







SNVSB14B - APRIL 2018 - REVISED APRIL 2019



LM5036

# LM5036 Half-Bridge PWM Controller with Integrated Auxiliary Bias Supply

## 1 Features

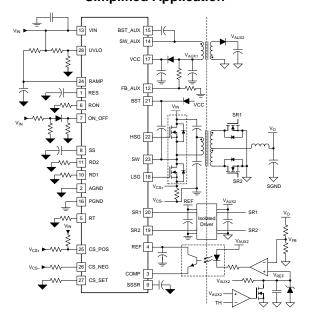
- High integration controller for small form factor, high-density DC-DC power converters
- Integrated 100-V, 100-mA auxiliary bias supply
- Fully regulated pre-biased start-up
- Enhanced cycle-by-cycle current limiting with pulse matching for low and high primary FETs
- Optimized maximum duty cycle for primary-side FFTs
- Voltage-mode control with input voltage feedforward
- 100-V high-voltage start-up regulator
- · Configurable latch, OVP operation
- Integrated 100-V, 2-A MOSFET drivers for primary-side FETs
- Programmable dead-time between primary-side and synchronous rectifier (SR) FETs
- Create a custom design using the LM5036 with the Excel Calculator Tool or WEBENCH® Power Designer

# 2 Applications

- Telecom and data communication isolated power supplies
- Industrial power supplies and factory automation
- Test, measurement equipment

# 3 Description

The LM5036 device is a PWM controller, with integrated auxiliary bias supply, offering high power density for industrial isolated power applications. It contains all the features necessary to implement half-bridge power converters, using voltage-mode control, with input voltage feed-forward. This device is intended to operate on the primary side of an isolated converter with DC input voltage up to 100-V. LM5036 includes features that improve power density and reliability while reducing system cost:


- An integrated fly-buck converter as auxiliary bias supply. Provides bias power for both primary and secondary circuits, with a minimum of external components.
- Fully regulated pre-bias start-up. Eliminates output voltage over-shoot or dips even when starting into a pre-charged output capacitor.
- Enhanced cycle-by-cycle peak current limit with pulse matching. LM5036 limits both positive and negative current. Pulse matching ensures equal pulse width for low and high side devices, to avoid transformer saturation. Output current limit is approximately constant across the full range of input voltage.

#### Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE   | BODY SIZE (NOM)   |
|-------------|-----------|-------------------|
| LM5036      | WQFN (28) | 5.00 mm × 5.00 mm |

(1) For all available packages, see the orderable addendum at the end of the data sheet.

# **Simplified Application**





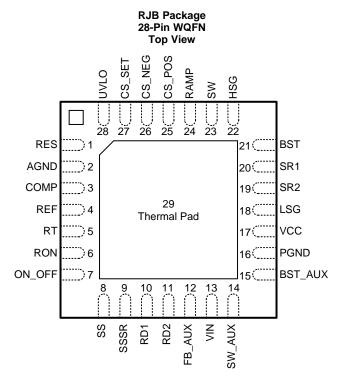
# **Table of Contents**

| 1 | Features 1                           | 7.4 Device Functional Modes3                           |
|---|--------------------------------------|--------------------------------------------------------|
| 2 | Applications 1                       | 8 Application and Implementation 4                     |
| 3 | Description 1                        | 8.1 Application Information 4                          |
| 4 | Revision History2                    | 8.2 Typical Application 4                              |
| 5 | Pin Configuration and Functions 4    | 9 Power Supply Recommendations 5                       |
| 6 | Specifications5                      | 10 Layout 5                                            |
| • | 6.1 Absolute Maximum Ratings         | 10.1 Layout Guidelines 5                               |
|   | 6.2 ESD Ratings                      | 10.2 Layout Example 5                                  |
|   | 6.3 Recommended Operating Conditions | 11 Device and Documentation Support 59                 |
|   | 6.4 Thermal Information              | 11.1 Custom Design With WEBENCH® Tools 5               |
|   | 6.5 Electrical Characteristics       | 11.2 Receiving Notification of Documentation Updates 5 |
|   | 6.6 Switching Characteristics9       | 11.3 Community Resources 5                             |
|   | 6.7 Typical Characteristics          | 11.4 Trademarks5                                       |
| 7 | Detailed Description 12              | 11.5 Electrostatic Discharge Caution 5                 |
|   | 7.1 Overview                         | 11.6 Glossary 5                                        |
|   | 7.2 Functional Block Diagram         | 12 Mechanical, Packaging, and Orderable                |
|   | 7.3 Feature Description              | Information 6                                          |
|   |                                      |                                                        |

# 4 Revision History

| CI | nanges from Revision A (May 2018) to Revision B                                                                                                                                                                                                                                                | Page         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| •  | Added minimum recommended values for RD <sub>1</sub> and RD <sub>2</sub>                                                                                                                                                                                                                       | <del>5</del> |
| •  | Changed minimum recommended input voltage from 18V to 16V.                                                                                                                                                                                                                                     | <del>[</del> |
| •  | Added current limit parameters K <sub>CBC1</sub> , V <sub>CSOFFSET</sub> and I <sub>BiasOffset</sub>                                                                                                                                                                                           | 6            |
| •  | Changed typical value of I <sub>SLOPE</sub> from 50-µA to 54-µA.                                                                                                                                                                                                                               |              |
| •  | Added parameter names for some items that had none: I <sub>OVL</sub> , V <sub>SSSecEn</sub> , V <sub>SSREn</sub> , t <sub>CSLSG</sub> , t <sub>CSBLK</sub> , V <sub>RESTh2</sub> , V <sub>RESTh3</sub> V <sub>RTReg</sub> , V <sub>RTSync</sub> , I <sub>COSsrEn</sub> , I <sub>AUX(LIM)</sub> | 6            |
| •  | Changed parameter name V <sub>RES</sub> to V <sub>RESTh1</sub>                                                                                                                                                                                                                                 | 6            |
| •  | Changed parameter name V <sub>PWM-OS</sub> to I <sub>PWM-OS</sub>                                                                                                                                                                                                                              | 6            |
| •  | Changed parameter V <sub>AUX_UVLO</sub> maximum value from 16.6V to 16V.                                                                                                                                                                                                                       | 6            |
| •  | Changed parameter name HC_BLK_TH to V <sub>HC_BLK_TH</sub>                                                                                                                                                                                                                                     | 6            |
| •  | Added new parameters AUX SUPPLY CURRENT LIMIT: t <sub>CSBLKA</sub> , t <sub>AUX(LIM)</sub> , τ <sub>AuxSns</sub>                                                                                                                                                                               |              |
| •  | Added new conditions in Switching Characteristics for t <sub>ON</sub>                                                                                                                                                                                                                          |              |
| •  | Added Reference to the Calculator tool.                                                                                                                                                                                                                                                        | 12           |
| •  | Changed Positive and negative current limit shown to be affected by LEB signal.                                                                                                                                                                                                                | 13           |
| •  | Added reference to operation from voltages above 100V. Values replaced with parameter names                                                                                                                                                                                                    | 14           |
| •  | Added reference to table of device functional modes.                                                                                                                                                                                                                                           | 14           |
| •  | Changed Parameter name V <sub>REF</sub> to V <sub>REFSec</sub> to avoid confusion with primary reference voltage                                                                                                                                                                               | 15           |
| •  | Changed Implied minimum value of t <sub>D</sub> from 0-ns to 30-ns                                                                                                                                                                                                                             | 18           |
| •  | Added note that minimum value of RD1/RD2 resistors should not be less that 5-kΩ                                                                                                                                                                                                                | 19           |
| •  | Added pre-biased start-up process is handled automatically by LM5036                                                                                                                                                                                                                           | 20           |
| •  | Changed values to parameter names. V <sub>REF</sub> changed to V <sub>REFSec</sub> , TH changed to V <sub>THSec</sub>                                                                                                                                                                          |              |
| •  | Changed values to parameter names. I <sub>COMP</sub> is graphed instead of V <sub>COMP</sub>                                                                                                                                                                                                   | 21           |
| •  | Changed V <sub>COMP</sub> to I <sub>COMP</sub> .                                                                                                                                                                                                                                               | 22           |
| •  | Changed and expanded Section: 'Enhanced Cycle-by-Cycle Current Limiting with Pulse Matching'                                                                                                                                                                                                   | 23           |
| •  | Changed and expanded Section: 'Reverse Current Protection'.                                                                                                                                                                                                                                    | 27           |
| •  | Added Section: 'CBC Threshold Accuracy'.                                                                                                                                                                                                                                                       | 28           |
| •  | Changed values to parameter names.                                                                                                                                                                                                                                                             | 29           |




# **Revision History (continued)**

| •        | Changed marketing status from Advance Information to initial release.                                               | 1   |
|----------|---------------------------------------------------------------------------------------------------------------------|-----|
| Ch       | nanges from Original (May 2018) to Revision A Pa                                                                    | age |
| <u>•</u> | Changed layout diagram to include external schottky diode connected between PGND and SW_AUX pins                    | 57  |
| •        | Changed expression for I <sub>COMP</sub> to fix error.                                                              |     |
| •        | Changed calculation of Auxiliary Feedback component values.                                                         |     |
| •        | Changed calculation of secondary output capacitor. Now uses ripple peak amplitude not peak-to-peak amplitude        |     |
| •        | Changed calculated value of Auxiliary primary output capacitor value.                                               |     |
| •        | Changed calculated value for R <sub>ON</sub> resistor.                                                              |     |
| •        | Changed calculation of Auxiliary transformer inductance.                                                            |     |
| •        | Changed and expanded Section:'Current Limit'                                                                        |     |
| •        | Added new Section: 'Half-Bridge Power Stage Design'                                                                 |     |
|          | Selection'.                                                                                                         |     |
| •        | Changed Section: 'ON_OFF Pin Voltage Divider Selection' to 'Over Voltage / Latch (ON_OFF Pin) Voltage Divider       |     |
| •        | Changed values to parameter names. R <sub>UV1</sub> and <sub>RUV2</sub> replace R <sub>1</sub> and R <sub>2</sub> . |     |
| •        | Added reference to Power Stage Designer Tool.                                                                       |     |
| •        | Added restriction on use of TL431 to implement secondary side error amplifier.                                      |     |
| •        | Added reference to Excel Calculator Tool.                                                                           |     |
| •        | Changed voltage targets for auxiliary output voltage from 12.6-V / 9-V to 11.9-V / 8.5-V.                           |     |
| •        | Changed C26 from 330-pF to 47-pF, R29 from 165-kΩ to 220-kΩ. Added D11                                              |     |
| •        | Changed values to parameter names.                                                                                  |     |
| •        | Added Section: 'Auxiliary Ripple Configuration and Control'.                                                        |     |
| •        | efficiency during ASYNCH mode                                                                                       |     |
| •        | Added method to calculate peak Auxiliary transformer current. External schottky recommended to improve Auxiliary    |     |
| •        | Changed Section: 'On-Time Generator' to 'Auxiliary On-Time Generator'                                               | 34  |
| •        | Changed Section: 'Constant On-Time Control' to 'Auxiliary Constant On-Time Control'                                 | 33  |
| •        | Changed Section: 'ON_OFF Pin' to 'Over-Voltage / Latch (ON_OFF Pin)'. Values replaced by parameter names            | 31  |

Product Folder Links: LM5036



# 5 Pin Configuration and Functions



**Pin Functions** 

| PIN     |     | I/O <sup>(1)</sup> | DESCRIPTION                                                    |
|---------|-----|--------------------|----------------------------------------------------------------|
| NAME    | NO. | 1/0 ( /            | DESCRIPTION                                                    |
| AGND    | 2   | G                  | Analog ground                                                  |
| BST     | 21  | 1                  | Half-bridge high-side gate drive bootstrap                     |
| BST_AUX | 15  | 1                  | Auxiliary supply high-side gate drive bootstrap                |
| COMP    | 3   | I                  | Control current input to half-bridge PWM comparator            |
| CS_NEG  | 26  | I                  | Current sense amplifier negative input terminal                |
| CS_POS  | 25  | I                  | Current sense amplifier positive input terminal                |
| CS_SET  | 27  | 1                  | Current limit setting                                          |
| FB_AUX  | 12  | 1                  | Auxiliary supply output voltage feedback                       |
| HSG     | 22  | 0                  | Half-bridge high-side MOSFET output driver                     |
| LSG     | 18  | 0                  | Half-bridge low-side MOSFET output driver                      |
| ON_OFF  | 7   | - 1                | Configurable for over voltage protection (OVP) or latch mode   |
| PGND    | 16  | G                  | Power ground                                                   |
| RAMP    | 24  | 1                  | RAMP signal input to half-bridge PWM comparator                |
| RD1     | 10  | I                  | Synchronous rectifier trailing-edge delay                      |
| RD2     | 11  | I                  | Synchronous rectifier leading-edge delay                       |
| REF     | 4   | 0                  | 5-V reference regulator output                                 |
| RES     | 1   | I                  | Hiccup mode restart timer                                      |
| RON     | 6   | I                  | Auxiliary supply on-time control                               |
| RT/SYNC | 5   | I                  | Oscillator frequency control or external clock synchronization |
| SR1     | 20  | 0                  | Synchronous rectifier PWM control output                       |
| SR2     | 19  | 0                  | Synchronous rectifier PWM control output                       |
| SS      | 8   | I                  | Soft-start input                                               |

(1) I = input, O = output, G = ground



# Pin Functions (continued)

| PIN    |     | I/O <sup>(1)</sup> | DESCRIPTION                            |  |
|--------|-----|--------------------|----------------------------------------|--|
| NAME   | NO. | 1/0 ( )            | DESCRIPTION                            |  |
| SSSR   | 9   | I                  | Synchronous rectifier soft-start input |  |
| SW     | 23  | I                  | Half-bridge switch node                |  |
| SW_AUX | 14  | I                  | auxiliary supply switch node           |  |
| UVLO   | 28  | - 1                | Input undervoltage lockout             |  |
| VCC    | 17  | I                  | Bias supply                            |  |
| VIN    | 13  | I                  | Input voltage                          |  |
| Pad    | 29  | G                  | Exposed thermal pad                    |  |

# 6 Specifications

# 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

|                                                                         | MIN  | MAX  | UNIT |
|-------------------------------------------------------------------------|------|------|------|
| VIN to GND                                                              | -0.3 | 105  | V    |
| SW/SW_AUX to GND                                                        | -5   | 105  | V    |
| BST TO SW, BST_AUX TO SW_AUX                                            | -0.3 | 16   | V    |
| HSG to SW                                                               | -0.3 | 16   | V    |
| LSG to GND                                                              | -0.3 | 16   | V    |
| SR1/SR2 to GND                                                          | -0.3 | 5    | V    |
| VCC to GND                                                              | -0.3 | 16   | V    |
| RT, UVLO, ON/OFF, RON, RAMP, RES, FB_AUX, CS_POS, CS_NEG, CS_SET to GND | -0.3 | 5    | V    |
| COMP to GND                                                             |      | -0.3 | V    |
| COMP Input Current                                                      |      | 10   | mA   |
| Junction Temperature                                                    |      | 150  | °C   |
| Storage Temperature, Tstg                                               | -55  | 150  | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

# 6.2 ESD Ratings

|                    |                         |                                                                              | VALUE | UNIT |
|--------------------|-------------------------|------------------------------------------------------------------------------|-------|------|
|                    |                         | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins <sup>(1)</sup>  | ±2000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged device model (CDM), per JEDEC specificationJESD22-C101, all pins (2) | ±750  | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

# 6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|                          |                                                  | MIN | NOM MAX | UNIT |
|--------------------------|--------------------------------------------------|-----|---------|------|
| $V_{IN}$                 | Input voltage                                    | 16  | 100     | V    |
| External V <sub>CC</sub> | Supply Voltage                                   | 8.5 | 14      | V    |
| RD <sub>x</sub>          | RD <sub>1</sub> , RD <sub>2</sub> Resistor value | 5   |         | kΩ   |
| $T_{J}$                  | Junction Temperature                             | -40 | 125     | °C   |

Product Folder Links: LM5036

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



## 6.4 Thermal Information

|                      |                                              | LM5036     |      |
|----------------------|----------------------------------------------|------------|------|
|                      | THERMAL METRIC (1)                           | RJB (WQFN) | UNIT |
|                      |                                              | 28 PINS    |      |
| $R_{\Theta JA}$      | Junction-to-ambient thermal resistance       | 29.9       | °C/W |
| $R_{\Theta JC(top)}$ | Junction-to-case (top) thermal resistance    | 18.2       | °C/W |
| $R_{\Theta JB}$      | Junction-to-board thermal resistance         | 10.4       | °C/W |
| $\Psi_{JT}$          | Junction-to-top characterization parameter   | 0.2        | °C/W |
| $\Psi_{JB}$          | Junction-to-board characterization parameter | 10.3       | °C/W |
| $R_{\Theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | 1          | °C/W |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

# 6.5 Electrical Characteristics

MIN and MAX limits apply the junction temperature range of –40°C to 125°C. Unless otherwise specified, the following conditions apply:  $V_{IN}$  = 48 V,  $R_T$  = 25 k $\Omega$ ,  $RD_1$  =  $RD_2$  = 20 k $\Omega$ ,  $R_{ON}$  =100 k $\Omega$ . No load on LSG, HSG, SR1, SR2, UVLO = 2.5 V, ON\_OFF = 0 V.

|                       | PARAMETER                                   | TEST CONDITIONS                                                                                | MIN   | TYP  | MAX   | UNIT |
|-----------------------|---------------------------------------------|------------------------------------------------------------------------------------------------|-------|------|-------|------|
| START-UP              | REGULATOR                                   |                                                                                                |       |      | •     |      |
| V <sub>CC</sub>       | Vcc voltage                                 | I <sub>CC</sub> = 10 mA                                                                        | 7.5   | 7.8  | 8.1   | V    |
| I <sub>CC (Lim)</sub> | Vcc current limit                           | V <sub>CC</sub> = 6 V, V <sub>IN</sub> = 20 V                                                  | 69    | 81   | 94    | mA   |
| I <sub>CC(ext)</sub>  | Vcc supply current                          | Supply current into Vcc from an externally applied source. V <sub>CC</sub> = 9 V, FB_AUX = 0 V | 6.6   | 9    | 11    | mA   |
| V <sub>CC(reg)</sub>  | Vcc load regulation                         | I <sub>CC</sub> from 0 to 50 mA                                                                | 31    | 49   | 73    | mV   |
| V <sub>CC(UV)</sub>   | Vcc undervoltage threshold                  | Positive going Vcc                                                                             | 7.4   | 7.7  | 8.0   | V    |
| , ,                   |                                             | Negative going Vcc                                                                             | 6.1   | 6.3  | 6.7   | V    |
|                       | V <sub>IN</sub> shutdown current            | $V_{IN}$ = 20 V, $V_{UVLO}$ = 0 V, $R_{ON}$ = 100 $k\Omega$                                    | 276   | 580  | 670   | μΑ   |
|                       |                                             | $V_{IN} = 100 \text{ V}, V_{UVLO} = 0 \text{ V}, R_{ON} = 100 \text{ k}\Omega$                 | 299   | 600  | 717   | μΑ   |
|                       | V <sub>IN</sub> start-up regulator leakage  | $V_{CC}$ = 9 V, applied externally, FB_AUX > 2 V, SS = 0 V, R <sub>ON</sub> = 100 kΩ           | 180   | 234  | 304   | μΑ   |
| VOLTAGE I             | REFERENCE REGULATOR (REF PIN)               |                                                                                                |       |      |       |      |
| V <sub>REF</sub>      | REF voltage                                 | I <sub>REF</sub> = 0 mA                                                                        | 4.85  | 5    | 5.15  | V    |
| V <sub>REF(REG)</sub> | REF load regulation                         | I <sub>REF</sub> = 0 to 25 mA                                                                  | 24    | 37   | 57    | mV   |
| I <sub>REF(LIM)</sub> | REF current limit                           | $V_{REF} = 4.5 \text{ V}, V_{IN} = 20 \text{ V}$                                               | 28    | 39   | 47    | mA   |
| V <sub>REF(UV)</sub>  | REF undervoltage threshold                  | Positive going V <sub>REF</sub>                                                                | 4.3   | 4.5  | 4.7   | V    |
|                       | Hysteresis                                  |                                                                                                | 0.16  | 0.26 | 0.37  | V    |
| UNDERVOL              | TAGE LOCK OUT AND SHUTDOWN                  | (UVLO PIN)                                                                                     |       |      |       |      |
| V <sub>UVLO</sub>     | UVLO threshold                              |                                                                                                | 1.205 | 1.25 | 1.305 | V    |
| I <sub>UVLO</sub>     | UVLO Hysteresis current                     |                                                                                                | 15    | 20   | 24    | μΑ   |
| V <sub>SD</sub>       | Internal startup regulator enable threshold | SS = 0 V, FB_AUX = 2.5 V                                                                       | 0.34  | 0.38 | 0.41  | ٧    |
|                       | Hysteresis                                  |                                                                                                | 90    | 135  | 175   | mV   |
| OVER-VOL              | rage/latch (on_off Pin)                     |                                                                                                |       |      |       |      |
| V <sub>ON_OFF</sub>   | ON_OFF threshold                            |                                                                                                | 1.18  | 1.25 | 1.32  | V    |
| I <sub>OVL</sub>      | ON_OFF hysteresis current                   |                                                                                                | 40    | 50   | 60    | μA   |
|                       | RT (SS PIN, SSSR PIN)                       |                                                                                                |       |      | 1     |      |
| I <sub>SS</sub>       | SS charge current                           | SS = 0 V                                                                                       | 17    | 20   | 24    | μA   |

Product Folder Links: LM5036



# **Electrical Characteristics (continued)**

MIN and MAX limits apply the junction temperature range of –40°C to 125°C. Unless otherwise specified, the following conditions apply:  $V_{IN}$  = 48 V,  $R_T$  = 25 k $\Omega$ ,  $RD_1$  =  $RD_2$  = 20 k $\Omega$ ,  $R_{ON}$  =100 k $\Omega$ . No load on LSG, HSG, SR1, SR2, UVLO = 2.5 V, ON\_OFF = 0 V.

|                                      | PARAMETER                                                                   | TEST CONDITIONS                      | MIN                                   | TYP   | MAX          | UNIT |
|--------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|---------------------------------------|-------|--------------|------|
| V <sub>SSSecEn</sub>                 | SS threshold to enable SSSR charge current                                  | I <sub>COMP</sub> < 800 μA           | 1.93                                  | 2.06  | 2.2          | V    |
|                                      | SS output low voltage                                                       | Sinking 100 µA                       | 30                                    | 48    | 57           | mV   |
|                                      | SS threshold to disable switching                                           |                                      | 865                                   | 1000  | 1198         | mV   |
| SSSR                                 | SSSR charge current                                                         | SS > 2 V, I <sub>COMP</sub> < 800 μA | 17                                    | 20    | 24           | μΑ   |
|                                      | SSSR output low voltage                                                     | Sinking 100 µA                       | 30                                    | 38.7  | 49           | mV   |
| V <sub>SSREn</sub>                   | SSSR threshold to enable SR freewheeling pulse                              |                                      | 0.65                                  | 1.17  | 1.67         | V    |
| CURRENT S                            | ENSE (CS_POS, CS_NEG, and CS_SET                                            | PIN)                                 |                                       |       | <u> </u>     |      |
| $V_{LIM}$                            | Current limit setting voltage                                               |                                      | 0.72                                  | 0.75  | 0.77         | V    |
|                                      | Ratio of internal negative to positive current limit threshold              |                                      | 0.3                                   | 0.58  | 0.9          |      |
| CSLSG                                | CS to gate driver output delay                                              |                                      | 60                                    | 85    | 122          | ns   |
| CSBLK                                | CS leading-edge blanking                                                    |                                      | 33                                    | 53    | 76           | ns   |
| ≺ <sub>CBC1</sub> <sup>(1)</sup>     | V <sub>LIM</sub> x (K <sub>2a</sub> X K <sub>10b</sub> - K <sub>10a</sub> ) | At CBC trip threshold                | 7.28                                  | 7.51  | 7.81         | V    |
| V <sub>CSOffset</sub> <sup>(1)</sup> | V <sub>CS_POS</sub> - V <sub>CS_NEG</sub>                                   | At CBC trip threshold                | -0.63                                 | -0.02 | 0.32         | mV   |
| BiasOffset (1)                       | I <sub>BiasPOS</sub> - I <sub>BiasNEG</sub>                                 | At CBC trip threshold                | -0.67                                 | 0.02  | 0.29         | μA   |
| SLOPE (1)                            | Peak value of current source for slope compensation                         |                                      | 50                                    | 54    | 59           | μΑ   |
| REVERSE C                            | URRENT PROTECTION                                                           | ,                                    |                                       |       | 11           |      |
| N                                    | Number of switching periods to reset negative over-current event counter    |                                      |                                       | 4     |              |      |
| SR_CTR_TH                            | SSSR threshold to reset SSSR cap clamp event counter                        |                                      | 4.8                                   | 4.94  | 5.1          | V    |
| HICCUP MO                            | DE (RES PIN)                                                                |                                      |                                       |       |              |      |
| R <sub>RES</sub>                     | RES pulldown resistance                                                     | Termination of hiccup timer          | 24                                    | 36    | 55           | Ω    |
| √ <sub>RESTh1</sub>                  | RES hiccup threshold                                                        |                                      | 0.90                                  | 1     | 1.04         | V    |
| V <sub>RESTh3</sub>                  | RES upper counter threshold                                                 |                                      | 3.91                                  | 4     | 4.07         | V    |
| V <sub>RESTh2</sub>                  | RES lower counter threshold                                                 |                                      | 1.95                                  | 2     | 2.04         | V    |
| RES-SRC1                             | Charge current source1                                                      | V <sub>RES</sub> < 1 V, CBC active   | 12                                    | 15    | 18           | μA   |
| RES-SRC2                             | Charge current source2                                                      | 1 V < V <sub>RES</sub> < 4 V         | 25                                    | 30    | 36           | μA   |
| RES-DIS1                             | Discharge current source1                                                   | CBC not active                       | 3.2                                   | 5     | 5.5          | μA   |
| RES-DIS2                             | Discharge current source2  DE BLANKING                                      | 2 V < V <sub>RES</sub> < 4 V         | 2.5                                   | 5     | 7.5          | μΑ   |
| V <sub>HC_BLK_TH</sub>               | SSSR threshold to disable the hiccup blanking                               |                                      | 5.26                                  | 5.5   | 5.66         | V    |
| VOLTAGE F                            | EED-FORWARD (RAMP PIN)                                                      |                                      | · · · · · · · · · · · · · · · · · · · |       | <del>!</del> |      |
|                                      | RAMP sink impednace (clocked)                                               |                                      | 3.9                                   | 6.0   | 9.1          | Ω    |
| OSCILLATO                            | R (RT PIN)                                                                  |                                      |                                       |       |              |      |
| SW1                                  | Frequency (half oscillator frequency)                                       | $R_T = 25 \text{ k}\Omega$           | 185                                   | 200   | 215          | kHz  |
| SW2                                  | Frequency (half oscillator frequency)                                       | $R_T = 10 \text{ k}\Omega$           | 420                                   | 480   | 540          | kHz  |
| V <sub>RTReg</sub>                   | DC level                                                                    |                                      | 1.85                                  | 2     | 2.06         | V    |
| √ <sub>RTSync</sub>                  | RT sync threshold                                                           |                                      | 2.8                                   | 3     | 3.3          | V    |
|                                      | OUS RECTIFIER TIMING CONTROL (RE                                            | 01 and RD2 PINS)                     |                                       |       |              |      |
| 1                                    | SR trailing edge delay SR turn-off to primary switch turn-on                | RD <sub>1</sub> = 20 kΩ              | 94                                    | 123   | 157          | ns   |
|                                      |                                                                             | · ·                                  |                                       |       |              |      |

# (1) Guaranteed By Design



# **Electrical Characteristics (continued)**

MIN and MAX limits apply the junction temperature range of  $-40^{\circ}$ C to 125°C. Unless otherwise specified, the following conditions apply:  $V_{IN}$  = 48 V,  $R_T$  = 25 k $\Omega$ ,  $RD_1$  =  $RD_2$  = 20 k $\Omega$ ,  $R_{ON}$  =100 k $\Omega$ . No load on LSG, HSG, SR1, SR2, UVLO = 2.5 V, ON\_OFF = 0 V.

|                          | PARAMETER                                                   | TEST CONDITIONS                                                                                        | MIN   | TYP   | MAX   | UNIT |
|--------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------|-------|-------|------|
|                          |                                                             | $RD_1 = 100 \text{ k}\Omega$                                                                           | 213   | 278   | 350   | ns   |
| 2                        | SR leading edge delay primary switch turn-off to SR turn-on | $RD_2 = 20 \text{ k}\Omega$                                                                            | 60    | 79    | 102   | ns   |
|                          |                                                             | $RD_2 = 100 \text{ k}\Omega$                                                                           | 188   | 250   | 315   | ns   |
| clk                      | Pulse width of the clock                                    |                                                                                                        | 47    | 65    | 87    | ns   |
| COMP PIN                 |                                                             |                                                                                                        |       |       | *     |      |
| PWM-OS                   | COMP current to RAMP offset                                 | RAMP = 0 V                                                                                             | 596   | 800   | 1063  | μA   |
| V <sub>SS-OS</sub>       | SS to RAMP offset                                           | RAMP = 0 V                                                                                             | 0.86  | 1     | 1.15  | V    |
|                          | COMP current to RAMP gain                                   | delta RAMP/delta I <sub>COMP</sub>                                                                     | 1895  | 2400  | 2936  | Ω    |
|                          | SS to RAMP gain                                             | delta SS/delta RAMP                                                                                    | 0.574 | 0.646 | 0.74  |      |
| I <sub>COSsrEn</sub>     | COMP current for SSSR charge curent enable                  | SS > 2 V                                                                                               | 600   | 750   | 900   | μΑ   |
|                          | COMP to gate driver output delay                            |                                                                                                        | 100   | 120   | 150   | ns   |
|                          | Minimum duty cycle                                          | I <sub>COMP</sub> = 1 mA                                                                               |       |       | 0     | %    |
| BOOST (BST               | PIN)                                                        |                                                                                                        |       |       | I     |      |
| V <sub>BST(UV)</sub>     | BST under-voltage threshold                                 | V <sub>BST</sub> - V <sub>SW</sub> rising                                                              | 3.2   | 4.137 | 5.6   | V    |
| 201(01)                  | Hysteresis                                                  |                                                                                                        | 0.37  | 0.481 | 0.65  | V    |
| LSG, HSG GA              | ATE DRIVERS                                                 |                                                                                                        |       |       | L     |      |
| V <sub>OL_PRI</sub>      | Low-state output voltage                                    | I <sub>HSG/LSG</sub> = 100 mA                                                                          | 0.1   | 0.3   | 0.41  | V    |
| V <sub>OH_PRI</sub>      | High-state output voltage                                   | $I_{HSG/LSG}$ = 100 mA, $V_{OHL\_PRI}$ = $V_{CC}$ - $V_{LSG}$ , $V_{OHH\_PRI}$ = $V_{BST}$ - $V_{HSG}$ | 0     | 0.38  | 1     | V    |
|                          | Rise Time                                                   | C-load =1000 pF                                                                                        | 2     | 8     | 12    | ns   |
|                          | Fall Time                                                   | C-load =1000 pF                                                                                        | 2     | 10    | 14    | ns   |
| SO_PRI                   | Peak Source Current                                         | V <sub>HSG/LSG</sub> = 0V                                                                              |       | 1.5   |       | А    |
| I <sub>SI PRI</sub>      | Peak Sink Current                                           | V <sub>HSG/LSG</sub> = VCC                                                                             |       | 2     |       | А    |
| SR1, SR2 GA              | TE DRIVERS                                                  |                                                                                                        |       |       |       |      |
| V <sub>OL_SR</sub>       | Low-state output voltage                                    | I <sub>SR1/SR2</sub> = 10 mA                                                                           |       |       | 0.12  | V    |
| V <sub>OH_SR</sub>       | High-state output voltage                                   | I <sub>SR1/SR2</sub> = 10 mA, V <sub>OH_SR</sub> = V <sub>REF</sub> - V <sub>SR</sub>                  |       |       | 0.313 | V    |
|                          | Rise Time                                                   | C-load = 1000 pF                                                                                       | 25    | 45    | 65    | ns   |
|                          | Fall Time                                                   | C-load = 1000 pF                                                                                       | 4     | 10    | 16    | ns   |
| I <sub>SO_SR</sub>       | Peak Source Current                                         | V <sub>SR</sub> = 0 V                                                                                  | 0.05  | 0.09  | 0.14  | Α    |
| SI_SR                    | Peak Sink Current                                           | $V_{SR} = V_{REF}$                                                                                     | 0.1   | 0.2   | 0.4   | А    |
|                          | E THERMAL SHUTDOWN                                          | -                                                                                                      |       |       | +     |      |
| T <sub>SD</sub>          | Thermal Shutdown Temp                                       |                                                                                                        |       | 150   |       | °C   |
|                          | Thermal Shutdown Hysteresis                                 |                                                                                                        |       | 25    |       | °C   |
| AUX SUPPLY               | SWITCH CHARACTERISTICS                                      | · · · · · · · · · · · · · · · · · · ·                                                                  |       |       |       |      |
|                          | Buck Switch R <sub>DS(ON)</sub>                             | I <sub>TEST</sub> = 60 mA                                                                              | 3.0   | 5.2   | 7.5   | Ω    |
|                          | Synchronous Switch R <sub>DS(ON)</sub>                      | I <sub>TEST</sub> = 60 mA                                                                              | 1.2   | 2.8   | 4.5   | Ω    |
| AUX SUPPLY               | UNDERVOLTAGE LOCKOUT                                        |                                                                                                        |       |       |       |      |
| V <sub>BST_AUX(UV)</sub> | BST_AUX undervoltage threshold                              | V <sub>BST AUX</sub> - V <sub>SW AUX</sub> rising                                                      | 2.1   | 2.8   | 3.6   | V    |
| V <sub>AUX_UVLO</sub>    | AUX supply UVLO input voltage rising threshold              |                                                                                                        | 12.2  | 15    | 16.0  | V    |
|                          | AUX supply UVLO input voltage falling threshold             |                                                                                                        | 7.9   | 11.2  | 12.7  | V    |

Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated

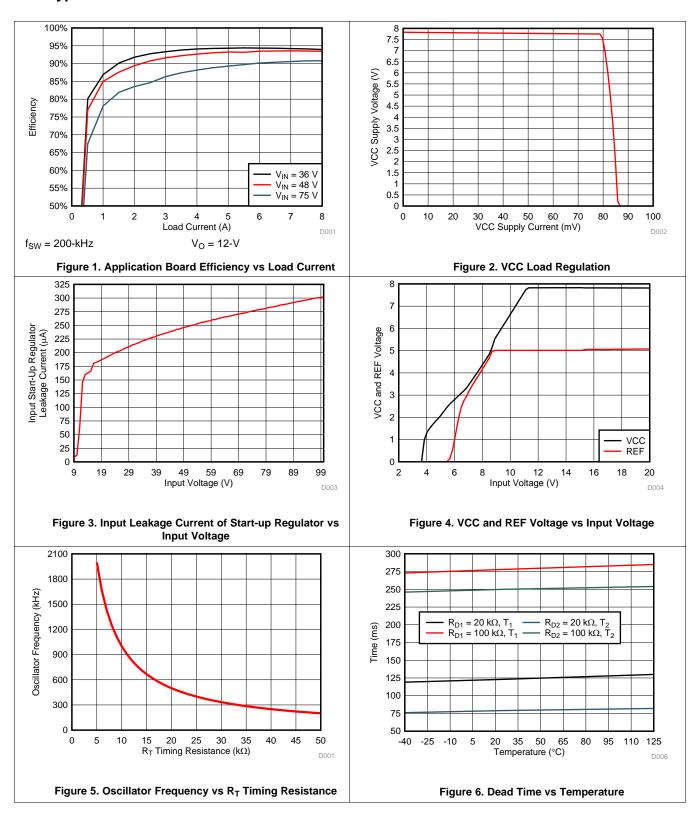


# **Electrical Characteristics (continued)**

MIN and MAX limits apply the junction temperature range of  $-40^{\circ}$ C to 125°C. Unless otherwise specified, the following conditions apply:  $V_{IN}$  = 48 V,  $R_T$  = 25 k $\Omega$ ,  $RD_1$  =  $RD_2$  = 20 k $\Omega$ ,  $R_{ON}$  =100 k $\Omega$ . No load on LSG, HSG, SR1, SR2, UVLO = 2.5 V, ON\_OFF = 0 V.

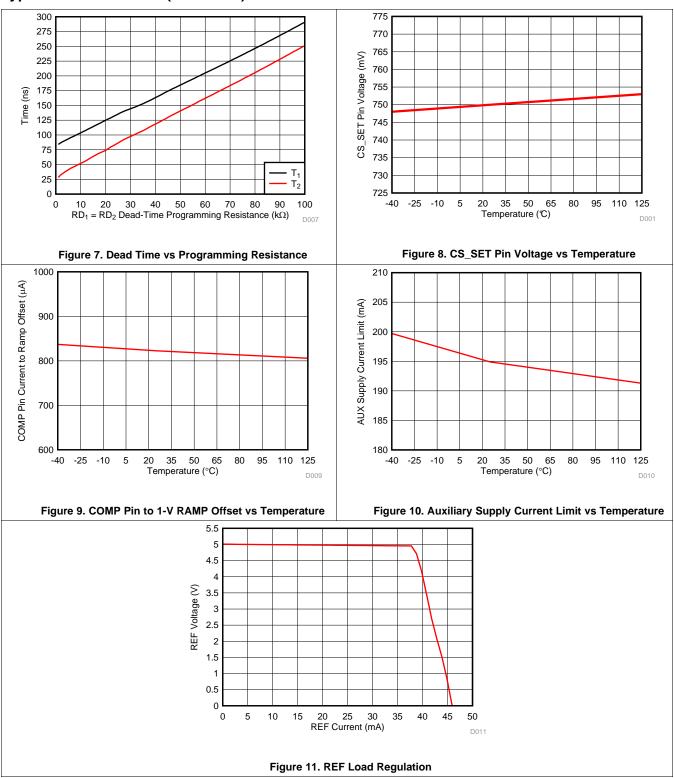
|                       | PARAMETER                                                                                             | TEST CONDITIONS | MIN  | TYP | MAX  | UNIT |
|-----------------------|-------------------------------------------------------------------------------------------------------|-----------------|------|-----|------|------|
| V <sub>AUX-OFF</sub>  | OFF-State AUX Voltage Regulation Level                                                                |                 | 1.26 | 1.4 | 1.53 | V    |
| V <sub>AUX-ON</sub>   | ON-State AUX Voltage Regulation<br>Level                                                              |                 | 0.95 | 1   | 1.04 | V    |
| AUX SUPPL             | Y CURRENT LIMIT                                                                                       |                 |      |     |      |      |
| I <sub>AUX(LIM)</sub> | AUX Supply Current Limit Threshold                                                                    |                 | 150  | 200 | 250  | mA   |
| t <sub>CSBLKA</sub>   | Current limit comparator blanking period measured from start of t <sub>ON</sub> period <sup>(1)</sup> |                 |      | 50  |      | ns   |
| t <sub>AUX(LIM)</sub> | Delay from Comparator Threshold to upper MOSFET turn-OFF <sup>(1)</sup>                               |                 |      | 116 |      | ns   |
| τ <sub>AuxSns</sub>   | Aux Current Limit Parasitic Filter time constant (1)                                                  |                 |      | 41  |      | ns   |
| AUX SUPPL             | Y THERMAL SHUTDOWN                                                                                    |                 |      |     | 1    |      |
| T <sub>SD_AUX</sub>   | AUX Supply Thermal Shutdown Temp                                                                      |                 |      | 160 |      | °C   |
|                       | AUX Supply Thermal Shutdown<br>Hysteresis                                                             |                 |      | 28  |      | °C   |

# 6.6 Switching Characteristics


MIN and MAX limits apply the junction temperature range of  $-40^{\circ}\text{C}$  to 125°C. Unless otherwise specified, the following conditions apply:  $V_{\text{IN}}$  = 48 V,  $R_{\text{T}}$  = 25 k $\Omega$ ,  $RD_{\text{1}}$  =  $RD_{\text{2}}$  = 20 k $\Omega$ ,  $R_{\text{ON}}$  =100 k $\Omega$ . No load on LSG, HSG, SR1, SR2, UVLO = 2.5 V, ON\_OFF = 0 V.

| PARAMETER             |                             | TEST CONDITIONS                                       | MIN | TYP | MAX | UNIT |
|-----------------------|-----------------------------|-------------------------------------------------------|-----|-----|-----|------|
| t <sub>ON</sub>       | AUX SUPPLY ON-TIME          | $V_{IN} = 32 \text{ V}, R_{ON} = 100 \text{ k}\Omega$ | 240 | 330 | 440 | ns   |
| t <sub>ON</sub>       | AUX SUPPLY ON-TIME (1)      | $V_{IN}$ =54 V, $R_{ON}$ = 250 k $\Omega$             |     | 493 |     | ns   |
| t <sub>ON</sub>       | AUX SUPPLY ON-TIME (1)      | $V_{IN}$ =75V, $R_{ON}$ = 250 k $\Omega$              |     | 370 |     | ns   |
| t <sub>OFF(MIN)</sub> | AUX SUPPLY MINIMUM OFF-TIME | FB_AUX = 0 V                                          | 69  | 103 | 136 | ns   |

(1) Guaranteed by design.


# TEXAS INSTRUMENTS

# 6.7 Typical Characteristics





# **Typical Characteristics (continued)**



Copyright © 2018–2019, Texas Instruments Incorporated



# 7 Detailed Description

#### 7.1 Overview

The LM5036 device is a highly-integrated, half-bridge PWM controller with integrated auxiliary bias supply. It provides a high power-density solution for telecom, datacom and industrial power converters. The device has all of the features necessary to implement a power converter that uses half-bridge topology. The device employs voltage-mode control and includes input voltage feed-forward to improve performance. This device operates on the primary side of an isolated DC-DC power converter with input voltage up to 100-V.

The soft-start function provides a fully regulated and monotonic rise of output voltage, even when the converter energizes into a pre-biased load. The device uses an enhanced cycle-by-cycle (CBC) current limit. This function matches the pulse to maintain the voltage balance of the half-bridge capacitor divider. This method ensures flux balance of the transformer during CBC operation. The input voltage compensation function helps to minimize the variation of the current limit level across the entire input voltage range.

The LM5036 device has these other features:

- · configurable latch protection
- configurable overvoltage protection (OVP)
- optimized maximum duty cycle operation for the primary MOSFETs
- integrated half-bridge MOSFET gate drivers
- programmable dead-time between the primary MOSFETs and synchronous rectifiers
- auxiliary supply synchronous and asynchronous mode transition
- 5-V synchronous rectifier PWM outputs
- programmable line undervoltage lockout (UVLO)
- hiccup mode overcurrent protection (OCP)
- reverse current protection
- a 2-MHz capable oscillator with synchronization capability
- two-level thermal shutdown protection

An Excel Calculator Tool is provided to ease the process of creating custom designs using this controller. This tool calculates values for all the external components required by the controller to meet a given specification. It also generates many key parameters of the power stage including, for example, the turns ratio of the half-bridge transformer. The tool generates graphs predicting, for a given set of current limit components, how the output current limit will vary with input voltage. Maximum flexibility is offered by calculating suggested values for most components, but allowing the user to input values of their own choice.



# 7.2 Functional Block Diagram



Copyright © 2018, Texas Instruments Incorporated



## 7.3 Feature Description

# 7.3.1 High-Voltage Start-Up Regulator

The LM5036 device contains a high-voltage VCC start-up regulator that allows the input pin (VIN) to be connected directly to an input voltage up to 100-V. Higher input voltages can be accommodated by adding some additional external parts, as described in Applications with  $V_{IN} > 100$ -V. When the UVLO pin voltage is greater than  $V_{SD}$  (0.38-V typical), the start-up regulator is enabled to charge an external capacitor connected to the VCC pin. The output voltage of the VCC regulator is regulated at  $V_{CC}$  (7.8-V typical). The VCC regulator provides power to the reference (REF) regulator. The regulator output at VCC is internally current limited to  $I_{CC(Lim)}$  (81-mA typical) . The value of the VCC capacitor depends on the total system design, and its start-up characteristics. The recommended range of values for the VCC capacitor is 0.47-µF to 10-µF.

LM5036 can power itself using its internal high-voltage start-up linear regulator, but internal power dissipation can be reduced by powering VCC from an auxiliary switched mode supply. LM5036 device integrates all of the functions needed to implement a low-cost and easy-to-design isolated fly-buck auxiliary supply based on the constant-on-time (COT) control scheme. The primary output  $V_{AUX1}$  of the auxiliary supply must be connected through a diode to the VCC pin, as shown in Figure 12. The auxiliary supply must raise the VCC voltage above the internally generated  $V_{CC}$  voltage in order to shut off the internal start-up regulator. Powering VCC from an auxiliary switched mode supply improves efficiency while reducing the power dissipation of the controller IC. The VCC under-voltage (UV) circuit will still function in this mode, requiring that VCC never falls below its UV threshold during the start-up sequence. The VCC regulator series pass transistor includes a diode between VCC and VIN that should not be forward biased in normal operation. Therefore, the auxiliary VCC voltage should never exceed the  $V_{\rm IN}$  voltage.

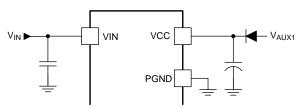



Figure 12. External VCC Bias Supply Connection

#### 7.3.2 Undervoltage Lockout (UVLO)

The LM5036 device contains a three-level under-voltage lockout circuit. When the UVLO pin voltage is below  $V_{SD}$  (0.38-V typical), the controller is in a low current shutdown mode where the functional circuit blocks are not enabled including VCC startup regulator, auxiliary supply and the main half-bridge control logic and gate drive circuitry, etc.

When UVLO pin voltage is above V<sub>SD</sub>, the VCC and REF regulators become active.

When the VCC and REF outputs exceed their respective UV thresholds and the input voltage  $V_{IN}$  rises above  $V_{AUX\ UVLO}$  (15-V typical), the auxiliary supply is enabled.

When UVLO pin voltage rises above  $V_{UVLO}$  (1.25-V typical) and VCC and REF voltage are above their respective UV thresholds, the control logic of the main half-bridge converter is enabled. The soft-start capacitor is released and normal operation begins. An external set-point voltage divider from  $V_{IN}$  to GND can be used to set the minimum operating voltage of the half-bridge converter. The divider must be designed such that the voltage at the UVLO pin is greater than  $V_{UVLO}$  when  $V_{IN}$  enters the desired operating range. UVLO hysteresis is accomplished with an internal current sink  $I_{UVLO}$  (20- $\mu$ A typical) that is switched on or off into the impedance of the external set-point divider. When the UVLO pin voltage threshold of  $V_{UVLO}$  is exceeded, the current sink is deactivated to quickly raise the voltage at the UVLO pin. When the UVLO pin voltage falls below the  $V_{UVLO}$  threshold, the current sink is enabled causing the voltage at the UVLO pin to quickly fall. See Table 1 for more detail on functional modes of LM5036.



## 7.3.3 Reference Regulator

The REF pin is the output of a 5-V linear regulator that can be used to bias an opto-coupler transistor, primary side of an isolated gate driver or digital isolator, among other housekeeping circuits. The regulator output is internally current limited to  $I_{REF(LIM)}$  (39-mA typical). The REF pin must be locally decoupled with a ceramic capacitor, the recommended range of values is from 0.1- $\mu$ F to 10- $\mu$ F.

## 7.3.4 Oscillator, Synchronized Input

The oscillator frequency of LM5036 device is set by a resistor connected between the RT pin and AGND. The  $R_T$  resistor should be located close to the device. To set a desired oscillator frequency ( $f_{OSC}$ ), the value of  $R_T$  resistor can be calculated from Equation 1.

$$R_{\rm T} = \frac{1}{f_{\rm OSC} \times 1 \times 10^{-10}} \tag{1}$$

For example, if the desired oscillator frequency is 400-kHz, that is, each phase (LSG and HSG) switches at 200-kHz, the value of  $R_T$  is calculated to be 25-k $\Omega$ . If the LM5036 device is to be synchronized to an external clock, that signal must be coupled into the RT pin through a 100-pF capacitor. The RT pin voltage is nominally regulated at  $V_{RTReg}$  (2-V typical) and the external pulse amplitude should lift the pin to between 3.5-V and 5.0-V on the low-to-high transition. The synchronization pulse width should be between 15-ns and 200-ns. The  $R_T$  resistor is always required, whether the oscillator is free running or externally synchronized and SYNC frequency must be equal to or greater than the frequency set by the  $R_T$  resistor.

# 7.3.5 Voltage-Mode Control

The LM5036 device employs voltage-mode control with input voltage feed-forward for the main half-bridge converter. A simplified block diagram of the voltage-mode feedback control loop is shown in Figure 13.

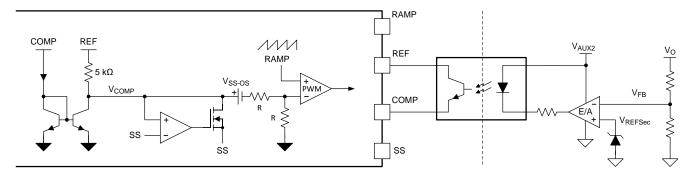



Figure 13. Voltage-Mode Feedback Control Loop for Half-Bridge Converter

The output voltage  $(V_O)$  is sensed and compared against a reference voltage  $(V_{REFSec})$  on the secondary side which produces an error voltage which is then processed by the error amplifier. The compensated error signal is transmitted across the isolation boundary through an opto-coupler and then gets injected into the COMP pin in the form of a control current. The COMP pin current is internally mirrored by a matching pair of NPN transistors which sink current through a 5-k $\Omega$  resistor connected to the 5-V internal reference. The resulting control voltage  $V_{COMP}$  is compared with the soft-start capacitor voltage (SS) and the smaller of the two passes through an offset  $V_{SS-OS}$  (1-V typical), followed by a 2:1 resistor divider before being applied to the PWM comparator to determine the duty cycle of the half-bridge converter. The PWM comparator polarity is configured such that with no current flowing into the COMP pin, the controller produces maximum duty cycle for the primary FETs.

An opto-coupler detector can be connected between the REF pin and the COMP pin. Because the COMP pin is controlled by a current input, the voltage across the opto-coupler detector is nearly constant. The bandwidth limiting phase delay which is normally introduced by the significant capacitance of the opto-coupler is thereby greatly reduced. Higher loop bandwidths can be realized because the bandwidth limiting pole associated with the opto-coupler is now at a much higher frequency.

Copyright © 2018–2019, Texas Instruments Incorporated



The voltage at the RAMP pin provides the modulation ramp for the PWM comparator. The PWM comparator compares the modulation ramp signal at the RAMP pin to the COMP voltage to control the duty cycle. The modulation ramp signal can be implemented as a ramp proportional to the input voltage, known as feed-forward voltage mode control, as shown in Figure 14. The RAMP pin is reset by an internal MOSFET when RAMP voltage passes COMP voltage, current limit event, or at the conclusion of each PWM cycle, whichever comes earlier.

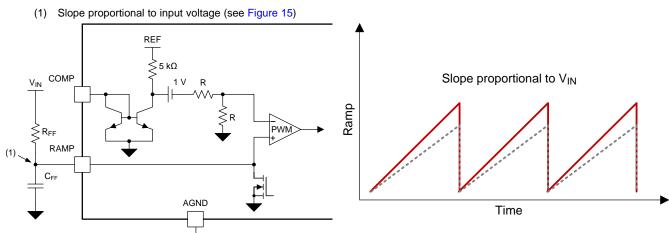



Figure 14. Feed-Forward Voltage-Mode Control Configuration

Figure 15. Modulation Ramp Slope

An external resistor ( $R_{FF}$ ) and capacitor ( $C_{FF}$ ) connected to VIN, AGND, and the RAMP pins are required to create a saw-tooth modulation ramp signal. The slope of the signal at RAMP will vary in proportion to the input voltage. The varying slope provides line feed-forward information necessary to improve line transient response with voltage-mode control. With a constant control signal, the on-time ( $t_{ON}$ ) varies inversely with the input voltage ( $V_{IN}$ ) to stabilize the volt-second product of the transformer. Using a line feed-forward ramp for PWM control requires very little change in the voltage regulation loop to compensate for changes in input voltage, as compared to a ramp with fixed slope. In addition, voltage-mode control is less susceptible to noise. Therefore, it is a good choice for wide input range power converter applications. However, voltage-mode control requires a Type-III compensation network due to the complex-conjugate poles of the L-C output filter.

Assistance with half-bridge voltage control loop design may be obtained using the Power Stage Designer™ tool.

The recommended capacitor value range for  $C_{FF}$  is from 100-pF to 1800-pF. Referring to Figure 14, it can be seen that  $C_{FF}$  value must be small enough to be discharged within the clock pulse-width ( $t_{CLK}$ ). The value of  $R_{FF}$  required can be calculated from Equation 2

$$R_{FF} = \frac{-1}{f_{OSC} \times C_{FF} \times \ln\left(1 - \frac{V_{RAMP}}{V_{IN(min)}}\right)}$$
(2)

For example, assuming a  $V_{RAMP}$  voltage of 1.5-V (a good compromise of signal range and noise immunity),  $V_{IN(min)}$  of 36-V, oscillator frequency of 400-kHz and  $C_{FF}$  = 560-pF results in  $R_{FF}$  = 105-k $\Omega$ .

# 7.3.6 Primary-Side Gate Driver Outputs (LSG and HSG)

The LM5036 device provides two gate driver outputs for the primary FETs of the main half-bridge converter: one floating high-side gate driver output HSG and one ground referenced low-side gate driver output LSG. Each internal gate driver is capable of sourcing 1.5-A peak and sinking 2-A peak (typical). Initially, the LSG output is turned on during the power transfer phase, followed by a freewheeling period during which both LSG and HSG outputs are turned off. In the subsequent power transfer phase, the HSG output is turned on followed by another freewheeling period.

The low-side LSG gate driver is powered directly by the VCC bias supply. The HSG gate driver is powered from a bootstrap capacitor connected between BST and SW. An external diode connected between VCC and BST provides the high-side gate driver power by charging the bootstrap capacitor from VCC when the switching node SW is low. When the high side FET is turned on, BST rises to a peak voltage equal to VCC +  $V_{IN}$ .

Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated



The BST and VCC capacitors should be placed close to the pins of the LM5036 device to minimize voltage transients due to parasitic inductance because the peak current source to the MOSFET gates can exceed 1.5-A (typical). The recommended value of the BST capacitor is 0.1-µF or greater. A low ESR/ESL capacitor, such as a surface mount ceramic, should be used to prevent voltage drop during the HSG transitions.

# 7.3.7 Half-Bridge PWM Scheme

Synchronous rectification on the secondary side of the transformer provides higher efficiency, especially for low output voltage and high output current converter, compared to the diode rectification. The reduction of the diode forward voltage drop (0.5-V to 1.5-V) to 10-mV to 200-mV  $V_{DS}$  voltage for a MOSFET significantly reduces rectification losses. In a typical application, the secondary windings of the transformer can be center tapped, with the output power inductor in series with the center tap, as shown in Figure 16. The synchronous rectifiers (SRs) provide the ground path for the energized secondary winding and the inductor current.

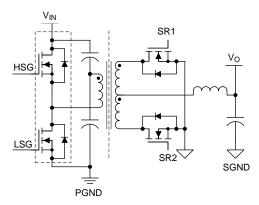



Figure 16. Half-bridge Topology with Center-Tap Rectification

The internal SR drivers are powered by the REF regulator and each SR output is capable of sourcing 0.1-A and sinking 0.2-A peak (typical). The amplitude of the SR drivers is limited to 5-V. The 5-V SR signals enable the transfer of SR control signals across the isolation barrier either through a digital isolator or isolated gate driver. It should be noted that the actual gate sourcing and sinking currents for the SRs are provided by the secondary-side gate drivers.

The timing diagram of the four PMW signals (LSG, HSG, SR1, and SR2) with dead-times is illustrated in Figure 17. The main clock is generated by the internal oscillator. A delayed clock is derived by adding a delay of  $t_D$  to the main clock.  $t_D$  can be calculated from Equation 3, where RD<sub>1</sub> is the value of the resistor connected between RD1 pin and AGND.

$$t_D = RD_1 \times 2 pF + 20 \text{ ns}$$
(3)

(4)

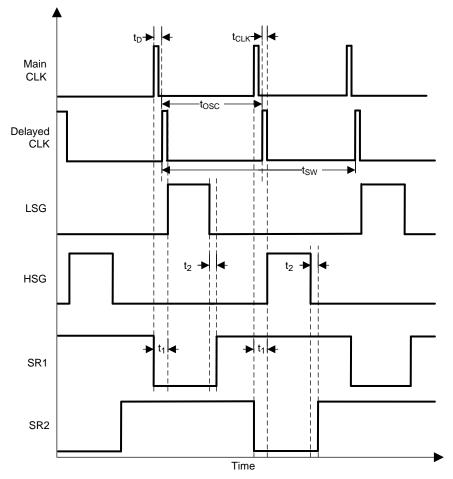



Figure 17. PWM Signal Timing Diagram

As illustrated in Figure 17, the rising edge of the main clock is used to turn off the SRs. Primary FET drive signal LSG/HSG is turned on at the falling edge of the delayed clock. Therefore, the dead-time between the falling edge of SR and the rising edge of the respective primary FET can be calculated from Equation 4

$$t_1 = t_D + t_{CLK}$$

where

t<sub>CLK</sub> is the pulse width of the clock which is 65 ns (typical).

The minimum achievable t<sub>1</sub> is dominated by the pulse width of the clock when t<sub>D</sub> is set to minimum (30 ns).

After SR1 is turned off, the body diode of SR1 continues to carry about half the inductor current until the primary power raises the drain voltage of the SR1 and reverse biases its body diode. Ideally, dead-time  $t_1$  would be set to the minimum time that allows the SR to turn off before the body diode starts conducting.

Power is transferred from the primary to the secondary side when the LSG is turned on. During this power transfer period, the SR2 is still turned on while the SR1 is turned off. The drain voltage of SR1 is twice the voltage of the center tap at this time. Under the normal operation, the LSG is turned off either when the RAMP signal exceeds the COMP signal or at the rising edge of the next delayed clock signal (maximum duty cycle condition), whichever comes earlier. A dead-time  $t_2$  is inserted between the falling edge of LSG and rising edge of SR1.  $t_2$  can be calculated from Equation 5, where RD<sub>2</sub> is the value of the resistor connected between RD2 pin and AGND.

$$t_2 = RD_2 \times 2 \,\mathrm{pF} + 30 \,\mathrm{ns} \tag{5}$$



During the dead-time  $t_2$ , the inductor current continues to flow through the body diode of SR1. Because the body diode causes more conduction loss than the SR, efficiency can be improved by minimizing the  $t_2$  period while maintaining sufficient margin across the entire operating conditions (component tolerances, input voltages, etc.) to prevent the cross conduction between the primary FET and SR.

During the freewheeling period where both of the primary FETs are turned off while both of the SRs are turned on, the inductor current is almost equally shared between SR1 and SR2 which effectively shorts the secondary winding of the transformer. SR2 is then turned off before HSG is turned on. The power is transferred from the primary to secondary side again when HSG is turned on. After HSG is disabled and the dead-time  $t_2$  expires, SR1 and SR2 both conduct again during the freewheeling period.

Resistor values of no less than 5-k $\Omega$  should be connected between the RD1/RD2 pins and AGND

#### 7.3.8 Maximum Duty Cycle Operation

The LSG and HSG will operate at maximum duty cycle when they are turned off at the rising edge of the delayed clock, instead of by the event where RAMP voltage passes COMP voltage, as shown in Figure 18. In LM5036 device, it is intended to achieve optimized maximum duty cycle for the primary FETs in order to accommodate wider range of operation.

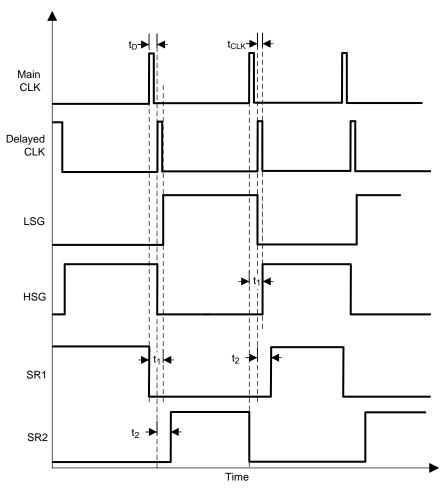



Figure 18. PWM Signals at Maximum Duty Cycle Condition

Copyright © 2018–2019, Texas Instruments Incorporated

Use Equation 6 to calculate the maximum duty cycle for the primary FETs

$$D_{MAX} = \frac{\frac{1}{f_{OSC}} - t_{CLK}}{\frac{2}{f_{OSC}}}$$

where

• f<sub>OSC</sub> is the oscillator frequency which is twice the switching frequency

(6)

The pulse width of the clock is used in this case to prevent cross-conduction between the two primary FETs during the maximum duty cycle operation.

# 7.3.9 Pre-Biased Start-Up Process

The soft-start functionality limits the inrush current and voltage stress of the power converter. A common requirement for the power converters used in the telecom/datacom applications is to have a monotonic output voltage start-up into pre-biased load conditions where the output capacitor is pre-charged prior to start-up. In a pre-biased load condition, if the synchronous rectifiers are engaged prematurely they will sink current from the pre-charged output capacitors resulting in undesired output voltage dip or even power converter damage. The LM5036 device implements unique circuitry to ensure intelligent turn-on of the synchronous rectifiers such that the output voltage has monotonic start-up.

The start-up process can be divided into two phases:

- soft-start of the primary FETs
- soft-start of the SRs

The pre-biased start-up process is handled automatically by LM5036. The user need only select values for  $C_{SSR}$ , and the ramp rate of the secondary reference ( $V_{REFSec}$ ) soft-start Figure 19. The circuit of Figure 19 uses a comparator to, detect the voltage change of  $V_{AUX2}$  and, release the FET shorting across the secondary soft-start capacitor ( $C_{SSSec}$ ). This comparator circuit may also be replaced by the transistor based circuit of Figure 41.

## 7.3.9.1 Primary FETs Soft-Start Process

Figure 19 shows a simplified block diagram of the soft-start function.

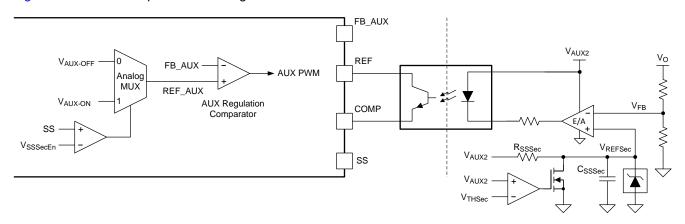



Figure 19. Soft-Start Function

The auxiliary supply has two reference output voltage levels of  $V_{AUX-OFF}$  (1.4 -V typical, off state) and  $V_{AUX-ON}$  (1-V typical, on state) which facilitates easy voltage level shift detection on the secondary side. The auxiliary supply starts to operate as soon as  $V_{IN} > V_{AUX\_UVLO}$  (15-V typical) and VCC and REF are above the respective UV thresholds. When the soft-start capacitor is below  $V_{SSSecEn}$  (2.06-V typical), the auxiliary supply will produce the off-state voltage on the primary ( $V_{AUX1-OFF}$ ) and secondary side ( $V_{AUX2-OFF}$ ), as shown in Figure 20.



The off-state auxiliary output voltage level present on the secondary side  $V_{AUX2\text{-}OFF}$  is above the threshold  $V_{THSec}$ , which activates a reset circuit that discharges the output voltage reference  $V_{REFSec}$ . This ensures that the opto-coupler is producing a 0% duty-cycle command. When UVLO exceeds  $V_{UVLO}$  (1.25-V typical) and VCC and REF are above the respective UV thresholds, the soft-start capacitor starts to charge. The auxiliary supply will produce the on-state voltage level when the soft-start capacitor reaches  $V_{SSSecEn}$ .

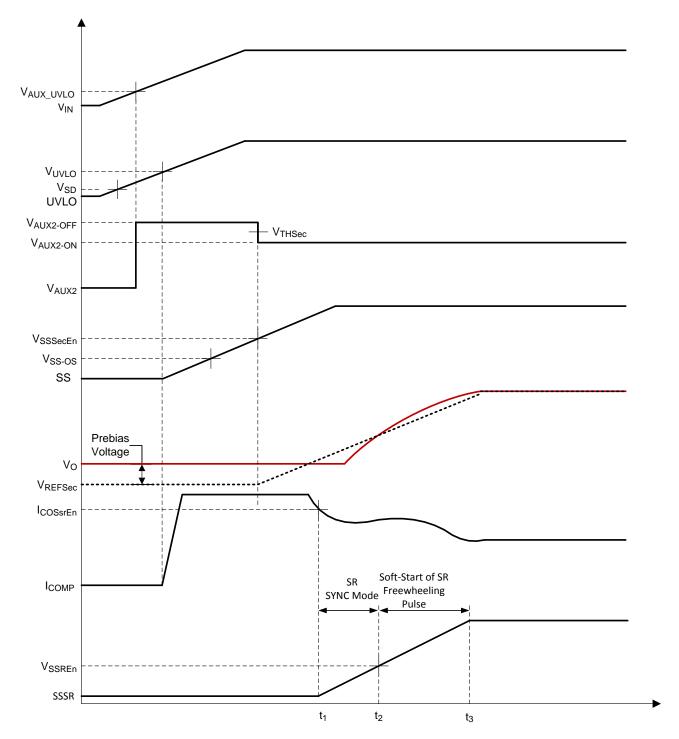



Figure 20. Pre-biased Start-Up Waveform



The secondary side reset circuit will now be disabled because  $V_{AUX2-ON} < V_{THSec}$ , and the output voltage reference is released. The reference capacitor soft-starts the output voltage under full regulation. By modulation of the auxiliary output voltage, the communication between the primary and secondary side is established without the need of any additional opto-coupler.

Due to the introduced programmable soft-start delay (before SS capacitor reaches V<sub>SSSecEn</sub>), the duty cycle is controlled by the feedback control loop at all times without being interfered by the SS capacitor voltage (because V<sub>COMP</sub> < V<sub>SS</sub>). When the reference voltage exceeds the pre-bias voltage at the output, the I<sub>COMP</sub> starts to fall as the secondary side error amplifier demands increased power. As I<sub>COMP</sub> falls the internal V<sub>COMP</sub> voltage will rise and when it exceeds V<sub>SS-OS</sub>, which corresponds to zero duty cycle, the duty cycle of the primary FETs starts to increase. Once the I<sub>COMP</sub> current falls below I<sub>COSsrEn</sub> the device starts to charge SSSR capacitor with current  $I_{SSSR}$  (20- $\mu$ A typical).

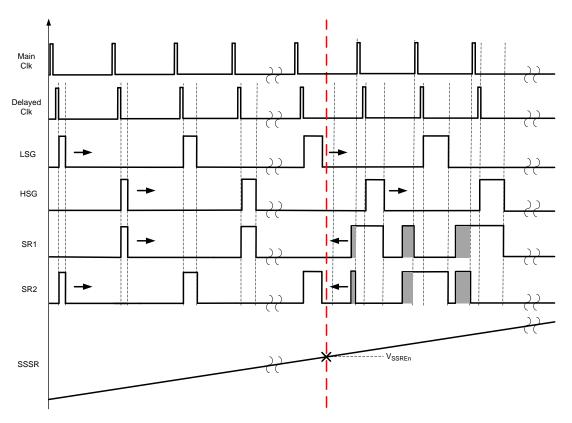



Figure 21. PWM Timing During Startup Process

## 7.3.9.2 Synchronous Rectifier (SR) Soft-Start Process

Until SSSR capacitor reaches  $V_{\text{SSREn}}$  (1-V typical), the controller operates at SR synchronization (SYNC) mode where the SR pulses are synchronized to the respective primary FET pulses, as shown in Figure 21. This helps to reduce the conduction loss of the SRs. In addition, due to the fact that the SRs only conduct during power transfer phase, there is no risk of reverse current in SYNC mode. Since the pulse width of SRs gradually increases, the output voltage disturbance due to the difference in the voltage drop between the body diode and the on resistance of the SRs is prevented.

Once the SSSR capacitor crosses the V<sub>SSREn</sub>, the LM5036 device begins the soft-start of the SRs freewheeling period (highlighted in gray in Figure 21) where the SRs may sink current from the output if they are engaged prematurely. The V<sub>SSREn</sub> offset on the SSSR pin is intended to provide additional delay which ensures that the primary duty cycle ramps up to a point where the output voltage is in-regulation, thereby avoiding reverse current when the SRs are engaged. The SR soft-start follows a leading-edge modulation technique such that the leading-edge of the SR pulse is soft-started as opposed to the trailing-edge modulation of the primary FETs. As shown in Figure 21, SR1 and SR2 are turned on simultaneously with a narrow pulse-width during the



freewheeling period. At the end of the freewheel period, that is, at the rising edge of the main CLK, the SR in phase with the next power transfer cycle remains on while the SR out of phase with it is turned off. The in-phase SR remains on throughout the power transfer cycle and at the end of it, both the primary FET and the in-phase SR are turned off simultaneously. At the end of the soft-start, the SR pulses will become complementary to the respective primary FETs, as shown in Figure 17.

#### 7.3.10 Zero Duty Cycle Operation

The zero duty cycle detection ensures that there is no excessive reverse current when the primary duty cycle is zero. In that case, the SSSR capacitor would be clamped to ground and therefore SRs will be turned off (SR SYNC mode). Normal operation will resume (SSSR capacitor start to charge) as soon as the load is applied. It should be noted about a special application scenario where there is a low output capacitance value. During the start-up under no load condition, the output capacitor acts like a load. With small output capacitor the converter might get stuck in zero duty until load is applied.

# 7.3.11 Enhanced Cycle-by-Cycle Current Limiting with Pulse Matching

Figure 22 illustrates the half-bridge converter with low-side current sensing using a sense resistor.

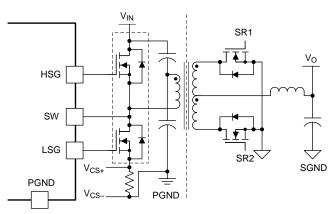



Figure 22. Half-Bridge Converter with Low-Side Current Sensing

In LM5036 device, current limiting for the half-bridge converter is accomplished with three pins, including CS\_SET, CS\_POS and CS\_ NEG pins, as shown in Figure 23. The current sense circuit limits positive current flowing from input to output and also negative current flowing from output to input. An input voltage compensation function helps to minimize the variation of effective output current limit across the range of input voltage. A pulse matching function is automatically implemented when the peak current limit circuit is active. This function matches the pulse width on the high and low primary FETs to maintain voltage balance of the half-bridge capacitor divider. This method ensures flux balance of the transformer during peak current limit operation.

(7)



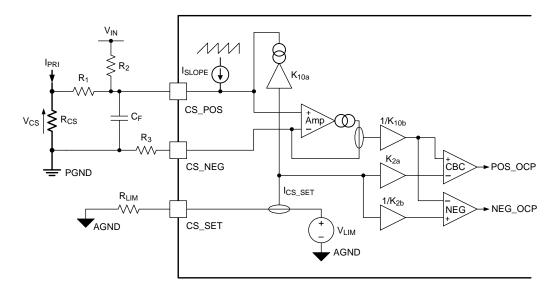



Figure 23. Block Diagram of the Current Limiting Function

CS\_SET pin is used to set the internal current limit threshold with an external resistor R<sub>LIM</sub> according to Equation 7.

$$I_{CS\_SET} = \frac{V_{LIM}}{R_{LIM}}$$

where

The CS\_POS pin is driven by a signal representative of the current flowing through the low-side FET of the half-bridge converter. The current sense voltage at CS\_POS pin (equal to CS\_NEG pin voltage) is converted to a current sense signal through  $R_3$  which is then sensed, scaled and compared against the internal current limit thresholds. In order to blank the leading-edge transient noise seen when the low-side FET is turned on, the current sense signal is blanked for  $t_{CSBLK}$  after LSG is turned on. If the magnitude of the noise spike is excessive, an additional filter capacitor  $C_F$  may be added to form an RC filter with  $R_1$  to reduce the high-frequency noise spike. Both the leading-edge blanking and RC filter help to prevent false triggering of CBC current limiting operation.

In order to achieve bi-directional current sensing, an internal offset current ( $K_{10a} \times I_{CS\_SET}$ ), is injected to the CS\_POS pin. This offset allows positive internal thresholds on the CBC and NEG comparators that correspond to effective  $I_{CS\_SET}$  and  $-I_{CS\_SET}$  / 2 thresholds at the input.

When the current sense signal ( $I_{R3} \times 1 / K_{10b}$ ) reaches the positive threshold ( $K_{2a} \times I_{CS\_SET}$ ), CBC current limiting operation is activated. The controller essentially operates in peak current mode control, with the voltage loop open, during the CBC operation. A common issue with peak current mode control is sub-harmonic oscillation. This occurs when the effective duty cycle is greater than 50%. A common solution for sub-harmonic oscillation is to add slope compensation. The slope of the compensation ramp must be set to at least one half the downslope of the output inductor current transformed to the primary side across the current sense resistor. To eliminate sub-harmonic oscillation after one switching cycle, the slope compensation must be equal to the downslope of the output inductor current. This is known as deadbeat control. In LM5036, the slope compensation signal is a saw-tooth current signal ramping up from 0 to  $I_{SLOPE}$  at the oscillator frequency (twice the switching frequency of each primary FET).

However, another issue will arise after slope compensation is added. The current limit level varies with the input voltage, as illustrated in Figure 24. Because the slope compensation magnitude is different at different input voltages, the actual current limit level varies with input voltage for a given internal current limit threshold.



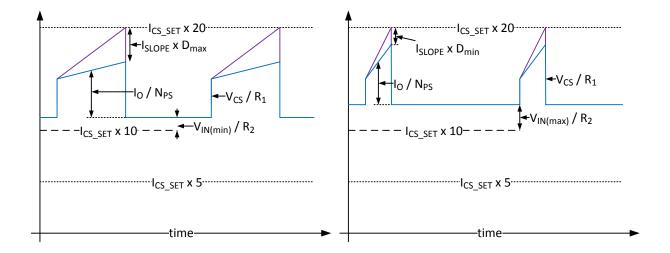



Figure 24. Current Sense and Current Limit Waveforms

A new feature, input voltage compensation, is provided by LM5036. By adding an extra signal, which is a function of input voltage, on top of the current sense signal and the slope compensation signal, variation of the current limit level can be minimized over the entire input voltage range. The CS\_POS pin voltage at time t, after the rising edge of LSG, is expressed by Equation 8:

$$v_{CS\_POS}(t) = v_{CS}(t) + R_1 \times \left(I_{CS\_SET} \times K_{10a} + \frac{V_{IN} - v_{CS\_POS}(t)}{R_2} + I_{SLOPE} \times t \times f_{OSC}\right)$$

$$v_{CS\_POS}(t) = \frac{v_{CS}(t) + R_1 \times \left(I_{CS\_SET} \times K_{10a} + \frac{V_{IN}}{R_2} + I_{SLOPE} \times t \times f_{OSC}\right)}{1 + \frac{R_1}{R_2}}$$

$$(8)$$

At the trip threshold, of the CBC comparator, both its inputs are at the same potential. In this case the voltage on the CS\_NEG pin is expressed by Equation 10.

$$V_{\text{CS}\_\text{NEG}} = I_{\text{CS}\_\text{SET}} \times K_{2a} \times K_{10b} \times R_3$$
(10)

$$V_{CS\_POS}(t) = V_{CS\_NEG}$$
(11)

For a given duty cycle (D) the current sense threshold voltage that will just trigger the CBC comparator can be determined by combining Equation 9, Equation 10 and Equation 11.

$$v_{\text{CS\_CBCTh}} = R_1 \times \left( I_{\text{CS\_SET}} \times \left( K_{2a} \times K_{10b} \times R_3 \left( \frac{1}{R_1} + \frac{1}{R_2} \right) - K_{10a} \right) - \frac{V_{\text{IN}}}{R_2} - I_{\text{SLOPE}} \times D \right)$$
(12)

Now if we assume:



$$\begin{split} &\frac{1}{R_3} = \frac{1}{R_1} + \frac{1}{R_2} \\ &K_{10a} = K_{10b} = 10 \\ &K_{2a} = 2 \\ &D = t_{ON} \times f_{OSC} = \frac{2 \times V_O}{V_{IN}} \times N_{PS} \\ &N_{PS} = \frac{N_P}{N_S} \end{split}$$

Equation 12 simplifies to Equation 14.

$$\begin{split} v_{CS\_CBCTh} &= R_1 \times \left( \frac{K_{CBC1}}{R_{LIM}} - \frac{V_{IN}}{R_2} - I_{SLOPE} \times \frac{2 \times V_O}{V_{IN}} \times N_{PS} \right) \\ Where \\ K_{CBC1} &= V_{LIM} \times \left( K_{2a} \times K_{10b} - K_{10a} \right) \end{split} \tag{14}$$

Current Limit gives an example design process for calculating the CBC external resistor values. The Excel Calculator Tool can also be used to assist in the process of selecting these resistor values.

LM5036 ensures flux balance of the main transformer during CBC operation. The duty cycles of the two primary FETs are always matched. If the low-side FET is terminated due to a current limit event, a matched duty cycle will be applied to the high-side FET during the next half switching period, regardless of the current condition. The matched duty cycles ensure voltage-second balance of the transformer which prevents transformer saturation.

The pulse matching operation is illustrated in Figure 25. When the current limit is reached during the low-side phase, a FLAG signal goes high. The RAMP signal is sampled at the rising edge of the FLAG signal and then held through the next half switching period for the high-side phase. When the high-side phase RAMP signal rises above the sampled value, the high-side PWM pulse is turned off so that the duty cycle are matched for both phases. In the meantime, the hiccup restart capacitor is charged with a current source  $I_{RES-SRC1}$  (15- $\mu$ A typical) during CBC operation. The pulse matching feature is handled automatically by the LM5036 controller and requires no action from the designer.

Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated



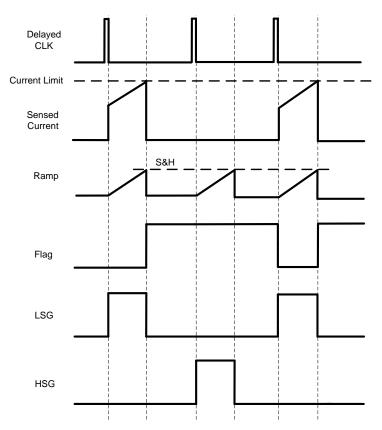



Figure 25. Pulse Matching Operation

#### 7.3.12 Reverse Current Protection

In addition to the CBC current limit, a negative current limit, which is set to be half of the positive current limit as shown in Figure 26. This is used to prevent excessive reverse current which could cause significant output voltage dip and potentially damage the power converter. When the negative current limit is exceeded twice, the SSSR capacitor will be clamped to ground so the controller enters the SR SYNC mode where the SR pulses are synchronized to the respective primary FET pulses. Therefore, the SR freewheeling pulses are turned off. The negative current limit event counter will be reset if the number of negative current limit events detected within four switching periods is less than two.

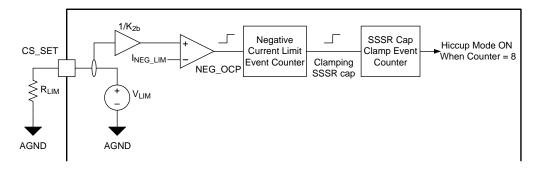



Figure 26. Reverse Current Protection Circuit

At the trip threshold of the NEG comparator both inputs are at the same potential. In this case the voltage on the CS\_NEG pin is expressed by Equation 15.



$$v_{\text{CS}\_\text{NEG}} = I_{\text{CS}\_\text{SET}} \times \frac{1}{K_{2b}} \times K_{10b} \times R_3$$
(15)

The voltage across the CS resistor at the trip threshold of the NEG comparator can therefore be determined by combining Equation 9, Equation 11 and Equation 15.

$$v_{CS\_NEGTh} = R_1 \times \left( \frac{K_{CBC2}}{R_{LIM}} - \frac{V_{IN}}{R_2} - I_{SLOPE} \times t_{CSBLK} \times f_{osc} \right)$$

Where:

$$K_{2h} = 2$$

$$K_{CBC2} = V_{LIM} \times \left(\frac{1}{K_{2b}} \times K_{10b} - K_{10a}\right)$$
(16)

Notice that the inductor current has its most negative value at the start of the LSG on period. The NEG comparator trip will occur immediately after the blanking period (t<sub>CSBLK</sub>) has expired.

The Excel Calculator Tool predicts both the positive and negative output current limit levels as a function of input voltage for a given set of resistor values.

## 7.3.13 CBC Threshold Accuracy

The CBC current limit amplifier deployed within LM5036 is a precise component. In common with all such devices the input bias currents and input offset voltage will lead to small variations in the current trip threshold between parts and across temperature.

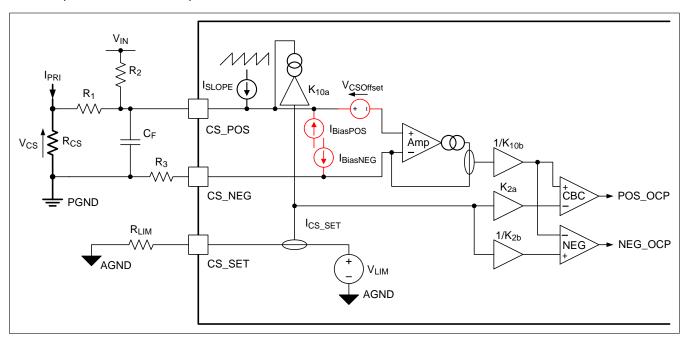



Figure 27. Diagram of Current Limiting Function with Error Terms Shown in Red

At its trip threshold the two inputs of the CBC comparator must be equal. At this condition the voltage on the CS\_NEG pin is given by Equation 17.

$$v_{CS\_NEG} = \left(\frac{V_{LIM}}{R_{LIM}} \times K_{2a} \times K_{10b} + I_{BiasNEG}\right) \times R_{3}$$
(17)

The voltage drop across the ideal amplifier input must be zero. The voltage of the CS\_POS pin, at the trip threshold can be expressed as follows:

$$V_{CS\_POS} = V_{CS\_NEG} + V_{CSOffset}$$
 (18)



$$v_{CS\_POS} = v_{CS\_CBCTh} + \left(\frac{V_{LIM}}{R_{LIM}} \times K_{10a} + I_{BiasPOS} + D \times I_{SLOPE} + \frac{V_{IN} - v_{CS\_POS}}{R_2}\right) \times R_1 \tag{19}$$

Combining Equation 17, Equation 18 and Equation 19 and re-arranging gives an expression for the voltage across the current sense resistor at the trip threshold Equation 20.

$$v_{\text{CS\_CBCTh}} = R_1 \times \left(\frac{K_{\text{CBC1}}}{R_{\text{LIM}}} - I_{\text{BiasOffset}} + \frac{v_{\text{CSOffset}}}{R_3} - D \times I_{\text{SLOPE}} - \frac{V_{\text{IN}}}{R_2}\right)$$

Where:

 $I_{\text{BiasOffset}} = I_{\text{BiasPOS}} - I_{\text{BiasNEG}}$ 

(20)

Hence, for a given set of external component values, the variation in current trip threshold across parts and temperature can be found using data supplied in the Electrical Tables.

A short delay will exist (t<sub>CSLSG</sub>), after the CBC comparator inputs reach their trip threshold, before the LSG falling edge. During this delay the primary current will continue to ramp, giving rise to a further error in the apparent trip threshold. The peak primary current flowing when the low side MOSFET switches OFF (I<sub>PriCBC</sub>), is expressed by Equation 21.

$$I_{PriCBC} = \frac{V_{CS\_CBCTh}}{R_{CS}} + t_{CSLSG} \times \left(\frac{1}{2} \times \left(\frac{V_{IN}}{L_{Mag}} + \frac{V_{IN}}{L_{O} \times N_{PS}^{2}}\right) - \frac{V_{O}}{L_{O} \times N_{PS}}\right)$$
(21)

The output current at which the primary peak current threshold is reached is expressed by Equation 22.

$$I_{LIM} = N_{PS} \times \left[ I_{PriCBC} - \frac{\Delta I_{LO}}{N_{PS}} - \Delta I_{LMag} \right]$$
(22)

 $\Delta I_{LO}$  is the amplitude of ripple current in the output inductor and is expressed in Equation 23.

$$\Delta I_{LO} = \frac{V_O \times (1 - D)}{2 \times L_O \times f_{OSC}}$$
(23)

 $\Delta I_{LMaq}$  is the amplitude of ripple current in the magnetising inductor and is expressed in Equation 24.

$$\Delta I_{LMag} = \frac{V_{IN}}{2} \times \frac{D}{2 \times L_{Mag} \times f_{OSC}} = \frac{N_{PS} \times V_{O}}{2 \times L_{Mag} \times f_{OSC}}$$
(24)

Combining Equation 22, Equation 23 and Equation 24 gives an expression for output current limit as a function of primary current limit threshold Equation 25.

$$I_{LIM} = N_{PS} \times \left[ I_{PriCBC} - \frac{V_O \times (1-D)}{2 \times L_O \times f_{OSC} \times N_{PS}} - \frac{V_O \times N_{PS}}{2 \times L_{Mag} \times f_{OSC}} \right]$$
(25)

The Excel Calculator Tool can be used to evaluate the tolerance of output current limit.

#### 7.3.14 Hiccup Mode Protection

A block diagram of the hiccup mode function is shown in Figure 28. Both the repetitive CBC and negative current limit events will trigger hiccup mode operation in LM5036 device.

Copyright © 2018–2019, Texas Instruments Incorporated

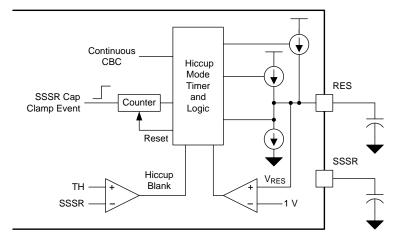



Figure 28. Hiccup Mode Circuitry

The device charges the hiccup restart capacitor with a current source  $I_{RES-SRC1}$  (15- $\mu$ A typical) during CBC operation. The hiccup mode is activated when  $V_{RES}$  exceeds 1 V. During hiccup mode operation, the SS and SSSR capacitors are fully discharged and the half-bridge converter remains off for a period of time ( $t_{HIC}$ ) before a new soft-start sequence is initiated.

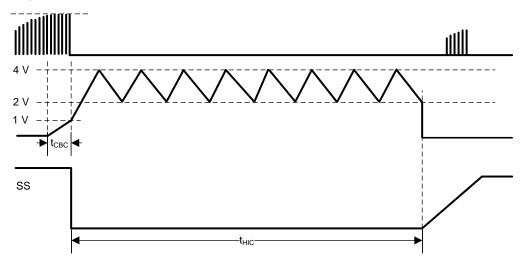



Figure 29. Hiccup Mode Activated By Continuous CBC Operation

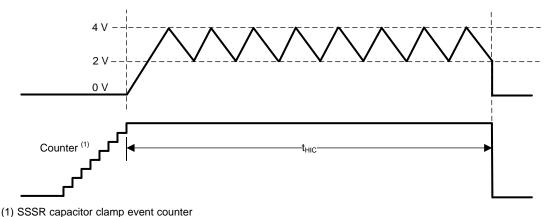
Use Equation 26 to calculate the duration of CBC operation before entering the hiccup mode.

$$t_{CBC} = \frac{C_{RES} \times 1 \,V}{I_{RES-SRC1}}$$

where

C<sub>RES</sub> is the value of the hiccup capacitor

(26)


After the RES pin reaches 1.0-V, current source  $I_{RES-SRC1}$  (15- $\mu$ A typical) is turned off and current source  $I_{RES-SRC2}$  (30- $\mu$ A typical) is turned on which charges the RES capacitor to 4-V. Then current source  $I_{RES-DIS2}$  (5- $\mu$ A typical) is enabled which discharges the RES capacitor to 2-V.

Use Equation 27 to calculate the hiccup mode off-time.

$$t_{HIC} = \frac{C_{RES} \times 2 \text{ V} \times 8}{I_{RES-DIS2}} + \frac{C_{RES} \times (2 \text{ V} \times 8 + 1 \text{ V})}{I_{RES-SRC2}}$$
(27)



In addition to the repetitive CBC current limit condition, the device also enters hiccup mode if the SSSR capacitor is clamped for eight times due to repetitive negative current limit condition. The operating pattern of the hiccup mode activated by the negative current limit is similar to that activated by CBC current limit. The only difference is that at the beginning of the hiccup mode operation the RES capacitor is charged with current source I<sub>RES-SRC2</sub> when activated by negative current limit as illustrated in Figure 30 whereas the RES capacitor is charged with current source I<sub>RES-SRC1</sub> when activated by CBC current limit condition.



r capacitor ciamp event counter

Figure 30. Hiccup Mode Activated By Repetitive Negative OCP Condition

Once the hiccup off-timer expires, the SSSR capacitor clamp event counter will be reset. If SSSR capacitor gets clamped for less than eight times before the SSSR capacitor voltage is fully ramped up to its maximum value, the SSSR capacitor clamp event counter will also be reset. This is because the fact that SSSR capacitor voltage is able to fully ramp up to its maximum value indicates that repetitive negative current limit condition no longer exists.

#### 7.3.15 Hiccup Mode Blanking

In some application scenarios such as high output capacitance and/or heavy load, there can be excessive inrush current during the start-up process. This would trigger CBC current limit which in turn activates the hiccup mode operation, thereby causing the converter to keep attempting to restart. In LM5036 device, a hiccup mode blanking circuitry is implemented to disable the hiccup mode operation during the start-up. The hiccup capacitor is clamped to ground until the SSSR capacitor voltage rises above the hiccup blank threshold V<sub>HC\_BLK\_TH</sub> (5.5-V typical).

# 7.3.16 Over-Temperature Protection (OTP)

Two-level internal thermal shutdown circuitry is implemented in LM5036 device to protect the integrated circuit should its maximum rated junction temperature be exceeded. When the internal temperature is above the lower-level threshold of 150°C, the half-bridge converter is turned off and thereby the SS and SSSR capacitors are fully discharged.

Typically, the internal temperature should drop after the main half-bridge converter is turned off. However, if the temperature continues to rise above the higher-level threshold of 160°C, the auxiliary supply will be disabled in order to prevent the device from catastrophic failure due to accidental device overheating. Note that the internal VCC and REF bias regulators still remain active during thermal shutdown to provide the bias power for the external house-keeping circuitry.

## 7.3.17 Over-Voltage / Latch (ON\_OFF Pin)

The ON\_OFF pin can be configured as a latch pin or OVP pin. In the latch configuration, the half-bridge converter remains off even after the faults are cleared. A new soft-start sequence will not be initiated until the latch is reset. One latch configuration is illustrated in Figure 31 where a large latch resistor  $R_L$  (for example, 50  $k\Omega$ ) and a diode are tied to the ON\_OFF pin.

Product Folder Links: LM5036

orated Submit Documentation Feedback



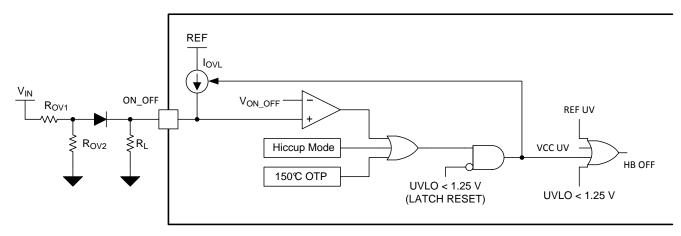



Figure 31. ON/OFF Pin Latch Function

When any of the faults is detected including OVP, hiccup mode OCP and 150  $^{\circ}$ C OTP, the ON\_OFF pin current source,  $I_{OVL}$  (50- $\mu$ A typical), is activated, that raises the ON\_OFF pin voltage quickly. As a result, the latch diode is reverse biased. The current source  $I_{OVL}$  remains active even if the fault is cleared because the ON\_OFF pin voltage is latched above  $V_{ON_OFF}$  (1.25-V typical). To reset the latch operation, simply pulling down the UVLO pin voltage below  $V_{ON_OFF}$  disables the current source and thus the ON\_OFF pin voltage falls quickly. A new soft-start sequence will be initiated as soon as the latch is reset and the faults are cleared.

Use Equation 28 to design the external voltage divider in latch mode.

$$V_{IN\_L} = \left(\frac{V_{ON\_OFF} + V_F}{R_{OV2}} + \frac{V_{ON\_OFF}}{R_L}\right) \times R_{OV1} + V_{ON\_OFF} + V_F$$

where

- V<sub>F</sub> is the forward voltage drop of the latch diode
- V<sub>IN L</sub> is the desired input voltage latch threshold, and R<sub>L</sub> is the latch resistor.

Note that the current source I<sub>OVL</sub> does not provide any hysteresis when ON\_OFF pin is configured in latch mode.

The ON\_OFF pin can also be configured as an OVP pin as shown in Figure 32. In this configuration, the external voltage divider should be designed such that the ON\_OFF pin voltage is greater than  $V_{ON_OFF}$  when an overvoltage condition occurs.

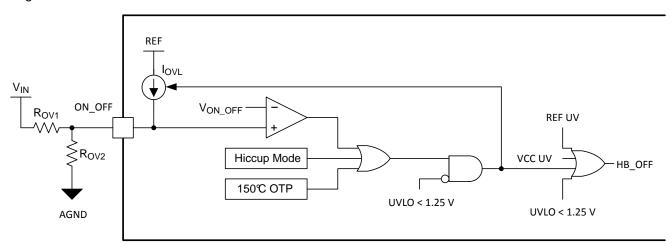



Figure 32. ON/OFF Pin Configured as OVP Pin



The OVP hysteresis is accomplished with the  $I_{OVL}$  current source. When the ON\_OFF pin voltage exceeds  $V_{ON\_OFF}$ , the  $I_{OVL}$  current source is activated which quickly raises the voltage at the pin. The half-bridge converter is turned off and the SS and SSSR capacitors are fully discharged. When the ON\_OFF pin voltage falls below  $V_{ON\_OFF}$ , the current source is deactivated causing the voltage at the pin to quickly fall followed by a new soft-start sequence. In addition to the OVP fault, hiccup mode and internal 150-°C thermal shutdown faults will also cause the half-bridge converter to turn off. Once the faults are cleared, a new soft-start sequence automatically begins. Because the hiccup mode or 150-°C thermal shutdown fault also activates the current source, it is important to make sure that the ON\_OFF pin voltage doesn't rise above  $V_{ON\_OFF}$  when the input voltage is high, which otherwise would lead to latch operation. Avoid this scenario by selecting a proper voltage divider.

Use Equation 29 and Equation 30 to select the voltage divider for the OVP configuration.

$$R_{OV1} = \frac{V_{HYS(OVP)}}{I_{OVL}}$$

where

$$R_{OV2} = \frac{V_{ON\_OFF} \times R_{OV1}}{V_{IN(OFF)} - V_{ON\_OFF}}$$

where

## 7.3.18 Auxiliary Constant On-Time Control

Figure 33 shows a block diagram of the constant on-time (COT) controlled fly-buck converter. The LM5036 device integrates an N-channel high-side MOSFET and associated high-voltage gate driver. The gate driver circuit works in conjunction with an external bootstrap capacitor and an internal high voltage diode. A 0.01-μF ceramic capacitor connected between the BST\_AUX pin and SW\_AUX pin provides the voltage to the driver during the on-time. During each off-time, the SW\_AUX pin is at approximately 0-V, and the bootstrap capacitor charges from VCC through the internal diode. The minimum off-timer ensures a minimum time in each cycle to recharge the bootstrap capacitor. The LM5036 device also provides an internal N-channel SR MOSFET and associated driver. This MOSFET provides a path for the inductor current to flow when the high-side MOSFET is turned off.

The integrated auxiliary supply employs constant on-time (COT) hysteretic control which provides excellent transient response and ease of use. The control principle is based on a comparator and a one-shot on-timer, with the output voltage feedback (FB\_AUX) compared to an internal reference. If the feedback voltage is below the reference the internal buck switch is switched on for the one-shot timer period, which is a function of the input voltage and the on-time resistor ( $R_{ON}$ ). Following the on-time the switch remains off until the FB\_AUX voltage falls below the reference, and the forced minimum off-time has expired. When the feedback voltage falls below the reference and the minimum off-time one-shot period expires, the high-side buck switch is then turned on for another on-time one-shot period. This will continue until regulation is achieved.

Copyright © 2018–2019, Texas Instruments Incorporated

Submit Docum

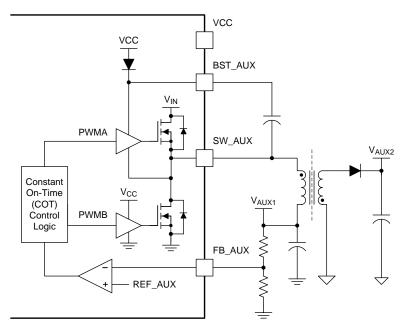



Figure 33. COT Controlled Fly-Buck Auxiliary Supply Circuitry

In a fly-buck converter, the low-side SR MOSFET is on when the high-side switch is off. The inductor current ramps up when the high-side switch is on and ramps down when the low-side switch is on.

The switching frequency remains relatively constant with load and line variations. Use Equation 31 to calculate the switching frequency of the auxiliary supply.

$$f_{SW\_AUX} = \frac{V_{AUX1}}{9 \times 10^{-11} \times R_{ON}}$$

where

V<sub>AUX1</sub> is the primary output voltage of the auxiliary supply.

(31)

Two external resistor values set the value of  $V_{AUX1}$ . This regulation of the output voltage depends on ripple voltage at the feedback input, requiring a minimum amount of ESR for the output capacitor ( $C_{AUX1}$ ). A minimum of 25-mV of ripple voltage at the feedback pin is required for stable operation of the auxiliary supply. The *Auxiliary Ripple Configuration and Control* section describes auxiliary ripple circuit configuration.

# 7.3.19 Auxiliary On-Time Generator

The on-time for the auxiliary supply is determined by the resistor  $R_{ON}$ , and is inversely proportional to the input voltage, resulting in a nearly constant switching frequency as the input voltage is varied over its entire range. Figure 34 shows the block diagram for the on-time generator.



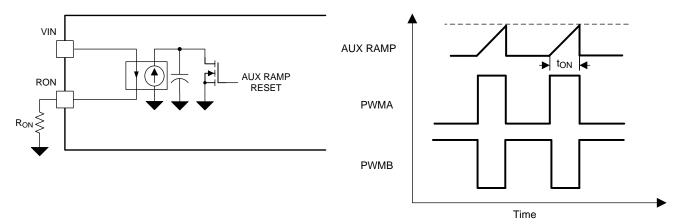



Figure 34. On-Time Generator

Figure 35. Constant On-Time Control Waveform

A current source, which is a function of the input voltage and the R<sub>ON</sub> resistor value, charges a capacitor. The capacitor voltage ramps up linearly and gets reset when it reaches the threshold.

Use Equation 32 to calculate the on time t<sub>ON</sub> of the high-side switch.

$$t_{\rm ON} = \frac{9 \times 10^{-11} \times R_{\rm ON}}{V_{\rm IN}}$$
 (32)

## 7.3.20 Auxiliary Supply Current Limiting

The LM5036 device contains an intelligent current limit off-timer for the auxiliary supply. If the current in the high-side switch exceeds  $I_{AUX(LIM)}$  (200-mA typical), both the high-side MOSFET and the low-side SR are immediately turned off, and a non-resetable off-timer is initiated. The length of the off-time is a function of the FB\_AUX pin voltage and the input voltage  $V_{IN}$ . As an example, when  $V_{FB\_AUX} = 0$ -V and  $V_{IN} = 48$ -V, a maximum off-time is set to 16-µs. This condition occurs when the output is shorted, and during the initial phase of start-up. This amount of time ensures safe short circuit operation up to the maximum input voltage of 100-V.

In cases of overload where the FB\_AUX voltage is above zero volts (not a short circuit) the current limit off-time is reduced. Reducing the off-time during less severe overloads reduces the amount of foldback, recovery time, and start-up time. The current limit off-time is calculated from Equation 33.

$$t_{OFF(ILIM)} = \frac{(0.07 \times V_{IN})}{V_{FB\_AUX} + 0.2 \text{ V}} \,\mu\text{s} \tag{33}$$

Because the current limit protection feature of the auxiliary supply is peak limited, the maximum average output is less than the peak.

To prevent excessive reverse current during the off-time of the current limit, the auxiliary supply will operate in asynchronous (ASYNC) mode where the low-side SR is turned off during current limit operation. The body diode of the internal low-side MOSFET (QB) incurs significant power loss during asynchronous operation. Designers are advised to add an external schottky diode ( $D_{FW}$ ) between the PGND and SW\_AUX pins to ensure robust and efficient current limit operation. This is particularly important when operating from high input voltage. The external schottky diode ( $D_{FW}$ ) should be rated to carry the maximum Aux current and block the maximum input voltage ( $V_{IN(max)}$ ).

For high density designs it is desirable to use an Aux transformer with low magnetising inductance and saturation current. The peak magnetising current flowing in the Aux transformer can exceed  $I_{AUX(LIM)}$  due to delays in the peak current detection and comparator circuit. The actual peak magnetising current reached is a function of the maximum slope of the transformer magnetising current. This in turn depends upon both maximum input voltage  $V_{IN(max)}$  and magnetising inductance value. The method outlined below allows designers to estimate the peak magnetising current that will flow in the Aux transformer ( $I_{LPk}$ ).



As illustrated in Figure 36, it is convenient to model the internal current sense circuit as a simple RC time constant,  $\tau_{AuxSns}$  (41-ns typical), that delays the sensed current signal presented to the OCP comparator input. There is a further delay  $t_{AUX(LIM)}$  (116-ns typical), after the comparator input reaches its trip threshold before the OCPb fault flag is set. The extended off time,  $t_{OFF(ILIM)}$ , will only be applied if the OCPb fault flag is set before the COT ( $t_{ON}$ ) period ends. Equation 34 is an expression for the sensed and delayed magnetising current inductor signal applied to the non-inverting input of the OCP comparator.

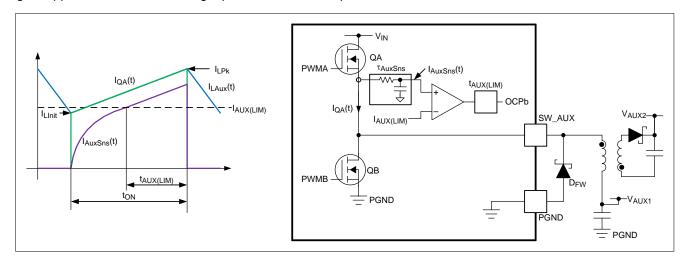



Figure 36. Aux Current Limit Circuit Model

$$I_{AuxSns}(t) = \left(I_{LInit} - m_{Aux} \times \tau_{AuxSns}\right) \times \left(1 - e^{\frac{-t}{\tau_{AuxSns}}}\right) + m_{Aux} \times t$$

#### where

- m<sub>Aux</sub> is the slope of Aux transformer magnetising inductor current during QA on period
- τ<sub>AuxSns</sub> is the time constant of the internal current sensing circuit feeding the OCP comparator

Maximum peak current will occur when the magnetising inductor current slope has its highest value. This occurs at start-up, or when a short circuit is applied across the  $V_{AUX1}$  output, while operating from maximum input voltage  $(V_{IN(max)})$ . The maximum inductor current slope is given by Equation 35.

$$m_{Aux} = \frac{V_{IN(max)}}{L_{AUX}}$$

#### where

• L<sub>AUX</sub> is the magnetising inductance of the Aux transformer

(35)

Let us assume the inductor current slope is fixed at its maximum value ( $m_{Aux}$ ). In this case the highest peak current will occur when the inductor current at the start of the pulse ( $I_{Llnit}$ ) is just high enough to trip the OCPb flag before the COT period ( $t_{ON}$ ) expires. Once this has occurred the extended OFF period ( $t_{OFF(ILIM)}$ ) will be applied to reduce the inductor current for subsequent pulses. This condition is given in Equation 36 and is shown graphically in Figure 36

$$I_{AuxSns}(t_{ON} - t_{AUX(LIM)}) = I_{AUX(LIM)}$$

#### where

t<sub>AUX(LIM)</sub> is the time delay between comparator input threshold being achieved and the OCPb flag set

(36) a pulse

Combining Equation 34 and Equation 36 enables us to determine the initial inductor current for a pulse containing the highest peak current Equation 37.



$$I_{LInit} = \frac{I_{AUX(LIM)} - m_{Aux} \times \left(t_{ON} - t_{AUX(LIM)}\right)}{\frac{-\left(t_{ON} - t_{AUX(LIM)}\right)}{\tau_{AuxSns}}} + m_{Aux} \times \tau_{AuxSns}$$

$$1 - e^{\frac{-\left(t_{ON} - t_{AUX(LIM)}\right)}{\tau_{AuxSns}}}$$
(37)

The COT period used in Equation 37 should be for the maximum input voltage Equation 38

$$t_{ON} = \frac{K_{ON} \times R_{ON}}{V_{IN(max)}}$$

where

Having calculated I<sub>I Init</sub> the estimated peak inductor current is given by Equation 39.

$$I_{LPk} = I_{LInit} + m_{Aux} \times t_{ON}$$
(39)

This method may be used to ensure that the Aux transformer saturation current is not exceeded under transient or fault conditions. Note that the method above assumes fixed transformer magnetising inductance. The method will only provide reasonable accuracy if the transformer magnetising inductance has not fallen significantly at the predicted peak current.

To avoid excessive peak magnetising current during transient or fault events the COT period  $(t_{ON})$  should be longer than the response time of the peak current protection circuit. This may be expressed as a minimum required value for  $R_{ON}$  as in Equation 40.

$$R_{ON} \ge \frac{\left(\tau_{AuxSns} + t_{AUX(LIM)}\right) \times 1.2}{K_{ON}} \times V_{IN(max)} = V_{IN(max)} \times 2.09 \text{ k}\Omega$$
(40)

## 7.3.21 Auxiliary Primary Output Capacitor Ripple

Equation 92 describes the output ripple voltage amplitude for a buck converter. This equation may be used if there is no secondary winding or if the current supplied by  $V_{AUX2}$  is small compared with that supplied by  $V_{AUX1} > I_{AUX2}$ . Equation 92 neglects capacitor ESR and therefore calculates only the capacitive component of output voltage ripple.

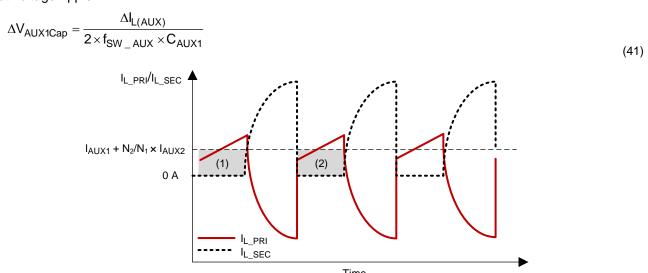



Figure 37. Auxiliary Transformer Current Waveform for C<sub>AUX1</sub> Ripple Calculation



Equation 93 shows the flybuck primary and secondary winding current waveforms  $I_{L\_PRI}$  and  $I_{L\_SEC}$ . The reflected secondary winding current adds to the primary winding current during the off-time of the high-side switch. Due to this increased current, the output voltage ripple is not the same as in a conventional buck converter. In this case the average current flowing into  $C_{AUX1}$  during the  $t_{ON}$  period is the reflected secondary current. Hence Equation 94 can be used to calculate  $\Delta V_{AUX1Cap}$ , the voltage ripple across the primary side capacitor, for the more typical case when the secondary current cannot be neglected. Notice that Equation 94 neglects capacitor ESR and therefore calculates only the capacitive component of ripple voltage amplitude.

$$\Delta V_{AUX1Cap} = \frac{I_{AUX2} \times \frac{N_2}{N_1} \times t_{ON(max)}}{2 \times C_{AUX1}}$$
(42)

## 7.3.22 Auxiliary Ripple Configuration and Control

The voltage ripple across the output capacitor C<sub>AUX1</sub> is made up of two components:

- Resistive ripple appears across the Equivalent Series Resistance (ESR) of the output capacitor. This
  component of ripple is in phase with the inductor current and is 90-Deg delayed compared with the applied
  PWM signal.
- Capacitive ripple appears across the ideal capacitor. This component of ripple is 90-Deg delayed compared with the inductor current ripple and 180-Deg delayed compared with the applied PWM signal.

With COT control, the on-time of the high-side FET is terminated by an on-timer, and the off-time is terminated when the feedback voltage V<sub>FB\_AUX</sub> falls below the reference voltage (V<sub>AUX-ON</sub>). For a buck topology this type of hysteretic control provides stable operation if these two conditions are met:

- Output voltage ripple is dominated by the resistive ESR component. Let us say the resistive ripple amplitude
  must be five times the capacitive ripple amplitude to guarantee stable operation.
- Output voltage ripple amplitude present at the FB\_AUX pin must be greater than noise coupled onto this pin from other sources. Let us say that an output voltage ripple amplitude of 25-mV at the FB\_AUX pin will ensure that other sources of noise coupled to the pin may be assumed small

Aux transformer magnetising inductor ripple current amplitude is expressed by Equation 43.

$$\Delta I_{L(AUX)} = \frac{V_{AUX1}}{2 \times L_{AUX}} \times \left(\frac{1}{f_{SW\_AUX}} - t_{ON}\right) = \frac{K_{ON} \times R_{ON}}{2 \times L_{AUX}} \times \left(1 - \frac{V_{AUX1}}{V_{IN}}\right)$$
(43)

For a buck converter the capacitive component of output voltage ripple amplitude is expressed by Equation 92. The resistive component of output ripple voltage amplitude is expressed by Equation 44.

$$\Delta V_{AUX1Res} = \Delta I_{L(AUX)} \times R_{Esr}$$
(44)

Our condition for stable operation requires that Equation 45 and Equation 46 are both satisfied.

$$\Delta V_{AUX1Res} \ge 5 \times \Delta V_{AUX1Cap}$$
 (45)

$$\Delta V_{AUX1Res} \ge 25 - mV \tag{46}$$

The method outlined above allows us to calculate the resistance ( $R_{Esr}$ ) that must be present in series with the output capacitor ( $C_{AUX1}$ ) to provide stable operation of a buck converter. This simple method has disadvantages of high output voltage ripple amplitude and high dissipation in the series resistor  $R_{Esr}$ . The method is also not ideal for a flybuck topology, especially if most of the load current is drawn from the secondary winding. In this case much of the magnetising inductor current flows into the secondary output capacitor ( $C_{AUX2}$ ) and not the primary output capacitor ( $C_{AUX1}$ ) during the low side FET conduction period ( $t_{OFF}$ ). The circuit of Figure 38 provides a better solution that is well suited to the flybuck topology. A series branch  $R_r$  -  $C_r$  is connected across  $L_{AUX}$ . The same PWM voltage is applied across this series branch as appears across  $L_{AUX}$ . Assuming most of the PWM voltage is dropped across  $R_r$ , the voltage across  $C_r$  will have the almost the same shape and phase as the inductor current. The voltage ripple across  $C_r$  can be used to substitute the voltage across  $R_{Esr}$  and thus provide



stable operation without the need for high output ripple and dissipation. By coupling this capacitor voltage signal directly to the FB\_AUX pin we can achieve the same result as a large ESR resistor, but without the penalty of dissipation and high output voltage ripple amplitude. The method is suitable for a flybuck topology, since the down-slope of the magnetising current is synthesised, across C<sub>r</sub>, and therefore available on the primary side to couple onto the FB AUX pin.

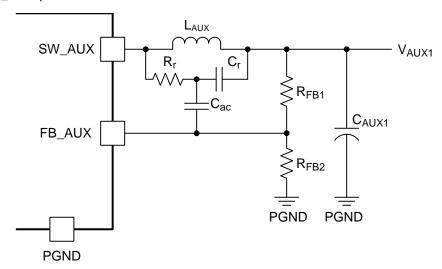



Figure 38. Minimum Ripple Configuration

The impedance of the capacitor generating the synthesised inductor current ripple signal, at the Aux switching frequency (f<sub>SW AUX</sub>), must be low compared with the impedance of the R<sub>FBx</sub> divider network.

$$C_{r} > \frac{3}{2 \times \pi \times f_{SW\_AUX}} \times \frac{R_{FB1} + R_{FB2}}{R_{FB1} \times R_{FB2}}$$

$$\tag{47}$$

The synthesised inductor ripple, generated across  $C_r$ , is added to the ripple across the output capacitor ( $C_{AUX1}$ ). The resultant signal is coupled to the FB\_AUX pin via capacitor C<sub>ac</sub>. The value of series resistor R<sub>r</sub> is chosen to ensure the synthesised resistive ripple amplitude satisfies Equation 45 giving Equation 48.

$$R_{r} \leq \frac{K_{ON} \times R_{ON}}{10 \times C_{r} \times \Delta V_{AUX1Cap}} \times \left(1 - \frac{V_{AUX1}}{V_{IN(min)}}\right)$$
(48)

Capacitor Cac couples the ripple signal directly onto the FB\_AUX pin. The value of this capacitor should be at least five times greater than the value of Cr. This ensures minimum attenuation and phase shift of the coupled ripple signal.

$$C_{ac} \ge 5 \times C_{r}$$
 (49)

## 7.3.23 Asynchronous Mode Operation of Auxiliary Supply

In LM5036 device, there are two conditions where the auxiliary supply will enter asynchronous (ASYNC) mode operation where the low-side SR is turned off and only its body diode is allowed to conduct. The first condition is when the half-bridge converter is turned off (Refer to the *Device Functional Modes* section). This helps to reduce the power consumption of the auxiliary supply at light loads. As described in the Auxiliary Supply Current Limiting section, the auxiliary supply will also be forced to operate at ASYNC mode during current limit operation to prevent excessive reverse current.

#### 7.4 Device Functional Modes

The functional modes of the device are summarized in the following table. Faults include hiccup mode OCP, OVP, and 150°C OTP.

Copyright © 2018-2019, Texas Instruments Incorporated Submit Documentation Feedback



# **Table 1. Device Functional Modes**

| CRITERIA                                                                             | VCC AND REF<br>REGULATORS | AUXILIARY<br>SUPPLY | HALF-BRIDGE<br>CONVERTER |  |
|--------------------------------------------------------------------------------------|---------------------------|---------------------|--------------------------|--|
| UVLO < V <sub>SD</sub>                                                               | OFF                       | OFF                 | OFF                      |  |
| ( $V_{SD} < UVLO < V_{UVLO}$ ) & ( $V_{IN} < V_{AUX\_UVLO}$ )                        | ON                        | OFF                 | OFF                      |  |
| $ (V_{SD} < UVLO < V_{UVLO}) \& (VCC \& REF > UV) \& (V_{IN} > V_{AUX\_UVLO}) $      | ON                        | ON at ASYNC<br>Mode | OFF                      |  |
|                                                                                      | ON                        | ON at SYNC Mode     | ON                       |  |
| $(UVLO > V_{UVLO}) \& (V_{IN} > V_{AUX\_UVLO}) \& (VCC \& REF > UV) \& Any Faults$   | ON                        | ON at ASYNC<br>Mode | OFF                      |  |
| (VCC & REF > UV) & (V <sub>IN</sub> > V <sub>AUX_UVLO</sub> )<br>& AUX Current Limit | ON                        | ON at ASYNC<br>Mode | NA                       |  |



# 8 Application and Implementation

#### **NOTE**

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

## 8.1 Application Information

The LM5036 device is a highly integrated half-bridge PWM controller that contains all the features necessary for implementing the half-bridge topology power converters using voltage-mode control with input voltage feed-forward. The device targets isolated DC-DC converter applications with input voltage of up to 100 V<sub>DC</sub>.

# 8.2 Typical Application

The following schematic shows an example of an isolated half-bridge DC-DC converter controlled by LM5036 device. The operating input voltage range is 36-V to 75-V, and the output voltage is 12-V. The maximum load current is 8-A and the output current limit is configured to be 10-A.

Product Folder Links: LM5036

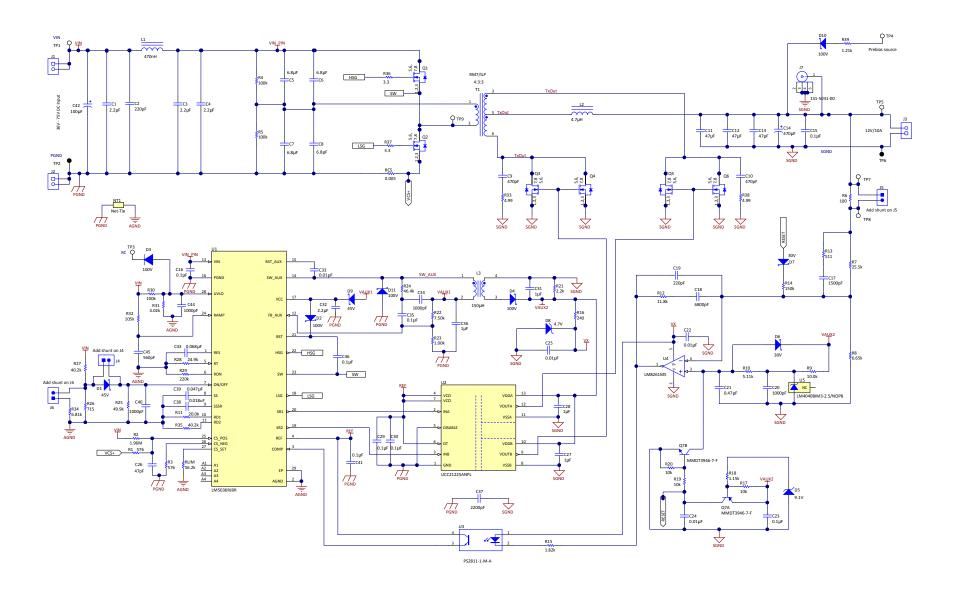



Figure 39. Evaluation Board Schematic



#### 8.2.1 Design Requirements

|                       | PARAMETER                                                     | VALUE        |
|-----------------------|---------------------------------------------------------------|--------------|
| V <sub>IN</sub>       | Input voltage                                                 | 36-V to 75-V |
| Vo                    | Output voltage                                                | 12-V         |
| I <sub>O(max)</sub>   | Maximum load current                                          | 8-A          |
| I <sub>LIM</sub>      | Output current limit                                          | 10-A         |
| η                     | Peak efficiency                                               | 94.4-%       |
|                       | Efficiency at V <sub>IN</sub> = 48 V and I <sub>O</sub> = 8 A | 93.5-%       |
| V <sub>AUX1-OFF</sub> | Off-state auxiliary output voltage                            | 11.9-V       |
| V <sub>AUX1-ON</sub>  | On-state auxiliary output voltage                             | 8.5-V        |
|                       | Load regulation                                               | 0.2-%        |
|                       | Line regulation                                               | 0.1-%        |
|                       | Line UVLO rising/falling threshold                            | 34-V / 32-V  |
|                       | Line OVP rising/falling threshold                             | 80-V / 78-V  |
|                       | Latch threshold                                               | 80-V         |
| I <sub>AUX(max)</sub> | Maximum load current for auxiliary supply                     | 100-mA       |

## 8.2.2 Detailed Design Procedure

The Excel Calculator Tool can be used to assist with selecting both power stage and controller setup components.

## 8.2.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM5036 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V<sub>IN</sub>), output voltage (V<sub>OUT</sub>), and output current (I<sub>OUT</sub>) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- · Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

## 8.2.2.2 Input Transient Protection

The voltage applied to the VIN pin of LM5036 device serves as the input voltage for the internal VCC startup regulator and auxiliary supply. In typical applications, the VIN pin voltage is the same as the input voltage for the main half-bridge converter. The recommended range of the VIN pin voltage is 18-V to 100-V. Figure 40 shows the recommended filter to suppress transients that may occur at the input supply. This suppression is particularly important when the input voltage rises to a level near the maximum recommended operating rating (100-V) of the LM5036 device.



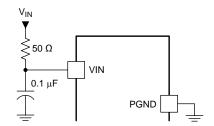



Figure 40. Input Transient Protection

#### 8.2.2.3 Level-Shift Detection Circuit

An example implementation of the  $V_{AUX2}$  level-shift detection circuit is shown in Figure 41. The zener voltage must be between the off-state and on-state level of  $V_{AUX2}$ . When  $V_{AUX2}$  is above the zener voltage, both Q1A and Q1B are turned on and therefore the reference output voltage  $V_{REFSec}$  is clamped to ground. Once  $V_{AUX2}$  falls below the zener voltage, both Q1A and Q1B are turned off, and the reference is released.

Designers who wish to benefit from the fully regulated pre-biased startup feature of LM5036 must use separate voltage reference and error amplifier devices. Popular combined error amplifier and voltage reference devices, such as TL431, can be used only when the fully regulated pre-biased startup feature is not required.

Assistance with half-bridge voltage control loop design may be obtained using the Power Stage Designer™ tool.

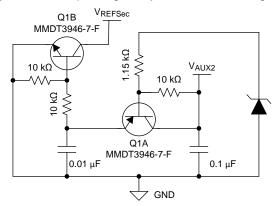



Figure 41. Secondary Auxiliary Voltage Level-Shift Detection Circuit

#### 8.2.2.4 Applications with $V_{IN} > 100-V$

For applications where the input voltage exceeds 100-V, all of the 100V-rated internal circuit blocks, including VCC start-up regulator, auxiliary supply and half-bridge gate drivers, need to be bypassed, or powered from a reduced voltage. In this case, VIN pin can be powered from an external start-up regulator, as shown in Figure 42. If pre-biased start-up is required the integrated flybuck aux circuit should be used from the reduced VIN pin voltage to supply the secondary control circuit. If pre-biased start-up is not required, the bias supply V<sub>AUX1</sub>, can be derived from an external auxiliary supply. An external gate driver with higher voltage rating should be used to drive the half bridge.

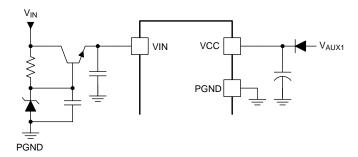



Figure 42. External Start-Up Regulator

Product Folder Links: LM5036



#### 8.2.2.5 Applications without Pre-Biased Start-Up Requirement

For applications where the pre-biased startup is not required, the level-shift detection circuit described in the *Pre-Biased Start-Up Process* section is not necessary. Without the level-shift detection circuit, the reference voltage on the secondary side would be released as soon as the secondary bias is established. The external VCC bias supply can be derived from the integrated auxiliary supply or an auxiliary winding of the main transformer.

#### 8.2.2.6 UVLO Voltage Divider Selection

As described in the *Undervoltage Lockout (UVLO)* section, two external resistors can be used to program the minimum operating voltage for the power converter, as shown in Figure 43. When the UVLO pin voltage falls below  $V_{UVLO}$  (1.25-V typical), an internal current sink  $I_{UVLO}$  (20- $\mu$ A typical) is enabled to lower the voltage at the UVLO pin, thus providing threshold hysteresis. Resistance values for  $R_{UV1}$  and  $R_{UV2}$  can be determined from Equation 50 and Equation 51.

$$R_{UV1} = \frac{H_{HYS(UVLO)}}{I_{UVLO}}$$

#### where

• V<sub>HYS(UVLO)</sub> is the UVLO hysteresis (50)

$$R_{UV2} = \frac{V_{UVLO} \times R_{UV1}}{V_{IN(on)} - V_{UVLO} - I_{UVLO} \times R_{UV1}}$$

#### where

V<sub>IN(on)</sub> is the input voltage above which the main converter will start to operate.

(51)

Figure 44 illustrates one way to configure a latch reset operation by pulling the UVLO pin voltage below  $V_{UVLO}$ . The diode voltage drop must be between 0.35-V and 1.25-V. The controller can be forced to enter shutdown mode by pulling UVLO pin to GND.

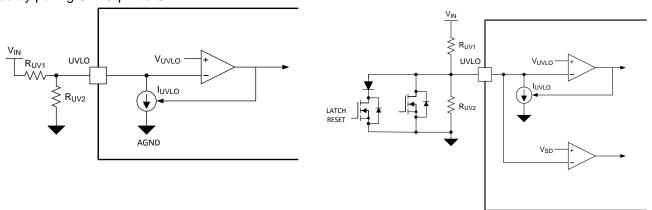



Figure 43. UVLO Configuration

Figure 44. Latch Reset

## 8.2.2.7 Over Voltage / Latch (ON\_OFF Pin) Voltage Divider Selection

As described in the <code>Over-Voltage / Latch (ON\_OFF Pin)</code> section, the <code>ON\_OFF</code> pin can be configured as a latch pin or an OVP pin. Figure 31 shows the latch configuration. The <code>ON\_OFF</code> pin is latched when the pin voltage reaches  $I_{OVL} \times R_L$  when any of the internal faults is detected. The latch diode is reverse-biased during latch operation. The latch resistor  $R_L$  should be selected such that  $I_{OVL} \times R_L > V_{ON_OFF}$ . In this design example,  $R_L$  is selected to be 49.9-k $\Omega$ . If the latch threshold is 80-V,  $R_{OV1}$  should be 40-k $\Omega$ , and  $R_{OV2}$  should be 710- $\Omega$ .



If the ON\_OFF pin is configured as an OVP pin, two resistors can be used to program the maximum operating input voltage for the half-bridge converter, as illustrated in Figure 32. When the ON\_OFF pin voltage rises above the  $V_{ON\_OFF}$  threshold, an internal current source  $I_{OVL}$  is enabled to raise the ON\_OFF pin voltage, thus providing the threshold hysteresis. Use Equation 29 and Equation 30 to determine resistance values for  $R_{OV1}$  and  $R_{OV2}$ . If the LM5036 device is to be disabled when  $V_{IN}$  rises above 80-V and enabled when it falls below 78-V.  $R_{OV1}$  should be 40-k $\Omega$ , and  $R_{OV2}$  should be 635- $\Omega$ . In addition, the ON\_OFF pin can also be used for external thermal protection with a thermistor.

#### 8.2.2.8 SS Capacitor

The soft-start delay  $t_{D(SS)}$ , which is the time it takes for the soft-start capacitor to rise from 0 V to  $V_{SSSecEn}$  (2.06-V typical), can be programmed with the SS capacitor value according to Equation 52

$$C_{SS} = \frac{I_{SS} \times t_{D(SS)}}{V_{SSSecEn}}$$

where

#### 8.2.2.9 SSSR Capacitor

The SSSR capacitor value determines the rate at which the pulse width of the SR's of the half-bridge converter increases. To achieve a monotonic start-up for the output voltage, the SSSR capacitor value should satisfy the following two conditions:

- SR soft-start sequence should be completed before regulation set-point of the output voltage is reached.
- With a lower control loop bandwidth, the primary-side duty cycle tends to increase at a slower rate. Therefore
  the ramp-up speed of the SSSR capacitor voltage should be reduced accordingly in order to prevent
  excessive reverse current.

A general rule of thumb is to maintain the control loop bandwidth of the half-bridge converter above 1-kHz. With a slow control loop bandwidth, the output voltage needs to drop at least 25% from the regulation set-point during the restart time period where the SS pin voltage rises from 0-V to  $V_{\rm SSSecEn}$  (2.06-V typical) and then the secondary-side reference  $V_{\rm REF}$  rises to 75% of regulation set-point. To satisfy the first condition above, the rise time of the SSSR capacitor voltage should be less than 25% of the rise time of the output voltage, as described in Equation 53.

$$C_{SSSR} < \frac{I_{SSSR} \times 25\% \times t_{RAMP}}{5 \text{ V}}$$

where

I<sub>SSSR</sub> (20-μA typical) is the current source of the SSSR pin. t<sub>RAMP</sub> is the ramp-up time of the output voltage. (53)

Use the SSSR capacitor value calculated from Equation 53 as a starting point. Fine-tuning may be needed based on the actual control loop design and other specific design requirements such as pre-bias conditions and loading profile.

#### 8.2.2.10 Half-Bridge Power Stage Design

For a PWM operating frequency of 400kHz applied to the output inductor the oscillator frequency of LM5036 must also be set to 400kHz. The value of resistor  $R_T$  is obtained using Equation 54.

$$R_{T} = \frac{1}{f_{OSC} \times 1 \times 10^{-10}} = 25 - k\Omega$$
 (54)

Maximum effective duty cycle that can be applied to the output inductor is Equation 55.

$$D_{MAX} = 1 - t_{CLK} \times f_{OSC} = 0.974$$
 (55)

Maximum transformer turns ratio that will deliver the required output voltage from minimum input voltage is given by Equation 56.

6 Submit Documentation Feedback

Copyright © 2018–2019, Texas Instruments Incorporated



$$N_{PS(max)} = \frac{D_{MAX} \times V_{IN(min)}}{2 \times V_{O}} = 1.46$$
(56)

For our example design we will opt for a planar transformer with 4 primary turns and 3 secondary turns. The turns are located in an un-gapped RM7/ILP ferrite core made of 3C95 material. This core has an inductance factor  $AL = 4.4 - \mu H/turn^2$ . Hence the actual turns ratio ( $N_{PS}$ ) and magnetising inductance ( $L_{Mag}$ ) are given by Equation 57 and Equation 58.

$$N_{PS} = \frac{N_P}{N_S} = \frac{4}{3} \tag{57}$$

$$L_{Mag} = N_{P}^{2} \times AL = 70.4 - \mu H$$
 (58)

Maximum inductor current ripple will occur at maximum input voltage. The output inductor value  $L_O$  will be selected to limit inductor current ripple amplitude to 20-% of the maximum output current  $I_{LIM}$ 

$$L_{O} = \frac{V_{O} \times (1 - D_{MIN})}{20\% \times 2 \times I_{LIM} \times f_{OSC}} = 4.3 - \mu H$$
(59)

Hence a catalog part with an inductance of  $4.7-\mu H$ , capable of carrying the full output current, and with a saturation current of more that 120-% of  $I_{LIM}$ , is selected.

$$L_{O} = 4.7 - \mu H$$
 (60)

#### 8.2.2.11 Current Limit

The Enhanced Cycle-by-Cycle Current Limiting with Pulse Matching section describes the CBC current limiting functionality in detail. Figure 45 illustrates the current limiting block diagram of the LM5036 device. There are five resistors associated with the current limiting function of the half-bridge converter, as listed below:

- R<sub>CS</sub>
- R<sub>3</sub>
- R<sub>2</sub>
- R<sub>LIM</sub>
- R<sub>1</sub>

Because R<sub>3</sub> is equal to the equivalent resistance of R<sub>1</sub> and R<sub>2</sub> as given by Equation 13, there are four unknown resistor values to be determined.

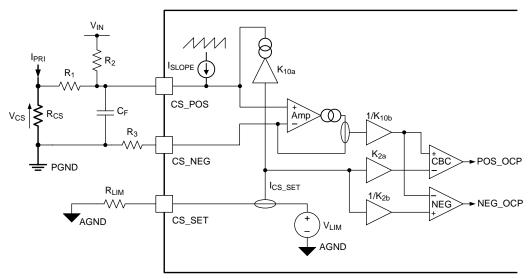



Figure 45. Current Limiting Block



The value of current sense resistor  $R_{CS}$  is determined based on the maximum power consumption requirement. Typically, the current sense resistor should consume less than 0.5% of the input power of the converter at the worst case scenario. The sense resistor conducts every alternate current pulse flowing in the primary winding. The power dissipated in the sense resistor is determined by Equation 61.

$$P_{CS} = \frac{I_{Pri\_RMS}^2}{2} \times R_{CS} \tag{61}$$

The RMS current flowing in the primary winding may be calculated using Equation 62.

$$I_{Pri\_RMS} = \frac{I_{O}}{N_{PS}} \times \sqrt{D \times \left(1 + \frac{1}{3} \times \left(\frac{\Delta I_{Pri}}{I_{O}}\right)^{2}\right)}$$

Where:

$$\Delta I_{Pri} = \frac{\Delta I_{LO}}{N_{PS}} + \Delta I_{LMag} = \frac{V_O}{2 \times L_O \times N_{PS}} \times \left(\frac{1-D}{f_{OSC}}\right) + \frac{V_{IN}}{4 \times L_{Mag}} \times \frac{D}{f_{OSC}}$$
 (62)

Maximum loss in the current sense resistor will occur while maximum output current ( $I_{LIM}$ ) is delivered from minimum input voltage ( $V_{IN(min)}$ ). Evaluating Equation 62 gives Equation 63.

$$I_{Pri\_RMS} = 7.07A \tag{63}$$

To achieve our target of dissipating less than 0.5% of maximum output power the current sense resistor must satisfy Equation 64.

$$R_{CS} < 0.5\% \times V_O \times I_{LIM} \times \frac{2}{I_{Pri\_RMS}^2} = 0.024 \Omega$$
 (64)

In our example design the current sense resistor value selected is given in Equation 65.

$$R_{CS} = 5 \,\mathrm{m}\Omega \tag{65}$$

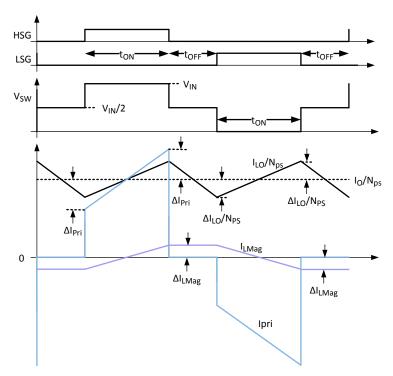



Figure 46. Main Converter Operating Waveforms



The resistor  $R_1$  is used to set the slope compensation magnitude. In LM5036 device, the slope of the compensation ramp is given by Equation 66. To eliminate sub-harmonic oscillation,  $m_C$  should be set to at least one-half the down-slope of output inductor current transformed to the primary side across the current sense resistor, as given by Equation 67 and Equation 68. To damp the sub-harmonic oscillation after one cycle,  $m_C$  must be set equal to one times the down-slope of the output inductor current. This configuration is known as deadbeat control. In LM5036 device, the slope compensation signal is a saw-tooth current waveform of magnitude  $I_{SLOPE}$  at the oscillator frequency (twice the switching frequency).

$$m_C = I_{SLOPE} \times f_{OSC} \times R_1$$

#### where

• m<sub>C</sub> is the slope of the compensation ramp

$$m_L = \frac{V_O}{L_O} \times \frac{1}{N_{PS}} \times R_{CS} = 9.57 \, \frac{mV}{\mu s}$$

#### where

- m<sub>I</sub> is the down-slope of the output inductor current transformed to the primary side
- N<sub>P</sub> is the number of turns for the primary winding of the main transformer
- N<sub>S</sub> is the number of turns for the secondary winding of the main transformer
- V<sub>O</sub> is the output voltage of the half-bridge converter
- L<sub>O</sub> is the output inductor value of the half-bridge converter

$$m_{C} > \frac{1}{2} \times m_{L} \tag{68}$$

Substituting Equation 66 and Equation 67 into Equation 68 gives an expression for the minimum value for resistor R<sub>1</sub> to avoid sub-harmonic oscillation.

$$R_1 > \frac{1}{2} \times \frac{V_O}{L_O} \times \frac{1}{N_{PS}} \times R_{CS} \times \frac{1}{I_{SLOPE} \times f_{OSC}} = 221 - \Omega$$
(69)

Deadbeat control is ensured by doubling this value. For our example design the value given in Equation 70 has been selected

$$R_1 = 576 \Omega \tag{70}$$

Values have now been selected for both  $R_{CS}$  and  $R_1$ . Values for  $R_{LIM}$  and  $R_2$  are yet to be determined. These values define the peak current limit threshold and how this level will vary with input voltage. The relationship between peak primary current limit and maximum output current is defined by Equation 20, Equation 21 and Equation 25. For this design example we will neglect  $I_{BiasOffset}$ ,  $V_{CSOffset}$ . Since these parameters have only a small effect on output current limit. Setting these parameters to zero we arrive at Equation 71, Equation 72 and Equation 73.

$$I_{O}\left(V_{IN},R_{LIM},R_{2}\right) = N_{PS} \times \left[I_{PriCBC}\left(V_{IN},R_{LIM},R_{2}\right) - \frac{V_{O}}{2 \times L_{O} \times f_{OSC} \times N_{PS}} \times (1-D) - \frac{V_{O} \times N_{PS}}{2 \times L_{Mag} \times f_{OSC}}\right]$$

$$(71)$$

$$I_{PriCBC}\left(V_{IN},R_{LIM},R_{2}\right) = \frac{V_{CS\_CBCTh}(V_{IN},R_{LIM},R_{2})}{R_{CS}} + t_{CSLSG} \times \left(\frac{1}{2} \times \left(\frac{V_{IN}}{L_{Mag}} + \frac{V_{IN}}{L_{O} \times N_{PS}^{2}}\right) - \frac{V_{O}}{L_{O} \times N_{PS}}\right)$$
(72)

$$V_{CS\_CBCTh}(V_{IN}, R_{LIM}, R_2) = R_1 \times \left(\frac{K_{CBC1}}{R_{LIM}} - I_{SLOPE} \times D - \frac{V_{IN}}{R_2}\right)$$
(73)

The output current limit will vary with input voltage. For this design example the output current limit is set to  $I_{LIM}$  at the extremes of input voltage giving Equation 74 and Equation 75. This is done to limit the spread of output current limit across the range of input voltage.

Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback



$$I_{O}\left(V_{IN(min)}, R_{LIM}, R_{2}\right) = I_{LIM} \tag{74}$$

$$I_{O}\left(V_{IN(max)}, R_{LIM}, R_{2}\right) = I_{LIM} \tag{75}$$

Solving Equation 74 and Equation 75 simultaneously yields values for resistors R<sub>LIM</sub> and R<sub>2</sub>.

$$R_2 = \frac{1}{\frac{t_{CSLSG}}{2} \times \frac{R_{CS}}{R_1 \times N_{PS}} \times \left(\frac{1}{L_{Mag}} + \frac{1}{L_O \times N_{PS}^2}\right) - \frac{1}{V_{IN(min)} \times V_{IN(max)}} \left(\frac{{V_O}^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right)} = 2.32 - M\Omega \times \frac{1}{V_{IN(min)} \times V_{IN(max)}} \left(\frac{V_O^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right) = 2.32 - M\Omega \times \frac{1}{V_{IN(min)} \times V_{IN(max)}} \left(\frac{V_O^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right) = 2.32 - M\Omega \times \frac{1}{V_{IN(min)} \times V_{IN(max)}} \left(\frac{V_O^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right) = 2.32 - M\Omega \times \frac{1}{V_{IN(min)} \times V_{IN(max)}} \left(\frac{V_O^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right) = 2.32 - M\Omega \times \frac{1}{V_{IN(min)} \times V_{IN(max)}} \left(\frac{V_O^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right) = 2.32 - M\Omega \times \frac{1}{V_{IN(min)} \times V_{IN(max)}} \left(\frac{V_O^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right) = 2.32 - M\Omega \times \frac{1}{V_{IN(min)} \times V_{IN(min)}} \left(\frac{V_O^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right) = 2.32 - M\Omega \times \frac{1}{V_{IN(min)} \times V_{IN(min)}} \left(\frac{V_O^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right) = 2.32 - M\Omega \times \frac{1}{V_{IN(min)} \times V_{IN(min)}} \left(\frac{V_O^2}{L_O \times f_{OSC}} \times \frac{R_{CS}}{R_1} - I_{SLOPE} \times 2 \times V_O \times N_{PS}\right)$$

 $\underset{\text{LIM}}{\text{LIM}} = \frac{K_{CBC1}}{\frac{R_{CS}}{R_1} \times \left[\frac{I_{LIM}}{N_{PS}} + \frac{V_O}{2 \times L_O \times N_{PS} \times f_{OSC}} \times \left(1 - \frac{2 \times V_O \times N_{PS}}{V_{IN(min)}}\right) + \frac{V_O \times N_{PS}}{2 \times L_{Mag} \times f_{OSC}} - \frac{t_{CSLSG}}{N_{PS}} \times \left[\frac{V_{IN(min)}}{2 \times L_{Mag}} + \frac{V_{IN(min)}}{2 \times L_O \times N_{PS}} - \frac{t_{CSLSG}}{L_O \times N_{PS}}\right] + I_{SLOPE} \times \frac{2 \times V_O \times N_{PS}}{V_{IN(min)}} + \frac{V_{IN(min)}}{R_2} = 55.2 - k\Omega$ 

(77)

Having determined values for  $R_1$  and  $R_2$ , the value of resistor  $R_3$  is fixed by Equation 13.

The selected values for  $R_2$  and  $R_{LIM}$  are given in Equation 78. Figure 47 presents the measured output current limit vs input voltage for the circuit presented in Figure 39. Figure 47 also presents the output current limit vs line for the same circuit predicted by Equation 71, Equation 72 and Equation 73. There is good agreement between measured and predicted results.

$$R_2 = 1.96 \,\text{M}\Omega$$
 
$$R_{\text{LIM}} = 56.2 \,\text{k}\Omega$$
 (78)

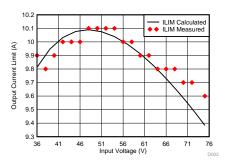
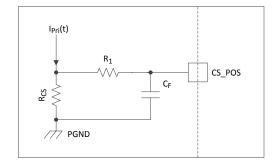




Figure 47. Main Converter Measured vs Predicted Output Current Limit

If the magnitude of the leading-edge spike is excessive, an additional filter capacitor  $C_F$  should be added to form an RC filter with  $R_1$ , to reduce the high-frequency noise spike. Both the leading-edge blanking ( $t_{CSBLK}$ ) and the RC filter help to prevent false triggering of the CBC current limiting operation.

The circuit connected to the CS\_POS pin may be approximated by the simplified schematic of Figure 48.



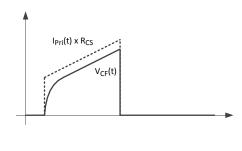



Figure 48. CS\_POS Filter Circuit Model and Waveform

50



The voltage across the current sense resistor during the conduction period of the lower MOSFET is represented by Equation 79.

$$I_{Pri}(t) \times R_{CS} = (I_{P0} + m \times t) \times R_{CS}$$
(79)

Where  $I_{P0}$  is the primary current at the start of the on period of the lower switch, and m is the slope of the primary current during the on period.

$$I_{P0} = \frac{I_O}{N_{PS}} - \Delta I_{LMag} - \frac{\Delta I_{LO}}{N_{PS}}$$
(80)

$$m = \left(\frac{V_{IN(max)}}{2 \times N_{PS}} - V_{O}\right) \times \frac{1}{L_{O} \times N_{PS}} + \frac{V_{IN(max)}}{2 \times L_{Mag}}$$
(81)

It can be shown that the voltage across capacitor C<sub>F</sub> for the circuit shown is expressed by Equation 82.

$$V_{CF}(t) = R_{CS} \times \left[ \left( I_{P0} - m \times C_F \times R_1 \right) \times \left( 1 - e^{\frac{-t}{C_F \times R_1}} \right) + m \times t \right]$$
(82)

Let us assume that the on period of the lower switch is more than four times longer than the time constant made up of  $C_F$  and  $R_1$ . In this case the exponential term of Equation 82 will tend to zero and the voltage across capacitor  $C_F$  at the end of the  $t_{ON}$  period may be expressed by Equation 83.

$$V_{CF}(t_{ON}) = R_{CS} \times [I_{PO} - m \times C_F \times R_1 + m \times t_{ON}]$$
(83)

Comparing Equation 79 and Equation 83 we can see that capacitor C<sub>F</sub> introduces an error in the sensed peak current given by Equation 84.

$$ErrCF = \frac{V_{CS}\left(t_{ON}\right) - V_{CF}\left(t_{ON}\right)}{\frac{I_{LIM}}{N_{PS}} \times R_{CS}} = \frac{m \times C_F \times R_1}{\frac{I_{LIM}}{N_{PS}}} = \frac{\left[\left(\frac{V_{IN(max)}}{2 \times N_{PS}} - V_O\right) \times \frac{1}{L_O \times N_{PS}} + \frac{V_{IN(max)}}{2 \times L_{Mag}}\right] \times C_F \times R_1}{\frac{I_{LIM}}{N_{PS}}}$$

$$(84)$$

Hence, to ensure the error introduced by the filter capacitor is less than 2%, the value of capacitor  $C_F$  should not exceed the value given by Equation 85.

$$C_{F} \leq \frac{0.02 \times I_{LIM}}{\left[\left(\frac{V_{IN(max)}}{2 \times N_{PS}} - V_{O}\right) \times \frac{1}{L_{O} \times N_{PS}} + \frac{V_{IN(max)}}{2 \times L_{Mag}}\right] \times R_{1} \times N_{PS}} = 84 - pF$$
(85)

The Excel Calculator Tool can be used to facilitate the process of calculating all the external CBC component values.

## 8.2.2.12 Auxiliary Transformer

A coupled inductor or a flyback-type transformer is required for this fly-buck topology auxiliary supply. Energy is transferred from primary to secondary when the low-side SR MOSFET is conducting.

The transformer turns ratio is selected based on the ratio of the primary output voltage to the secondary output voltage. In this design example, the two outputs are set to be equal and a 1:1 turns ratio transformer is selected, i.e.,  $N_2/N_1 = 1$ . The primary output voltage is normally selected based on the input voltage range such that the duty cycle of the converter does not exceed 50% at the minimum input voltage. This condition is satisfied if  $V_{AUX1} < V_{IN(min)} / 2$ .

Use Equation 86 to calculate the maximum inductor current ripple amplitude  $\Delta I_{L(AUX)}$  that can be tolerated without exceeding the peak current limit threshold  $I_{AUX(LIM)}$  (200-mA typical) of the high-side switch,

Copyright © 2018–2019, Texas Instruments Incorporated



$$\Delta I_{L(AUX)} = \left(I_{AUX(LIM)} - I_{AUX1} - I_{AUX2} \times \frac{N_2}{N_1}\right)$$

where

I<sub>AUX1</sub> is the primary output current, and I<sub>AUX2</sub> is the secondary output current of the auxiliary supply, respectively.

In this design example, the maximum total output current  $I_{AUX(max)}$  of the auxiliary supply referred to the primary side is 100-mA, as given by Equation 87.

$$I_{AUX (max)} = I_{AUX1} + I_{AUX2} \times \frac{N_2}{N_1} = 0.1 \text{ A}$$
 (87)

Therefore,  $\Delta I_{L(AUX)} = 0.1$ -A. Use Equation 88 to calculate the minimum inductor value for the auxiliary supply.

$$L_{AUX} \ge \frac{K_{ON} \times R_{ON}}{2 \times \Delta I_{L(AUX)}} \times \left(1 - \frac{V_{AUX1}}{V_{IN(max)}}\right) = 88 - \mu H$$
(88)

Select a higher value of 150-µH to ensure the high-side switch current doesn't exceed the minimum peak current limit threshold.

## 8.2.2.13 Auxiliary Feedback Resistors

The two feedback resistors are selected to set the primary output voltage  $V_{AUX-OFF}$  of the auxiliary supply. The internal reference for the off-state and on-state auxiliary output voltage levels are  $V_{AUX-OFF}$  (1.4-V typical) and  $V_{AUX-ON}$  (1-V typical). The feedback resistors are calculated such that both of the off-state and on-state auxiliary output voltage fall into the recommended operating range (8.5-V to 14-V). In this design example, the off-state and on-state auxiliary output voltages are set to 11.9-V and 8.5-V, respectively.  $R_{FB2}$  is selected to be 1-k $\Omega$  and  $R_{FB1}$  is calculated to be 7.5-k $\Omega$  according to Equation 89. Note that it is the valley of the output voltage that is regulated at the reference value. Therefore the average output voltage is greater than the reference value due to the ripple injected to the feedback node.

$$V_{AUX1-ON} = V_{AUX-ON} \times \left(1 + \frac{R_{FB1}}{R_{FB2}}\right)$$
(89)

## 8.2.2.14 R<sub>ON</sub> Resistor

Use Equation 31 to calculate the value of  $R_{ON}$  required to achieve the desired switching frequency for the auxiliary supply. Make sure that the calculated  $R_{ON}$  value is greater than the minimum value required by Equation 40. For this design example where on-state  $V_{AUX1}$  is 8.5-V and target  $f_{SW\_AUX}$  is 500-kHz, the calculated value of  $R_{ON}$  is 189-k $\Omega$ . The minimum recommended value calculated using Equation 40 is 209-k $\Omega$ . A standard value of 220-k $\Omega$  is selected to satisfy this minimum  $R_{ON}$  requirement giving and actual switching frequency ( $f_{SW\_AUX}$ ) of 430-kHz.

#### 8.2.2.15 VIN Pin Capacitor

Place the required bypass capacitor close to the VIN pin of the LM5036 device. Ensure that the capacitance is large enough to limit the ripple of the VIN pin voltage to a desired level. Use Equation 90 to calculate the value of  $C_{IN}$  required to meet the ripple voltage  $\Delta V_{IN}$  requirement.

$$C_{IN} \ge \frac{I_{AUX (max)}}{4 \times f_{SW\_AUX} \times \Delta V_{IN}}$$
(90)

Choosing a value of 0.5-V for  $\Delta V_{IN}$  yields a minimum  $C_{IN}$  value of 0.12- $\mu$ F. Select the standard value of 0.1- $\mu$ F for this design. Ensure that the voltage rating of the input capacitor is greater than the maximum input voltage under all conditions.



#### 8.2.2.16 Auxiliary Primary Output Capacitor

The output capacitor value ( $C_{AUX1}$ ), needed to achieve our target output ripple amplitude ( $\Delta V_{AUX1Cap} = 25$ -mV), may be calculated using Equation 94.Highest ripple voltage will be observed if all the Aux current is drawn from  $V_{AUX2} = I_{AUX(max)}$ ). In this case a capacitor value of 1.1- $\mu$ F is required to limit capacitive ripple voltage amplitude to 25-mV. A standard 1- $\mu$ F, 25-V capacitor is selected for this design.

#### 8.2.2.17 Auxiliary Secondary Output Capacitor

A simplified waveform for the secondary winding current I<sub>L SEC</sub> is shown in Figure 49.

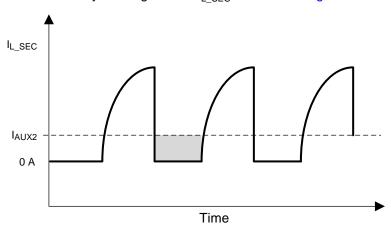



Figure 49. Auxiliary Transformer Secondary Winding Current Waveforms for CAUX2 Ripple Calculation

The secondary output current  $I_{AUX2}$  is sourced by  $C_{AUX2}$  during on-time of the high-side switch,  $t_{ON}$ . Ignoring the current transition times in the secondary winding, the secondary output capacitor ripple voltage amplitude can be calculated using Equation 91.

$$\Delta V_{AUX2Cap} = \frac{I_{AUX2} \times t_{ON(max)}}{2 \times C_{AUX2}}$$
(91)

For a 1:1 auxiliary transformer turns ratio, the primary and secondary voltage ripple equations are identical. Therefore,  $C_{AUX2}$  is chosen to be equal to  $C_{AUX1}$  (1  $\mu F$ ) to achieve comparable ripple voltages on the primary and secondary outputs.

#### 8.2.2.18 Auxiliary Feedback Ripple Circuit

The auxiliary feedback ripple circuit employed is presented in Figure 38. Having selected appropriate values for  $R_{ON}$  in  $R_{ON}$  Resistor and  $R_{FBx}$  in Auxiliary Feedback Resistors, the value of  $C_r$  required can be calculated using Equation 47. For our design we have opted to use a standard value  $C_r = 1$ -nF.

$$C_{r} > \frac{3}{2 \times \pi \times f_{SW\_AUX}} \times \frac{R_{FB1} + R_{FB2}}{R_{FB1} \times R_{FB2}} = 1.3 - nF$$
(92)

Based on our target output ripple specification a value for the primary output capacitor ( $C_{AUX1} = 1-\mu F$ ) was chosen in Auxiliary Primary Output Capacitor. The primary output ripple voltage  $V_{AUX1Cap}$  can be calculated using Equation 94. Since the value of  $V_{AUX1Cap}$  is already greater than 25-mV there is no danger that we will fail to meet the requirement of Equation 46. Hence the value of  $R_r$  needed to ensure stable operation is calculated using Equation 48. For our design example a value of 46.4- $k\Omega$  has been selected.

$$R_{r} \leq \frac{K_{ON} \times R_{ON}}{10 \times C_{r} \times \Delta V_{AUX1Cap}} \times \left(1 - \frac{V_{AUX1}}{V_{IN(min)}}\right) = 55 - k\Omega$$
(93)

The minimum value of  $C_{ac}$  is determined using Equation 49. The precise value of this component is not very critical and for our design example we selected a convenient value of  $C_{ac} = 100$ -nF.

Copyright © 2018–2019, Texas Instruments Incorporated



$$C_{ac} \ge 5 \times C_r = 5 - nF \tag{94}$$

## 8.2.2.19 Auxiliary Secondary Diode

Use Equation 95 to calculate the reverse voltage across secondary rectifier of the auxiliary supply when the high-side switch is on.

$$V_{\rm D} = \frac{N_2}{N_1} \times V_{\rm IN\,(max\,)} \tag{95}$$

For a maximum input voltage of 75-V and the 1:1 turns ratio of this design, select a schottky diode with a rating of 75-V or higher.

#### 8.2.2.20 VCC Diode

A diode must be connected between the primary output  $V_{AUX1}$  and the VCC pin. When  $V_{AUX1}$  is more than one diode voltage drop greater than the internal VCC voltage, the VCC bias current is supplied from  $V_{AUX1}$ . This results in reduced power losses in the internal VCC regulator, especially at high input voltage.

#### 8.2.2.21 Opto-Coupler Interface

Figure 50 illustrates the opto-coupler interface for the main feedback control loop. The primary side of the opto-coupler is biased with  $V_{REF}$  voltage from LM5036 device.  $R_{OPTO}$  should be selected such that with the minimum error amplifier output, the comp current flowing into the COMP pin of the device is greater than  $I_{PWM-OS}$  (800- $\mu$ A typical) which corresponds to zero duty cycle, as given by Equation 96.

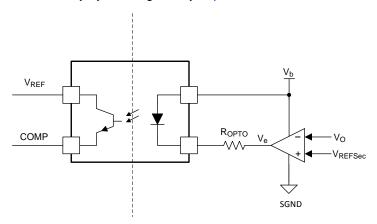


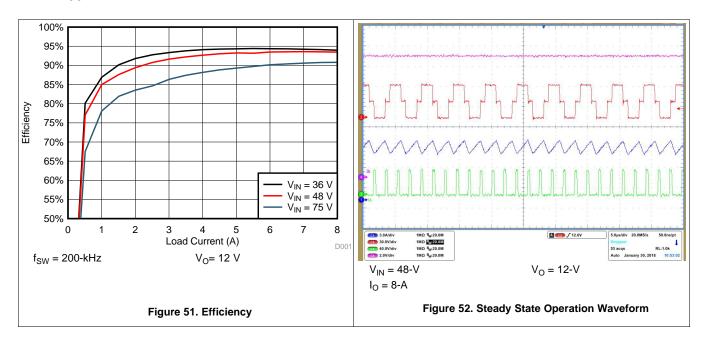

Figure 50. Opto-Coupler Interface

$$I_{COMP} = \frac{V_b - V_f - V_e}{R_{opto}} \times CTR$$

where

- V<sub>b</sub> is the bias supply for the error amplifier and opto-coupler on the secondary side
- V<sub>f</sub> is the diode forward voltage drop of the opto-coupler LED
- V<sub>e</sub> is the error amplifier output
- CTR is the current transfer ratio of the opto-coupler
- I<sub>COMP</sub> is the comp current flowing into the COMP pin
- V<sub>REF</sub> (5-V typical) is the reference of LM5036 device

#### 8.2.2.22 Full-Bridge Converter Applications


While LM5036 device is optimized for half-bridge applications, it can also be used for full-bridge applications. External gate drivers are needed to support an additional pair of FETs in full-bridge configuration. In addition, a DC-blocking capacitor is required to ensure voltage-second balance of the main transformer with the voltage-mode control of LM5036 device. Only one phase current information is needed for current protection in the full-bridge applications.

Submit Documentation Feedback

(96)



# 8.2.3 Application Curves





# 9 Power Supply Recommendations

The power converter controlled by LM5036 device can have considerable current level. Care should be taken that components with the correct current rating are chosen. This includes magnetic components, power MOSFETS and diodes, connectors and wire sizes. Input and output capacitors should have the correct ripple current rating.

The recommended maximum input voltage for the VIN pin of LM5036 device is 100-V. The recommended voltage for the VCC pin is between 8.5-V and 14-V. Both VCC pin and REF pin must be locally decoupled with a ceramic capacitor. The recommended range of values is  $0.47-\mu F$  to  $10-\mu F$  for VCC pin, and  $0.1-\mu F$  to  $10-\mu F$  for REF pin. To reduce the power consumption of the internal VCC regulator, an external bias supply can be connected to VCC pin through a diode.



# 10 Layout

## 10.1 Layout Guidelines

- The two ground planes (AGND and PGND) of LM5036 device should be tied together with a short and direct connection to avoid litter due to relative ground bounce. The connection point could be at the negative terminal of the input power supply.
- The VIN, VCC, REF pin capacitors, and CS NEG resistor should be tied to PGND plane. UVLO, ON OFF, RT, RON, RD1 and RD2 resistors, RAMP, RES, SS and SSSR capacitors, and the thermal pad should all be tied to AGND plane.
- SW and SW AUX are switching nodes which switch rapidly between VIN and GND every cycle which are sources of high dv/dt noise. Therefore, large SW/SW AUX node area should be avoided.
- The differential current sense signals at CS POS and CS NEG pins should be routed in parallel and close to each other to minimize the common-mode noise.
- The area of the loop formed by the main feedback control signal traces (COMP and REF) should be minimized in order to reduce the noise pick up. This can be accomplished by placing the COMP and REF signal traces on top of each other in adjacent PCB layers. In addition, the main feedback control signal traces should be routed away from the SW\_AUX switching node to avoid high dv/dt noise coupling.
- The gate drive outputs (LSG and HSG) should have short and direct paths to the power MOSFETs to minimize parasitic inductance in the gate driving loop.
- The VCC and REF decoupling capacitors should be placed close to their respective pins with short trace inductance. Low ESR and ESL ceramic capacitors are recommended for the boot-strap, VCC and the REF capacitors.
- A decoupling capacitor should be placed close to the IC, directly across VIN and PGND pins. The connections to these two pins should be direct to minimize the loop area which carries switching currents.
- The boot-strap capacitors required for the high-side gate drivers of the half-bridge converter and auxiliary supply should be located close to the IC and connected directly to the BST/BST AUX and SW/SW AUX pins.
- The area of the switching loop of the power stage consisting of input capacitor, capacitive divider, transformer, and the primary MOSFETs should be minimized.

#### 10.2 Layout Example

See Figure 53 for an example layout that matches the schematic of Figure 39.

Product Folder Links: LM5036



# **Layout Example (continued)**

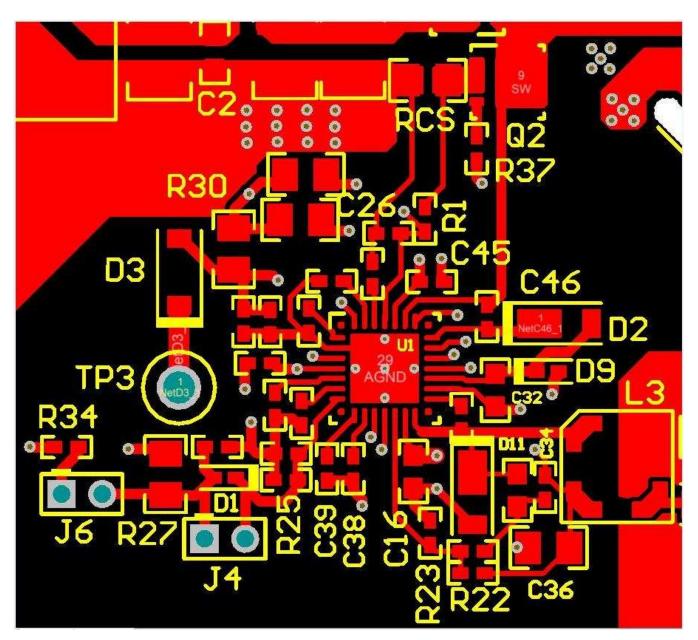



Figure 53. LM5036 PCB Layout Example



# 11 Device and Documentation Support

## 11.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM5036 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage  $(V_{IN})$ , output voltage  $(V_{OUT})$ , and output current  $(I_{OUT})$  requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- · Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

## 11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

## 11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

## 11.4 Trademarks

E2E is a trademark of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

#### 11.5 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

Product Folder Links: LM5036



# 12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



# PACKAGE OPTION ADDENDUM

6-Feb-2020

#### **PACKAGING INFORMATION**

| Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|---------|------|---------|----------------------------|------------------|---------------------|--------------|----------------|---------|
|                  | (1)    |              | Drawing |      | Qty     | (2)                        | (6)              | (3)                 |              | (4/5)          |         |
| LM5036RJBR       | ACTIVE | WQFN         | RJB     | 28   | 3000    | Green (RoHS<br>& no Sb/Br) | NIPDAU           | Level-2-260C-1 YEAR | -40 to 125   | LM5036         | Samples |
| LM5036RJBT       | ACTIVE | WQFN         | RJB     | 28   | 250     | Green (RoHS<br>& no Sb/Br) | NIPDAU           | Level-2-260C-1 YEAR | -40 to 125   | LM5036         | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

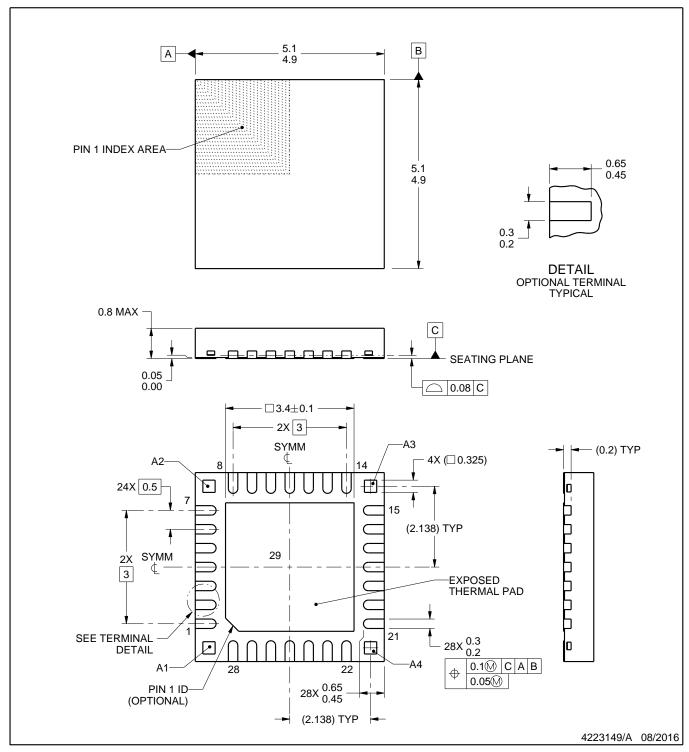
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



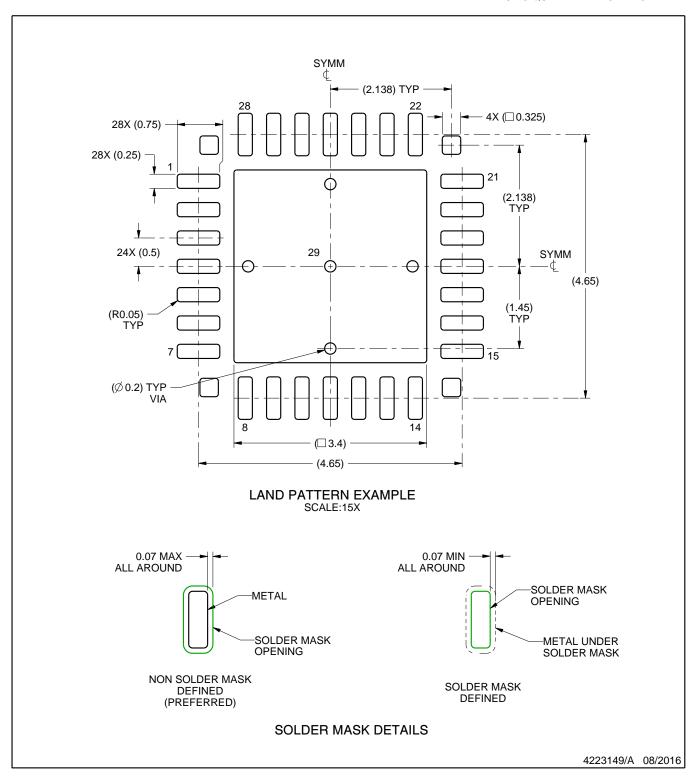



6-Feb-2020



PLASTIC QUAD FLATPACK - NO LEAD



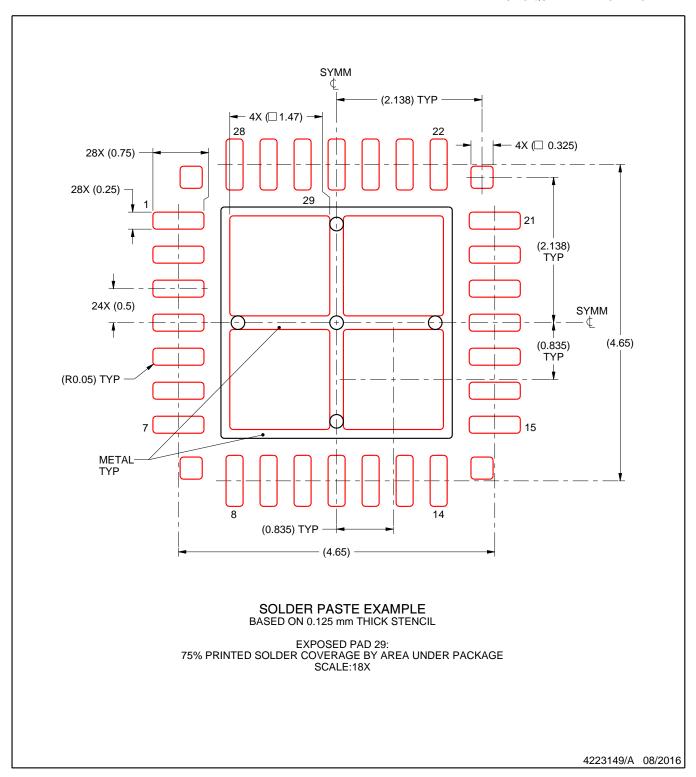

#### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

  2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



PLASTIC QUAD FLATPACK - NO LEAD




NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (<a href="www.ti.com/legal/termsofsale.html">www.ti.com/legal/termsofsale.html</a>) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated