MICROCHIP ATWINC15x0

ATWINC15x0 Wi-Fi® Network Controller Software Design
Guide

Introduction

Microchip’s SmartConnect ATWINC15x0 is an IEEE® 802.11 b/g/n network controller SoC for Internet of Things (IoT)
applications. It is an ideal add-on to the existing microcontroller (MCU) solutions bringing Wi-Fi and network
capabilities through an SPI-to-Wi-Fi interface. The ATWINC15x0 connects to any Microchip AVR® or Microchip
SMART" MCU with minimal resource requirements.

Features

» Wi-Fi IEEE 802.11 b/g/n STA, and AP modes
* Wi-Fi Protected Setup (WPS)
» Support of WEP, WPA/WPA2 Personal, and WPA/WPA2 Enterprise Security
— EAP-TLS
— EAP-PEAPV0/1 with TLS
— EAP-TTLSVO with MSCHAPv2
— EAP-PEAPVO0/1 with MSCHAPv2

» Embedded network stack protocols to offload work from the MCU (minimize the host CPU requirements). This
allows the Wi-Fi Network Controller (WINC) to operate with a wide range of MCUs including low-end MCUs.

* Embedded ulP TCP/IP stack with BSD-Style socket API
» Embedded network protocols
— DHCP client/server
— DNS resolver client
— SNTP client for UTC time synchronization
» Embedded TLS security abstracted behind BSD-style socket API
» HTTP server for provisioning over AP mode
+ Ultra-low C IEEE 802.11 b/g/n RF/PH/MAC SoC
* Fast boot from On-Chip boot ROM
* 8 Mb (WINC1510) and 4 Mb (WINC1500) internal Flash memory with Over-the-Air (OTA) firmware upgrade
* WINC1510 support Host File Download feature which can be used for host MCU over the air firmware update
* Low-power consumption with different Power Save modes
* Low footprint host driver with the following capabilities:
— Canrun on 8-, 16-, and 32-bit MCU using SPI interface
— Little- and big-endian support

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 1

ATWINC15x0

Table of Contents

a1 0T [8 o3 1] o SRR 1
o1 (0] (= T PP PP UPP T OPPPPPPPN 1
1. HOSE DFiVEr ArChItECIUIE.... ettt e e e ettt e e e e e st e e e e e e e saeeeaeeeanseeeaaeeannes 5
T2 WLAN AP ettt b et h et h et h e bt nh e b et et ene e nne s 5
1.2 SOCKET APt h e bbb b et b e e eae e be e s neebee e 5
1.3, HOSEINtErTACE (HIF).... oo e 6
1.4. Board Support Package (BSP).........ooi i 6
1.5, Serial BUS INTEITACE.eei ittt e e e e st e e et e e et e e s e e e nnaeeeenee 6
2. ATWINC15X0 System ArChItECIUE.ceiiiiiiiiiiii ettt e e 7
D B = U3 [0 (=Y =T = SRR PSRRI 7
2.2, NONVOIALIE STOFAGE.......eeiiiiiiiiii et 8
22 TR 1 O SO US 8
2.4, |EEE 802.11 MAC HArAWAre.coiiiiiitiiiieeeiet ettt sttt sttt sneenne e 8
P T oo = 1Y =Y 1 4 To SRR 8
2.6, DAl MEMIOIY ...ttt ettt et et e e an 8
2.7. Shared Packet MEMOTY..........uii ittt et snee e nnneeeas 8
2.8, IEEE 802.11 MAC FilTNWAIE......ccuutiitiiiiiiiitieitt ettt ettt ettt ettt et et e eneennee s 8
D TR 1Y o g To T VNV, F= 1o =T T SRR SURRRRN 8
2.10. POWEr MANAgEMENL.........oiiiiiiiiiii ittt s b e e e 8
b R | O g 1 1 TSP 9
2,12, WINC TOT LIBFAIY ...ttt ettt ettt ettt nae et e e e nnes 9
3. WINC Initialization and Simple APPlICAtION.oiiiiiiii e 11
B e O = Va1 1= T2 o o TSRS 11
3.2. WINC Host Driver Initialization..............ooo et 11
3.3, Socket Layer INItialization............coouiiiiii e 11
3.4, WINC EVENt HANAIING. ...ttt e e et e e e st e e e e e e enaaeeaeeesnntaeeeaesnnnes 11
3.5, EXAMPIE COUE...... . ettt e et e e e e e e e e e e e et e e e e e e e etbreeaaeeannnreeaaeeaaares 13
4. ATWINCAS5X0 CONFIGUIATION.....ceiiiiiiiiiie ittt e e ettt e e e e sttt e e e e s e saneeeaesasnnsaeeeessnnssaeeaesanns 14
4.1, DeViICe Parameters...... oo ittt e ettt e e e e e e e e e nee e e e e e e annraeeaeeaneas 14
4.2, WINC M0OdES Of OPEIratioN.......ccoueiiiiiiiiiiie ettt 14
4.3, NetWOrK Parameters.coooiiiiiiie ettt s e et an 15
S o Ny ST T 1Y oo [S 16
4.5. Configuring Listen Interval and DTIM MoONitoring...........ccooiiiiiiiiiiiiiiee e e 18
5. WI-Fi Station MOE........ooiiiiiiiiiie ettt ettt e e et e e et e e sant e e e snneeeenneeeeans 19
5.1. Scan Configuration Parameters............ocuiii i 19
I S T o PRSI 19
ST TR o =Ty 17 20
5.4. On Demand Wi-Fi CONNECHON...........uiiiiiiieie e e e e e e 21
5.5, Default CONNECHION.ccuiiiiie et e e 24
5.6. Encrypted Credential StOrage...........cui it 25
ST S 1144 o) (=30 o= 411 T 26

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 2

ATWINC15x0

5.8, MUItiple Gain TabI......ccueiiiiiie ittt 27
5.9, HOSt File DOWNIOAA.ciiiiiiiiiiiie ettt ettt e bt e et e e snee e e sanee s 28
(SIS To 1ot (= A o oo | ¢= 10 010911 T NSRS URTRRR 36
[Tt TR O V=T T OSSR 36
LSS T T (=Y (3 S 36
6.3. Socket CoNNECHION FIOW.oiiiiiiiiee e 43
6.4, EXAMPIE COUE......ooiiiiiiiiiii ettt 48
7. Transport Layer SECUMLY (TLS). ... i it i iiiieeeiie et ree e stee e et e st ee e st e e e nee e e snneeesneeeesneeeesneeeenneeeenn 53
7 T I S T O 1Y SRS 53
7.2. TLS Connection EstabliShment.............oooiiiiiie e e 53
7.3. Server Certificate Installation..............ooo i 55
7.4, WINC TLS LimMitationS.ccieiiieeiiiieiee ettt sttt et e et et e teesneeanbeesneeenes 56
7.5. SSL Client Code EXAMPIE......cccciiuiiiiiieieciiiiee et e et e e e e e e e st e e e e e s e esbaeeeaeeesanreeeeeesnees 57
8. WI-Fi AP MO ...ttt h bttt b e bt be e e e bt e s ae e eab e e she e e be e sabeenbeeeaneentes 59
S T O =Y o 1= SR 59
8.2. Setting the WINC AP MOGE........co ittt ettt e e et e e e e e e nnreeee e e aneee 59
SR SO IR 431 =1 1T T SRR 59
T S 1o [[=Y g ot BT To | -1 o PP 59
8.5. AP Mode Code EXample...........ccccoiiiiiiiiiiiicic 60
LS TR o (o)Y/ To] o 11 o TSP URTRRR 62
9.1, HTTP ProOViSIONING. ... ittt ettt e et e e e e et e e e e e s enebe e e e e e eannneeeaeenn 62
S I I 14311 =1 (o] T SRR 65
9.3. Wi-Fi Protected Setup (WPS).....cooiiiiii it 65
O O A=Y o I 1= N U oo =T =SS 68
O B O 1Y S PI 68
KO O B N [0 =T L= N o] 11 L= o (0 OSSR 68
10.3. OTA Download SequeNCe DIiagram..........ccocuuiiiaiiiiiiiiee e ee e et ee e e e e e e e e neee e e e e e aneeeeaaeaan 69
10.4. OTA FIrmware ROIDACK.uuiiieiiiiiiie ettt e e e e e e ae e e e e e snnreeeaaeann 69
T0.5. OTA LIMItAHIONS. ...ttt ettt e e et e sttt e e sas e e e anbeeeeaneeeesnneeeabeeenans 70
10.6. OTA COUE EXAMPIE......ccceiiiiie et e e e e e e e e e e e eabr e e e e e e snraneeeeeensnneas 70
L\ [0 Toz= 1] S To o (] (RSP OR 71
R B @ 1YY T ST 71
11.2. HOW 0 USE FiltErS....co ettt e e e et e e e e e ennr e e e e e e nnaeeaas 71
11.3. Multicast Socket Code EXAMPIE........c.ccoiiiiiiieiiiiiiiee et e et e e e e e e snnaeee e e e enees 71
12. WINC Serial FIash MEMOTY........ooi ittt e e ettt e e e e ettt e e e e e e nneeeeaeeansaeeeaaaas 75
12.1. OVErvieW and FEATUIES.......cocueiiiiiie ittt ettt e e st e e e e e e nneeas 75
12.2. Accessing t0 Serial FIash........coouiiiiiiie et 75
12.3. Read/Write/Erase OPErationsS..........cooiciiiiiiiiiiiieeeiie ettt e s naee 75
13. Host Interface (HIF) ProtOCOL..........ooiiiii ettt s e e e e s e e s e e e sneeeeenes 78
13.1. Transfer Sequence Between the HIF Layer and the WINC Firmware...........c.coccceviviiiiienennenn. 79
13.2. HIF Message Header STrUCIUIE.coocuiiiie ettt e et e e e e e e e e e eaees 81
G TR T o 1| I Y N SRR 81

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 3

ATWINC15x0

13.4. Scan Code EXAMPIE.........ooiiiiiiiiiie it 82
1 AT L L@ e I o) o oo S 87
B0 T 13V o o [0 T i o o SRR SPRPUPRE 87
14.2. Message Flow for Basic TranSaCtioNS...........ccuuviiiiiiiiiiii e 98
14.3. SPIl Level Protocol EXAmPIE..........ccccuuiiiiiiiiiie ettt et 101
15. Appendix A. How to Generate CertifiCates.ooiiiiiiiiiiiii e 123
B 70 B 1Y o o [0 T i o T o SO URPRRRNS 123
LR | (=T oL PSP PP PPPRNE 123
BT TR o 11 =1 1T o L SPPSR 123
16. Appendix B. X.509 Certificate Format and Conversion............ccocuviiiiiiiiie i 124
B 20 B 1Y o o [V T i o T o O PO PEUP PP PPPNS 124
16.2. Conversion Between Different FOrmats. ..o 124
17, REFEIENCES. ...ttt ettt ettt e et e ettt e e ant e e e s bt e e e asbeeeenteeesnneeeennneeens 125
18. Document ReVISION HISTOTY.......cc.uiiiiiiiiiiiee ettt e e 126
The MiICrOChID WEDSIEE. ...ttt e e e e s e et e e e e et eeaeaaaaaeeeeaeeasasanannsnsnsnnnrnns 127
Product Change NOtIfiCation SEIVICE.iiiiiiiiii e 127
(OIS (o]0 LY AU o] o 1] o SN SRRSO PRSPPI 127
Microchip Devices Code Protection Feature.............oouiiiiiiiiiiiie e 127
[I=To P 1N o) i o7 T SRR SPPRRN 127
JLLE 6 (100 =T o G PSPPSRI 128
Quality Management SYSTEML........cooiiiiii et 128
Worldwide Sales @nd SEIVICE.......cciiiiieiiieii ettt e et e e st e e e eaee e e st e e e neeeeaneeeeanneeeeaneeeennnes 129

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 4

1.

11

1.2

ATWINC15x0

Host Driver Architecture

Host Driver Architecture

The following figure shows the architecture of the WINC host driver software, which runs on the host MCU.
Figure 1-1. Host Driver Software Architecture

HOST MCU

IoT Application

HOST Driver Software

WLAN Application Interface API BSD Socket API
Host Interface (HIF)

The ATWINC15x0 host driver software is a C library, which provides the host MCU application with necessary APlIs to
perform necessary WLAN and socket operations. The components of the host driver are described in the following
sub-sections.

WLAN API

This module provides an interface to the application for all Wi-Fi operations and any non-IP related operations.

This includes the following services:
* Wi-Fi STA management operations
— Wi-Fi scan
— Wi-Fi connection management (connect, disconnect, connection status, and so on)
— WPS activation/deactivation
* Wi-Fi AP enable/disable
» Wi-Fi power save control API

This interface is defined in the m2m wifi.h file.

Socket API

This module provides the socket communication APIs that are mostly compliant with the well-known BSD sockets to
enable rapid application development. To comply with the nature of the MCU application environment, there are
differences in API prototypes and in usage of some APIs between the WINC sockets and BSD sockets.

This interface is defined in the socket .h file.

The detailed description of the socket operations is provided in Socket Programming.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 5

1.3

14

1.5

ATWINC15x0

Host Driver Architecture

Host Interface (HIF)

The HIF is responsible for handling the communication between the host driver and the WINC firmware. This includes
interrupt handling, DMA and HIF command/response management. The host driver communicates with the firmware
in the form of commands and responses formatted by the HIF layer.

The interface is defined in the m2m_hif.h file.

The detailed description of the HIF design is provided in Host Interface Protocol.

Board Support Package (BSP)

The Board Support Package abstracts the functionality of a specific host MCU platform. This allows the driver to be
portable to a wide range of hardware and hosts. Abstraction includes: pin assignment, power on/off sequence, reset
sequence and peripheral definitions (Push buttons, LEDs, and so on).

The minimum required BSP functionality is defined in the nm_bsp.h file.

Serial Bus Interface

The Serial Bus Interface module abstracts the hardware associated with implementing the bus between the Host and
the WINC. The serial bus interface abstracts 12C, SPI, or UART bus (Currently, host driver supports only SPI bus
interface). The basic bus access operations (Read and Write) are implemented in this module as appropriate for the
interface type and the specific hardware.

The bus interface APIs are defined in the nm_bus_wrapper.h file.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 6

ATWINC15x0
ATWINC15x0 System Architecture

2. ATWINC15x0 System Architecture

The following figure shows the ATWINC15x0 system architecture. In addition to its built-in Wi-Fi IEEE-802.11 physical
layer and RF front end, the WINC ASIC contains an embedded APS3S-Cortus 32-bit CPU to run the WINC firmware.
The firmware comprises the Wi-Fi IEEE-802.11 MAC layer and embedded protocol stacks which offload the host
MCU. The components of the system are described in the following sub-sections.

Figure 2-1. ATWINC15x0 System Architecture

ATWINC15x0 SoC

BUS Interface

SPI FLASH

SPI Master/Slave IXC

APS3S-Cortus

WINC Host Interface

WINC IoT Library

Wi-Fi Dirsct DHCP DNS S5L EAP-TTLS/
. Client/Server | Resolver Manager | MsChapv2.0

Wi-Fi . .
Protected WINC TCP/IP Stack ransport Layer
Security (TLS)
Setup (WPS)

IEEE 802.11 MAC Memory Power
Manager Management

IEEE 802.11 MAC HW

S0OLYA INIM

Shared PKT Program

Memory Memory

IEEE 802.11 PHY

2.1 Bus Interface

Hardware logic for the supported bus types for the ATWINC15x0 communications.
Note: SPI is currently the bus interface supported by the Host Driver.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 7

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

ATWINC15x0
ATWINC15x0 System Architecture

Nonvolatile Storage

The ATWINC1510 has an integrated 8 Mb and the ATWINC1500 has an integrated 4 Mb serial Flash inside the
WINC package (SIP). This stores the WINC firmware image and can store a second image to support OTA. It also
stores information used by the WINC firmware in the run-time.

The detailed description of the serial Flash is provided in WINC Serial Flash Memory.

CPU

The SoC contains an APS3S-Cortus 32-bit CPU running at 40 MHz clock speed which executes the embedded
WINC firmware.

IEEE 802.11 MAC Hardware

The SoC contains a hardware accelerator to ensure fast and compliant implementation of the IEEE 802.11 MAC layer
and associated timing. It offloads IEEE 802.11 MAC functionality from firmware to improve performance and boost
the MAC throughput. The accelerator includes hardware encryption/decryption of Wi-Fi traffic and traffic filtering
mechanisms to avoid unnecessary processing in software.

Program Memory
128 KB Instruction RAM is provided for execution of the ATWINC15x0 firmware code.

Data Memory
64 KB RAM is provided for the ATWINC15x0 firmware data storage.

Shared Packet Memory

128 KB memory is provided for TX/RX packet management. It is shared between the MAC hardware and the CPU.
This memory is managed by the Memory Manager SW component.

IEEE 802.11 MAC Firmware

The system supports IEEE 802.11 b/g/n Wi-Fi MAC including WEP and WPA/WPA2 security supplicant. Between the
MAC hardware and the firmware, a full range of IEEE 802.11 features are implemented and supported including
beacon generation and reception, control packet generation and reception, and packet aggregation and de-
aggregation.

Memory Manager

The memory manager is responsible for the allocation and de-allocation of memory chunks in both shared packet
memory and data memory.

Power Management

The Power Management module is responsible for handling different Power Save modes supported by the WINC and
coordinating these modes with the Wi-Fi transceiver.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 8

2.1

212

2121

212.2

2123

2124

2125

2.12.6

2127

2.12.8

ATWINC15x0
ATWINC15x0 System Architecture

WINC RTOS

The firmware includes a low-footprint real-time scheduler which allows concurrent multi-tasking on the ATWINC15x0
CPU. The ATWINC15x0 RTOS provides semaphores and timer functionality.

WINC loT Library

The WINC IoT library provides a set of networking protocols in the WINC firmware. It offloads the host MCU from
networking and transport layer protocols. The following sections describe the components of the WINC IoT library.

WINC TCP/IP STACK

The WINC TCP/IP is an IPv4.0 stack based on the ulP (pronounced micro IP) TCP/IP stack.

ulP is a low footprint TCP/IP stack which has the ability to run on a memory-constrained microcontroller platform. It
was originally developed by Adam Dunkels, licensed under a BSD style license, and further developed by a wide

group of developers. The WINC TCP/IP stack is a customized version of the original ulP implementation which has
several enhancements to boost TCP and UDP throughput.

DHCP CLIENT/SERVER

A DHCP client is embedded in the WINC firmware that can automatically obtain an IP configuration after connecting
to a Wi-Fi network.

The WINC firmware provides an instance of a DHCP server that automatically starts when the WINC AP mode is
enabled. When the host MCU application activates the AP mode, it is allowed to configure the DHCP Server IP
address pool range within the AP configuration parameters.

DNS RESOLVER

The WINC firmware contains an instance of an embedded DNS resolver. This module can return an IP address by
resolving the host domain names supplied with the socket API call gethostbyname.

SNTP

The SNTP (Simple Network Time Protocol) module implements an SNTP client used to synchronize the WINC
internal clock to the UTC clock.

Enterprise Security

The Enterprise Security module implements the following authentication protocols for establishing a Wi-Fi connection
with an AP by WPA/WPA2-Enterprise Security.

+ EAP with TLS

+ EAP-PEAPVO/v1 with MSCHAPV2
+ EAP-TTLSVO with MSCHAPv2

+ EAP-PEAPVO/v1 with MSCHAPvV2

TRANSPORT LAYER SECURITY
For TLS implementation, refer to Section 7 “Transport Layer Security (TLS)” for details.

WI-FI PROTECTED SETUP
For WPS protocol implementation, refer to Section 10.3 “Wi-Fi Protected Setup (WPS)” for details.

CRYPTO LIBRARY

The Crypto Library contains a set of cryptographic algorithms used by the common security protocols. This library
has an implementation of the following algorithms:

» MD4 Hash algorithm (used only for MsChapv2.0 digest calculation)
* MDS5 Hash algorithm

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 9

ATWINC15x0
ATWINC15x0 System Architecture

* SHA-1 Hash algorithm

+ SHA-256 Hash algorithm

» DES Encryption (used only for MsChapv2.0 digest calculation)

* MS-CHAPv2.0 (used as the EAP-TTLS inner authentication algorithm)

* MS-CHAPv2.0 (used as the EAP-PEAP and EAP-TTLS inner authentication algorithm)

* AES-128, AES-256 Encryption (used for securing WPS and TLS traffic)

« Biglnt module for large integer arithmetic (for Public Key Cryptographic computations)

» RSA Public Key cryptography algorithms (includes RSA Signature and RSA Encryption algorithms)

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 10

3.1

3.2

3.3

3.4

ATWINC15x0
WINC Initialization and Simple Application

WINC Initialization and Simple Application

After powering-up the WINC device, a set of synchronous initialization sequences must be executed, for the correct
operation of the Wi-Fi functions. This chapter aims to explain the different steps required during the initialization
phase of the system. After initialization, the host MCU application is required to call the WINC driver entry point to
handle events from the WINC firmware.

» BSP Initialization

* WINC Host Driver Initialization

» Socket Layer Initialization

» Call WINC Driver Entry Point

Note: The initialization sequence must be completed to successfully operate the WINC start-up procedure.

BSP Initialization

The BSP is initialized by calling the nm_bsp init API. The BSP initialization routine performs the following steps:

+ Resets the WINC' using the corresponding host MCU control GPIOs.

 Initializes the host MCU GPIO which connects to the WINC interrupt line. It configures the GPIO as an interrupt
source to the host MCU. During runtime, the WINC interrupts the host to notify the application of events and
data pending inside the WINC firmware.

+ Initializes the host MCU delay function used within nm_bsp sleep implementation.

WINC Host Driver Initialization

The WINC host driver is initialized by calling the m2m wifi init API. The host driver initialization routine performs
the following steps:

+ Initializes the bus wrapper and SPI peripheral. The compilation flag CONF_WINC USE SPI must be enabled in
conf winc.h (bus interfaces CONF_WINC USE UART and CONF_WINC USE_I2C are currently not
supported).

* Registers an application-defined Wi-Fi event handler.
 Initializes the driver and ensures compatibility between the WINC firmware version and the driver version.
» Initializes the host interface and the Wi-Fi layer and registers the BSP Interrupt.

Note: A Wi-Fi event handler is required for the correct operation of any WINC application.

Socket Layer Initialization

Socket layer initialization is carried out by calling the socketInit API. It must be called prior to any socket activity.
For more information about socket initialization and programming, refer to WINC Sockets API.

WINC Event Handling

The WINC host driver API allows the host MCU application to interact with the WINC firmware. To facilitate
interaction, the WINC driver implements the Host Interface (HIF) Protocol as described in Section 15 “Host
Interface (HIF) Protocol”. The HIF protocol defines how to serialize and de-serialize API requests and response
callbacks over the serial bus interface SPI (I2C and UART are currently not supported).

1 Refer to the ATWINC15x0-MR210xB Data Sheet (DS70005304) for more information about the hardware
power-up/down sequence.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 11

http://ww1.microchip.com/downloads/en/DeviceDoc/70005304A.pdf

3.41

3.4.2

ATWINC15x0
WINC Initialization and Simple Application

Figure 3-1. WINC System Architecture

Host MCU Application

WINC Host Driver

Host Interface Protocol

WINC Firmware

WINC Hardware

The WINC host driver API provides services to the host MCU applications that are mainly divided in two major
categories: Wi-Fi control services and Socket services. The Wi-Fi control services allow actions such as channel
scanning, network identification, connection and disconnection. The Socket control services allow application data
transfer once a Wi-Fi connection is established.

Asynchronous Events

Some APIs in the ATWINC15x0 host driver are synchronous function calls, where the result is ready by the return of
the function. However, most API functions in the ATWINC15x0 host driver are asynchronous. This means that when
the application calls an API to request a service, the call is non-blocking and returns immediately, before the
requested action is completed. When completed, a notification is provided in the form of a HIF protocol message from
the WINC firmware to the host which, in turn, is delivered to the application via a callback? function. Asynchronous
operation is essential when the requested service such as Wi-Fi connection may take significant time to complete. In
general, the ATWINC15x0 firmware uses asynchronous events to signal the host driver about status change or
pending data.

The HIF uses push architecture where the data and events are pushed from the ATWINC15x0 firmware to the host
MCU in a First-Come First-Served (FCFS) manner. For instance, the host MCU application has two open sockets:
socket 1 and socket 2. If the ATWINC15x0 receives socket 1 data followed by socket 2 data, then HIF delivers socket
data in two HIF protocol messages in the order in which it is received. HIF does not allow reading socket 2 data
before socket 1 data.

Interrupt Handling

The HIF interrupts the host MCU when one or more events are pending in the ATWINC15x0 firmware. The host MCU
application is a big state machine which processes received data and events when the ATWINC15x0 driver calls the
event callback function(s). To receive event callbacks, the host MCU application is required to call the

m2m wifi handle events API to let the host driver retrieve and process the pending events from the
ATWINC15x0 firmware. It is recommended to call this function if any of the following events occur:

* The host MCU application polls the API in main loop or a dedicated task

* When the host MCU receives an interrupt from the ATWINC15x0 firmware
Note: All the application-defined event callback functions registered with the ATWINC15x0 driver run in the context
m2m_wifi handle events AP
The above HIF architecture allows the ATWINC15x0 host driver to be flexible to run in the following configurations:

» Host MCU with no operating system configuration — the MCU main loop is responsible to handle deferred work
from the interrupt handler

2 The callback is C function which contains an application-defined logic. The callback is registered using the
ATWINC15x0 host driver registration API to handle the result of the requested service.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 12

ATWINC15x0

WINC Initialization and Simple Application

* Host MCU with operating system configuration — a dedicated task or thread is required to call
m2m_wifi handle events to handle deferred work from the interrupt handler

Note:
1.

Host driver entry pointm2m wifi handle events is non-reentrant. In the operating system configuration,
it is required to protect the host driver from reentrance by a synchronization object.

When the host MCU is polling m2m wifi handle events, the APl checks for pending unhandled interrupt
from the ATWINC15x0. If no interrupt is pending, it returns immediately. If an interrupt is pending,

m2m_wifi handle_ events sequentially reads all the pending HIF messages and dispatches the HIF
message content to the respective registered callback. If a callback is not registered to handle the type of

message, the HIF message content is discarded.

3.5 Example Code

The following example code shows the initialization flow, as described in the previous sections.

static void wifi cb(uint8 t u8MsgType, void *pvMsg)

{
}

int

{

main (void)

tstrWifiInitParam param;
nm _bsp init();

m2m_memset ((uint8*) ¶m, 0, sizeof (param));
param.pfAppWifiCb wifi cb;

/*intilize the WINC Driver*/
ret = m2m wifi init (¶m);

if (M2M_SUCCESS != ret) {
M2M _ERR("Driver Init Failed <%d>\n", ret);
while(1);

}

while (1) {

/* Handle the app state machine plus the WINC event handler */

while (m2m wifi handle events (NULL) != M2M SUCCESS)

}

{

© 2019 Microchip Technology Inc.

User Guide

DS00002389C-page 13

4.1

411

4.2

ATWINC15x0
ATWINC15x0 Configuration

ATWINC15x0 Configuration

The ATWINC15x0 firmware offers a set of configurable parameters that control its behavior. There is a set of APIs
provided to the host MCU application to configure these parameters. The configuration APIs are categorized
according to their functionality, into device, network and power saving parameters.

Any parameters left unset by the host MCU application use their default values assigned during the initialization of
the ATWINC15x0 firmware. A host MCU application needs to configure its parameters when coming out of cold boot
or when a specific configuration change is required.

Device Parameters

System Time

It is important to set the WINC system to UTC time to ensure a proper validity check of the X509 certificate expiration
date. Since the WINC does not contain a built-in Real-Time Clock (RTC), there are two ways to obtain UTC time:

» Using the internal SNTP client — this is enabled by default in the WINC firmware at start-up. The SNTP client
synchronizes the WINC system clock to the UTC time from the time servers. The NTP server that the SNTP
client uses can be configured using the APl m2m wifi configure sntp. The default NTP server used by the
WINC is time.nist.gov. The SNTP client uses a default update cycle of one day.

* In case there is no response from the default NTP server time-c.nist.gov, a secondary NTP server
pool.ntp.org is used by the WINC.

* From the host MCU RTC - if the host MCU has an RTC, the application may disable the SNTP client by calling
m2m_wifi enable sntp (0) (by passing zero as the argument) after the WINC initialization. The application
provisions the WINC system time by calling m2m wifi get sytem time () APl which returns the locally
stored (internal clock value) time.

* When the SNTP Client running on the ATWINC15x0 synchronizes the time, the ATWINC15x0 will post the
M2M WIFI _RESP _GET_ SYS TIME event to the host.

Firmware and Driver Version

During initialization (m2m_wifi init), the host driver checks the compatibility between the driver and the WINC
firmware. The relevant parameters are:

* M2M HIF MAJOR VALUE

* M2M HIF MINOR VALUE

Note: These parameters are stated in release note version information as “Host Interface Level: X.Y”.

If the driver and the WINC firmware have the same values of M2M HIF MAJOR VALUE, then they are deemed
compatible and m2m wifi init returns with M2M SUCCESS.

If the driver and the WINC firmware have different values of M2M HIF MAJOR VALUE, then they are deemed
incompatible and m2m_wifi init returns with M2M ERR_FW_VER_ MISMATCH. In this case, communication is
limited; the only permitted communication is for the driver to request the WINC firmware to switch to the WINC
firmware image in the inactive partition of WINC flash, viam2m wifi check ota rband

m2m ota switch firmware.

Example code to handle this situation is available in the driver file m2m ota.h.

WINC Modes of Operation

The WINC firmware supports the following modes of operation:
* Idle mode
* Wi-Fi STA mode
* Wi-Fi Hotspot (AP)

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 14

4.21

4.2.2

423

4.3

4.3.1

ATWINC15x0
ATWINC15x0 Configuration

Figure 4-1. WINC Modes of Operation

m2_wifi_connect

m2m_wifi_default_connect m2m_wifi_disable_ap

M2M_WIFI_RESP_CON_STATE_CHANGED m2m_wifi_enable_ap
m2m_wifi_disconnect

Idle Mode

After the host MCU application calls the ATWINC15x0 driver initialization m2m wifi init API, the ATWINC15x0
remains in Idle mode waiting for any command to change the mode or to update the configuration parameters. In this
mode, the ATWINC15x0 enters into Power Save mode which disables the IEEE 802.11 radio and all unneeded
peripherals and suspends the ATWINC15x0 CPU. If the ATWINC15x0 receives any configuration commands from the
host MCU, it updates the configuration, sends back the response to the host MCU, and then returns to the Power
Save mode.

Wi-Fi Station Mode

The ATWINC15x0 enters Station (STA) mode when the host MCU requests connection to an AP using the
m2m wifi connect orm2m wifi default connect APlIs.
Note: m2m wifi connect is deprecated from v19.6.1 and above. For more details, see 5.3 Wi-Fi Security.

The ATWINC15x0 exits STA mode when it receives a disconnect request from the Wi-Fi AP conveyed to the host
MCU application via the event callback M2M WIFI RESP CON STATE CHANGED or when the host MCU application
decides to terminate the connection via m2m wifi disconnect API.

Note: The supported API functions in this mode use the HIF command types: tenuM2mConfigCmd and
tenuM2mStaCmd. See the full list of commands in the m2m_types.h header file.

For more information about STA mode, refer to Wi-Fi Station Mode.

Wi-Fi Hotspot (AP) Mode

In AP mode, the WINC allows Wi-Fi stations to connect and obtain the IP address from the WINC DHCP server. To
enter AP mode, the host MCU application calls m2m wifi enable ap API. To exit AP mode, the application calls
m2m _wifi disable ap API.

The supported API functions in this mode use the HIF command types: tenuM2mApCmd and tenuM2mConfigCmd.
See the full list of commands in the m2m_types.h header file.

For more information about this mode, refer to Wi-Fi AP Mode.

Network Parameters

Wi-Fi MAC Address
The WINC firmware provides two methods to assign the WINC MAC address:

» Assignment from the host MCU — this method occurs when the host MCU application calls the
m2m wifi set mac_ address API after initialization using m2m wifi init AP

» Assignment from the WINC OTP (One-Time-Programmable) memory — the WINC supports an internal MAC
address assignment method through a built-in OTP memory. If MAC address is programmed in the WINC OTP
memory, the WINC working MAC address defaults to the OTP MAC address unless the host MCU application
programmatically sets a different MAC address after initialization using the APl m2m wifi set mac_address.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 15

4.3.2

44

ATWINC15x0
ATWINC15x0 Configuration

Note:

* OTP MAC address is programmed in the WINC OTP memory at the time of manufacturing.

*+ Usem2m wifi get otp mac_address API to check if there is a valid programmed MAC address in the
WINC OTP memory. The host MCU application can also use the same API to read the OTP MAC address
octets. m2m _wifi get otp mac_address API not to be confused with the m2m wifi get mac_address
API which reads the working WINC MAC address in the WINC firmware regardless from whether it is assigned
from the host MCU or from the WINC OTP.

» For more details on API, refer to the Atmel Software Framework for ATWINC 1500 (Wi-Fi).

IP Address

The ATWINC15x0 firmware uses the embedded DHCP client to automatically obtain an IP configuration after a
successful Wi-Fi connection. DHCP is the preferred method and therefore it is used as a default method. After the IP
configuration is obtained, the host MCU application is notified by the asynchronous event

M2M WIFI_REQ DHCP_ CONF.

Alternatively, the host MCU application can set a static IP configuration by calling the m2m wifi set static ip
API. Before setting a static IP address, it is recommended to disable DHCP using the API
m2m wifi enable dhcp (0) and then set the static IP as shown below.

In Main(), disable dhcp after m2m wifi init as shown below

/* Initialize Wi-Fi driver with data and status callbacks. */
param.pfAppWifiCb = wifi cb;

ret = m2m wifi init (¶m);

if (M2M SUCCESS != ret)
{
printf("main: m2m wifi init call error! (%d)\r\n", ret);
while (1)

{}
}
m2m wifi enable dhcp(0);

Set Static IP when WINC is connected to AP as shown below.
static void wifi cb(uint8 t u8MsgType, void *pvMsgq)
{
switch (u8MsgType) {
case M2M WIFI RESP CON_ STATE CHANGED:
{
tstrM2mWifiStateChanged *pstrWifiState = (tstrM2mWifiStateChanged *)pvMsg;
if (pstrWifiState->u8CurrState == M2M WIFI CONNECTED) {

printf ("Wi-Fi connected\r\n");

tstrM2MIPConfig ip client;

ip client.u32StaticIP = htonl(0xc0a80167); // Provide the required Static
IP

ip_client.u32DNS = htonl (0xc0a80101); // Provide DNS server details

ip client.u32SubnetMask = htonl (0XFFFFFF00) ; // Provide the SubnetMask for
the currently connected AP

ip_client.u32Gateway = _htonl (0xc0a80101); // Provide the GAteway IP for
the AP

printf ("Wi-Fi setting static ip\r\n");
m2m _wifi set static_ip(&ip_client);

Power Save Modes

The WINC firmware supports multiple Power Save modes which provide flexibility to the host MCU application to
tweak the system power consumption. The host MCU can configure the WINC Power Saving policy using the
m2m wifi set sleep mode andm2m wifi set 1sn int APlIs.

The WINC supports the following Power Save modes:
+ M2M_PS_MANUAL

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 16

http://asf.atmel.com/docs/3.33.0/samd21/html/group__winc1500__group.html

441

4.4.2

443

44.4

ATWINC15x0
ATWINC15x0 Configuration

+ M2M_PS_DEEP_AUTOMATIC
« M2M_PS_AUTOMATIC (deprecated, not be used in new implementations)
+ M2M_PS_H_AUTOMATIC (deprecated, not be used in new implementations)

Note: M2M PS DEEP AUTOMATIC mode recommended for most applications.

M2M_PS_MANUAL
This is a fully host-driven Power Save mode.

» The WINC sleeps when the host uses the m2m _wifi request sleep API. During this period, the host MCU
can also sleep for extended durations.

» The WINC wakes up when the host MCU application requests services from the WINC by calling any host driver
API function, for example, Wi-Fi or socket operation.

Note: InM2M PS MANUAL mode, when the WINC sleeps due tom2m_wifi request_sleep API, the WINC does
not wake up to receive and monitor AP beacon. Beacon monitoring is resumed when the host MCU application
wakes up the WINC.

For an active Wi-Fi connection, the AP may exit the connection if the WINC is unavailable due to long sleep time. If
connection is dropped, the WINC detects the disconnection on the next wake-up cycle and notifies the host to
reconnect to the AP again. To maintain an active Wi-Fi connection for extended durations, the host MCU application
must periodically wake up the WINC in order to send a keep-alive Wi-Fi frame to the AP. The host must carefully
choose the sleep period to satisfy the tradeoff between keeping the Wi-Fi connection uninterrupted and minimizing
the system power consumption.

This mode is useful for applications which send notifications very rarely due to a certain trigger. It also fits
applications which periodically send notifications with a very long spacing between notifications. Careful power
planning is required when using this mode. If the host MCU decides to sleep for a longer period, it may use
M2M_PS_MANUAL or may power off the WINC3. The advantage of this mode compared to powering off the WINC is
that M2M PS MANUAL saves the time required for the WINC firmware to boot since the firmware is always loaded in
the WINC memory. The real advantage and disadvantage depend on the nature of the application. In some
applications, the sleep duration can be long enough to be a power-efficient decision to power off the WINC and then
power it on again and reconnect to the AP when the host MCU wakes up. In other situations, a latency-sensitive
application may choose to use M2M PS MANUAL to avoid the WINC firmware boot latency on the expense of slightly
increased power consumption.

During the WINC Sleep mode, the WINC in M2M PS MANUAL mode saves more power than

M2M PS DEEP AUTOMATIC mode. In M2M PS MANUAL mode, the WINC skips beacon monitoring whereas in
M2M_PS DEEP AUTOMATIC mode, it wakes up to receive beacons. The comparison also includes the effect of the
host MCU sleep duration: if the host MCU sleeps for a longer period, the Wi-Fi connection may frequently drop and
the power advantage of the M2M PS MANUAL mode is lost due to the power consumed in the Wi-Fi reconnection. In
contrast, the M2M PS DEEP_ AUTOMATIC mode can keep the Wi-Fi connection for long durations at the expense of
waking up the WINC to monitor the AP beacon.

M2M_PS_AUTOMATIC

This mode is deprecated and kept for backward compatibility and development reasons. It is not recommended to
use in new implementations.

M2M_PS_H_AUTOMATIC

This mode is deprecated and kept for backward compatibility and development reasons. It is not recommended to
use in new implementations.

M2M_PS_DEEP_AUTOMATIC

This mode implements the Wi-Fi standard power-saving method in the WINC module. The WINC sleeps and
periodically wakes up to monitor AP beacons. The AP is required to buffer data while stations are in Power Save
mode and transmit data when stations wake-up. The AP periodically transmits a beacon frame to synchronize with a

3 Refer to the ATWINC15x0-MR210xB Data Sheet (DS70005304) for more information about the hardware
power-up/down sequence.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 17

http://ww1.microchip.com/downloads/en/DeviceDoc/70005304A.pdf

4.5

ATWINC15x0
ATWINC15x0 Configuration

network for every beacon period. A station, which is in Power Save mode, periodically wakes up to receive the
beacon. The beacon conveys information to the station about pending unicast data, which are buffered inside the AP
while the station was in Sleep mode. The beacon also provides information about the broadcast/multicast data.

In this mode, the WINC module enters into Sleep state by turning off the IEEE 802.11 radio, MAC, and system clock.
Prior to entering the Sleep mode, the ATWINC15x0 programs a hardware timer (running on an internal low-power
oscillator) with a sleep period determined by the WINC firmware power management module.

Any of the following events can wake-up the WINC module from Sleep state:

» Expiry of the hardware sleep timer. The WINC wakes up to receive the upcoming beacon from AP.

+ The WINC wakes up* when the host MCU application requests services from the WINC by calling any host
driver API function, for example, Wi-Fi or socket operation.

Configuring Listen Interval and DTIM Monitoring

The WINC allows the host MCU application to tweak system power consumption by configuring beacon monitoring
parameters. The AP periodically send beacons for every DTIM period (for example, 100 ms). The beacon contains a
TIM element which informs the station about the unicast data for the station that are buffered in the AP. The station
negotiates with the AP for a listen interval. The listen interval tells the AP for how many beacon periods the station
will sleep before it wakes up to receive data buffered in the AP. Some APs might drop buffered data after Listen
Interval elapses if the data is not retrieved by the station.

The WINC driver allows the host MCU application to configure beacon monitoring parameters as follows:
« Configure DTIM monitoring — that is to enable or disable reception of broadcast/multicast data using the
following API:
— m2m wifi set sleep mode (desired mode, 1) to receive broadcast data
— m2m wifi set sleep mode (desired mode, 0) toignore broadcast data
+ Configure the listen interval — using the m2m wifi set 1sn int API

Note: The listen interval value provided to the m2m wifi set 1sn_int APl is expressed in the unit of beacon
period. Also, the host application cannot fetch the DTIM period received by the WINC from the AP.

4 The wake-up sequence is internally handled in the WINC host driver by the hif chip wake API. Refer to
Section 15 “Host Interface Protocol” for more information.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 18

5.1

5.2

ATWINC15x0
Wi-Fi Station Mode

Wi-Fi Station Mode

This chapter provides information about the WINC Wi-Fi Station (STA) mode as described in Wi-Fi Station Mode. The
STA mode involves a scan operation; association to an AP using parameters (SSID and credentials) provided by the
host MCU or using AP parameters stored in the WINC nonvolatile storage (default connection). The chapter also
provides information about supported security modes along with code examples.

Scan Configuration Parameters

Scan Region

The number of RF channels supported varies by geographical region. For example, 13 channels are supported in
Asia while 11 channels are supported in North America. By default, the WINC initial region configuration is equal to
14 channels, but this can be changed by setting the scan region using the m2m wifi set scan region APl The
scan region can be selected from the enum tenuM2mScanRegion.

Scan Options

During Wi-Fi scan operation, the WINC sends probe request Wi-Fi frames and waits for the scan wait time to receive
probe response frames in the current Wi-Fi channel. After the scan wait time, the WINC switches to the next channel.
Increasing the scan wait time increases the possibility to detect more number of access points during scan operation
but this leads to more power consumption and overall scan duration. The WINC firmware default scan wait time is
optimized to provide the tradeoff between the power consumption and scan accuracy. The WINC firmware provides
flexible configuration options to allow the host MCU application to set the scan time. For more details, refer to the
m2m_wifi set scan_options AP

Wi-Fi Scan

A Wi-Fi scan operation can be initiated by calling the m2m _wifi request scan API. The scan can be performed
on all 2.4GHz Wi-Fi channels or on a specific requested channel.

The scan response time depends on the scan options which can be set by calling

m2m wifi set scan options (tstrM2MScanOption* ptstrM2MScanOption). Forinstance, if the host MCU
application requests to scan all channels, the scan time is equal to NoOfChannels (13) * ptstrM2MScanOption-
>u8NumOfSlot * ptstrM2MScanOption->u8SlotTime.

The scan operation is illustrated in the following figure.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 19

5.3

ATWINC15x0
Wi-Fi Station Mode

Figure 5-1. Wi-Fi Scan Operation

M2M APPLICATION M2M HOST DRIVER

m2m wifi request scan(WiFi Channel ID)

wifi_cb(M2M WIFI_ RESP SCAN DONE,

tstrMZ2mScanDone*) ;
* Read the number of found APs(N).
* Start reading the SCAN result list.

m2m wifi req scan result(0)

i cb(M2M WIFI_ RESP_SCAN RESULT,
tstrM2mWifiscanResult*) ;

Process the Scan
result!”

m2m wifi req scan result(N - 1)

Wi-Fi Security
The following types of security are supported in the WINC Wi-Fi STA mode.

+ OPEN

* WEP (Wired Equivalent Protocol)

+ WPA/WPA2 (Wi-Fi Protected Access - Personal Security mode that is Passphrase)

+ 802.1X (WPA/WPA2-Enterprise security)
For 802.1X Enterprise Security, the following authentication methods are supported from ATWINC1500 firmware
version 19.6.1.

+ EAP-TLS

+ EAP-PEAPVO/TLS

* EAP-PEAPV1/TLS

* EAP-TTLSVO/MSCHAPv2

+ EAP-PEAPVO/MSCHAPvV2

+ EAP-PEAPV1/MSCHAPV2

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 20

5.4

ATWINC15x0
Wi-Fi Station Mode

The m2m wifi connect is deprecated from v19.6.1 and above firmware. The legacy APIs m2m wifi connect
andm2m _wifi connect_sc are available as wrappers for the new APIs. Functionally its behavior is unchanged
from previously released drivers.

The recommended API for various security type such as OPEN, WEP, WPA/WPA2, 802.1X are summarized in the
Table 5-1.

All new connect APIs, enable connection to a particular access point by specifying its BSSID and the SSID. To
restrict connection to a specific access point, the application can specify the BSSID (in addition to SSID) in the
argument tstrNetworkId -> pu8Bssid.

The application can instruct the WINC whether to store the credentials or not to store in Flash and also whether the
saved credentials must be encrypted or not. This is done by configuring the enum tenuCredStoreOption.

For enterprise security, the application can configure WINC to send actual identity or use anonymous identity during
phase 1 authentication. This can be done by setting or clearing bUnencryptedUserName in argument
tstrAuthlxTls or tstrAuthlxMschap2.

For more details on usage of APl m2m wifi connect 1x_tls, refer ASF (v3.42 or above) example "WINC1500
Connecting a EAP-TLS / PEAPVO with TLS / PEAPv1 with TLS Secured AP Example".

For more details on usage of APl m2m wifi connect 1x mschap2, refer ASF (v3.42 or above) example
"WINC1500 Connecting a EAP-TTLSvO with MSCHAPV2 / EAP-PEAPVO with MSCHAPv2 / EAP-PEAPvV1 with
MSCHAPvV2 Secured AP Example".

On Demand Wi-Fi Connection

The host MCU application may establish a Wi-Fi connection on demand when all the required connection parameters
(SSID, security credentials, and so on.) are known to the application. To start a Wi-Fi connection on demand, the
application calls the following APIs based on the security type.

Table 5-1. List of APIs based on Security Type

Open m2m_wifi connect open

WEP m2m wifi connect wep
WPA/WPA2 m2m wifi connect psk

802.1x with MSCHAPv2 m2m wifi connect 1x mschap2
802.1x with TLS m2m wifi connect 1x tls

Alternatively, the application can call the APl m2m _wifi connect to connect with an access point which supports
Open, WEP, WPA/WPA2 and 802.1x with MSCHAPv2. m2m_wifi connect is deprecated in v19.6.1 and is kept for
legacy purpose.

Note: Using the APl in the Table 5-1 implies that the host MCU application has prior knowledge of the connection
parameters. For instance, connection parameters can be stored on nonvolatile storage attached to the host MCU.

The Wi-Fi on demand connection operation is described in the following figure.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 21

ATWINC15x0
Wi-Fi Station Mode

Figure 5-2. On-demand Wi-Fi Connection

M2M APPLICATION

Set the IP Address.
Start M2M socket Application.

5.4.1 Example Code

wifi_cb(M2M WIFI_REQ CON_STATE_CHANGED,
tstrM2mWifiStateChanged*) ;

wifi_cb(M2M WIFI_REQ DHCP_CONF, uint8*);

M2M HOST DRIVER

m2m_wifi_connect((char *)MAIN_WLAN_SSID,sizeof(MAIN_HLAN_S
SID) ,MAIN_WLAN_ AUTH, (void *)MAIN_WLAN_ PSK,M2M WIFI_CH_ALL)

5.41.1 Example Code for Connecting to Enterprise Network (PEAP and TTLSv0) with MSCHAPv2 as Phase2
Authentication

#define MAIN WLAN SSID
#define MAIN WLAN 802 1X USR NAME
#define MAIN WLAN 802 1X PWD

int main (void)

{

int8 t ret;

tstrWifiInitParam param;

tstrNetworkId networkId;
tstrAuthlxMschap2 mschapv2 credential;

/* Initialize the board. */
system init();

/* Initialize the UART console. */
configure console();
printf(STRINGiHEADER);

/* Initialize the BSP. */
nm _bsp init();

/* Initialize Wi-Fi parameters structure. */
memset ((uint8 t *)é¶m, 0, sizeof (tstrWifilnitParam)):;

/* Initialize Wi-Fi driver with data and status callbacks. */
param.pfAppWifiCb = wifi cb;
ret = m2m wifi init (¶m);
if (M2M SUCCESS != ret) {
printf("main: m2m wifi init call error! (%d)\r\n", ret);
while (1) {
}

"WINC1500 ENTERPRISE" /**< Destination SSID */
"DEMO USER" /**< RADIUS user account name */
"DemoPassword" /**< RADIUS user account password */

© 2019 Microchip Technology Inc. User Guide

DS00002389C-page 22

ATWINC15x0
Wi-Fi Station Mode

networkId.pu8Bssid = NULL;

networkId.pu8Ssid = (uint8 *)MAIN WLAN SSID;
networkId.u8SsidLen = strlen(MAIN WLAN SSID);
networkId.enuChannel = M2M WIFI CH ALL;

mschapv2 credential.pu8Domain = NULL;

//mschapv2 credential.ul6Domainlen = strlen(mschapv2 credential.pu8Domain);
mschapv2 credential.pu8UserName = (uint8 *)MAIN WLAN 802 1X USR_NAME;
mschapv2 credential.pu8Password = (uint8 *)MAIN WLAN 802 1X PWD;

mschapv2 credential.ul6UserNameLen = strlen(MAIN WLAN 802 1X USR NAME) ;
mschapv2 credential.ulé6PasswordLen = strlen(MAIN WLAN 802 1X PWD);

mschapv2 credential.bUnencryptedUserName = false;

mschapv2 credential.bPrependDomain = true;

printf ("Connecting to %s\r\n\tUsername:%s\r\n", MAIN WLAN SSID,

MAIN WLAN 802 1X USR NAME) ;

m2m wifi connect 1x mschap2(WIFI_CRED SAVE ENCRYPTED, &networkId, &mschapv2 credential);

/* Infinite loop to handle a event from the WINC1500. */
while (1) |
while (m2m wifi handle_events (NULL) != M2M SUCCESS) {
}
}

return 0;

5.4.1.2 Example Code for Connecting to PEAP Enterprise Network with TLS as Phase2 Authentication and

EAP-TLS
/** security information for Wi-Fi connection */
#define MAIN WLAN SSID "WINC15007ENTERPRISE" /**< Destination SSID */
#define MAIN WLAN 802 1X USR_NAME "DEMO USER" /**< RADIUS user account name */
const uint8 t modulus[] = { /** private key modulus extracted from key file */ };
const uint8 t exponent[] = { /** private key exponent coefficient extracted from key file
*/)i
const uint8 t certificatel[] = { /** certificate coefficient corresponding to Private Key
) s

int main (void)

{

int8_t ret;

tstrWifiInitParam param;
tstrNetworkId networkId;
tstrAuthlxTls tls credential;

/* Initialize the board. */
system init();

/* Initialize the UART console. */
configure console();
printf (STRING HEADER) ;

/* Initialize the BSP. */
nm _bsp init();

/* Initialize Wi-Fi parameters structure. */
memset ((uint8 t *)é¶m, 0, sizeof (tstrWifiInitParam)):;

/* Initialize Wi-Fi driver with data and status callbacks. */
param.pfAppWifiCb = wifi cb;
ret = m2m wifi init (¶m);
if (M2M SUCCESS != ret) {
printf("main: m2m wifi init call error! (%d)\r\n", ret);
while (1) {
}

}
printf ("Username:%s\r\n",MAIN WLAN 802 1X USR NAME) ;

/* Connect to the enterprise network. */
networkId.pu8Bssid = NULL;

networkId.pu8Ssid = (uint8 *)MAIN WLAN SSID;
networkId.u8SsidLen = strlen(MAIN WLAN SSID);
networkId.enuChannel = M2M WIFI CH ALL;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 23

5.5

ATWINC15x0
Wi-Fi Station Mode

tls credential.pu8Domain = NULL;

tls credential.pu8UserName = (uint8 *)MAIN WLAN 802 1X USR NAME;
tls credential.pu8PrivateKey Mod = (uint8 *)modulus;

tls credential.puB8PrivateKey Exp = (uint8 *)exponent;

tls credential.pu8Certificate = (uint8 *)certificate;
tls_credential.ul6UserNamelLen = strlen(MAIN WLAN 802 1X USR NAME) ;
tls_credential.ul6PrivateKeyLen = sizeof (modulus) ;

tls credential.ul6Certificatelen = sizeof (certificate);

tls credential.bUnencryptedUserName = true;
tls credential.bPrependDomain = true;

printf ("Connecting to %s...\r\n\t\tUsername:%$s\r
\n",networkId.pu8Ssid, tls credential.pu8UserName) ;

m2m_wifi connect 1x_ tls(WIFI_CRED_SAVE ENCRYPTED, &networkId, &tls_credential);

/* Infinite loop to handle a event from the WINC1500. */
while (1) {
while (m2m wifi handle events (NULL) != M2M SUCCESS) {
}
}

return 0;

Default Connection

The host MCU application establishes the default connection based on the connection profile stored in the WINC
serial Flash using the m2m wifi default connect API. This APl does not require AP information to establish the
connection.

Note: The connection profile information is automatically stored in the WINC Flash when on-demand Wi-Fi
connection APl is called (see Table 5-1). Saving of this connection profile is dependent on the enum
tenuCredStoreOption.

The credentials such as passphrase of the AP or Enterprise certificate and other parameters like SSID, IP address,
BSSID are encrypted using AES128-CBC before they are written into the serial Flash. This makes it difficult for an
attacker to retrieve the sensitive information even if an attacker has physical access to the device. If there is no
cached profile or if a connection cannot be established with any of the cached profile, an event of type

M2M WIFI_RESP DEFAULT CONNECT is delivered to the host driver indicating failure.

Upon successful default connection, the host application can read the current Wi-Fi connection status by calling
m2m_wifi get connection info APl. Them2m wifi get connection_info is an asynchronous API. The
actual connection information is provided in the asynchronous event M2M WIFI RESP_CONN_INFO in Wi-Fi
callback. The callback parameter of type tstrM2MConnInfo provides information about AP SSID, RSSI (AP
received power level), security type, IP address obtained by DHCP.

Note: A connection profile is cached in the serial Flash if and only if the connection is successfully established with
the target AP.

The Wi-Fi default connection operation is shown in the following figure.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 24

5.6

ATWINC15x0
Wi-Fi Station Mode

Figure 5-3. Wi-Fi Default Connection

M2M APPLICATION M2M HOST DRIVER

m2m wifi default connect();

wifi_cb(M2M WIFI_REQ CON_STATE CHANGED,

tstrM2mWifiStateChanged*) ;

wifi_cb(M2M WIFI_REQ DHCP CONF, uint8*);

 Start M2M socket Application.

Encrypted Credential Storage

In ATWINC15x0 firmware v19.6.1 and above, the credentials such as passphrase of the AP or Enterprise certificate
and other parameters like SSID, IP address, BSSID are encrypted using AES128-CBC before they are written into
the serial Flash. This makes it difficult for an attacker to retrieve the sensitive information inspite of having physical
access to the device. The encryption provided by this feature must not be considered secure. The encryption is only
intended to prevent credentials being revealed in plain text by an opportunistic read of ATWINC15x0 Flash.
Therefore, other security practices must be followed where possible, such as changing passwords regularly and
deleting credentials when they are no longer required.

When requesting for a connection to a network, the application can specify how the connection credentials must be
stored in ATWINC15x0 Flash. The options are as follows:

* Do not store credentials
» Store credentials unencrypted
» Store credentials encrypted

The credentials consist of:
+ SSID
» BSSID (if provided)
* WEP key (for WEP connection)
» Passphrase and PSK (for WPA/WPA2 PSK connection)
» Domain, User name and Password (for WPA/WPA2 1x MSCHAPv2 connection)
* Domain, User name, Certificate and Private Key (for WPA/WPA2 1x TLS connection)

The credentials are stored in ATWINC15x0 Flash when connection succeeds, and only one set of credentials is
stored at a time; if new credentials need to be stored then the old credentials are removed (overwritten with 0’s).

If credentials are stored in ATWINC15x0 Flash, then the application can request subsequent connections without
providing the credentials again, using m2m wifi default connect.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 25

5.7

ATWINC15x0
Wi-Fi Station Mode

If roaming is enabled, roaming can take place regardless of whether the credentials are stored in ATWINC15x0
Flash. (They are stored in data memory for the duration of a connection.) The application can delete credentials from
ATWINC15x0 Flash using m2m_wifi delete sc.

Note: Version 19.6.1 firmware implements a new format for the ATWINC15x0 Flash store for connection
parameters. The effects of this are:
» During a firmware upgrade to v19.6.1, previously stored credentials are reformatted. After the first successful
connection to an access point, these stored credentials are encrypted.
* During a firmware upgrade to v19.6.1, previously stored IP address and Wi-Fi channel are deleted.
» After a firmware downgrade from v19.6.1 to previous firmware, credentials stored by v19.6.1 firmware are not
readable by the previous firmware. The operation of the previous firmware is otherwise unaffected.

Simple Roaming

Simple Roaming is a custom feature which is supported by WINC firmware version 19.6.1 and above. With Simple
Roaming feature enabled, the ATWINC1500 configured as station can move around in an ESS area with multiple
access point. The WINC automatically switches to another AP which has the same SSID, authentication procedure
and credentials with better signal strength. Roaming enables a station to change its AP while remaining connected to
the network. The following figure explains the simple roaming feature.

Figure 5-4. Simple Roaming

STA AP in Range

_— (1) Probe Request (Ch 1)

S ————

(2) Probe Response (Ch 1)

|
|
— (1) Probe Request (Ch n)

I

—>

|

|

|
«————————————— ™

| (2) Probe Response (Ch n)
I Old AP
I New AP T
I
| (5) Authentication Request I |
I I ——— :
|<_ (6) Authentication Reply : |
| (7) Reassociation Request | I
[— . I
I | (8) Send Security Block |
| i —>
| I (9) Ack Security Block |
I I
: [(10) Move Notify |
| | ______________—ﬁb-l
| (12) Reassociation Repll ________ :4- (11) Move Response :
'4- - | |

In v19.6.1, the WINC roam occurs on link-loss detection with the existing AP, which is determined by tracking
beacons and sending NULL frame keep-alive packets. ISO/OSI Layer 2 roaming occurs when the WINC roams from
one AP to another AP, both of which are inside the same IP subnet. Layer 3 roaming occurs when the WINC roams
from one AP to another AP which are in different subnets, whereby the WINC attempts to obtain a new IP address
within the new subnet via DHCP. As a result of layer 3 roaming, any existing network connections is broken, and the
upper layer protocols handle this IP address change if a continuous connection is required in layers 4 and above.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 26

5.8

ATWINC15x0
Wi-Fi Station Mode

Roaming algorithm is internal to WINC firmware. The Host MCU can enable or disable the roaming functionality using
the API'sm2m wifi enable roamingandm2m wifi disable roaming. The roaming must be called after the
WINC initialization.

When roaming is enabled, if the WINC successfully roamed to a new AP, then the

M2M WIFI_RESP CON_ STATE CHANGED message with state as M2M WIFI ROAMED is sent to host MCU. If the
WINC is not able to find a new AP, then M2M WIFI RESP CON_ STATE CHANGED message with state as

M2M WIFI DISCONNECTED is sent to the host MCU.

The APl call m2m wifi enable roaming () sets the ATWINC15xO0 to detect link-loss, and when link loss is
detected with the existing access point, the following roaming steps are performed.

* A precautionary de-authentication frame is sent to the old AP.

» Scanning is performed to determine if there is an AP within the same ESS as the previous AP in the vicinity.

» Ifan AP is found, authentication and re-association messages are exchanged with the new AP, followed by a
normal 4-way security handshake in the case of WPA/WPA2, or an EAPOL exchange in the case of 802.1x
Enterprise security.

* A DHCP request is sent to the new AP to attempt to retain the same IP address. A notification event is sent to
the host MCU of type M2M WIFI RESP CON STATE CHANGE with the state of M2M WIFI ROAMED.
Additionally, an M2M WIFI REQ DHCP_CONF event conveying either the same or a new IP address is sent to
the host MCU.

+ If there is any problem with the connection, or DHCP fails, then a de-authentication message is sent to the AP,
and an M2M WIFI RESP CON_STATE CHANGED eventis sent to the host MCU with the state set as
M2M WIFI DISCONNECTED.

The bEnableDhcp parameter enables control of whether or not a DHCP request is sent after roaming to a new AP.
The APl callm2m wifi disable roaming is used to disable roaming.

Multiple Gain Table

There are restrictions regarding the maximum transmit power of a wireless device according to the regulatory
agencies of the region. For Wi-Fi devices, the maximum transmit power is limited according the regulation of the
region in which the Wi-Fi device is used. The gain table can be used to configure the transmission power in WINC.
The digital gain (DG) that are used for different channels and different data rates are stored in ATWINC15x0 Flash as
a table called Gain table. In ATWINC15x0, the Power Amplifier (PA) and Pre-power Amplifier (PPA) values are
configured in the firmware directly.

The following figure shows the format of the gain table.
Figure 5-5. Gain Table

] 2 3 ! G| 5| 7 8] 9 10] [k 12] 13| 14> Channels
1 10 9 £ 9| 9 £ 9| 9 £ 9| 10 £ £ 9
2 10 9 9| 9| 9 9| 9| 9 9 9| 10 9| EY 9
[55| -10 9 -9 9 9 -9 9 9 -9 9 10 -9 9 9
K] 10 9 £ 9| 9 £ £ 9 £ 9| 10 £ £ 9
[EE 7 7] 7] 7 7] 7] 7 7] 7] 9 7] 7| 7
9 K] 7 7 7 7 7 7 7 7 7 9 7 7 7
12 EE 7 7] 7| 7 7] 7| 7 7] 7| 9 7] 7| 7
18| EE 7 7] 7| 7 7] 7] 7 7] 7] 9 7] 7] 7
2 24 EE 7 7] 7] 7 7 7] 7 7 7] 9 7] 7] 7
b 36 K] 7 7 7 7 7 7 7 7 7 9 7 7 7| | pigital
e
a 54 EE 9 £ 9| 3 EJ 3| 3 EJ 3| 9 EJ 3| 8
mcs0 12 7 7] 7] 7 7] 7] 7 7 7] 10 7] 7] 7
mcsl 12 7 7 7 7 7 7 7 7 7 -10 7 7 7
mcs2 12 7 7| 7| 7 7] 7| 7 7] 7| 10 7] 7| 7
mcs3 2 7 7] 7] 7 7] 7] 7 7] 7] 10 7] 7] 7
mcsad 12 7 7] 7] 7 7] 7] 7 7] 7] 10 7 7] 7
mcs5 12 E E 7 7 7 7 7 7 7 10 7 7 7
mcs6 12 9 | E| 8| | E| 8| | E| -10 | | 8|
mcs7 2 10 £ 9| 9 £ 9| 9 £ £ 10 £ £ 9|)
1e9c 0 Specific
ledc 0 Configuration

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 27

5.8.1

5.8.2

5.9

ATWINC15x0
Wi-Fi Station Mode

The Gain tables are provided as part of firmware update package in form of .csv file available at src/firmware/
Tools/gain builder/gain_sheets folder. The gain values are downloaded as part of complete download
process. For more details, see "WINC Devices — Integrated Serial Flash Memory Download Procedure" document.

Prior to v19.6.1 only one gain table was supported in ATWINC15x0, with which the WINC can only operate in one
regulatory region without requiring different Flash content.

The ATWINC15x0 firmware version 19.6.1 or above supports multiple gain table and the Flash can store up to four
gain tables. The table can be selected by the Host MCU using the APl m2m_wifi set gain table idx. Ifthe
ATWINC15x0 has to operate in multiple region with maximum transmit power allowed in that region, multiple gain
table feature can be used to select gain table (by Host MCU) based on the region in which the ATWINC15x0 is
operated.

Writing the Gain Table to ATWINC15x0

The gain builder application uses multiple .csv files (up to a maximum of 4) and perform the necessary maths
operations on the gain table to calculate the gain values and write them to the Flash:

gain builder [-table <no of tables>]
[-index <gain table index>][-no wait] [-port]

Note: The img path* parameters specify the separate tables, and the index parameter specifies the default table
to use on power up.

Selecting a Specific Gain Table

Setting the specific gain table index is achieved using APl m2m wifi set gain table idx. The

m2m wifi set gain table idx must be called after the initialization and before any connection request. The
corresponding gain tables must be available in the Flash.

Note: The ATWINC15x0 firmware release v19.6.1 contains only one gain table that can be used in all the region.

Host File Download

The Host File Download is a feature supported in the ATWINC15x0 firmware version 19.6.1 and above. This feature
is supported only in the ATWINC1510 device which has 8 Mb Flash. The ATWINC1500 only has 4 Mbit of Flash
memory and therefore this feature is not supported for the ATWINC1500. With Host file download feature, the Host
MCU can instruct the ATWINC1510 to download a file and save it in the ATWINC1510 Flash. The ATWINC1510 can
download the file from a HTTP or a HTTPS web server only. The maximum size of file that can be stored in the
ATWINC1510 is 508 KB. This feature is ideal for updating the firmware of host MCU. However, the feature is not
limited to MCU OTA only.

When performing MCU OTA updates, there is no enforced file format, so the Application Developer can choose a
strategy to perform integrity check validation on the received file. The WINC does not perform any integrity check on
the downloaded file and therefore, it is recommended that the Application do it instead.

The feature is designed for single file support and allows for a maximum size of 508 KB. The driver protects against
invalid access to the file stored in the WINC'’s Flash by using file handlers to identify each file. If a new download
starts or if the file is erased, access to the file partition is denied. Also, the application can request an explicit erase to
delete the file from the ATWINC'’s Flash, destroying any potentially confidential data.

The APIm2m ota host file get is used to download file from remote location and store it in ATWINC1500
Flash. The m2m ota host file get can be used to download only one file at a time. When the get file APl is
called again, the previously stored file is erased and new file download is initiated.

To retrieve the downloaded file from the ATWINC1510 Flash, m2m_ota host file read spi or
m2m_ota_host file read hif API can be used by the host MCU. The completion of file download is notified
through the callback registered inm2m ota host file get API The user can use the
m2m_ota host file read spiorm2m ota host file read hif API by passing required arguments to
initiate the file read from the WINC Flash.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 28

5.9.1

5.9.2

5.9.3

ATWINC15x0
Wi-Fi Station Mode

Overview

Whenever an application needs information which is stored in a file somewhere in a remote location, the application
can use the Host File Download feature to retrieve the file from the remote location and temporarily store it in the
WINC'’s Flash. When a download is successfully completed, a file handler is generated and stored in NVM in the
WINC, therefore it is valid even after a WINC reset. After a handler is generated, access to the file is possible via the
provided APIs and reading of a file is possible via two mechanisms, HIF and SPI. In either case, the read operation
requires the file handler of the file which the application is trying to access, if the handler being requested and the
handler internally stored match, then the access is granted. The same procedure is valid for erasing the file. The use
of a file handler avoids access to invalid data, for example when trying to concurrently access the file. The following
figure depicts the steps which the WINC follows when performing a Host File Download.

Figure 5-6. Host File Download Operation within the WINC

OTA File Get

y

Check Available Space

oK
Start Download Failed
cOmp|etey %ned
sg-cr?eijcb OTA Get Failed

\ /

Notify Host of the Result

The download starts only if the space available in Flash is enough to store the file which is requested to be
downloaded. If Host File Download is requested in the ATWINC1500 (4 Mb Flash), the download fails since there is
no Host File partition in Flash and therefore no space to store the file.

The “Start Download” step causes any previously available valid file handler to be invalidated. When “OTA Get
Successful” message is received, a new file handler is generated along with the status and the total size of the
downloaded file, they are included in the Download completion notification sent to the host.

OTA Initialization

To use the Host File Download feature, the WINC and the OTA driver must be initialized. The following is the
procedure for OTA initialization:

1. m2m wifi initorm2m wifi reinit —this APl is required to initialize the WINC and to set up the callback
for the HIF communication. After this step, the WINC can be configured to connect to a network and download
a file. For more details to understand when to use each of these two options, see the API documentation.

2. m2m_ota_init —this API registers the OTA callback, which is required to execute any callbacks configured
through the Host File Download APIs and to notify the Application of file download status.

Using Host File Download for MCU OTA

Host File Download allows an application to download a file from a remote location. The link to the file can be through
a secure connection and once the file is downloaded, it is stored in the WINC's Flash and the Application is notified
about it. The files to download can be of any kind and are not limited to MCU binaries, making this feature both
flexible and powerful. One example would be the download of text files, which can hold, for instance, a file checksum,

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 29

ATWINC15x0
Wi-Fi Station Mode

which can later be used by the Application to verify the integrity of the downloaded binary. An Host MCU OTA
requires the following steps:

* Provide an http/https link to the file to tell WINC to download the file from a specific remote location, which can
be done using APl m2m_ota_host file get.

* Read the image from the WINC using spi_flash read. Since there is a limitation currently in which the
bootloader would also need to perform m2m wifi init, m2m_ota_init and only then it should do
m2m ota host file read spi toread the image from WINC. m2m ota host file read hif and
m2m ota host file read spi are notused in the ASF Example for MCU OTA to keep the driver footprint
small while working around the limitation described above. However, this limitation is only present when the
Application needs to be reset, or in this case switch to a bootloader, the WINC driver will lose track of the file
handler and will have to load it again through the initialization process. If no reset or shutdown need to be
performed and if no different Application needs to be loaded after downloading the file, these two APIs can be
used.

Figure 5-7. Example Host File Download for MCU OTA

Application WING
m2m_wifi_init() R
m2m_ota_init() .
Connect to Wi-Fi network R

mamot host Tegetl > File Handler inval |

_HIF Msg M2M_OTA_RESP_HOST_FILE_DOWNLOAD

| File Get CB File Handler gen |

. . N\
File Integrity Check
| /

------ 1 Switch to Bootloader w{ MCU & WINC Reset |-
m2m_wifi_download_mode() >
spi_flash_read() _
Switch to Application :>
Bootloader WINC

Other steps that must be considered by the Application Developer are:

» Itis recommended to verify the integrity of the image using a checksum calculation and match it against a
previously known checksum. The user can design the validation mechanism since no predefined file format is
enforced for MCU OTA.

* There is an option to erase the file from Flash. Although this is not mandatory before requesting a new
download, it can be useful for security purposes, ensuring that sensitive data is unavailable after its use.
Note: The WINC does not perform any integrity check of any of the downloaded files via Host File Download
and that must be checked by the application.

5.9.4 API Description
For a more detailed description of the APIs, refer to WINC1500_SW_API.chm.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 30

5.9.4.1

5.9.4.2

5.9.4.3

5944

ATWINC15x0
Wi-Fi Station Mode

OTA File Get

NMI_API sint8 m2m ota host file get
(

unsigned char *pcDhownloadUrl,
tpfFileGetCb pfHFDGetCb

)7

This APl is used to get a file which links to the file stored remotely. The link is passed to the WINC to establish a TCP
connection to retrieve the file from that location. It is also possible to use a server configured for TLS.

A callback must also be provided so that it is executed when the File Get operation completes. The status of the File
Get is passed onto this callback and if the status is successful, the file handler generated by the WINC and the total
size of the downloaded file is passed correctly to the callback.

File Get Callback

typedef void (*tpfFileGetCb)
(

uint8 u8Status,
uint8 u8Handler,
uint32 u32Size

)i

The callback for the File Get receives three arguments; status of the File Get request, file handler ID and the total
size of the file. If the status is OTA STATUS SUCCESS, then the file handler and size can be used, otherwise its
values are not populated. From the Application’s point of view, they must not be considered valid.

The file handler is auto-generated in the WINC and it identifies the file. Only when a download finishes successfully,
the corresponding file handler is generated. The handler is required to both read from the file or erase the file.
Similarly, if the download is aborted or interrupted, then the handler is not generated, instead the handler will have
the value of HFD_INVALID HANDLER, which blocks any further operation on the Flash through the APIs.

When the file download completes successfully, the total size of the download file is passed to the callback to notify
the application. Using which the application tracks the total size of the downloaded data and the amount of data read.

OTA File Read HIF

NMI_API sint8 m2m ota host file read hif
(

uint8 u8Handler,
uint32 u320ffset,
uint32 u32Size,
tpfFileReadCb pfHFDReadCb

)i

When the download completes, the file is stored in the WINC’s Flash. This API can be used to read the file from the
WINC using HIF messages. It is mandatory to have a valid handler, not having one could mean that the file has been
invalidated and therefore it must be unavailable for any operation. This protects read against invalid or corrupted
data.

The offset marks the position in bytes of Flash to read from, counting from the beginning of the file. Therefore, an
offset of zero is translated as reading from the beginning of the file. Size specifies the amount of bytes to read,
starting at the offset defined. The last argument is the callback to be executed when the read is complete.
Advantages (vs SPI read)

» While reading a file using HIF messages, the host can continue operation, being notified by an interrupt from the
WINC when data read is complete.

» Does not require the WINC to be reset after the read is complete.

Disadvantages (vs SPI read)
» File reads via HIF are slightly slower than reads via SPI.

File Read HIF Callback

typedef void (*tpfFileReadCb)

(
uint8 u8Status,

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 31

5.9.4.5

5.9.4.6

5.9.4.7

ATWINC15x0
Wi-Fi Station Mode

void *pBuff,
uint32 u32Size
) i

The callback is only executed after a file read via HIF messages and it receives three arguments.
« The first argument is the status of the read, if the read is unsuccessful, then the other arguments will have
irrelevant values.
» The second argument is a pointer to the buffer of data read.

* The third argument is size, which indicates the amount of data read and therefore contained in the buffer
(maximum 128 bytes).

Specifying large amounts of data to be read via the HIF may exceed the buffer maximum size (128 bytes), therefore it
is recommended to use u32Size to offset a second read from within this callback. This requires the application to
track the total size of the file and the amount of bytes read, requesting the reading of each section at a time until the
end of the file is reached.

OTA File Read SPI

NMI _API sint8 m2m ota host file read spi
(

uint8 uB8Handler,
uint8 *pu8Buff,
uint32 u320ffset,
uint32 u32Size

)

The file read via SPI is similar to the read via HIF. The use of a callback is not considered, because to access the
WINC'’s Flash via SPI, the WINC must be set into a certain mode to allow for safe read/write of its Flash. Therefore, it
is typical to use a loop to read all the data necessary while the WINC is in that state and then restart the WINC.

To use this API, the application must call m2m wifi download mode to make the WINC safe for read/write Flash
access and once the read is completed, the WINC must be reinitialized (m2m_wifi reinit,m2m ota init)and
to connect to the network again if the Application based on the request. pu8Buf £ is a pointer to a buffer provided by
the Application and to where the data will be read to.

Advantages (vs HIF read)
* SPIlread is faster than HIF Read.
Disadvantages (vs HIF read)
* Requires the WINC to set into a special mode and restart later.

» Generally blocks as the read are done within a loop to minimize WINC reset.

OTA File Erase API

NMI API sint8 m2m ota host file erase
(

uint8 u8Handler,
tpfFileEraseCb pfHFDEraseCb

) i

The File Erase API requires the following two arguments:
» The first argument is a handler of the file to erase, to ensure that it is valid to perform a Flash erase.
» The second argument is a callback which executes when the erase is complete.

Having a callback to tell the Application when the erase has been completed is useful to act as a trigger for a
subsequent operation (example, download a second file).

Note: The file erase performs an erase of the entire host file partition and any file handler is destroyed regardless of
the end result of the erase operation in the WINC. Since the data in the Flash is partially or completely destroyed, the
handlers are invalidated when the process starts for safety.

File Erase Callback

typedef void (*tpfFileEraseCb)
(

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 32

5.9.4.8

5.9.5

5.9.6

ATWINC15x0
Wi-Fi Station Mode

uint8 u8Status
);

The callback for a File Erase receives the erase status of the operation. A status of OTA_ STATUS SUCCESS ensures
that the data has been completely erased, any other result does not ensure that the data is still valid, but also do not
ensure that the data has been completely erased.

OTA Abort API

NMI API sint8 m2m ota abort
(

void
);

If a Host File Download has been started and the Application decides to cancel the download, it can issue a call to
this API to do so. This does not require any input parameter.

Note: This API is shared with the WINC OTA and if issued when a WINC OTA is in progress, the WINC OTA is
canceled.

Limitations

» Out of 512 KB of Flash in the ATWINC1510, the first sector (of size 4 KB) is used by the WINC for storing the file
information for host file download feature. Which means that a total of 508 KB size of Flash can be used by
application to store the host file.

* The feature is only supported in ATWINC1510 since the ATWINC1500 only has 4 Mbit of Flash memory, which
means there is no space to store a file.

» There is no file system and only one file is stored at a time. When the get file is called again, the previously
stored file is erased and a new file download is initiated.

* The WINC OTA firmware download and the Host OTA file download cannot run concurrently.

» The WINC interprets 404 Not Found error when application attempts to download a broken or dead link and
provides the OTA STATUS SERVER ERROR error status. The WINC does not interpret any other message for
broken link. The WINC downloads the error message into SPI Flash and indicates Host as file download. It is
the application’s responsibility to check if the file is valid.

Built in Automated Test Equipment (ATE) Mechanism

A factory flashed ATWINC15x0 module running the v19.6.1 firmware has a special ATE firmware in the Flash space
reserved for OTA transfers (which is overwritten by the first OTA update).

A host API can be called during WINC initialization that causes the device to boot into this special firmware
(m2m_ate init). The APIto control the ATE functions provided by this firmware is detailed in \ASF\ common
\components\wifi\wincl500\driver\include\m2m ate mode.h.

The following is the sample code.

int main (void)

{
/* Initialize the board. */
system init();

/* Initialize the UART console. */
configure console();
printf (STRING HEADER) ;

/* Initialize the BSP. */
nm _bsp init();

/*Check if initialization of ATE firmware is succeeded or not*/
if (M2M SUCCESS == m2m_ate init())
{

/*Run TX test case if defined*/

#if (M2M ATE RUN TX TEST CASE == ENABLE)
start tx test (M2M ATE TX RATE 1 Mops INDEX) ;
fendif

/*Run RX test case if defined*/

#if (M2M_ATE RUN_RX TEST CASE == ENABLE)

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 33

ATWINC15x0
Wi-Fi Station Mode

start rx test();
#endif

/*De-Initialization of ATE firmware test mode*/
m2m_ate deinit();

}

else

{
M2M ERR("Failed to initialize ATE firmware.\r\n");

while (1) ;
}
#if ((M2M ATE RUN RX TEST CASE == ENABLE) && (M2M ATE RUN TX TEST CASE == ENABLE))
M2M INFO ("Test cases have been finished.\r\n");
ffelse
M2M INFO ("Test case has been finished.\r\n");
#endif
while (1) ;
}
#if (M2M ATE RUN TX TEST CASE == ENABLE)

static void start tx_ test(uint8 t tx_ rate)

{
tstrM2mAteTx tx struct;

/*Initialize parameter structure*/
m2m memset ((uint8 *)&tx struct, 0 , sizeof (tx struct));

/*Set TX Configuration parameters,
refer to tstrM2mAteTx for more information about parameters/

tx struct.channel num = M2M ATE CHANNEL 11;

tx struct.data rate = m2m ate get tx rate(tx rate);
tx_struct.dpd ctrl = M2M ATE TX DPD DYNAMIC;

tx struct.duty cycle = M2M ATE TX DUTY 1;
tx_struct.frame_ len = 1024;

tx_struct.num frames = 0;
tx struct.phy burst tx =
tx_struct.tx_gain_sel M2M_ATE_TX GAIN_DYNAMIC;
tx_struct.use pmu M2M _ATE_PMU_DISBLE;
tx_struct.cw_ tx = M2M ATE TX MODE CW;
tx_struct.xo_offset x1000 = O0O;

M2M ATE TX SRC MAC;

/*Start TX Case*/
if (M2M ATE SUCCESS == m2m ate start tx(&tx struct))
{
uint32 u32TxTimeout = M2M ATE TEST DURATION IN SEC;

M2M INFO (">>Running TX Test case on CH<%$02u>.\r\n", tx struct.channel num);
do
{
nm_bsp sleep(1000) ;
printf ("$02u\r", (unsigned int)u32TxTimeout) ;
}while (--u32TxTimeout) ;

if (M2M ATE SUCCESS == m2m_ate stop tx())
{
M2M INFO ("Completed TX Test successfully.\r\n");
}
}
else
{
M2M INFO ("Failed to start TX Test case.\r\n");
}
}
#endif

#if (M2M_ATE RUN_RX TEST CASE == ENABLE)
static void start_rx_ test (void)

{
tstrM2mAteRx rx struct;

/*Initialize parameter structure*/
m2m _memset ((uint8 *)&rx struct, 0, sizeof (rx_struct));

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 34

ATWINC15x0
Wi-Fi Station Mode

/*Set RX Configuration parameters*/

rx_struct.channel num = M2M _ATE_ CHANNEL 6;
rx_struct.use_ pmu = M2M ATE PMU DISBLE;
rx_struct.xo_offset x1000 = O0;

/*Start RX Case*/
if (M2M ATE SUCCESS == m2m ate start rx(&rx struct))
{
tstrM2mAteRxStatus rx data;
uint32 u32RxTimeout = M2M ATE TEST DURATION IN SEC;

M2M INFO (">>Running RX Test case on CH<%02u>.\r\n", rx_struct.channel num);
do
{
mZ2m_ate read rx status(&rx data);
M2M INFO ("Num Rx PKTs: %d, Num ERR PKTs: %d, PER: %1.3f",
(int) rx data.num rx pkts, (int)rx data.num err pkts,
(rx_data.num rx pkts>0)?((double)rx data.num err pkts/
(double) rx data.num rx pkts):(0));
nm_bsp sleep(1000) ;
}while (-—u32RxTimeout) ;
printf ("\r\n");
if (M2M ATE_SUCCESS == m2m_ate_stop rx())
{
M2M INFO ("Compeleted RX Test successfully.\r\n");
}
}
else
{
M2M INFO("Failed to start RX Test case.\r\n");
}
}
fendif

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 35

6.1

6.1.1

6.2

6.2.1

6.2.2

ATWINC15x0

Socket Programming

Socket Programming

Overview

The ATWINC15x0 socket Application Programming Interface (API) allows the host MCU application to interact with
intranet and remote internet hosts. The ATWINC15x0 socket API is based on the BSD (Berkeley) sockets. This
chapter explains the ATWINC15x0 socket programming and how it differs from regular BSD sockets.
Note: The reader must have a basic understanding of the following topics before reading this chapter:

» BSD sockets

« TCP

- UDP

* Internet protocols

Socket Types
The ATWINC15x0 socket API provides two types of sockets:

» Datagram sockets (connectionless sockets) — uses the UDP protocol
» Stream sockets (connection-oriented sockets) — uses the TCP protocol

Socket Properties
Each ATWINC15x0 socket is identified by a unique combination of the following:

» Socket ID — a unique identifier for each socket. This is the return value of the socket API.

* Local socket address — a combination of the ATWINC15x0 IP address and port number assigned by the
ATWINC15x0 firmware for the socket.

» Protocol — transport layer protocol, either TCP or UDP.

* Remote socket address — applicable only for TCP stream sockets. This is necessary since TCP is connection
oriented. Each connection made to a specific IP address and port number requires a separate socket. The
remote socket address can be obtained in the socket event callback which is described in the succeeding
section.

Note: TCP port 53 and UDP port 53 represent two different sockets.

Limitations
» The ATWINC15x0 sockets API support up to 7 TCP sockets and 4 UDP sockets.
* The ATWINC15x0 sockets API support only IPv4. It does not support IPv6.

Sockets API

API Prerequisites

* C header file socket.h — this includes all the necessary socket API function declarations. When using any
ATWINC15x0 socket API as described in the following sections, the host MCU application must include the
socket.h header file.

+ Initialization — the ATWINC15x0 socket API initializes once before calling any socket API function. This is done
using the socketInit API described in Socket APl Functions.

Non-blocking Asynchronous Socket APIs
Most ATWINC15x0 socket APIs are asynchronous function calls that do not block the host MCU application. The
behavior of the ATWINC15x0 asynchronous APls are described in Asynchronous Events.

For example, the host MCU application can register an application-defined socket event callback function using the
ATWINC15x0 socket APl registerSocketCallback. When the host MCU application calls the socket API

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 36

http://en.wikipedia.org/wiki/Berkeley_sockets
http://en.wikipedia.org/wiki/Berkeley_sockets
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Internet_protocol_suite

6.2.3

6.2.3.1

6.2.3.2

6.2.3.3

6.2.3.4

ATWINC15x0

Socket Programming

connect, the API returns a zero value (SUCCESS) immediately indicating that the request is accepted. The host
MCU application must then wait for the ATWINC15x0 socket API to call the registered socket callback when the
connection is established or if a connection time-out occurred. The socket callback function provides the necessary
information to determine the connection status.

Socket API Functions
The ATWINC15x0 socket API provides the following functions.

socketlnit
The host MCU application must call the APl socketInit once during initialization. The API is a synchronous API.

registerSocketCallback

The registerSocketCallback function allows the host MCU application to provide the ATWINC15x0 sockets with
application-defined event callbacks for socket operations. The API is a synchronous API. The API registers the
following callbacks:

* The socket event callback
* The DNS resolve callback

The socket event callback is an application-defined function that is called by the ATWINC15x0 socket API whenever
a socket event occurs. Within this handler, the host MCU application must provide an application-defined logic that
handles the events of interest.

The DNS resolve event handler is the application-defined function that is called by the ATWINC15x0 socket API to
return the results of gethostbyname. By implication, this only occurs after the host MCU application has called the
gethostbyname function. If successful, the callback provides the IP address for the desired domain name.

socket
The socket function creates a new socket of a specified type and returns the corresponding socket ID. The APl is a
synchronous API.

The socket ID is required by most other socket functions and is also passed as an argument to the socket event
callback function to identify which socket generated the event.

connect
The connect function is used with TCP sockets to establish a new connection to a TCP server.

The connect function results in a SOCKET MSG CONNECT sent to the socket event handler callback upon
completion. The connect event is sent when the TCP server accepts the connection or, if no remote host response is
received, after a time-out interval of approximately 30 seconds.

Note: The SOCKET MSG CONNECT event callback provides a tstrSocketConnectMsg containing an error code.
The error code value indicates:

» Zero value to indicate the successful connection or

* Negative value to indicate an error due to a time-out condition or if connect is used with UDP socket.

The following figure shows the ATWINC15x0 socket API connect to remote server host.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 37

6.2.3.5

6.2.3.6

6.2.3.7

ATWINC15x0

Socket Programming

Figure 6-1. TCP Client API Call Sequence

\

remote host WINC socket API

bind
The bind function can be used for server operation for both UDP and TCP sockets. It is used to associate a socket
with an address structure (port number and IP address).

The bind function call results to a SOCKET MSG_BIND event sent to the socket callback handler with the bind status.
Callsto 1isten, send, sendto, recv, and recvfrom functions must not be issued until the bind callback is
received.

listen

The 1isten function is used for server operations with TCP stream sockets. After calling the 1isten API, the
socket accepts a connection request from a remote host. The 1isten function causes a SOCKET MSG LISTEN
event notification to be sent to the host after the socket port is ready to indicate listen operation success or failure.

When a remote peer establishes a connection, a SOCKET MSG_ACCEPT event notification is sent to the application.

accept
The accept function is deprecated and calling this API has no effect. It is kept only for backward compatibility.

Note: The 1isten API implicitly accepts the TCP remote peer connections request.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 38

6.2.3.8

6.2.3.9

6.2.3.10

ATWINC15x0

Socket Programming

Figure 6-2. TCP Server API Call Sequence

™~

remote host WINC socket API

Although the accept function is deprecated, the SOCKET MSG_ACCEPT event occurs whenever a remote host
connects to the ATWINC15x0 TCP server. The event message contains the IP address and port number of the
connected remote host.

send
The send function is used by the application to send data to a remote host. The send function can be used to send
either UDP or TCP data depending on the type of socket.

* For a TCP socket a connection must be established first.

» For a UDP socket, the recommended way is to use sendto API, where the destination address is defined.
However, it is possible to use send API instead of sendto API. For this, at least one successful call must be
made to sendto API prior to the consecutive calls of send function. This ensures that the destination address is
saved in the ATWINC15x0 firmware.

The send function generates a SOCKET MSG_SEND event callback after the data is transmitted to the remote host.
For TCP sockets, this event guarantees that the data is delivered to the remote host TCP/IP stack (the remote
application must use the recv function to read the data). For UDP sockets, it means that the data is transmitted, but
there is no guarantee that the data is delivered to the remote host as per UDP protocol. The application is
responsible to guarantee data delivery in the UDP sockets case.

The SOCKET MSG_SEND event callback returns the size of the data transmitted of the transmission in the success
case and zero or negative value in case of an error. The maximum size of data buffer that can be transmitted using
the socket APIs is 1400 bytes.

sendto

The sendto function is used by the application to send UDP data to a remote host. It can only be used with UDP
sockets. The IP address and port of the destination remote host is included as a parameter to the sendto function.

The SOCKET MSG_SENDTO event callback returns the size of the data transmitted in the success case and zero or
negative value in case of an error.

recv/recvfrom
The recv and recvfrom functions are used to read data from TCP and UDP sockets, respectively, and their
operation is otherwise identical.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 39

6.2.3.11

6.2.3.12

ATWINC15x0

Socket Programming

The host MCU application calls the recv or recvfrom function with a pre allocated buffer. When the
SOCKET MSG_RECV or SOCKET MSG_RECVFROM event callback arrives, this buffer must have the received data.

The received data size indicates the status as follows:

» Positive — data is received
» Zero — socket connection is terminated
* Negative — indicates an error
In the case of TCP sockets, it is recommended to call the recv function after each successful socket connection

(client or server). Otherwise, the received data is buffered in the ATWINC15x0 firmware wasting the system's
resources until the socket is explicitly closed using a c1ose function call.

close
The close function is used to release the resources allocated to the socket and, for a TCP stream socket, also
terminate an open connection.

Each call to the socket function must match with a call to the c1ose function. In addition, sockets that are accepted
on a server socket port must be closed using this function.

setsockopt
The setsockopt function may be used to set socket options to control the socket behavior.

The options supported are as follows:
* SO _SET UDP_SEND CALLBACK — enables or disables the send /sendto event callbacks. The user may want
to disable the sendto event callback for UDP sockets to enhance the socket connection throughput.
* IP_ADD MEMBERSHIP — enables subscribe to an IP Multicast address.
* IP_DROP_MEMBERSHIP — enables unsubscribe to an IP Multicast address.
* SOL_SSL_SOCKET — sets SSL Socket. The following are the options supported for SSL socket:

— SO_SSL _BYPASS X509 VERIF command allows opening of the SSL socket to bypass the X509
certification verification process.

Example:
struct sockaddr_in addr_in;
int optvVal =1;
addr_in.sin family = AF INET;
addr_in.sin_port = _htons (MAIN_HOST_ PORT) ;

addr_in.sin addr.s addr = gu32HostIp;

/* Create secure socket */

if (tcp client socket < 0) {

tcp _client socket = socket (AF INET, SOCK STREAM,
SOCKET FLAGS_SSL) ;

}

/* Check if socket was created successfully */
if (tcp client socket == -1) {

printf ("socket error.\r\n");
close(tcp client socket);

return -1;

}

/* Enable X509 bypass verification */
setsockopt (tcp client socket,

SOL_SSL_SOCKET, SO SSIL_BYPASS X509 VERIF, &optVal,sizeof (optVal)) ;

/* If success, connect to socket */

if (connect (tcp client socket, (struct sockaddr
*) &addr_in,

sizeof (struct sockaddr in)) !=

SOCK_ERR_NO ERROR) {

printf ("connect error.\r\n");

return SOCK_ERR INVALID;

}

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 40

ATWINC15x0

Socket Programming

— S0_SSL_SNI command sets the Server Name Indicator (SNI). During TLS handshake process, client can
indicate which hostname it is trying to connect by setting Server Name in (extended) client hello. SNI allows
a server to present multiple certificates on the same IP address and TCP port number and hence allows
multiple secure websites to be served by the same IP address without requiring all of the websites to use

the same certificate.

— SO _SSL _ENABLE SNI VALIDATION enables SNI validation functionality in case SNI is set. The server
name validation is disabled by default. To enable server name validation, both SO_SsL. SNT and
SO_SSL_ENABLE SNI_VALIDATION must be set by the application through setsockopt () as shown in
the example code snippet. When the SNI validation is enabled, the SNI is compared with the common
name (CN) in the received server certificate. If the supplied SNI does not match the CN, the SSL
connection will be forcibly closed by the ATWINC15x0 firmware.

Example:

#define MAIN_HOST_ NAME

SOCKET FLAGS SSL) ;

*) &addr_in, sizeof (

"www.google.com"
struct sockaddr_in addr_in;

int optvVal =1;
addr_in.sin family = AF INET;
addr_in.sin_port = _htons (MAIN_HOST_ PORT) ;

addr_in.sin_addr.s_addr = gu32HostIp;

/* Create secure socket */
if (tcp_client socket < 0) {
tcp _client socket = socket (AF INET, SOCK STREAM,

}

/* Check if socket was created successfully */
if (tcp_client socket == -1) {

printf ("socket error.\r\n");
close(tcp client socket);

return -1;

}

/* set SNI on SSL Socket */
setsockopt (tcp client socket, SOL SSL SOCKET, SO SSL_ SNI,
MAIN HOST NAME, sizeof (MAIN HOST NAME));

/* Enable SSL SNI validation */
setsockopt (tcp client socket, SOL SSL_ SOCKET,

SO_SSL _ENABLE SNI VALIDATION, &optVal,sizeof (optVal));

/* If success, connect to socket */
if (connect (tcp client socket, (struct sockaddr

struct sockaddr in)) != SOCK ERR NO ERROR) {
printf ("connect error.\r\n");

return SOCK_ERR INVALID;

}

— SO _SSL_ENABLE SESSION CACHING command allows the TLS to cache the session information to
speed up the future TLS session establishment.

Example:

struct sockaddr in addr_ in;

SOCKET_FLAGS_ SSL) ;

int optval =1;
addr_in.sin family = AF INET;
addr_in.sin port = htons (MAIN HOST PORT) ;

addr _in.sin addr.s addr = gu32HostIp;

/* Create secure socket */
if (tcp client socket < 0) {
tcp_client socket = socket (AF INET, SOCK_STREAM,

}

/* Check if socket was created successfully */
if (tcp client socket == -1) {

printf ("socket error.\r\n");

close(tcp_client socket);

return -1;

}

/* Enable SSL Session cache */

© 2019 Microchip Technology Inc.

User Guide DS00002389C-page 41

ATWINC15x0

Socket Programming

setsockopt (tcp_client socket,
SOL_SSL_SOCKET, SO_SSL ENABLE SESSION CACHING, &optVal,sizeof (optVal));

/* If success, connect to socket */

if (connect (tcp client socket, (struct sockaddr
*) &addr _in, sizeof (struct

sockaddr in)) != SOCK_ERR NO ERROR) {

printf ("connect error.\r\n");

return SOCK_ERR INVALID;

}

SO_SSL BYPASS X509 VERIF is only provided for debugging and testing purposes. It is NOT

WARNING
a recommended to use this socket option in production software applications.

6.2.3.13 gethostbyname

6.2.4

The gethostbyname function is used to resolve a host name (for example, URL) to a host IP address via the
Domain Name System (DNS). This is limited only to IPv4 addresses. The operation depends on the configuration of a
DNS server IP address and access to the DNS hierarchy through the internet.

After gethostbyname is called, a callback to the DNS resolver handler is made. If the IP address is determined, a
positive value is returned. If it cannot be determined or if the DNS server is not accessible (30-second time-out), an
IP address value of zero is indicated.

Note: An IP returns a zero value to indicate an error (for example, the internet connection is down or DNS is
unavailable) and the host MCU application may try the function call gethostbyname again later.

Summary
The following table summarizes the ATWINC15x0 socket APl and shows its compatibility with BSD socket APIs.

Table 6-1. ATWINC15x0 Socket APl Summary

BSD API ATWINC15x0 API | ATWINC15x0 API | Server/ TCP/UDP
Type Client

socket socket Synchronous Both Both Creates a new socket.

connect connect Asynchronous Client TCP Initializes a TCP connection
request to a remote server.

bind bind Asynchronous Server Both Binds a socket to an address
(address/port).

listen listen Asynchronous Server TCP Allows a bound socket to

listen to remote connections
for its local port.

accept accept Deprecated, Implicit accept in listen.

send send Asynchronous Both Both Sends packet.

sendto sendto Asynchronous Both UDP Sends packet over UDP
sockets.

write - Not supported

recv recv Asynchronous Both Both Receives packet.

recvfrom recvfrom Asynchronous Both Both Receives packet.

read - Not supported

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 42

ATWINC15x0

Socket Programming

........... continued
BSD API ATWINC15x0 API | ATWINC15x0 API | Server/ TCP/UDP
Type Client

close close Synchronous Both Both Terminates the TCP
connection and release
system resources.

gethostbyname gethostbyname Asynchronous Both Both Gets the IP address of a
certain host name

gethostbyaddr - Not supported

select - Not supported

poll - Not supported

setsockopt setsockopt Synchronous Both Both Sets socket option.

getsockopt Not supported

htons/ntohs _htons/_ntohs Synchronous Both Both Converts 2 byte integer from
the host representation to the
Network byte order
representation (and vice
versa).

htonl/ntohl21 _htonl/_ntohl Synchronous Both Both Converts 4 byte integer from

the host representation to the
Network byte order
representation (and vice
versa).

6.3 Socket Connection Flow
In the following sub-sections, the TCP and UDP (client and server) operations are described in details.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 43

ATWINC15x0

Socket Programming

Figure 6-3. Typical Socket Connection Flow

socketInit

registerSocketCallback

socketlnit

Bind event
callback
registerSocketCallback

Client Operations

Accept event

connect callback Server Operations

Send event
callback

Data Exchange

End Connection

6.3.1 TCP Client Operation
The following figure shows the flow for transferring data with a TCP client.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 44

ATWINC15x0

Socket Programming

Figure 6-4. TCP Client Sequence Diagram

HOST
DRIVER

APPLICATION WINC

socket (SOCK STREAM)
clientSocketHdl
nnect (clients ketHd

TCP (SYN)

f'CP (SYN,ACK)
)CKET MSG CONNECT

send (clientSocketHdl, data)

SOCKET CMD SEND
recv (clientSocketHdl) - - TCP Packet

SOCKET_CMD_RECV

TCP Packet
SOCKET CMD RECV
SOCKET MSG RECV - -

close (clientSocketHdl)
SOCKET CMD CLOSE
- - TCP(FIN)

Note:
1. The host application must register a socket notification callback function. The function must be of
tpfAppSocketCb type and must handle socket event notifications appropriately.
2. If the client knows the IP of the server, it may call connect directly as shown in the figure above. If only the
server URL is known, then the application must resolve the server URL first calling the gethostbyname API.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 45

ATWINC15x0

Socket Programming

6.3.2 TCP Server Operation
Figure 6-5. TCP Server Sequence Diagram

HOST

APPLICATION DRIVER

socket (SCCK_STPEAM)

listenSocketHdl

acceptedSocketHdl

recv (acceptedSocketHdl)

WINC

TCP (SYN)

['CP (SYN, ACK)

SOCKET_CMD_RECV

TCP Packet

SOCKET CMD RECV

SOCKET MSG RECV

send (acceptedSocketHdl, data)

SOCKET CMD SEND

close (acceptedSocketHdl)

TCP Packet,

SOCKET CMD_CLOSE

dl)

close (listenSocke

TCP (FIN)

SOCKET CMD CLOSE

Note: The host application must register a socket notification callback function. The function must be of type

tpfAppSocketCh and must handle socket event notifications appropriately.

6.3.3 UDP Client Operation

The following figure shows the flow for transferring data with a UDP client.

Figure 6-6. UDP Client Sequence Diagram

HOST

APPLICATION DRIVER

socket (SOCK_DGRAM)
clientSocketHdl

dendto (clientSocketHdl,data,b addr)

SOCKET_CMD_SENDTO

recvfrom(clientSocketHdl)

SOCKET_CMD_ RECVFROM

SOCKET CMD RECVFROM

SOCKET MSG_RECVFROM

» (clientSocketHdl)

SOCKET_CMD_CLOSE

WINC

UDP Packet

UDP Packet

© 2019 Microchip Technology Inc. User Guide

DS00002389C-page 46

ATWINC15x0

Socket Programming

Note:
1. The first send message must be performed with the sendto API with the destination address specified.

2. If further messages are sent to the same address, the send API can also be used. For more details, refer to
send.

3. recv can be used instead of recvfrom.

6.3.4 UDP Server Operation
The following figure shows the flow for transferring data after establishing a UDP server.

Figure 6-7. UDP Server Sequence Diagram

HOST
APPLICATION DRIVER WINC

socket (SOCK DGRAM)

recvifrom(serverSocketHdl)
SOCKET CMD RECVFROM

UDP Packet
SOCKET_CMD_RECVFROM
SOCKET MSG_RECVEFROM
sendto (serverSocketHdl, data)

SOCKET CMD SENDTO
- - UDP Packet

close (serverSocketHdl)

SOCKET CMD C

6.3.5 DNS Host Name Resolution
The following figure shows the flow of DNS host name resolution.
Figure 6-8. DNS Resolution Sequence

HOST
APPLICATION WIN
- O DRIVER ~
registerSocketCallback (d lveCB)

DNS Answer

DNS_Resolver

SOCKET CMD DNS RESOLVE

dnsResolveCB (hostName, hostIP)

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 47

6.4

6.4.1

ATWINC15x0

Socket Programming

Note:

1. The host application requests to resolve hostname (for example, http://www.foobar.com), by calling the
function gethostbyname.

2. Before calling the gethostbyname, the application must register a DNS response callback function using the
function registerSocketCallback.

3. After the ATWINC15x0 DNS_Resolver module obtains the IP Address (hostIP) corresponding to the given
HostName, the dnsResolveCB is called with the hostIP.

4. If an error occurs or if the DNS request encounters a time-out, the dnsResolveCB is called with IP Address
value zero indicating a failure to resolve the domain name.

Example Code

This section provides code examples for different socket applications. For additional socket code examples, refer to
the Wi-Fi Network Controller Software Programming Guide.

TCP Client Example Code

SOCKET clientSocketHdl;
uint8 rxBuffer[256];

/* Socket event handler. */
void tcpClientSocketEventHandler (SOCKET sock, uint8 u8Msg, void * pvMsgqg)
{
if (sock == clientSocketHdl)
{
if (u8Msg == SOCKET MSG_CONNECT)
{
// Connect Event Handler.
tstrSocketConnectMsg *pstrConnect = (tstrSocketConnectMsg*)pvMsg;
if (pstrConnect->s8Error == 0)
{
// Perform data exchange.
uint8 acSendBuffer[256];
uintl6 ul6MsgSize;

// Fill in the acSendBuffer with some data here

// send data
send(clientSocketHdl, acSendBuffer, ul6MsgSize, 0);
// Recv response from server.
recv (clientSocketHdl, rxBuffer, sizeof (rxBuffer), 0);
}
else
{
printf ("TCP Connection Failed\n");
}
}

else if (u8Msg == SOCKET_MSG_RECV)
{
tstrSocketRecvMsg *pstrRecvMsg = (tstrSocketRecvMsg*)pvMsg;
if ((pstrRecvMsg->pu8Buffer != NULL) && (pstrRecvMsg->sl6BufferSize > 0))

// Process the received message.

// Close the socket.
close (clientSocketHdl) ;

}

// This is the DNS callback. The response of gethostbyname is here.
void dnsResolveCallback (uint8* pu8HostName, uint32 u32ServerIP)
{

struct sockaddr in strAddr;

if (u32ServerIP != 0)
{

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 48

http://www.foobar.com
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42639-Software-Programming-Guide-for-ATWINC3400-WiFi-using-SAMD21-Xplained-Pro_UserGuide.pdf

ATWINC15x0

Socket Programming

clientSocketHdl = socket (AF INET,SOCK STREAM,u8Flags);
if (clientSocketHdl >= 0)
{

strAddr.sin family = AF INET;

strAddr.sin port = htons (443);

strAddr.sin _addr.s_addr = u32ServerlIP;

connect (clientSocketHdl, (struct sockaddr*)&strAddr, sizeof (struct sockaddr in));

}
else
{
printf ("DNS Resolution Failed\n");
}
}

/* This function needs to be called from main function. For the callbacks to be invoked
correctly, the API m2m wifi handle events should be called continuously from main. */
void tcpConnect (char *pcServerURL)
{

// Initialize the socket layer.

socketInit () ;

// Register socket application callbacks.
registerSocketCallback (tcpClientSocketEventHandler, dnsResolveCallback) ;

// Resolve Server URL.
gethostbyname ((uint8*)pcServerURL) ;

6.4.2 TCP Server Example Code

SOCKET listenSocketHdl, acceptedSocketHdl;
uint8 rxBuffer[256];
uint8 bIsfinished = 0;

/* Socket event handler. */
void tcpServerSocketEventHandler (SOCKET sock, uint8 u8Msg, void * pvMsgqg)
{
if (u8Msg == SOCKET MSG_BIND)
{
tstrSocketBindMsg *pstrBind = (tstrSocketBindMsg*)pvMsg;
if (pstrBind->status == 0)
{
}
else

{
}

listen(listenSocketHdl, 0);

printf ("Bind Failed\n");

}
else if (u8Msg == SOCKET MSG LISTEN)

{
tstrSocketListenMsg *pstrlisten = (tstrSocketListenMsg*)pvMsg;
if (pstrlListen->status != 0)
{

}

printf("listen Failed\n");

}
else if (u8Msg == SOCKET_MSG ACCEPT)

{
// New Socket is accepted.
tstrSocketAcceptMsg *pstrAccept = (tstrSocketAcceptMsg *)pvMsg;
if (pstrAccept->sock >= 0)
{
// Get the accepted socket.
acceptedSocketHdl = pstrAccept->sock;

recv (acceptedSocketHdl, rxBuffer, sizeof (rxBuffer), 0);

}

else

{
}

printf ("Accept Failed\n");

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 49

ATWINC15x0

Socket Programming

}

else if (u8Msg == SOCKET_MSG_RECV)
{
tstrSocketRecvMsg *pstrRecvMsg = (tstrSocketRecvMsg*)pvMsg;
if ((pstrRecvMsg->pu8Buffer != NULL) && (pstrRecvMsg->sl6BufferSize > 0))

{
// Process the received message
// Perform data exchange

uint8 acSendBuffer[256];
uintle uléMsgSize;

// Fill in the acSendBuffer with some data here

// Send some data.
send (acceptedSocketHdl, acSendBuffer, ul6MsgSize, 0);

// Recv response from client.
recv (acceptedSocketHdl, rxBuffer, sizeof (rxBuffer), O0);

// Close the socket when finished.
if (bIsfinished)
{
close (acceptedSocketHdl) ;
close (listenSocketHdl) ;

}

/* This function needs to be called from main function. For the callbacks to be invoked
correctly, the API m2m wifi handle events should be called continuously from main. */
void tcpStartServer (uintl6 uléServerPort)

{

struct sockaddr in strAddr;

// Initialize the socket layer.
socketInit () ;

// Register socket application callbacks.
registerSocketCallback (tcpServerSocketEventHandler, NULL);

// Create the server listen socket.
listenSocketHdl = socket (AF_INET, SOCK STREAM, 0);
if (listenSocketHdl >= 0)

{

strAddr.sin family = AF INET;
strAddr.sin port = htons(ulé6ServerPort);
strAddr.sin addr.s_ addr = 0; //INADDR_ANY

bind(listenSocketHdl, (struct sockaddr*)é&strAddr, sizeof (struct sockaddr in));

6.4.3 UDP Client Example Code

SOCKET clientSocketHdl;
uint8 rxBuffer[256], acSendBuffer[256];

/* Socket event handler */
void udpClientSocketEventHandler (SOCKET sock, uint8 u8Msg, void * pvMsgqg)
{

if ((u8Msg == SOCKET MSG RECV) || (u8Msg == SOCKET MSG_RECVFROM))
{
tstrSocketRecvMsg *pstrRecvMsg = (tstrSocketRecvMsg*)pvMsg;
if ((pstrRecvMsg->pu8Buffer != NULL) && (pstrRecvMsg->sl6BufferSize > 0))

{
uintlé len;
// Format a message in the acSendBuffer and put its length in len
sendto (clientSocketHdl, acSendBuffer, len, O,
(struct sockaddr*)&strAddr, sizeof (struct sockaddr in));

recvfrom(clientSocketHdl, rxBuffer, sizeof (rxBuffer), 0);
// Close the socket after finished
close(clientSocketHdl) ;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 50

ATWINC15x0

Socket Programming

}

/* This function needs to be called from main function. For the callbacks to be invoked
correctly, the API m2m wifi handle events should be called continuously from main.*/
void udpClientStart (char *pcServerIP)
{

struct sockaddr in strAddr;

// Initialize the socket layer.

socketInit () ;

// Register socket application callbacks.
registerSocketCallback (udpClientSocketEventHandler, NULL) ;

clientSocketHdl = socket (AF_INET, SOCK DGRAM,u8Flags) ;
if (clientSocketHdl >= 0)
{
uintlé len;
strAddr.sin family = AF INET;
strAddr.sin port = htons(1234);
strAddr.sin_addr.s_addr = nmi_ inet addr (pcServerIP);

// Format some message in the acSendBuffer and put its length in len
sendto (clientSocketHdl, acSendBuffer, len, 0, (struct sockaddr*) &strAddr,
sizeof (struct sockaddr in));

recvfrom(clientSocketHdl, rxBuffer, sizeof (rxBuffer), 0);

6.4.4 UDP Server Example Code

SOCKET serverSocketHdl;
uint8 rxBuffer[256];

/* Socket event handler.*/
void udpServerSocketEventHandler (SOCKET sock, uint8 u8Msg, void * pvMsg)
{
if (u8Msg == SOCKET MSG BIND)
{
tstrSocketBindMsg *pstrBind = (tstrSocketBindMsg*)pvMsg;
if (pstrBind->status == 0)
{
// call Recv
recvfrom(serverSocketHdl, rxBuffer, sizeof (rxBuffer), 0);
}
else
{
printf ("Bind Failed\n");
}
}

else if (u8Msg == SOCKET_MSG_RECV)
{
tstrSocketRecvMsg *pstrRecvMsg = (tstrSocketRecvMsg*)pvMsg;
if ((pstrRecvMsg->pu8Buffer != NULL) && (pstrRecvMsg->sl6BufferSize > 0))
{
// Perform data exchange.
uint8 acSendBuffer[256];
uintlé ul6MsgSize;

// Fill in the acSendBuffer with some data

// Send some data to the same address.
sendto (acceptedSocketHdl, acSendBuffer, uléMsgSize, O,
pstrRecvMsg-> strRemoteAddr, sizeof (pstrRecvMsg-> strRemoteAddr)) ;

// call Recv
recvfrom(serverSocketHdl, rxBuffer, sizeof (rxBuffer), 0);

// Close the socket when finished.
close (serverSocketHdl) ;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 51

ATWINC15x0

Socket Programming

/* This function needs to be called from main function. For the callbacks to be invoked
correctly, the API m2m wifi handle events should be called continuously from main.

=/

void udpStartServer (uintl6 ul6ServerPort)

{

struct sockaddr in strAddr;
// Initialize the socket layer.
socketInit ();

// Register socket application callbacks.
registerSocketCallback (udpServerSocketEventHandler, NULL);
// Create the server listen socket.

listenSocketHdl = socket (AF_INET, SOCK_DGRAM, 0);

if (listenSocketHdl >= 0)

{

strAddr.sin family = AF INET;
strAddr.sin_port = _htons (ul6ServerPort);
strAddr.sin_addr.s addr = 0; //INADDR_ANY

bind(serverSocketHal, (struct sockaddr*)&strAddr, sizeof (struct sockaddr in));

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 52

7.1

7.2

ATWINC15x0
Transport Layer Security (TLS)

Transport Layer Security (TLS)

Transport Layer Security (TLS) layer sits on top of TCP and provides security services including privacy, authenticity,
and message integrity. Various security methods are available with TLS in the WINC firmware.

TLS Overview

The ATWINC15x0 features an embedded low-memory footprint TLS protocol stack bundled within the WINC
firmware.

It features the following functionality:
* Supports TLS versions TLS1.0, TLS1.1 and TLS1.2.
» Supports TLS client operation with TLS client authentication.
» Supports TLS Server mode.
» A simple application interface to the TLS stack. The TLS functionality is abstracted by the ATWINC15x0 socket
interface, hiding the implementation complexity from the application developer and minimizing the effort to port
existing plain TCP code to TLS.

TLS Connection Establishment

From the application’s point of view, the TLS functionality is wrapped behind the socket APIs. This hides the
complexity of TLS from the application which can use the TLS in the same way as the TCP (non-TLS) client and
server. The main difference between the TLS sockets and the regular TCP sockets is that the application sets the
SOCKET FLAGS_SSL while creating the TLS client and server listening sockets. The detailed sequence of TLS
connection establishment is described in the following figure.

Note:

» For proper TLS Client operation, ensure that both SOCKET FLAGS_SSL flag and the correct port number is set
in the TLS client application. For instance, an HTTP client application uses no flag when calling socket API
function and connect to port 80. The same application source code becomes an HTTPS client application if
you use the flag SOCKET FLAGS_SSL and change the port number in connect API to port 433.

» For proper TLS server operation, ensure that both SOCKET FLAGS_SSL flag and the correct port number is set
in the TLS server application. For instance, an HTTP server application uses no flag when calling socket API
function and bind to port 80. The same application source code becomes an HTTPS server application, if you
use the flag SOCKET FLAGS_SSL and change the port number in bind API to port 443.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 53

ATWINC15x0
Transport Layer Security (TLS)

Figure 7-1. TLS Client Application Connection Establishment

HOST
(APPLICATION) (DRIVER) (WINC]

socket (SOCK FLAGS SSL) >
sslSocketHdl

<

connect (sslSocketHdl) >
[SOCKET CMD SSL CONNECT’

Create SSL Session
TLS Handshake
iOCKET CMD SSL CONNECT

“".‘ SOCKET MSG CONNECT

Data Exchange (send/recv)

close (sslSocketHdl)

P SOCKET CMD SSL CLOSE "

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 54

ATWINC15x0
Transport Layer Security (TLS)

Figure 7-2. TLS Server Application Connection Establishment

HOST WINC
l”’m‘:“m“l | DRIVER l (("ﬁ?s‘) (’iﬁ?ﬁ)}

sqcket (SOCK_STREAM, SOCK FLAGS SSL)
listenSocketHdl

bind(listenSocketHdl ,port)

»
)

SOCKET CMD SSL BIND

y

Bind
[] SOCKET CMD SSL BIND
SOCKET MSG BIND <

listen(listenSocketHdl) SOCKET CMD LISTEN

SOCKET CMD LISTEN

N\ ’

vy,

SOCKET MSG_LISTEN
" A TCP (SYN)

ICP(Sm,AEﬁI

A

Create SSL
Session

TLS
Handshake
T, SOCKET CMD_ACCEPT
T‘ SOCEKET MSG ACCEPT -
Get the accepted
socket handle =2
recv (acceptedSocketHdl) !
» SOCKET CMD SSL RECV
[:| TCP |Packet
- SOCKET CMD SSL RECY Uit
SOCKET MSG RECV .

d

send (acceptedSocketHdl, data)

SOCKET CMD SEND

TLS Encrypt | TCP_Packet,

Data Exchange (send/recv)

close (acceptedSocketHdl) SOCKET CMD SSI CLOSE
close (listenSocketHdl)

P SOCKET CMD SSL CLOSE TCP (FIN)

A

7.3 Server Certificate Installation

7.31 Technical Background

7.3.1.1 Public Key Infrastructure
The TLS security is based on the Public Key Infrastructure PKI, in which:

» A server has its public key stored in a digital certificate with X.509 standard format.

» The server must have its X.509 certificate issued by Certificate Authority (CA) which in turn may be certified by
another CA.

* This structure forms a chain of X.509 certificates known as chain of trust.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 55

http://en.wikipedia.org/wiki/Public_key_infrastructure
http://en.wikipedia.org/wiki/Certificate_authority

7.3.1.2

7.3.2

7.4

7.41

7.4.2

7.4.3

7.4.4

ATWINC15x0
Transport Layer Security (TLS)

» The top most CA of the Chain is known to be the Trusted Root Certificate Authority of the chain.

TLS Server Authentication
* When a TLS client initiates a connection with a server, the server sends its X.509 certificate chain (may or may
not include the root certificate) to the client.
» The client must authenticate the Server (verify the Server identity) before starting data exchange.

» The client must verify the entire certificate chain and also verify that the root certificate authority of the chain is in
the client’s trusted root certificate store.

Adding a Certificate to the WINC Trusted Root Certificate Store
» Before connecting to a TLS Server, the root certificate of the server must be installed on the ATWINC15x0. If this
is not done, the TLS connection to the server is locally aborted by the WINC.

» The root certificate must be in DER format. If it is not provided in DER format, it must be converted before
installation. Refer to Section 17 “How to Generate Certificates” for certificate formats and conversion
methods.

» To install the certificate, execute root_certificate_downloader.exe with the following syntax:

root certificate downloader.exe -n N Filel.cer File2.cer FileN.cer

WINC TLS Limitations

Concurrent Connections

Only 2 TLS concurrent connections are allowed.

TLS Supported Ciphers

The ATWINC15x0 supports the following cipher suites (for both client and server modes).
+ TLS_DHE_RSA_WITH_AES_128 CBC_SHA
+ TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
+ TLS_RSA_WITH_AES_128_CBC_SHA
+ TLS_RSA_WITH_AES_128_CBC_SHA256

The ATWINC15x0 also optionally support the following ECC cipher suites.

.+ TLS_ECDHE_RSA WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA WITH_AES_128_CBC_SHA256
.+ TLS_ECDHE_ECDSA WITH_AES 128 _CBC_SHA256

Supported Hash Algorithms

The current implementation (WINC firmware version 19.5.2 onwards) supports the following hash algorithms:
+ MD5
+ SHAA1
+ SHA256
+ SHA384
+ SHA512
+ RSA 4096

TLS Certificate Constraints

For TLS server and TLS client authentication, the ATWINC15x0 can accept the following certificate types:
* RSA certificates with key size no more than 2048 bits
» ECDSA cetrtificates only for NIST P256 EC Curve (secp256r1); conditionally supported

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 56

7.4.5

7.5

ATWINC15x0
Transport Layer Security (TLS)

ECC Cipher Suite

The ATWINC15x0 TLS library features support of ECC cipher suites. Although, the ATWINC15x0 device does not
contain a built-in hardware accelerator for ECC math, the WINC TLS library leverages the ECC math from the host
MCU. To perform the ECC computations needed by the ECC ciphers, an ECC hardware accelerator (or software
library) on the host MCU is mandatory.

The WINC TLS initializes with the ECC cipher suites disabled by default. The host MCU application can enable the
ciphers via the APl ss1SetActiveCipherSuites.

SSL Client Code Example

SOCKET sslSocketHdl;
uint8 rxBuffer[256];

/* Socket event handler. */
void SSL SocketEventHandler (SOCKET sock, uint8 u8Msg, void * pvMsq)
{
if (sock == sslSocketHdl)
{
if (u8Msg == SOCKET MSG_CONNECT)
{
// Connect event
tstrSocketConnectMsg *pstrConnect = (tstrSocketConnectMsg*)pvMsg;
if (pstrConnect->s8Error == 0)
{
// Perform data exchange.
uint8 acSendBuffer[256];
uintlé ul6MsgSize;
// Fill in the acSendBuffer with some data here

// Send some data.
send (sock, acSendBuffer, ul6MsgSize, 0);

// Recv response from server.
recv (sslSocketHdl, rxBuffer, sizeof (rxBuffer), 0);
}
else
{
printf ("SSL Connection Failed\n");
}
}

else if (u8Msg == SOCKET_MSG_RECV)
{
tstrSocketRecvMsg *pstrRecvMsg = (tstrSocketRecvMsg*)pvMsg;
if ((pstrRecvMsg->pu8Buffer != NULL) && (pstrRecvMsg->sl6BufferSize > 0))

// Process the received message here

// Close the socket if finished.
close (sslSocketHdl) ;

}

/* This is the DNS callback. The response of gethostbyname is here. */
void dnsResolveCallback (uint8* pu8HostName, uint32 u32ServerIP)
{

struct sockaddr in strAddr;

if (u32ServerIP != 0)

{
sslSocketHdl = socket (AF_INET, SOCK_STREAM,u8Flags) ;

if (sslSocketHdl >= 0)

{

strAddr.sin family = AF INET;

strAddr.sin port = htons (443);

strAddr.sin _addr.s_addr = u32ServerlP;

connect (sslSocketHdl, (struct sockaddr*)&strAddr, sizeof (struct sockaddr in));

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 57

ATWINC15x0
Transport Layer Security (TLS)

}
else
{
printf ("DNS Resolution Failed\n");
}
}

/* This function needs to be called from main function. For the callbacks to be invoked
correctly, the API m2m wifi handle events should be called continuously from main.*/
void SSL Connect (char *pcServerURL)
{

// Initialize the socket layer.

socketInit () ;

// Register socket application callbacks.
registerSocketCallback (SSL SocketEventHandler, dnsResolveCallback);

// Resolve Server URL.
gethostbyname ((uint8*)pcServerURL) ;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 58

8.1

8.2

8.3

8.4

ATWINC15x0
Wi-Fi AP Mode

Wi-Fi AP Mode

Overview
This chapter provides an overview of the WINC Access Point (AP) mode and describes how to setup this mode and
configure its parameters.

In ATWINC1500 v19.6.1 firmware and above, the DHCP default gateway, DNS server and subnet mask can be
customized when entering AP and provisioning modes. Earlier, the default gateway and DNS server is the same as
the host IP of the WINC and the subnet mask is 255.255.255.0. Configuring these values allow the use of 0.0.0.0 for
the default gateway and DNS server, allowing mobile devices to connect to the WINC AP without disconnecting from
the mobile network. Using IPs other than 0.0.0.0 is possible but it is of no use since only one device can connect to
the WINC AP at any time.

Setting the WINC AP Mode

Set the WINC AP mode configuration parameters using the tstrM2MAPConfig structure.
There are two functions to enable/disable the WINC AP mode:

* sint8m2m wifi enable ap (CONST tstrM2MAPConfig* pstrM2MAPConfig)
* sint8m2m wifi disable ap (void)

For more details on API, refer to the Atmel Software Framework for ATWINC1500 (Wi-Fi).

In ATWINC1500 v19.6.1 firmware and above, to maintain backwards compatibility with older drivers, new structures
and APIs were introduced.

To customize these fields when entering AP or provisioning mode the tstrM2MAPModeConfig structure must be
populated and passed to the new m2m wifi enable ap ext() orm2m wifi start provision mode ext ()
APIs. The tstrM2MAPModeConfig structure contains the original tstrM2MAPConfig structure for storing the AP
SSID, password, and so on. and another tstrM2MAPConfigExt structure for configuring the default router, DNS
server and subnet mask.

Limitations
» The AP can only support a single associated station. Further connection attempts are rejected.
* The ATWINC15x0 supports WPA2 security feature starting from the firmware version 19.5.x.

« Concurrency (simultaneous STA and AP mode) is not supported. Prior to activating the AP mode, the host MCU
application must disable the mode that is currently running.

Sequence Diagram

Once AP mode is established, data interface does not exist before a station associates to the AP; therefore, the
application needs to wait until it receives a notification via an event callback. This process is shown in the following
figure.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 59

http://asf.atmel.com/docs/3.33.0/samd21/html/group__winc1500__group.html

ATWINC15x0
Wi-Fi AP Mode

Figure 8-1. ATWINC15x0 AP Mode Establishment

M2M APPLICATION M2M HOST DRIVER

m2m wifi_enable_ap (tstrM2MAPConfig*);

¢ Set the AP Mode
to Active.

AP Listening for connections

STA is associated

a
-~

wifi_cb(M2M WIFI_REQ CON STATE_CHANGED,
tstrM2mWifiStateChanged*) ;

wifi_cb(M2M WIFI_REQ DHCP CONF, uint8*
STA_IP_ADDR) ;

e Start AP

Application.

8.5 AP Mode Code Example

The following example shows how to configure the ATWINC15x0 AP mode with WINC SSID as broadcasted SSID on
channel one with open security and an IP address equals 192.168.1.1.

#include "m2m wifi.h"
#include "m2m_ types.h"
void wifi event cb(uint8 u8WiFiEvent, void * pvMsg)
{
switch (u8WiFiEvent)
{
case M2M WIFI REQ DHCP CONF:
{
uint8 *pu8IPAddress = (uint8%*)pvMsg;
printf ("Associated STA has IP Address \"%u.%u.%u.%u\"\n", pu8IPAddress[0],
pu8IPAddress[1l], pu8IPAddress[2], pu8IPAddress[3]);
}
break;
default:
break;

}
int main ()
{

tstrWifiInitParam param;

/* Platform specific initializations. */

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 60

ATWINC15x0
Wi-Fi AP Mode

param.pfAppWifiCb = wifi event cb;
if (!m2m wifi init (¶m))
{

tstrM2MAPConfig apConfig;

strcpy (apConfig.au8SSID, "WINC SSID"); // Set SSID
apConfig.u8SsidHide = SSID MODE VISIBLE; // Set SSID to be broadcasted
apConfig.u8ListenChannel = 1; // Set Channel
apConfig.u8SecType = M2M WIFI SEC WEP; // Set Security to WEP
apConfig.u8KeyIndx = 0; // Set WEP Key Index

apConfig.u8KeySz = WEP 40 KEY STRING SIZE; // Set WEP Key Size
strcpy (apConfig.au8WepKey, "1234567890") ; // Set WEP Key

// IP Address

apConfig.au8DHCPServerIP[0] = 192;

apConfig.au8DHCPServerIP[1l] = 168;

apConfig.au8DHCPServerIP[2] = 1;

apConfig.au8DHCPServerIP[3] = 1;

// Start AP mode

m2m wifi enable ap(&apConfig);
while (1)

{

m2m wifi handle events (NULL) ;
}

Note: Power Save mode is not supported in the ATWINC15x0 AP mode.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 61

9.

9.1

ATWINC15x0

Provisioning

Provisioning

For normal operation the ATWINC15x0 device requires certain parameters to be loaded. In particular, when operating
in Station mode, it must know the identity (SSID) and credentials of the access point to which it needs to connect.
The entry of this information is facilitated through the following provisioning steps.

The current ATWINC15x0 software supports the following methods of provisioning:

» HTTP-based (browser) provisioning, while the WINC is in AP mode
* Wi-Fi Protected Setup (WPS)

HTTP Provisioning
In this method, the ATWINC15x0 is placed in AP mode and another device with a browser capability (mobile phone,
tablet, PC, and so on) is instructed to connect to the ATWINC15x0 HTTP server. Once connected, the desired

configuration can be entered.
The HTTP Provisioning home page is as shown in the following figure.

Figure 9-1. ATWINC15x0 HTTP Provisioning Page

N~ 200 W4 8541 A~ 300 W4 8542

Sign-in to network

Connect to Network

Sign-in to network

Atmel
Connect to Network

Device Name

Network Name

Pass phrase
Detect Device

SSID Mac Address Signal

Device Name
Connect

AVRGUEST 68:86:A7:7F.6D:70 -

Cisco_OpenAP A4:93:4C:B1:9CEE -3

Detect Device

YKBnC_CEO 64:E5:99.5D.EA A4 -73
MWT1_Local 00:26:66:1A:08:5C -4
DEMO_AP 00:26:66:23:05:A4

DEMO_WEP 00:26:66:23:05:A5 -

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 62

ATWINC15x0

Provisioning

9.1.1 Provisioning Control Flow

Figure 9-2. HTTP Provisioning Sequence Diagram

' ' l HOST ' ' '
APPLICATION DRIVER WINC USER DEVICE
PROVISIQN MODE

Wi-Fi Connection

m2m wifi start provision mode

] M2M WIFI REQ START

AP On, sending Beacons
HTTP Server is UP

Select WINC AP from
Wi-Fi Scan List

Wi-Fi Connection Establishment and DHCP

1- The user launches
the web browser and
opens the WINC home
page (e.g. “http://
wincconf.com”)

2- The user presses
“REFRESH"”, touches an
AP from the SCAN
results table and then
types its password.

Turn off AP and
Destroy the HTTP

Server

M2M WIFI RESP PROVISION [INFO

T M2M WIFI RESP PROVISION INFO

Procedure

The preceding figure shows the provisioning operation for a WINC device. The detailed steps are described as
follows:

1.

ok wbd

The WINC device starts the HTTP Provisioning mode.

A user with a smartphone finds the WINC AP SSID in the Wi-Fi search list.

The user connects to the WINC AP.

The user launches the web browser and writes the WINC home page in the address bar.

If the HTTP redirect bit (bEnableHttpRedirect)is setinm2m wifi start provision mode API, then
all http traffic (http://URL) from the associated device (Phone, PC, and so on) are redirected to the WINC
HTTP Provisioning home page. Some phones display a notification message “sign in to Wi-Fi networks?”
which, when accepted, automatically loads the WINC home page. The WINC home page, as shown in Figure
10.1, appears on the browser.

To discover the list of Wi-Fi APs in the area, the user can press “Refresh”.

The desired AP is then selected from the search list (by one click or one touch) and its name automatically
appears in the “Network Name” text box.

The user must then enter the correct AP passphrase (for WPA/WPAZ2 personal security) in the “Pass Phrase”
text box. If the desired AP uses open security, (M2M_WIFI_SEC_OPEN) then the Pass Phrase field is left
empty.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 63

9.1.3

ATWINC15x0

Provisioning

9. A WINC device name may be optionally configured, if desired, by the user in the “Device Name” text box.
10. Then user should press Connect.

The WINC turns off AP mode and start connecting to the provisioned AP.

HTTP Redirect Feature

The ATWINC15x0 HTTP Provisioning server supports the HTTP redirect feature, which forces all HTTP traffic
originating from the associated user device to be redirected to the ATWINC15x0 Provisioning home page.

This simplifies the mechanism of loading the provisioning page instead of typing the exact web address of the HTTP
Provisioning server.

To enable this feature, set the redirect flag when calling the APl m2m wifi start provision mode. For further
details, refer to the following code example.

Provisioning Code Example

void wifi event cb(uint8 u8WiFiEvent, void * pvMsg)
{
if (UBWiFiEvent == M2M_WIFI_RESP_PROVISION_INFO)
{
tstrM2MProvisionInfo *provInfo = (tstrM2MProvisionInfo*)pvMsg;
if (provInfo->u8Status == M2M SUCCESS)
{
// connect to the provisioned AP.
m2m wifi connect ((char*)provInfo->au8SSID, strlen(provInfo ->au8SSID),
provInfo->u8SecType, provInfo->au8Password, M2M WIFI CH ALL);
printf ("PROV SSID : %s\n", provInfo->au8SSID);
printf ("PROV PSK : %s\n", provInfo->au8Password) ;
}
else
{
printf (" (ERR) Provisioning Failed\n");
}

}

int main ()
{

tstrWifiInitParam param;
// Platform specific initializations.

// Driver initialization.
param.pfAppWifiCb = wifi event cb;
if (!m2m wifi init (¶m))
{

tstrM2MAPConfig apConfig;

uint8 bEnableRedirect = 1;

strcpy (apConfig.au8SSID, "WINC AP");
apConfig.u8ListenChannel = 1;
apConfig.u8SecType = M2M WIFI_ SEC_OPEN;
apConfig.u8SsidHide = 0;

// IP Address
apConfig.au8DHCPServerIP[0] = 192;

apConfig.au8DHCPServerIP[1] = 168;
apConfig.au8DHCPServerIP[2] = 1;
apConfig.au8DHCPServerIP[0] =1;

m2m wifi start provision mode (&apConfig, "atmelconfig.com", bEnableRedirect);

while (1)
{

m2m wifi handle events (NULL) ;
}

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 64

9.2

9.3

9.3.1

ATWINC15x0

Provisioning

Limitations
The current implementation of the HTTP Provisioning has the following limitations:

The ATWINC15x0 AP limitations are applicable to the Provisioning mode. For a list of AP mode limitations, refer
to Limitations.

Provisioning uses AP mode with open security. No Wi-Fi security nor application level security (for example,
TLS) is used; therefore, the AP credentials entered by the user are sent on the clear and can be seen by
eavesdroppers.

The WINC Provisioning home page is a static HTML page. No server-side scripting allowed in the WINC HTTP
server.

Only APs with WPA-personal security (passphrase based) and no security (Open network) can be provisioned.
WEP and WPA-Enterprise APs cannot be provisioned.

The Provisioning is responsible to deliver the connection parameters to the application, the connection
procedure and the connection parameters validity are the application's responsibility.

Wi-Fi Protected Setup (WPS)

Most modern Access Points support Wi-Fi Protected Setup method, typically using the push button method. From the
user’s perspective WPS is a simple mechanism to make a device connect securely to an AP without remembering
passwords or passphrases. WPS uses asymmetric cryptography to form a temporary secure link which is then used
to transfer a passphrase (and other information) from the AP to the new station. After the transfer, secure
connections are made as for normal static PSK configuration.

WPS Configuration Methods
There are two authentication methods that can be used with WPS:

1.

PBC (push button) method — A physical button is pressed on the AP which puts the AP into WPS mode for a
limited period of time. WPS is initiated on the ATWINC15x0 by calling m2m_wifi wps with input parameter
WPS_PBC_ TRIGGER.

PIN method — The AP is always available for WPS initiation but requires proof that the user has knowledge of
an 8-digit PIN, usually printed on the body of the AP. Since the WINC is often used in headless devices (no
user interface), it is necessary to reverse this process and force the AP to use a PIN number provided with the
WINC device. Some APs allow the PIN to be changed through configuration. WPS is initiated on the
ATWINC15x0 by calling m2m_wifi wps with input parameter WPS_PIN TRIGGER. Given the difficulty of this
approach, it is not recommend for most applications.

The flow of messages and actions for WPS operation is shown in the following figure.

© 2019 Microchip Technology Inc.

User Guide DS00002389C-page 65

ATWINC15x0

Provisioning

9.3.2 WPS Control Flow
Figure 9-3. WPS Operation for Push Button Trigger

HOST
APPLICATION DRIVER WINC

m2m wifi wps

M2 M WIFI REQ WPS

M2M WIFI_REQ WPS

9.3.3 WPS Limitations

» WPS is used to transfer the WPA/WPA2 key only; other security types are not supported.
» The WPS standard rejects the session (WPS response fail) if the WPS button is pressed on more than one AP

in the same proximity, and the application can try again after a couple of minutes.

* If no WPS button is pressed on the AP, the WPS scan will time-out after two minutes since the initial WPS

trigger.

» The WPS is responsible to deliver the connection parameters to the application, the connection procedure and

the connection parameters’ validity is the application's responsibility.

9.3.4 WPS Code Example

void wifi event cb(uint8 u8WiFiEvent, void * pvMsg)

{

if (uUBWiFiEvent == M2M WIFI REQ WPS)
{
tstrM2MWPSInfo *pstrWPS = (tstrM2MWPSInfo*)pvMsg;
if (pstrWPS->u8AuthType != 0)
{
printf ("WPS SSID : %$s\n",pstrWPS->au8SSID) ;
printf ("WPS PSK : %$s\n",pstrWPS->au8PSK) ;
printf ("WPS SSID Auth Type : %$s\n",
pstrWPS->u8AuthType == M2M WIFI_SEC OPEN ? "OPEN" : "WPA/WPA2") ;
printf ("WPS Channel : %d\n",pstrWPS->u8Ch + 1);

// Establish Wi-Fi connection
m2m wifi connect ((char*)pstrWPS->au8SSID, (uint8)m2m strlen (pstrWPS->au8SSID),
pstrWPS->u8AuthType, pstrWPS->au8PSK, pstrWPS->u8Ch);

else

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 66

ATWINC15x0

Provisioning

printf (" (ERR) WPS Is not enabled OR Timedout\n");

}

int main ()
{

tstrWifiInitParam param;
// Platform specific initializations.

// Driver initialization.
param.pfAppWifiCb = wifi event cb;
if (!m2m wifi init (¶m))
{
// Trigger WPS in Push button mode.
m2m wifi wps (WPS PBC TRIGGER, NULL);

while (1)
{

m2m wifi handle events (NULL) ;
}

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 67

10.

10.1

10.2

ATWINC15x0
Over-The-Air Upgrade

Over-The-Air Upgrade

Overview

The ATWINC15x0 supports OTA upgrade of firmware on internal serial Flash. No host Flash memory resources are
required to store the firmware. The ATWINC15x0 uses an internal HTTP client to retrieve the firmware from a remote
server.

OTA Image Architecture

The WINC serial Flash can store two copies of the firmware image: a working image and a rollback image. Upon first-
time boot, the working image is the factory image and the rollback image will not be available in the WINC Flash.
Instead ATE firmware will be available in rollback image firmware section. On performing the OTA firmware upgrade,
the ATE firmware will be erased and the newly received firmware will be written into the Roll back image section. The
WINC has insufficient internal memory to save the whole image in RAM during an OTA upgrade; therefore, each
block of downloaded data is written to the Flash as it is received. In the event that the OTA fails, the existing
(Working) image is retained and the rollback image is invalidated. If the transfer succeeds, the Flash control structure
is updated to reflect a new working image and the existing image is marked as a valid rollback image.

Figure 10-1. OTA Image Organization

HOST MCU
Host MCU Application

WINC Host Driver

WINC Serial Flash

Control Sector

Working WINC Firmware Image

Rollback WINC Firmware Image

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 68

ATWINC15x0
Over-The-Air Upgrade

10.3 OTA Download Sequence Diagram
Figure 10-2. OTA Image Download and Install

M2M APPLICATION M2M HOST DRIVER

m2m _ota_ start_update (DOWNLOAD URL)

WINC firmware does the following
m2m_ota_update_cb . Downloads the file from DOWNLOAD_URL

(PROGRESS, PROGRESS INFO) I ¢ Verfies integrity of the downloaded file. (Integrity)
 And update the image validity in the control structure
-

Accept the file and inform the Host Processor

m2m_ota_update_cb (DL_STATUS, SUCCESS)

—

Notice here that the new NCF image is not
it informs network controller to switch to use effactive unbl host send m2m_ota_apply_update!)

the new firmware

At that stage the WINC firmware wil update the
m2m_ota_update_cb (SW_STATUS, SUCCESS) i Iao ARt Stk Plarh s cAmat

m2m _ota_ switch fw() %

10.4 OTA Firmware Rollback
Figure 10-3. OTA Image Rollback Sequence

M2M APPLICATION M2M HOST DRIVER

The host application decides to rollback both its
own OTA and th

with it

rollback

m2m ota rollback ()

NCF does the following:
+ Checks the validity of the Rollback

sful, it starts the rollback

m2m_ota_ update_cb (RB_STATUS, SUCCESS)

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 69

ATWINC15x0
Over-The-Air Upgrade

10.5 OTA Limitations

Rollback is allowed, only after at least one successful OTA download.
Rollback image is overwritten by any new successful or failed OTA attempt.

10.6 OTA Code Example

/%1

<OTA update callback typedef> */

static void OtaUpdateCb (uint8 u80taUpdateStatusType ,uint8 u80taUpdateStatus)

{

}

voi

{

int

Note

if (u8OtaUpdateStatusType == DL STATUS)
{
if (uBOtaUpdateStatus == OTA STATUS_ SUCSESS)
{
//switch to the upgraded firmware
m2m ota switch firmware();
}
}
else if (u8OtaUpdateStatusType == SW_STATUS)
{
if (u8OtaUpdateStatus == OTA STATUS SUCSESS)
{
M2M INFO ("Now OTA suceesfully done");
//start the host SW upgrade then system reset is required (Reintilize the driver)

d wifi event cb(uint8 u8WiFiEvent, void * pvMsg)

case M2M WIFI REQ DHCP_CONF:

{
//after suceesfull connection, start the over air upgrade
mZ2m_ota start update (OTA URL) ;

}

break;

default:

break;

main (void)

tstrWifiInitParam param;

tstrlxAuthCredentials gstrCredlx = AUTH_CREDENTIALS;
nm bsp init();

m2m memset ((uint8*) ¶m, 0, sizeof (param));
param.pfAppWifiCb = wifi event cb;

//intilize the WINC Driver
ret = m2m wifi init (¶m);
if (M2M SUCCESS != ret)
{
M2M ERR ("Driver Init Failed <%d>\n", ret);
while (1) ;
}
//intilize the ota module
m2m_ota init (OtaUpdateCb,NULL) ;
//connect to AP that provide connection to the OTA server
m2m_wifi default_connect();
while (1)
{
while (m2m_wifi handle_events (NULL) != M2M SUCCESS) ({}
}

: For more details on example codes, refer to the Wi-Fi Network Controller Software Programming Guide.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 70

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42639-Software-Programming-Guide-for-ATWINC3400-WiFi-using-SAMD21-Xplained-Pro_UserGuide.pdf

1.

1.1

11.2

1.3

ATWINC15x0

Multicast Sockets

Multicast Sockets

Overview

The purpose of the multicast filters is to provide the ability to send/receive messages to/from multicast addresses.
This feature is useful for one-to-many communication over networks, whether it's intended to send Internet Protocol
(IP) datagrams to a group of interested receivers in a single transmission, participate in a zero-configuration
networking or listening to a multicast stream or any other application.

How to Use Filters

Whenever the application wishes to use a multicast IP address, for either sending or receiving, a filter is needed. The
application can establish this through setting the 1P ADD MEMBERSHIP option for the required socket accompanied
by the multicast address that the application wants to use. If subsequently the host wants to stop receiving the
multicast stream, set the TP DROP MEMBERSHIP option for the required socket accompanied with the multicast
address.

Adding or removing a multicast address filter causes the WINC chip firmware to add/remove both MAC layer filter
and IP layer filter in order to pass or prevent messages from reaching to the host.

Multicast Socket Code Example

To illustrate the functionality, a simple example is implemented where the host application responds to mDNS
(Multicast Domain Name System) queries sent from a computer/mobile application. The computer/mobile is looking
for devices which support the zero configuration service as indicated by an mDNS response. The WINC responds,
notifying its presence and its capability of sending and receiving multicast messages.

The example consists of a UDP server that binds on port 5353 (mDNS port) and waits for messages, parsing them
and replying with a previously saved response message.

« Server Initialization:

void MDNS ServerInit ()
{

tstrSockAddr strAddr ;
unsigned int MULTICAST IP = O0xEO00000FB; //224.0.0.251
socketInit () ;

dns_server sock = socket(AF INET, SOCK_DGRAM,0) ;

MDNS INFO ("DNS server init \n");

setsockopt (dns_server sock,1,IP_ADD MEMBERSHIP, §MULTICAST IP,sizeof (MULTICAST IP));
strAddr.ul6Port =HTONS (MDNS_SERVER_PORT) 2

bind(dns_server sock, (struct sockaddr¥*) &strAddr,sizeof (strAddr)) ;
registerSocketCallback (UDP_SocketEventHandler, AppServerCb) ;

« Sockets Events Handler:

void MDNS RecvfromCB(signed char sock,unsigned char *pu8RxBuffer,signed short slé6DataSize,
unsigned char *pu8IPAddr,unsigned short ul6Port,void *pvArg)
{
MDNS_INFO ("DnsServer RecvfromCB ™) g
if ((pu8RxBuffer != 0) && (sléDataSize > 0))
{
tstrDnsHdr strDnsHdr;
strdnsquery;
MDNS INFO ("DNS Packet Recieved \n");

if (MDNS ParseQuery (&pu8RxBuffer[0], &strDnsHdr, &strDnsQuery))
MDNS SendResp (sock,pu8IPAddr, ulé6Port, &strDnsHdr, &strDnsQuery);

else

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 71

http://en.wikipedia.org/wiki/Zero_configuration_networking

ATWINC15x0

Multicast Sockets

MDNS INFO ("DnsServer RecvfromCB Error !\n");

« Server Socket Callback:

void MDNS RecvfromCB (signed char sock,unsigned char *pu8RxBuffer,signed short
sl6DataSize,unsigned char *pu8IPAddr,unsigned short uléPort,void *pvArg)
{
MDNS INFO ("DnsServer RecvfromCB \n") ;
if ((pu8RxBuffer != 0) && (sl6DataSize > 0))
{
tstrDnsHdr strDnsHdr ;
strdnsquery ;
MDNS_ INFO ("DNS Packet Recieved \n");

if (MDNS_ParseQuery (&pu8RxBuffer[0], &strDnsHdr, &strDnsQuery))
MDNS SendResp (sock,pu8IPAddr, ulé6Port, &strDnsHdr, &strDnsQuery);
}

else

{
MDNS INFO ("DnsServer RecvfromCB Error '\n") ;

}

» Parse mDNS Query:

int MDNS ParseQuery (unsigned char * pu8RxBuffer, tstrDnsHdr *pstrDnsHdr, strdnsquery
*pstrDnsQuery)

unsigned char dot size, temp=0;
unsigned short n=0,1=0,ul6index=0;

int bDNSmatch = 0;

/% ====ldentilification-————scseeeeseeeeeeeessees [OR| Opcode |AA|TC|RD|RA|Z|AD|CD|
Rcode I =/

e ----Total Questions------—----————————————— | == Total Answer
RRg===————————===x =/

/% ----Total Authority RRs = —---——————-—————————- |s=—mmsseaesss=es Total Additional
RRG==mmsmesmass =/

% — —oocooooooosooooCCCCCC eSS Questions
_________________________________ */

J% — —eeseessssssssoossosoosoosoosoosmess Answer RRs
__ */

% —omcmmmosssosssssossoscoosonssoooos Authority RRs
__________________________________ */

J% — —oeccooooooecooCCCCCC S SSSe Additional RRs
__________________________________ */

MDNS INFO ("Parsing DNS Packet\n");

pstrDnsHdr->id = ((pu8RxBuffer[ul6index]<<8)| (pu8RxBuffer[uléindex+1]));

MDNS INFO ("id = %.4x \n",pstrDnsHdr->id);

ul6index+=2;
pstrDnsHdr->flagsl= pu8RxBuffer[ul6index++];
pstrDnsHdr->flags2= pu8RxBuffer[ul6index++];

MDNS INFO ("flags = %.2x %.2x \n",pstrDnsHdr->flagsl,pstrDnsHdr->flags2);
pstrDnsHdr->numquestions = ((pu8RxBuffer[ul6index]<<8)| (pu8RxBuffer[uléindex+1]));
MDNS INFO ("numquestions = %.4x \n",pstrDnsHdr->numquestions) ;

ul6index+=2;

pstrDnsHdr->numanswers = ((pu8RxBuffer[ulé6index]<<8)| (pu8RxBuffer[ul6index+l]));
MDNS INFO ("numanswers = $%.4x \n",pstrDnsHdr->numanswers) ;

ul6index+=2;

pstrDnsHdr->numauthrr = ((pu8RxBuffer[ul6index]<<8) | (pu8RxBuffer[uléindex+1])):;

(
MDNS INFO ("numauthrr %.4x \n",pstrDnsHdr->numauthrr) ;
ul6index+=2;
pstrDnsHdr->numextrarr
MDNS INFO ("numextrarr
ul6index+=2;
dot_size =pstrDnsQuery->query[n++]= pu8RxBuffer[ul6index++];
pstrDnsQuery->ul6size=1;
while (dot size--!=0) //(pu8RxBuffer[++ul6index] != 0)

{

((pu8RxBuffer[ul6index]<<8) | (pu8RxBuffer[ul6index+1]));
%.4x \n",pstrDnsHdr->numextrarr) ;

pstrDnsQuery->query[n++]=pstrDnsQuery->queryForChecking[i++]=pu8RxBuffer[ul6index++] ;
pstrDnsQuery->ulé6size+t+;

gu8pos=temp;

if (dot size == 0)

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 72

ATWINC15x0

Multicast Sockets

pstrDnsQuery->queryForChecking[i++]= '.' ;
temp=uléindex;
dot_size =pstrDnsQuery->query[n++]= pu8RxBuffer[ul6index++];
pstrDnsQuery->ul6size+t+;
}
}
pstrDnsQuery->queryForChecking[--i] = 0;

MDNS INFO ("parsed query <%$s>\n",pstrDnsQuery->queryForChecking) ;
// Search for any match in the local DNS table.
for(n = 0; n < DNS_SERVER CACHE SIZE; n++)
{
MDNS INFO ("Saved URL <%s>\n", gpacDnsServerCache[n]);
if (strcmp (gpacDnsServerCache[n], pstrDnsQuery->queryForChecking)
{
bDNSmatch= 1;
MDNS INFO ("MATCH \n");
}
else
{
MDNS INFO ("Mismatch\n") ;
}
}

pstrDnsQuery->ul6class = ((pu8RxBuffer[ul6index]<<8) | (pu8RxBuffer[ul6index+1]));

ul6index+=2;

pstrDnsQuery->ul6type= ((pu8RxBuffer[ul6index]<<8) | (pu8RxBuffer[ul6index+1]));

return bDNSmatch;

» Send mDNS Response:

void MDNS SendResp (signed char sock,unsigned char * pu8IPAddr,

unsigned short ul6Port,tstrDnsHdr *pstrDnsHdr,strdnsquery *pstrDnsQuery)

{
unsigned short ul6index=0;
tstrSockAddr strclientAddr ;
unsigned char * pu8sendBuf;
char * serviceName2 = (char*)malloc(sizeof (serviceName)+1) ;
unsigned int MULTICAST IP = O0OxFBOOOOEO;
pu8sendBuf= gPu8Buf;
memcpy (&strclientAddr.u32IPAddr, &MULTICAST IP,IPV4 DATA LENGTH) ;
strclientAddr.ul6Port=ul6Port;
MDNS INFO ("%s \n",pstrDnsQuery->query) ;
MDNS INFO ("Query Size = %d \n",pstrDnsQuery->ulé6size);
MDNS INFO ("class = %$.4x \n",pstrDnsQuery->uléclass);
MDNS INFO ("type = %.4x \n",pstrDnsQuery->ulé6type);
MDNS INFO ("PREPARING DNS ANSWER BEFORE SENDING\n") ;

[Femmmmmmmmmemeeeeememeeeemmme ID 2 BYtes ——rereremesososesosoomo=o=o=
pu8sendBuf [ul6index++] =0; //(pstrDnsHdr->id>>8);
puB8sendBuf [ul6index++] = 0;//(pstrDnsHdr->id) & (0XFF) ;
MDNS INFO (" (ResPonse) id = $.2x $.2x \n",

pu8sendBuf [ul6index-2],pu8sendBuf [ul6index-1]) ;
[FEemmmmmmmmmmesesssssssssssssss Tlags 2 Byteg-—=c=cscsssssssscoosoosoos
pu8sendBuf [ul6index++] = DNS RSP FLAG 1;
pu8sendBuf [ul6index++] = DNS RSP FLAG 2;
MDNS INFO (" (ResPonse) Flags = %.2x %.2x \n",

pu8sendBuf [ul6index-2],pu8sendBuf [ul6index-11) ;

A e e No of Questions----------————-—-—-—-———

pu8sendBuf [ul6index++] =0x00;

pu8sendBuf [uléindex++] =0x01;

MDNS INFO (" (ResPonse) Questions = %.2x %.2x \n",
pu8sendBuf [ul6index-2],pu8sendBuf [ul6index-11);

R it No of Answers—--————————————————————————

pu8sendBuf [ul6index++] =0x00;

pu8sendBuf [ul6index++] =0x01;

MDNS INFO (" (ResPonse) Answers = %.2x %.2X \a®
pu8sendBuf [ul6index-2],pu8sendBuf [ul6index-1]) ;

A e No of Authority RRs——---——-—--—--——————

pu8sendBuf [uléindex++] =0x00;

pu8sendBuf [ul6index++] =0x00;

MDNS_ INFO (" (ResPonse) Authority RRs = %.2x %.2x \n",
pu8sendBuf [ul6index-2],pu8sendBuf [ul6index-11);

[Femmmmmmmmmmmessssssssssmmo=ms No of Additional RRS§—---=—=-=—-——————————

© 2019 Microchip Technology Inc. User Guide

DS00002389C-page 73

ATWINC15x0

Multicast Sockets

pu8sendBuf [ul6index++] =0x00;
pu8sendBuf [ul6index++] =0x00;

MDNS INFO (" (ResPonse) Additional RRs = $.2x $.2x \n",
pu8sendBuf [ul6index-2],pu8sendBuf[ul6index-1]) ;
R e OEEEy—————eesssssssseeeesssssssses /)

memcpy (&pu8sendBuf [ul6index],pstrDnsQuery->query, pstrDnsQuery->ul6size) ;
MDNS INFO ("\nsize = %d \n",pstrDnsQuery->ulésize);
ul6index+=pstrDnsQuery->ulé6size;

R e Ll Query Type=——=—=—=—=—=—=—=—=—================== =/

pu8sendBuf [ul6index++] = (pstrDnsQuery->ul6type>>8);//MDNS TYPE>>8;

pu8sendBuf [ul6index++] = (pstrDnsQuery->ulétype) & (0xFF);// (MDNS TYPE&OXFF) ;

MDNS INFO ("Query Type = $%.2x $%$.2x \n", pu8sendBuf[ul6index-2],pu8sendBuf[ul6index-1]);
A e e OueEy Clagg————=—s———ssscomsssscossossoososssos wY
pu8sendBuf [ul6index++] =MDNS CLASS>>8;//((pstrDnsQuery->ul6class>>8) |0x80) ;

pu8sendBuf [ul6index++] = (MDNS_ CLASS & 0xFF) ;// (pstrDnsQuery->ul6class) & (0XFF) ;

MDNS INFO ("Query Class = %.2x %.2x \n", pu8sendBuf[ul6index-2],pu8sendBuf[ul6index-1]);
/xR AN SswersHEHF AR AR AR AR AR FRFRFRET/
A I T =/

pu8sendBuf [ul6index++]= 0xCO0 ; //pointer to query name location

pu8sendBuf [ulé6index++]= 0x0C ; // instead of writing the whole query name again
A e E R wY

pu8sendBuf [ul6index++] =MDNS TYPE>>8; //Type 12 PTR (domain name Pointer).

pu8sendBuf [ul6index++] =(MDNS_ TYPE&OXFF) ;

A e Clagg=—————sssscososssoososssooossssosss wY

pu8sendBuf [ul6index++] =0x00;//MDNS CLASS; //Class IN, Internet.
pu8sendBuf [ul6index++] =0x01;// (MDNS CLASS & OxFF);
/o TTLm == == == = e e */

pu8sendBuf [ul6index++] =(TIME TO LIVE >>24);

pu8sendBuf [ul6index++] =(TIME TO LIVE >>16);

pu8sendBuf [ul6index++] =(TIME TO LIVE >>8);

pu8sendBuf [ul6index++] =(TIME TO LIVE);

R e Date Lengith=—=====ssssssssssssssssssssssss=s== =/
pu8sendBuf [ul6index++] =(sizeof (serviceName)+2)>>8;//added 2 bytes for the pointer
pu8sendBuf [ul6index++] =(sizeof (serviceName)+2);

[H DATA-—————————————————m— */

convertServiceName (serviceName, sizeof (serviceName) , serviceName?2) ;
memcpy (&pu8sendBuf [ul6index], serviceName2, sizeof (serviceName) +1) ;
ul6index+=sizeof (serviceName) ;
pu8sendBuf [ul6index++] =0xC0;//Pointer to .local (from name)
pu8sendBuf [ul6index++] =gu8pos;//23
Vagdiiissssssddstsdsddiisddditiaddditaadd it aadddddddddddssil
strclientAddr.ul6Port=HTONS (MDNSisERVERiPORT) 2
// MultiCast RESPONSE
sendto (sock, pu8sendBuf, (uintl6)ul6index,0, (struct

sockaddr*) &strclientAddr, sizeof (strclientAddr)) ;
strclientAddr.ul6Port=ul6Port;
memcpy (&strclientAddr.u32IPAddr, pu8IPAddr, IPV4 DATA LENGTH) ;

« Service Name:

static char gpacDnsServerCache[DNS SERVER CACHE SIZE] [MDNS HOSTNAME SIZE] =
{

" services. dns-sd. udp.local"," workstation. tcp.local"," http. tcp.local"
}i
unsigned char gPu8Buf [MDNS BUF SIZE];
unsigned char gu8pos ;
signed char dns_server_ sock ;

#define serviceName " ATMELWIFI. tcp"

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 74

12.

121

12.2

12.3

ATWINC15x0
WINC Serial Flash Memory

WINC Serial Flash Memory

Overview and Features

The WINC has internal serial (SPI) Flash memory of 4 Mb capacity in the ATWINC1500 and 8 Mb capacity in the
ATWINC1510. The Flash memory is used to store:

» User configuration

* Firmware

» Connection Profiles
During start-up and mode changes, firmware is loaded from the serial Flash into program memory (IRAM) in which

the firmware is executed. The Flash is accessed at other points during run time to retrieve configuration and profile
data.

A minimum of 4 Mb Flash is required for OTA feature in order to store both working and rollback images.

The Flash memory can be read, written and erased directly from the host without co-operation with the WINC
firmware. However, if operational firmware is already loaded, it is necessary to halt any running WINC firmware first
before accessing the serial Flash to avoid access conflict between the host and the WINC processor.

Accessing to Serial Flash
» The host has transparent access to the serial (SPI) Flash through the WINC SPI Master.

* The host can program the serial (SPI) Flash without the need for operational firmware in the WINC. The function
m2m wifi download mode must be called first.

Figure 12-1. System Block Diagram showing SPI Flash Connection

WINC

Host MCU Wi-Fi ASIC Serial Flash

Read/Write/Erase Operations
SPI Flash can be accessed to be read, written and erased.
It is required to change the WINC’s mode to Download mode first before attempting to access the SPI Flash by
calling:

sint32 m2m wifi download mode () ;
All SPI Flash functions are blocking. A return of M2M_sSUCCESS indicates that the requested operation is successfully
completed.

The following is a list of Flash functions that may be used:

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 75

12.31

ATWINC15x0
WINC Serial Flash Memory

* Query the size of the SPI Flash:
uint32 spi flash get size();

This function returns with the size of the SPI Flash in Mb.

* Read data from the SPI Flash:
sint8 spi flash read(uint8 *pu8Buf, uint32 u32offset, uint32 u32Sz)

Where the size of data is limited by the SPI Flash size.

+ Erase sectors in the SPI Flash:
sint8 spi flash erase(uint32 u320ffset, uint32 u32Sz)

Note: The size is limited by the SPI Flash size.

Prior to writing to any sector, erase this sector first. If some data needs to be changed within a sector, it is advised to
read the sector first, modify the data and then erase and write the whole sector again.

* Write data to the SPI Flash:
sint8 spi flash write(uint8* pu8Buf, uint32 u320ffset, uint32 u32Sz)

If the application wants to write any number of bytes within any sector, it has to erase the entire sector first. It may be
necessary to read the entire sector, erase the sector and then write back with modifications. It is also recommended
to verify that data is written after it returns success by reading data again and compare it with the original.

Flash Read, Erase, and Write Code Examples

#include "spi flash.h"
#define DATA TO REPLACE "THIS IS A NEW SECTOR IN FLASH"

int main ()
{
uint8 au8FlashContent [FLASH SECTOR SZ] = {0};
uint32u32FlashTotalSize = 0, u32FlashOffset = 0;
// Platform specific initializations.

ret = m2m wifi download mode () ;
if (M2M_SUCCESS != ret)
{
printf ("Unable to enter download mode\r\n");
}
else
{
u32FlashTotalSize = spi flash get size();
}

while ((u32FlashTotalSize > u32FlashOffset) && (M2M SUCCESS == ret))
{
ret = spi flash read(au8FlashContent, u32FlashOffset, FLASH SECTOR SZ);
if (M2M SUCCESS != ret)
{
printf ("Unable to read SPI sector\r\n");
break;
}
memcpy (au8FlashContent, DATA TO REPLACE, strlen (DATA TO REPLACE));

ret = spi flash erase(u32FlashOffset, FLASH SECTOR SZ);
if(M2M_SUCCESS = ret)
{

printf ("Unable to erase SPI sector\r\n");

break;

}

ret = spi flash write(au8FlashContent, u32FlashOffset, FLASH SECTOR SZ);
if (M2M SUCCESS != ret)
{

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 76

ATWINC15x0
WINC Serial Flash Memory

printf ("Unable to write SPI sector\r\n");
break;

}
u32FlashOffset += FLASH SECTOR_SZ;

}

if (M2M SUCCESS == ret)
{

printf ("Successful operations\r\n");

}

else

{
printf ("Failed operations\r\n");

}

while (1) ;
return M2M SUCCESS;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 77

13.

ATWINC15x0
Host Interface (HIF) Protocol

Host Interface (HIF) Protocol

Communication between the user application and the WINC device is facilitated by the driver software. This driver
implements the Host Interface (HIF) Protocol and exposes an API to the application with various services. The
services are broadly divided in two categories: Wi-Fi device control and IP Socket. The Wi-Fi device control services
allow actions such as channel scanning, network identification, connection and disconnection. The Socket services
allow data transfer once a connection is established and similar to BSD socket definitions.

The host driver implements services asynchronously. This means that when the application calls an API to request a
service action, the call is non-blocking and returns immediately, often before the action is completed. Where
appropriate a notification that an action has completed is provided in a subsequent message from the WINC device
to the host which is delivered to the application via a callback function. In general, the WINC firmware uses
asynchronous events to signal the host driver of certain status changes. Asynchronous operation is essential where
functions (such as Wi-Fi connection) may take significant time.

When an API is called, a sequence of layers is activated to format the request and arranging to transfer it to the
WINC device through the serial protocol.

Note: Dealing with HIF messages in the host MCU application is an advanced topic. For most applications, it is
recommended to use Wi-Fi and socket layers. Both layers hide the complexity of the HIF APlIs.

After the application sends request, the Host Driver (Wi-Fi/Socket layer) formats the request and sends it to the HIF
layer which then interrupts the WINC device to notify that a new request is posted. Upon receipt, the WINC firmware
parses the request and starts the required operation.

Figure 13-1. WINC Driver Layers

Host Driver

Wi-Fi

Bus Wrapper

The Host Interface Layer is responsible for handling communication between the host MCU and the WINC device.
This includes interrupt handling, DMA control and management of the communication logic between the firmware
driver in the host and the WINC firmware.

The Request/Response sequence between the host and the WINC chip is shown in the following figure.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 78

ATWINC15x0
Host Interface (HIF) Protocol

Figure 13-2. The Request/Response Sequence Diagram

WINC
DRIVER WINC
Application Wi-Fi/Socket Host FIRMWARE
Layer Interface
Requeast
> Format Request >
Interrupt WINC |
Write RQ to Memory
e >
Tx Done Interrupt _ |
Process
Request
Write
Response
to
Memory
" Interrupt Host
Call appropriate handler
- -
I*'Z‘rsa-fl‘Rr:cr.oﬁr;n Data | sl
- -
Send Response to
Application Callback
function Rx Done
< T Tnterrupt |

13.1 Transfer Sequence Between the HIF Layer and the WINC Firmware

The following section shows the individual steps taken during a HIF frame transmit (HIF message to the WINC) and a
HIF frame receive (HIF message from the WINC).

13.11 Frame Transmit

The following figure shows the steps and states involved in sending a message from the host to the WINC device.
Figure 13-3. HIF Frame Transmit to WINC

Walke-up Interrupt Poll for DMA Write TH Done Allow WINC
WINC device L | WINC device | Address | Data —» Interrupt | to Sleep

(state 1) (state 2) (state 3) (state 4) (state &) (state 8)

v

Fail to allocate
memaory
(error state)

Table 13-1. Steps in HIF Frame Transmit to WINC

N

Step (1) Wake up the WINC | Wake up the device to be able to receive the host requests.
device

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 79

13.1.2

ATWINC15x0
Host Interface (HIF) Protocol

........... continued

B fEmww]

Step (2) Interrupt the WINC Prepare and set the HIF layer header to NMI_STATE_REG register (4 bytes header
describing the sent packet).

Set BIT [1] of WIFI_HOST_RCV_CTRL_2 register to raise an interrupt to the WINC

device

Step (3) Poll for DMA

address

Step (4) Write data

Step (5) TX Done Interrupt

Step (6) Allow the WINC

device to Sleep

Frame Receive

chip.

Wait until the WINC chip clears BIT [1] of WIFI_HOST_RCV_CTRL_2 register.
Get the DMA address (for the allocated memory) from register 0x150400.

Write the data blocks in sequence, the HIF header then the Control buffer (if any) then
the Data buffer (if any).

WIFI_HOST_RCV_CTRL_3 register.

Allow the WINC device to enter Sleep mode again (if it wishes).

Send a notification that writing the data is completed by setting BIT [1] of

The following figure shows the steps and states involved in sending a message from the WINC device to the host.

Figure 13-4. HIF Frame Receive from WINC to Host

Walke-up
WINC device
(state 1)

>

Check for
Interrupt
(state 2)

-

Clear
Interrupt
(state 3)

>

Read
Data
(state 4)

Table 13-2. Steps in HIF Frame Receive from WINC to Host

—

b

Process
Request
(state 5)

HOST Rx
done
(state 6)

-

Allow WINC
to Sleep
(state 7)

I

Step (1) Wake up the WINC A Wake up the device to be able to receive host requests.

device

Step (2) Check for Interrupt

Step (3) Clear interrupt

Step (4) Read data

Step (5) Process Request

Step (6) HOST RX Done

Monitor BIT [0] of WIFI_HOST_RCV_CTRL_O register.

Disable the host from receiving interrupts (until this interrupt is processed).

Write zero to BIT [0] of WIFI_HOST_RCV_CTRL_O register.

Get the address of the data block from WIFI_HOST_RCV_CTRL_1 register.
Read data block with size obtained from WIFI_HOST_RCV_CTRL_O register BIT [13]

<> BIT [2].

registered Callback function.

WIFI_HOST_RCV_CTRL_O register.

Enable host interrupt reception again.

Parse the HIF header at the start of the data and forward the data to the appropriate

Raise an interrupt for the chip to free the memory holding the data by setting BIT [1] of

© 2019 Microchip Technology Inc.

User Guide

DS00002389C-page 80

ATWINC15x0
Host Interface (HIF) Protocol

........... continued

B e]

Step (7) Allow the WINC Allow the WINC device to enter Sleep mode again (if it wishes).
device to Sleep

13.2 HIF Message Header Structure

The HIF message is the data structure exchanged back and forth between the Host Interface and the WINC
firmware. The HIF message header structure consists of three fields:

7 G 5 4 3 2 1 a8 7 & 5 4 3 2 1 1=

Payload Length

Payload

* The Group ID (8-bit) — a group ID is the category of the message. Valid categories are enumerated in
tenuM2mRegGroup.

* Op Code (8-bit) — is a command number. Valid command number is a value enumerated in:
tenuM2mConfigCmd and tenuM2mStaCmd, tenuM2mApCmd, and tenuM2mP2pCmd corresponding to
configuration, STA mode, AP mode, and P2P mode commands.

Note:

* Refer to the m2m_types.h for the full list of commands.
* The P2P mode is not supported after release v19.5.3.
» Payload Length (16-bit) — the payload length is shown in bytes (does not include header).

13.3 HIF Layer APIs

The interface between the application and the driver is done at the higher layer API interface (Wi-Fi / Socket.) As
explained previously, the driver upper layer uses a lower layer API to access the services of the Host Interface
Protocol. This section describes the Host Interface APIs that the upper layers use:

The following API functions are described:
* hif chip wake
* hif chip sleep
* hif register cb
* hif isr
* hif receive
* hif send
* hif set sleep mode
* hif get sleep mode

For all functions, the return value is either M2M SUCCESS (zero) in case of success or a negative value in case of
failure.

* sint8 hif chip wake (void) — this function wakes the WINC chip from Sleep mode using clockless register
access. It sets bit '1' of register 0x01 and sets the value of WAKE_REG register to WAKE_VALUE.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 81

ATWINC15x0
Host Interface (HIF) Protocol

sint8 hif chip_ sleep (void) — this function enables Sleep mode for the WINC chip by setting the
WAKE_REG register to a value of SLEEP_VALUE and clearing bit '1' of register 0x01.

sint8 hif register cb (uint8 u8Grp, tpfHifCallBack fn) — this function sets the callback function for
different components (for example, M2M WIFI, M2M HIF, M2M OTA and so on.). A callback is registered by
upper layers to receive specific events of a specific message group.

sint8 hif isr (void)— this is the host interface interrupt service routine. It handles interrupts generated by
the WINC chip and parses the HIF header to call back the appropriate handler.

sint8 hif receive (Uint32 u32Addr, uint8 *pu8Buf, uint16 u16Sz, uint8 is Done) — this function causes the
host driver to read data from the WINC chip. The location and length of the data must be known in advance and
specified. This is typically extracted from an earlier part of a transaction.

sint8 hif send (uint8 u8Gid, uint8 u8Opcode, uint8 *pu8CtriBuf, uint16 u16CtriIBufSize, uint8 *pu8DataBuf,
uint16 u16DataSize, uint16 16DataOffset) — this function causes the host driver to send data to the WINC chip.
The WINC chip must be prepared for reception according to the flow described in the previous section.

void hif set sleep mode (uint8 u8Pstype) — this function is used to set the Sleep mode of the HIF layer.

uint8 hif get sleep mode (void) — this function return the Sleep mode of the HIF layer.

13.4 Scan Code Example

The following code example illustrates the Request/Response flow on a Wi-Fi Scan request.

Note: For more details on example codes, refer to the Wi-Fi Network Controller Software Programming Guide.

The application requests a Wi-Fi scan.

m2m wifi request scan(M2M WIFI CH ALL);

The host driver Wi-Fi layer formats the request and forward it to HIF (Host Interface) layer.

sint8 m2m wifi request scan(uint8 ch)
{

tstrM2MScan strtmp;

sint8 s8Ret = M2M ERR SCAN IN PROGRESS;

strtmp.u8ChNum = ch;

s8Ret = hif send(M2M REQ GRP WIFI, M2M WIFI REQ SCAN, (uint8%*)&strtmp,
sizeof (tstrM2MScan) ,NULL, 0,0);

return s8Ret;

}

The HIF layer sends the request to the WINC chip.

sint8 hif send(uint8 u8Gid,uint8 u80pcode,uint8 *pu8CtrlBuf,uintl6 ulé6CtrlBufSize,

{

uint8 *pu8DataBuf,uintl6 uléDataSize, uintl6 uléDataOffset)

sint8 ret = M2M ERR SEND;
volatile tstrHifHdr strHif;

strHif.u80pcode = u80pcode& (~NBIT7) ;
strHif.u8Gid = u8Gid;
strHif.ul6Length = M2M HIF HDR OFFSET;
if (pu8DataBuf != NULL)
{
strHif.ul6Length += ul6DataOffset + ul6DataSize;
}
else
{
strHif.ul6Length += ul6CtrlBufSize;
}
/* TX STEP (1) */
ret = hif chip wake();
if (ret == M2M SUCCESS)
{
volatile uint32 reg, dma addr = 0;
volatile uintl6é cnt = 0;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 82

http://www.microchip.com/wwwproducts/en/ATWINC1500#documents

ATWINC15x0
Host Interface (HIF) Protocol

reg = 0UL;
reg |= (uint32)u8Gid;
reg |= ((uint32)u80pcode<<8);
reg |= ((uint32)strHif.ul6Length<<16) ;
ret = nm write reg(NMI_STATE REG, reg);
if (M2M SUCCESS != ret) goto ERR1;
reg = 0;
/* TX STEP (2) */
reg |= (1<<1);
ret = nm _write_reg(WIFI_HOST RCV_CTRL_ 2, regq);
if (M2M SUCCESS != ret) goto ERR1;

dma_addr = 0;

for(cnt = 0; cnt < 1000; cnt ++)

{
ret = nm read reg with ret (WIFI_HOST RCV_CTRL 2, (uint32 *)é&req);
if (ret != M2M SUCCESS) break;
if (!(reg & 0x2))

{
/* TX STEP (3) */

ret = nm read reg with ret (0x150400, (uint32 *)&dma_ addr);
if (ret != M2M SUCCESS) {
/*in case of read error clear the dma address and return error*/
dma addr = 0;
}
/*in case of success break */
break;
}
}
if (dma addr != 0)
{
volatile uint32 u32CurrAddr;
u32CurrAddr = dma_addr;
strHif.uléLength=NM BSP B L 16 (strHif.ulé6Length);

/* TX STEP (4) */

/*

/*

}

else

{

}
/*
ret
ERR1:
retu

}

ret = nm write block(u32CurrAddr, (uint8%*)&strHif, M2M HIF HDR OFFSET) ;

if (M2M SUCCESS != ret) goto ERR1;
u32CurrAddr += M2M HIF HDR OFFSET;
if (pu8CtrlBuf != NULL)

{
ret = nm write block(u32CurrAddr, pu8CtrlBuf, ulé6CtrlBufSize);
if (M2M SUCCESS != ret) goto ERRI;
u32CurrAddr += ulé6CtrlBufSize;
}
if (pu8DataBuf != NULL)
{
u32CurrAddr += (uléDataOffset - uleCtrlBufSize);
ret = nm write block(u32CurrAddr, pu8DataBuf, ulé6DataSize);
if (M2M SUCCESS != ret) goto ERR1;
u32CurrAddr += ulé6DataSize;
}
reg = dma_addr << 2;
reg |= (1 << 1);
TX STEP (5) */
ret = nm write reg(WIFI_HOST RCV_CTRL 3, regq);
if (M2M SUCCESS != ret) goto ERRI;
}
else

{

ERROR STATE */
M2M DBG ("Failed to alloc rx size\r");
ret = M2M ERR MEM ALLOC;
goto ERRI1;

M2M ERR (" (HIF)Fail to wakup the chip\n");
goto ERRI1;

TX STEP (6) */
= hif chip sleep():;

rn ret;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 83

ATWINC15x0
Host Interface (HIF) Protocol

» The WINC chip processes the request and interrupts the host after finishing the operation.
» The HIF layer then receives the response

static sint8 hif isr(void)
{
sint8 ret = M2M ERR BUS FAIL;
uint32 reg;
volatile tstrHifHdr strHif;
/* RX STEP (1) */
ret hif chip wake();
if (ret == M2M SUCCESS)
{
/* RX STEP (2) */
ret = nm read reg with ret (WIFI_HOST RCV_CTRL 0, &req);
if (M2M SUCCESS == ret)
{

/* New interrupt has been received */
if (reg & 0x1)
{
uintlé size;
nm bsp interrupt ctrl (0);
/*Clearing RX interrupt*/
ret = nm read reg with ret (WIFI_HOST RCV_CTRL 0, ®);
if (ret != M2M SUCCESS)goto ERRI1;
reg &= ~(1<<0);
/* RX STEP (3) */
ret=nm write reg (WIFI HOST RCV_CTRL 0, reg):;
if (ret != M2M SUCCESS)goto ERR1;
/* read the rx size */
ret = nm_read reg_with ret (WIFI_HOST RCV_CTRL_0, ®);
if (M2M SUCCESS != ret)
{
M2M ERR (" (hif) WIFI HOST RCV CTRL 0 bus failln");
nm_bsp interrupt ctrl(l);
goto ERR1;
}
gu8HifSizeDone = 0;
size = (uintl6) ((reg >> 2) & Oxfff);
if (size > 0)
{
uint32 address = 0;
/** start bus transfer **/
/* RX STEP (4) */
ret = nm read reg with ret (WIFI_HOST RCV_CTRL 1, &address);
if (M2M SUCCESS != ret)
{
M2M_ERR(" (hif) WIFI_HOST RCV_CTRL 1 bus faill\n");
nm bsp interrupt ctrl(l);
goto ERRI; -
}
ret = nm read block(address, (uint8%*)&strHif, sizeof (tstrHifHdr));
strHif.ul6Length = NM BSP B L 16(strHif.ul6Length);
if (M2M SUCCESS != ret)
{
M2M ERR (" (hif) address bus faill\n");
nm bsp interrupt ctrl(l);
goto ERRI1;
}
if (strHif.ul6Length != size)
{
if((size - strHif.ul6Length) > 4)
{
M2M ERR (" (hif) Corrupted packet Size = %u <L = %u, G = %u, OP =
%02x>\n", B
size, strHif.ul6éLength, strHif.u8Gid, strHif.u80pcode) ;
nm bsp interrupt ctrl(l);
ret = M2M ERR BUS FAIL;
goto ERR1;

}

/* RX STEP (5) */
if (M2M REQ GRP WIFI == strHif.u8Gid)
{
if (pfWifiCbh)

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 84

ATWINC15x0
Host Interface (HIF) Protocol

pfWifiCb (strHif.u80pcode, strHif.uléLength - M2M HIF HDR OFFSET,
address + M2M HIF HDR OFFSET);

}
else if (M2M REQ GRP IP == strHif.u8Gid)
{
if (pfIpChb)
{
pfIpCb (strHif.u80pcode, strHif.ul6Length - M2M HIF HDR OFFSET,
address + M2M HIF HDR OFFSET);
}
}
else if (M2M REQ GRP OTA == strHif.u8Gid)
{
if (pfOtaCb)
{
pfOtaCb (strHif.u80pcode, strHif.ul6Length - M2M HIF HDR OFFSET,
address + M2M HIF HDR OFFSET) ;

}

else

{
M2M ERR (" (hif) invalid group ID\n");
ret = M2M ERR BUS FAIL;
goto ERR1;

}
/* RX STEP (6) */
if (!gu8HifSizeDone)
{
M2M ERR (" (hif) host app didn't set RX Done\n");
ret = hif set rx done();

}

else

{
ret = MZMiERRiRCV;
M2M ERR (" (hif) Wrong Size\n");
goto ERRI1;

}
else
{
#ifndef WIN32
M2M ERR (" (hif) False interrupt %1x",reqg);
#endif

}

else

{
M2M ERR (" (hif) Fail to Read interrupt reg\n");
goto ERRI1;

}

else

{
M2M ERR (" (hif) FAIL to wakeup the chip\n");
goto ERRI1;

}

/* RX STEP (7) */

ret = hif chip sleep();

ERR1:
return ret;

}
* The appropriate handler in the Wi-Fi layer (called from the HIF layer).

static void m2m wifi cb(uint8 u80pCode, uintl6 ulé6DataSize, uint32 u32Addr)
{ // ..code eliminated..

else if (u80pCode == M2M WIFI RESP_ SCAN DONE)
{
tstrM2mScanDone strState;
gu8scanInProgress = 0;
if (hif receive (u32Addr, (uint8*)s&strState, sizeof (tstrM2mScanDone), 0) == M2M SUCCESS)

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 85

ATWINC15x0
Host Interface (HIF) Protocol

gu8ChNum = strState.u8NumofCh;
if (gpfAppWifiCb)
gpfAppWifiCb (M2M WIFI RESP_SCAN DONE, &strState);
}
}

// ..code eliminated..

* The Wi-Fi layer sends the response to the application through its callback function.

if (u8MsgType == M2M WIFI RESP_SCAN DONE)
{
tstrM2mScanDone *pstrInfo = (tstrM2mScanDone*) pvMsg;
1f((gu8IsWiFiConnected == M2M WIFI DISCONNECTED) &&
(gu8WPS == WPS DISABLED) && (gu8Prov == PROV_DISABLED))

{

gu8Index = 0;

gu8Sleep = PS WAKE;

if (pstrInfo->u8NumofCh >= 1)

{
m2m wifi req scan_result (gu8Index) ;
gu8Index++;

}

else

{
m2m_wifi request_scan (M2M WIFI_CH_ALL);

}

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 86

14.

141

ATWINC15x0
WINC SPI Protocol

WINC SPI Protocol

The WINC main interface is SPI. The WINC device employs a protocol to allow exchange of formatted binary
messages between the WINC firmware and the host MCU application. The WINC protocol uses raw bytes exchanged
on the SPI bus to form high level structures like requests and callbacks.

The WINC SPI protocol consists of three layers:
» Layer 1 —the WINC SPI Slave protocol, which allows the host MCU application to perform register/memory read

and write operation in the ATWINC15x0 device using raw SPI data exchange.

» Layer 2 — the host MCU application uses the register and memory read and write capabilities to exchange the
host interface frames with the WINC firmware. It also provides asynchronous callback from the WINC firmware
to the host MCU through interrupts and the host interface RX frames. For more information on this layer, refer to
Section 15 “Host Interface (HIF) Protocol”.

» Layer 3 — allows the host MCU application to exchange high level messages (for example, Wi-Fi scan, socket
connection, or TCP data received) with the WINC firmware to employ in the host MCU application logic.

Figure 14-1. WINC SPI Protocol Layers

*App Logic

Socket A +F
WLAN Init, scan,

Functions connect, socket

+hif_send,
+hif_receive
WINC SPI e
Stave write_reg
Protocol *read_reg

*SPI read/write

Introduction
The WINC SPI Protocol is implemented as a command-response transaction and assumes one party is the Master
and the other is the Slave. The roles correspond to the Master and Slave devices on the SPI bus. Each message has
an identifier in the first byte indicating the type of message:

* Command

* Response

+ Data

In the case of Command and Data messages, the last byte is used as data integrity check.

The format of Command and Response and Data frames are described in the following sections. The following points
apply:

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 87

ATWINC15x0
WINC SPI Protocol

* There is a response for each command.
« Transmitted/received data is divided into packets with fixed size.
» For a WR transaction (Slave is receiving data packets), the Slave sends a response for each data packet.

» For a RD transaction (Master is receiving data packets), the Master does not send a response. If there is an
error, the Master requests a retransmission on the lost data packet.

» Protection of commands and data packets by CRC is optional.

1411 Command Format
The following frame format is used for commands where the host supports a DMA address of three bytes.

b————— 1 Byte ; Payload Sz ———4—1 Byle —
— 4 Bits } 4 Bits

CMD/DATA Start CMD type Payload CRC
} 10 Byla (max) {

The first byte contains two fields:

* The CMD/Data Start field indicates that this is a Command frame.
+ The CMD type field specifies the command to be executed.

The CMD type may be one of 15 commands:

* DMA write

* DMA read

* Internal register write
Internal register read

* Transaction termination
* Repeat data packet

* DMA extended write

» DMA extended read
DMA single-word write
+ DMA single-word read
» Soft Reset

The Payload field contains command specific data and its length depends on the CMD type.
The CRC field is optional and generally computed in software.
The Payload field can be one of four types each having a different length:
* A:Three bytes
» B: Five bytes
» C: Six bytes
» D: Seven bytes
Type A commands include:
+ DMA single-word RD
» internal register RD
» Transaction termination command
* Repeat data PKT command
» Soft Reset command
Type B commands include:
» DMA RD Transaction
« DMA WR Transaction

Type C commands include:

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 88

ATWINC15x0
WINC SPI Protocol

« DMA Extended RD transaction
« DMA Extended WR transaction
* Internal register WR

Type D commands include:
+ DMA single-word WR

Full details of the frame format fields are provided in the following table:

Table 14-1. Frame Format Fields

Fos e T e

CMD Start 4 bits
CMD Type 4 bits

Command Start: 4’b1100
Command type:

4’b0001: DMA write transaction
4’b0010: DMA read transaction
4’b0011: Internal register write
4’b0100: Internal register read
4’b0101: Transaction termination

4’b0110: Repeat data Packet
command

4’b0111: DMA extended write
transaction

4’b1000: DMA extended read
transaction

4’b1001: DMA single-word write
4’b1010: DMA single-word read
4’b1111: Soft Reset command

© 2019 Microchip Technology Inc.

User Guide

DS00002389C-page 89

ATWINC15x0
WINC SPI Protocol

........... continued
R N
Payload A:3 The Payload field may be of Type A,
B,C,orD
Type A (length 3

1- DMA single-word RD
Param: Read Address:

Payload bytes:
B0O: ADDRESS[23:16]

B1: ADDRESS[15:8]

B2: ADDRESS[7:0]

2- internal register RD

Param: Offset address (two bytes):

Payload bytes:
BO: OFFSET-ADDR[15:8]

B1: OFFSET-ADDR][7:0]
B2: 0

3- Transaction termination
command

Param: none

Payload bytes:

BO: 0

B1:0

B2: 0

4- Repeat Data PKT command
Param: none

Payload bytes:

BO: 0

B1:0

B2: 0

5- Soft Reset command
Param: none

Payload bytes:

BO: OxFF

B1: OxFF

B2: OxFF

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 90

ATWINC15x0
WINC SPI Protocol

........... continued

L S T S

Payload

B: 5

Type B (length 5
1- DMA RD Transaction

Params:

DMA Start Address: 3 bytes
DMA count: 2 bytes
Payload bytes:

BO: ADDRESS[23:16]

B1: ADDRESS[15:8]

B2: ADDRESS[7:0]

B3: COUNT[15:8]

B4: COUNT(7:0]

2- DMA WR Transaction
Params:

DMA Start Address: 3 bytes
DMA count: 2 bytes
Payload bytes:

BO: ADDRESS[23:16]

B1: ADDRESS[15:8]

B2: ADDRESS[7:0]

B3: COUNT[15:8]

B4: COUNTI7:0]

© 2019 Microchip Technology Inc.

User Guide

DS00002389C-page 91

ATWINC15x0
WINC SPI Protocol

........... continued

L S T S

Payload

Payload

C:.6

Type C (length 6)
1- DMA Extended RD transaction

Params:

DMA Start Address: 3 bytes
DMA extended count: 3 bytes
Payload bytes:

BO: ADDRESS[23:16]

B1: ADDRESS[15:8]

B2: ADDRESS[7:0]

B3: COUNT[23:16]

B4: COUNT[15:8]

B5: COUNTI7:0]

2- DMA Extended WR transaction
Params:

DMA Start Address: 3 bytes
DMA extended count: 3 bytes
Payload bytes:

B0: ADDRESS[23:16]

B1: ADDRESS[15:8]

B2: ADDRESS[7:0]

B3: COUNT[23:16]

B4: COUNT[15:8]

B5: COUNT(7:0]

3- Internal register WR*
Params:

Offset address: 3 bytes
Write data: 3 bytes

* “clocked or clockless registers”
Payload bytes:

B0: OFFSET-ADDR[15:8]
B1: OFFSET-ADDR [7:0]
B2: DATA[31:24]

B3: DATA [23:16]

B4: DATA [15:8]

B5: DATA [7:0]

© 2019 Microchip Technology Inc.

User Guide

DS00002389C-page 92

ATWINC15x0
WINC SPI Protocol

........... continued

L S T S

Payload

CRC7

D:7

1 byte

Type D (length 7)
1- DMA single-word WR

Params:

Address: 3 bytes

DMA Data: 4 bytes
Payload bytes:

BO: ADDRESS[23:16]
B1: ADDRESS[15:8]

B2: ADDRESS[7:0]

B3: DATA[31:24]

B4: DATA [23:16]

B5: DATA [15:8]

B6: DATA [7:0]

Optional data integrity field
comprising two subfields:
bit O: fixed value ‘1’

bits 1-7: 7 bit CRC value computed
using polynomial G(x) = XA7 + X3
+ 1 with seed value: Ox7F

The following table summarizes the different commands according to the payload type (DMA address = 3 bytes):

Table 14-2. Commands in Payload

Payload Type | Payload Size | Command Packet Size with CRC

Type A 3 bytes
Type B 5 bytes
Type C 6 bytes
Type D 7 bytes

14.1.2 Response Format

5 bytes

7 bytes

8 bytes

9 bytes

1- DMA Single-Word Read
2- Internal Register Read
3- Transaction Termination
4- Repeat Data Packet

5- Soft Reset

1- DMA Read
2- DMA Write

1- DMA Extended Read
2- DMA Extended Write

3- Internal Register Write

1- DMA Single-Word Write

The following frame format is used for responses sent by the WINC device as the result of receiving a Command or

certain Data frames. The Response message has a fixed length of two bytes.

© 2019 Microchip Technology Inc.

DS00002389C-page 93

ATWINC15x0
WINC SPI Protocol

— 1 Byte 1 Byle |

l
T
[4 Bits +—— 4 Bits i

RES/DATA Start RES Type | STATE

} 2 Byte —]
The first byte contains two fields of four bits each to identify the response message and the response type.

The second byte indicates the status of the WINC after receiving and, where possible, executing the command/data.
This byte contains two sub fields:

« BO-B3: Error state

« B4-B7: DMA state

States that may be indicated are:

+ DMA state:
— DMA ready for any transaction
— DMA engine is busy
» Error state:
— No error
— Unsupported command
— Receiving unexpected data packet
— Command CRCY error

Table 14-3. Response Format

I N

Response Start 4 bits Response Start : 4’01100
Response Type 4 bits If the response packet is for Command:
» Contains of copy of the Command Type field in the Command.
If the response packet is for received Data Packet:

* 4’b0001: first data packet is received
* 4’h0010: Receiving data packets

* 4’b0011: last data packet is received
* 4’b1111: Reserved value

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 94

14.1.3

ATWINC15x0
WINC SPI Protocol

........... continued
N
State 1 byte | This field is divided into two subfields:
DMA State :
| State |
" e
| DMA State | Error State |
—— 4 Bits | 4 bits

* 4’h0000: DMA ready for any transaction
* 4’b0001: DMA engine is busy

Error State:

* 4’h0000: No error

* 4’h0001: Unsupported command

* 4’b0010: Receiving unexpected data packet
* 4'b0011: Command CRC?7 error

* 4’b0100: Data CRC16 error

* 4'b0101: Internal general error

Data Packet Format

The Data Packet Format is used in either direction (Master to Slave or Slave to Master) to transfer opaque data. A
command frame is used either to inform the Slave that a data packet is about to be sent or to request the Slave to
send a data packet to the Master. In the case of Master to Slave, the Slave sends a response after the command and
each subsequent data frame. The format of a data packet is shown below.

DATA Start | Facket Order Data Bytes CRC
f— 4 Bits ——— 4 Bits
| 1 Byle DATA PACKET SIZE | 27 Byte

To support DMA hardware, a large data transfer may be fragmented into multiple smaller Data Packets. This is
controlled by the value of DATA_PACKET_SIZE which is agreed between the Master and the Slave in software and is
a fixed value such as 256B, 512B, 1KB (default), 2KB, 4KB, or 8KB. If a transfer has a length of m, which exceeds
DATA_PACKET_SIZE, the sender must split it into multiple DATA_PACKET_SIZE as shown in Equation 1:

(m— (n-1)* DATA_PACKET_SIZE) Equation 1
Where,
1.. n-1 = length of the DATA_PACKET_SIZE

n = frame length
This is illustrated below.

+ |f DMA count <= DATA_PACKET_SIZE:
The data packet is “DATA_Header + DMA count +optional CRC16, that is no padding.

DATA -
Header Remaining data CRC

+ If DMA count > DATA_PACKET_SIZE:

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 95

ATWINC15x0
WINC SPI Protocol

| DMA Count |
o I," [. T
Y . T
''_,__,_,-o-'""'# ---_____.-"'-- ! '|II T T
,f’## - / \ HH‘H .
.,-o-"""-'- ’] T e
DATA DaTA DaTA Hﬂmalnng
| e | DATA_PKET_SIZE | CRC16& l Tl DATA_PKT_SIZE | CRC16& | Tl | CRC16& |

» If remaining data < DATA_PACKET_SIZE, the last data packet is:
“DATA_Header + remaining data + optional CRC16 * that is no padding.

The frame fields are described in detail in the following table:
Table 14-4. Frame Field

Fow e omeinion

Data Start 4 bits 4’b1111 (Default)
(Can be changed to any value by programming DATA_START_CTRL
register)

Packet Order 4 bits 4’b0001: First packet in this transaction

4’b0010: Neither the first or the last packet in this transaction
4’b0011: Last packet in this transaction
4’b1111: Reserved

Data bytes DATA_PACKET_SIZE User data

CRC16 2 bytes Optional data integrity field comprising a 16-bit CRC value encoded in two
bytes. The most significant 8 bits are transmitted first in the frame.

The CRC16 value is computed on data bytes only based on the polynomial:
G(x) = X6 + X 2 + X"5 + 1, seed value: OXFFFF

14.1.4 Error Recovery Mechanism
Table 14-5. Error Recovery Mechanism

Error Type Recovery Mechanism

Master
CRC error in command 1. Error response received from Slave.
2. Retransmit the command.
CRC error in received 1. Issue a repeat command for the data packet that has a CRC error.
data 2. Slave sends a response to the previous command.

3. Slave keeps the start DMA address of the previous data packet, so it can
retransmit it.

4. Receive the data packet again.

No response is received » Synchronization is lost between the Master and Slave.
from Slave « The worst case is when Slave is in receiving data state.
» Solution: The Master must wait for max DATA_PACKET_SIZE period then generate
a Soft Reset command.

Unexpected response Retransmit the command.

TX/RX Data count error = Retransmit the command.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 96

14.1.5

ATWINC15x0
WINC SPI Protocol

........... continued

Error Type

No response to Soft
Reset command

Slave

Unsupported command
Receive command CRC
error

Received data CRC
error

Internal general error

TX/RX Data count error

No response to Soft
Reset command

General Notes

Recovery Mechanism

Transmit all ones until Master receives a response of all ones from the Slave.
Then deactivate the output data line.

Send response with error.
Returns to command monitor state.

Send response with error.
Wait for command retransmission.

Send response with error.
Wait for retransmission of the data packet.

The Master must do a Soft Reset on the Slave.

Only the Master can detect this error.

Slave operates with the data count received until the count finishes or the Master
terminates the transaction.

In both cases, the Master can retry the command from the start.

First received 4’'b1001, it decides data start.

Then received packet order 4’b1111 that is reserved value.
Then monitors for 7 bytes all ones to decide Soft Reset action.
The Slave must activate the output data line.

Waits for deactivation for the received line.

The Slave then deactivates the output data line and returns to the CMD/DATA
start monitor state.

The Slave must monitor the received line for command reception at any time.

When a CMD start is detected, the Slave receives 8 bytes then return again to the
command reception state.

When the Slave is transmitting data, it must also monitor for command reception.

When the Slave is receiving data, it monitors for command reception between the
data packets.

Issuing a Soft Reset command is detected in all cases.

Clockless Registers Access

Clockless register access allows a host device to access registers on the WINC device while it is held in a reset state.
This type of access can only be done using the “internal register read” and “internal register write” commands. For
clockless access, bit 15 of the 0Offset addr in the command must be ‘1’ to differentiate between the Clockless and

Clocked access mode.

For Clockless register write: - the protocol Master must wait for the response as shown here:

. B'hia

Oifset_addr|15]

Offsel_addr 14:0]
= glkless_addr

Four byles of data | { CRCT. 1011 | .

=11

1 Byte

4 Byte

2 Byie 1 Byte

o Response

2 Byte

For Clockless register read: - according to the interface, the protocol Slave may not send CRC16. One or two byte
padding depends on three or four byte DMA addresses.

© 2019 Microchip Technology Inc.

User Guide DS00002389C-page 97

14.2

14.2.1

14.2.2

14.2.3

ATWINC15x0
WINC SPI Protocol

; Offaal_addi[15] | Offsel_addr[14:0] | One or two
o | A =111 = ckless_addr | byte padding | LERETIH|
| 1Byte 2 Byte | or 2 Byte | Byte
Ck-ass
Ras Diata Hd
. sponse [Da F | regdata | o
2 Byte 1 Byta

Message Flow for Basic Transactions
This section shows the essential message exchanges and timings associated with the following commands:

* Read Single Word

» Read Internal Register (clockless)
* Read Block

* Write Single Word

* Write Internal Register (clockless)
» Write Bock

Read Single Word
—— 1byte ———— 4 bytes

. Cmd Her:
‘0 Read Single Wored

Adoress | GRC

|
|
|
|
=1 bytle —=1 byle - 1 byte —= 4 bytas }

.
| Reprier | sTATE | DaTAsEn| Data | ‘o
|
1

o
CMD_RES Fariudq—: Ly

¥

I

I

|

I

1

Read Internal Register (for clockless registers)

I
CMD RES Pariod -+ :—-
I
I
|

— 1 hyte F2 bytes | 7 byytes
T Hor,
0 e nsarnia Fisgleor I Dffsst Aclr I 16 o

o | Rep Her I STATE]l:l.n.T.a.star-.[DATA ‘o

|
1
| =1 byte —— 1 byte —=1 byte —— 4 bytes —
|
|
|
1

Read Block

Normal transaction:

Master — issues a DMA read transaction and waits for a response.
Slave — sends a response after CMD_RES_ PERIOD.

Master — waits for a data packet start.

Slave — sends the data packets, separated by DATA_DATA_PERIOD[1] where DATA_DATA_PERIOD is controlled
by software and has one of these values: NO_DELAY (default), 4_BYTE_PERIOD, 8_BYTE_PERIOD, and
16_BYTE_PERIOD.

Slave — continues sending until the count ends.

Master — receives data packets. No response is sent for data packets but a termination/retransmit command may be
sent if there is an error.

The message sequence for this case is shown below:

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 98

ATWINC15x0
WINC SPI Protocol

T

MO RES Pariad 4 [[
DA DWTA Perice < Ly
[

k { hyte ———F s —

) T
s D3t Reas I

hazress, Cont, o]

1hyle—1tyte o |=1tnhe —-Fied size —f byle |
FiEg Hir | STATE | | DATA Har | [aTH IEF»:

|
|
|
=1 tvte —-Faed see — byle |
1

i[l'-'Hem| [&TA I CRCIE

____._._|______

Termination command is issued:

Master — can issue a termination command at any time during the transaction.
Master — monitors for RES_START after CMD_RESP_PERIOD.

Slave — cuts off the current running data packet if there is any.

Slave — responds to the termination command after CMD_RESP_PERIOD from the end of the termination command

packet.
I I I
DATH DWToPeriod o Ly CMD BESE Periae) Ly
I I I
I I I
. Creki . | | o Her | .
/ | D e | o B | ’ L | £T0P e . i
1 Byte —-Fised 5 02— -.I-.I |- Bye e size— Bried |
i) | Pz Hor | ETATE | |IJ.'.T'!IH’| |[!=JI1:|| | | B Hdr I ETATE |j
I I I
I I I

|
WTh Ha | DT |IIRL“IE | "JI
|
|

Repeat command is issued:

1. Master — can issue a repeat command at any time during the transaction.
Master — monitors for RES_START after CMD_RESP_PERIOD.
Slave — cuts off the current running data packet, if any.

Slave — responds to the repeat command after CMD_RESP_PERIOD from the end of the repeat command
packet.

5. Slave — sends the data packet again that has an error then continues the transaction as normal.

PN

o [s 0 Repaal I CMD_RESP Period
| Command _ _ | Command I
T
! |Haspunaa| |mmpam|1 | 0 - 0| BATARacS Fwswml | DATA Packed 2 | | DATA Pacs 3 |
Lo N

[1] The period between the data packets is “DATA_DATA_PERIOD + DMA access time.” The Master monitors for
DATA_START directly after DATA_DATA_PERIOD.

14.2.4 Write Single Word

1. Master — issues DMA single-word write command, including the data.
2. Slave — takes the data and sends a command response.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 99

ATWINC15x0
WINC SPI Protocol

[
|
CMD_RES Period+—
|

I
I
[
I
L1 byte L8 bytes |
Cmd Hdr: [ey
‘o Single Word Writs | A9dress, Data, CRC | 0
[
| |
. I Response e
0 | Har STATE 0
I
| [
i [
14.2.5 Write Internal Register (for clockless registers)
1. Master — issues an internal register write command, including the data.
2. Slave — takes the data and sends a command response.
I I
I I
CMD_RES Period+ —»
I I
f—— 1 byle ! 7 byles I
I
Cmd Hdr: | s
i) Internal Word Write Sl Lo e | 0
T
| |
. I
‘0 [Rsp Hdr STATE o
I
I
I

14.2.6 Write Block
+ Case 1: Master waits for a command response:

1. Master — issues a DMA write command and waits for a response.
Slave — sends response after CMD_RES_PERIOD.
Master — sends the data packets after receiving response.
Slave — sends a response packet for each data packet received after DATA_RES_PERIOD.
Master — does not wait for the data response before sending the following data packet notes:
CMD_RES_PERIOD is controlled by SW taking one of the values:
NO_DELAY (default), 1_BYTE_PERIOD, 2_ BYTE_PERIOD and 3_BYTE_PERIOD
The Master must monitor for RES_START after CMD_RES PERIOD
DATA_RES_PERIOD is controlled by SW taking one of the values:

NO_DELAY (default), 1_BYTE_PERIOD, 2_BYTE_PERIOD and 3_BYTE_PERIOD

ok wbn

' ATh BER Peied |
CMD_RES Parind, | DATA_RES Period ¢

| |
I : g | : ’
Il b1 bte —-Fieed size—42 Byte4— byte —-Fieed size —|2 Bytad-1 byle —-Fived sizz —2 byt
| -
T - . - -)
i Conmans | A0S, Gt CRG } Hnm.l-ul DATA ||:R«:15- D\]‘.Hd‘| TATH |um| D.'.[H-h” 0T Ir:us 0
i T

| [

|| Rephidr | STATE il || Rephir | STATE i fizp Her | STATE i
| [t [| | [on]

I |

» Case 2: Master does not wait for a command response:

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 100

ATWINC15x0
WINC SPI Protocol

1. Master — sends the data packets directly after the command but it still monitors for a command response

after CMD_RESP_PERIOD.
2. Master — retransmits the data packets if there is an error in the command.

DATA_RESPeriode; 1y

|
- : g Lo
1 byle —|-Fixed size —|2 byle 41 Hyle —p-Fixed size —}2 byle 41 byle —|-Fixed sze —|2 byle{
1 mfﬁ"g;fﬂ'; g | Aetness, count, CRC D.l;‘.\h:r | DATA |CRC‘B uulam | AT, |CRC1E |‘ DATA Her | DATA |ma:‘ﬁ| 0
| | |
i : Response q ! Dala Resoons: 0 | Data Resporse 0
|
[} I

14.3 SPI Level Protocol Example
To illustrate how the WINC SPI protocol works, the SPI bytes from the scan request example are dumped and the
sequence is described below.

14.3.1 TX (Send Request)
1. Firststepin hif send() API is to wake up the chip.

sint8 nm clkless wake (void)
{
ret = nm_read reg_with ret (0x1l, ®);
/* Set bit 1 */
ret = nm write reg(0xl, reg | (1 << 1));
// Check the clock status
ret = nm read reg with ret(clk status reg adr, &clk status reg);
// Tell Firmware that Host waked up the chip
ret = nm write reg(WAKE REG, WAKE VALUE);
return ret;

—-—

Command CMD_INTERNAL_ READ: 0xC4 /* internal register read */
BYTE [0] = CMD_INTERNAL READ
BYTE [1] = address >> 8; /* address = 0x01 */
BYTE [1] |= (1 << 7); /* clockless register */
BYTE [2] = address;
BYTE [3] = 0x00;

v 0 '
| lzusml‘“rel“llnle‘ﬁusllllilllllllm
i T il I i
LU LT LI L]
gy @
!

2. The WINC acknowledges the command by sending three bytes [C4] [0] [F3].

e O ! <
@ SRR IUTUTTIN. SUUTTUUIT TEUUTUUUIY TUUTTTUUUT TOURTTUUOT TUUUTTUY TOUUTRUUUN TOURTUIN Rewvwwwuws
. o =0 = g
_nm i g
— o e
1050 crovecr S p | I L8 o
J | Bw
. o j g

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 101

ATWINC15x0
WINC SPI Protocol

3. The WINC chip sends the value of the register 0x01 which equals 0x01.

/ ® 2% X% %AXU
0] PN TR, S 1 \ 1 \ 1 \ 1 :] \ 1 \ s
= O 4 {o1} {co} {00} {o0}
% umm m mu un
: LT LT Lf LT
M el ﬂ
.
:
Command CMD_INTERNAL WRITE: €3 /% internal register write */
BYTE [0] = CMD_INTERNAL WRITE
BYTE [1] = address >> 8; /* address = 0x01 *x/
BYTE [1] |= (1 << 7); /* clockless register =/
BYTE [2] = address;
BYTE [3] = u32data >> 24; Ve Data = 0x03 Y/
BYTE [4] = u32data >> 16;
BYTE [5] = u32data >> 8;
BYTE [6] = u32data;
e @ @ 22 X% "%xA
) l“‘w ‘:"‘Ksc"l‘"“ 1 G"',f"" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _]—lﬂ
I8 | {&o} +—{E0} {To} {eo} {0} {eo} EXCH |
LI LT L J L L L] LB
5 G
f
4. The WINC acknowledges the command by sending two bytes [C3] [0].
e 3 A 7 % % XN <
0 lz"“’" ‘:AH(SHT“ 1 0‘06““ 1 1 1 1 1 1 1 1 ! 1 ! 1 1 1 _l—lo
f um o
: L1 L1 Bl
| . g
= 9 cv
Command CMD_INTERNAL READ: 0xc4 /* internal register read */
BYTE [0] = CMD INTERNAL READ
BYTE [1] = address >> 8; /* address = 0x0OF */
BYTE [1] [|= (1 << 7); /* clockless register */
BYTE [2] = address;
BYTE [3] = 0x00;
L/ @ 2% X% %X%
2us/Div (421 4K Screens @13383us
0] | 1 1 L 1 1 1 1 1 1 1 1 L 1 1 [P
A 1111111 JVITIL ST
LU LT L | -
., I
] IRQ :
5. The WINC acknowledges the command by sending three bytes [C4] [0] [F3].
e @ & 22 X% XA
2us/Div (421 4K Screens, @ 19.705 us
m | 1 1 1 ! 1 ! 1 1 1 ! 1 1 1 ! 1 1
o m
: |- L
i I

o : n
. |

6. The WINC chip sends the value of the register 0x01 which equals 0x07.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 102

ATWINC15x0
WINC SPI Protocol

10.

2us/Dw (421.4K Screens

Q@ 185595 us

1 1 1 1 I 1 1 1 1

o7} {o0} {oo} oo} 5]
i A Jammm A B
LT LT LI L_J Ellor
IS¢ ﬂ U 00
. @«
Command CMD SINGLE WRITE:0XC9 /* single word write */
BYTE [0] = CMD SINGLE WRITE
BYTE [1] = address >> 16; /* WAKE REG address = 0x1074 */
BYTE [2] = address >> 8; -
BYTE [3] = address;
BYTE [4] = u32data >> 24; /* WAKE VALUE Data = 0x5678 */
BYTE [5] = u32data >> 16; N
BYTE [6] = u32data >> 8;
BYTE [7] = u32data;
oD @ 22 %% %X4u% -
0] l"“““’ ‘:."(SCIT‘ 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _q_l"
Oes» | : {cs} {c0} {io=s} {75} 4]
| mm i i . Bloo
L LI LIS Uy B
D 00
SS Channe 1 E]cv
: Gt
0 ® 2z L
2 ewew (401 & Soreens S
B T 1) MR Al I 1 ol L Mercrrfirranl Lot
[{5} {55} {55} {Ti 3} EJ
e !
[105 cranest | L_f 1 Ty gl
50 o | ; .
[rscomen| 1
. N

The chip acknowledges the command by sending two bytes [C9] [O].

ey (4

0 NaAl e

Pl IR, PR

e O
E 2w

Han
Ll _

At this point, HIF finishes executing the clockless wake up of the WINC chip.

The HIF layer prepares and sets the HIF layer header to NMI_STATE_REG register (4 byte or 8 byte header
describing the packet to be sent).

Set bit '1' of WIFI_HOST_RCV_CTRL_2 register to raise an interrupt to the chip.

sint8 hif send(uint8 u8Gid,uint8 u80pcode,uint8 *pu8CtrlBuf,uintl6 ul6CtrlBufSize,

{

uint8 *pu8DataBuf,uintlé ulé6DataSize,

volatile tstrHifHdr strHif;

volatile uint32 reg;

strHif.u80pcode = u80pcodeé& (~NBIT7) ;
strHif.u8Gid = u8Gid;
strHif.uléLength = M2M HIF HDR OFFSET;

strHif.ul6Length += ul6CtrlBufSize;

ret = nm clkless wake();
reg = OUL;
reg |= (uint32)u8Gid;
reg |= ((uint32)u80pcode<<8);
reg |= ((uint32)strHif.ul6Length<<16) ;
ret = nm _write reg (NMI_STATE_ REG, reg);
reg = 0;

uintl6 ul6DataOffset)

© 2019 Microchip Technology Inc.

User Guide

DS00002389C-page 103

ATWINC15x0
WINC SPI Protocol

reg |= (1<<1);
ret = nm write reg(WIFI_HOST RCV_CTRL 2, reg);
Command CMD_SINGLE WRITE:0XC9 /* single word write */
BYTE [0] = CMD_ SINGLE WRITE
BYTE [1] = address >> 16; /* NMI STATE REG address = 0x108c */
BYTE [2] = address >> 8; - -
BYTE [3] = address;
BYTE [4] = u32data >> 24; /* Data = 0x000C3001 */
BYTE [5] = u32data >> 16; /* 0x0C is the length and equals 12 */
BYTE [6] = u32data >> 8; /* 0x30 is the Opcode =
M2M WIFI REQ SET SCAN REGION */
a BYTE [7] = u32data; /* 0x01 is the Group ID = M2M REQ GRP WIFI */
B 2 XE wEW
i “".h : “. T” L 3:‘%”‘“‘ lisisl asasiasasl L 1 L | P e | L ol F i]'l
- : {55 {5} {5} {E3)]
i TRt 1 Jillilig i}
1050 caamae |]
=]
. B
e @ B 22 XE %xN
Bl briorn e 1 1 . Vs Lot 1 . 1 R Rewvevoves HL
[rcsocs cnasaei | 1L 1111111 i T f
05 cnsmnst | L] L L LI i
w50 ca |) . B
| J i
. o i

11. The WINC acknowledges the command by sending two bytes [C9] [0].

e« 0

Fontwe (alt an foreess AT -
L 1 - L 1 1 ! 1 L 1 1 : 1 L 1 ..!‘..qW'
4 E=t L N i
; I il
i] | .|
j UL
T I 1
Command CMD_SINGLE WRITE:0XC9 /* single word write */

BYTE [0] = CMD_SINGLE WRITE

BYTE [1] = address >> 16; /% WIFI HOST RCV_CTRL 2address = 0x1078*/

BYTE [2] = address >> 8;

BYTE [3] = address;

BYTE [4] = u32data >> 24; /% Data = 0x02 */

BYTE [5] = u32data >> 16;

BYTE [6] = u32data >> 8;

BYTE [7] = u32data;

o RE XE mEN
o Loreea, 137 844 un
1 . 1 1 : 1 . 1 : 1 : 1 " 1 ! -
ML JITITL ST nm
L LI LS L
© 2019 Microchip Technology Inc. User Guide DS00002389C-page 104

ATWINC15x0
WINC SPI Protocol

e 0 & 22 XE %Y
Tunley (400 4K 5 @ MrE e
| L , (ol nonllnnanfinnd] Mo finnsn basnfnnnnd | g T e
+ N G o o 0
[cocn crane . i 1 0w
[105 crasnes | L] LT L1l B
050 coaene | l 0w
50| J O
. - D
12. The WINC acknowledges the command by sending two bytes [C9] [0].
e 0 ® B2 YT Ouxu -
J el A B Lt @ PLAF i
] I.....'v.“.l....L..“?J“.1““l..a..l.‘“..l......l...“l.‘“k.......l..-..l.“.~l....1.....!.....'....l....l.;.-..,{]'
s | :) {5} B
T . Be
: — = e
[2850 Chamses | L B«
[s5camens | 1| I] gl
- CH— il

13. Then HIF polls for DMA address.

for (cnt = 0; cnt < 1000; cnt ++)

{
ret = nm read reg with ret (WIFI_HOST RCV_CTRL 2, (uint32 *)é®);
if (ret != M2M SUCCESS) break;
if (! (reg & 0x2))
{
ret = nm read reg with ret (0x150400, (uint32 *)&dma_ addr);
/*in case of success break */
break;
}
}
Command CMD_SINGLE READ: 0xCA /* single word (4 bytes) read */
BYTE [0] = CMD SINGLE READ
BYTE [1] = address >> 16; /* WIFI HOST RCV_CTRL 2 address = 0x1078 */
BYTE [2] = address >> 8;
BYTE [3] = address;

¥
i
]
o
e

.

'

-
-
=
o
[_Jl_il_“nj
- B - -]

Fuaee (uit ox S @ Sak we

JUTELL TITRILL . Jilli1 1
L LT s LU
l f—r %
B
14. The WINC acknowledges the command by sending three bytes [CA] [0] [F3].
e 0 @ 22 XE mEu -
8 o e 1 s 1 . 1 s 1 L 1 A ! i , . e
+ N ; e G0
(= : ra P
3051 Chasat | : L LT D
; I —] f ™
ﬁT - = '])
(] i L] &

15. The WINC chip sends the value of the register 0x1078, which equals 0x00.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 105

ATWINC15x0
WINC SPI Protocol

T = @ e _I
..l.uunl...-I....I....l....l.—...l....L....l..a.l....la.a.l...al;..4I4|..1.»|4I4>141....I.».. .

{EE} R {57 {5} i
L1111 i 1118 S i e
L L L - e
:]::
1 Tl
e
Command CMD_SINGLE READ: OxCA /* single word (4 bytes) read */
BYTE [0] = CMD SINGLE READ
BYTE [1] = address >> 16; /* address = 0x1504 */
BYTE [2] = address >> 8;
BYTE [3] = address;

o T .ugd (o} 4|
1AL LT T L B =
L LI LI LI B
I |

£l e

H|E

5 b # l‘ " -
serns G TR ||
1 L 2 L 1 ! : 1 L 1 . 1 1 . 1 1. L]

17. The WINC chip sends the value of the register 0x1504, which equals 0x037AA0.

21 4% Screens) &AM
1 L L 1 ! 1 : 1 1 . 1 L 1 "
=} {7} {53} {F}
| i n

18. The WINC writes the HIF header to the DMA memory address.

u32CurrAddr = dma_addr;
strHif.uléLength=NM BSP B L 16 (strHif.ulé6Length);
ret = nm write block(u32CurrAddr, (uint8*)é&strHif, M2M HIF HDR OFFSET) ;

Command CMD_DMA EXT WRITE: 0xC7 /* DMA extended write */
BYTE [0] = CMD DMA EXT WRITE
BYTE [1] = address >> 16; /* address = 0x037AA0 */
BYTE [2] = address >> 8;
BYTE [3] = address;
BYTE [4] = size >> 16; /* size = 0x08 */
BYTE [5] = size >> 8;
BYTE [6] = size;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 106

ATWINC15x0
WINC SPI Protocol

B

U | & 2 %A%k UNAXA
2us/Div (421.4K Screens Q545525 us
f R R R Al R nfinnnl nanfiananl Innafinnsnl Rrnfiina lnnaar (RARAM AR e I e
. comm | = i = =
e ! . um 1 i,
i U L1] L

2us/Div (421.4K Screens Q5634150 m
1 1 1 \4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e

70} H o0} [0} I
{0:0 $ {00} 8:0} r:”[zl

19.

20. The HIF layer writes the data.

e @ & 22 X% %X 4AH
2us/Div (421 4K Screens) Q@ 606.48 us m
0] ! 1 1 1 1 ! 1 ! 1 1 1 ! 1 1 1 1 1 1 e
- {17} {0} {co} oo}]
VI 1111111 T R Bl
L ULJ LU L B er
Bl oo
[sscrme : I B
, z ;
& 22 X% XA
2us/Div (421.4K Screens) @ 62284 us m:l_l
) 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e
5 {00} ;oc' {50 o0 {00
um A Jm T AR B w
LT

- L L L B

L] o
21. The HIF writes the Control Buffer data (part of the framing of the request).

if (pu8CtrlBuf != NULL)

{
ret = nm write block(u32CurrAddr, pu8CtrlBuf, ulé6CtrlBufSize);
if (M2M SUCCESS != ret) goto ERRI;
u32CurrAddr += ul6CtrlBufSize;

Command CMD_DMA EXT WRITE: 0xC7 /* DMA extended write */
BYTE [0] = CMD DMA EXT WRITE
BYTE [1] = address >> 16; /* address = 0x037AA8 */
BYTE [2] = address >> 8;
BYTE [3] = address;
BYTE [4] = size >> 16; /* size = 0x04 wY
BYTE [5] = size >> 8;
BYTE [6] = size;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 107

ATWINC15x0
WINC SPI Protocol

e R @ 22 %% AU ¢
@ lz . I:“ “S"T" 1 0“6‘“ 1 1 1 1 1 1 1 1 1 1 1 1 _q—l e
L T AL i Bl
[1051 crannes | U L U 1M Ber
[3050 channe | LN B oo
o
e RN @ 22 %% %MX4
0 l“‘m ‘:J - 5"‘[‘" 1 g 1 1 1 1 1 1 1 1 1 1 1 1 _:I_I e
e < (o} (s}) [
JTTIALL L JUmin e] oo
LI LT LU L[l
50 Channer | f 1 I ULBw
LI IRQ : 01
22. The WINC acknowledges the command by sending three bytes [C7] [0] [F3].
o ® 22 %% %MXY ¢
0 l““m .:” e 1 o 1 1 1 1 1 1 1 1 1 1 1 1 _1_1 o
' o o)
L L
[B R0 o1
23. The HIF layer writes the data.
eR @ 2% X% %xX4% ©
0 lz . ‘:.’ - 5"‘;"‘ 1 ‘g 1 1 1 1 1 1 1 1 1 1 1 1 @—l e
i tu o B
" LI L LS Ellor
M la
@
. B o

24. The HIF finished writing the request data to memory and is going to interrupt the chip notifying that host TX is

done.
reg = dma_addr << 2;
reg |[= (1 << 1);
ret = nm write reg(WIFI_HOST RCV_CTRL 3, reg);
Command CMD_SINGLE WRITE:0XC9 /* single word write */
BYTE [0] = CMD_SINGLE WRITE
BYTE [1] = address >> 16; /* WIFI_HOST RCV_CTRL 3 address = 0x106C */
BYTE [2] = address >> 8;
BYTE [3] = address;
BYTE [4] = u32data >> 24; /* Data = 0x000DEA82 */
BYTE [5] = u32data >> 16;
BYTE [6] = u32data >> 8;
BYTE [7] = u32data;
e @ & 2% X% WX A
B l“‘mll‘ "5”]“ 1 - I 1 1 1 1 1 1 1 1 1 1 1 _q—ld
o {0} s} {ioo} {eco} §
[-ciock channei | am Jm o 1 B w
[1051 Channel | LU LT L s Ber
0o

© 2019 Microchip Technology Inc.

User Guide DS00002389C-page 108

ATWINC15x0
WINC SPI Protocol

& 22 X% WAxA

2usiDiv (4214K Screens) Q@74962us mq_l
| I 1 I 9 1 1 1 1 I 1 1 1 ! 1 1 1 I 1 1 e

ot o) = ==

L . LT i B

LT T LU U L Ellor

[1 E]c:

: ; G

25. The WINC acknowledges the command by sending two bytes [C9] [0].

2us/Div (421.4K Screens) @24457 us

L 1 1 1 1 L 1 L 1 L 1 L 1 L 1 L

: =) o)
; Uil I
: LT =)
e I 1

26. The HIF layer allows the chip to enter Sleep mode again.

sint8 hif chip sleep (void)
{
sint8 ret = M2M SUCCESS;
uint32 reg = 0;
ret = nm_write reg(WAKE_REG, SLEEP VALUE);
/* Clear bit 1 */
ret = nm read reg with ret (0xl, &req);
if (reg&0x2)
{
reg &=~(1 << 1);
ret = nm write reg(0xl, reqg);

-

Command CMD_SINGLE WRITE:0XC9 /* single word write */
BYTE [0] = CMD_SINGLE WRITE
BYTE [1] = address >> 16; /* WAKE REG address = 0x1074 */
BYTE [2] = address >> 8;
BYTE [3] = address;
BYTE [4] = u32data >> 24; /* SLEEP VALUE Data = 0x4321 */
BYTE [5] = u32data >> 16;
BYTE [6] = u32data >> 8;
BYTE [7] = u32data;
4 @ 22 %% %xXu -
) o e 1 : 1 . 1 : 1 . 1 : 1 : errrreell -
; T I 1T i Bl
; U L LI U 8o
% D
: |
% 2% X%
@ 209.505 us
1 1 1 1 1 1 1 1 1 1 1 1 1 1
{oo} {&3} {zi5}
VTR 1 JTm
L I} UL

27. The WINC acknowledges the command by sending two bytes [C9] [0].

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 109

ATWINC15x0
WINC SPI Protocol

e 0 @ 22 X% AU
2us/Div (421.4K Screens, Q24457 us
B T R s LT | RO, RN | MU SO PO, DR | LOU, ST | RS PO) U DN) B [e
« E— i)
Clock Channel L Jmm o
— r :
o B
n r . ro.
= ¥ i [}
Command CMD_INTERNAL READ: 0xC4 /* internal register read */
BYTE [0] = CMD INTERNAL READ
BYTE [1] = address >> 8; /* address = 0x01 */
BYTE [1] |= (1 << 7); /* clockless register */
BYTE [2] = address;
BYTE [3] = 0x00;
& 22 k&% UAXA ¢
2us/Div (421.4K Screens) @1.19us EEE |
oo — CH 0} o0} B
Jn 11111 111111 11111
L LT L[L1
| 1 L0
[sscome | S 0
:
i E
28. The WINC acknowledges the command by sending three bytes [C4] [0] [F3].
e D @ 22 XE XU
2us/Div (421 4K Screens) @ 19.705 us
@ 1 ! 1 ! 9 ! 1 1 1 1 1 ! 1 1 1 I 1 1 1 1] e
- : 55} §
C Jm
L
|
| L
29. The WINC chip sends the value of the register 0x01 which equals 0x03.
& 22 X% x4
m 1 1 1 1 1 1 1 1 1 ! 1 ! 1 1 I Q
' oo} oo} oo}
ST JITAL 111111 B oo
L L | B] o1
00
D 00
L D 01
Command CMD_INTERNAL WRITE: C3 /* internal register write v
BYTE [0] = CMD INTERNAL WRITE
BYTE [1] = address >> 8; /* address = 0x01 */
BYTE [1] |= (1 << 7); /* clockless register */
BYTE [2] = address;
BYTE [3] = u32data >> 24; /* Data = 0x01 */
BYTE [4] = u32data >> 16;
BYTE [5] = u32data >> 8;
BYTE [6] = u32data;
e @ B 2% X% %NAXAH
2us/Ow (421.4K Screens, Q93547 us
m 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] e
(&0} o} o} [io} (oo} o} B e0:0
1IN 1 1V Jmm 111111 ML B oo
L L L L L] - o
: I [l
D 00
Bl o
User Guide DS00002389C-page 110

© 2019 Microchip Technology Inc.

ATWINC15x0
WINC SPI Protocol

30. The WINC chip acknowledges the command by sending two bytes [C3] [0].

e & & 7 72 % % AU <
2us/Div (421 4K Screens Q104765 us ml
0 1 A 1 .] . 1 : 1 i 1 :] . 1 .] A e
. o ; = e —
| - L g
50 cranmer [; L Do
z l 1 T— S
« O Bl

31. At this point, the HIF layer has completed posting the scan Wi-Fi request to the WINC chip for processing.

14.3.2 RX (Receive Response)
After finishing the required operation (scan Wi-Fi), the WINC interrupts the host to notify of the processing of the
request. The host handles this interrupt to receive the response.

1. Firststepinhif isr is to wake up the WINC chip.

sint8 nm clkless wake (void)
{
ret = nm_read reg _with ret (0x1l, ®);
/* Set bit 1 */
ret = nm write reg(0xl, reg | (1 << 1));
// Check the clock status
ret = nm read reg with ret(clk status reg adr, &clk status reg);
// Tell Firmware that Host waked up the chip
ret = nm write reg(WAKE REG, WAKE VALUE);
return ret;

——

Command CMD_INTERNAL READ: 0xC4 /* internal register read */
BYTE [0] = CMD_INTERNAL READ
BYTE [1] = address >> 8; /* address = 0x01 */
BYTE [1] |= (1 << 7); /* clockless register */
BYTE [2] = address;
BYTE [3] = 0x00;
v @ 2% %% %x4u ©
2us/Div (421.4K Screens @1.19us
| |“..|“.,IH..1“..1“.nl.“‘v,“.l.“,I.“.1.“.|.”.1,“.I.”,1.“.l.“.l.“.I,H.l.“.l.‘ul..nl
e — &9 KK L]
L ! ! il
L L L L
! |

Channel

I

2. The WINC acknowledges the command by sending three bytes [C4] [0] [F3].

e 0 & 2 % % % %X U <
0] eI T N T T T T evrveon 1
N — e o]
o " g
— L1 B
115000 I p pa V| j 6] o
[sscrome] : ' . —6
B

L IRQ

3. The WINC chip sends the value of the register 0x01 which equals 0x01.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 111

ATWINC15x0
WINC SPI Protocol

/ & 2% %% %AXY%
EI l“‘m ‘I‘A“‘SUT" 1 Acwﬁs“ 1 1 1 = 1 1 1 1 1 1 1 1 1 1 _q_le
f umm ! mu m 0.
5 LI L LT LT
= :
—
- |
Command CMD_INTERNAL WRITE: €3 /* internal register write */
BYTE [0] = CMD INTERNAL WRITE
BYTE [1] = address >> 8; /* address = 0x01 */
BYTE [1] |= (1 << 7); /* clockless register */
BYTE [2] = address;
BYTE [3] = u32data >> 24; /* Data = 0x03 */
BYTE [4] = u32data >> 16;
BYTE [5] = u32data >> 8;
BYTE [6] = u32data;
N | @ 2% X% Wxu
0] l“‘m ‘:”“5"‘;"‘ L Q“,f’“’ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 _qjﬂ
e | GE s RE =5} =9} =5} =)
LI g LJ L L L L 8o
f e
%
LI IRQ Bl or
4. The WINC acknowledges the command by sending two bytes [C3] [0].
- ® 22 %% %A%
@ i ‘:AHKS(,QICM ! o ! 1 ! 1 1 1 1 1 1 1 1 1 1 1 W°
1 [1 o
s 01
Command CMD_INTERNAL READ: 0xC4 /* internal register read */
BYTE [0] = CMD INTERNAL READ
BYTE [1] = address >> 8; /* address = 0xOF %y
BYTE [1] |= (1 << 7); /* clockless register */
BYTE [2] = address;
BYTE [3] = 0x00;

2us/Div (421.4K Screens, @13383us

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
{ce} {eoc} LE:0) {e5}
1111111 JL 1111] JIML
LI L LS L

@ 22 X% WX AU

2us/Div (421.4K Screens, @19.705 us

o {00}

A 171]
g | L_J
L f

6. Then WINC chip sends the value of the register 0x01 which equals 0x07.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 112

ATWINC15x0
WINC SPI Protocol

@ 22 X% %AxXA
2 us/Div (421 4K Screens, @ 185.595 us. [Ti2345 6] |

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e

o7} {0} {50} {0} B
JAL Jmm 1111111 JNTTmL B
S LT L L Bor
1 B oo
1 5]
Do

Command CMD_SINGLE WRITE:0XC9 /* single word write */
BYTE [0] = CMD_SINGLE WRITE
BYTE [1] = address >> 16; /* WAKE REG address = 0x1074 */
BYTE [2] = address >> 8;
BYTE [3] = address;
BYTE [4] = u32data >> 24; /* WAKE VALUE Data = 0x5678 w)
BYTE [5] = u32data >> 16;
BYTE [6] = u32data >> 8;
BYTE [7] = u32data;
& 2% X%
2us/Dwv (421.4K Screens, @ 20887 us
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
{0} ICH, {15}
fmm ST Juam
UL LI LIS
1
& 22 X%
2 us/Div (4214K Screens, Q@2113us
I 1 1 1 1 1 1 ! 1 1 1 1 1 ! 1 1
{0} {0} 30, {720}
e Jum JLumL NI
L | L v U

7. The chip acknowledges the command by sending two bytes [C9] [O].

o @ 2% %% %KXK
Tunow (@21 K Screens @agive EREERER | |
B | I 1 1 L 1 I 1 1 1 1 1 1 1 1 1 I 1 1 {
M- — s
o um g
— r g,
—m ___g.
. , 1 o,
LI 1RQ 5

Read register WIFI_HOST_RCV_CTRL_O to check if there is a new interrupt, and clear it.

static sint8 hif isr(void)
{
sint8 ret ;
uint32 reg;
volatile tstrHifHdr strHif;

ret = hif chip wake();

ret = nm read reg with ret (WIFI_HOST RCV_CTRL O,
if (reg & 0x1)
{

&reqg) ;
/* New interrupt has been received */

uintlé size;

/*Clearing RX interrupt*/

ret = nm_read reg _with ret (WIFI_HOST RCV_CTRL_0, ®) ;
reg &= ~(1<<0);

ret = nm write reg(WIFI HOST RCV_CTRL 0,regq);

Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
BYTE [0] = CMD_SINGLE READ
BYTE [1] = address >> 16; /* WIFI HOST RCV_CTRL 0 address = 0x1070 */

© 2019 Microchip Technology Inc.

User Guide

DS00002389C-page 113

ATWINC15x0
WINC SPI Protocol

BYTE [2] = address >> 8;

BYTE [3] = address;
e @ B2 4B KRS
2us/Div (421.4K Screens) @ 65116634 ms
0 1 1 1 1 1 1 \J 1 1 1 1 1 1 1 1 1 1 1 1 I e
I8 {0} o5} (0} {7}
i 111111} JUm . B
LU LT LI L B
: | 00
1 H B
N : 00
9. The WINC acknowledges the command by sending three bytes [CA] [0] [F3].
e @ 22 X% %Xy
2us/Div (421.4K Screens Q407705 us
0] N T PUUTY VUETUUIA POV TUUIT TUUUTTUUIN PUDTTTUT DUUUTIUUN FUSTTIUUN Fow []o
i o Gy
i Q.
L L@
[asocnms R —um B
LI RQ : 01
10. The WINC chip sends the value of the register 0x1070 which equals 0x31.
e @ 22 %% %Xy
2us/Div (421 4K Screens Q65121892 ms
[0} 1 ! 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 1 I d
; JHLA Jm Jm 1 Bl e
P L L L LJ o
H n D 00
Li 00
: 00
Command CMD_SINGLE_READ: 0xCA /* single word (4 bytes) read */
BYTE [0] = CMD_SINGLE READ
BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_0 address = 0x1070 */
BYTE [2] = address >> 8;
BYTE [3] = address;
e @ R”BR 4% %KES
2 us/Div (421.4K Screens) @ 65116634 ms
0 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 I e
L i L Juum Bl
anne Ly L_J LN J L Bllor
J i
! i
11. The WINC acknowledges the command by sending three bytes [CA] [0] [F3].
e @ 22 %% %AU% ¢
2us/Div (421 4K Screens) Q@ 407.705 us
@ | 1 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 I d
. ' = {ezs1
1 1)1 L B
LI L_J o
50 crarer R T e
gr— . f L @
= 6 : c|
12. The WINC chip sends the value of the register 0x1070 which equals 0x31.
e @ & 22 X% XA
2us/Div (421.4K Screens) Q65121892 ms
[0} | ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ! 1 ! I e
« —& (&3 53 s} [
I T i i
L_J LI LI L_J
050 cronne | nn
s BB !
:

© 2019 Microchip Technology Inc. User Guide

DS00002389C-page 114

ATWINC15x0
WINC SPI Protocol

13. Clear the WINC Interrupt.

Command CMD_SINGLE WRITE:0XC9 /* single word write */
BYTE [0] = CMD SINGLE WRITE
BYTE [1] = address >> 16; /* WIFI_HOST RCV_CTRL 0 address = 0x1070 */
BYTE [2] = address >> 8;
BYTE [3] = address;
BYTE [4] = u32data >> 24; /* Data = 0x30 */
BYTE [5] = u32data >> 16;
BYTE [6] = u32data >> 8;
BYTE [7] = u32data;
e A & 22 X% NAXA <
2us/Div (421 4K Screens @ 651323225 ms
@ | 1 1 1 1 1 \4 ! 1 ! 1 1 1 1 1 1 1 1 1 1
« ; &5 5 e Pl
: AL L i 1T
s s o LS L
|
L
| | IRQ
e @ & 22 XE AXA% ¢
2us/Div (421.4K Screens) @ 651.342415 ms
0] | I 1 1 1 I 9 1 1 1 1 1 1 L 1 I 1 ! 1 L l e
. e iy —y & |
L mun__; 1] 1171
L T L
: BN ! [

14. The chip acknowledges the command by sending two bytes [C9] [O].

e @ 2% XK %X%
2usiDw (421 4K Screens) @24457 us m—l
) | I 1 1 L 1 I 1 1 1 1 1 L 1 L 1 I 1 L g
. - =5 =
- i L 1= Bo
; Uy) B«

-
B3 &3

15. The HIF reads the data size.

/* read the rx size */
ret = nm read reg with ret (WIFI HOST RCV_CTRL 0, &req);

Command CMD SINGLE READ: OxCA /* single word (4 bytes) read */
BYTE [0] = CMD_SINGLE READ
BYTE [1] = address >> 16; /* WIFI _HOST RCV_CTRL 0 address = 0x1070 */
BYTE [2] = address >> 8;
BYTE [3] = address;
[4 & 2 % % %
2us/Div (421 4K Screens @ 651.16634 ms
0] | I 1 1 1 L 1 1 I 1 L 1 L 1 L 1 1
L i . 1
i L LILJ L
.
.
] RQ

16. The WINC acknowledges the command by sending three bytes [CA] [0] [F3].

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 115

ATWINC15x0
WINC SPI Protocol

o @ 22 %% XU
0 |““>~ ‘:H N S"'I‘” 1 °‘°$°5 s ! 1 1 1 1 1 1 1 1 1 1 1 1 1 _qj e
« N : ey o——0
? i T
| L I
nsocome I ——m T
17. The WINC chip sends the value of the register 0x1070 which equals 0x30.
o @ 22 X% XU
) l“.m ‘:“"‘5:”;” 1 1 L Q“"‘éus'“‘ 1 1 L 1 1 1 1 1 1 1 L 1 _q—lo
T8 | (s} o} o5} o}
E T 11 Juamm Bl
MOS! Chan g I IS L_J L B
iy i
1] B«
LI iRQ c‘

18. The HIF reads hif header address.

/** start bus transfer**/
ret = nm read reg with ret (WIFI_HOST RCV_CTRL 1, &address);

Command CMD_SINGLE READ: 0xCA /* single word (4 bytes) read */
BYTE [0] = CMD SINGLE READ
BYTE [1] = address >> 16; /* WIFI_HOST RCV_CTRL 1 address = 0x1084 */
BYTE [2] = address >> 8;

2
BYTE [3] = address;

o @ 22 %% %XH%

1 |““’~ ‘:‘“KS"'I”" L 1 1 el 1 1 L 1 1 1 1 1 1 1 1 1 W"
m i m u
W L L L
5 .

: :

19. The WINC acknowledges the command by sending three bytes [CA] [0] [F3].

o @ 2% %% %AXU% <

[0} |7““°" ‘:A‘ - 5"'["" 1 °‘°$’5“’ ! 1 1 1 1 1 1 1 1 1 1 1 1 1 _{—I e
5 . T
§ LT LT Bl
[50 cranner [: | —] Bl
[sscomes B ; ! I I

: 8 cx

20. The WINC chip sends the value of the register 0x1078 which equals 0x037AB0.
@ 22 X% %X%

,B o 3} s}
i LT T i
i - Ly LI LI
) | n

21. The HIF reads the hif header data (as a block).

ret = nm read block(address, (uint8*)é&strHif, sizeof (tstrHifHdr));

Command CMD_DMA EXT READ: Cc8 /* dma extended read */
BYTE [0] = CMD_DMA EXT READ
BYTE [1] = address >> 16; /* address = 0x037ABO*/
BYTE [2] = address >> 8;
BYTE [3] = address;
© 2019 Microchip Technology Inc. User Guide DS00002389C-page 116

ATWINC15x0
WINC SPI Protocol

BYTE [4] = size >> 16;
BYTE [5] = size >>;
BYTE [6] = size;

I L A4 I 1
: =3 G5} =3} CH 8
i VYT A JALLLARL Bloo
UL L U U Bllon
Bl oo
1 B or
o

& 22 X% %A%

2us/Div (421.4K Screens @651.559775 ms. m
1 1 \% 1 . 1) 1 : 1 . 1) 1 : e

{5} <5} Y,]
Jm Jmm 11111} Bl e
LI LU L B o
[1 | e 1 | I { |
$S Cha : | L_—Bc
: | Do
22. The WINC acknowledges the command by sending three bytes [C8] [0] [F3].
e & 272 X% %AXU% ¢
@ l“ﬂﬁv :A“K Jml“‘ I 1 1 o ?6‘75"" 1 1 1 1 1 1 1 1 1 1 I 1 WQ
o ; =) o) g
: . L
L L
[0150 Channer [I — ﬁ
! . E———

23. The WINC sends the data block (four bytes).

! = <) o} B

L L Jun 1111 B

L J LT LT L_J Bo
; N nn mn B
l5 Dc‘:
: B

24. The HIF calls the appropriate handler according to the hif header received which tries to receive the Response

data payload.
Note: hif receive obtains additional data.

sint8 hif receive (uint32 u32Addr, uint8 *pu8Buf, uintl6 ul6Sz, uint8 isDone)
{

uint32 address, reg;

uintl6 size;

sint8 ret = M2M SUCCESS;

ret = nm_read reg_with ret (WIFI_HOST RCV_CTRL_O, ®) ;
size = (uintl6) ((reg >> 2) & Oxfff);

ret = nm read reg with ret (WIFI_HOST RCV_CTRL 1, &address);
/* Receive the payload */

ret = nm_read block(u32Addr, pu8Buf, ul6Sz);

Command CMD_SINGLE READ: 0xCA /* single word (4 bytes) read =Y
BYTE [0] = CMD_SINGLE READ
BYTE [1] = address >> 16; /* WIFI_HOST_RCV_CTRL_0 address = 0x1070 */
BYTE [2] = address >> 8;
BYTE [3] = address;
User Guide DS00002389C-page 117

© 2019 Microchip Technology Inc.

ATWINC15x0
WINC SPI Protocol

<
&
®
5
N
ES
2
X
o
X

2us/Div (421.4K Screens) @651.16634 ms. mq_l
L 1 L 1 1 9 L 1 1 1 1 1 I 1 1 1 1 1 1 e

= Of —{ca o} (oo} {iv=s} {70}

MOSI Channel LUy | - L |}

MISO Channel H |

:SS Channel L § J

-]
o©

25. The WINC acknowledges the command by sending three bytes [CA] [0] [F3].

o @ 22 %% %K%
[0} |7““°"' ‘:N - 5"‘[‘"‘ 1 °‘°6°’”" ! 1 1 1 1 1 1 1 1 1 1 1 1 1 _q—l e
f i i
2 L L
[50 cranver [: T um B
[rscrmes BB ! | N
L] IRQ i
26. The WINC chip sends the value of the register 0x1070 which equals 0x30.
e 0 & 2% X% XA
0] e e e e T,
oEE +—{o-%} oo} oo} oo}
1111 AL 1111 I Bl
- L L L B
L 0o
: 5 0o
Command CMD_SINGLE READ: O0xCA /* single word (4 bytes) read */
BYTE [0] = CMD SINGLE READ
BYTE [1] = address >> 16; /* WIFI_HOST RCV_CTRL 1 address = 0x1084 */
BYTE [2] = address >> 8;
BYTE [3] = address;
4 ® 22 %% %MAXY

2us/Div (214K Screens @ 65146292 ms m:l_l
1 | L 1 L 1 L \4 L 1 L 1 1 1 1 1 1 1 1 L e
- O e Ty &

1

{e0}

| 1w 1 i
LI

J

uw L L
=

.
. I

27. The WINC acknowledges the command by sending three bytes [CA] [0] [F3].
B ® 22 X% %AXxu% -
@ |“'m ‘:A“.(SUTH 1 9‘06‘”"' 1 1 I 1 I 1 1 1 1 1 ! 1 1 1 WC
i LT LI 0o
usocoms [| ——um —

28. The WINC chip sends the value of the register 0x1078 which equals 0x037ABO.

e 0 & 2 % % % Y% XU <
2us/Div (421 4K Screens @ 651.515785 ms
0] 1 . 1 : 1 \) 1) 1) 1 A 1 A 1 A 1 " e
« — o ey fes
TV ATmL 111111 {11111 ®
T 01
1050 crancer [o i n g
[I~ oo
[] i 01
Command CMD DMA EXT READ: c8 /* dma extended read */
BYTE [0] = CMD DMA EXT READ
BYTE [1] = address >> 16; /* address = 0x037AB8*/

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 118

ATWINC15x0
WINC SPI Protocol

BYTE [2] = address >> 8;
BYTE [3] = address;
BYTE [4] = size >> 16;
BYTE [5] = size >>;
BYTE [6] = size;
&
Q65178809 ms
1 1 1 1 1 1 1 ! 1 1 1
4 {cz0} {50}
JULIUL Jm
H] N} L
1
%
@ 651.559775 ms
1 1 1 1 1 1 1 1 1 1 1
{oo} : {Zo}
11111 ; 111111
H [1
Cha |
:
29. The WINC acknowledges the command by sending three bytes [C8] [0] [F3].
e 3 & 22 X% WX A
2us/Div (421 4K Screens) Q@ 651570625 ms
0 1 1 1 1 1 1 \% 1 1 1 1 ! 1 1 1 1 1 ! 1 1 I e
: : o) =
— um um e
L =r 0
nsoonms [—u 0.
. 1 I
LI RQ i 01
30. The WINC sends the data block (four bytes).
e 0 & 2% X% X%
2us/Div (421.4K Screens Q65185279 ms
@ ! 1 1 1 1 \J 1 1 1 1 1 1 1 1 1 1 1 1 i I e
M +—{oc {T0 {To} oo}
LU T fImuL fuun B e
LT | S| L] L] B o
n 00
L l_ 00
' Blor

31. After the HIF layer received the response, it interrupts the chip to send the notification that the host RX is
done.

static sint8 hif set rx done(void)
{
uint32 reg;
sint8 ret = M2M SUCCESS;
ret = nm read reg with ret (WIFI_HOST RCV_CTRL 0, ®);
/* Set RX Done */
reg |= (1<<1);
ret = nm write reg(WIFI_HOST RCV_CTRL 0, reg);

Command CMD_SINGLE READ: OxCA /* single word (4 bytes) read */
BYTE [0] = CMD_SINGLE READ
BYTE [1] = address >> 16; /* WIFI _HOST RCV_CTRL 0 address = 0x1070 */
BYTE [2] = address >> 8;
BYTE [3] = address;

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 119

ATWINC15x0
WINC SPI Protocol

e @ & 2 % % %
2us/Div (421 4K Screens) Q65116634 ms

0] | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L

= DR +—{cao} {o0} {100} {70}

—um L LI L

LI RQ

32. The WINC acknowledges the command by sending three bytes [CA] [0] [F3].

e R & 2 2 % % “w x4 <
2us/Div (421.4K Screens) Q@ 407.705 us m]—l
] 1 : 1 e 9 1 : 1 : [P 1 : 1 : 1 : 1 : e
« - | E5 e
unun . :
; L L.
: Ul B oo
=[O : o

33. The WINC chip sends the value of the register 0x1070 which equals 0x30.
@ 22 %% %%X4%

2us/Div (421.4K Screens, @ 651426826 ms mq_l
1 1 1 \ ! 1 L 1 1 1 1 1 1 1 ! 1 1 e

{o30} {co} {o0} {e5}]
111111 ST Jumm Jmm B e
LI | LTI | Blor
z o ! c-:
[sscrome | I —Bw
B o
CMD_SINGLE WRITE:0XC9 /* single word write */
BYTE [0] = CMD SINGLE WRITE
BYTE [1] = address >> 16; /* WIFI_HOST RCV_CTRL 0 address = 0x1070 */
BYTE [2] = address >> 8;
BYTE [3] = address;
BYTE [4] = u32data >> 24; /* Data = 0x32*/
BYTE [5] = u32data >> 16;
BYTE [6] = u32data >> 8;
BYTE [7] = u32data;
v @ 22 %% %A% <

2us/Div (421.4K Screens) @ 651323225 ms m:l—l
1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1

) | 1 1
: L L Il L
§ L L LI L
=
—

. N ‘

» @ & 22 %% %A%

2us/Div (421.4K Screens @ 651.975305 ms mq—‘
1 1 \ 9.) 1) 1) 1 \ 1) 1) 1) e

!

{0} {oo}— (oo} 3}
s i L L Bl
LI LI L) L Bor
H J 1 Iw

Iw

Blor

34. The chip acknowledges the command by sending two bytes [C9] [0].

e 0 & 22 XX %A A
2us/Div (421.4K Screens) @24457 us
0] | L 1 1 A/ 1 1 L 1 L 1 L 1 L 1 L 1 L 1 L ¢
. - P =5 ;
— L g,
—m .
. . 1 .
: g.
User Guide DS00002389C-page 120

© 2019 Microchip Technology Inc.

ATWINC15x0
WINC SPI Protocol

35. The HIF layer allows the chip to enter Sleep mode again.

sint8 hif chip sleep (void)

{
sint8 ret = M2M SUCCESS;
uint32 reg = 0;

ret = nm write reg(WAKE REG, SLEEP VALUE);
/* Clear bit 1 */
ret = nm read reg with ret (0xl, ®);
if (reg&0x2)
{
reg &=~(1 << 1);
ret = nm write reg(0xl, reg);
}
}
Command CMD SINGLE WRITE:0XC9 /* single word write */
BYTE [0] = CMD_SINGLE WRITE
BYTE [1] = address >> 16; /* WAKE REG address = 0x1074 */
BYTE [2] = address >> 8;
BYTE [3] = address;
BYTE [4] = u32data >> 24; /5 SLEEP_VALUE Data = 0x4321 */
BYTE [5] = u32data >> 16;
BYTE [6] = u32data >> 8;
BYTE [7] = u32data;
& 22 X% XA
4K Screens. @ 790385 us
1 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L I S,
: {&o} {5} {ie=e} s} B
TR LTI 1 NVTITIL Bl
Uy 1= LiLJ Uuy Bl os
[] 00
1 Bl o
Bl or
@ 22 X% %AxXA
4K Screens, @ 209.505 us [Tn23456] |
1 1 1 1 ! 1 1 1 L 1 L 1 ! 1 ! 1 1 e
{oo} {0} {=70} {20} 5]
S VTR 1 Jmn B
L J LT 11 UL Bl
§ | 1 D 00
| B o
i B or
36. The WINC acknowledges the command by sending two bytes [C9] [0].
e R & 22 X% %xXA
2 us/Div (421.4K Screens) Q24457 us
m | 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 ! I {
« N — i
‘Clock Channel : e Jnm Bl
— L 0.
o S
n f . ro
: a -
Command CMD_INTERNAL_ READ: 0xC4 /* internal register read =Y
BYTE [0] = CMD_INTERNAL READ
BYTE [1] = address >> 8; /* address = 0x01 =
BYTE [1] |= (1 << 7); /* clockless register %Y
BYTE [2] = address;
BYTE [3] = 0x00;
37. The WINC acknowledges the command by sending three bytes [C4] [0] [F3].

© 2019 Microchip Technology Inc.

User Guide DS00002389C-page 121

ATWINC15x0
WINC SPI Protocol

& 22 XA %UAXA

2us/Dw (421.4K Screens @19.105us
L 1 I I 1 I 1 L 1 ! 1 I 1 I 1 I
i Toveal Tosoll
N [H] 0:0
1 Il J

38. Then WINC chip sends the value of the register 0x01 which equals 0x03.

e @ 2% X%
2us/Div (421 4K Screens) @ 90528 us
0] | : 1 . \ 1 . 1 : 1 : 1 . 1 : 1 .
__umm T L A
) : ; LI LI L_J L
i n
Y
b :
Command CMD INTERNAL WRITE: Cc3 /* internal register write &7
BYTE [0] = CMD INTERNAL WRITE
BYTE [1] = address >> 8; /* address = 0x01 &7
BYTE [1] [|= (1 << 7); /* clockless register */
BYTE [2] = address;
BYTE [3] = u32data >> 24; /* Data = 0x01 &7
BYTE [4] = u32data >> 16;
BYTE [5] = u32data >> 8;
BYTE [6] = u32data;
o @ 2B X% %K%
0 l“lm ‘:““S“l(B ! a”s’“ 1 1 1 1 1 1 1 1 ! 1 ! 1 1 1 _qj'
. 0 =) o) s} 5}) o) 0
[ciock channet I 1IN 1 11111 JULNTIT 11111 L Bl oo
[1051 crancer I Ll LI LI LI L_J L B
MISO Channel E '_ 00
% 0o
- | i
39. The WINC chip acknowledges the command by sending two bytes [C3] [0].
e @ & 24 7 % % % XN <
0] o e 1 : 1 : Lt 1 . 1 . 1 : , T e
§ L1 L1 Bl
1050 chonner [; | — B oo
; . ; g
5 G0 : E]c\

40. Scan Wi-Fi request is sent to the WINC chip and the response is successfully sent to the host.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 122

ATWINC15x0

Appendix A. How to Generate Certificates

15. Appendix A. How to Generate Certificates

15.1 Introduction

This chapter explains the required procedures to create and sign custom certificates using OpenSSL. To use this
guide you must install OpenSSL on your machine.

OpenSSL is an open-source implementation of the SSL and TLS protocols. The core library, written in the C
programming language, implements basic cryptographic functions and provides various utility functions.

OpenSSL can be downloaded from the following URL: https://www.openssl.org/related/binaries.html.

15.2 Steps

After installing OpenSSL, open a CMD prompt and navigate to the directory where OpenSSL was installed (For
example: C: \OpenSSL-Win64\bin).

1. Generate a key for the CA (certification authority). To generate a 4096-bit long RSA (creates a new file
CA_KEY.key to store the random key), using the following command (CMD):

openssl genrsa -out CA KEY.key 4096
2. Create your self-signed root CA certificate CA_CERT. crt; you need to provide some data for your Root
certificate, using the following command (CMD):

openssl req -new -x509 -days 1826 -key CA KEY.key -out CA CERT.crt

3. Create the custom certificate, which is signed by the CA root certificate created earlier. First, generate the
Custom. key, using the following command (CMD):

openssl genrsa -out Custom.key 4096

4. To generate a certificate request file (CSR) using this generated key, use the following command (CMD):

openssl req -new -key Custom.key -out CertReqg.csr

5. Process the request for the certificate and get it signed by the root CA, using the following command (CMD):

openssl x509 -req -days 730 -in CertReq.csr -CA CA CERT.crt -CAkey CA KEY.key -
set serial 01 -out CustomCert.crt

15.3 Limitations
The following are the limitations of BigInt ModExp () API.

1. DHE greater than 2048-bit is not supported.

2. RSA signature verification greater than 2048-bit is done in software; 4096-bit takes 4 seconds per verification,
assuming a typical public key of 2*16+1.

3. RSA signature generation greater than 2048-bit is not supported.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 123

https://www.openssl.org/related/binaries.html

16.

16.1

16.2

16.2.1

16.2.2

16.2.3

ATWINC15x0
Appendix B. X.509 Certificate Format and C...

Appendix B. X.509 Certificate Format and Conversion

Introduction
The most known encodings for the X.509 digital certificates are PEM and DER formats.

The PEM format is base64 encoding of the DER enclosed with messages "-----BEGIN CERTIFICATE-----" and "-----
END CERTIFICATE-----".

Conversion Between Different Formats

The current implementation of the WINC root_certificate_downloader supports only DER format. If the certificate is
not in DER format, it must be converted first. The conversion between different formats are done in several methods:

Using Windows

From Windows®7, double click on the . crt certificate file and then go to the Details Tab and press “Copy to File”.
Follow the Certificate Export Wizard until the Finish button.

: X4
Certificate curity Certificate
| Deta 1 = = 2 Eile 2KRB n
Gener, etais | Certification Pa . s
Certificate Export Wizard &
Show: Al = Export File Format
Certificates can be exported in a variety of file formats.
Field Value a
Version V3
=) Serial number 00c4170a220cd1c9 7f = Select the format you want to use:
_|Signature algorithm shalRSA
~ | signature hash algorithm shal ©) DER encoded binary X.509 (.CER)
_|Issuer example@atmel.com, ATMEL-... [Base-64 encoded X.509 (.CER)
Valid from Monday, February 02, 2015 7...
= - # fi P
vald to Sunday, February 02, 2020 7:... ‘ Cryptographic Message Syntax Standard - PKCS #7 Certificates (.P78)
auhiact evamnleMatmel ram OTMEI. Indude all certificates in the certification path if possible
[Copy to File...] Learn more about certificate file formats
Learn more about certificate details
< Back][Next >] [Cancel
[]

Using OpenSSL
The OpenSSL is used for certificate conversion by the following command.

openssl x509 -outform der -in certificate.pem -out certificate.der

Online Conversion

There are useful online tools which provide conversion between the certificate formats, which can be found through
searching online using keywords such as "OpenSSL".

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 124

ATWINC15x0

References

17. References

The following documents can be used for further study:

* ATWINC15x0 Wi-Fi Network Controller Software Programming Guide
+ ATWINC15x0-MR210xB Data Sheet

The following web page can be referred for further study on API:
* Atmel Software Framework for ATWINC1500 (Wi-Fi)

© 2019 Microchip Technology Inc. User Guide

DS00002389C-page 125

http://www.microchip.com/wwwproducts/en/ATWINC1500#documents
http://ww1.microchip.com/downloads/en/DeviceDoc/70005304A.pdf
http://asf.atmel.com/docs/3.33.0/samd21/html/group__winc1500__group.html

ATWINC15x0

Document Revision History

18. Document Revision History

S S S

09/2019 4.1.1 System Time Updated the section
4.5 Configuring Listen Updated a note in the
Interval and DTIM section
Monitoring
6.2.3.8 send Updated the section
6.4.3 UDP Client Example Updated the section
Code

B 10/2018 6.2.3.12 setsockopt Added SOL_SSL SOCKET

information with example.

10. Over-The-Air Upgrade Removed “no HTTPS
supported” from the

chapter.
8.5 AP Mode Code Added Power Save note.
Example
4.2 WINC Modes of Updated WINC modes of
Operation operation.
8.1 Overview and 8.2 Updated the Wi-Fi AP

Setting the WINC AP Mode K mode chapter
corresponding to
WINC1500 v19.6.1
firmware.

5. Wi-Fi Station Mode Updated the Wi-Fi AP
mode chapter
corresponding to
WINC1500 v19.6.1
firmware.

Document Removed the content
related to Wi-Fi Direct
mode and Wi-Fi Sniffer
mode.

A 05/2017 Document * Updated from Atmel to
Microchip template.
» Assigned a new
Microchip document
number. Previous
version is Atmel
42420 revision B.

¢ ISBN number added.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 126

ATWINC15x0

The Microchip Website

Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files
and information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the market today,
when used in the intended manner and under normal conditions.

» There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

» Microchip is willing to work with the customer who is concerned about the integrity of their code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code
protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 127

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

ATWINC15x0

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeelLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
1/0, SMART-1.S., SQI, SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany || GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-4994-2

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.

© 2019 Microchip Technology Inc. User Guide DS00002389C-page 128

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC B

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
http://www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

© 2019 Microchip Technology Inc.

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

User Guide

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS00002389C-page 129

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Features
	Table of Contents
	1. Host Driver Architecture
	1.1. WLAN API
	1.2. Socket API
	1.3. Host Interface (HIF)
	1.4. Board Support Package (BSP)
	1.5. Serial Bus Interface

	2. ATWINC15x0 System Architecture
	2.1. Bus Interface
	2.2. Nonvolatile Storage
	2.3. CPU
	2.4. IEEE 802.11 MAC Hardware
	2.5. Program Memory
	2.6. Data Memory
	2.7. Shared Packet Memory
	2.8. IEEE 802.11 MAC Firmware
	2.9. Memory Manager
	2.10. Power Management
	2.11. WINC RTOS
	2.12. WINC IoT Library
	2.12.1. WINC TCP/IP STACK
	2.12.2. DHCP CLIENT/SERVER
	2.12.3. DNS RESOLVER
	2.12.4. SNTP
	2.12.5. Enterprise Security
	2.12.6. TRANSPORT LAYER SECURITY
	2.12.7. WI-FI PROTECTED SETUP
	2.12.8. CRYPTO LIBRARY

	3. WINC Initialization and Simple Application
	3.1. BSP Initialization
	3.2. WINC Host Driver Initialization
	3.3. Socket Layer Initialization
	3.4. WINC Event Handling
	3.4.1. Asynchronous Events
	3.4.2. Interrupt Handling

	3.5. Example Code

	4. ATWINC15x0 Configuration
	4.1. Device Parameters
	4.1.1. System Time
	4.1.2. Firmware and Driver Version

	4.2. WINC Modes of Operation
	4.2.1. Idle Mode
	4.2.2. Wi-Fi Station Mode
	4.2.3. Wi-Fi Hotspot (AP) Mode

	4.3. Network Parameters
	4.3.1. Wi-Fi MAC Address
	4.3.2. IP Address

	4.4. Power Save Modes
	4.4.1. M2M_PS_MANUAL
	4.4.2. M2M_PS_AUTOMATIC
	4.4.3. M2M_PS_H_AUTOMATIC
	4.4.4. M2M_PS_DEEP_AUTOMATIC

	4.5. Configuring Listen Interval and DTIM Monitoring

	5. Wi-Fi Station Mode
	5.1. Scan Configuration Parameters
	5.1.1. Scan Region
	5.1.2. Scan Options

	5.2. Wi-Fi Scan
	5.3. Wi-Fi Security
	5.4. On Demand Wi-Fi Connection
	5.4.1. Example Code
	5.4.1.1. Example Code for Connecting to Enterprise Network (PEAP and TTLSv0) with MSCHAPv2 as Phase2 Authentication
	5.4.1.2. Example Code for Connecting to PEAP Enterprise Network with TLS as Phase2 Authentication and EAP- TLS

	5.5. Default Connection
	5.6. Encrypted Credential Storage
	5.7. Simple Roaming
	5.8. Multiple Gain Table
	5.8.1. Writing the Gain Table to ATWINC15x0
	5.8.2. Selecting a Specific Gain Table

	5.9. Host File Download
	5.9.1. Overview
	5.9.2. OTA Initialization
	5.9.3. Using Host File Download for MCU OTA
	5.9.4. API Description
	5.9.4.1. OTA File Get
	5.9.4.2. File Get Callback
	5.9.4.3. OTA File Read HIF
	5.9.4.4. File Read HIF Callback
	5.9.4.5. OTA File Read SPI
	5.9.4.6. OTA File Erase API
	5.9.4.7. File Erase Callback
	5.9.4.8. OTA Abort API

	5.9.5. Limitations
	5.9.6. Built in Automated Test Equipment (ATE) Mechanism

	6. Socket Programming
	6.1. Overview
	6.1.1. Socket Types
	6.1.2. Socket Properties
	6.1.3. Limitations

	6.2. Sockets API
	6.2.1. API Prerequisites
	6.2.2. Non-blocking Asynchronous Socket APIs
	6.2.3. Socket API Functions
	6.2.3.1. socketInit
	6.2.3.2. registerSocketCallback
	6.2.3.3. socket
	6.2.3.4. connect
	6.2.3.5. bind
	6.2.3.6. listen
	6.2.3.7. accept
	6.2.3.8. send
	6.2.3.9. sendto
	6.2.3.10. recv/recvfrom
	6.2.3.11. close
	6.2.3.12. setsockopt
	6.2.3.13. gethostbyname

	6.2.4. Summary

	6.3. Socket Connection Flow
	6.3.1. TCP Client Operation
	6.3.2. TCP Server Operation
	6.3.3. UDP Client Operation
	6.3.4. UDP Server Operation
	6.3.5. DNS Host Name Resolution

	6.4. Example Code
	6.4.1. TCP Client Example Code
	6.4.2. TCP Server Example Code
	6.4.3. UDP Client Example Code
	6.4.4. UDP Server Example Code

	7. Transport Layer Security (TLS)
	7.1. TLS Overview
	7.2. TLS Connection Establishment
	7.3. Server Certificate Installation
	7.3.1. Technical Background
	7.3.1.1. Public Key Infrastructure
	7.3.1.2. TLS Server Authentication

	7.3.2. Adding a Certificate to the WINC Trusted Root Certificate Store

	7.4. WINC TLS Limitations
	7.4.1. Concurrent Connections
	7.4.2. TLS Supported Ciphers
	7.4.3. Supported Hash Algorithms
	7.4.4. TLS Certificate Constraints
	7.4.5. ECC Cipher Suite

	7.5. SSL Client Code Example

	8. Wi-Fi AP Mode
	8.1. Overview
	8.2. Setting the WINC AP Mode
	8.3. Limitations
	8.4. Sequence Diagram
	8.5. AP Mode Code Example

	9. Provisioning
	9.1. HTTP Provisioning
	9.1.1. Provisioning Control Flow
	9.1.2. HTTP Redirect Feature
	9.1.3. Provisioning Code Example

	9.2. Limitations
	9.3. Wi-Fi Protected Setup (WPS)
	9.3.1. WPS Configuration Methods
	9.3.2. WPS Control Flow
	9.3.3. WPS Limitations
	9.3.4. WPS Code Example

	10. Over-The-Air Upgrade
	10.1. Overview
	10.2. OTA Image Architecture
	10.3. OTA Download Sequence Diagram
	10.4. OTA Firmware Rollback
	10.5. OTA Limitations
	10.6. OTA Code Example

	11. Multicast Sockets
	11.1. Overview
	11.2. How to Use Filters
	11.3. Multicast Socket Code Example

	12. WINC Serial Flash Memory
	12.1. Overview and Features
	12.2. Accessing to Serial Flash
	12.3. Read/Write/Erase Operations
	12.3.1. Flash Read, Erase, and Write Code Examples

	13. Host Interface (HIF) Protocol
	13.1. Transfer Sequence Between the HIF Layer and the WINC Firmware
	13.1.1. Frame Transmit
	13.1.2. Frame Receive

	13.2. HIF Message Header Structure
	13.3. HIF Layer APIs
	13.4. Scan Code Example

	14. WINC SPI Protocol
	14.1. Introduction
	14.1.1. Command Format
	14.1.2. Response Format
	14.1.3. Data Packet Format
	14.1.4. Error Recovery Mechanism
	14.1.5. Clockless Registers Access

	14.2. Message Flow for Basic Transactions
	14.2.1. Read Single Word
	14.2.2. Read Internal Register (for clockless registers)
	14.2.3. Read Block
	14.2.4. Write Single Word
	14.2.5. Write Internal Register (for clockless registers)
	14.2.6. Write Block

	14.3. SPI Level Protocol Example
	14.3.1. TX (Send Request)
	14.3.2. RX (Receive Response)

	15. Appendix A. How to Generate Certificates
	15.1. Introduction
	15.2. Steps
	15.3. Limitations

	16. Appendix B. X.509 Certificate Format and Conversion
	16.1. Introduction
	16.2. Conversion Between Different Formats
	16.2.1. Using Windows
	16.2.2. Using OpenSSL
	16.2.3. Online Conversion

	17. References
	18. Document Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

