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Abstract
Model driven development has been adopted by the industry as a solution for 
fast prototyping and to reduce time to market. However, a significant amount 
of time and effort must typically be put in the final implementation stage to 
match the performance of the product to the performance of the model. The 
full potential of model driven development is not realized in practice due to 
this. In this article, we discuss how we can address this gap by following 
some guidelines and techniques during model development. We also cover 
how we can generate efficient code from the models to reduce the time to 
market of the product.

Introduction
The increasing depth of penetration of distributed energy resources such 
as grid tied solar inverters has resulted in the power conversion community 
to look for better, efficient, and cost-effective solutions for these markets. 
There are many algorithms and topologies in the literature to improve the 
output quality and efficiency of the power conversion process. Silicon vendors 
are coming up with new control processors with features and hardware 
support to implement these algorithms efficiently. It is very expensive 
to build the hardware prototype of a full inverter and to experiment with its 
performance under various conditions. Moreover, any malfunctioning of the 
algorithm during experimentation could damage the entire system. There are 
also associated safety standards to be met for the products in these markets. 
So the power conversion industry has always been slow in adopting these 
innovations into the final product.

Model driven development has been adopted as a solution to this problem. In 
model driven development, a full model of the system is built and simulated 
before a hardware prototype is generated. This verifies the algorithm 
functionality and reduces the risk significantly. Moreover, current modeling 
tools support code generation directly from the model that simplifies and 
relaxes safety certification criteria. However, the industry has not embraced 
full model driven development mainly because 1) the performance of the end 
product and the model varies significantly, and 2) the generated code is not 
very efficient for the target control processor and requires manual 
modification before taking it to the product.

In this article, we discuss techniques and approaches that can make the 
model performance very close to the final product performance to minimize 
the risk of hardware changes and delays. We also discuss how the code 
can be generated efficiently from these models to get the product faster 
to market.

Model Development Guidelines
Model Driven Development
Consider a simplified diagram of a grid-tied residential solar inverter, 
as shown in Figure 1. The solar radiation on the solar panel generates 
dc proportional to the intensity of the radiation. The converter converts this 
dc to ac, which can be used by home appliances and also can be fed to 
the grid. Current and voltages from various points in the signal chain are 
sensed by appropriate sensors and will be fed to the control processor in the 
inverter. The algorithm running on the control processor analyzes these 
signals and controls the power modules such that the generated current 
and voltage are of required frequency, magnitude, and phase with the grid. 
In this case, the solar panel acts as the power source, and the grid and the 
home appliances act as the sink. In a different power conversion system, 
the sources and sink would be different, but most of them will fall into the 
structure shown in Figure 2.

The primary aim of a power conversion system/algorithm designer is to 
arrive at the right components and algorithms for the block’s control 
processor and converter hardware (shown in Figure 2) and meet the desired 
performance for all source and load variations. So it is important to clearly 
know the environment the system is going to operate in while designing the 
system. For example, while designing a solar inverter for a system (shown 
in Figure 1), the designer should know the places the inverter is expected to 
install, variations in intensity of solar radiations, the efficiencies of the 
solar panel, grid conditions, etc. In a model driven development, the designer 
first creates the model of the converter, simulates the expected variation, 
and verifies that the model works as expected. Most often the modeling 
tools will provide models and library blocks for modeling sources and sinks. 
For example, Simscape Power Systems™ from Mathworks has models for 
grids, photovoltaic (PV) panels, and various loads. These can be used to 
simulate and verify various use cases of the system.

The system performance depends on all the components of the system. In 
some cases, the designer has the freedom to start the design from scratch 
and decide on all the components of the system to meet constraints on 
source and load. In some other cases, part of the system may already be 
fixed due to reasons outside the control of the designers, and their degree of 
freedom is limited to few components. In this article, we assume the main 
aim of the designer is to choose and implement the right control algorithm 
for an existing topology—but most of the guidelines explained can be applied 
to a generic case as well.
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Figure 1. Solar inverter system.

Figure 2. Power conversion components.

Structuring the Model
It is important to structure the model in a modular way with the right interfaces. 
A well-structured model helps to analyze and adapt the model quickly 
to various use cases. Modeling tools typically provide various options to 
group the components at appropriate levels of abstraction and for reuse. For 
example, Simulink has provisions to create subsystems, library models, or 
reference models. Consider the power conversion system shown in Figure 2.  
A top-level view of a Simulink model is given as an example in Figure 3.       
In this figure, the power converter and control processor are encapsulated 
into a subsystem labeled as ADIInverter. Solar panel and grid models available 
with Simscape Power Systems are used to model the source with provisions 
to configure intensity and temperature. The ADIInverter subsystem in 
the figure can be further partitioned hierarchically into control processor 
and control algorithm blocks. 

All blocks other than the control algorithm running on the control proces-
sor are hardware blocks. So the accuracy of simulation reflecting all the 
constraints of these components is the most important criteria. 

The interfaces of these blocks are analog signals and the most appropri-
ate choice for these are continuous models. The block control algorithm is 
meant for running on a microcontroller and should only use discrete states 
and fixed steps. It would be good to keep that as a separate model with 
different configuration and solver settings and reference that model from the 
top-level model. This will also be helpful in code generation and processor in 
loop (PIL) testing of the algorithm, as explained later.

Solver Step Size and Data Types
The speed and accuracy of the simulation is mainly decided by the solver 
type and step size. A small step size will give more accurate results but 
will make the simulation run slower. We want to simulate the hardware 
components with maximum accuracy. A continuous solver with a vari-
able step size should work in most cases. However, when the switching 
frequencies are high, manual adjustments for the maximum step size may 
be required. For example, PWM generation at a switching frequency  
of 100 kHz (as shown in Figure 4a) may become distorted (as shown in 
Figure 4b) if the step size is large. It is always a good idea to check the 
output of the fast switching devices to confirm that the step size is sufficient. 
Since the control algorithm runs on a microcontroller, it should be using a 
discrete model with a fixed step size. The step size used should be the 
greatest common divisor (GCD) of the sampling period used in the system. 
Most often the modeling software chooses this automatically.

The data types used also decide the accuracy of simulation. Simulation 
with double precision arithmetic will always be more accurate than a 
simulation with single precision arithmetic. For simulating the hardware 
blocks, it is recommended to use the highest data type supported by 
the modeling software. But for the control algorithm, we want to get the 
performance of the algorithm the same as it runs on the control processor 
and not more accurate. So we should be using the data type supported 
by the control processor. For example, if the control processor is an 
Analog Devices ADSP-CM41x processor, the appropriate data type is 
single precision floating point, as it comes with a Cortex-M4 processor 
with a floating-point unit (FPU). If the control processor is a fixed-point 
processor, such as a Cortex®-M3, the algorithm should be designed and 
implemented in fixed-point data types. Modeling software may support 
automatic conversion from a floating-point data type to a fixed point that 
will help to make the development faster.
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Figure 3. Example Simulink model.
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Figure 4. Simulated PWM output at 100 kHz. 

Sampling Period and Precision
The current and voltage signals sensed by the sensors at various 
points in the power conversion signal chain are made available to the 
algorithm through analog-to-digital converters (ADCs) of the control 
processors. The sampling rate for the ADC is mainly decided by the 
switching frequency of power modules and how fast it should be 
controlled. The sampling frequency has significant impact on the 
control algorithm performance and dynamics. So simulation should    
be done by choosing the appropriate sampling rate for the system. The 
ADCs for control processors accept input only in predefined ranges.   
The output of the sensors should be normalized in a way that the 
range of the sensed signal fits exactly in the range of the ADC for   
the best performance.

The resolution and accuracy of an ADC also varies from one processor     
to another and this plays a significant role in algorithm performance. 
High accuracy ADCs help to control the output better, and help to simplify 
the algorithm and to reduce the control frequency for a specified control 
criteria. To get an accurate simulation, these characteristics should be 
reflected in the model. For example, Analog Devices ADSP-CM41x 
processors come with 16-bit ADCs with more than 13 effective number      
of bits (ENOB). The ADC block should be modeled such that it takes a 
continuous signal as the input and output discrete signals at the desired 
sampling frequency and accuracy. The simulation accuracy can be 
further improved if the ADC models support the provision to choose the 
sampling point that is important in some current sampling scenarios.

Code Generation
Verifying the performance of the algorithm by developing the model and 
running the simulation of the use cases significantly reduces the risk and 
improves the time to market. However, current modeling tools provide 
features to do much more before we go to a hardware prototype. All 
silicon vendors provide evaluation platforms for developing algorithms on 
their processors. It would give additional confidence on the performance 
of the algorithm if we can run and verify the algorithm performance on the 
evaluation hardware, but compilers for the embedded processors normally 
accept only C/C++ code and is typically time consuming to develop these 
codes manually during the modeling and verification stage. So in the 
past, this stage has been pushed to the later stages of development. 
Fortunately, most of the modeling software now supports the provision to 
generate codes automatically from the model. The model for the control 
algorithm can be configured to generate codes with predefined API. The 
simulation tools also provide a PIL option to run the generated code on 
the target directly from the modeling environment. In PIL simulation, the 
input and output of the control algorithm are exchanged with the evalu-
ation board through interfaces such as UART. This option can be used to 
compare performance of running the algorithm on the target and running 
the algorithm on the host machine

Typically, the modeling and simulation software provide support for 
generating C code—targeting a broader range of processors. The hardware 
vendors will have differentiating features on the processors to speed up 
execution for the application that the processor is designed for. For 
example, the ADSP-CM41x processor comes with a math unit accelerator 
to speed up mathematical operation such as sine, cosine, and square root. 
It is important to make use of such features to get the best performance 
out of the processor. Modeling tools provides provision to replace part of 
the codes with custom codes or an entire algorithm block with a different 
code. For power conversion algorithms, optimized code can be gener-
ated by providing handwritten optimized routines for common algorithm 
blocks such as direct quadrature zero (DQZ) transforms, phase-locked loop 
(PLL), etc. Code generation may be configured to use these handwritten 
routines instead of the default generic routines. Silicon vendors could 
be providing model libraries to speed up execution of algorithms on their 
processors. These options may be exploited to generate an optimized code 
for the control processor.

Apart from the control algorithm code, the control processor also needs 
codes for configuring the peripherals such as ADC, PWM, etc. and 
a framework code for maintaining the timings and other functionalities of 
the system. The modeling tools can be used to generate the code for these 
as well. However, the framework codes are expected to do much more 
than run the control algorithm. Developing models for all these associated 
tasks and generating code from them may not be an efficient approach. 
In such cases, the framework and peripheral configuration codes may be 
developed separately with provision to integrate the generated control 
algorithm codes. 

Hardware-in-the-Loop (HIL) Simulation
The simulation of the power modules and the system normally runs on 
a host PC. Even in PIL simulation, only the control algorithm runs on the 
target control processor. All other parts of the system are simulated by 
the modeling software on the host machine. Since this simulation takes 
so many resources and as much execution time, it is not possible to run 
these in real time in the software. The system dynamics and performance  
of ADCs and PWMs are not verified in such testing. HIL simulation hard-
ware overcomes this drawback by using field programmable gate arrays 
(FPGAs) to simulate the converter components, sources, and sinks. It helps 
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to run the entire simulation in real time and to see the actual effect of 
ADC sampling and PWM control. The HIL hardware is typically provided by 
separate vendors with a provision to interface control processors. It should    
be noted that HIL platforms won’t be able to simulate the detailed switching 
characteristics of the power modules. These effects should be analyzed 
separately to minimize the risk while taking it to the final product.

Conclusion
The modeling tools have greatly improved during recent years. In this article, 
we have discussed various approaches to make the model output very close 
to the final product output. However, it should be noted that there are some 
characteristics such as electromagnetic compatibility (EMC) that cannot 
be verified in a simulation environment. It is important to identify these 
characteristics and analyze and verify through alternate methods. 

The steps explained in the article, except the HIL stage, have been success-
fully employed in designing and developing control algorithm targeting 
ADSP-CM41x processors for an inverter with 3-level ANPC topology.
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