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Errata sheet

STM32F070x6/xB device errata

Applicability

This document applies to the part numbers of STM32F070x6/xB devices listed in Table 1 
and their variants shown in Table 2.

Section 1 gives a summary and Section 2 a description of device limitations and 
documentation errata, with respect to the device datasheet and reference manual RM0360.

          

          

Table 1. Device summary

Reference Part numbers

STM32F070x6 STM32F070C6, STM32F070F6

STM32F070xB STM32F070CB, STM32F070RB

Table 2. Device variants

Reference
Silicon revision codes

Device marking(1)

1. Refer to the device data sheet for how to identify this code on different types of package.

REV_ID(2)

2. REV_ID[15:0] bit field of DBGMCU_IDCODE register. Refer to the reference manual.

STM32F070x6 A 0x1000

STM32F070xB Y or 1 0x2001

www.st.com

http://www.st.com
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1 Summary of device errata

The following table gives a quick reference to all documented device limitations of 
STM32F070x6/xB and their status:

A = limitation present, workaround available

N = limitation present, no workaround available

P = limitation present, partial workaround available

“-” = limitation absent

Applicability of a workaround may depend on specific conditions of target application. 
Adoption of a workaround may cause restrictions to target application. Workaround for a 
limitation is deemed partial if it only reduces the rate of occurrence and/or consequences of 
the limitation, or if it is fully effective for only a subset of instances on the device or in only a 
subset of operating modes, of the function concerned.

          

Table 3. Summary of device limitations 

Function Section Limitation

Status

Rev.
A

Rev.
Y or 1

System 2.1.1
Wakeup sequence from Standby mode when using more than one 
wakeup source

A A

GPIO 2.2.1
GPIOx locking mechanism not working properly for 
GPIOx_OTYPER register

P P

DMA 2.3.1
DMA disable failure and error flag omission upon simultaneous   
transfer error and global flag clear

A A

ADC
2.4.1

Overrun flag not set if EOC reset coincides with new conversion 
end

A A

2.4.2 ADEN bit cannot be set immediately after the ADC calibration A A

IWDG
2.5.1 RVU, PVU and WVU flags are not reset in STOP mode A A

2.5.2 RVU, PVU and WVU flags are not reset with low-frequency APB N N

RTC

2.6.1 Spurious tamper detection when disabling the tamper channel N N

2.6.2 A tamper event preceding the tamper detect enable not detected A A

2.6.3 RTC calendar registers are not locked properly A A

2.6.4 RTC interrupt can be masked by another RTC interrupt A A
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The following table gives a quick reference to the device documentation errata.

          

          

I2C

2.7.1
Wrong data sampling when data setup time (tSU;DAT) is shorter 
than one I2C kernel clock period

P P

2.7.2 Spurious bus error detection in master mode A A

2.7.3
10-bit slave mode: wrong direction bit value upon Read header 
receipt

- A

2.7.4
10-bit combined with 7-bit slave mode: ADDCODE may indicate 
wrong slave address detection

- N

2.7.6
10-bit master mode: new transfer cannot be launched if first part 
of the address is not acknowledged by the slave

A A

2.7.7 Last-received byte loss in reload mode A A

2.7.8 Spurious master transfer upon own slave address match A A

USART 2.8.1 Break request preventing TC flag from being set A A

USART 2.8.2 RTS is active while RE = 0 or UE = 0 A A

USART 2.8.3 Receiver timeout counter wrong start in two-stop-bit configuration A A

USART 2.8.4 USART4 transmission does not work on PC11 - A

USART 2.8.5
Last byte written in TDR might not be transmitted if TE is cleared 
just after writing in TDR

A A

SPI 2.9.1 BSY bit may stay high when SPI is disabled A A

SPI 2.9.2 BSY bit may stay high at the end of data transfer in slave mode A A

SPI 2.9.3
CRC error in SPI slave mode if internal NSS changes before CRC 
transfer

A A

SPI 2.9.4
SPI CRC corruption upon DMA transaction completion by another 
peripheral

P P

USB 2.10.1 The USB BCD functionality limited below -20°C N N

USB 2.10.2 DCD (data contact detect) function not compliant N N

Table 3. Summary of device limitations (continued)

Function Section Limitation

Status

Rev.
A

Rev.
Y or 1

Table 4. Summary of documentation errata 

Function Section Documentation erratum

DMA 2.3.2 Byte and half-word accesses not supported

I2C 2.7.5 Wrong behavior in Stop mode
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2 Description of device errata

The following sections describe limitations of the applicable devices with Arm®(a) core and 
provide workarounds if available. They are grouped by device functions.

2.1 System

2.1.1 Wakeup sequence from Standby mode when using more than one 
wakeup source

Description

The various wakeup sources are logically OR-ed in front of the rising-edge detector that 
generates the wakeup flag (WUF). The WUF needs to be cleared prior to Standby mode 
entry, otherwise the MCU wakes up immediately.

If one of the configured wakeup sources is kept high during the clearing of the WUF (by 
setting the CWUF bit), it may mask further wakeup events on the input of the edge detector. 
As a consequence, the MCU might not be able to wake up from Standby mode.

Workaround

Apply the following sequence before entering Standby mode:

1. Disable all used wakeup sources

2. Clear all related wakeup flags

3. Re-enable all used wakeup sources

4. Enter Standby mode

Note: Be aware that, when applying this workaround, if one of the wakeup sources is still kept 
high, the MCU enters Standby mode but then it wakes up immediately, generating a power 
reset.

2.2 GPIO

2.2.1 GPIOx locking mechanism not working properly for GPIOx_OTYPER 
register

Description

Locking of GPIOx_OTYPER[i] with i = 15..8 depends from setting of GPIOx_LCKR[i-8] and 
not from GPIOx_LCKR[i]. GPIOx_LCKR[i-8] is locking GPIOx_OTYPER[i] together with 
GPIOx_OTYPER[i-8]. It is not possible to lock GPIOx_OTYPER[i] with i = 15...8, without 
locking also GPIOx_OTYPER[i-8].

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
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Workaround

The only way to lock GPIOx_OTYPER[i] with i=15..8 is to lock also GPIOx_OTYPER[i-8].

2.3 DMA

2.3.1 DMA disable failure and error flag omission upon simultaneous  
transfer error and global flag clear

Description

Upon a data transfer error in a DMA channel x, both the specific TEIFx and the global GIFx 
flags are raised and the channel x is normally automatically disabled. However, if in the 
same clock cycle the software clears the GIFx flag (by setting the CGIFx bit of the _IFCR 
register), the automatic channel disable fails and the TEIFx flag is not raised.

This issue does not occur with ST's HAL software that does not use and clear the GIFx flag, 
but uses and clears the HTIFx, TCIFx, and TEIFx specific event flags instead.

Workaround

The only way to lock GPIOx_OTYPER[i] with i=15..8 is to lock also GPIOx_OTYPER[i-8].

2.3.2 Byte and half-word accesses not supported

Description

Some reference manual revisions may wrongly state that the DMA registers are byte- and 
half-word-accessible. Instead, the DMA registers must always be accessed through aligned 
32-bit words. Byte or half-word write accesses cause an erroneous behaviour.

ST's low-level driver and HAL software only use aligned 32-bit accesses to the DMA 
registers.

This is a description inaccuracy issue rather than a product limitation.

Workaround

No application workaround is required.

2.4 ADC

2.4.1 Overrun flag not set if EOC reset coincides with new conversion end

Description

If the EOC flag is cleared by ADC_DR register read operation or by software during the 
same APB cycle in which the data from a new conversion are written in the ADC_DR 
register, the overrun event duly occurs (which results in the loss of either current or new 
data) but the overrun flag (OVR) may stay low.
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Workaround

Clear the EOC flag through ADC_DR register read operation or by software within less than 
one ADC conversion cycle period from the last conversion cycle end, so as to avoid the 
coincidence with the new conversion cycle end.

2.4.2 ADEN bit cannot be set immediately after the ADC calibration

Description

At the end of the ADC calibration, an internal reset of ADEN bit occurs four ADC clock 
cycles after the ADCAL bit is cleared by hardware. As a consequence, if the ADEN bit is set 
within those four ADC clock cycles, it is reset shortly after by the calibration logic and the 
ADC remains disabled.

Workaround

1. Keep setting the ADEN bit until the ADRDY flag goes high.

2. After the ADCAL is cleared, wait for a minimum of four ADC clock cycles before setting 
the ADEN bit.

2.5 IWDG

2.5.1 RVU, PVU and WVU flags are not reset in STOP mode

Description

The RVU, PVU and WVU flags of the IWDG_SR register are set by hardware after a write 
access to the IWDG_RLR and the IWDG_PR registers, respectively. If the Stop mode is 
entered immediately after the write access, the RVU,PVU and WVU flags are not reset by 
hardware. Before performing a second write operation to the IWDG_RLR or the IWDG_PR 
register, the application software must wait for the RVU, PVU and WVU flags to be reset. 
However, since the RVU/PVU/WPU bit is not reset after exiting the Stop mode, the software 
goes into an infinite loop and the independent watchdog (IWDG) generates a reset after the 
programmed timeout period.

Workaround

Wait until the RVU, PVU and WVU flags of the IWDG_SR register are reset, before entering 
the Stop mode.

2.5.2 RVU, PVU and WVU flags are not reset with low-frequency APB

Description

The RVU, PVU and WVU flags of the IWDG_SR register are set by hardware after a write 
access to the IWDG_RLR and the IWDG_PR registers, respectively. If the APB clock 
frequency is two times slower than the IWDG clock frequency, the RVU, PVU and WVU 
flags will never be reset by hardware.

Workaround

None
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2.6 RTC

2.6.1 Spurious tamper detection when disabling the tamper channel 

Description

If the tamper detection is configured for detecting on the falling edge event (TAMPFLT = 00 
and TAMPxTRG = 1) and if the tamper event detection is disabled when the tamper pin is at 
high level, a false tamper event is detected.

Workaround

None.

2.6.2 A tamper event preceding the tamper detect enable not detected

Description

When the tamper detect is enabled, set in edge detection mode (TAMPFLT[1:0]=00), and

• set to active rising edge (TAMPxTRG=0): if the tamper input is already high (tamper 
event already occurred) at the moment of enabling the tamper detection, the tamper 
event may not be detected. The probability of detection increases with the APB 
frequency.

• set to active falling edge (TAMPxTRG=1): if the tamper input is already low (tamper 
event already occurred) at the moment of enabling the tamper detection, the tamper 
event is not detected.

Workaround

The I/O state should be checked by software in the GPIO registers after enabling the tamper 
detection, in order to ensure that no active edge occurred before enabling the tamper event 
detection.

2.6.3 RTC calendar registers are not locked properly 

Description

When reading the calendar registers with BYPSHAD = 0, the RTC_TR and RTC_DR 
registers may not be locked after reading the RTC_SSR register. This happens if the read 
operation is initiated one APB clock period before the shadow registers are updated. This 
can result in a non-consistency of the three registers. Similarly, the RTC_DR register can be 
updated after reading the RTC_TR register instead of being locked. 

Workaround

Apply one of the following measures:

• use BYPSHAD = 1 mode (bypass shadow registers), or

• if BYPSHAD = 0, read SSR again after reading SSR/TR/DR to confirm that SSR is still 
the same, otherwise read the values again.
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2.6.4 RTC interrupt can be masked by another RTC interrupt

Description

One RTC interrupt can mask another RTC interrupt if both share the same EXTI 
configurable line, such as the RTC Alarm A and Alarm B, of which the event flags are OR-ed 
to the same EXTI line (refer to the EXTI line connections table in the Extended interrupt 
and event controller (EXTI) section of the reference manual).

The following code example and figure illustrate the failure mechanism: The Alarm A event 
is lost (fails to generate interrupt) as it occurs in the failure window, that is, after checking the 
Alarm A event flag but before the effective clear of the EXTI interrupt flag by hardware. The 
effective clear of the EXTI interrupt flag is delayed with respect to the software instruction to 
clear it.

Alarm interrupt service routine:

void RTC_Alarm_IRQHandler(void)

{

CLEAR_ALARM_EXTI(); /* Clear the EXTI line flag for RTC alarms*/

If(ALRAF) /* Check if Alarm A triggered ISR */

{

CLEAR_FLAG(ALRAF); /* Clear the Alarm A interrupt pending bit */

PROCESS_AlarmAEvent(); /* Process Alarm A event */

}

If(ALRBF) /* Check if Alarm B triggered ISR */

{

CLEAR_FLAG(ALRBF); /* Clear the Alarm B interrupt pending bit */

PROCESS_AlarmBEvent(); /* Process Alarm B event */

}

}

Figure 1. Masked RTC interrupt
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Workaround

In the interrupt service routine, apply three consecutive event flag ckecks -  source one, 
source two, and source one again, as in the following code example:

void RTC_Alarm_IRQHandler(void)

{

CLEAR_ALARM_EXTI(); /* Clear the EXTI's line Flag for RTC Alarm */

If(ALRAF) /* Check if AlarmA triggered ISR */

{

CLEAR_FLAG(ALRAF); /* Clear the AlarmA interrupt pending bit */

PROCESS_AlarmAEvent(); /* Process AlarmA Event */

}

If(ALRBF) /* Check if AlarmB triggered ISR */

{

CLEAR_FLAG(ALRBF); /* Clear the AlarmB interrupt pending bit */

PROCESS_AlarmBEvent(); /* Process AlarmB Event */

}

If(ALRAF) /* Check if AlarmA triggered ISR */

{

CLEAR_FLAG(ALRAF); /* Clear the AlarmA interrupt pending bit */

PROCESS_AlarmAEvent(); /* Process AlarmA Event */

}

}

2.7 I2C

2.7.1 Wrong data sampling when data setup time (tSU;DAT) is shorter than 
one I2C kernel clock period

Description

The I2C-bus specification and user manual specify a minimum data setup time (tSU;DAT) as: 

• 250 ns in Standard mode

• 100 ns in Fast mode

• 50 ns in Fast mode Plus

The MCU does not correctly sample the I2C-bus SDA line when tSU;DAT is smaller than one 
I2C kernel clock (I2C-bus peripheral clock) period: the previous SDA value is sampled 
instead of the current one. This can result in a wrong receipt of slave address, data byte, or 
acknowledge bit.

Workaround

Increase the I2C kernel clock frequency to get I2C kernel clock period within the transmitter 
minimum data setup time. Alternatively, increase transmitter’s minimum data setup time. If 
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the transmitter setup time minimum value corresponds to the minimum value provided in the 
I2C-bus standard, the minimum I2CCLK frequencies are as follows:

• In Standard mode, if the transmitter minimum setup time is 250 ns, the I2CCLK 
frequency must be at least 4 MHz.

• In Fast mode, if the transmitter minimum setup time is 100 ns, the I2CCLK frequency 
must be at least 10 MHz.

• In Fast-mode Plus, if the transmitter minimum setup time is 50 ns, the I2CCLK 
frequency must be at least 20 MHz.

2.7.2 Spurious bus error detection in master mode

Description

In master mode, a bus error can be detected spuriously, with the consequence of setting the 
BERR flag of the I2C_SR register and generating bus error interrupt if such interrupt is 
enabled. Detection of bus error has no effect on the I2C-bus transfer in master mode and 
any such transfer continues normally.

Workaround

If a bus error interrupt is generated in master mode, the BERR flag must be cleared by 
software. No other action is required and the ongoing transfer can be handled normally.

2.7.3 10-bit slave mode: wrong direction bit value upon Read header 
receipt

Description

Under specific conditions, the transfer direction bit DIR (bit 16 of status register I2C_ISR) 
remains low upon receipt of 10-bit addressing Read header, while normally it should be set 
high. Nevertheless, I2C operates correctly in slave transmission mode, and data can be 
sent using the TXIS flag.

The failure described occurs when the following conditions are all met:

• I2C is configured in 10-bit addressing mode (OA1MODE is set in the I2C_OAR1 
register).

• High LSBs of the slave address are equal to the 10-bit addressing Read header value 
(that is, OA1[7:3] = 11110, OA1[2] = OA1[9], OA1[1] = OA1[8], and OA1[0] = 1, in the 
I2C_OAR1 register).

• I2C receives 10-bit addressing Read header (0X 1111 0XX1) after repeated START 
condition, to enter slave transmission mode.

Workaround

Avoid using the following 10-bit slave addresses:

• OA1[9:0] = 0011110001

• OA1[9:0] = 0111110011

• OA1[9:0] = 1011110101

• OA1[9:0] = 1111110111

If the use of one of these slave addresses cannot be avoided, do not use the DIR bit in the 
firmware.
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2.7.4 10-bit combined with 7-bit slave mode: ADDCODE may indicate wrong 
slave address detection

Description

Under specific conditions, the ADDCODE (address match code) bitfield in the I2C_ISR 
register indicates a wrong slave address.

The failure occurs when the following conditions are all met:

• A 10-bit slave address OA1 is enabled (OA1EN = 1 and OA1MODE = 1)

• A 7-bit slave address OA2 is enabled (OA2EN = 1) and it matches the non-masked bits 
of OA1[7:1], that is, one of the following configurations is set:

– OA2EN = 1 and OA2MSK = 0 and OA1[7:1] = OA2[7:1]

– OA2EN = 1 and OA2MSK = 1 and OA1[7:2] = OA2[7:2]

– OA2EN = 1 and OA2MSK = 2 and OA1[7:3] = OA2[7:3]

– OA2EN = 1 and OA2MSK = 3 and OA1[7:4] = OA2[7:4]

– OA2EN = 1 and OA2MSK = 4 and OA1[7:5] = OA2[7:5]

– OA2EN = 1 and OA2MSK = 5 and OA1[7:6] = OA2[7:6]

– OA2EN = 1 and OA2MSK = 6 and OA1[7] = OA2[7]

– OA2EN = 1 and OA2MSK = 7

– GCEN = 1 and OA1[7:1] = 0000000

– ALERTEN = 1 and OA1[7:1] = 0001100

– SMBDEN = 1 and OA1[7:1] = 1100001

– SMBHEN = 1 and OA1[7:1] = 0001000

• The MCU is addressed by a bus master with its 10-bit slave address OA1.

Upon the address receipt, the ADDCODE value is OA1[7:1] equal to the 7-bit slave address, 
instead of 0b11110 & OA1[9:8].

Workaround

None. If several slave addresses are enabled, mixing 10-bit and 7-bit addresses, the OA1 
[7:1] part of the 10-bit slave address must be different than the 7-bit slave address.

2.7.5 Wrong behavior in Stop mode

Description

The correct use of the I2C peripheral is to disable it (PE = 0) before entering Stop mode, 
and re-enable it when back in Run mode.

Some reference manual revisions may omit this information.

Failure to respect the above while the MCU operating as slave or as master in multi-master 
topology enters Stop mode during a transfer ongoing on the I2C-bus may lead to the 
following:

1. BUSY flag is wrongly set when the MCU exits Stop mode. This prevents from initiating 
a transfer in master mode, as the START condition cannot be sent when BUSY is set.

2. If clock stretching is enabled (NOSTRETCH = 0), the SCL line is pulled low by I2C and 
the transfer stalled as long as the MCU remains in Stop mode. 
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The occurrence of such condition depends on the timing configuration, peripheral clock 
frequency, and I2C-bus frequency.

This is a description inaccuracy issue rather than a product limitation.

Workaround

No application workaround is required.

2.7.6 10-bit master mode: new transfer cannot be launched if first part 
of the address is not acknowledged by the slave

Description

An I2C-bus master generates STOP condition upon non-acknowledge of I2C address that it 
sends. This applies to 7-bit address as well as to each byte of 10-bit address.

When the MCU set as I2C-bus master transmits a 10-bit address of which the first byte (5-bit 
header + 2 MSBs of the address + direction bit) is not acknowledged, the MCU duly 
generates STOP condition but it then cannot start any new I2C-bus transfer. In this spurious 
state, the NACKF flag of the I2C_ISR register and the START bit of the I2C_CR2 register 
are both set, while the START bit should normally be cleared.

Workaround

In 10-bit-address master mode, if both NACKF flag and START bit get simultaneously set, 
proceed as follows:

1. Wait for the STOP condition detection (STOPF = 1 in I2C_ISR register).

2. Disable the I2C peripheral.

3. Wait for a minimum of three APB cycles.

4. Enable the I2C peripheral again.

2.7.7 Last-received byte loss in reload mode

Description

If in master receiver mode or slave receive mode with SBC = 1 the following conditions are 
all met:

• I2C-bus stretching is enabled (NOSTRETCH = 0)

• RELOAD bit of the I2C_CR2 register is set

• NBYTES bitfield of the I2C_CR2 register is set to N greater than 1

• byte N is received on the I2C-bus, raising the TCR flag

• N - 1 byte is not yet read out from the data register at the instant TCR is raised,

then the SCL line is pulled low (I2C-bus clock stretching) and the transfer of the byte N from 
the shift register to the data register inhibited until the byte N-1 is read and NBYTES bitfield 
reloaded with a new value, the latter of which also clears the TCR flag. As a consequence, 
the software cannot get the byte N and use its content before setting the new value into the 
NBYTES field.

For I2C instances with independent clock, the last-received data is definitively lost (never 
transferred from the shift register to the data register) if the data N - 1 is read within four 
APB clock cycles preceding the receipt of the last data bit of byte N and thus the TCR flag 
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raising. Refer to the product reference manual or datasheet for the I2C implementation 
table.

Workaround

• In slave mode with SBC = 1, use the reload mode with NBYTES = 1.

• In master receiver mode, if the number of bytes to transfer is greater than 255 bytes, do 
not use the reload mode. Instead, split the transfer into sections not exceeding 255 
bytes and separate them with repeated START conditions.

• Make sure, for example through the use of DMA, that the byte N - 1 is always read 
before the TCR flag is raised. Specifically for I2C instances with independent clock, 
make sure that it is always read earlier than four APB clock cycles before the receipt of 
the last data bit of byte N and thus the TCR flag raising. 

The last workaround in the list must be evaluated carefully for each application as the timing 
depends on factors such as the bus speed, interrupt management, software processing 
latencies, and DMA channel priority.

2.7.8 Spurious master transfer upon own slave address match

Description

When the device is configured to operate at the same time as master and slave (in a multi-
master I2C-bus application), a spurious master transfer may occur under the following 
condition:

• Another master on the bus is in process of sending the slave address of the device (the 
bus is busy).

• The device initiates a master transfer by writing the I2C_CR2 register with its START 
bit set before the slave address match event (the ADDR flag set in the I2C_ISR 
register) occurs.

• After the ADDR flag is set:

– the device does not write I2C_CR2 before clearing the ADDR flag, or

– the device writes I2C_CR2 earlier than three I2C kernel clock cycles before 
clearing the ADDR flag

In these circumstances, even though the START bit is automatically cleared by the circuitry 
handling the ADDR flag, the device spuriously proceeds to the master transfer as soon as 
the bus becomes free. The transfer configuration depends on the content of the I2C_CR2 
register when the master transfer starts. Moreover, if the I2C_CR2 is written less than three 
kernel clocks before the ADDR flag is cleared, the I2C peripheral may fall into an 
unpredictable state.

Workaround

Upon the address match event (ADDR flag set), apply the following sequence.

Normal mode (SBC = 0):

1. Set the ADDRCF bit.

2. Before Stop condition occurs on the bus, write I2C_CR2 with the START bit low.

Slave byte control mode (SBC = 1):
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1. Write I2C_CR2 with the slave transfer configuration and the START bit low.

2. Wait for longer than three I2C kernel clock cycles.

3. Set the ADDRCF bit.

4. Before Stop condition occurs on the bus, write I2C_CR2 again with its current value.

The time for the software application to write the I2C_CR2 register before the Stop condition 
is limited, as the clock stretching (if enabled), is aborted when clearing the ADDR flag.

Polling the BUSY flag before requesting the master transfer is not a reliable workaround as 
the bus may become busy between the BUSY flag check and the write into the I2C_CR2 
register with the START bit set.

2.8 USART

2.8.1 Break request preventing TC flag from being set

Description

After the end of transmission of data (D1), the transmission complete (TC) flag is not set 
when the following condition is met:

• CTS hardware flow control is enabled

• D1 transmission is in progress

• a break transfer is requested before the end of D1 transfer

• nCTS is de-asserted before the end of D1 transfer

As a consequence, an application relying on the TC flag fails to detect the end of data 
transfer.

Workaround

In the application, only allow break request after the TC flag is set.

2.8.2 RTS is active while RE = 0 or UE = 0 

Description

The RTS line is driven low as soon as RTSE bit is set, even if the USART is disabled 
(UE = 0) or the receiver is disabled (RE = 0), that is, not ready to receive data. 

Workaround

Upon setting the UE and RE bits, configure the I/O used for RTS into alternate function.

2.8.3 Receiver timeout counter wrong start in two-stop-bit configuration

Description

In two-stop-bit configuration, the receiver timeout counter starts counting from the end of the 
second stop bit of the last character instead of starting from the end of the first stop bit.

Workaround

Subtract one bit duration from the value in the RTO bitfield of the USARTx_RTOR register.
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2.8.4 USART4 transmission does not work on PC11

Description

USART4_RX does not work as output on PC11. 

As a consequence, single wire half duplex mode is not supported with pin PC11.

Workaround

Use USART4_RX mapped on PA0 instead on PC11.

2.8.5 Last byte written in TDR might not be transmitted if TE is cleared 
just after writing in TDR

Description

If the USART clock source is slow (for example LSE) and TE bit is cleared immediately after 
the last write to TDR, the last byte will probably not be transmitted.

Workarounds

1. Wait until TXE flag is set before clearing TE bit

2. Wait until TC flag is set before clearing TE bit

2.9 SPI

2.9.1 BSY bit may stay high when SPI is disabled

Description

The BSY flag may remain high upon disabling the SPI while operating in: 

• master transmit mode and the TXE flag is low (data register full).

• master receive-only mode (simplex receive or half-duplex bidirectional receive phase) 
and an SCK strobing edge has not occurred since the transition of the RXNE flag from 
low to high.

• slave mode and NSS signal is removed during the communication.

Workaround

When the SPI operates in:

• master transmit mode, disable the SPI when TXE = 1 and BSY = 0.

• master receive-only mode, ignore the BSY flag.

• slave mode, do not remove the NSS signal during the communication.

2.9.2 BSY bit may stay high at the end of data transfer in slave mode

Description

BSY flag may sporadically remain high at the end of a data transfer in slave mode. This 
occurs upon coincidence of internal CPU clock and external SCK clock provided by master.
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In such an event, if the software only relies on BSY flag to detect the end of SPI slave data 
transaction (for example to enter low-power mode or to change data line direction in half-
duplex bidirectional mode), the detection fails.

As a conclusion, the BSY flag is unreliable for detecting the end of data transactions.

Workaround

Depending on SPI operating mode, use the following means for detecting the end of 
transaction:

• When NSS hardware management is applied and NSS signal is provided by master, 
use NSS flag.

• In SPI receiving mode, use the corresponding RXNE event flag.

• In SPI transmit-only mode, use the BSY flag in conjunction with a timeout expiry event. 
Set the timeout such as to exceed the expected duration of the last data frame and 
start it upon TXE event that occurs with the second bit of the last data frame. The end 
of the transaction corresponds to either the BSY flag becoming low or the timeout 
expiry, whichever happens first.

Prefer one of the first two measures to the third as they are simpler and less constraining.

Alternatively, apply the following sequence to ensure reliable operation of the BSY flag in 
SPI transmit mode:

1. Write last data to data register

2. Poll the TXE flag until it becomes high, which occurs with the second bit of the data 
frame transfer

3. Disable SPI by clearing the SPE bit mandatorily before the end of the frame transfer

4. Poll the BSY bit until it becomes low, which signals the end of transfer

Note: The alternative method can only be used with relatively fast CPU speeds versus relatively 
slow SPI clocks or/and long last data frames. The faster is the software execution, the 
shorter can be the duration of the last data frame.

2.9.3 CRC error in SPI slave mode if internal NSS changes before CRC 
transfer

Description

When the device is configured as SPI slave, the transition of the internal NSS signal after 
the CRCNEXT flag is set may result in wrong CRC value computed by the device and, as a 
consequence, in a CRC error. As a consequence, the NSS pulse mode cannot be used 
along with the CRC function.

Workaround

Prevent the internal NSS signal from changing in the critical period, by configuring the 
device to software NSS control, if the SPI master pulses the NSS (for example in NSS pulse 
mode).



ES0291 Rev 3 19/23

STM32F070x6/xB Description of device errata

20

2.9.4 SPI CRC corruption upon DMA transaction completion by another 
peripheral

Description

When the following conditions are all met:

• CRC function for the SPI is enabled

• SPI transaction managed by software (as opposed to DMA) is ongoing and CRCNEXT 
flag set

• another peripheral using the DMA channel on which the SPI is mapped completes a 
DMA transfer,

the CRCNEXT bit is unexpectedly cleared and the SPI CRC calculation may be corrupted, 
setting the CRC error flag.

Workaround

Ensure that the DMA channel on which the SPI is mapped is not concurrently in use by 
another peripheral.

Alternatively, remap SPI2 to a DMA channel not used by another peripheral.

2.10 USB

2.10.1 The USB BCD functionality limited below -20°C

Description

Primary and secondary detection can return an incorrectly detected port type.

This limitation may be observed on a small number of devices when the temperature is 
below -20°C.

Workaround

None.

2.10.2 DCD (data contact detect) function not compliant

Description

The DCD function on the device is not compliant with the "USB Battery Charging 1.2 
Compliance Plan rev 1.0" specification.

Workaround

Do not use the DCD function. Instead, upon attaching a USB device, wait for at least 
"TDCD_TIMEOUT" amount of time before starting Primary Detection. This is in line with the 
"Battery Charging Specification rev1.2" recommendation for portable devices that do not 
support the DCD function.

In normal receiving mode, any CEC message with destination address different from the 
own address should normally be ignored and have no effect to the CEC peripheral. Instead, 
such a message is unduly written into the reception buffer and sets the CEC peripheral to a 
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state in which any subsequent message with the destination address equal to the own 
address is rejected (NACK), although it sets RXOVR flag (because the reception buffer is 
considered full) and generates (if enabled) an interrupt. This failure can only occur in a 
multi-node CEC framework where messages with addresses other than own address can 
appear on the CEC line.

The listen mode operates correctly.
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Table 5. Document revision history 

Date Revision Changes

15-Jan-2015 1 Initial release.

12-Oct-2016 2
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USART:

– Section 2.10.2: Break request can prevent the 
Transmission Complete flag (TC) from being set

– Section 2.10.3: RTS is active while RE or UE = 0

– Section 2.10.4: Receiver timeout counter starting in 
case of 2 stops bit configuration

I2C:

– Section 2.4.1: Wrong data sampling when data set-up 
time (tSU;DAT) is shorter than one I2CCLK period

– Section 2.9.2: Spurious bus error detection in master 
mode

– Section 2.9.9: 10-bit master mode: new transfer 
cannot be launched if first part of the address is not 
acknowledged by the slave

SPI:

– Section 2.8.1: BSY bit may stay high when SPI is 
disabled

– Section 2.8.2: BSY bit may stay high at the end of a 
data transfer in slave mode

– Section 2.8.3: Wrong CRC transmitted in master 
mode with delayed SCK feedback

– Section 2.8.4: CRC error in SPI slave mode if internal 
NSS changes before CRC transfer

– Section 2.5.8: SPI CRC corrupted upon DMA 
transaction completion by another peripheral

USB:

– Section 2.13.3: DCD (data contact detect) function not 
compliant

RTC:

– Section 2.8.2: Spurious tamper detection when 
disabling the tamper channel

– Section 2.8.4: A tamper event preceding the tamper 
detect enable not detected

– Section 2.8.5: RTC calendar registers are not locked 
properly

ADC:

– Section 2.4.1: Overrun flag not set if EOC reset 
coincides with new conversion end

– Section 2.4.2: ADEN bit cannot be set immediately 
after the ADC calibration
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12-Oct-2016 2

IWDG:

– Section 2.7.1: RVU, PVU and WVU flags are not reset 
in STOP mode

– Section 2.7.2: RVU, PVU and WVU flags are not reset 
with low-frequency APB

Modified:

– Document structure

– Cover page and Table 11 organization

09-May-2018 3

Added:

– REV_ID bitfield information on the cover page

– Table 4: Summary of documentation errata

– information on workaround qualifiers in Section 1: 
Summary of device errata

– Section 2.3.1: DMA disable failure and error flag 
omission upon simultaneous   transfer error and global 
flag clear

– Section 2.6.4: RTC interrupt can be masked by 
another RTC interrupt

– Section 2.3.2: Byte and half-word accesses not 
supported

– Section 2.7.7: Last-received byte loss in reload mode

– Section 2.7.8: Spurious master transfer upon own 
slave address match

Modified:

– minor modifications in titles and/or text of existing 
limitation descriptors in I2C, SPI and USART sections

– workaround description in Section 2.7.1: Wrong data 
sampling when data setup time (tSU;DAT) is shorter 
than one I2C kernel clock period

– limitation in Section 2.7.1: Wrong data sampling when 
data setup time (tSU;DAT) is shorter than one I2C 
kernel clock period qualified as documentation 
erratum and re-written

– document ID in the footer of all pages to ES0291

– renaming of introductory section on the cover page

Removed:

– redundant limitation “Wrong CRC transmitted in 
master mode with delay on SCK feedback” in SPI 
section, kept in previous versions for historical 
reasons.

Table 5. Document revision history (continued)
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