

Si52254/Si52258 Data Sheet

4/8-Output PCIe Gen1/2/3/4/5 Clock Generator

The Si52258/54 are the industry's highest performance and lowest power automotive grade PCI Express clock generators for PCIe Gen1/2/3/4/5 common clock and/or SRIS applications. The Si52258 and Si52254 source eight and four 100 MHz PCIe differential clock outputs, respectively. All clock outputs are compliant to PCIe Gen1/2/3/4/5 common clock and separate reference clock architecture specifications.

Hardware control pins are available for enabling and disabling the outputs, as well as spread spectrum enable/disable for EMI reduction.

For more information about PCI Express, Silicon Labs' complete PCIe portfolio, application notes, and design tools, including the Silicon Labs PCIe Clock Jitter Tool for PCI Express compliance, please visit the Silicon Labs PCI Express Learning Center.

Applications:

- Infotainment
- ADAS ECU

- Radar Sensors
- · LiDar Sensors

KEY FEATURES

- 8/4-outputs with internal termination
- PCIe Gen 1/2/3/4/5 compliant
- Automotive grade 2: –40 to +105 °C
- Internal 100 Ω or 85 Ω line matching
- Excellent jitter performance
 - 0.05 ps RMS (Gen3/4)
 - 0.025 ps RMS (Gen5)
- Triangular spread spectrum for EMI reduction, down spread 0.25% or 0.5%
- Individual hardware control pins for Output Enable, Spread Spectrum Enable
- Enable and Frequency Select
- · 25 MHz crystal input or clock input
- 1.8–3.3 V power supply
- Pb-free, RoHS-6 compliant

Table of Contents

1.	Features List	. 3
2.	Ordering Guide	. 4
3.	Functional Description.	. 5
	3.1 Functional Block Diagram	. 5
	3.2 Crystal Recommendations	. 5
	3.3 HCSL Differential Output Terminations	. 5
	3.4 Output Enable/Disable	. 5
	3.5 Spread Spectrum	. 5
	3.6 Loss of Signal (LOS)	. 6
4.	Power Supply Filtering Recommendations	. 7
5.	Electrical Specifications	. 8
	Pin Descriptions	14
	Pin Descriptions	
	•	.14
6.	6.1 Si52258A-D01AM Pin Descriptions (40-QFN)	.14 .18
6.	6.1 Si52258A-D01AM Pin Descriptions (40-QFN)	.14 .18 21
6.	6.1 Si52258A-D01AM Pin Descriptions (40-QFN) .	.14 .18 21 .21
6. 7.	6.1 Si52258A-D01AM Pin Descriptions (40-QFN) .<	.14 .18 21 .21 .23
6. 7.	6.1 Si52258A-D01AM Pin Descriptions (40-QFN) .<	.14 .18 21 .21 .23 .25
6. 7.	6.1 Si52258A-D01AM Pin Descriptions (40-QFN) .<	.14 .18 21 .21 .23 .25
6. 7. 8.	6.1 Si52258A-D01AM Pin Descriptions (40-QFN) .<	.14 .18 21 .23 .23 .25 .25

1. Features List

- 8/4-outputs with internal termination
- PCIe Gen1/2/3/4/5 compliant
- Automotive grade 2: -40 to +105 °C
- Internal 100 Ω or 85 Ω line matching
- Excellent jitter performance
 - 0.05 ps RMS (Gen3/4)
 - 0.025 ps RMS (Gen5)
- Triangular spread spectrum for EMI reduction, down spread 0.25% or 0.5%
- · Individual hardware control pins for Output Enable, Spread Spectrum Enable
- Enable and Frequency Select
- 25 MHz crystal input or clock input
- 1.8-3.3 V power supply
- Pb-free, RoHS-6 compliant

2. Ordering Guide

Number of Outputs	Part Number	Package Type	Temperature
8	Si52258A-D01AM	40-QFN	Automotive, -40 to 105 °C
	Si52258A-D01AMR	40-QFN – Tape and Reel	Automotive, -40 to 105 °C
4	Si52254A-D01AM	32-QFN	Automotive, -40 to 105 °C
	Si52254A-D01AMR	32-QFN – Tape and Reel	Automotive, -40 to 105 °C

3. Functional Description

3.1 Functional Block Diagram



Figure 3.1. Si5225x Block Diagram

3.2 Crystal Recommendations

The Si52258/4 operates from a parallel resonance 25 MHz crystal, or clock input. Crystal operation requires external loading capacitors to match crystal capacitive loading requirements. Si52258/4 XA/XB inputs present 2.5 pf of stray capacitance.

3.3 HCSL Differential Output Terminations

Termination for HCSL Outputs

The Si52254/8 HCSL drivers feature integrated termination resistors to simplify interfacing to an HCSL receiver. The HCSL driver supports both 100 Ω and 85 Ω transmission line options, and can be selected using the IMP_SEL hardware input pin.

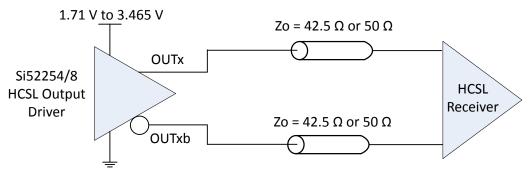


Figure 3.2. HCSL Internal Termination Mode

3.4 Output Enable/Disable

An output enable pin provides a convenient method of disabling or enabling the output drivers. When the output enable pin is held high, all designated outputs will be disabled. When held low, the designated outputs will be enabled.

3.5 Spread Spectrum

To help reduce electromagnetic interference (EMI), the Si52254/8 supports spread spectrum modulation. Spread spectrum can be enabled by the hardware input pin.

3.6 Loss of Signal (LOS)

The LOS indicator is used to check for the presence of an input reference source (crystal or clock). LOS will assert when the reference source frequency drops below 10 MHz.

The LOS pin must be checked prior to selecting the clock input or should be polled to check for the presence of the currently selected input clock. In the event that a reference source is not present, the associated LOS pin will assume a logic low (LOS = 0) state. When a reference source is present at the associated input clock pin, the LOS pin will assume a logic high (LOS = 1) state.

4. Power Supply Filtering Recommendations

The Si52258/4 features internal LDOs on each power supply pin, providing excellent power supply noise rejection. As a guideline, each power supply pin should use a parallel combination of a 1 μ f and a 0.1 μ F bypass capacitor placed as close to the supply pin as possible.

5. Electrical Specifications

Table 5.1. Recommended Operating Conditions

 $(V_{DD} = V_{DDA} = V_{DD})_{DIG} = V_{DD})_{XTAL} = 1.8 V \text{ to } 3.3 V + 5\% / -5\%, V_{DDO} = 1.8 V \pm 5\%, 2.5 V \pm 5\%, \text{ or } 3.3 V \pm 5\%, T_A = -40 \text{ to } 105 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Ambient Temperature	T _A		-40	25	105	°C
Junction Temperature	TJ _{MAX}		—	—	125	°C
Core Supply Voltage	V _{DDA} , V _{DD_DIG} , V _{DD_xtal}		1.71		3.46	V
Output Driver Supply Voltage	V _{DDO}		1.71	_	3.46	V

Note:

1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.

2. All core voltages (VDD_DIG, VDDA, VDD_XTAL) must be connected to the same voltage.

Table 5.2. DC Characteristics

 $(V_{DD} = V_{DDA} = V_{DD} DIG = V_{DD} XTAL = 1.8 V to 3.3 V +5\% -5\%, V_{DDO} = 1.8 V \pm 5\%, 2.5 V \pm 5\%, or 3.3 V \pm 5\%, T_A = -40 to 105 °C)$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Core Supply Current	I _{DD}		_	26	40	mA
Output Buffer Supply Cur- rent	I _{DDOx}	HCSL Output ¹ @ 100 MHz	_	20	22	mA
Tatal David Diadia atian?		40-pin		550	750	mW
Total Power Dissipation ²	P _d	32-pin	_	300	445	mW
Notes:	incted into a 1		-			
1. Differential outputs term		100Ω load at 3.3 V.				

2. Total power dissipation calculated with all 100 MHz HCSL running at 3.3 V.

Table 5.3. External Crystal Input Specification

 $(V_{DD} = V_{DDA} = V_{DD} DIG = V_{DD} XTAL = 1.8 V to 3.3 V +5\% -5\%, V_{DDO} = 1.8 V \pm 5\%, 2.5 V \pm 5\%, or 3.3 V \pm 5\%, T_A = -40 to 105 °C)$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Crystal Frequency	F _{xtal}			25		MHz
Crystal Drive Level	dL		_	_	250	μW
Input Capacitance	C _{IN}		_	2.5		pF
Input Voltage	V _{XIN}		-0.3	_	1.3	V

Table 5.4. Differential Clock Output Specifications

$(V_{DD} = V_{DDA} = V_{DD_{DIG}} = V_{DD_{XTAL}} = 1.8 V \text{ to } 3.3 V +5\%/-5\%, V$	V_{DDO} = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, T _A = -40 to 105 °C)
---	---

Parameter	Symbol	Test Con	dition	Min	Тур	Max	Units
Output Frequency	f _{OUT}				100		MHz
Duty Cycle	DC			48	_	52	%
Output-Output Skew	T _{SK}			_	_	80	ps
Output Voltage Swing	V _{SEPP}	HCSL		0.7	0.8	0.9	V _{PP}
Common Mode Voltage	V _{CM}	HCSL		0.35	0.4	0.45	V
HCSL Edge Rate	Edgr	Notes 8, 1	10, 14	1		4.5	V/ns
HCSL Delta Tr	D _{tr}	Notes 10,	13, 14	_		155	ps
HCSL Delta Tf	D _{tf}	Notes 10,	13, 14	_		155	ps
HCSL Vcross Abs	V _{xa}	Notes 7, 9,	10, 13	250		550	mV
HCSL Delta Vcross	D _{vcrs}	Notes 10, 13		_		140	mV
HCSL Vovs	V _{ovs}	Notes 10, 13		_		V _{HIGH} +300	mV
HCSL Vuds	V _{uds}	Notes 10, 13		_		V _{LOW} -300	mV
HCSL Vrng	V _{rng}	Notes 10, 13		V _{HIGH} -200		V _{LOW} +200	mV
Rise and Fall Times	+ /4		I			400	
(20% to 80%)	t _R /t _F	HCS	L	_		420	ps

						peomoation
Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Notes:						
1. For best jitter performa	nce, keep the midpoi	nt differential input slew rate fast	er than 0.3 V/	ns.		
2. For best jitter performa	nce, keep the midpoi	nt input single ended slew rate fa	aster than 1 V	/ns.		
3. Input capacitance on c load capacitance.	rystal pins targets 23	pf each plus 1 pf external trace of	capacitance to	o provide 12 p	of series equiv	alent crysta
4. Measured at crossing p	point where the instar	ntaneous voltage value of the risi	ng edge of Cl	K equals the	falling edge of	of CLK#.
mV on the differential v	vaveform . Scope is s	n a component test board. The e set to average because the scope ng clock and Falling Clock#. Sign	e sample cloc	k is making m	nost of the dyr	namic wig-
6. This measurement refe	ers to the total variation	on from the lowest crossing point	to the highes	t, regardless o	of which edge	is crossing
7. Vcross(rel) Min and Ma 0.5 (0.700 – Vhavg).	ax are derived using t	he following, Vcross(rel) Min = 0	.250 + 0.5 (Vł	navg - 0.700),	Vcross(rel) N	1ax = 0.550
8. Measurement taken fro	om Single Ended wav	eform.				
9. Measurement taken fro	om differential wavefo	orm VLow Math function.				
10. Overshoot is defined as	s the absolute value	of the maximum voltage.				
11. Undershoot is defined	as the absolute value	of the minimum voltage.				
12. The crossing point mus	st meet the absolute a	and relative crossing point specif	ications simul	taneously.		
13. ΔVcross is defined as t allowed variance in Vcr		II crossing voltages of Rising CL r system.	OCK and Fall	ing CLOCK#.	This is the m	aximum
14. Measured with oscillos	cope, averaging off, u	using min max statistics. Variatio	n is the delta l	between min	and max.	
OUTx Vcn OUTx OUTx		se Vcm Vpr	o_diff = 2*Vpp_	Se		

Table 5.5. Performance Characteristics

 $(V_{DD} = V_{DDA} = V_{DD_DIG} = V_{DD_XTAL} = 1.8 \text{ V to } 3.3 \text{ V } +5\% -5\%, V_{DDO} = 1.8 \text{ V } \pm5\%, 2.5 \text{ V } \pm5\%, \text{ or } 3.3 \text{ V } \pm5\%, T_A = -40 \text{ to } 105 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Power Ramp	t _{VDD}	0 V to V _{DDmin}	0.1	_	10	ms
Clock Stabilization from Power-up	t _{STABLE}	Time for clock outputs to appear after POR	_	15	25	ms
Spread Spectrum PP Frequency Devia- tion	SSDEV		0.1	_	2.5	%
0.5% Spread Frequency Deviation	SSDEV		0.4	0.45	0.5	%
Spread Spectrum Modulation Rate	SSDEV		30	31.5	33	kHz
Notes: 1. Default value is ~31.5 kHz.					1	

Table 5.6. PCI-Express Clock Outputs (100 MHz HCSL)

$(V_{DD} = V_{DDA} = V_{DD_{DIG}} = V_{DD_{XTAL}} = 1.8 \text{ V to } 3.3 \text{ V } +5\% -5\%, V_{DDO} = 1.8 \text{ V } \pm5\%, 2.5 \text{ V } \pm5\%, \text{ or } 3.3 \text{ V } \pm5\%, \text{ T}_{A} = -40 \text{ to } 105 \text{ }^{\circ}\text{C})$

Parameter	Test Condition	SSC On/Off	Тур	Мах	Units
	Includes PLL BW 1.5–22 MHz,	Off	11	19	ps RMS
PCle Gen 1.1	Peaking = 3 dB, Td = 10 ns,			20	
	Ftrk = 1.5 MHz with BER = 1E-12 1	On	22	30	ps RMS
	Includes PLL BW 5MHz and 8–16 MHz,	Off	0.02		ps RMS
	Jitter Peaking = 0.01–1 dB and 3 dB,				
PCle Gen 2.1	Td = 12 ns, Low Band, F < 1.5 MHz ¹	On	0.12	0.21	ps RMS
FCIe Gell 2.1	Includes PLL BW 5 MHz and 8–16 MHz,	Off	0.2	0.31	ps RMS
	Jitter Peaking = 0.01–1 dB and 3 dB,	2		1.0	5140
	Td = 12 ns, High Band, 1.5 MHz < F < Nyquist ¹	On	0.8	1.3	ps RMS
	Includes PLL BW 2-4 MHz and 5 MHz, Peaking =	Off	0.06	0.1	ps RMS
PCIe Gen 3.0 Com- mon Clock	0.01–2 dB and 1 dB, Td = 12 ns, CDR = 10 MHz ^{1, 2}	On	0.26	0.36	ps RMS
	Includes PLL BW 4 MHz				
PCIe Gen3.0 SRIS	Peaking = 2 dB and 1dB, Td = 12 ns $\frac{1}{2}$	On	0.31	0.36	ps RMS
	CDR = 10 MHz ^{1, 2}				
PCle Gen 4.0 Com-	Includes PLL BW 2–4 MHz and 5 MHz, Peaking = 0.01–2 dB and 1dB,	Off	0.05	0.1	ps RMS
mon Clock	Td = 12 ns, CDR = 10 MHz $^{1, 2}$	On	0.26	0.36	ps RMS
	Includes PLL BW 4 MHz				
PCIe Gen4.0 SRIS	Peaking = 2 dB and 1 dB, Td = 12 ns	On	0.31	0.36	ps RMS
	CDR = 10 MHz ^{1, 2}				
PCle Gen5.0 Com-		Off	0.025	0.04	Ps RMS
mon Clock		On	0.1	0.15	Ps RMS
PCIe Gen5.0 SRIS		On	0.08	0.1	Ps RMS
Note:		1		1	1

Note:

1. All output clocks 100 MHz HCSL format. Jitter data taken from Clock Jitter Tool v.1.3.

2. Excludes oscilloscope sampling noise.

Parameter	Symbol	Test Condition ¹	Value	Units
Si52258 — 40 QFN				1
		Still Air	23.1	
Thermal Resistance, Junction to Ambient	θ _{JA}	Air Flow 1 m/s	17.5	
		Air Flow 2 m/s	16.5	
Thermal Resistance, Junction to Case	θ _{JC}		13.4	°C/W
Thermal Desistance Investigate Desired	θ _{JB}		8.7	
Thermal Resistance, Junction to Board	Ψјв	Still Air	8.4	-
Si52254 — 32 QFN			1	l
		Still Air	28.4	
Thermal Resistance, Junction to Ambient	θ_{JA}	Air Flow 1 m/s	24	
		Air Flow 2 m/s	23	
Thermal Resistance, Junction to Case	θ _{JC}		15.9	°C/W
	θ _{JB}		11.5	1
Thermal Resistance, Junction to Board	ΨJB	Still Air	11.2	
Note: 1. Based on JEDEC standard 4-layer PCB.		1	1	1

Table 5.7. Thermal Characteristics

Parameter	Symbol	Test Condition	Value	Units
Storage Temperature Range	T _{STG}		-55 to +150	°C
	V _{DD}		-0.5 to 3.8	V
	V _{DDA}		-0.5 to 3.8	V
DC Supply Voltage	VDD _{xtal}		-0.5 to 3.8	V
	V _{DDO}		-0.5 to 3.8	V
Input Voltage Range	VI	XIN/XOUT	-0.3 to 1.3	V
Latch-up Tolerance	LU		JESD78 Com	pliant
ESD Tolerance	НВМ	100 pF, 1.5 kΩ	2.0	kV
Junction Temperature	T _{JCT}		-55 to 125	°C
Soldering Temperature	T _{PEAK}		260	°C
Soldering Temperature Time at T _{PEAK}	T _P		20 to 40	sec

Table 5.8. Absolute Maximum Ratings^{1,2,3}

Notes:

1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. For more packaging information, go to www.silabs.com/support/quality/pages/RoHSInformation.aspx.

3. The device is compliant with JEDEC J-STD-020.

6. Pin Descriptions

6.1 Si52258A-D01AM Pin Descriptions (40-QFN)

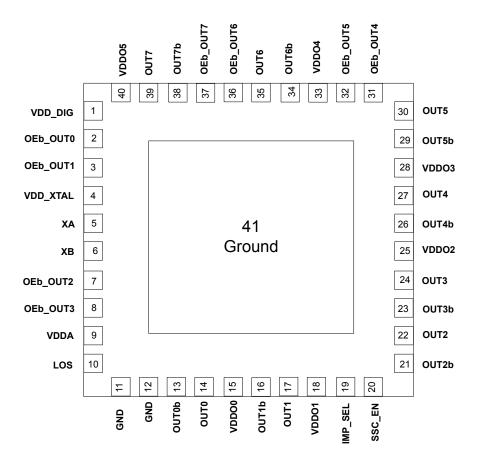


Figure 6.1. 40-QFN

Pin Number	Pin Name	Pin Type	Function	
1	VDD_DIG	Р	Voltage supply for digital functions. Connect to 1.8–3.3 V. Part of internal core VDD voltage. Must be connected to same voltage as VDDA and VDD_XTAL.	
			Output enable pin for OUT1. Default low.	
2	OEb_OUT0	I	Low = output enabled	
			High = output disabled	
			Output enable pin for OUT1. Default low.	
3	OEb_OUT1	I	Low = output enabled	
			High = output disabled	
4	VDD_XTAL	Р	Voltage supply for crystal oscillator. Connect to 1.8–3.3 V. Part of internal core VDD voltage. Must be connected to same voltage as VDDA and VDD_DIG.	
5	ХА	I	Connect to 25 MHz input crystal. Refer to Section 5. Electrical Specifica-	
6	ХВ	0	tions for recommended crystal specifications.	
			Output enable pin for OUT2. Default low.	
7	OEb_OUT2	I	Low = output enabled	
			High = output disabled	
			Output enable pin for OUT3. Default low.	
8	OEb_OUT3	I	Low = output enabled	
			High = output disabled	
0		P	Core Supply Voltage. Connect to 1.8–3.3 V.	
9	VDDA	Р	Must be connected to same voltage as VDD_DIG and VDD_XTAL.	
10	LOS	0	The LOS status pin indicates whether the reference input has dropped be- low 10 MHz. LOS is active low, open drain output and requires an external pull-up resistor of 1 to 10 k Ω for proper operation. If LOS is not required, this pin can be left unconnected.	
			0 = reference input has dropped below 10 MHz	
			1 = reference input is present (>10 MHz)	
11	GND	_	Connect this pin to ground.	
12	GND		Connect this pin to ground.	
13	OUT0b	0	Output Clock	
14	OUTO	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	
			Supply Voltage (1.8–3.3 V) for OUT0	
15	VDDO0	Р	Leave VDDOx pins of unused output drivers unconnected. An alternate op- tion is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.	

Table 6.1. Si52258A-D01AM Pin Descriptions (40-QFN)

Pin Number	Pin Name	Pin Type	Function	
16	OUT1b	0	Output Clock	
17	OUT1	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	
			Supply Voltage (1.8–3.3 V) for OUT1	
18	VDDO1	Р	Leave VDDOx pins of unused output drivers unconnected. An alternate option is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.	
			Impedance select pin for output drivers. Default low. IMP_SEL pin is sampled at power-up only.	
19	IMP_SEL	I	Low = 100 Ω	
			High = 85 Ω	
			Spread spectrum enable pin. Default low.	
20	SSC_EN	I	Low = spread OFF	
			High = spread ON (–0.5%)	
21	OUT2b	0	Output Clock	
22	OUT2	0	 100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected. 	
23	OUT3b	0	Output Clock	
24	OUT3	0	Termination recommendations are provided in 3.3 HCSL Differential Outputs should be left unconnected.	
			Supply Voltage (1.8–3.3 V) for OUT2 and OUT3	
25	VDDO2	Р	Leave VDDOx pins of unused output drivers unconnected. An alternate op tion is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.	
26	OUT4b	0	Output Clock	
27	OUT4	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	
			Supply Voltage (1.8–3.3 V) for OUT4 and OUT5	
28	VDDO3	Р	Leave VDDOx pins of unused output drivers unconnected. An alternate op- tion is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.	
29	OUT5b	0	Output Clock	
30	OUT5	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	
			Output enable pin for OUT4. Default low.	
31	OEb_OUT4	I	Low = output enabled	
			High = output disabled	

Pin Number	Pin Name	Pin Type	Function	
			Output enable pin for OUT5. Default low.	
32	OEb_OUT5	I	Low = output enabled	
			High = output disabled	
			Supply Voltage (1.8–3.3 V) for OUT6	
33	VDDO4	Ρ	Leave VDDOx pins of unused output drivers unconnected. An alternate op- tion is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.	
34	OUT6b	0	Output Clock	
35	OUT6	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	
			Output enable pin for OUT6. Default low.	
36	OEb_OUT6	I	Low = output enabled	
			High = output disabled	
			Output enable pin for OUT7. Default low.	
37	OEb_OUT7	I	Low = output enabled	
			High = output disabled	
38	OUT7b	0	Output Clock	
39	OUT7	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	
			Supply Voltage (1.8–3.3 V) for OUT7	
40	VDDO5	Р	Leave VDDOx pins of unused output drivers unconnected. An alternate op- tion is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.	
			Ground Pad	
41	GND PAD	Р	This pad provides electrical and thermal connection to ground and must be connected for proper operation.	

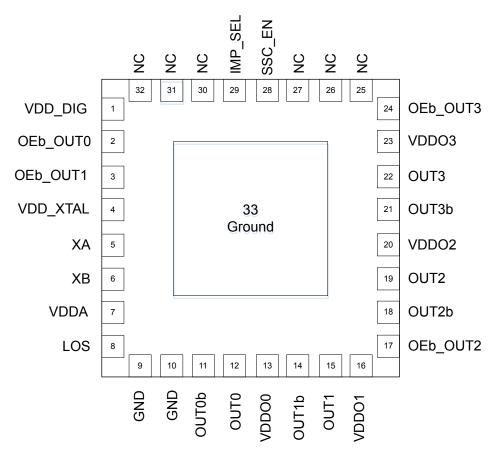


Figure 6.2. 32-QFN

Pin Number	Pin Name	Pin Type	Function
1	VDD_DIG	Р	Voltage supply for digital functions. Connect to 1.8–3.3 V. Part of internal core VDD voltage. Must be connected to same voltage as VDDA and VDD_XTAL.
2	OEb_OUT0	I	Output enable pin for OUT0. Default low. Low = output enabled High = output disabled
3	OEb_OUT1	I	Output enable pin for OUT1. Default low. Low = output enabled High = output disabled
4	VDD_XTAL	Р	Voltage supply for crystal oscillator. Connect to 1.8–3.3 V. Part of internal core VDD voltage. Must be connected to same voltage as VDDA and VDD_DIG."
5	ХА	I	Refer to Section 5. Electrical Specifications for recommended crystal speci-
6	ХВ	0	fications.

Pin Number	Pin Name	Pin Type	Function	
			Core Supply Voltage. Connect to 1.8–3.3 V.	
7	VDDA	Р	See the Si5332-AM1/2/3 Family Reference Manual for power supply filter- ing recommendations.	
			Must be connected to same voltage as VDD_DIG and VDD_XTAL.	
8	LOS	0	 The LOS status pin indicates whether the reference input has dropped below 10 MHz. LOS is active low, open drain output and requires an external pull-up resistor of 1 to 10 kΩ for proper operation. If LOS is not required, this pin can be left unconnected. 0 = reference input has dropped below 10 MHz 1 = reference input is present (>10 MHz) 	
9	GND	Р		
10	GND		Connect these pins to ground.	
11	OUTOb	0	Output Clock	
	00100	0	-	
12	Ουτο	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	
			Supply Voltage (1.8–3.3 V) for OUT0	
13	VDDO0	Р	See the Si5332-AM1/2/3 Family Reference Manual for power supply filter- ing recommendations.	
			Leave VDDOx pins of unused output drivers unconnected. An alternate op- tion is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.	
14	OUT1b	0	Output Clock	
15	OUT1	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	
			Supply Voltage (1.8–3.3 V) for OUT1	
16	VDDO1	Ρ	Leave VDDOx pins of unused output drivers unconnected. An alternate of tion is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.	
			Output enable pin for OUT2. Default low.	
17	OEb_OUT2	I	Low = output enabled	
			High = output disabled	
18	OUT2b	0	Output Clock	
19	OUT2	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	
			Supply Voltage (1.8–3.3 V) for OUT2	
20	VDDO2	Ρ	Leave VDDOx pins of unused output drivers unconnected. An alternate op- tion is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.	
21	OUT3b	0	Output Clock	
22	OUT3	0	100 MHz HCSL output. Termination recommendations are provided in 3.3 HCSL Differential Output Terminations. Unused outputs should be left unconnected.	

Pin Number	Pin Name	Pin Type	Function
			Supply Voltage (1.8–3.3 V) for OUT3
23	VDDO3	Р	Leave VDDOx pins of unused output drivers unconnected. An alternate op- tion is to connect the VDDOx pin to a power supply and disable the output driver to minimize current consumption.
			Output enable pin for OUT3. Default low.
24	OEb_OUT3	I	Low = output enabled
			High = output disabled
25	NC	_	
26	NC	_	Do not connect these pins to anything.
27	NC	_	
			Spread spectrum enable pin. Default low.
28	SSC_EN	I	Low = spread OFF
			High = spread ON (–0.5%)
			Impedance select pin for output drivers. Default low. IMP_SEL pin is sampled at power-up only.
29	IMP_SEL	Ι	Low = 100 Ω
			High = 85 Ω
30	NC	_	
31	NC	—	Do not connect these pins to anything.
32	NC		
			Ground Pad
33	GND PAD	Р	This pad provides electrical and thermal connection to ground and must be connected for proper operation.

7. Package Outline

7.1 Si52258A-D01AM 6x6 mm 40-QFN Package Diagram

The figure below illustrates the package details for the Si52258A-D01AM in 40-QFN. The table below lists the values for the dimensions shown in the illustration.

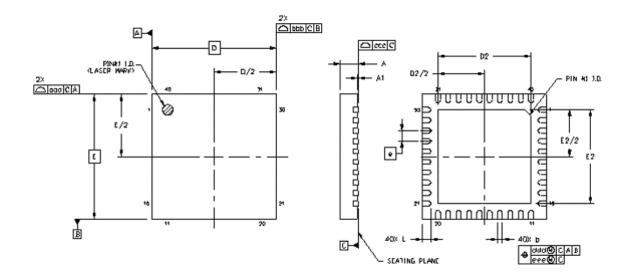
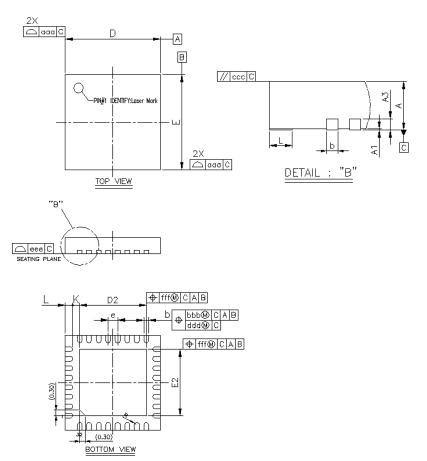
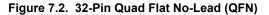


Figure 7.1. 40-Pin Quad Flat No-Lead (QFN)


Table 7.1.	Package	Dimensions
------------	---------	------------


Dimension	Min	Nom	Мах
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D		6.00 BSC	
D2	4.35	4.50	4.65
e	0.50 BSC		
E	6.00 BSC		
E2	4.35	4.50	4.65
L	0.30	0.40	0.50
ааа	—	—	0.15
bbb	—	—	0.15
ccc	—	—	0.08
ddd	_	—	0.10
eee			0.05

Dimension	Min	Nom	Мах		
Notes:					
1. All dimensions shown are in millimeters (mm) unless otherwise noted.					
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.					
3. This drawing conforms to the JEDEC Solid State Outline MO-220.					
4. Recommended card reflow p	rofile is per the JEDEC/IPC J-ST	0-020 specification for Small Body	Components.		

7.2 Si52254A-D01AM 5x5 mm 32-QFN Package Diagram

The figure below illustrates the package details for the Si52254A-D01AM 32-QFN option. The table below lists the values for the dimensions shown in the illustration.

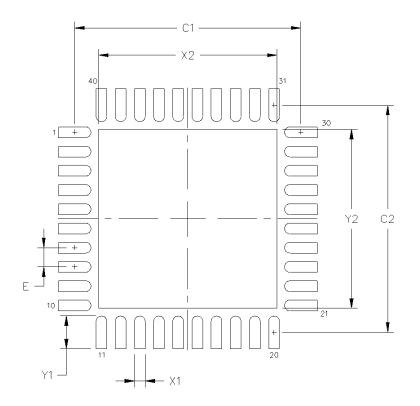
Table 7.2.	Package	Dimensions
------------	---------	------------

Dimension	MIN	NOM	MAX
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
A3		0.20 REF	
b	0.18	0.25	0.30
D/E	4.90	5.00	5.10
D2/E2	3.40	3.50	3.60
e	0.50 BSC		
L	0.30	0.40	0.50
К	0.20		
R	0.09		0.14
aaa	0.15		
bbb	0.10		
ССС	0.10		

Dimension	MIN	NOM	MAX
ddd		0.05	
eee		0.08	
fff		0.10	

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

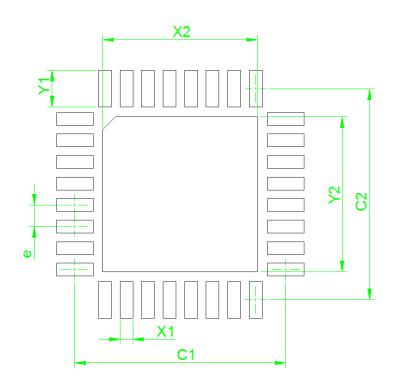

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8. PCB Land Pattern

8.1 Si52258A-D01AM 40-QFN Land Pattern


Dimension	mm
C1	5.90
C2	5.90
e	0.50 BSC
X1	0.30
Y1	0.85
X2	4.65
Y2	4.65

Dimension	mm		
Notes: General			
1. All dimensions shown are in millimeters (mm) unless otherwise	e noted.		
2. This Land Pattern Design is based on the IPC-7351 guidelines Solder Mask Design			
 All metal pads are to be non-solder mask defined (NSMD). Cle minimum, all the way around the pad. Stencil Design 	varance between the solder mask and the metal pad is to be 60 μm		
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste releated. 2. The stencil thickness should be 0.125 mm (5 mils).			
3. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.			
4. A 3×3 array of 0.85 mm square openings on a 1.00 mm pitch c Card Assembly	an be used for the center ground pad.		
1. A No-Clean, Type-3 solder paste is recommended.			

2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.2 Si52254A-D01AM 32-QFN Land Pattern

The figure below illustrates the PCB land pattern details for Si52254A-D01AM in 32-QFN package. The table below lists the values for the dimensions shown in the illustration.

Table 8.2.	PCB	Land	Pattern	Dimensions
------------	-----	------	---------	------------

Dimension	mm
C1	4.90
C2	4.90
e	0.50 BSC
X1	0.30
Y1	0.85
X2	3.60
Y2	3.60

Dimension	mm		
Notes: General			
1. All dimensions shown are in millimeters (mm) unless otherwise	e noted.		
2. This Land Pattern Design is based on the IPC-7351 guidelines Solder Mask Design			
 All metal pads are to be non-solder mask defined (NSMD). Cle minimum, all the way around the pad. Stencil Design 	arance between the solder mask and the metal pad is to be 60 μm		
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste relea 2. The stencil thickness should be 0.125 mm (5 mils).			
3. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.			
4. A 3×3 array of 0.85 mm square openings on a 1.00 mm pitch c Card Assembly	an be used for the center ground pad.		
1. A No-Clean, Type-3 solder paste is recommended.			

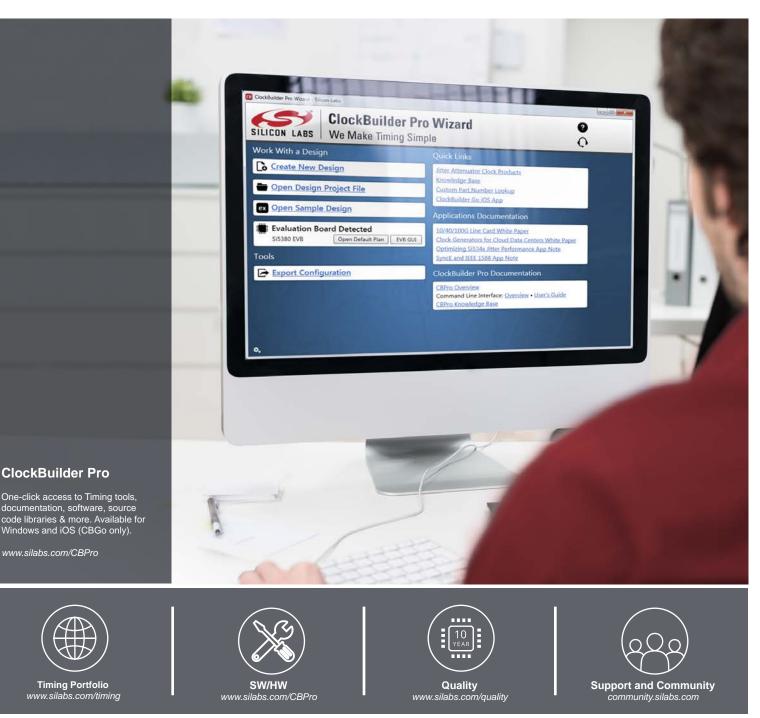
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9. Top Marking

Α	R	0	1	Α	Μ
Τ	Τ	Τ	Τ	Τ	Τ
		Y	Y	W	W

Figure 9.1. Top Marking

Table 9.1. Top Marking Explanation


Line	Characters	Description	
1	Si52258 Si52254	Base part number	
2	AD01AM A = Grade		
		R = Product revision (reference ordering section for latest revision)	
		01 = Product identification, single input	
		AM = Automotive temperature grade. Package (QFN)	
3	ТТТТТТ	Manufacturing trace code.	
4	YYWW	Year (YY) and work week (WW) of package assembly	

10. Revision History

Revision 0.7

September, 2019

• Initial release.

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific attribution personal injury or death. Silicon Labs products are not designed or authorized to be used within any FDA Class III devices, applications. Silicon Labs products shall have no failing personal injury or death. Silicon Labs product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized ro chercical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, EZRadio®, Ogecko®, Gecko OS, Gecko OS, Gecko OS, Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com