

Silicon Errata and Data Sheet Clarification

SAM L10/L11 Family

The SAM L10/L11 family of devices that you have received conform functionally to the current Device Data Sheet (DS60001513D), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in the following tables. The silicon issues are summarized in the Silicon Issue Summary.

The errata described in this document will be addressed in future revisions of the SAM L10/L11 family silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current.

Data Sheet clarifications and corrections (if applicable) are located in 3. Data Sheet Clarifications, following the discussion of silicon issues.

Table 1. SAM L10 Family Silicon Device Identification

Part Number	Device ID (DID[31:0])	Revision (DID.REVISION[3:0])		
Fait Nulliper		В		
SAML10E16A	0x2084xx00			
SAML10E15A	0x2084xx01			
SAML10E14A	0x2084xx02	0.4		
SAML10D16A	0x2084xx03	0x1		
SAML10D15A	0x2084xx04			
SAML10D14A	0x2084xx05			

Table 2. SAM L11 Family Silicon Device Identification

Part Number		Revision (DID.REVISION[3:0])
	Device ID (DID[31:0])	В
SAML11E16A	0x2083xx00	
SAML11E15A	0x2083xx01	
SAML11E14A	0x2083xx02	0x1
SAML11D16A	0x2083xx03	UX I
SAML11D15A	0x2083xx04	
SAML11D14A	0x2083xx05	

Note: Refer to the "Device Service Unit" chapter in the current Device Data Sheet (DS60001513D) for detailed information on Device Identification and Revision IDs for your specific device.

Table of Contents

SA	L10/L11 Family	. 1
1.	ilicon Issue Summary	3
2.	AM L10/L11 Errata Issues	
	 Configurable Custom Logic (CCL) DEVICE Direct Memory Access Controller (DMAC)	7 7
	 Exertial metropic controller (200) Frequency Meter (FREQM) Main Clock (MCLK) Operational Amplifier Controller (OPAMP) 	8 9
	 9. RTC 10. Serial Communication Interface Inter-Integrated Circuit (SERCOM I²C) 11. Serial Communication Serial Peripheral Interface (SERCOM SPI) 	. 10 . 13 . 16
	 Serial Communication Interface USART (SERCOM USART)	. 18 . 19 . 19
3.	 OSC32KCTRL Boot ROM ata Sheet Clarifications 	.20
-	evision History	
The	Microchip Web Site	27
	omer Change Notification Service	
	omer Support	
	ochip Devices Code Protection Feature	
	emarks	
Qu	ty Management System Certified by DNV	29
Wc	dwide Sales and Service	30

1. Silicon Issue Summary

Table 1-1. Silicon Issue Summary

Module	Feature	Errata Number	Summary		Affected Silicon Revisions
					В
ADC	Reference Buffer Offset	2.1.1	First ADC conversions are incorrect when using Reference	SAM L10	Х
-	Compensation		Buffer Offset Compensation.	SAM L11	Х
CCL	PAC protection	2.2.1	Writing the Software Reset bit in the Control A register will	SAM L10	Х
	·		trigger a PAC protection error.	SAM L11	Х
CCL	Enable-protected	2.2.2	The SEQCTRL0 and LUCTRL0/1 registers are enable-	SAM L10	Х
	Registers		protected by the CTRL.ENABLE bit.	SAM L11	Х
CCL	Sequential logic	2.2.3	LUT Output is corrupted after enabling CCL when	SAM L10	Х
			sequential logic is used.	SAM L11	Х
Device	Temperature sensor	2.3.1	Temperature sensor is not functional.	SAM L10	Х
	•			SAM L11	Х
DMAC	Linked descriptors	2.4.1	When using concurrent channel triggers, DMA write-back	SAM L10	Х
			descriptors may get corrupted.	SAM L11	Х
EIC	PAC protection	2.5.1	EIC reads/writes on the reserved area between the CONFIG and the DEBOUNCEN registers do not generate	SAM L10	Х
LIC	FAC protection	2.0.1	a PAC protection error.	SAM L11	х
FREQM	DAC protection	2.6.1	FREQM reads on the Control B register generate a PAC	SAM L10	Х
FREQIM	PAC protection	2.0.1	protection error.	SAM L11	Х
		0.7.4	Writes to the MCLK Control A register do not generate a	SAM L10	Х
MCLK	PAC protection	2.7.1	PAC protection error even if this register has been write- protected using the PAC.	SAM L11	х
			Hardfault exception after having selected DFLLULP clock	SAM L10	Х
MCLK	DFLLULP clock	2.7.2	as main clock.	SAM L11	Х
	5.4		The internal reference REFBUF is not generated when the	SAM L10	Х
OPAMP	Reference buffer	2.8.1	voltage doubler is disabled.	SAM L11	Х
	High Gain			SAM L10	Х
OPAMP	Instrumentation Amplifier	2.8.2	High Gain Instrumentation Amplifier is not functional.	SAM L11	Х
				SAM L10	Х
RTC	Tamper detection	2.9.1	Tamper detection limitation when CTRLB.SEPTO = 0.	SAM L11	Х
			Periodic Daily Event (PERD) Event Generator never occurs	SAM L10	Х
RTC	Event generation	2.9.2	in Clock/Calendar mode.	SAM L11	Х
				SAM L10	х
RTC	Write corruption	2.9.3	RTC COUNT and CLOCK registers write corruption.	SAM L11	Х
	Tamper Detection		If an external reset occurs during a tamper detection, the	SAM L10	х
RTC	Timestamp	2.9.4	TIMESTAMP register will not be updated when next tamper detection is triggered.	SAM L11	Х
			When the tamper or debouncing features (TAMPCTRL) are	SAM L10	х
RTC			enabled, periodic interrupts and events are generated when the prescaler is OFF (CTRLA.PRESCALER=0).	SAM L11	Х

Silicon Issue Summary

continued					
Module	Feature	Errata Number	Summary	Device	Affected Silicon Revisions B
RTC	Active Layer Protection	2.9.6	Active Layer Protection feature is limited to one tamper	SAM L10	х
RIC	Active Layer Protection	2.9.0	channel n (i.e. one RTC INn/OUTn pair).	SAM L11	Х
RTC	Tamper Detection	2.9.7	The INTFLAG.TAMPER bit is not reset by reading the	SAM L10	Х
	Timestamp	2.0.7	TIMESTAMP register.	SAM L11	Х
RTC	Tamper Detection	2.9.8	A wrong timestamp value can be returned if more than one CPU and DMA accesses to the TIMESTAMP register are	SAM L10	Х
- KIC	Timestamp	2.9.0	performed upon a INTFLAG.TAMPER assertion.	SAM L11	Х
			When configured in HS or Fast-Mode Plus, SDA and SCL	SAM L10	Х
SERCOM I ² C	High-speed mode	2.10.1	fall times are shorter than I ² C specification requirement and can lead to reflection.	SAM L11	х
SERCOM I ² C	5	0.40.0	Bus error is generated during a Repeated Start (when	SAM L10	Х
SERCOM I ² C	Repeated start	2.10.2	QCEN = 1 and SCLSM = 1).	SAM L11	Х
SERCOM I ² C	Repeated Start / Master	2.10.3	Repeated Start in 10-bit addressing mode for Master Write	SAM L10	Х
SERCOWIFC	mode 10-bit	2.10.3	operations does not work.	SAM L11	Х
SERCOM I ² C	Repeated Start / Master	2.10.4	Repeated Start is not supported for High-Speed mode	SAM L10	Х
SERCOMPC	mode 10-bit	2.10.4	Master Read operations.	SAM L11	Х
SERCOM I ² C	Repeated Start / High-	tart / High- 2.10.5 Repeated Start is not supported for High-Speed mode	SAM L10	Х	
SERCOMP C	Speed mode	2.10.0	Master Write operations.	SAM L11	Х
SERCOM I ² C	Slave Mode with DMA	e Mode with DMA 2.10.6 Character lost in I ² C Slave mode with D	Character lost in I ² C Slave mode with DMA when a NACK	SAM L10	Х
		2.10.0	occurs.	SAM L11	Х
SERCOM I ² C	Slave mode 10-bit	2.10.7	I ² C Slave 10-bit addressing mode is not functional.	SAM L10	Х
		2.10.7		SAM L11	Х
SERCOM I ² C	Status Flag	2.10.8	BUSERR, COLL, LOWTOUT, SEXTTOUT and LENERR	SAM L10	Х
			Status register bits are not automatically cleared.	SAM L11	Х
SERCOM I ² C	Status Flag	2.10.9	The CLKHOLD Status bit is not read only.	SAM L10	Х
				SAM L11	Х
SERCOM SPI	Data Preload	2.11.1	Data lost in SPI Slave mode with Data Preload Enabled.	SAM L10	Х
				SAM L11	Х
SERCOM USART	Inverted Bits	2.12.1	The TXINV and RXINV bits in the CTRLA register have	SAM L10	Х
			inverted functionality.	SAM L11	Х
SERCOM USART	ISO7816 Mode	2.12.2	In ISO7816 mode, the SERCOM bus clock continues to run in Stand-by Sleep mode causing an extra power	SAM L10	Х
		2.12.2	consumption.	SAM L11	Х
SERCOM USART	MUSADT Debug Mede 2.12.2		Debug mode is not functional.	SAM L10	Х
	Debug Mode	2.12.3		SAM L11	Х
SERCOM USART	Collision Detection	2.12.4	Collision Detection does not stop Data Transfer.	SAM L10	Х
			SAM L11	Х	
SERCOM USART	Wakeup	p 2.14.5	The USART does not wake up the device on Error	SAM L10	Х
	Hanoup	2.14.0	(INTFLAG.ERROR=1) interrupt.	SAM L11	Х

Silicon Issue Summary

continued					
Module	Feature	Errata Number	Summary	Device	Affected Silicon Revisions
					В
			The SYNCBUSY.PER/SYNCBUSY.CCx flags are released	SAM L10	Х
TC	Flags Synchronization	2.13.1	before the PERBUF/CCBUFx registers are restored to their expected value.	SAM L11	х
тс	Capture mode / Over	2.13.2	Over consumption in Capture mode when entering Standby	SAM L10	Х
10	consumption	2.13.2	mode.	SAM L11	Х
TRNG	Over consumption	2.14.1	When TRNG is disabled, some internal logic could continue	SAM L10	Х
TRING	Over consumption	2.14.1	to operate causing an over consumption.	SAM L11	Х
SUPC	Buck Converter Mode	2.15.1	Digital Phase-Locked Loop FDPLL96M cannot be used	SAM L10	Х
SUPC	Buck Converter Mode	2.15.1	with main voltage regulator in Buck Converter mode.	SAM L11	Х
O O O O O O O O O O O O O O O O O O O	External 32.768KHz	0.40.4	External 32.768KHz crystal oscillator operation is not	SAM L10	Х
OSC32KCTRL	C32KCTRL Crystal Oscillator 2.16.1 supported over		supported over the full temperature range of -40°C to +125°C.	SAM L11	х
Boot ROM	GCM API	2.17.1	GCM API does not follow the Procedure Call Standard for	SAM L10	
BOOLKOW	GOW AFT	2.17.1	the ARM Architecture (AAPCS)	SAM L11	Х

2. SAM L10/L11 Errata Issues

The following issues apply to the SAM L10/L11 Family devices.

2.1 ADC

2.1.1 Reference Buffer Offset Compensation Reference:CHIP003-247

TUE of the ADC conversion result is out of specification when,

- Using the reference source as REFCTRL.REFSEL ≠ VDDANA and
- Reference Buffer Offset Compensation is enabled (REFCTRL.REFCOMP = 1)

Workaround

The first five conversions after enabling ADC must be ignored. All further ADC conversions are within the specification.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.2 Configurable Custom Logic (CCL)

2.2.1 PAC Protection Reference: CLA100-6

Writing the Software Reset bit in the Control A register (CTRLA.SWRST) will trigger a PAC protection error.

Workaround

Clear the CCL PAC error each time a CCL software reset is executed.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.2.2 Enable Protected Registers Reference: CLA100-33

The SEQCTRL0 and LUCTRL0/1 registers are enable-protected by the CTRL.ENABLE bit whereas they should be enable-protected by the LUTCTRL0/1.ENABLE bits.

Workaround

None.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.2.3 Sequential Logic Reference: CLA100-32

LUT Output is corrupted after enabling CCL when sequential logic is used.

Workaround

Write the CTRL register twice when enabling the CCL.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.3 DEVICE

2.3.1 Temperature Sensor Reference: CHIP003-299

Temperature Sensor is not functional.

Workaround

None.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.4 Direct Memory Access Controller (DMAC)

2.4.1 Linked Descriptors Reference: DMA100-17

When using concurrent channels triggers, DMAC write-back descriptors may get corrupted.

Workaround

Multiple transfers must only be sequenced using linked descriptors on a single channel.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.5 External Interrupt Controller (EIC)

2.5.1 PAC Protection Reference: INT103-3

EIC reads/writes on the reserved area between the CONFIG and the DEBOUNCEN registers do not generate a PAC protection error.

Workaround

None.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.6 Frequency Meter (FREQM)

2.6.1 PAC Protection Reference: CLK101-9

FREQM reads on the Control B register (FREQM.CTRLB) generate a PAC protection error.

Workaround

None.

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.7 Main Clock (MCLK)

2.7.1 PAC Protection Reference: CLK107-7

Writes to the MCLK Control A register (MCLK.CTRLA) do not generate a PAC protection error even if this register has been write-protected using the PAC.

Workaround

None.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.7.2 DFLLULP Clock Reference: CLK107-8

A Hard fault exception can occur after selecting the DFLLULP clock as main clock source (CTRLA.CKSEL = 1).

Workaround

Add 6 NOP instructions after writing the CTRAL.CKSEL bit.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.8 Operational Amplifier Controller (OPAMP)

2.8.1 Reference Buffer Reference: OPAMP100-4

The internal reference REFBUF is not generated when the voltage doubler is disabled (CTRLA.LPMUX = 1).

Workaround

Enable the voltage doubler (CTRLA.LPMUX = 0) when the internal REFBUF is used.

Device Family	В			
SAM L10	Х			

SAM L10/L11 Errata Issues

contir	continued									
Device Family	В									
SAM L11	Х									

2.8.2 High Gain Instrumentation Amplifier Reference: OPAMP100-7 High Gain Instrumentation Amplifier is not functional.

Workaround

None.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.9 RTC

2.9.1 Tamper Detection Reference: TMR102-44

When the RTC Separate Tamper Outputs (SEPTO) bit of the CTRLB register is cleared (CTRLB.SEPTO=0) and the Active layer protection 0 (ALSI0) bit of the TAMPCTRLB register is set (TAMCTRLB.ALSI0=1), the RTC pseudo random pattern is only generated on the TrustRAM Active layer.

Workaround

Set the CTRLB.SEPTO bit to '1' if Tamper Detection is required on the RTC Tamper pins.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.9.2 Event Generation Reference: TMR102-45

In RTC Clock mode or Calendar mode (CTRLA.MODE = 2), the Periodic Daily Event (PERD) is not generated.

Workaround

None.

SAM L10/L11 Errata Issues

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.9.3 Write Corruption Reference: TMR102-46

A 8-bit or 16-bit write access for a 32-bit register, or 8-bit write access for a 16-bit register can fail for the following registers:

- COUNT register in COUNT32 mode
- COUNT register in COUNT16 mode
- CLOCK register in CLOCK mode

Workaround

Write the registers with:

- A 32-bit write access for:
 - COUNT register in COUNT32 mode
 - CLOCK register in CLOCK mode
- A 16-bit write access for:
 - COUNT register in COUNT16 mode

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.9.4 Tamper Detection Timestamp Reference: TMR102-48

If an external reset occurs during a tamper detection, the TIMESTAMP register will not be updated when next tamper detection is triggered.

Workaround

Enable RTC tamper interrupt and copy the timestamp from the RTC CLOCK register to one of the following locations:

- SRAM
- GPx register in RTC

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			

© 2019 Microchip Technology Inc.

SAM L10/L11 Errata Issues

contir	continued										
Device Family	В										
SAM L11	X										

2.9.5 Prescaler Reference: TMR102-52

When the tamper or debouncing features (TAMPCTRL) are enabled, periodic interrupts and events are generated when the prescaler is OFF (CTRLA.PRESCALER=0).

Workaround

When the prescaler is OFF (CTRLA.PRESCALER=0), clear the Periodic Interval n Event Output Enable bits (EVCTRL.PEREOn [n = 7...0]) and the respective Periodic Interval n Interrupt Enable (INTENCLR.PERn [n = 7...0]) bits.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.9.6 Active Layer Protection Reference: TMR102-66

Active Layer Protection feature is limited to one tamper channel n (i.e. one RTC INn/OUTn pair). Any other tamper channels can be used either in Wake mode or Capture mode.

Workaround

None.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.9.7 Tamper Detection Timestamp Reference: TMR102-67

The INTFLAG.TAMPER bit is not reset by reading the TIMESTAMP register.

Workaround

Clear the INTFLAG.TAMPER bit by writing a '1' to this bit when the Timestamp value has been read from the TIMESTAMP register.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.9.8 Tamper Detection Timestamp Reference: TMR102-60

A wrong timestamp value can be returned if more than one CPU and DMA accesses to the TIMESTAMP register are performed upon a INTFLAG.TAMPER assertion.

Workaround

The timestamp value captured in the TIMESTAMP register must be retrieved as described below:

- If RTC can trigger a DMA request when the timestamp value is available (CTRLB.DMAEN=1):
 - Wait for DMA transfer completion to read the timestamp value from the DMA buffers
 - Clear the INTFLAG.TAMPER bit.

Note: Do not read the timestamp value from the TIMESTAMP register.

- If RTC cannot trigger a DMA request when the timestamp value is available (CTRLB.DMAEN=0):
 - Wait for the INTFLAG.TAMPER bit to read the timestamp value from the TIMESTAMP register
 - Clear the INTFLAG.TAMPER bit

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.10 Serial Communication Interface Inter-Integrated Circuit (SERCOM I²C)

2.10.1 High-Speed Mode Reference: CHIP003-145

When configured in HS or Fast-Mode Plus, SDA and SCL fall times are shorter than I²C specification requirement and can lead to reflection.

Workaround

When reflection is observed, a 100 ohm serial resistor can be added on the impacted line.

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.10.2 Repeated Start Reference: COM100-84

When Quick command is enabled (CTRLB.QCEN = 1), the software can issue a Repeated Start by either writing the CTRLB.CMD or ADDR.ADDR bit fields. If in these conditions, SCL Stretch Mode is CTRLA.SCLSM = 1, a bus error will be generated.

Workaround

Use Quick Command mode (CTRLB.QCEN = 1) only if SCL Stretch mode is CTRLA.SCLSM = 0.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.10.3 Repeated Start Reference: COM100-128

For Master Write operations (excluding High-Speed mode), in 10-bit addressing mode, writing CTRLB.CMD = 0x1 does not issue correctly a Repeated Start command.

Workaround

Write the same 10-bit address with the same direction bit to the ADDR.ADDR register to generate properly a Repeated Start.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.10.4 Repeated Start Reference: COM100-123

For High-Speed Master Read operations, sending a NACK (CTRLB.CMD = 0x2) forces a STOP to be issued making repeated start not possible in that mode.

Workaround

None.

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.10.5 Repeated Start Reference: COM100-122

For High-Speed Master Write operations, writing CTRLB.CMD = 0x1 issues a STOP command instead of a Repeated Start making repeated start not possible in that mode.

Workaround

None.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.10.6 Slave Mode with DMA Reference: COM100-94

In I²C Slave Transmitter mode, at the reception of a NACK, if there is still data to be sent in the DMA buffer, the DMA will push a data to the DATA register. Since a NACK was received, the transfer on the I²C bus will not occur causing the loss of this data.

Workaround

Configure the DMA transfer size to the number of data to be received by the I²C master. DMA cannot be used if the number of data to be received by the master is not known.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.10.7 Slave Mode 10-bit Reference: COM100-101

I²C slave 10-bit addressing mode is not functional.

Workaround

None.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.10.8 Status Flags Reference: COM100-102

In Slave mode, the BUSERR, COLL, LOWTOUT, SEXTTOUT and LENERR STATUS register bits are not automatically cleared when INTFLAG.AMATCH is cleared.

Workaround

Clear the STATUS register bits, BUSERR, COLL, LOWTOUT, SEXTTOUT and LENERR, by writing these STATUS bits to '1' when INTFLAG.AMATCH is cleared.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.10.9 Status Flags Reference: COM100-114

The STATUS.CLKHOLD bit in master and slave modes can be written whereas it is a read-only status bit.

Workaround

Do not clear STATUS.CLKHOLD bit to preserve the current clock hold state.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.11 Serial Communication Serial Peripheral Interface (SERCOM SPI)

2.11.1 Data Preload Reference: COM100-83

In SPI Slave mode with Slave Data Preload Enabled (CTRLB.PLOADEN = 1), the first data sent from the slave will be a dummy byte if the master cannot keep the Slave Select pin low until the end of transmission.

Workaround

In SPI Slave mode, the Slave Select (SS) pin must be kept low by the master until the end of the transmission if the Slave Data Preload feature is used (CTRLB.PLOADEN = 1).

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.12 Serial Communication Interface USART (SERCOM USART)

2.12.1 Inverted Bits Reference: COM100-61

The TXINV and RXINV bits in the CTRLA register have inverted functionality.

Workaround

In software, interpret the TXINV bit as a functionality of RXINV, and conversely, interpret the RXINV bit as a functionality of TXINV.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.12.2 ISO7816 Mode Reference: COM100-55

When the SERCOM USART is in ISO7816 mode, the SERCOM bus clock continues to run in Standby Sleep mode causing extra power consumption.

Workaround

Disable the USART before entering Standby Sleep mode.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.12.3 Debug Mode Reference: COM100-80

In USART operating mode, if DBGCTRL.DBGSTOP = 1, data transmission is not halted when entering Debug mode.

Workaround

None.

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.12.4 Collision Detection Reference: COM100-75

In USART operating mode with Collision Detection enabled (CTRLB.COLDEN = 1), the SERCOM will not abort the current transfer as expected if a collision is detected and if the SERCOM APB clock is lower than the SERCOM generic clock.

Workaround

The SERCOM APB clock must always be higher than the SERCOM generic clock to support collision detection.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.12.5 Wakeup Reference: COM100-41

The USART does not wake up the device on Error Interrupt (INTFLAG.ERROR=1).

Workaround

Configure the USART to wake up the device on the RX Complete Interrupt (INTENSET.RXC=1) to check the PERR/FERR status (STATUS.PERR=1 or STATUS.FERR=1).

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.13 Timer Counter (TC)

2.13.1 Flags Synchronization Reference: TMR100-12

When clearing the STATUS.PERBUFV/STATUS.CCBUFVx flags, the SYNCBUSY.PER/SYNCBUSY.CCx flags are released before the PERBUF/CCBUFx registers are restored to their expected value.

Workaround

Successively, clear the STATUS.PERBUFV/STATUS.CCBUFVx flags twice to ensure that the PERBUF/ CCBUFx registers value is properly restored before updating it.

Device Family	В			
SAM L10	Х			

SAM L10/L11 Errata Issues

continued									
Device Family	В								
SAM L11	Х								

2.13.2 Capture Mode / Over consumption Reference: TMR100-8

If the Time Counter x (TCx) is in Capture mode (TC.CTRLA.CAPTENx=1) and TC.CTRLA.RUNSTBY=0, the clock source driving GCLK_TCx can be kept running in Standby mode causing extra power consumption.

Workaround

Disable the Time Counter x (TCx) (TC.CTRLA.ENABLE=0) which has a channel configured in Capture mode before going to Standby mode.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.14 True Random Number Generator (TRNG)

2.14.1 Over consumption Reference: MATH100-7

When TRNG is disabled, some internal logic could continue to operate causing an over consumption.

Workaround

Disable the TRNG module twice:

- TRNG > CTRLA.reg = 0;
- TRNG > CTRLA.reg = 0;

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.15 Supply Controller (SUPC)

2.15.1 Buck Converter Mode Reference: CHIP003-311

Buck Converter mode is not supported when using FDPLL96M. As a result, the data provided in Tables 46-8 and 47-2 "Active Current Consumption for Buck converter mode with FDPLL96M at Performance Level 2 (PL2) setting" is not valid and must be disregarded.

Workaround

Use the LDO Regulator mode when using FDPLL96M.

Affected Silicon Revisions

Device Family	В			
SAM L10	Х			
SAM L11	Х			

2.16 OSC32KCTRL

2.16.1 External 32.768KHz Crystal Oscillator Reference: UANA163-1

External 32.768 KHz crystal oscillator operation is not supported over the full temperature range of -40°C to +125°C.

Workaround

Limit external 32.768 KHz crystal oscillator operation temperature range from 0°C to 125°C with a crystal ESR <70k Ω .

Affected Silicon Revisions

Device Family	В				
SAM L10	Х				
SAM L11	Х				

2.17 Boot ROM

2.17.1 GCM API Reference: BROM100-18

The GCM API function crya_gf_mult128_t does not save and restore the core register r8 on return, thereby violating the Procedure Call Standard for the ARM[®] Architecture (AAPCS).

Workaround

The ARM core register r8 must be saved before calling the crya_gf_mult128_t function and must be restored when returning from it.

Device Family	В			
SAM L10				
SAM L11	Х			

3. Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS60001513D):

Note: Corrections in tables, registers, and texts are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

• Table 46-8 Active Current Consumption was updated:

Table 3-1. Active Current Consumption

Mode	Conditions	Regulator	PL	CPU Clock	Vcc	Та	Тур.	Max.	Units									
					1.8V		64.1	82										
				DFLLULP at 8MHz	12 3.3V 1.8V		64.4	84										
			DI O		1.8V		66.6 70.3 74.1	81										
	PL0 OSC 8MHz	OSC 8MHZ	3.3V		70.3	83												
		100		000 4445	1.8V		74.1	102										
		LDO		OSC 4MHz	3.3V		77.8	106										
					1.8V		82.0											
			PL2	FDPLL96M at 32MHz	3.3V	Max at 95°C Tup at 25°	82.5	89										
			PLZ	DFLLULP at 32MHz	1.8V	Max at 85°C Typ at 25°	75.8	99										
	COREMARK/ FIBONACCI			DFLLOLF at SZIMHZ	3.3V		75.8	96										
	COREMARN FIBONACCI			DFLLULP at 4.88MHz	1.8V		44	60										
					3.3V		29.9	41										
			PL0	OSC 8MHz	1.8V		43.8	53										
			FLU		3.3V		32.1	39	39 68 μΑ/Mhz									
ACTIVE		BUCK	BUCK	BUCK		OSC 4MHz	1.8V		50.3	68	µA/Mhz							
Nonie -		DOOR			3.3V		38.9	µA/Mhz										
				FDPLL96M at 32MHz	1.8V	-	59.9	66										
			PL2		3.3V	-	35.3	39										
									T LZ				DFLLULP at 26.78MHz	1.8V		55.8	70	
					3.3V	-	33.7	42										
				DFLLULP at 8MHz	1.8V	-	44.3	61										
					3.3V	-	44.4	62										
			PL0	OSC 8MHz	1.8V	Max at 85°C Typ at 25°	47.6	60										
			. 20		3.3V		50.1	63										
	WHILE1	LDO		OSC 4MHz	1.8V	-	54.6	83										
					3.3V		57.7	86										
				FDPLL96M at 32MHz	1.8V	-	56.9	61										
			PL2		3.3V		57.2	62										
				DFLLULP at 32MHz	1.8V		50.8	66										
					3.3V		51.0	64										

Data Sheet Clarifications

cont	tinued										
Mode	Conditions	Regulator	PL	CPU Clock	Vcc	Та	Тур.	Max.	Units		
				DFLLULP at 4.88MHz	.88MHz		32.4	49			
					3.3V		22.8	34			
			PL0	OSC 8MHz	1.8V		32.2	41			
			FLU		3.3V		25.3	32			
ACTIVE	WHILE1	BUCK		OSC 4MHz	1.8V		38.4	57			
ACTIVE		BOCK		030 40012	3.3V		31.9	45			
					1.8V		41.5	46			
			PL2	FDPLL96M at 32MHz	3.3V		24.6	28			
			FLZ		1.8V		38.3	48			
				DFLLULP at 26.78MHz	3.3V		23.1	29			
					1.8V		16.0	32			
		DFLLULP at 8MHz 1.81 3.3V 3.3V PL0 OSC 8MHz 1.8V 3.3V 3.3V LD0 OSC 4MHz 1.8V 3.3V 3.3V 3.3V 3.3V 3.3V 3.3V	3.3V		16.2	33					
			PL0	DIO	DIO		1.8V		19.8	33	
					3.3V		22.0	36			
			Mox at 95°C Tup at 25°	26.2	55	µA/Mhz					
				030 40012	3.3V	Max at 65 C Typ at 25	29.2	59	Provininz		
					1.8V			20.3	25		
			PL2	FDPLL96M at 32MHz	3.3V		20.4	26			
					FLZ	DFLLULP at 32MHz	1.8V		14.3	19	
IDLE							DFLEULF at 52MHZ	3.3V		14.4	19
IDLE	-			DFLLULP at 4.88MHz	1.8V		15.1	32			
				DFLLULF at 4.00MINZ	3.3V		12.3	24			
			PL0		1.8V		15.5	24			
			FLU	OSC 8MHz	3.3V		15.2	21			
		BUCK		080 404	1.8V		21.3	39			
		BUCK		OSC 4MHz	3.3V		21.6	35			
				EDDI LOGM at 22MU	1.8V		14.9	19			
			PL2	FDPLL96M at 32MHz	3.3V		9.1	12			
			FLZ		1.8V		11.2	16			
				DFLLULP at 26.7MHz	3.3V		7.2	10			

• Table 46-54 is a new table which was added to the SAM L10/L11 Data Sheet.

Table 3-2. Digital Frequency Locked Loop Characteristics (Buck Converter mode only)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
FIN	Input Clock Frequency		32		33	KHz
FOUT	Output Clock Frequency	PL0	-	-	4.88	MHz
1001	Output Clock Frequency	PL2	-	-	26.78	

Data Sheet Clarifications

conti	inued					
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Output Clock Frequency	PL0, FIN = 32KHz, FOUT = 4.88MHz	-16.3		38.9	
FOUT drift	drift ⁽²⁾	PL2, FIN = 32KHz, FOUT = 26.78MHz	-8.7		16.3	%
	Period Jitter ⁽²⁾	PL0, FIN = 32KHz, FOUT = 4.88MHz	-7.8	-	8.1	
Jp	(cycle to cycle jitter)	PL2, FIN = 32KHz, FOUT = 26.78MHz	-5.0	-	4.6	%
		After startup, time to get lock signal FIN = 32KHz, FOUT = 4.88MHz, PL0 Binary Search mode enabled	-	362	-	μs
tLOCK	Lock Time	After startup, time to get lock signal FIN = 32KHz, FOUT = 26.78MHz, PL2 Binary Search mode enabled	-	362	-	μs
Duty	Duty Cycle ⁽¹⁾		40	50	60	%

Note:

- 1. These characteristics are only applicable in Buck Converter mode.
- Table 47-2 was updated to reflect a new data:

Data Sheet Clarifications

Mode	Conditions	Regulator	PL	CPU Clock	Vcc	Та	Тур.	Max.	Units			
					1.8V		64.1	129				
				DFLLUP at 8 MHz	3.3V		64.4 131 66.6 130 70.3 132					
					1.8V	-	66.6	130				
		PL0 OSC 8 MHz 3.3V		70.3	132							
		LDO			1.8V		74.1	203				
		LDO		OSC 4 MHz	3.3V	-	77.8	206				
				FDPLL96 at 32 MHz	1.8V	-	82.0	98				
			PL2	T DF LL90 at 32 Millz	3.3V		82.5	99				
			FLZ	DFLLULP at 32 MHz	1.8V	-	75.8	109				
	COREMARK / FIBONACCI				3.3V		75.8	107				
	COREMARKY HOONAGO			DFLLUP at 4.88 MHz	1.8V		44	103				
					3.3V		29.9	69				
		BUCK	PL0	OSC 8 MHz	1.8V	_	43.8	84				
			1 20		3.3V		32.1	58	uA/MHz			
ACTIVE	BUCK OSC 4 MHz Max at		BUCK	Max at 125°C Typ at 25°C	50.3	131	uA/MHz					
			3.3V			38.9	92	uA/MHz				
							FDPLL96 at 32 MHz	1.8V	_	59.9	70	
								PL2		3.3V		35.3
					DFLLULP at 26.78 MHz	1.8V		55.8	80			
					3.3V	-	33.7	48				
				DFLLUP at 8 MHz	1.8V		44.3	110				
					3.3V		44.4	111				
			PL0	OSC 8 MHz	1.8V		47.6	111				
					3.3V		50.1	113				
	WHILE1	LDO		OSC 4 MHz	1.8V		54.6	184				
					3.3V		57.7					
				FDPLL96 at 32 MHz	1.8V		56.9	79				
		PL2	3.3V	-	57.2	80						
				DFLLULP at 32 MHz	1.8V		50.8	72				
					3.3V		51.0	72				

Table 3-3. Active Current Consumption

Data Sheet Clarifications

con	tinued		_									
Mode	Conditions	Regulator	PL	CPU Clock	Vcc	Та	Тур.	Max.	Units			
				DFLLUP at 4.88 MHz	1.8V		32.4	90				
					3.3V	-	22.8	62				
			PL0	OSC 8 MHz	1.8V		32.2	73				
			FLU		3.3V		25.3	51				
ACTIVE	WHILE1	BUCK		OSC 4 MHz	1.8V		38.4	121				
ACTIVE		BOOK		000 4 10112	3.3V		31.9	86				
				FDPLL96 at 32 MHz	1.8V		41.5	55				
			PL2		3.3V		24.6	34				
			1 62	DFLLULP at 26.78 MHz	1.8V		38.3	58				
					3.3V		23.1	36				
				DFLLUP at 8 MHz	1.8V		16.0	81				
					3.3V		16.2	82				
		PL0	PL0	PL0	PL0	OSC 8 MHz	1.8V	_	19.8	82		
						3.3V		22.0 85 26.2 152				
		LDO		OSC 4 MHz	1.8V	Max at 125°C Typ at 25°C	26.2	152	uA/MHz			
					3.3V		29.2	157				
				FDPLL96 at 32 MHz	1.8V		20.3	54				
			PL2		3.3V		20.4	54				
							DFLLULP at 32 MHz	1.8V		14.3	32	
IDLE	_				3.3V		14.4	33				
				DFLLUP at 4.88 MHz	1.8V		15.1	68				
					3.3V		12.3	48				
			PL0	OSC 8 MHz	1.8V		15.5	55				
					3.3V		15.2	40				
		BUCK		OSC 4 MHz			21.3	100				
					3.3V		21.6	73				
				FDPLL96 at 32 MHz	1.8V		14.9	30)			
			PL2	3.3V	9.1	19						
			PL0 DFLLUP at 4.88 MHz 1.8V 15.1 PL0 DFLLUP at 4.88 MHz 3.3V 12.3 PL0 OSC 8 MHz 3.3V 15.2 OSC 4 MHz 3.3V 15.2 OSC 4 MHz 3.3V 21.3 PL2 FDPLL96 at 32 MHz 1.8V PL2 FDPLL96 at 32 MHz 1.8V DFLLULP at 26.78 MHz 1.8V	26								
					3.3V		7.2	17				

4. **Revision History**

Revision C - 05/2019

The following new errata were added:

- RTC:
 - 2.9.5 Prescaler Reference: TMR102-52
 - 2.9.6 Active Layer Protection Reference: TMR102-66
 - 2.9.7 Tamper Detection Timestamp Reference: TMR102-67
 - 2.9.8 Tamper Detection Timestamp Reference: TMR102-60
- SERCOM USART:
 - 2.12.5 Wakeup Reference: COM100-41

Revision B - 02/2019

The following new errata were added:

- RTC: 2.9.4 Tamper Detection Timestamp Reference: TMR102-48
- SUPC: 2.15.1 Buck Converter Mode Reference: CHIP003-311
- OSC32KCTRL: 2.16.1 External 32.768KHz Crystal Oscillator Reference: UANA163-1
- Boot ROM: 2.17.1 GCM API Reference: BROM100-18

The following errata is updated:

- ADC: 2.1.1 Reference Buffer Offset Compensation Reference:CHIP003-247
- The following Data Sheet clarifications were added:
 - Updates to Electrical Specifications Tables:
 - Table 46-8
 - Table 46-54
 - Table 47-2

Revision A - 5/2018

This is the initial release of this document.

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch Iogo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-4501-2

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Asia Pacific Office	China - Xiamen	Austria - Wels
2355 West Chandler Blvd.	Suites 3707-14, 37th Floor	Tel: 86-592-2388138	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	Tower 6, The Gateway	Fax: 86-592-2388130	Fax: 43-7242-2244-393
Tel: 480-792-7200	Harbour City, Kowloon	China - Zhuhai	Denmark - Copenhagen
Fax: 480-792-7277	Hong Kong	Tel: 86-756-3210040	Tel: 45-4450-2828
Technical Support:	Tel: 852-2943-5100	Fax: 86-756-3210049	Fax: 45-4485-2829
http://www.microchip.com/	Fax: 852-2401-3431	India - Bangalore	Finland - Espoo
support	Australia - Sydney	Tel: 91-80-3090-4444	Tel: 358-9-4520-820
Web Address:	Tel: 61-2-9868-6733	Fax: 91-80-3090-4123	France - Paris
www.microchip.com	Fax: 61-2-9868-6755	India - New Delhi	Tel: 33-1-69-53-63-20
Atlanta	China - Beijing	Tel: 91-11-4160-8631	Fax: 33-1-69-30-90-79
Duluth, GA	Tel: 86-10-8569-7000	Fax: 91-11-4160-8632	France - Saint Cloud
Tel: 678-957-9614	Fax: 86-10-8528-2104	India - Pune	Tel: 33-1-30-60-70-00
- ax: 678-957-1455	China - Chengdu	Tel: 91-20-3019-1500	Germany - Garching
Austin, TX	Tel: 86-28-8665-5511	Japan - Osaka	Tel: 49-8931-9700
Tel: 512-257-3370	Fax: 86-28-8665-7889	Tel: 81-6-6152-7160	Germany - Haan
Boston	China - Chongging	Fax: 81-6-6152-9310	Tel: 49-2129-3766400
Westborough, MA	Tel: 86-23-8980-9588	Japan - Tokyo	Germany - Heilbronn
Tel: 774-760-0087	Fax: 86-23-8980-9500	Tel: 81-3-6880- 3770	Tel: 49-7131-67-3636
Fax: 774-760-0088	China - Dongguan	Fax: 81-3-6880-3771	Germany - Karlsruhe
Chicago	Tel: 86-769-8702-9880	Korea - Daegu	Tel: 49-721-625370
Itasca, IL	China - Guangzhou	Tel: 82-53-744-4301	Germany - Munich
Tel: 630-285-0071	Tel: 86-20-8755-8029	Fax: 82-53-744-4302	Tel: 49-89-627-144-0
Fax: 630-285-0075	China - Hangzhou	Korea - Seoul	Fax: 49-89-627-144-44
Dallas	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Rosenheim
Addison, TX	Fax: 86-571-8792-8116	Fax: 82-2-558-5932 or	Tel: 49-8031-354-560
Tel: 972-818-7423	China - Hong Kong SAR	82-2-558-5934	Israel - Ra'anana
ax: 972-818-2924	Tel: 852-2943-5100		Tel: 972-9-744-7705
		Malaysia - Kuala Lumpur	
Detroit	Fax: 852-2401-3431	Tel: 60-3-6201-9857	Italy - Milan Tel: 39-0331-742611
Novi, MI	China - Nanjing	Fax: 60-3-6201-9859	
Tel: 248-848-4000	Tel: 86-25-8473-2460	Malaysia - Penang	Fax: 39-0331-466781
Houston, TX	Fax: 86-25-8473-2470	Tel: 60-4-227-8870	Italy - Padova
Tel: 281-894-5983	China - Qingdao	Fax: 60-4-227-4068	Tel: 39-049-7625286
ndianapolis	Tel: 86-532-8502-7355	Philippines - Manila	Netherlands - Drunen
Noblesville, IN	Fax: 86-532-8502-7205	Tel: 63-2-634-9065	Tel: 31-416-690399
Tel: 317-773-8323	China - Shanghai	Fax: 63-2-634-9069	Fax: 31-416-690340
Fax: 317-773-5453	Tel: 86-21-3326-8000	Singapore	Norway - Trondheim
Tel: 317-536-2380	Fax: 86-21-3326-8021	Tel: 65-6334-8870	Tel: 47-7289-7561
Los Angeles	China - Shenyang	Fax: 65-6334-8850	Poland - Warsaw
Mission Viejo, CA	Tel: 86-24-2334-2829	Taiwan - Hsin Chu	Tel: 48-22-3325737
Tel: 949-462-9523	Fax: 86-24-2334-2393	Tel: 886-3-5778-366	Romania - Bucharest
Fax: 949-462-9608	China - Shenzhen	Fax: 886-3-5770-955	Tel: 40-21-407-87-50
Tel: 951-273-7800	Tel: 86-755-8864-2200	Taiwan - Kaohsiung	Spain - Madrid
Raleigh, NC	Fax: 86-755-8203-1760	Tel: 886-7-213-7830	Tel: 34-91-708-08-90
Tel: 919-844-7510	China - Wuhan	Taiwan - Taipei	Fax: 34-91-708-08-91
New York, NY	Tel: 86-27-5980-5300	Tel: 886-2-2508-8600	Sweden - Gothenberg
Tel: 631-435-6000	Fax: 86-27-5980-5118	Fax: 886-2-2508-0102	Tel: 46-31-704-60-40
San Jose, CA	China - Xian	Thailand - Bangkok	Sweden - Stockholm
Tel: 408-735-9110	Tel: 86-29-8833-7252	Tel: 66-2-694-1351	Tel: 46-8-5090-4654
Tel: 408-436-4270	Fax: 86-29-8833-7256	Fax: 66-2-694-1350	UK - Wokingham
Canada - Toronto			Tel: 44-118-921-5800
Tel: 905-695-1980			Fax: 44-118-921-5820

Fax: 905-695-2078