
April 2020 ES022 Rev 10 1/44

1

STM32F105xx STM32F107xx
Errata sheet

STM32F105xx and STM32F107xx revision Z
connectivity line device limitations

Silicon identification

This errata sheet applies to the revision Z of the STMicroelectronics STM32F105xx and
STM32F107xx connectivity line products. This family features an Arm® 32-bit Cortex®-M3
core, for which an errata notice is also available (see Section 1 for details).

The full list of part numbers is shown in Table 2. The products are identifiable as shown in
Table 1:

 by the revision code marked below the sales type on the device package

 by the last three digits of the internal sales type printed on the box label

Table 1. Device Identification(1)

1. The REV_ID bits in the DBGMCU_IDCODE register show the revision code of the device (see the
STM32F10xxx reference manual for details on how to find the revision code).

Sales type Revision code(2) marked on device

2. Refer to Appendix A for details on how to identify the revision code on the different packages.

STM32F105xx “Z”

STM32F107xx “Z”

Table 2. Device summary

Reference Part numbers

STM32F105xx
STM32F105R8, STM32F105V8, STM32F105RB, STM32F105VB
STM32F105RC, STM32F105VC

STM32F107xx STM32F107RB, STM32F107VB, STM32F107RC, STM32F107VC

www.st.com

http://www.st.com

Contents STM32F105xx STM32F107xx

2/44 ES022 Rev 10

Contents

1 Arm® 32-bit Cortex®-M3 limitations . 7

1.1 Cortex-M3 limitation description for the
STM32F105xx / STM32F107xx connectivity line devices 8

1.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register
when interrupted or faulted . 8

1.1.2 Cortex-M3 event register is not set by interrupts and debug 8

1.1.3 Cortex-M3 BKPT in debug monitor mode can cause DFSR mismatch . . 8

1.1.4 Cortex-M3 may freeze for SLEEPONEXIT single instruction ISR 9

1.1.5 Interrupted loads to the SP can cause erroneous behavior 9

1.1.6 SVC and BusFault/MemManage may occur out of order 10

2 STM32F105xx and STM32F107xx silicon limitations 11

2.1 Voltage glitch on ADC input 0 . 14

2.2 Flash memory read after WFI/WFE instruction . 14

2.3 Debugging Stop mode and system tick timer . 14

2.4 Debugging Stop mode with WFE entry . 15

2.5 Wakeup sequence from Standby mode when using
more than one wakeup source . 15

2.6 LSE start-up in harsh environments . 16

2.7 RDP protection . 16

2.8 Alternate functions . 17

2.8.1 SPI1 in slave mode and USART2 in synchronous mode 17

2.8.2 SPI1 in master mode and USART2 in synchronous mode 17

2.8.3 SPI2 in slave mode and USART3 in synchronous mode 17

2.8.4 SPI2 in master mode and USART3 in synchronous mode 18

2.8.5 I2S2 in master/slave mode and Ethernet/USART3
in synchronous mode . 18

2.8.6 USARTx_TX pin usage . 18

2.9 Boundary scan TAP: wrong pattern sent out after
the “capture IR” state . 19

2.10 Flash memory BSY bit delay versus STRT bit setting 19

2.11 I2C peripheral . 20

2.11.1 Some software events must be managed before the current byte is
being transferred . 20

2.11.2 Wrong data read into data register . 21

ES022 Rev 10 3/44

STM32F105xx STM32F107xx Contents

4

2.11.3 SMBus standard not fully supported . 22

2.11.4 Wrong behavior of I2C peripheral in master mode after a
misplaced Stop . 22

2.11.5 Mismatch on the “Setup time for a repeated Start condition”
timing parameter . 23

2.11.6 Data valid time (tVD;DAT) violated without the OVR flag being set 23

2.11.7 I2C analog filter may provide wrong value, locking BUSY flag
and preventing master mode entry . 24

2.12 SPI peripheral . 26

2.12.1 CRC still sensitive to communication clock when SPI is in slave mode
even with NSS high . 26

2.12.2 SPI CRC may be corrupted when a peripheral connected to
the same DMA channel of the SPI is under DMA transaction
close to the end of transfer or end of transfer -1 26

2.13 I2S peripheral . 27

2.13.1 Wrong WS signal generation in 16-bit extended to 32-bit PCM
long synchronization mode . 27

2.13.2 In I2S slave mode, WS level must be set by the external master
when enabling the I2S . 27

2.13.3 I2S slave mode desynchronization with the master during
communication . 27

2.14 USART peripheral . 28

2.14.1 Parity Error flag (PE) is set again after having been cleared
by software . 28

2.14.2 Idle frame is not detected if receiver clock speed is deviated 28

2.14.3 In full duplex mode, the Parity Error (PE) flag can be cleared
by writing the data register . 28

2.14.4 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection . 29

2.14.5 Break frame is transmitted regardless of nCTS input line status 29

2.14.6 nRTS signal abnormally driven low after a protocol violation 29

2.15 Timers . 30

2.15.1 Missing capture flag . 30

2.15.2 Overcapture detected too early . 30

2.15.3 General-purpose timer: regulation for 100% PWM 30

2.16 IWDG peripheral . 31

2.16.1 RVU and PVU flags are not reset in Stop mode 31

2.17 LSI clock stabilization time . 31

2.18 PLL not locking when sourced by HSI/2 after reset if it was
previously sourced by HSE with predivider > 1 or PLL2 31

Contents STM32F105xx STM32F107xx

4/44 ES022 Rev 10

2.19 OTG_FS . 32

2.19.1 Data in RxFIFO are overwritten when all channels are disabled
simultaneously . 32

2.19.2 OTG host blocks the receive channel when receiving IN packets
and no Tx FIFO is configured . 32

2.19.3 Host channel-halted interrupt not generated when the channel is
disabled . 32

2.19.4 Error in software-read OTG_FS_DCFG register values 33

2.19.5 Minimum AHB frequency to guarantee correct operation
of USB OTG FS peripheral . 33

2.20 Ethernet MAC . 34

2.20.1 Possible underflow when TxFIFO is configured in Store-and-Forward
mode and a relatively large frame is aborted in Half-duplex mode 34

2.20.2 Possible CRC error when TxFIFO is configured in Store-and-Forward
mode and a relatively large frame is aborted in Half-duplex mode with
transmit checksum offload enabled . 34

2.20.3 Erroneous automatic checksum insertion after TxFIFO is dynamically
switched from Threshold to Store-and-Forward mode 34

2.20.4 Erroneous automatic checksum insertion after a large frame (longer
than the TxFIFO) transmission . 35

2.20.5 In half-duplex mode, the MAC transmitter ignores collisions after it is
disabled during a frame transmission . 35

2.20.6 Interrupt due to an RMON (MMC) counter may be set again after it is
cleared . 36

2.20.7 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads . 36

2.20.8 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames . 36

2.20.9 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly one clock cycle after a transmission completes 37

2.20.10 Transmit frame data corruption . 37

2.20.11 Ethernet DMA not working after WFI/WFE instruction 37

2.21 Bootloader limitations . 38

Appendix A Revision and date codes on device marking 39

Revision history . 42

ES022 Rev 10 5/44

STM32F105xx STM32F107xx List of tables

5

List of tables

Table 1. Device Identification . 1
Table 2. Device summary . 1
Table 3. Cortex-M3 core limitations and impact on microcontroller behavior 7
Table 4. Summary of silicon limitations in revision Z devices . 11
Table 5. Document revision history . 42

List of figures STM32F105xx STM32F107xx

6/44 ES022 Rev 10

List of figures

Figure 1. LSE start-up using an additional resistor . 16
Figure 2. LFBGA100 top package view . 39
Figure 3. LQFP100 top package view . 40
Figure 4. LQFP64 top package view . 41

ES022 Rev 10 7/44

STM32F105xx STM32F107xx Arm® 32-bit Cortex®-M3 limitations

43

1 Arm® 32-bit Cortex®-M3 limitations

An errata notice for the Arm®(a) STM32F10xxx core is available from
http://infocenter.arm.com.

All the described limitations are minor and related to the revision r1p1-01rel0 of the
Cortex-M3 core. Table 3 summarizes these limitations and their implications on the behavior
of the STM32F105xx / STM32F107xx connectivity line devices.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 3. Cortex-M3 core limitations and impact on microcontroller behavior

Arm ID
Arm

category
Arm

 summary of errata

Impact on
STM32F105xx/STM32F107xx

connectivity line devices

752419 Cat 2
Interrupted loads to the stack pointer (SP)
can cause erroneous behavior

Minor

740455 Cat 2
SVC and BusFault/MemManage may occur
out of order

Minor

602117 Cat 2
LDRD with base in list may result in incorrect
base register when interrupted or faulted

Minor

563915 Cat 2
Event register is not set by interrupts and
debug

Minor

531064 impl SWJ-DP missing POR reset sync No

511864 Cat 3
Cortex-M3 may fetch instructions using
incorrect privilege on return from an
exception

No

532314 Cat 3 DWT CPI counter increments during sleep No

538714 Cat 3 Cortex-M3 TPIU clock domain crossing No

548721 Cat 3
Internal write buffer could be active while
asleep

No

463763 Cat 3
BKPT in debug monitor mode can cause
DFSR mismatch

Minor

463764 Cat 3
Core may freeze for SLEEPONEXIT single
instruction ISR

Minor

463769 Cat 3
Unaligned MPU fault during a write may
cause the wrong data to be written to a
successful first access

No

Arm® 32-bit Cortex®-M3 limitations STM32F105xx STM32F107xx

8/44 ES022 Rev 10

1.1 Cortex-M3 limitation description for the
STM32F105xx / STM32F107xx connectivity line devices

Only the limitations described below have an impact, though minor, on the implementation
of STM32F105xx / STM32F107xx connectivity line devices.

All the other limitations described in the Arm errata notice (and summarized in Table 3
above) have no impact and are not related to the implementation of the
STM32F105xx / STM32F107xx connectivity line devices (Cortex-M3 r1p1-01rel0).

1.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register
when interrupted or faulted

Description

The Cortex-M3 Core has a limitation when executing an LDRD instruction from the system-
bus area, with the base register in a list of the form LDRD Ra, Rb, [Ra, #imm]. The
execution may not complete after loading the first destination register due to an interrupt
before the second loading completes or due to the second loading getting a bus fault.

Workarounds

1. This limitation does not impact the STM32F10xxx code execution when executing from
the embedded Flash memory, which is the standard use of the microcontroller.

2. Use the latest compiler releases. As of today, they no longer generate this particular
sequence. Moreover, a scanning tool is provided to detect this sequence on previous
releases (refer to your preferred compiler provider).

1.1.2 Cortex-M3 event register is not set by interrupts and debug

Description

When interrupts related to a WFE occur before the WFE is executed, the event register
used for WFE wakeup events is not set and the event is missed. Therefore, when the WFE
is executed, the core does not wake up from WFE if no other event or interrupt occur.

Workaround

Use STM32F10xxx external events instead of interrupts to wake up the core from WFE by
configuring an external or internal EXTI line in event mode.

1.1.3 Cortex-M3 BKPT in debug monitor mode can cause DFSR mismatch

Description

A BKPT may be executed in debug monitor mode. This causes the debug monitor handler
to be run. However, the bit 1 in the Debug fault status register (DFSR) at address
0xE000ED30 is not set to indicate that it was originated by a BKPT instruction. This only
occurs if an interrupt other than the debug monitor is already being processed just before
the BKPT is executed.

ES022 Rev 10 9/44

STM32F105xx STM32F107xx Arm® 32-bit Cortex®-M3 limitations

43

Workaround

If the DFSR register does not have any bit set when the debug monitor is entered, this
means that we must be in this “corner case” and so, that a BKPT instruction was executed
in debug monitor mode.

1.1.4 Cortex-M3 may freeze for SLEEPONEXIT single instruction ISR

Description

If the Cortex-M3 SLEEPONEXIT functionality is used and the concerned interrupt service
routine (ISR) contains only a single instruction, the core becomes frozen. This freezing may
occur if only one interrupt is active and it is preempted by an interrupt whose handler only
contains a single instruction.

However, any new interrupt that causes a preemption would cause the core to become
unfrozen and behave correctly again.

Workaround

This scenario does not happen in real application systems since all enabled ISRs should at
least contain one instruction. Therefore, if an empty ISR is used, then insert an NOP or any
other instruction before the exit instruction (BX or BLX).

1.1.5 Interrupted loads to the SP can cause erroneous behavior

Description

If an interrupt occurs during the data-phase of a single word load to the stack pointer
(SP/R13), erroneous behavior can occur. In all cases, returning from the interrupt results in
the load instruction being executed an additional time. For all instructions performing an
update to the base register, the base register is erroneously updated on each execution,
resulting in the stack-pointer being loaded from an incorrect memory location.

The affected instructions are:

1. LDR SP,[Rn],#imm

2. LDR SP,[Rn,#imm]!

3. LDR SP,[Rn,#imm]

4. LDR SP,[Rn]

5. LDR SP,[Rn,Rm]

Workaround

As of today, no compiler generates these particular instructions. This limitation can only
occur with hand-written assembly code.

A workaround for both issues is possible by replacing the direct load to the stack pointer,
with an intermediate load to a general-purpose register followed by a move to the stack
pointer.

Example: the following instruction "LDR SP, [R0]" can be replaced by:

" LDR R2,[R0]

MOV SP,R2 "

Arm® 32-bit Cortex®-M3 limitations STM32F105xx STM32F107xx

10/44 ES022 Rev 10

1.1.6 SVC and BusFault/MemManage may occur out of order

Description

If an SVC exception is generated by executing the SVC instruction while the following
instruction fetch is faulted, then the MemManage or BusFault handler may be entered even
though the faulted instruction which followed the SVC should not have been executed.

Workaround

A work around is only required if the SVC handler does not return to the return address that
has been stacked for the SVC exception and the instruction access after the SVC faults. If
this is the case, then padding can be inserted between the SVC and the faulting area of
code, for example, by inserting NOP instructions.

ES022 Rev 10 11/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

2 STM32F105xx and STM32F107xx silicon limitations

Table 4 gives quick references to all documented limitations.

Table 4. Summary of silicon limitations in revision Z devices

Links to silicon limitations

Section 2.1: Voltage glitch on ADC input 0

Section 2.2: Flash memory read after WFI/WFE instruction

Section 2.3: Debugging Stop mode and system tick timer

Section 2.4: Debugging Stop mode with WFE entry

Section 2.5: Wakeup sequence from Standby mode when using more than one wakeup source

Section 2.6: LSE start-up in harsh environments

Section 2.7: RDP protection

Section 2.8: Alternate functions

Section 2.8.1: SPI1 in slave mode and USART2 in synchronous
mode

Section 2.8.2: SPI1 in master mode and USART2 in synchronous
mode

Section 2.8.3: SPI2 in slave mode and USART3 in synchronous
mode

Section 2.8.4: SPI2 in master mode and USART3 in synchronous
mode

Section 2.8.5: I2S2 in master/slave mode and Ethernet/USART3 in
synchronous mode

Section 2.8.6: USARTx_TX pin usage

Section 2.9: Boundary scan TAP: wrong pattern sent out after the “capture IR” state

Section 2.10: Flash memory BSY bit delay versus STRT bit setting

Section 2.11: I2C peripheral

Section 2.11.1: Some software events must be managed before
the current byte is being transferred

Section 2.11.2: Wrong data read into data register

Section 2.11.3: SMBus standard not fully supported

Section 2.11.4: Wrong behavior of I2C peripheral in master mode
after a misplaced Stop

Section 2.11.5: Mismatch on the “Setup time for a repeated Start
condition” timing parameter

Section 2.11.6: Data valid time (tVD;DAT) violated without the OVR
flag being set

Section 2.11.7: I2C analog filter may provide wrong value, locking
BUSY flag and preventing master mode entry

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

12/44 ES022 Rev 10

Section 2.12: SPI peripheral

Section 2.12.1: CRC still sensitive to communication clock when
SPI is in slave mode even with NSS high

Section 2.12.2: SPI CRC may be corrupted when a peripheral
connected to the same DMA channel of the SPI is under DMA
transaction close to the end of transfer or end of transfer -1

Section 2.13: I2S peripheral

Section 2.13.1: Wrong WS signal generation in 16-bit extended to
32-bit PCM long synchronization mode

Section 2.13.2: In I2S slave mode, WS level must be set by the
external master when enabling the I2S

Section 2.13.3: I2S slave mode desynchronization with the master
during communication

Section 2.14: USART
peripheral

Section 2.14.1: Parity Error flag (PE) is set again after having been
cleared by software

Section 2.14.2: Idle frame is not detected if receiver clock speed is
deviated

Section 2.14.3: In full duplex mode, the Parity Error (PE) flag can
be cleared by writing the data register

Section 2.14.4: Parity Error (PE) flag is not set when receiving in
Mute mode using address mark detection

Section 2.14.5: Break frame is transmitted regardless of nCTS
input line status

Section 2.14.6: nRTS signal abnormally driven low after a protocol
violation

Section 2.15: Timers

Section 2.15.1: Missing capture flag

Section 2.15.2: Overcapture detected too early

Section 2.15.3: General-purpose timer: regulation for 100% PWM

Section 2.16: IWDG peripheral Section 2.16.1: RVU and PVU flags are not reset in Stop mode

Section 2.17: LSI clock stabilization time

Section 2.18: PLL not locking when sourced by HSI/2 after reset if it was previously sourced by HSE
with predivider > 1 or PLL2

Section 2.19: OTG_FS

Section 2.19.1: Data in RxFIFO are overwritten when all channels
are disabled simultaneously

Section 2.19.2: OTG host blocks the receive channel when
receiving IN packets and no Tx FIFO is configured

Section 2.19.3: Host channel-halted interrupt not generated when
the channel is disabled

Section 2.19.4: Error in software-read OTG_FS_DCFG register
values

Section 2.19.5: Minimum AHB frequency to guarantee correct
operation of USB OTG FS peripheral

Table 4. Summary of silicon limitations in revision Z devices (continued)

Links to silicon limitations

ES022 Rev 10 13/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

Section 2.20: Ethernet MAC

Section 2.20.1: Possible underflow when TxFIFO is configured in
Store-and-Forward mode and a relatively large frame is aborted in
Half-duplex mode

Section 2.20.2: Possible CRC error when TxFIFO is configured in
Store-and-Forward mode and a relatively large frame is aborted in
Half-duplex mode with transmit checksum offload enabled

Section 2.20.3: Erroneous automatic checksum insertion after
TxFIFO is dynamically switched from Threshold to Store-and-
Forward mode

Section 2.20.4: Erroneous automatic checksum insertion after a
large frame (longer than the TxFIFO) transmission

Section 2.20.5: In half-duplex mode, the MAC transmitter ignores
collisions after it is disabled during a frame transmission

Section 2.20.6: Interrupt due to an RMON (MMC) counter may be
set again after it is cleared

Section 2.20.7: Incorrect layer 3 (L3) checksum is inserted in
transmitted IPv6 packets without TCP, UDP or ICMP payloads

Section 2.20.8: The Ethernet MAC processes invalid extension
headers in the received IPv6 frames

Section 2.20.9: MAC stuck in the Idle state on receiving the
TxFIFO flush command exactly one clock cycle after a
transmission completes

Section 2.20.10: Transmit frame data corruption

Section 2.20.11: Ethernet DMA not working after WFI/WFE
instruction

Section 2.21: Bootloader limitations

Table 4. Summary of silicon limitations in revision Z devices (continued)

Links to silicon limitations

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

14/44 ES022 Rev 10

2.1 Voltage glitch on ADC input 0

Description

A low-amplitude voltage glitch may be generated (on ADC input 0) on the PA0 pin, when the
ADC is converting with injection trigger. It is generated by internal coupling and
synchronized to the beginning and the end of the injection sequence, whatever the
channel(s) to be converted.

The glitch amplitude is less than 150 mV with a typical duration of 10 ns (measured with the
I/O configured as high-impedance input and left unconnected). If PA0 is used as a digital
output, this has no influence on the signal. If PA0 is used has a digital input, it is not detected
as a spurious transition, providing that PA0 is driven with an impedance lower than 5 k.
This glitch does not have any influence on the remaining port A pin or on the ADC
conversion injection results, in single ADC configuration.

When using the ADC in dual mode with injection trigger, and in order to avoid any side
effect, it is advised to distribute the analog channels so that Channel 0 is configured as an
injected channel.

Workaround

None.

2.2 Flash memory read after WFI/WFE instruction

Conditions

 Flash prefetch on

 Flash memory timing set to 2 wait states

 FLITF clock stopped in Sleep mode

Description

If a WFI/WFE instruction is executed during a Flash memory access and the Sleep duration
is very short (less than 2 clock cycles), the instruction fetch from the Flash memory may be
corrupted on the next wakeup event.

Workaround

When using the Flash memory with two wait states and prefetch on, the FLITF clock must
not be stopped during the Sleep mode – the FLITFEN bit in the RCC_AHBENR register
must be set (keep the reset value).

2.3 Debugging Stop mode and system tick timer

Description

If the system tick timer interrupt is enabled during the Stop mode debug (DBG_STOP bit set
in the DBGMCU_CR register), it wakes up the system from Stop mode.

ES022 Rev 10 15/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

Workaround

To debug the Stop mode, disable the system tick timer interrupt.

2.4 Debugging Stop mode with WFE entry

Description

When the Stop debug mode is enabled (DBG_STOP bit set in the DBGMCU_CR register)
this allows software debugging during Stop mode.

However, if the application software uses the WFE instruction to enter Stop mode, after
wakeup some instructions could be missed if the WFE is followed by sequential instructions.
This affects only Stop debug mode with WFE entry.

Workaround

To debug Stop mode with WFE entry, the WFE instruction must be inside a dedicated
function with 1 instruction (NOP) between the execution of the WFE and the Bx LR.

Example: __asm void _WFE(void) {

WFE

NOP

BX lr }

2.5 Wakeup sequence from Standby mode when using
more than one wakeup source

Description

The various wakeup sources are logically OR-ed in front of the rising-edge detector which
generates the wakeup flag (WUF). The WUF flag needs to be cleared prior to the Standby
mode entry, otherwise the MCU wakes up immediately.

If one of the configured wakeup sources is kept high during the clearing of WUF flag (by
setting the CWUF bit), it may mask further wakeup events on the input of the edge detector.
As a consequence, the MCU could not be able to wake up from Standby mode.

Workaround

To avoid this problem, the following sequence should be applied before entering Standby
mode:

1. Disable all used wakeup sources.

2. Clear all related wakeup flags.

3. Re-enable all used wakeup sources.

4. Enter Standby mode.

Be aware that, when applying this workaround, if one of the wakeup sources is still kept
high, the MCU enters the Standby mode, but then it wakes up immediately generating the
power reset.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

16/44 ES022 Rev 10

2.6 LSE start-up in harsh environments

Description

The LSE (Low Speed External) oscillator system has been designed to minimize the overall
power consumption of the STM32F1 microcontroller. It is extremely important to take
specific care in the design of the PCB to ensure this low power oscillator starts in harsh
conditions. In some PCB designs without coating, an induced low leakage may prevent the
LSE to start-up, regardless of the 32.768 KHz crystal used. This phenomenon is amplified in
humid environments that create frost on the OSC32_IN/OSC32_OUT tracks. This unwanted
behavior may happen only at the first back-up domain power-on of the device.

Workaround

It is recommended to mount an additional parallel feedback resistor (from 16 MΩ to 22 MΩ)
on board to help the oscillation start-up in all cases (see Figure 1). For more details on
compatible crystals and hardware techniques on PCB, refer to AN2867 application note.

Figure 1. LSE start-up using an additional resistor

2.7 RDP protection

Description

When the RDP protection is set, the debugger can still access the CPU program counter
register and the NVIC registers as well. Remapping the table vector location at different
address in the code memory map and triggering the interrupts may allow to retrieve a part of
the Flash memory code in CPU registers.

Workaround

None,

MS32554V1

STM32F1

CL2

CL1

ES022 Rev 10 17/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

2.8 Alternate functions

In some specific cases, some potential weakness may exist between alternate functions
mapped onto the same pin.

2.8.1 SPI1 in slave mode and USART2 in synchronous mode

Conditions

 SPI1 and USART2 are clocked

 I/O port pin PA4 is configured as an alternate function output.

Description

USART2 cannot be used in synchronous mode (USART2_CK signal), if SPI1 is used in
slave mode.

Workaround

None.

2.8.2 SPI1 in master mode and USART2 in synchronous mode

Conditions

 SPI1 and USART2 are clocked

 I/O port pin PA4 is configured as an alternate function output.

Description

USART2 cannot be used in synchronous mode (USART2_CK signal) if SPI1 is used in
master mode and SP1_NSS is configured in software mode. In this case USART2_CK is
not output on the pin.

Workaround

In order to output USART2_CK, the SSOE bit in the SPI1_CR2 register must be set to
configure the pin in output mode.

2.8.3 SPI2 in slave mode and USART3 in synchronous mode

Conditions

 SPI2 and USART3 are clocked

 I/O port pin PB12 is configured as an alternate function output.

Description

USART3 cannot be used in synchronous mode (USART3_CK signal) if SPI2 is used in
slave mode.

Workaround

None.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

18/44 ES022 Rev 10

2.8.4 SPI2 in master mode and USART3 in synchronous mode

Conditions

 SPI2 and USART3 are clocked

 I/O port pin PB12 is configured as an alternate function output.

Description

USART3 cannot be used in synchronous mode (USART3_CK signal) if SPI2 is used in
master mode and SP2_NSS is configured in software mode. In this case USART3_CK is
not output on the pin.

Workaround

To output USART3_CK, the SSOE bit in the SPI2_CR2 register must be set to configure the
pin in output mode.

2.8.5 I2S2 in master/slave mode and Ethernet/USART3
in synchronous mode

Conditions

 USART3 in synchronous mode or Ethernet is clocked

 I2S2 is not clocked

 I/O port pin PB12 is configured as an alternate function output

Description

If I2S2 was used prior to operating USART3 in synchronous mode or the Ethernet, a conflict
occurs between the I2S2_WS and the ETH_MII_TXD0 / USART3_CK signals even though
the I2S2 clock was disabled.

Workaround

To use USART3 in synchronous mode, first disable the I2S2 clock, then perform a software
reset of SPI2(I2S2).

To use the Ethernet, first disable the I2S2 clock, then either perform a software reset of
SPI2(I2S2) or switch off the I2S mode of SPI2.

2.8.6 USARTx_TX pin usage

Description

In USART receive-mode-only communication (TE = 0 in the USARTx_CR1 register), even
when the USARTx_TX pin is not being used, the corresponding I/O port pin cannot be used
to output another alternate function (in this mode the USARTx_TX output is set to 1 and
thus no other alternate function output can be used).

This limitation applies to all USARTx_TX pins that share another alternate function output.

ES022 Rev 10 19/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

Workaround

Do not use the corresponding I/O port of the USARTx_TX pin in alternate function output
mode. Only the input mode can be used (TE bit in the USARTx_CR1 has to be cleared).

2.9 Boundary scan TAP: wrong pattern sent out after
the “capture IR” state

Description

After the “capture IR” state of the boundary scan TAP, the two lower significant bits in the
instruction register should be loaded with “01” for them to be shifted out whenever a next
instruction is shifted in.

However, the boundary scan TAP shifts out the latest value loaded into the instruction
register, which could be “00”, “01”, “10” or “11”.

Workaround

The data shifted out, after the capture IR state, in the boundary scan flow should therefore
be ignored and the software should check not only the two least significant bits (XXX01) but
all register bits (XXXXX).

2.10 Flash memory BSY bit delay versus STRT bit setting

Description

When the STRT bit in the Flash memory control register is set (to launch an erase
operation), the BSY bit in the Flash memory status register goes high one cycle later.

Therefore, if the FLASH_SR register is read immediately after the FLASH_CR register is
written (STRT bit set), the BSY bit is read as 0.

Workaround

Read the BSY bit at least one cycle after setting the STRT bit.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

20/44 ES022 Rev 10

2.11 I2C peripheral

2.11.1 Some software events must be managed before the current byte is
being transferred

Description

When the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events are not managed before

the current byte is being transferred, problems may be encountered such as receiving an
extra byte, reading the same data twice or missing data.

Workarounds

When it is not possible to manage the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3
events before the current byte transfer and before the acknowledge pulse when changing
the ACK control bit, it is recommended to:

 Workaround 1

Use the I2C with DMA in general, except when the Master is receiving a single byte.

 Workaround 2

Use I2C interrupts and boost their priorities to the highest one in the application to
make them uninterruptible

 Workaround 3 (only for EV6_1 and EV6_3 events used in method 2)

EV6_1 event (used in master receiver 2 bytes):

Stretch SCL line between ADDR bit is cleared and ACK is cleared:

a) ADDR=1

b) Configure SCL I/O as GPIO open-drain output low

c) Clear ADDR by reading SR1 register followed by reading SR3

d) Program ACK=0

e) Configure SCL I/O as Alternate Function open drain

EV6_3 event (used in master receiver 1 byte):

Stretch SCL line between ADDR bit is cleared and STOP bit programming:

a) ADDR=1

b) Program ACK=0

c) Configure SCL I/O as GPIO open-drain output low

d) Clear ADDR by reading SR1 register followed by reading SR3

e) Program STOP=1

f) Configure SCL I/O as Alternate Function open drain

ES022 Rev 10 21/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

2.11.2 Wrong data read into data register

In Master Receiver mode, when closing the communication using method 2, the content of
the last read data can be corrupted. The following two sequences are concerned by the
limitation:

 Sequence 1: Transfer sequence for master receiver when N = 2:

a) BTF = 1(Data N-1 in DR and Data N in shift register)

b) Program STOP = 1,

c) Read DR twice (Read Data N-1 and Data N) just after programming the STOP.

 Sequence 2: Transfer sequence for master receiver when N > 2:

a) BTF = 1 (Data N-2 in DR and Data N-1 in shift register)

b) Program ACK = 0,

c) Read DataN-2 in DR.

d) Program STOP = 1,

e) Read DataN-1.

If the user software is not able to read the data N-1 before the STOP condition is generated
on the bus, the content of the shift register (data N) is corrupted (data N is shifted 1-bit to the
left).

Workarounds

 Workaround 1

Stretch the SCL line by configuring SCL I/O as a general purpose I/O, open-drain
output low level, before the SET STOP in sequence 1 and before the READ Data N-2
in séquence 2. Then configure back the SCL I/O as alternate function open-drain after
the READ Data N-1. The sequences become:

Sequence 1:

a) BTF = 1(Data N-1 in DR and Data N in shift register)

b) Configure SCL I/O as GPIO open-drain output low

c) Program STOP = 1

d) Read Data N-1

e) Configure SCL I/O as Alternate Function open drain

f) Read Data N

Sequence 2:

a) BTF = 1 (Data N-2 in DR and Data N-1 in shift register)

b) Program ACK = 0

c) Configure SCL I/O as GPIO open-drain output low

d) Read Data N-2 in DR.

e) Program STOP = 1,

f) Read Data N-1.

g) Configure SCL I/O as Alternate Function open drain

 Workaround 2

Mask all active interrupts between the SET STOP and the READ data N-1 for
sequence 1; and between the READ data N-2, the SET STOP and the READ data N-1
for Sequence 2.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

22/44 ES022 Rev 10

 Workaround 3

Manage I2C RxNE events with DMA or interrupts with the highest priority level, so that
the condition BTF = 1 never occurs.

2.11.3 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since It does not
support the capability to NACK an invalid byte/command.

Workarounds

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

1. Using the SMBA pin if supported by the host

2. the alert response address (ARA) protocol

3. the Host notify protocol

2.11.4 Wrong behavior of I2C peripheral in master mode after a
misplaced Stop

Description

If a misplaced Stop is generated on the bus, the peripheral cannot enter master mode
properly:

 If a void message is received (START condition immediately followed by a STOP): the
BERR (bus error) flag is not set, and the I2C peripheral is not able to send a start
condition on the bus after the write to the START bit in the I2C_CR2 register.

 In the other cases of a misplaced STOP, the BERR flag is set. If the START bit is
already set in I2C_CR2, the START condition is not correctly generated on the bus and
can create bus errors.

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

In case of a noisy environment in which unwanted bus errors can occur, it is recommended
to implement a timeout to ensure that after the START control bit is set, the SB (start bit) flag
is set. In case the timeout has elapsed, the peripheral must be reset by setting the SWRST
bit in the I2C_CR2 control register. It should also be reset in the same way if a BERR is
detected while the START bit is set in I2C_CR2.

ES022 Rev 10 23/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

2.11.5 Mismatch on the “Setup time for a repeated Start condition”
timing parameter

Description

In case of a repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta in
the I²C specification) can be slightly violated when the I²C operates in Master Standard
mode at a frequency between 88 kHz and 100 kHz.

The issue can occur only in the following configuration:

 in Master mode

 in Standard mode at a frequency between 88 kHz and 100 kHz (no issue in Fast-mode)

 SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if
the SCL rise time is less than 300 ns the issue cannot occur)

– If the slave stretches the clock

The setup time can be violated independently of the APB peripheral frequency.

Workaround

Reduce the frequency down to 88 kHz or use the I²C Fast-mode if supported by the slave.

2.11.6 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I²C standard can be violated (as
well as the maximum data hold time of the current data (tHD;DAT)) under the conditions
described below. Moreover, if the data register is written too late and close to the SCL rising
edge, an error can be generated on the bus (SDA toggles while SCL is high). These
violations cannot be detected because the OVR flag is not set (no transmit buffer underrun
is detected).

This issue can occur only under the following conditions:

 In Slave transmit mode

 With clock stretching disabled (NOSTRETCH=1)

 If the software is late in writing the DR data register, but not late enough to set the OVR
flag (the data register is written before the SCL rising edge).

Workaround

If the master device allows it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not allow it, ensure that the software writes to the data register fast
enough after TXE or ADDR events. For instance, use an interrupt on the TXE or ADDR flag
and boost its priority to the higher level, or use DMA. Use this "NOSTRETCH" mode with a
slow I2C bus speed.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

24/44 ES022 Rev 10

Note: The first data byte to transmit must be written in the data register after the ADDR flag is
cleared, and before the next SCL rising edge, so that the time window for writing the first
data byte in the data register is less than tLOW.

If this is not possible, a workaround can be used:

Clear the ADDR flag

Wait for the OVR flag to be set

Clear OVR and write the first data byte.

Then the time window for writing the next data byte is the time to transfer one byte. In this
case, the master must discard the first received data byte.

2.11.7 I2C analog filter may provide wrong value, locking BUSY flag
and preventing master mode entry

Description

The I2C analog filters embedded in the I2C I/Os may be tied to low level, whereas SCL and
SDA lines are kept at high level. This can occur after an MCU power-on reset, or during
ESD stress. Consequently, the I2C BUSY flag is set, and the I2C cannot enter master mode
(START condition cannot be sent). The I2C BUSY flag cannot be cleared by the SWRST
control bit, nor by a peripheral or a system reset. BUSY bit is cleared under reset, but it is
set high again as soon as the reset is released, because the analog filter output is still at low
level. This issue occurs randomly.

Note: Under the same conditions, the I2C analog filters may also provide a high level, whereas
SCL and SDA lines are kept to low level. This should not create issues as the filters output is
correct after next SCL and SDA transition.

Workaround

The SCL and SDA analog filter output is updated after a transition occurs on the SCL and
SDA line respectively. The SCL and SDA transition can be forced by software configuring
the I2C I/Os in output mode. Then, once the analog filters are unlocked and output the SCL
and SDA lines level, the BUSY flag can be reset with a software reset, and the I2C can enter
master mode. Therefore, the following sequence must be applied:

ES022 Rev 10 25/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

1. Disable the I2C peripheral by clearing the PE bit in I2Cx_CR1 register.

2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level
(Write 1 to GPIOx_ODR).

3. Check SCL and SDA High level in GPIOx_IDR.

4. Configure the SDA I/O as General Purpose Output Open-Drain, Low level (Write 0 to
GPIOx_ODR).

5. Check SDA Low level in GPIOx_IDR.

6. Configure the SCL I/O as General Purpose Output Open-Drain, Low level (Write 0 to
GPIOx_ODR).

7. Check SCL Low level in GPIOx_IDR.

8. Configure the SCL I/O as General Purpose Output Open-Drain, High level (Write 1 to
GPIOx_ODR).

9. Check SCL High level in GPIOx_IDR.

10. Configure the SDA I/O as General Purpose Output Open-Drain , High level (Write 1 to
GPIOx_ODR).

11. Check SDA High level in GPIOx_IDR.

12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.

13. Set SWRST bit in I2Cx_CR1 register.

14. Clear SWRST bit in I2Cx_CR1 register.

15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

26/44 ES022 Rev 10

2.12 SPI peripheral

2.12.1 CRC still sensitive to communication clock when SPI is in slave mode
even with NSS high

Description

When the SPI is configured in slave mode with the CRC feature enabled, the CRC is
calculated even if the NSS pin deselects the SPI (high level applied on the NSS pin).

Workaround

The CRC has to be cleared on both Master and Slave sides between the slave deselection
(high level on NSS) and the slave selection (low level on NSS), in order to resynchronize the
Master and Slave for their respective CRC calculation.

To procedure to clear the CRC is the following:

1. disable the SPI (SPE = 0)

2. clear the CRCEN bit

3. set the CRCEN bit

4. enable the SPI (SPE = 1)

2.12.2 SPI CRC may be corrupted when a peripheral connected to
the same DMA channel of the SPI is under DMA transaction
close to the end of transfer or end of transfer -1

Description

In the following conditions, the CRC may be frozen before the CRCNEXT bit is written,
resulting in a CRC error:

 SPI is slave or master.

 Full duplex or simplex mode is used.

 CRC feature is enabled.

 SPI is configured to manage data transfers by software (interrupt or polling).

 A peripheral, mapped on the same DMA channel as the SPI, is executing DMA
transfers.

Workaround

If the application allows it, you can use the DMA for SPI transfers.

ES022 Rev 10 27/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

2.13 I2S peripheral

2.13.1 Wrong WS signal generation in 16-bit extended to 32-bit PCM
long synchronization mode

Description

When I2S is master with PCM long synchronization is selected as16-bit data frame
extended to 32-bit, the WS signal is generated every 16 bits rather than every 32 bits.

Workaround

Only the 16-bit mode with no data extension can be used when the I2S is master and when
the selected mode has to be PCM long synchronization mode.

2.13.2 In I2S slave mode, WS level must be set by the external master
when enabling the I2S

Description

In slave mode the WS signal level is used only to start the communication. If the I2S (in
slave mode) is enabled while the master is already sending the clock and the WS signal
level is low (for I2S protocol) or is high (for the LSB or MSB-justified mode), the slave starts
communicating data immediately. In this case the master and slave are desynchronized
throughout the whole communication.

Workaround

The I2S peripheral must be enabled when the external master sets the WS line at:

– High level when the I2S protocol is selected.

– Low level when the LSB or MSB-justified mode is selected.

2.13.3 I2S slave mode desynchronization with the master during
communication

Description

In I2S slave mode, if glitches on SCK or WS signals are generated at an unexpected time, a
desynchronization of the master and the slave occurs. No error is reported to allow audio
system to re-synchronize.

Workaround

The following workarounds can be applied in order to detect and react after a
desynchronization by disabling and enabling I2S peripheral in order to resynchronize with
the master.

1. Monitoring the I2S WS signal through an external Interrupt to check the I2S WS signal
status.

2. Monitoring the I2S clock signal through an input capture interrupt to check the I2S clock
signal status.

3. Monitoring the I2S clock signal through an input capture interrupt and the I2S WS
signal via an external interrupt to check the I2S clock and I2S WS signals status.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

28/44 ES022 Rev 10

2.14 USART peripheral

2.14.1 Parity Error flag (PE) is set again after having been cleared
by software

Description

The parity error flag (PE) is set at the end of the last data bit. It should be cleared by
software by making a read access to the status register followed by reading the data in the
data register.

Once the PE flag is set by hardware, if it is cleared by software before the middle of the stop
bit, it is set again. Consequently, the software may jump several times to the same interrupt
routine for the same parity error.

Workaround

Before clearing the Parity Error flag, the software must wait for the RXNE flag to be set.

2.14.2 Idle frame is not detected if receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter
device is faster than the USART receiver clock, the USART receive signal falls too early
when receiving the character start bit, with the result that the idle frame is not detected
(IDLE flag is not set).

Workaround

None.

2.14.3 In full duplex mode, the Parity Error (PE) flag can be cleared
by writing the data register

Description

In full duplex mode, when the Parity Error flag is set by the receiver at the end of a
reception, it may be cleared while transmitting by reading the USART_SR register to check
the TXE or TC flags and writing data in the data register.

Consequently, the software receiver can read the PE flag as '0' even if a parity error
occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

ES022 Rev 10 29/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

2.14.4 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the
address mark detection. When the USART receiver recognizes a valid address with a parity
error, it exits the Mute mode without setting the Parity Error flag.

Workaround

None.

2.14.5 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is
set, the transmitter sends a break frame at the end of current transmission regardless of
nCTS input line status.

Consequently, if an external receiver device is not ready to accept a frame, the transmitted
break frame is lost.

Workaround

None.

2.14.6 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when data is
received. If this data was not read and new data is sent to the USART anyway (protocol
violation), the nRTS signal goes back to low level at the end of this new data. Consequently,
the sender gets wrong information that the USART is ready to receive further data which is
not really the case. On the USART side, an overrun is detected which indicates that some
data has been lost.

Workarounds

The workarounds below are needed only if another UART device violates the protocol. In
most of the systems (no limitation on another device), the USART works fine and no
workaround is needed.

1. After data reception and before reading the data in the data register, the software takes
over the control of the nRTS as a GPIO and keeps it high as long as needed. If the
USART knows that further reception from another device may be discarded, the
software keeps the nRTS pin at high level. The software should then release the nRTS
pin when the USART is ready to continue reception.

2. Ensure that the received data is always read in less than the duration of the 2nd data
reception. One solution would be to treat all the receptions by DMA.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

30/44 ES022 Rev 10

2.15 Timers

These limitations apply only to TIM1, TIM2, TIM3, TIM4 and TIM5

2.15.1 Missing capture flag

Description

In capture mode, when a capture occurs while the CCRx register is being read, the capture
flag (CCxIF) may be cleared without the overcapture flag (CCxOF) being set. The new data
are actually captured in the capture register.

Workaround

An external interrupt can be enabled on the capture I/O just before reading the capture
register (in the capture interrupt), and disabled just after reading the captured data. Possibly,
a missed capture is detected by the EXTI peripheral.

2.15.2 Overcapture detected too early

Description

In capture mode, the overcapture flag (CCxOF) can be set even though no data have been
lost.

Conditions

If a capture occurs while the capture register is being read, an overcapture is detected even
though the previously captured data are correctly read and the new data are correctly stored
into the capture register.

The system is at the limit of an overcapture but no data are lost.

Workaround

None.

2.15.3 General-purpose timer: regulation for 100% PWM

Description

When the OCREF_CLR functionality is activated, the OCxREF signal becomes de-asserted
(and consequently OCx is deasserted / OCxN is asserted) when a high level is applied on
the OCREF_CLR signal. The PWM then restarts (output re-enabled) at the next counter
overflow.

But if the PWM is configured at 100% (CCxR > ARR), then it does not restart and OCxREF
remains de-asserted.

Workaround

None.

ES022 Rev 10 31/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

2.16 IWDG peripheral

2.16.1 RVU and PVU flags are not reset in Stop mode

Description

The RVU and PVU flags within the IWDG_SR register are set by hardware next to a write
access to the IWDG_RLR or the IWDG_PR registers, respectively. If the write access is
immediately followed by an entry into Stop mode, the RVU and PVU flags are not reset by
hardware. When the user's application needs to write a second time to the IWDG_RLR or
the IWDG_PR registers, respectively, it has to wait for the RVU and PVU flags to be reset.
However, after exiting Stop mode the RVU and PVU bits are not reset. Therefore, the user's
application stays in an infinite loop and the IWDG generates a reset after the programmed
timeout period.

Workaround

The user's application has to wait until RVU and PVU flags within the IWDG_SR register are
reset before entering Stop mode.

2.17 LSI clock stabilization time

Description

When the LSIRDY flag is set, the clock may still be out of the specified frequency range (fLSI
parameter, see LSI oscillator characteristics in the product datasheet).

Workaround

To have a fully stabilized clock in the specified range, a software temporization of 100 µs
should be added.

2.18 PLL not locking when sourced by HSI/2 after reset if it was
previously sourced by HSE with predivider > 1 or PLL2

Description

The limitation occurs when the sequence below is followed:

 PLL source: HSI/2, SYSCLK source: PLL

 PLL source: HSE with predivider > 1 or PLL2, SYSCLK source: PLL

 System reset

 PLL source: HSI/2, SYSCLK source: PLL

The PLL cannot be locked when sourced by HSI/2 after applying system reset if it was
previously sourced by HSE with predivider > 1 or by PLL2.

Workaround

Enable the HSE oscillator and let the PLL lock on it before switching the PLL source to
HSI/2.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

32/44 ES022 Rev 10

2.19 OTG_FS

2.19.1 Data in RxFIFO are overwritten when all channels are disabled
simultaneously

Description

If the available RxFIFO is just large enough to host 1 packet plus its data status, and is
currently occupied by the last received data + its status and, at the same time, the
application requests that more IN channels be disabled, the OTG_FS peripheral does not
first check for available space before inserting the disabled status of the IN channels. It just
inserts them by overwriting the existing data payload.

Workaround

Use one of the following recommendations:

1. Configure the RxFIFO to host a minimum of 2 × MPSIZ + 2 × data status entries.

2. The application has to check the RXFLVL bit (RxFIFO non-empty) in the
OTG_FS_GINTSTS register before disabling each IN channel. If this bit is not set, then
the application can disable an IN channel at a time. Each time the application disables
an IN channel, however, it first has to check that the RXFLVL bit = 0 condition is true.

2.19.2 OTG host blocks the receive channel when receiving IN packets
and no Tx FIFO is configured

Description

When receiving data, the OTG_FS core erroneously checks for available TxFIFO space
when it should only check for RxFIFO space. If the OTG_FS core cannot see any space
allocated for data transmission, it blocks the reception channel and no data are received.

Workaround

Set at least one TxFIFO equal to the maximum packet size. In this way, the host application,
which intends to supports only IN traffic, also has to allocate some space for the TxFIFO.

Since a USB host is expected to support any kind of connected endpoint, it is good practice
to configure enough TxFIFO space for OUT endpoints.

2.19.3 Host channel-halted interrupt not generated when the channel is
disabled

Description

When the application enables, then immediately disables the host channel before the
OTG_FS host has had time to begin the transfer sequence, the OTG_FS core, as a host,
does not generate a channel-halted interrupt. The OTG_FS core continues to operate
normally.

Workaround

Do not disable the host channel immediately after enabling it.

ES022 Rev 10 33/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

2.19.4 Error in software-read OTG_FS_DCFG register values

Description

When the application writes to the DAD and PFIVL bitfields in the OTG_FS_DCFG register,
and then reads the newly written bitfield values, the read values may not be correct.

The values written by the application, however, are correctly retained by the core, and the
normal operation of the device is not affected.

Workaround

Do not read from the OTG_FS_DCFG register’s DAD and PFIVL bitfields just after
programming them.

2.19.5 Minimum AHB frequency to guarantee correct operation
of USB OTG FS peripheral

Description

In order to guarantee correct operation of the USB OTG FS peripheral, the AHB frequency
should be configured to be not less than 14.2 MHz.

Workaround

None.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

34/44 ES022 Rev 10

2.20 Ethernet MAC

2.20.1 Possible underflow when TxFIFO is configured in Store-and-Forward
mode and a relatively large frame is aborted in Half-duplex mode

Description

In Store-and-Forward mode, the frame is transferred to the MAC only when the full frame is
available in the TxFIFO. There is one exception to this rule, when the TxFIFO is almost full.

This problem may arise when a relatively large frame is loaded into the TxFIFO and a
second frame is partially loaded (because of lack of space) into the free TxFIFO space,
generating an almost full condition. In this case, if the first frame is aborted, due to a carrier
loss, the absence of a carrier or a late collision, the second frame is sent to the MAC before
it is completely loaded into the TxFIFO. If the DMA bandwidth does not allow the rest of the
frame to be uploaded before the end of the frame transmission, an underflow may occur.

In this case, the software must detect the underflow condition and resend the frame.

Workaround

Resend the frame on underflow detection.

2.20.2 Possible CRC error when TxFIFO is configured in Store-and-Forward
mode and a relatively large frame is aborted in Half-duplex mode with
transmit checksum offload enabled

Description

In Store-and-Forward mode, the frame is transferred to the MAC only when the full frame is
available in the TxFIFO. There is one exception to this rule, when the TxFIFO is almost full.

This problem may arise when a relatively large frame is loaded into the TxFIFO and a
second frame is partially loaded (because of lack of space) into the free TxFIFO space,
generating an almost full condition. In this case, if the first frame is aborted, due to a carrier
loss, the absence of a carrier or a late collision, the second frame is sent to the MAC before
it is completely loaded into the TxFIFO. Since for CRC computation, the entire frame must
be available in the TxFIFO, the CRC of the subsequent frames is erroneous.

TCP/IP checksum errors may be detected at the remote end, causing data to be dropped.

Workaround

Wait for the TxFIFO to become empty and then send the txFIFO flush command.

2.20.3 Erroneous automatic checksum insertion after TxFIFO is dynamically
switched from Threshold to Store-and-Forward mode

Description

Automatic checksum insertion in transmitted frames can be enabled (through the CIC bits in
the TDES0 register) and used only when the TxFIFO is configured to operate in Store-and-
Forward mode. When the TxFIFO is operated in Threshold mode, the CIC bits are ignored.

ES022 Rev 10 35/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

When the TxFIFO dynamically switches from Threshold to Store-and-Forward mode, the
CRC computation may be erroneous on the subsequent frames.

This results in the detection of TCP/IP checksum errors at the remote end, causing data to
be dropped.

Workaround

Use the Store-and-Forward mode only.

2.20.4 Erroneous automatic checksum insertion after a large frame (longer
than the TxFIFO) transmission

Description

Automatic checksum insertion in transmitted frames can be enabled (through the CIC bits in
TDES0) and used only for frames with a length lesser than the TxFIFO depth.

If a long frame is transmitted, with checksum insertion disabled (CIC=00), immediately
followed by a short frame, with checksum insertion enabled, the computed checksum may
be erroneous. This is due to the fact that the second frame may have be transmitted too
early from the TxFIFO, due to a TxFIFO almost full condition.

This results in the detection of TCP/IP checksum errors at the remote end, causing data to
be dropped.

Workaround

1. Avoid enabling automatic checksum insertion for any frame if your system transmits
frames with a size larger than the depth of the TxFIFO.

2. Wait for the long frame transmission completion before re-enabling the automatic
checksum insertion.

2.20.5 In half-duplex mode, the MAC transmitter ignores collisions after it is
disabled during a frame transmission

Description

If the TE bit is cleared during a transmission, the transmission part of the MAC is effectively
disabled after the complete transmission of the current frame. From the clearing of the TE
bit until the end of the transmission, potential collisions are ignored.

If a collision event occurs after the MAC is disabled, the transmitter does not recognize the
event and continues to transmit the complete frame without any JAM pattern. It reports a
successful frame transmission status (without any collision) even though the frame is
corrupted at the remote receivers due to collision.

Since a JAM signal might not be sent during a collision, frames may be lost when a remote
transmitter does not detect that a collision occurred.

Workaround

Disable the MAC transmitter only after the completion of the transmission of all scheduled
frames in Half-duplex mode.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

36/44 ES022 Rev 10

2.20.6 Interrupt due to an RMON (MMC) counter may be set again after it is
cleared

Description

When enabled, an interrupt asserted due to an RMON (remote monitoring) counter
becoming full, is cleared when the corresponding counter is read. The counter is also
cleared by the read operation if bit 1 (counter stop rollover) in ETH_MMCCR is set. If this
clear signal coincides with the counter update signal generated by the presence of a new
frame, then the corresponding interrupt bit is set again. This results in the software getting a
spurious interrupt from the MMC even though the corresponding counter value is very low.

Workaround

None.

2.20.7 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets
without TCP, UDP or ICMP payloads

Description

The application provides the per-frame control to instruct the MAC to insert the L3
checksums for TCP, UDP and ICMP packets. When automatic checksum insertion is
enabled and the input packet is an IPv6 packet without the TCP, UDP or ICMP payload, then
the MAC may incorrectly insert a checksum into the packet. For IPv6 packets without a TCP,
UDP or ICMP payload, the MAC core considers the next header (NH) field as the extension
header and continues to parse the extension header. Sometimes, the payload data in such
packets matches the NH field for TCP, UDP or ICMP and, as a result, the MAC core inserts
a checksum.

Workaround

When the IPv6 packets have a TCP, UDP or ICMP payload, enable checksum insertion for
transmit frames, or bypass checksum insertion by using the CIC (checksum insertion
control) bits in TDES0 (bits 23:22).

2.20.8 The Ethernet MAC processes invalid extension headers in the received
IPv6 frames

Description

In IPv6 frames, there can be zero or some extension headers preceding the actual IP
payload. The Ethernet MAC processes the following extension headers defined in the IPv6
protocol: Hop-by-Hop Options header, Routing header and Destination Options header.
All extension headers except the Hop-by-Hop extension header can be present multiple
times and in any order before the actual IP payload. The Hop-by-Hop extension header, if
present, has to come immediately after the IPv6’s main header.

The Ethernet MAC processes all (valid or invalid) extension headers including the Hop-by-
Hop extension headers that are present after the first extension header. For this reason, the
GMAC core accepts IPv6 frames with invalid Hop-by-Hop extension headers. As a
consequence, it accepts any IP payload as valid IPv6 frames with TCP, UDP or ICMP
payload, and then incorrectly update the Receive status of the corresponding frame.

ES022 Rev 10 37/44

STM32F105xx STM32F107xx STM32F105xx and STM32F107xx silicon limitations

43

Workaround

None.

2.20.9 MAC stuck in the Idle state on receiving the TxFIFO flush command
exactly one clock cycle after a transmission completes

Description

When the software issues a TxFIFO flush command, the transfer of frame data stops (even
in the middle of a frame transfer). The TxFIFO read controller goes into the Idle state
(TFRS=00 in ETH_MACDBGR) and then resumes its normal operation.

However, if the TxFIFO read controller receives the TxFIFO flush command exactly one
clock cycle after receiving the status from the MAC, the controller remains stuck in the Idle
state and stops transmitting frames from the TxFIFO. The system can recover from this
state only with a reset (e.g. a soft reset).

Workaround

Do not use the TxFIFO flush feature.

If TXFIFO flush is really needed, wait until the TxFIFO is empty prior to using the TxFIFO
flush command.

2.20.10 Transmit frame data corruption

Frame data corrupted when the TxFIFO is repeatedly transitioning from non-empty to empty
and then back to non-empty.

Description

Frame data may get corrupted when the TxFIFO is repeatedly transitioning from non-empty
to empty for a very short period, and then from empty to non-empty, without causing an
underflow.

This transitioning from non-empty to empty and back to non-empty happens when the rate
at which the data are being written to the TxFIFO is almost equal to or a little less than the
rate at which the data are being read.

This corruption cannot be detected by the receiver when the CRC is inserted by the MAC,
as the corrupted data are used for the CRC computation.

Workaround

Use the Store-and-Forward mode: TSF=1 (bit 21 in ETH_DMAOMR). In this mode the data
are transmitted only when the whole packet is available in the TxFIFO.

2.20.11 Ethernet DMA not working after WFI/WFE instruction

Description

If a WFI/WFE instruction is executed to put the system in sleep mode while the Ethernet
MAC master clock on the AHB bus matrix is ON and all remaining masters clocks are OFF,
the Ethernet DMA is unable to perform any AHB master accesses during sleep mode.

STM32F105xx and STM32F107xx silicon limitations STM32F105xx STM32F107xx

38/44 ES022 Rev 10

Workaround

Enable DMA1 or DMA2 clocks in the RCC_AHBENR register before executing the
WFI/WFE instruction.

2.21 Bootloader limitations

A full description of the bootloader limitations and workarounds is available in AN2606
“STM32 microcontroller system memory boot mode” available on www.st.com, in the
subsection dedicated to bootloader version for STM32F105xx and STM32F107xx devices.

ES022 Rev 10 39/44

STM32F105xx STM32F107xx Revision and date codes on device marking

43

Appendix A Revision and date codes on device marking

Figure 2, Figure 3 and Figure 4 show the marking compositions for the LFBGA100,
LQFP100 and LQFP64 packages, respectively. The only fields shown are the Additional
field containing the revision code and the Year and Week fields making up the date code.

Figure 2. LFBGA100 top package view

Additional information
field including
Revision code

ai14995b

WeekYear

Date code = Year+Week

Revision and date codes on device marking STM32F105xx STM32F107xx

40/44 ES022 Rev 10

Figure 3. LQFP100 top package view

Additional information field
including Revision code

ai14998b

WeekYear

Date code = Year+Week

ES022 Rev 10 41/44

STM32F105xx STM32F107xx Revision and date codes on device marking

43

Figure 4. LQFP64 top package view

ai14996

a

Additional information field
including Revision code

Arm logo

ST logo

WeekYear

Date code = Year+Week

Revision history STM32F105xx STM32F107xx

42/44 ES022 Rev 10

Revision history

Table 5. Document revision history

Date Revision Changes

16-Jun-2009 1 Initial release.

16-Oct-2009 2

Section 2.8.5: I2S2 in master/slave mode and Ethernet/USART3 in
synchronous mode added.

Table 4: Summary of silicon limitations in revision Z devices modified.

Section 2.19: OTG_FS added.

Section 2.20: Ethernet MAC added.

Section 2.21: Bootloader limitations added.

Figure 3: LQFP100 top package view and Figure 4: LQFP64 top
package view updated to show the Date code.

15-Dec-2009 3

Added limitations:

– Section 2.8.6: USARTx_TX pin usage

– Section 2.6.3: Start cannot be generated after a misplaced Stop

– Section 2.11.5: Mismatch on the “Setup time for a repeated Start
condition” timing parameter

– Section 2.11.6: Data valid time (tVD;DAT) violated without the OVR flag
being set

– Section 2.12.1: CRC still sensitive to communication clock when SPI
is in slave mode even with NSS high

29-Mar-2010 4
Section 2.18.2: USART bootloader: incorrect protocol version returned
by the Get Version command added.

18-Jun-2010 5

Added Section 2.4: Debugging Stop mode with WFE entry

Added Section 2.4: Debugging Stop mode with WFE entry

Added Section 2.11.2: Wrong data read into data register

Modified Section 2.11.4: Wrong behavior of I2C peripheral in master
mode after a misplaced Stop

Modified Section 2.11.6: Data valid time (tVD;DAT) violated without the
OVR flag being set

Added Section 2.14: USART peripheral

Added Figure 2: LFBGA100 top package view

06-Jan-2011 6

Added Section 2.13.1: Wrong WS signal generation in 16-bit extended
to 32-bit PCM long synchronization mode

Added Section 2.13.2: In I2S slave mode, WS level must be set by the
external master when enabling the I2S

Added Section 2.13.3: I2S slave mode desynchronization with the
master during communication

Added Section 2.14.6: nRTS signal abnormally driven low after a
protocol violation

Added Section 2.19.5: Minimum AHB frequency to guarantee correct
operation of USB OTG FS peripheral

Added Section 2.20.11: Ethernet DMA not working after WFI/WFE
instruction

ES022 Rev 10 43/44

STM32F105xx STM32F107xx Revision history

43

07-Feb-2011 7

Updated workarounds in Section 2.11.1: Some software events must be
managed before the current byte is being transferred and
Section 2.11.2: Wrong data read into data register

Updated Section 2.13.2: In I2S slave mode, WS level must be set by
the external master when enabling the I2S

04-Jan-2012 8

Table 3: Cortex-M3 core limitations and impact on microcontroller
behavior: added limitations 752419 and 740455.

Added Section 1.1.5: Interrupted loads to the SP can cause erroneous
behavior and Section 1.1.6: SVC and BusFault/MemManage may
occur out of order.

Updated “workaround” of Section 2.14.6: nRTS signal abnormally
driven low after a protocol violation

Added .Section 2.16.1: RVU and PVU flags are not reset in Stop mode.

Created Section 2.21: Bootloader limitations and removed previous
Section 2.18 and Section 2.19.

07-Oct-2013 9

Added:

– Section 2.5: Wakeup sequence from Standby mode when using more
than one wakeup source

– Section 2.6: LSE start-up in harsh environments

– Section 2.11.7: I2C analog filter may provide wrong value, locking
BUSY flag and preventing master mode entry

– Section 2.12.2: SPI CRC may be corrupted when a peripheral
connected to the same DMA channel of the SPI is under DMA
transaction close to the end of transfer or end of transfer -1

Updated Table 4: Summary of silicon limitations in revision Z devices.

15-Apr-2020 10

Updated Section 1: Arm® 32-bit Cortex®-M3 limitations and Appendix
A: Revision and date codes on device marking.

Updated Table 4: Summary of silicon limitations in revision Z devices.

Added Section 2.7: RDP protection.

Updated Figure 2: LFBGA100 top package view.

Minor text edits across the whole document.

Table 5. Document revision history (continued)

Date Revision Changes

STM32F105xx STM32F107xx

44/44 ES022 Rev 10

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

	Table 1. Device Identification
	Table 2. Device summary
	1 Arm® 32-bit Cortex®-M3 limitations
	Table 3. Cortex-M3 core limitations and impact on microcontroller behavior
	1.1 Cortex-M3 limitation description for the STM32F105xx / STM32F107xx connectivity line devices
	1.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register when interrupted or faulted
	1.1.2 Cortex-M3 event register is not set by interrupts and debug
	1.1.3 Cortex-M3 BKPT in debug monitor mode can cause DFSR mismatch
	1.1.4 Cortex-M3 may freeze for SLEEPONEXIT single instruction ISR
	1.1.5 Interrupted loads to the SP can cause erroneous behavior
	1.1.6 SVC and BusFault/MemManage may occur out of order

	2 STM32F105xx and STM32F107xx silicon limitations
	Table 4. Summary of silicon limitations in revision Z devices (continued)
	2.1 Voltage glitch on ADC input 0
	2.2 Flash memory read after WFI/WFE instruction
	2.3 Debugging Stop mode and system tick timer
	2.4 Debugging Stop mode with WFE entry
	2.5 Wakeup sequence from Standby mode when using more than one wakeup source
	2.6 LSE start-up in harsh environments
	Figure 1. LSE start-up using an additional resistor

	2.7 RDP protection
	2.8 Alternate functions
	2.8.1 SPI1 in slave mode and USART2 in synchronous mode
	2.8.2 SPI1 in master mode and USART2 in synchronous mode
	2.8.3 SPI2 in slave mode and USART3 in synchronous mode
	2.8.4 SPI2 in master mode and USART3 in synchronous mode
	2.8.5 I2S2 in master/slave mode and Ethernet/USART3 in synchronous mode
	2.8.6 USARTx_TX pin usage

	2.9 Boundary scan TAP: wrong pattern sent out after the “capture IR” state
	2.10 Flash memory BSY bit delay versus STRT bit setting
	2.11 I2C peripheral
	2.11.1 Some software events must be managed before the current byte is being transferred
	2.11.2 Wrong data read into data register
	2.11.3 SMBus standard not fully supported
	2.11.4 Wrong behavior of I2C peripheral in master mode after a misplaced Stop
	2.11.5 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	2.11.6 Data valid time (tVD;DAT) violated without the OVR flag being set
	2.11.7 I2C analog filter may provide wrong value, locking BUSY flag and preventing master mode entry

	2.12 SPI peripheral
	2.12.1 CRC still sensitive to communication clock when SPI is in slave mode even with NSS high
	2.12.2 SPI CRC may be corrupted when a peripheral connected to the same DMA channel of the SPI is under DMA transaction close to the end of transfer or end of transfer -1

	2.13 I2S peripheral
	2.13.1 Wrong WS signal generation in 16-bit extended to 32-bit PCM long synchronization mode
	2.13.2 In I2S slave mode, WS level must be set by the external master when enabling the I2S
	2.13.3 I2S slave mode desynchronization with the master during communication

	2.14 USART peripheral
	2.14.1 Parity Error flag (PE) is set again after having been cleared by software
	2.14.2 Idle frame is not detected if receiver clock speed is deviated
	2.14.3 In full duplex mode, the Parity Error (PE) flag can be cleared by writing the data register
	2.14.4 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	2.14.5 Break frame is transmitted regardless of nCTS input line status
	2.14.6 nRTS signal abnormally driven low after a protocol violation

	2.15 Timers
	2.15.1 Missing capture flag
	2.15.2 Overcapture detected too early
	2.15.3 General-purpose timer: regulation for 100% PWM

	2.16 IWDG peripheral
	2.16.1 RVU and PVU flags are not reset in Stop mode

	2.17 LSI clock stabilization time
	2.18 PLL not locking when sourced by HSI/2 after reset if it was previously sourced by HSE with predivider > 1 or PLL2
	2.19 OTG_FS
	2.19.1 Data in RxFIFO are overwritten when all channels are disabled simultaneously
	2.19.2 OTG host blocks the receive channel when receiving IN packets and no Tx FIFO is configured
	2.19.3 Host channel-halted interrupt not generated when the channel is disabled
	2.19.4 Error in software-read OTG_FS_DCFG register values
	2.19.5 Minimum AHB frequency to guarantee correct operation of USB OTG FS peripheral

	2.20 Ethernet MAC
	2.20.1 Possible underflow when TxFIFO is configured in Store-and-Forward mode and a relatively large frame is aborted in Half-duplex mode
	2.20.2 Possible CRC error when TxFIFO is configured in Store-and-Forward mode and a relatively large frame is aborted in Half-duplex mode with transmit checksum offload enabled
	2.20.3 Erroneous automatic checksum insertion after TxFIFO is dynamically switched from Threshold to Store-and-Forward mode
	2.20.4 Erroneous automatic checksum insertion after a large frame (longer than the TxFIFO) transmission
	2.20.5 In half-duplex mode, the MAC transmitter ignores collisions after it is disabled during a frame transmission
	2.20.6 Interrupt due to an RMON (MMC) counter may be set again after it is cleared
	2.20.7 Incorrect layer 3 (L3) checksum is inserted in transmitted IPv6 packets without TCP, UDP or ICMP payloads
	2.20.8 The Ethernet MAC processes invalid extension headers in the received IPv6 frames
	2.20.9 MAC stuck in the Idle state on receiving the TxFIFO flush command exactly one clock cycle after a transmission completes
	2.20.10 Transmit frame data corruption
	2.20.11 Ethernet DMA not working after WFI/WFE instruction

	2.21 Bootloader limitations

	Appendix A Revision and date codes on device marking
	Figure 2. LFBGA100 top package view
	Figure 3. LQFP100 top package view
	Figure 4. LQFP64 top package view

	Revision history
	Table 5. Document revision history (continued)

