

SN74LV4051A-Q1

SCLS520E - AUGUST 2003 - REVISED JANUARY 2015

SN74LV4051A-Q1 8-Channel Analog Multiplexer/Demultiplexer

Features

- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results
 - Device Temperature Grade 1: –40°C to +125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level 2
 - Device CDM ESD Classification Level C4B
- 2-V to 5.5-V V_{CC} Operation
- Supports Mixed-Mode Voltage Operation on All **Ports**
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
- Individual Switch Controls
- **Extremely Low Input Current**
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

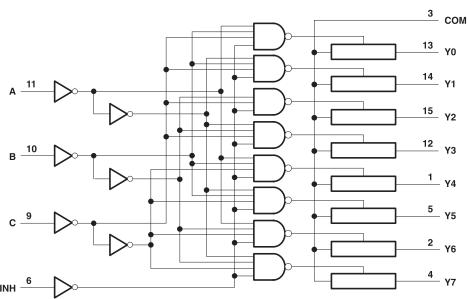
Applications

- Automotive Infotainment and Cluster
- Telematics, eCall

3 Description

This 8-channel CMOS analog multiplexer and demultiplexer is designed for 2-V to 5.5-V V_{CC} operation.

The SN74LV4051A handles analog and digital signals. Each channel permits signals with amplitudes up to 5.5 V (peak) to be transmitted in either direction.


Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)				
	TSSOP (16)	5.00 mm × 4.40 mm				
SN74LV4051A-Q1	COIC (46)	10.30 mm × 7.50 mm				
	SOIC (16)	9.90 mm × 3.91 mm				

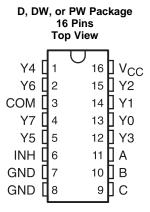
(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Table of Contents

1	Features 1	8	.1 Overview	11
2	Applications 1	8	.2 Functional Block Diagram	11
3	Description 1	8	.3 Feature Description	11
4	Revision History	8	.4 Device Functional Modes	11
5	Pin Configuration and Functions	9 A	pplication and Implementation	12
6	Specifications	9	.1 Application Information	12
U	6.1 Absolute Maximum Ratings	9	.2 Typical Application	12
	6.2 ESD Ratings	10 P	ower Supply Recommendations	13
	6.3 Recommended Operating Conditions	11 L	ayout	13
	6.4 Thermal Information	1	1.1 Layout Guidelines	13
	6.5 Electrical Characteristics 6	1	1.2 Layout Example	
	6.6 Switching Characteristics V _{CC} = 3.3 V ± 0.3 V 7		Device and Documentation Support	
	6.7 Switching Characteristics V _{CC} = 5 V ± 0.5 V	1:	2.1 Trademarks	14
	6.8 Analog Switch Characteristics	1:	2.2 Electrostatic Discharge Caution	14
	6.9 Operating Characteristics	1:	2.3 Glossary	14
7	Parameter Measurement Information 8		lechanical, Packaging, and Orderable	
8	Detailed Description 11	In	formation	14

4 Revision History


Changes from Revision D (June 2011) to Revision E

Page

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and

5 Pin Configuration and Functions

Pin Functions

P	PIN	1/0	DESCRIPTION
NAME	NO.	- I/O	DESCRIPTION
Y4	1	I ⁽¹⁾	Input to mux
Y6	2	I ⁽¹⁾	Input to mux
СОМ	3	O ⁽¹⁾	Output of mux
Y7	4	I ⁽¹⁾	Input to mux
Y5	5	I ⁽¹⁾	Input to mux
INH	6	I ⁽¹⁾	Enables the outputs of the device. Logic low level with turn the outputs on, high level will turn them off.
GND	7	_	Ground
GND	8	_	Ground
С	9	I	Selector line for outputs (see <i>Device Functional Modes</i> for specific information)
В	10	I	Selector line for outputs (see <i>Device Functional Modes</i> for specific information)
Α	11	I	Selector line for outputs (see <i>Device Functional Modes</i> for specific information)
Y3	12	I ⁽¹⁾	Input to mux
Y0	13	I ⁽¹⁾	Input to mux
Y1	14	I ⁽¹⁾	Input to mux
Y2	15	J ⁽¹⁾	Input to mux
Vcc	16	I	Device power input

⁽¹⁾ These I/O descriptions represent the device when used as a multiplexer, when this device is operated as a demultiplexer pins Y0-Y7 may be considered outputs (O) and the COM pin may be considered inputs (I).

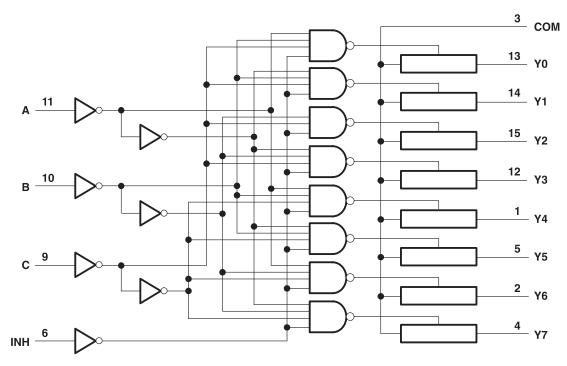


Figure 1. Logic Diagram (Positive Logic)

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7 V	
VI	Input voltage ⁽²⁾	· · · · · · · · · · · · · · · · · · ·			
V _{IO}	Switch I/O voltage (2) (3)	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0	-20		
I _{IOK}	I/O diode current	V _{IO} < 0	-50		A
I _T	Switch through current	$V_{IO} = 0$ to V_{CC}	-25	25	mA
	Continuous current through V _{CC} or GND	-50	50		
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
		Human body model (HBM), per AEC Q100	±2000		
V(EOD)	Electrostatic discharge	Charged device model (CDM) per AEC	All pins	±500	V
V _(ESD)	•	Charged device model (CDM), per AEC Q100-011	Corner pins (1, 8, 9, and 16)	±750	

⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

See⁽¹⁾

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		2 ⁽²⁾		5.5	٧
		V _{CC} = 2 V	1.5			
.,	High lavel inner college	V _{CC} = 2.3 V to 2.7 V	V _{CC} × 0.7			V
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	V _{CC} × 0.7			V
		V _{CC} = 4.5 V to 5.5 V	V _{CC} × 0.7			
		V _{CC} = 2 V			0.5	
\/	/ _{IL} Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		V	_{CC} × 0.3	V
VIL		V _{CC} = 3 V to 3.6 V		V	_{CC} × 0.3	V
		V _{CC} = 4.5 V to 5.5 V		V	_{CC} × 0.3	
VI	Control input voltage		0		5.5	V
V_{IO}	Input/output voltage		0		V_{CC}	V
		V _{CC} = 2.3 V to 2.7 V			200	
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V			100	ns/V
	luic	V _{CC} = 4.5 V to 5.5 V			20	
_	Operating free-air	SN74LV4051ATDRQ1,SN74LV4051ATDWRQ1	40		105	
T _A	temperature	SN74LV4051ATPWRQ1	-4 0		105	°C
T _A	Operating free-air temperature	SN74LV4051AQPWRQ1	-40		125	

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 5.5 V maximum.

⁽²⁾ With supply voltages at or near 2 V, the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.

6.4 Thermal Information

		,	SN74LV4051A-Q1						
	THERMAL METRIC ⁽¹⁾	DW	PW	D	UNIT				
		16 PINS	16 PINS	16 PINS					
$R_{\theta JB}$	Junction-to-board thermal resistance	85.1	92.4	113.3					
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	47.2	52.9	48.1					
$R_{\theta JB}$	Junction-to-board thermal resistance	49.8	49.5	58.4	°C/W				
ΨЈТ	Junction-to-top characterization parameter	17.8	15.5	6.2					
ΨЈВ	Junction-to-board characterization parameter	49.3	49.2	57.8					

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEST	V	TA	= 25°C	;	T _A =	-40 to 10	5°C	T _A = -	40 to 125	5°C	LINUT
	PARAMETER	CONDITIONS	V _{cc}	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		I _T = 2 mA,	2.3 V		38	180			225			225	
r _{on}	On-state switch resistance	$V_I = V_{CC}$ or GND, $V_{INH} = V_{IL}$	3 V		30	150			190			190	Ω
		(see Figure 2)	4.5 V		22	75			100			100	
		$I_T = 2 \text{ mA},$	2.3 V		113	500			600			600	
r _{on(p)}	Peak on-state resistance	$V_I = V_{CC}$ or GND,	3 V		54	180			225			225	Ω
	rociotarios	$V_{INH} = V_{IL}$	4.5 V		31	100			125			125	
	Difference in on-state	$I_T = 2 \text{ mA},$	2.3 V		2.1	30			40		40		
Δr_{on}	resistance between	$V_I = V_{CC}$ or GND,	3 V		1.4	20			30			30	Ω
	switch	$V_{INH} = V_{IL}$	4.5 V		1.3	15			20			20	
II	Control input current	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1			±1			±2	μΑ
I _{S(off)}	Off-state switch leakage current	$\begin{aligned} &V_I = V_{CC} \text{ and } \\ &V_O = \text{GND, or } \\ &V_I = \text{GND and } \\ &V_O = V_{CC}, \\ &V_{INH} = V_{IH} \\ &(\text{see Figure 3}) \end{aligned}$	5.5 V			±0.1			±1			±2	μА
I _{S(on)}	On-state switch leakage current	$V_{I} = V_{CC}$ or GND, $V_{INH} = V_{IL}$ (see Figure 4)	5.5 V			±0.1			±1			±2	μΑ
I_{CC}	Supply current	$V_I = V_{CC}$ or GND	5.5 V						20			40	μΑ
C _{IC}	Control input capacitance	f = 10 MHz	3.3 V		2								pF
C _{IS}	Common terminal capacitance		3.3 V		23.4								pF
Cos	Switch terminal capacitance		3.3 V		5.7								pF
C_{F}	Feedthrough capacitance				0.5								pF

Submit Documentation Feedback

Copyright © 2003–2015, Texas Instruments Incorporated

6.6 Switching Characteristics $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range (unless otherwise noted)

P.A	ARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	T _A = 25°C			T _A = -40 to 105°C	T _A = -40 to 125°C	UNIT	
		(INPOT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN MAX	MIN MAX		
t _{PLH}	Propagation delay time	COM or Yn	Yn or COM	C _L = 50 pF (see Figure 5)		2.5	9	12	14	ns	
t _{PZH}	Enable delay time	INH	COM or Yn	C _L = 50 pF (see Figure 6)		5.5	20	25	25	ns	
t _{PHZ}	Disable delay time	INH	COM or Yn	C _L = 50 pF (see Figure 6)		8.8	20	25	25	ns	

6.7 Switching Characteristics $V_{CC} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range (unless otherwise noted)

DΛ	RAMETER	FROM	то	TEST	T _A	= 25°C	;	$T_A = -40 \text{ to } 105^{\circ}\text{C}$			T _A = -	40 to 1	25°C	UNIT
PA	RAIVIETER	(INPUT) (OUTPUT)		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time	COM or Yn	Yn or COM	$C_L = 50 \text{ pF}$ (see Figure 5)		1.5	6			8			10	ns
t _{PZH}	Enable delay time	INH	COM or Yn	C _L = 50 pF (see Figure 6)		4	14			18			18	ns
t _{PHZ}	Disable delay time	INH	COM or Yn	C _L = 50 pF (see Figure 6)		6.2	14			18			18	ns

6.8 Analog Switch Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	FROM	то	TEST COND	NITIONS	V	T _A :	= 25°C		UNIT	
PARAMETER	(INPUT)	(OUTPUT)	TEST CONL	DITIONS	V _{CC}	MIN	TYP	MAX	UNII	
			$C_L = 50 \text{ pF},$		2.3 V		20			
Frequency response (switch on)	COM or Yn	Yn or COM	$R_L = 600 \Omega$, $f_{in} = 1 MHz$ (sine wa	ave) (1)	3 V		25		MHz	
(Girion Gri)			(see Figure 7)		4.5 V		35			
Crosstalk			$C_L = 50 \text{ pF},$		2.3 V		20			
(control input to signal	INH	COM or Yn	or Yn $R_L = 600 \Omega$, $f_{in} = 1 \text{ MHz (square wave)}$		3 V		35		mV	
output)			(seeFigure 8)	wave,	4.5 V		60			
Feedthrough			Yn or COM		2.3 V		-45			
attenuation	COM or Yn	Yn or COM			3 V		-45		dB	
(switch off)			(see Figure 9)		4.5 V		-45			
			$C_L = 50 \text{ pF},$	$V_I = 2 Vp-p$	2.3 V		0.1%			
Sine-wave distortion	COM or Yn	Yn or COM	$R_L = 10 \text{ k}\Omega$, $f_{in} = 1 \text{ kkHz (sine)}$	$V_{I} = 2.5 \text{ Vp-p}$	3 V		0.1%			
Sins mans diotoritori		THE COM	wave) (see Figure 10)	V _I = 4 Vp-p	4.5 V		0.1%			

⁽¹⁾ Adjust f_{in} voltage to obtain 0-dBm output. Increase fin frequency until dB meter reads -3 dB.

6.9 Operating Characteristics

 $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C} \text{ (unless otherwise noted)}$

Copyright © 2003-2015, Texas Instruments Incorporated

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	C _L = 50 pF, f = 10 MHz	5.9	pF

⁽²⁾ Adjust fin voltage to obtain 0-dBm input.

7 Parameter Measurement Information

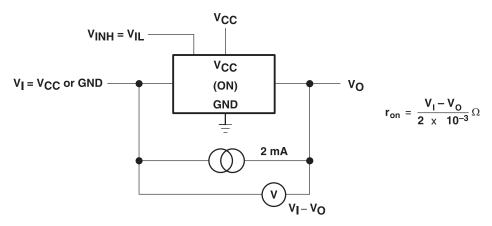


Figure 2. On-State Resistance Test Circuit

Condition 1: $V_I = 0$, $V_O = V_{CC}$ Condition 2: $V_I = V_{CC}$, $V_O = 0$

Figure 3. Off-State Switch Leakage-Current Test Circuit

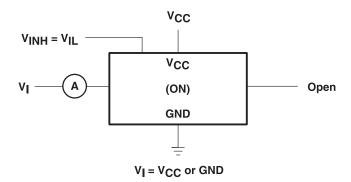


Figure 4. On-State Switch Leakage-Current Test Circuit

Parameter Measurement Information (continued)

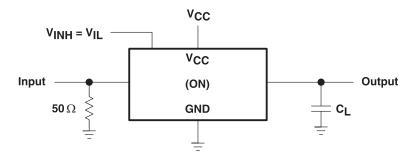


Figure 5. Propagation Delay Time, Signal Input to Signal Output

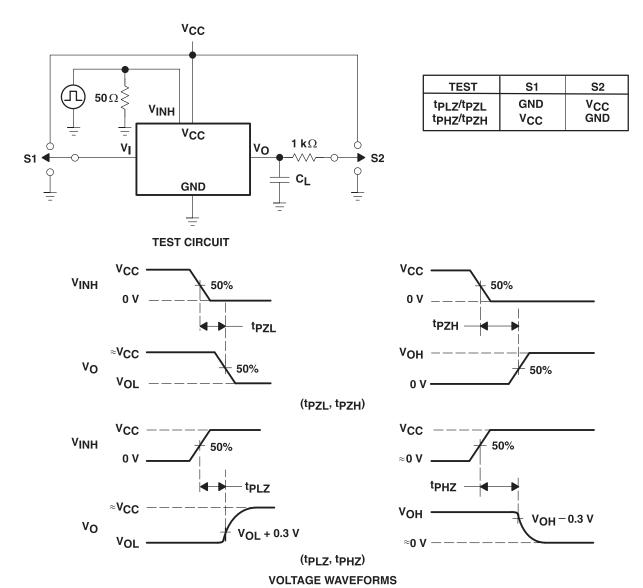
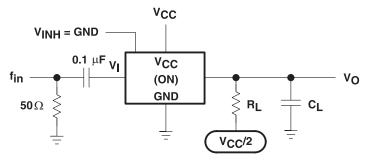



Figure 6. Switching Time (t_{PZL}, t_{PLZ}, t_{PZH}, t_{PHZ}), Control to Signal Output

Copyright © 2003–2015, Texas Instruments Incorporated

Parameter Measurement Information (continued)

NOTE A: fin is a sine wave.

Figure 7. Frequency Response (Switch On)

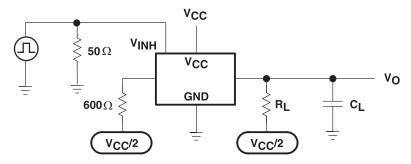


Figure 8. Crosstalk (Control Input, Switch Output)

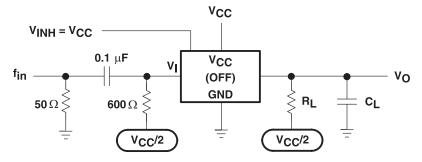


Figure 9. Feedthrough Attenuation (Switch Off)

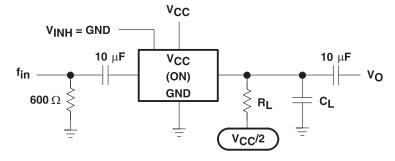
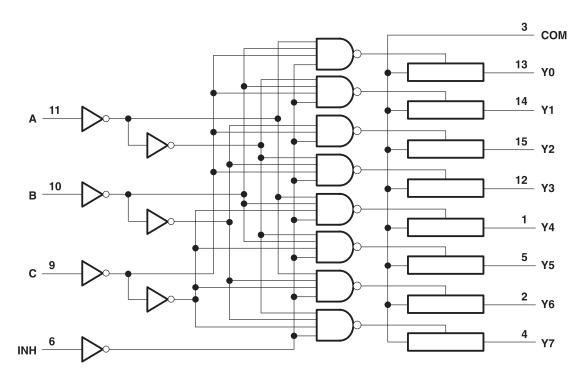


Figure 10. Sine-Wave Distortion



8 Detailed Description

8.1 Overview

This device is an 8-channel analog multiplexer. A multiplexer is used when several signals must share the same device or resource. This device allows the selection of one of these signals at a time, for analysis or propagation.

8.2 Functional Block Diagram

8.3 Feature Description

This device contains one 8-channel multiplexer for use in a variety of applications, and can also be configured as demultiplexer by using the COM pin as an input and the Yx pins as outputs. This device is qualified for automotive applications and has an extended temperature range of -40°C to 125°C (maximum depends on package type).

8.4 Device Functional Modes

Table 1. Function Table

	INP	ON					
INH	С	В	Α	CHANNEL			
L	L	L	L	Y0			
L	L	L	Н	Y1			
L	L	Н	L	Y2			
L	L	Н	Н	Y3			
L	Н	L	L	Y4			
L	Н	L	Н	Y5			
L	Н	Н	L	Y6			
L	Н	Н	Н	Y7			
Н	X	X	Χ	None			

Copyright © 2003–2015, Texas Instruments Incorporated

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

A multiplexer is used in applications where multiple signals share a resource. In the example below, several different sensors are connected to the analog-to-digital converter (ADC) of a microcontroller unit (MCU).

9.2 Typical Application

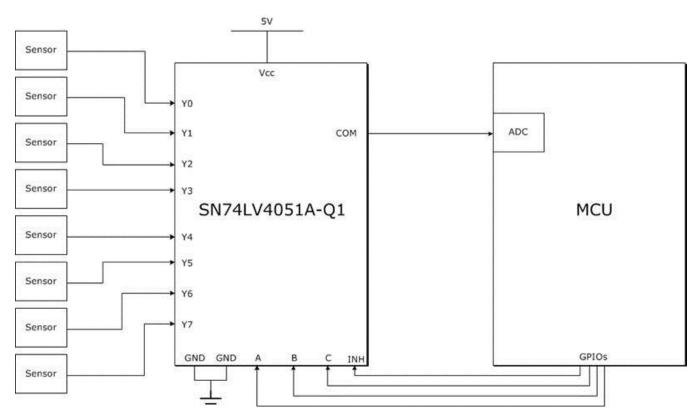


Figure 11. Example of Multiplexer Use With Analog Sensors and the ADC of an MCU

9.2.1 Design Requirements

Designing with the SN74LV4051A-Q1 device requires a stable input voltage between 2 V (see *Recommended Operating Conditions* for details) and 5.5 V. Another important design consideration is the characteristics of the signal being multiplexed, to ensure no important information is lost due to timing or incompatibility with this device.

9.2.2 Detailed Design Procedure

Normally, processing eight different analog signals would require eight separate ADCs, but Figure 11 shows how to achieve this using only one ADC and four GPIOs (general-purpose input/outputs).

10 Power Supply Recommendations

Most systems have a common 3.3-V or 5-V rail that can supply the Vcc pin of this device. If this is not available, a switched-mode power supply (SMPS) or a low dropout regulator (LDO) can supply this device from a higher voltage rail.

11 Layout

11.1 Layout Guidelines

TI recommends keeping the signal lines as short and as straight as possible. Incorporation of microstrip or stripline techniques is also recommended when signal lines are more than 1 inch long. These traces must be designed with a characteristic impedance of either 50 Ω or 75 Ω ,as required by the application. Do not place this device too close to high-voltage switching components, as they may cause interference.

11.2 Layout Example

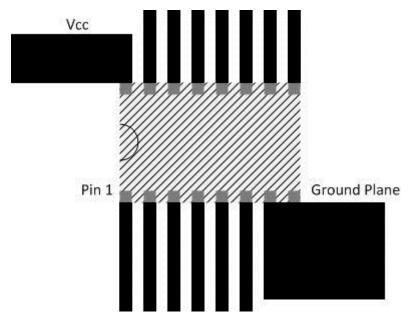


Figure 12. Layout Schematic

Copyright © 2003–2015, Texas Instruments Incorporated

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CLV4051ATDWRG4Q1	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051AQ	Samples
CLV4051ATPWRG4Q1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051AQ	Samples
SN74LV4051AQPWRQ1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	4051AQ1	Samples
SN74LV4051ATDRQ1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051AQ	Samples
SN74LV4051ATDWRQ1	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051AQ	Samples
SN74LV4051ATPWRQ1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051AQ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

6-Feb-2020

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

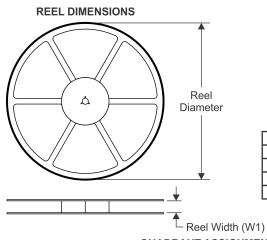
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV4051A-Q1:

Catalog: SN74LV4051A

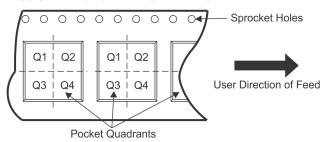
Enhanced Product: SN74LV4051A-EP


NOTE: Qualified Version Definitions:

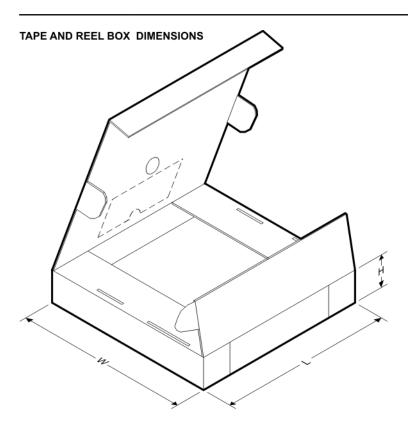
- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Feb-2019


TAPE AND REEL INFORMATION

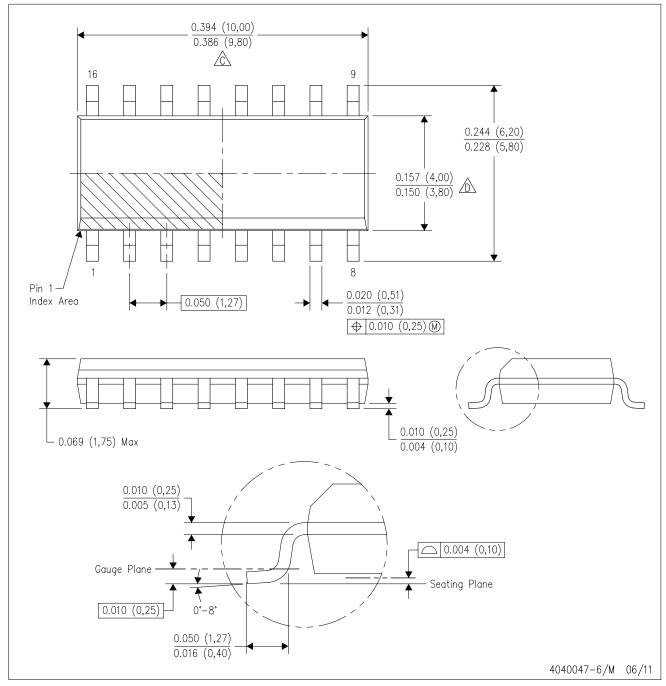
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CLV4051ATDWRG4Q1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
CLV4051ATPWRG4Q1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV4051AQPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV4051ATDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN74LV4051ATPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 26-Feb-2019

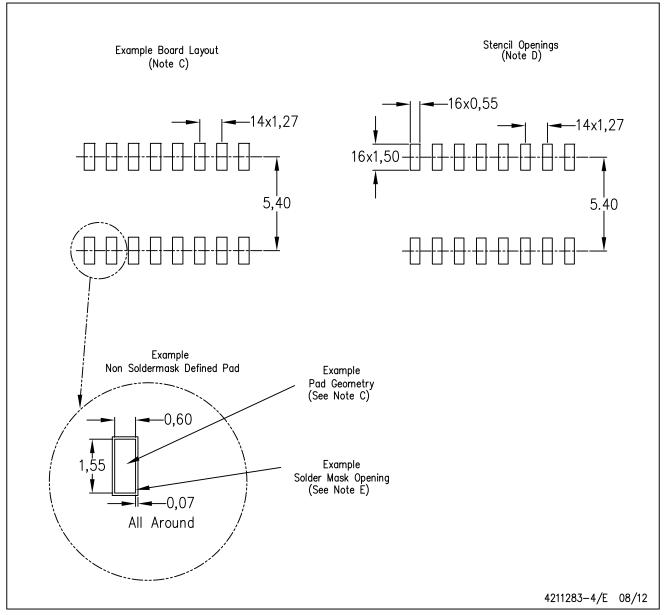


*All dimensions are nominal

7 til diffictiolofio die floriffiai								
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
CLV4051ATDWRG4Q1	SOIC	DW	16	2000	350.0	350.0	43.0	
CLV4051ATPWRG4Q1	TSSOP	PW	16	2000	367.0	367.0	35.0	
SN74LV4051AQPWRQ1	TSSOP	PW	16	2000	367.0	367.0	35.0	
SN74LV4051ATDWRQ1	SOIC	DW	16	2000	350.0	350.0	43.0	
SN74LV4051ATPWRQ1	TSSOP	PW	16	2000	367.0	367.0	35.0	

D (R-PDS0-G16)

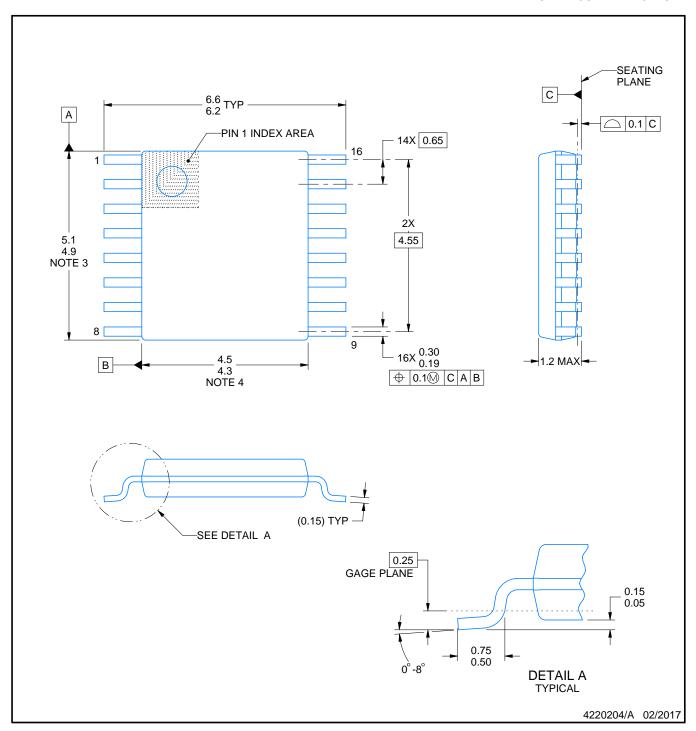
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

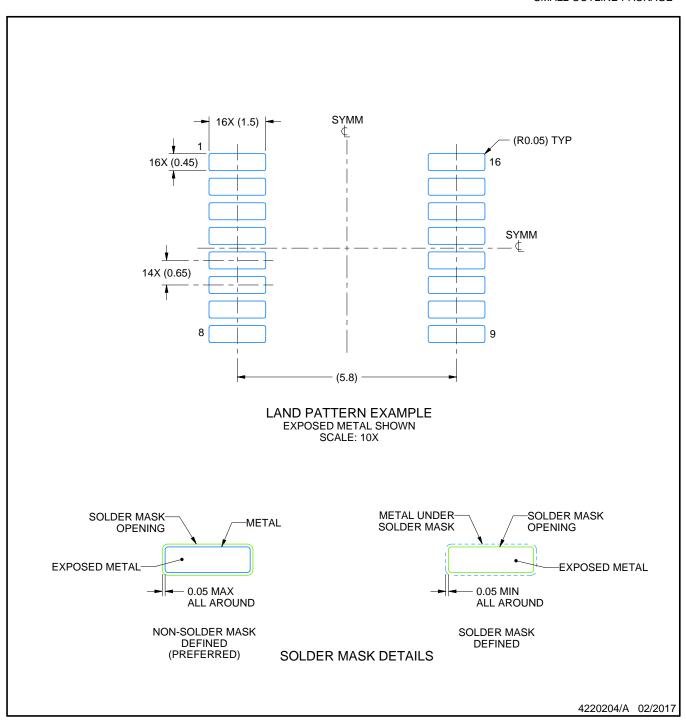
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

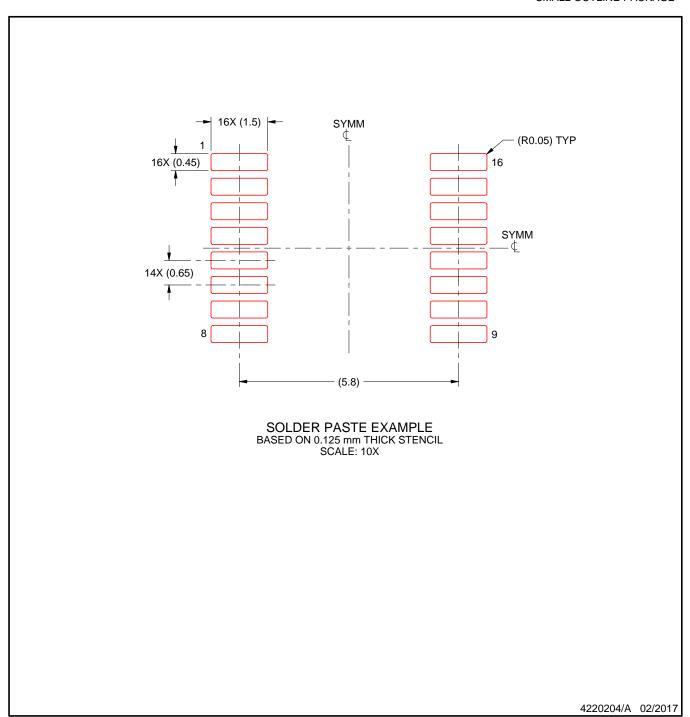
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

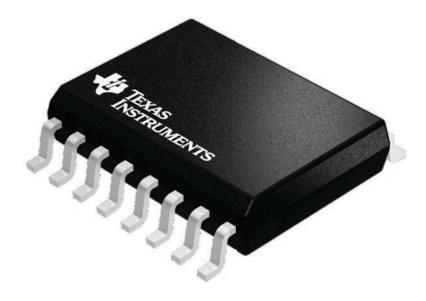

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

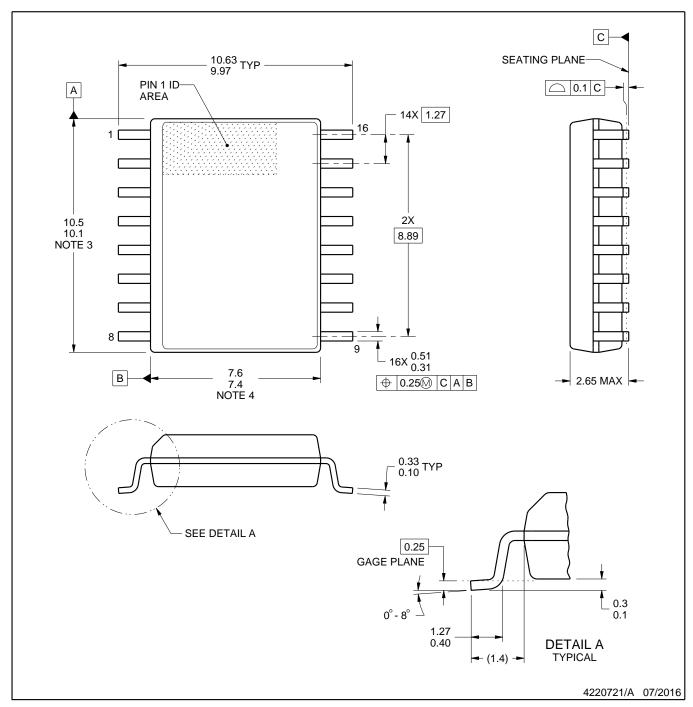
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

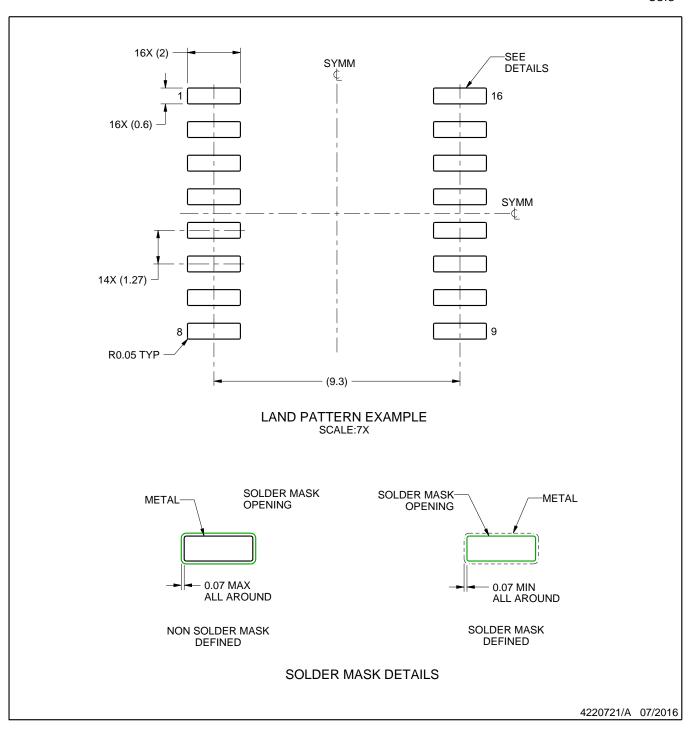

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

7.5 x 10.3, 1.27 mm pitch


SMALL OUTLINE INTEGRATED CIRCUIT

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

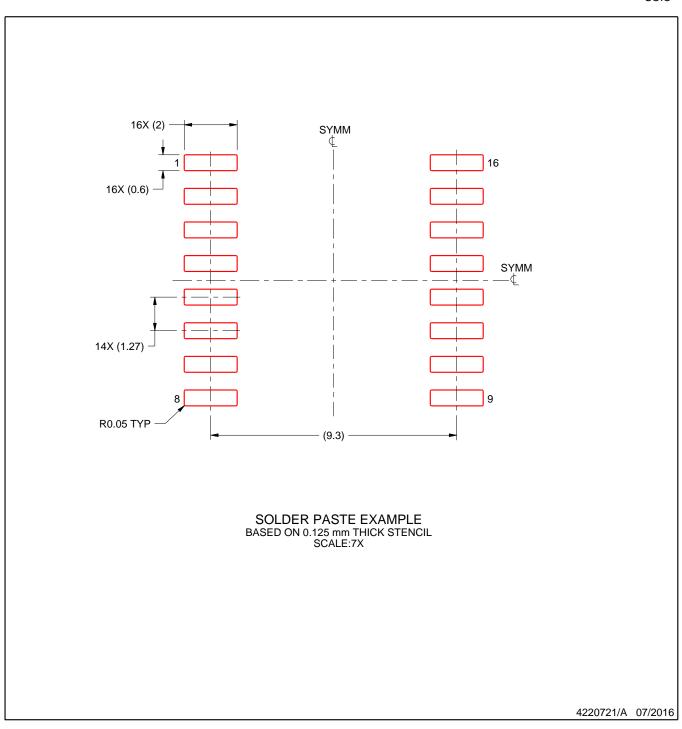
SOIC


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated