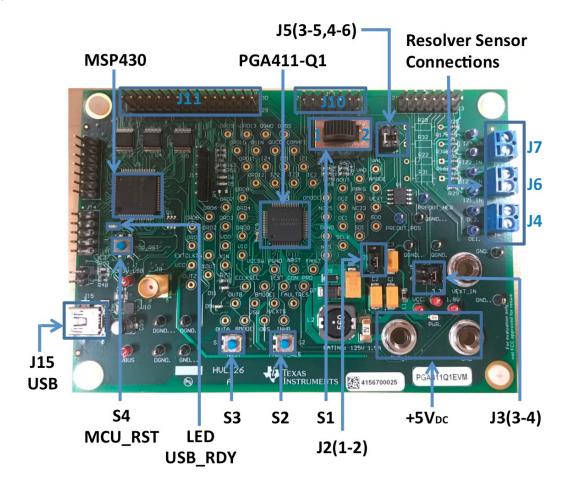
PGA411-Q1 Evaluation Module Quick Start Guide

For more information:

Welcome to the PGA411-Q1 Evaluation Module (EVM) Quick Start Guide. This guide is designed to help you through the initial setup of the EVM and using the PGA411 GUI. Using this Quick Start Guide will help you to connect the PGA to a resolver sensor, power on the EVM, use the PGA411 GUI to configure the PGA411-Q1 Resolver-to-Digital Interface IC, read angle information from the resolver and see and clear faults. All contents of this guide assume that the user has a resolver sensor and the PGA411 GUI installed on a PC. The GUI can be downloaded from www.ti.com/product/PGA411-Q1.

The PGA411-Q1 EVM contains the following:

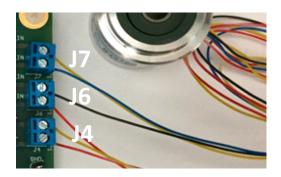
Hardware


- PGA411-Q1
- MSP430® Texas Instruments microcontroller
- Voltage regulator LDO TLV716/P
- Voltage Regulator LDO TPS735
- Circuitry for interfacing general resolvers sensors
- Multiple test points for main analog and digital Signals
- UART, JTAG and USB connectors.

Printed Documents

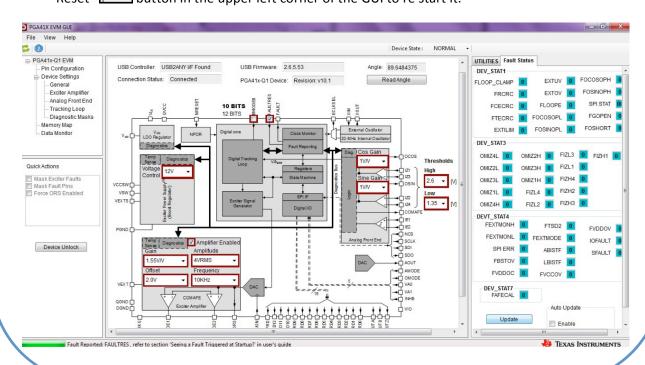
PGA411-Q1 Quick Start Guide (this document)

Miscellaneous


- 1 Micro USB 2.0 cable, 3 ft
- Default jumper configurations as shown in figure below.

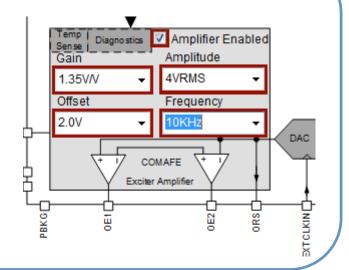
Connect the resolver sensors cables to **J4** (Exciter), **J6** (Cosine) and **J7** (Sine). Please refer to the resolver data sheet on cabling nomenclature.

Provide the 5 Volts supply using banana connectors to the PGA411-Q1 EVM. The one in the left is +5V and the one in the right is ground (GND).


Once power is ON connect the USB to the EVM and to your PC, press **S4 MCU_RST** to reset the microcontroller MSP430. LED USB_RDY should be green

2

Launch the PGA411 GUI. Few seconds after the GUI welcome screen appears you should see a block diagram; this diagram is a high level representation of the PGA411-Q1 Resolver to Digital Interface and contains interactive features. All boxes in red are controls that can be configured. If the connection is successful you should see a **CONNECTED** value in the "Connections Status" field and a Revision number in the PGA411-Q1 Device field, both on the upper section of the GUI.


If connections failed press **S4 MCU_RST** on the EVM to re-set the MSP430 and the click on the "Reset" button in the upper left corner of the GUI to re start it.

Now set the PGA 411-Q1 parameters depending on the exciter used.

- Exciter Frequency (10 KHz to 20 KHz)
- Exciter Amplitude (4Vrms or 7Vrms)
- Exciter Amp Gain (1.15V/V to 1.9V/V)
- Common Mode Offset (0.5V to 2V)

All these values, once changed, can be seen instantaneously using a scope probe on the test points next to exciter connection, **J4**.

4

The optimum AFE settings depend on the signal levels from the resolver outputs (sine and cosine).

Observe these signals on the test points next to the **J6** and **J7** connectors when configuring the AFE.

• AFE Amplifier Gain from 0.75 to 3.5V/V.

Both gains must match to achieve better accuracy on the angle estimation.

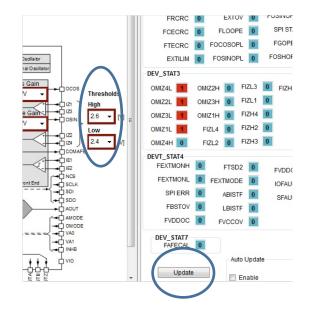
To ignore faults, ensure that the **FAULTRES** pin is set to low. To set this pin low, uncheck the box. Toggling the **FAULTRES** pin with a fault condition still present will cause the PGA411-Q1 into normal operation, which may cause damage to the PGA411-Q1. This is most likely to occur with high current short circuits on the exciter amplifier. Ignoring the faults is only recommended for initial evaluation.

After pressing the "Read Angle" button the angle (in degrees) from the resolver is displayed. Rotate the resolver and read again. An updated angle is displayed.

Higher precision is achieved by changing the resolution from 10 bits to 12 bits by checking the BMODE0 box. The new angle reading should have more digits of precision.

6

If you check the box on **FAULTRES** (making it high) faults will be enabled. In order to "force" a fault and to see how the internal diagnostics in PGA411-Q1 work, change the values for detection thresholds on the AFE amplifiers to lower dynamic range as follows:


- Threshold High to 2.5V (min value)
- Threshold Low to 2.4 V (max value)

This will trigger the Faults for "Low Reference Integrity" on the AFE inputs. OMIZ1L to OMIZ4L are red. This can be seen clicking on the "UPDATE" control.

If the thresholds values are reprogramed to more relaxed conditions, such as:

- Threshold High to 3.5V
- Threshold Low to 1.5 V

An update on faults will show that the previous faults are not present now.

ADDITIONAL RESOURCES

For more information on PGA411-Q1, including:

User Guides

Application Notes

GUI Updates

TI Designs

Please visit www.ti.com/product/PGA411-Q1

For troubleshooting tips download http://www.ti.com/lit/pdf/slaa687

For support questions, go to TI's E2E™ online community, e2e.ti.com.

The products and services of Texas instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders.

TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

logic.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

www.ti.com/security

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

Logic

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>