
Fast Prototyping and Deployment
of Control Algorithms for Power
Conversion Applications
Bijesh Poyil and Martin Murnane
Analog Devices, Inc.

Abstract
Model driven development has been adopted by the industry as a solution for
fast prototyping and to reduce time to market. However, a significant amount
of time and effort must typically be put in the final implementation stage to
match the performance of the product to the performance of the model. The
full potential of model driven development is not realized in practice due to
this. In this article, we discuss how we can address this gap by following
some guidelines and techniques during model development. We also cover
how we can generate efficient code from the models to reduce the time to
market of the product.

Introduction
The increasing depth of penetration of distributed energy resources such
as grid tied solar inverters has resulted in the power conversion community
to look for better, efficient, and cost-effective solutions for these markets.
There are many algorithms and topologies in the literature to improve the
output quality and efficiency of the power conversion process. Silicon vendors
are coming up with new control processors with features and hardware
support to implement these algorithms efficiently. It is very expensive
to build the hardware prototype of a full inverter and to experiment with its
performance under various conditions. Moreover, any malfunctioning of the
algorithm during experimentation could damage the entire system. There are
also associated safety standards to be met for the products in these markets.
So the power conversion industry has always been slow in adopting these
innovations into the final product.

Model driven development has been adopted as a solution to this problem. In
model driven development, a full model of the system is built and simulated
before a hardware prototype is generated. This verifies the algorithm
functionality and reduces the risk significantly. Moreover, current modeling
tools support code generation directly from the model that simplifies and
relaxes safety certification criteria. However, the industry has not embraced
full model driven development mainly because 1) the performance of the end
product and the model varies significantly, and 2) the generated code is not
very efficient for the target control processor and requires manual
modification before taking it to the product.

In this article, we discuss techniques and approaches that can make the
model performance very close to the final product performance to minimize
the risk of hardware changes and delays. We also discuss how the code
can be generated efficiently from these models to get the product faster
to market.

Model Development Guidelines
Model Driven Development
Consider a simplified diagram of a grid-tied residential solar inverter,
as shown in Figure 1. The solar radiation on the solar panel generates
dc proportional to the intensity of the radiation. The converter converts this
dc to ac, which can be used by home appliances and also can be fed to
the grid. Current and voltages from various points in the signal chain are
sensed by appropriate sensors and will be fed to the control processor in the
inverter. The algorithm running on the control processor analyzes these
signals and controls the power modules such that the generated current
and voltage are of required frequency, magnitude, and phase with the grid.
In this case, the solar panel acts as the power source, and the grid and the
home appliances act as the sink. In a different power conversion system,
the sources and sink would be different, but most of them will fall into the
structure shown in Figure 2.

The primary aim of a power conversion system/algorithm designer is to
arrive at the right components and algorithms for the block’s control
processor and converter hardware (shown in Figure 2) and meet the desired
performance for all source and load variations. So it is important to clearly
know the environment the system is going to operate in while designing the
system. For example, while designing a solar inverter for a system (shown
in Figure 1), the designer should know the places the inverter is expected to
install, variations in intensity of solar radiations, the efficiencies of the
solar panel, grid conditions, etc. In a model driven development, the designer
first creates the model of the converter, simulates the expected variation,
and verifies that the model works as expected. Most often the modeling
tools will provide models and library blocks for modeling sources and sinks.
For example, Simscape Power Systems™ from Mathworks has models for
grids, photovoltaic (PV) panels, and various loads. These can be used to
simulate and verify various use cases of the system.

The system performance depends on all the components of the system. In
some cases, the designer has the freedom to start the design from scratch
and decide on all the components of the system to meet constraints on
source and load. In some other cases, part of the system may already be
fixed due to reasons outside the control of the designers, and their degree of
freedom is limited to few components. In this article, we assume the main
aim of the designer is to choose and implement the right control algorithm
for an existing topology—but most of the guidelines explained can be applied
to a generic case as well.

Visit analog.com

 Technical Article

Share on Twitter LinkedIn Facebook Email Twitter LinkedIn Facebook Email

https://www.facebook.com/AnalogDevicesInc
https://twitter.com/adi_news
https://www.youtube.com/user/AnalogDevicesInc
https://www.linkedin.com/company/analog-devices
http://www.analog.com
https://registration.analog.com/login/AccountRegistration.aspx
http://www.analog.com
http://bit.ly/2VIFTrC
http://bit.ly/2GfSKMP
http://bit.ly/2UKa1Wy
http://bit.ly/2Vw17x7
http://bit.ly/2HhosKc
http://bit.ly/2Vh4Qtm
mailto:?subject=Fast Prototyping and Deployment of Control Algorithms for Power Conversion Applications&body=Check out this Analog Devices technical article https://www.analog.com/media/en/technical-documentation/Fast-Prototyping-and-Development-of-Control-Algorithms-for-Power-Conversion-Applications.html

 2 Fast Prototyping and Deployment of Control Algorithms for Power Conversion Applications

Figure 1. Solar inverter system.

Figure 2. Power conversion components.

Structuring the Model
It is important to structure the model in a modular way with the right interfaces.
A well-structured model helps to analyze and adapt the model quickly
to various use cases. Modeling tools typically provide various options to
group the components at appropriate levels of abstraction and for reuse. For
example, Simulink has provisions to create subsystems, library models, or
reference models. Consider the power conversion system shown in Figure 2.
A top-level view of a Simulink model is given as an example in Figure 3.
In this figure, the power converter and control processor are encapsulated
into a subsystem labeled as ADIInverter. Solar panel and grid models available
with Simscape Power Systems are used to model the source with provisions
to configure intensity and temperature. The ADIInverter subsystem in
the figure can be further partitioned hierarchically into control processor
and control algorithm blocks.

All blocks other than the control algorithm running on the control proces-
sor are hardware blocks. So the accuracy of simulation reflecting all the
constraints of these components is the most important criteria.

The interfaces of these blocks are analog signals and the most appropri-
ate choice for these are continuous models. The block control algorithm is
meant for running on a microcontroller and should only use discrete states
and fixed steps. It would be good to keep that as a separate model with
different configuration and solver settings and reference that model from the
top-level model. This will also be helpful in code generation and processor in
loop (PIL) testing of the algorithm, as explained later.

Solver Step Size and Data Types
The speed and accuracy of the simulation is mainly decided by the solver
type and step size. A small step size will give more accurate results but
will make the simulation run slower. We want to simulate the hardware
components with maximum accuracy. A continuous solver with a vari-
able step size should work in most cases. However, when the switching
frequencies are high, manual adjustments for the maximum step size may
be required. For example, PWM generation at a switching frequency
of 100 kHz (as shown in Figure 4a) may become distorted (as shown in
Figure 4b) if the step size is large. It is always a good idea to check the
output of the fast switching devices to confirm that the step size is sufficient.
Since the control algorithm runs on a microcontroller, it should be using a
discrete model with a fixed step size. The step size used should be the
greatest common divisor (GCD) of the sampling period used in the system.
Most often the modeling software chooses this automatically.

The data types used also decide the accuracy of simulation. Simulation
with double precision arithmetic will always be more accurate than a
simulation with single precision arithmetic. For simulating the hardware
blocks, it is recommended to use the highest data type supported by
the modeling software. But for the control algorithm, we want to get the
performance of the algorithm the same as it runs on the control processor
and not more accurate. So we should be using the data type supported
by the control processor. For example, if the control processor is an
Analog Devices ADSP-CM41x processor, the appropriate data type is
single precision floating point, as it comes with a Cortex-M4 processor
with a floating-point unit (FPU). If the control processor is a fixed-point
processor, such as a Cortex®-M3, the algorithm should be designed and
implemented in fixed-point data types. Modeling software may support
automatic conversion from a floating-point data type to a fixed point that
will help to make the development faster.

Power Module

Control Processor

Solar Panel Grid

Load

Control Processor

Control
Algorithm

Gate
Drivers

Power
Modules

Peripherals

Sensors PV Panels

Loads

Grid

Converter Hardware Power Source and Sink

Irradiance
(W/m2)

Irradiance
Temp

Ramp-Up/Down
Ir

Temp

m_PV

Temperature
(°C)

Node 10

ADIInverter

++

mIr

T

L1 A

B

C

A

B

C

a

b

c

L2

L3

GN

a

b

c

n2–
–

N

Tr2

Utility Grid

B1

Figure 3. Example Simulink model.

 Visit analog.com 3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

×10–4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

(a) Output with Correct Step Size

(b) Output with Large Step Size

1 1.2 1.4 1.6

×10–4

Figure 4. Simulated PWM output at 100 kHz.

Sampling Period and Precision
The current and voltage signals sensed by the sensors at various
points in the power conversion signal chain are made available to the
algorithm through analog-to-digital converters (ADCs) of the control
processors. The sampling rate for the ADC is mainly decided by the
switching frequency of power modules and how fast it should be
controlled. The sampling frequency has significant impact on the
control algorithm performance and dynamics. So simulation should
be done by choosing the appropriate sampling rate for the system. The
ADCs for control processors accept input only in predefined ranges.
The output of the sensors should be normalized in a way that the
range of the sensed signal fits exactly in the range of the ADC for
the best performance.

The resolution and accuracy of an ADC also varies from one processor
to another and this plays a significant role in algorithm performance.
High accuracy ADCs help to control the output better, and help to simplify
the algorithm and to reduce the control frequency for a specified control
criteria. To get an accurate simulation, these characteristics should be
reflected in the model. For example, Analog Devices ADSP-CM41x
processors come with 16-bit ADCs with more than 13 effective number
of bits (ENOB). The ADC block should be modeled such that it takes a
continuous signal as the input and output discrete signals at the desired
sampling frequency and accuracy. The simulation accuracy can be
further improved if the ADC models support the provision to choose the
sampling point that is important in some current sampling scenarios.

Code Generation
Verifying the performance of the algorithm by developing the model and
running the simulation of the use cases significantly reduces the risk and
improves the time to market. However, current modeling tools provide
features to do much more before we go to a hardware prototype. All
silicon vendors provide evaluation platforms for developing algorithms on
their processors. It would give additional confidence on the performance
of the algorithm if we can run and verify the algorithm performance on the
evaluation hardware, but compilers for the embedded processors normally
accept only C/C++ code and is typically time consuming to develop these
codes manually during the modeling and verification stage. So in the
past, this stage has been pushed to the later stages of development.
Fortunately, most of the modeling software now supports the provision to
generate codes automatically from the model. The model for the control
algorithm can be configured to generate codes with predefined API. The
simulation tools also provide a PIL option to run the generated code on
the target directly from the modeling environment. In PIL simulation, the
input and output of the control algorithm are exchanged with the evalu-
ation board through interfaces such as UART. This option can be used to
compare performance of running the algorithm on the target and running
the algorithm on the host machine

Typically, the modeling and simulation software provide support for
generating C code—targeting a broader range of processors. The hardware
vendors will have differentiating features on the processors to speed up
execution for the application that the processor is designed for. For
example, the ADSP-CM41x processor comes with a math unit accelerator
to speed up mathematical operation such as sine, cosine, and square root.
It is important to make use of such features to get the best performance
out of the processor. Modeling tools provides provision to replace part of
the codes with custom codes or an entire algorithm block with a different
code. For power conversion algorithms, optimized code can be gener-
ated by providing handwritten optimized routines for common algorithm
blocks such as direct quadrature zero (DQZ) transforms, phase-locked loop
(PLL), etc. Code generation may be configured to use these handwritten
routines instead of the default generic routines. Silicon vendors could
be providing model libraries to speed up execution of algorithms on their
processors. These options may be exploited to generate an optimized code
for the control processor.

Apart from the control algorithm code, the control processor also needs
codes for configuring the peripherals such as ADC, PWM, etc. and
a framework code for maintaining the timings and other functionalities of
the system. The modeling tools can be used to generate the code for these
as well. However, the framework codes are expected to do much more
than run the control algorithm. Developing models for all these associated
tasks and generating code from them may not be an efficient approach.
In such cases, the framework and peripheral configuration codes may be
developed separately with provision to integrate the generated control
algorithm codes.

Hardware-in-the-Loop (HIL) Simulation
The simulation of the power modules and the system normally runs on
a host PC. Even in PIL simulation, only the control algorithm runs on the
target control processor. All other parts of the system are simulated by
the modeling software on the host machine. Since this simulation takes
so many resources and as much execution time, it is not possible to run
these in real time in the software. The system dynamics and performance
of ADCs and PWMs are not verified in such testing. HIL simulation hard-
ware overcomes this drawback by using field programmable gate arrays
(FPGAs) to simulate the converter components, sources, and sinks. It helps

http://www.analog.com

 4 Fast Prototyping and Deployment of Control Algorithms for Power Conversion Applications

Analog Devices, Inc.
Worldwide Headquarters

Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
U.S.A.
Tel: 781.329.4700
(800.262.5643, U.S.A. only)
Fax: 781.461.3113

Analog Devices, Inc.
Europe Headquarters

Analog Devices GmbH
Otl-Aicher-Str. 60-64
80807 München
Germany
Tel: 49.89.76903.0
Fax: 49.89.76903.157

Analog Devices, Inc.
Japan Headquarters

Analog Devices, KK
New Pier Takeshiba
South Tower Building
1-16-1 Kaigan, Minato-ku,
Tokyo, 105-6891
Japan
Tel: 813.5402.8200
Fax: 813.5402.1064

Analog Devices, Inc.
Asia Pacific Headquarters

Analog Devices
5F, Sandhill Plaza
2290 Zuchongzhi Road
Zhangjiang Hi-Tech Park
Pudong New District
Shanghai, China 201203
Tel: 86.21.2320.8000
Fax: 86.21.2320.8222

©2019 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
Ahead of What’s Possible is a trademark of Analog Devices.
TA21392-7/19

analog.com

to run the entire simulation in real time and to see the actual effect of
ADC sampling and PWM control. The HIL hardware is typically provided by
separate vendors with a provision to interface control processors. It should
be noted that HIL platforms won’t be able to simulate the detailed switching
characteristics of the power modules. These effects should be analyzed
separately to minimize the risk while taking it to the final product.

Conclusion
The modeling tools have greatly improved during recent years. In this article,
we have discussed various approaches to make the model output very close
to the final product output. However, it should be noted that there are some
characteristics such as electromagnetic compatibility (EMC) that cannot
be verified in a simulation environment. It is important to identify these
characteristics and analyze and verify through alternate methods.

The steps explained in the article, except the HIL stage, have been success-
fully employed in designing and developing control algorithm targeting
ADSP-CM41x processors for an inverter with 3-level ANPC topology.

Acknowledgment
We would like to acknowledge the contribution of all our colleagues in the
AEG business unit at Analog Devices, Inc.

About the Authors
Bijesh Poyil is an engineering manager at Analog Devices India,
Bangalore. He is currently part of the Industrial Systems Group (ISG)
within the Automation Energy (AEG) business unit of ADI. His areas of
expertise include power conversion, computer vision, and machine
learning algorithms targeting embedded systems. He holds an
electronics and communications engineering degree from National
Institute of Technology Calicut India. He can be reached at
bijesh.poyil@analog.com.

Martin Murnane is the system architect for the Energy Storage and
Conversion Team at Analog Devices in Limerick, Ireland. Previously,
Murnane was part of ADI’s automotive team. Prior to joining ADI, he
worked in several roles involving application development in energy
recycling systems, Windows-based application software/database
development, and product development using strain gage
technology (BMS). He holds an electronic engineering degree and an
M.B.A. from the University of Limerick. He can be reached at
martin.murnane@analog.com.

Online Support
Community
Engage with the
Analog Devices technology experts in our online support
community. Ask your tough design questions, browse FAQs,
or join a conversation.

Visit ez.analog.com

http://www.analog.com
http://www.analog.com
mailto:Bijesh.Poyil%40analog.com?subject=
mailto:martin.murnane%40analog.com?subject=
http://ez.analog.com

