouser	855-M50-3600542
20	J2	1	90120-0763	Header 1x3 0.1" pitch un- shrouded	Molex	Digikey	WM8085-ND
21	J3	1	ED555/3DS	Terminal Block 3 pos LP 3.5mm black	On Shore Tech	Digikey	ED1515-ND
22	J4	1	ED555/6DS	Terminal Block 6 pos LP 3.5mm black	On Shore Tech	Digikey	ED1518-ND
24	LED1,LED 3	2	LTST-C171GKT	LED, 0805 SMT Green	LiteOn	Mouser/ Arrow	LTST-C171GKT
27	P1	1	JK0-0044	Connector, RJ45 with PoE 10/100 magnetics, shielded TH	Pulse	Sager	JK0-0044
28	Q1,Q3,Q7	3	NDS331N	Mosfet N-Ch SOT-23 20V 1.3A	Fairchild	Arrow	NDS331N

Table B-2. RDK-IDM Bill of Materials (Continued)

Item	Ref	Qty	Part Number	Description	Mfg	Supplier	Stock No
32	R1, R3, R4, R9, R20, R23, R26, R44, R45, R54, R55, R58, R59	13	ERJ-3GEYJ103V	Resistor, 10K 5% 0603	Panasonic	Digikey	P10KGCT-ND
33	R6,R60	2	ERJ-3GEYJ331V	Resistor 330 ohms 5% 0603	Panasonic	Digikey	P330GCT-ND
34	R7,R8,R10, R11	4	ERJ-3EKF49R9V	Resistor 49.9 Ohms 1% 0603	Panasonic	Digikey	P49.9HCT-ND
35	R14,R15,R 16,R17	4	ERJ-3GEYJ750V	Resistor, 75 ohms 5% 0603	Panasonic	Digikey	P75GCT-ND
36	R21,R22,R 24,R25,R5 7	5	ERJ-3GEYJ330V	Resistor, 33 ohms 5% 0603	Panasonic	Digikey	P33GCT-ND
48	R2	1	ERJ-3EKF1242V	Resistor 12.4K 1% 0603	Panasonic	Digikey	P12.4KHCT-ND
50	R53	1	ERJ-3EKF2003V	Resistor 200K 1% 0603	Panasonic	Digikey	P200KHCT-ND
52	SPK1	1	CSS-73B16K	Transducer, Audio 2.5- 4.5V 16ohm 8.5mm SMD	CUI	Digikey	102-1197-1-ND
53	SW1	1	KMR221GLFS	Switch, Momentary Tact 200gmf 2.8x4.6mm	C&K / ITT	Digikey	401-1427-1-ND
55	U1	1	LM3S6918	IC, Microcontroller ARM Cortex TQFP-100	Luminary	Luminar y	LM3S6918
56	U2	1	KWH028Q02-F03	LCD Panel, 2.8" with Touch Screen	Formike	Formike	KWH028Q02-F03
57	U3	1	MAX3221CAE+	IC, RS232 Driver/ Receiver 1/1 SSOP-16	Maxim	Digikey	MAX3221CAE+-ND
58	U4	1	AT45DB081D-SU	IC, Data Flash 1Mbit 2.7V SOIC-8	Atmel	Digikey	AT45DB081D-SU-ND
59	U6,U11	2	MMQA5V6T1G	TVS, Quad 5.6V 50W SC- 74	On Semi	Digikey	MMQA5V6T1GOSCT- ND
60	U8	1	PQ1X331M2ZPH	IC, Voltage regulator 3.3V 300mA SOT23-5	Sharp	Digikey	425-2333-2-ND
63	Y1	1	NX5032GA- 25.000000MHZ	Crystal, 25.00MHz 5.0x3.2mm SMT	NDK	Digikey	644-1041-2-ND
64	Y2	1	NX8045GB- 8.000000MHZ	Crystal, 8.00MHz 8.0x4.5mm SMT	NDK	Digikey	644-1018-2-ND
65	Z1	1	V23026D1021B201	Relay 1C 1A 5V	Тусо	Digikey	PB285CT-ND
66		1	tbd	PCB, RDK-IDM-C	tbd	tbd	tbd
67		2	4008	Tape, Double-sided adhesive 0.125" thick 1.0" x 2.0" cut piece	ЗМ	Digikey	3M4008-ND

Table B-2. F	RDK-IDM Bill of	f Materials ((Continued)
--------------	-----------------	---------------	-------------

Item	Ref	Qty	Part Number	Description	Mfg	Supplier	Stock No
68	P2	1	2908-05WB-MG	Socket, microSD	ЗM	Mouser	517-2908-05WB-MG
69		1	D1002861	LCD Screen Decal, "Luminary Micro"	Drake	Drake	D1002861
_	_	97	_	—	_	_	TOTAL PCB ITEMS

Component Details

This appendix contains details on component locations, including:

- Component placement plot for top (Figure C-1)
- Component placement plot for bottom (Figure C-2)

Figure C-1. Component Placement Plot for Top

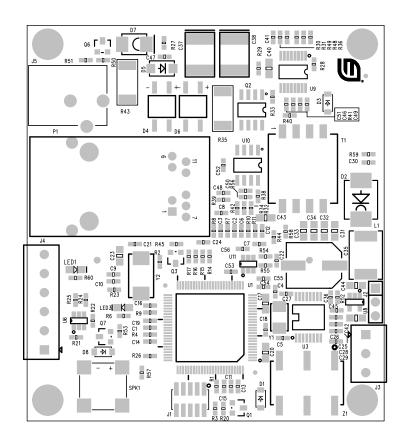
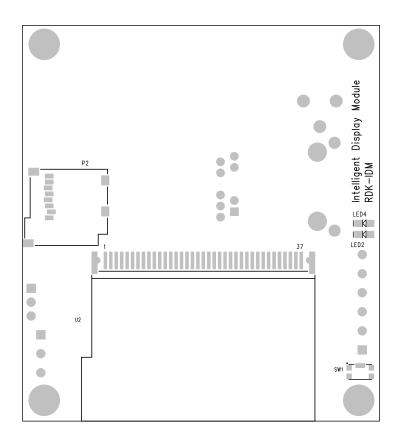



Figure C-2. Component Placement Plot for Bottom

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Broadband	www.ti.com/broadband
DSP	dsp.ti.com	Digital Control	www.ti.com/digitalcontrol
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Military	www.ti.com/military
Logic	logic.ti.com	Optical Networking	www.ti.com/opticalnetwork
Power Mgmt	power.ti.com	Security	www.ti.com/security
Microcontrollers	microcontroller.ti.com	Telephony	www.ti.com/telephony
RFID	www.ti-rfid.com	Video & Imaging	www.ti.com/video
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated