

Si5347, Si5346 Revision D Reference Manual

Quad/Dual DSPLL Any-frequency, Any-output Jitter Attenuators Si5347, Si5346 Family Reference Manual

This Family Reference Manual is intended to provide system, PCB design, signal integrity, and software engineers the necessary technical information to successfully use the Si5347/46 devices in end applications. The official device specifications can be found in the Si5347/46 data sheets.

RELATED DOCUMENTS

- Si5347/46 Rev D Data Sheet: https:// www.silabs.com/documents/public/datasheets/Si5347-46-D-DataSheet.pdf
- Si5347/46 Rev D Device Errata: https:// www.silabs.com/documents/public/errata/ Si5347-46-RevD-Errata.pdf
- Si5347 Rev D -EVB User Guide: https:// www.silabs.com/documents/public/userguides/Si5347-D-EVB.pdf
- Si5346 Rev D -EVB User Guide: https:// www.silabs.com/documents/public/userguides/Si5346-D-EVB.pdf
- Si534x/8x Jitter Attenuators Recommended Crystals, TCXO and OCXOs Reference Manual: https:// www.silabs.com/documents/public/ reference-manuals/si534x-8xrecommended-crystals-rm.pdf

Table of Contents

1.	Overview	. 5
	1.1 Work Flow Using ClockBuilder Pro and the Register Map	. 5
	1.2 Family Product Comparison	. 5
2.	Functional Description.	. 6
	2.1 DSPLL	. 6
	2.2 DSPLL Loop Bandwidth	
	2.2.1 Fastlock	
	2.3 Dividers Overview	. 8
3.	Modes of Operation	. 9
	3.1 Reset and Initialization	.10
	3.1.1 Updating Registers during Device Operation	
	3.1.2 NVM Programming	
	3.2 Free Run Mode	
	3.3 Lock Acquisition Mode	.13
	3.4 Locked Mode	.13
	3.5 Holdover Mode	.14
4.	Clock Inputs.	17
	4.1 Input Source Selection	.18
	4.2 Types of Inputs4.2.1 Hitless Input Switching with Phase Buildout4.2.1 Hitless Input Switching4.2.2 Ramped Input Switching4.2.2 Ramped Input Switching4.2.3 Hitless Switching, LOL (loss of lock) and Fastlock4.2.4 Langle Lang	.21 .22 .22 .22 .23
	4.3 Fault Monitoring	.25 .26 .26 .29
5.	Output Clocks	32
	5.1 Outputs 5.1.1 Output Crosspoint 5.1.2 Output Divider (R) Synchronization. 5.1.2 Output Divider (R) Synchronization.	.32
	5.2 Performance Guidelines for Outputs5.2.1 Output Crosspoint and Signal Format Selection5.2.2 Output Terminations	.34
	5.3 Differential Outputs	.35

5.3.1 Differential Output Amplitude Controls.							35	;
5.3.2 Differential Output Common Mode Voltage Selection.								
5.3.3 Recommended Settings for Differential LVPECL, LVDS, HCSL, and	d CML				•	•	37	,
5.4 LVCMOS Outputs							38	;
5.4.1 LVCMOS Output Terminations								
5.4.2 LVCMOS Output Impedance And Drive Strength Selection								
5.4.3 LVCMOS Output Signal Swing								
5.4.4 LVCMOS Output Polarity				•	•	•	40)
5.5 Output Enable/Disable							41	
5.5.1 Output Disable State Selection								
5.5.2 Output Disable During LOL								
5.5.3 Output Disable During XAXB_LOS								
5.5.4 Output Driver State When Disabled								
5.5.5 Synchronous/Asynchronous Output Selection								
5.5.6 Output Driver Disable Source Summary		•	• •	•	•	•	44	•
6. Digitally Controlled Oscillator (DCO) Mode	• •	• •	•		•	•	. 45	;
6.1 Frequency Increment/Decrement Using Pin Controls							46	;
6.2 Frequency Increment/Decrement Using the Serial Interface							48	;
6.2.1 DCO with Direct Register Writes				•	•	•	50)
7. Serial Interface					•	•	. 51	
7.1 I ² C Interface							53	;
7.2 SPI Interface							55	;
8. Field Programming							. 59)
9. XAXB External References							. 60)
9.1 Performance of External References							60)
9.2 Recommend Crystals and Oscillators							60)
9.3 Register Settings to Configure for External XTAL Reference							61	
9.3.1 XAXB_EXTCLK_EN Reference Clock Selection Register							61	
9.3.2 PXAXB Pre-scale Divide Ratio for Reference Clock Register							61	
10. Crystal and Device Circuit Layout Recommendations							62	,
10.1 64-Pin QFN Si5347 Layout Recommendations.							62	2
10.1.1 Si5347 Applications without a Crystal							62	2
10.1.2 Si5347 Crystal Guidelines							63	;
10.1.3 Si5347 Output Clocks							66	;
10.2 44-Pin QFN Si5346 Layout Recommendations.							67	,
10.2.1 Si5346 Applications without a Crystal							68	;
10.2.2 Si5346 Crystal Guidelines							69)
11. Power Management								
							72)
11.1 Power Management Features								
	••••						72	2

11.4 Grounding Vias
12. Base vs. Factory Preprogrammed Devices
12.1 "Base" Devices (Also Known as "Blank" Devices)
12.2 "Factory Preprogrammed" (Custom OPN) Devices
13. Register Map
13.1 Register Map Overview and Default Settings Values
13.2 Si5347A/B Register Map
13.2.1 Page 0 Registers Si5347A/B
13.2.2 Page 1 Registers Si5347A/B
13.2.3 Page 2 Registers Si5347A/B
13.2.4 Page 3 Registers Si5347A/B
13.2.5 Page 4 Registers Si5347A/B
13.2.6 Page 5 Registers Si5347A/B
13.2.7 Page 6 Registers Si5347A/B
13.2.8 Page 7 Registers Si5347A/B
13.2.9 Page 9 Registers Si5347A/B
13.2.10 Page A Registers Si5347A/B
13.2.11 Page B Registers Si5347A/B
13.3 Si5347C/D Register Map
13.3.1 Page 0 Registers Si5347C/D
13.3.2 Page 1 Registers Si5347C/D
13.3.3 Page 2 Registers Si5347C/D
13.3.4 Page 3 Registers Si5347C/D
13.3.5 Page 4 Registers Si5347C/D
13.3.6 Page 5 Registers Si5347C/D
13.3.7 Page 6 Registers Si5347C/D
13.3.8 Page 7 Registers Si5347C/D
13.3.9 Page 9 Registers Si5347C/D
13.3.10 Page A Registers Si5347C/D
13.3.11 Page B Registers Si5347C/D
13.4 Si5346 Register Map
13.4.1 Page 0 Registers Si5346
13.4.2 Page 1 Registers Si5346.
13.4.3 Page 2 Registers Si5346.
13.4.4 Page 3 Registers Si5346.
13.4.5 Page 4 Registers Si5346.
13.4.6 Page 5 Registers Si5346.
13.4.7 Page 9 Registers Si5346
13.4.8 Page A Registers Si5346
13.4.9 Page B Registers Si5346
14. Revision History.
17. Revision mistory

1. Overview

The Si5347 is a high performance jitter attenuating clock multiplier that integrates four any-frequency DSPLLs for applications that require maximum integration and independent timing paths. The Si5346 is a dual DSPLL version in a smaller package. Each DSPLL has access to any of the four inputs and can provide low jitter clocks on any of the device outputs. Based on 4th generation DSPLL technology, these devices provide any-frequency conversion with typical jitter performance of <100 fs in integer mode or <150 fs in fractional frequency synthesis mode. Each DSPLL supports independent free-run, holdover modes of operation, and offers automatic and hitless input clock switching. The Si5347/46 is programmable via a serial interface with in-circuit programmable non-volatile memory so that it always powers up with a known configuration. Programming the Si5347/46 is made easy with Silicon Labs' ClockBuilder Pro software. Factory preprogrammed devices are available.

1.1 Work Flow Using ClockBuilder Pro and the Register Map

This reference manual is to be used to describe all the functions and features of the parts in the product family with register map details on how to implement them. It is important to understand that the intent is for customers to use the ClockBuilder Pro software to provide the initial configuration for the device. Although the register map is documented, all the details of the algorithms to implement a valid frequency plan are fairly complex and are beyond the scope of this document. Real-time changes to the frequency plan and other operating settings are supported by the devices. However, describing all the possible changes is not a primary purpose of this document. Refer to the applications notes and Knowledge Base articles within the ClockBuilder Pro GUI for information on how to implement the most common, real-time frequency plan changes.

The primary purpose of the software is to enable use of the device without an in-depth understanding of its complexities. The software abstracts the details from the user to allow focus on the high level input and output configuration, making it intuitive to understand and configure for the end application. The software walks the user through each step, with explanations about each configuration step in the process to explain the different options available. The software will restrict the user from entering an invalid combination of selections. The final configuration settings can be saved, written to an EVB and a custom part number can be created for customers who prefer to order a factory preprogrammed device. The final register maps can be exported to text files, and comparisons can be done by viewing the settings in the register map described in this document.

1.2 Family Product Comparison

The Table 1.1 Device Selector Guide on page 5 lists the differences between the devices in this family.

Grade	PLLs/OUTs	Max Output Freq	Frequency Synthesis Modes
Si5347A	4/8	712.5 MHz	Integer + Fractional
Si5347C	4/4	712.5 MHz	Integer + Fractional
Si5346A	2/4	712.5 MHz	Integer + Fractional
Si5347B	4/8	350 MHz	Integer + Fractional
Si5347D	4/4	350 MHz	Integer + Fractional
Si5346B	2/4	350 MHz	Integer + Fractional

Table 1.1. Device Selector Guide

2. Functional Description

The Si5347 takes advantage of Silicon Labs fourth-generation DSPLL technology to offer the industry's most integrated and flexible jitter attenuating clock generator solution. Each of the DSPLLs operate independently from each other and are controlled through a common serial interface. Each DSPLL has access to any of the four inputs (IN0 to IN3) after having been divided down by the P dividers, which are either fractional or integer. Clock selection can be either manual or automatic. Any of the output clocks can be configured to any of the DSPLLs using a flexible crosspoint connection. The Si5346 is a smaller form factor dual DSPLL version with four inputs and four outputs.

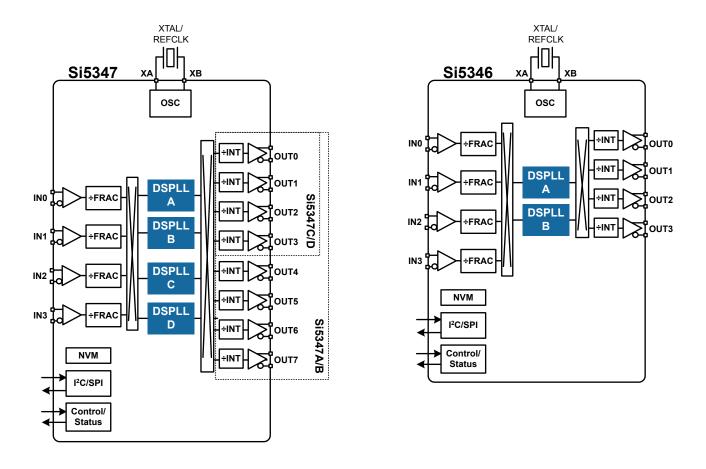


Figure 2.1. Block Diagrams

2.1 DSPLL

The DSPLL is responsible for input frequency translation, jitter attenuation and wander filtering. Fractional input dividers (Pxn/Pdc) allow the DSPLL to perform hitless switching between input clocks (INx). Input switching is controlled manually or automatically using an internal state machine. The oscillator circuit (OSC) provides a frequency reference that determines output frequency stability and accuracy while the device is in free-run or holdover mode. A crosspoint switch connects any of the DSPLLs to any of the outputs. An additional integer divisor (R) determines the final output frequency.

The frequency configuration of the DSPLL is programmable through the SPI or I2C serial interface and can also be stored in non-volatile memory or RAM. The combination of fractional input dividers (Pn/Pd), fractional frequency multiplication (Mn/Md) and integer output division (Rn) allows the generation of virtually any output frequency on any of the outputs. All divider values for a specific frequency plan are easily determined by using the ClockBuilder Pro software.

Because a jitter reference is required for all applications, either a crystal or an external clock source needs to be connected to the XAXB pins. See 9. XAXB External References and 10. Crystal and Device Circuit Layout Recommendations for more information.

2.2 DSPLL Loop Bandwidth

The DSPLL loop bandwidth determines the amount of input clock jitter attenuation. Register configurable DSPLL loop bandwidth settings of from 0.1 Hz up to 4 kHz are available for selection for each of the DSPLLs. Since the loop bandwidth is controlled digitally, each of the DSPLLs will always remain stable with less than 0.1 dB of peaking regardless of the loop bandwidth selection. Note that after changing the bandwidth parameters, the appropriate BW_UPDATE_PLLx bit (0x0414, 0x0514, 0x0614, 0x0715) must be set high to latch the new values into operation. Note that each of these update bits will latch both nominal and fastlock bandwidths.

Table 2.1. DSPLL Loop Bandwidth Registers

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
BW_PLLA	0408[7:0] - 040D[7:0]	0408[7:0] - 040D[7:0]	This group of registers determine the loop bandwidth for DSPLL A, B, C, D. They are all independently selectable
BW_PLLB	0508[7:0] - 050D[7:0]	0508[7:0] - 050D[7:0]	in the range from 0.1 Hz up to 4 kHz. Register values determined by ClockBuilderPro.
BW_PLLC	0608[7:0] - 060D[7:0]	_	
BW_PLLD	0709[7:0] - 070E[7:0]	_	

2.2.1 Fastlock

Selecting a low DSPLL loop bandwidth (e.g. 0.1 Hz) will generally lengthen the lock acquisition time. The fastlock feature allows setting a temporary Fastlock Loop Bandwidth that is used during the lock acquisition process. Higher fastlock loop bandwidth settings will enable the DSPLLs to lock faster. Fastlock Loop Bandwidth settings in the range from 100 Hz up to 4 kHz are available for selection. Once lock acquisition has completed, the DSPLL's loop bandwidth will automatically revert to the DSPLL Loop Bandwidth setting. The fast-lock feature can be enabled or disabled independently for each of the DSPLLs. If enabled, when LOL is asserted, Fastlock is enabled. When LOL is not asserted, Fastlock is disabled. Note that after changing the bandwidth parameters, the appropriate BW_UP-DATE_PLLx bit (0x0414, 0x0514, 0x0614, 0x0715) must be set high to latch the new values into operation. Note that each of these update bits will latch all Loop, Fastlock and Holdover bandwidths.

Table 2.2. Fastlock Registers

Setting Name	Hex Address [Bit Field]		Function	
	Si5347	Si5346		
FASTLOCK_AUTO_EN_PLLA	042B[0]	042B[0]	Fastlock enable/disable. Fastlock is enabled by default	
FASTLOCK_AUTO_EN_PLLB	052B[0]	052B[0]	with a bandwidth of 4 kHz.	
FASTLOCK_AUTO_EN_PLLC	062B[0]			
FASTLOCK_AUTO_EN_PLLD	072C[0]			
FAST_BW_PLLA	040E[7:0] - 0413[7:0]	040E[7:0] - 0413[7:0]	Fastlock bandwidth is selectable in the range of 100 Hz up to 4 kHz. Register values determined using Clock-	
FAST_BW_PLLB	050E[7:0] - 0513[7:0]	050E[7:0] - 0513[7:0]	BuilderPro.	
FAST_BW_PLLC	060E[7:0] - 0613[7:0]	_		
FAST_BW_PLLD	070F[7:0] - 0714[7:0]	_		

2.3 Dividers Overview

There are five main divider classes within the Si5347/46. See Figure 2.1 Block Diagrams on page 6 for a block diagram that shows them. Additionally, FSTEPW can be used to adjust the nominal output frequency in DCO mode. See 6. Digitally Controlled Oscillator (DCO) Mode for more information and block diagrams on DCO mode.

- 1. PXAXB: Reference input divider (0x0206)
 - Divide reference clock by 1, 2, 4, or 8 to obtain an internal reference < 125 MHz
- 2. P0-P3: Input clock wide range dividers (0x0208-0x022F)
 - Integer or Fractional divide values
 - Min. value is 1, Max. value is 2²⁴ (Fractional-P divisors must be > 5)
 - 48-bit numerator, 32-bit denominator
 - Practical P divider range of (Fin / 2 MHz) < P < (Fin / 8 kHz)
 - · Each P divider has a separate update bit for the new divider value to take effect
- 3. MA-MD: DSPLL feedback dividers (0x0415-0x041F, 0x0515-0x051F, 0x0615-0x061F, 0x0716-0x0720)
 - · Integer or Fractional divide values
 - Min. value is 1, Max. value is 2²⁴ (Fractional-M divisors must be > 10)
 - · 56-bit numerator, 32-bit denominator
 - Practical M divider range of (Fdco / 2 MHz) < M < (Fdco / 8 kHz)
 - · Each M divider has a separate update bit for the new divider value to take effect
 - · Soft reset will also update M divider values
- 4. Output N dividers N0-N3(0x0302-0x032D)
 - MultiSynth divider
 - Integer or fractional divide values
 - 44 bit numerator, 32 bit denominator
 - · Each divider has an update bit that must be written to cause a newly written divider value to take effect.
- 5. R0-R7: Output dividers (0x024A-0x026A)
 - 24-bit field
 - Min. value is 2, Max. value is 2²⁵-2
 - Only even integer divide values: 2, 4, 6, etc.
 - R Divisor = 2 x (Field + 1). For example, Field = 3 gives an R divisor of 8
- FSTEPW: DSPLL DCO step words (0x0423-0x0429, 0x0523-0x0529, 0x0623-0x0629, 0x0724-0x072A)
 - · Positive Integers, where FINC/FDEC select direction
 - Min. value is 0, Max. value is 2²⁴
 - · 56-bit step size, relative to 32-bit M denominator

3. Modes of Operation

Once initialization is complete, each of the DSPLLs operates independently in one of four modes: Free-run Mode, Lock Acquisition Mode, Locked Mode, or Holdover Mode. A state diagram showing the modes of operation is shown in Figure 3.1 Modes of Operation on page 9. The following sections describe each of these modes in greater detail.

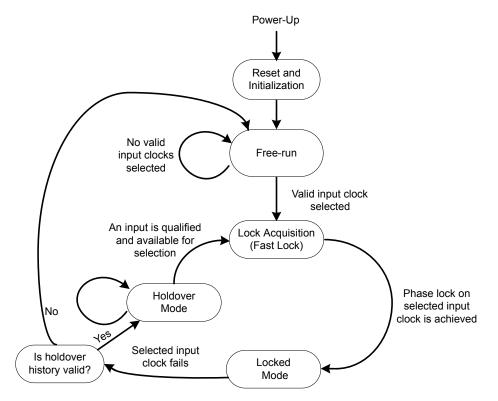


Figure 3.1. Modes of Operation

3.1 Reset and Initialization

Once power is applied, the device begins an initialization period where it downloads default register values and configuration data from NVM and performs other initialization tasks. Communicating with the device through the serial interface is possible once this initialization period is complete. No clocks will be generated until the initialization is complete.

There are two types of resets available. A hard reset is functionally similar to a device power-up. All registers will be restored to the values stored in NVM, and all circuits will be restored to their initial state including the serial interface. A hard reset is initiated using the RST pin or by asserting the hard reset bit. A soft reset bypasses the NVM download. It is simply used to initiate register configuration changes. A hard reset affects all DSPLLs, while a soft reset can affect all or each DSPLL individually.

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
HARD_RST	001E[1]	001E[1]	Performs the same function as power cycling the device. All registers will be restored to their default values.
SOFT_RST_ALL	001C[0]	001C[0]	Resets the device without re-downloading the register configuration from NVM.
SOFT_RST_PLLA	001C[1]	001C[1]	Performs a soft reset on DSPLL A only.
SOFT_RST_PLLB	001C[2]	001C[2]	Performs a soft reset on DSPLL B only.
SOFT_RST_PLLC	001C[3]	-	Performs a soft reset on DSPLL C only.
SOFT_RST_PLLD	001C[4]	_	Performs a soft reset on DSPLL D only.

Table 3.1. Reset Control Registers

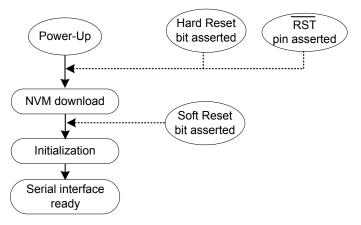


Figure 3.2. Initialization from Hard Reset and Soft Reset

The Si547/46 is fully configurable using the serial interface (I²C or SPI). At power up the device downloads its default register values from internal non-volatile memory (NVM). Application specific default configurations can be written into NVM allowing the device to generate specific clock frequencies at power-up. Writing default values to NVM is in-circuit programmable with normal operating power supply voltages applied to its VDD (1.8 V) and VDDA (3.3 V) pins. Neither VDDOx or VDDS supplies are required to write the NVM.

3.1.1 Updating Registers during Device Operation

ClockBuilder Pro generates all necessary control register writes to update settings for the entire device, including the ones described below. This is the case for both "Export" generated files as well as when using the GUI. This is sufficient to cover most applications. However, in some applications it is desirable to modify only certain sections of the device while maintaining unaffected clocks on the remaining outputs. If this is the case CBPro provides some frequency changes on the fly examples.

If certain registers are changed while the device is in operation, it is possible for the PLL to become unresponsive (i.e. lose lock indefinitely). Additionally, making single frequency step changes greater than ±350 ppm, either by using the DCO or by directly updating the M dividers, may also cause the PLL to become unresponsive. Changes to the following registers require this special sequence of writes:

Control	Register(s)
РХАХВ	0x0206[1:0]
MXAXB_NUM	0x0235 – 0x023A
MXAXB_DEN	0x023B – 0x023E

PLL lockup can easily be avoided by using the following the preamble and postamble write sequence below when one of these registers is modified or large frequency steps are made. Clockbuilder Pro software adds these writes to the output file by default when Exporting Register Files.

3.1.1.1 Dynamic PLL Changes

To start, write the preamble by updating the following control bits using Read/Modify/Write sequences:

Address	Value
0x0B24	0xC0
0x0B25	0x00
0x0B4E	0x1A

Wait 300 ms for the device state to stabilize.

Then, modify all desired control registers.

Write 0x01 to Register 0x001C (SOFT_RST_ALL) to perform a Soft Reset once modifications are complete.

Write the postamble by updating the following control bits using Read/Modify/Write sequences:

Address	Value
0x0B24	0xC3
0x0B25	0x02

Note, however, that this procedure affects all DSPLLs and outputs on the device.

Note: This programming sequence applies only to Rev D and later revisions. The preamble and postamble values for updating certain registers during device operation are different for earlier revisions. Either the new or old values below may be written to revision D or later devices without issue. No system software changes are necessary for legacy systems. When writing old values, note that reading back these registers will not give the written old values, but will reflect the new values. Silicon Labs recommends using the new values for all revision D (described above) and later designs, since the write and read values will match. Please contact Silicon Labs if you need information about an earlier revision. Please always ensure to use the correct sequence for the correct revision of the device. Also check for the latest information online. This information is updated from time to time. The latest information is always posted online.

3.1.2 NVM Programming

Devices have two categories of non-volatile memory: user NVM and Factory (Silabs) NVM. Each type is segmented into NVM banks. There are three user NVM banks, one of which is used for factory programming (whether a base part or an Orderable Part Number). User NVM can be therefore be burned in the field up to two times. Factory NVM cannot be modified, and contains fixed configuration information for the device.

The ACTIVE_NVM_BANK device setting can be used to determine which user NVM bank is currently being used and therefore how many banks, if any, are available to burn. The following table describes possible values:

Active NVM BANK Value (Deci- mal)	Number of User Banks Burned	Number of User Banks Available to Burn
3 (factory state)	1	2
15	2	1
63	3	0

Note: While polling DEVICE_READY during the procedure below, the following conditions must be met in order to ensure that the correct values are written into the NVM:

- VDD and VDDA power must both be stable throughout the process.
- No additional registers may be written or read during DEVICE_READY polling. This includes the PAGE register at address 0x01. DEVICE_READY is available on every register page, so no page change is needed to read it.
- Only the DEVICE_READY register (0xFE) should be read during this time.

The procedure for writing registers into NVM is as follows:

- 1. Write all registers as needed. Verify device operation before writing registers to NVM.
- 2. You may write to the user scratch space (Registers 0x026B to 0x0272 DESIGN_ID0-DESIGN_ID7) to identify the contents of the NVM bank.
- 3. Write 0xC7 to NVM_WRITE register.
- 4. Poll DEVICE_READY until DEVICE_READY=0x0F.
- 5. Set NVM_READ_BANK 0x00E4[0]=1. This will load the NVM contents into non-volatile memory.
- 6. Poll DEVICE_READY until DEVICE_READY=0x0F.
- 7. Read ACTIVE_NVM_BANK and verify that the value is the next highest value in the table above. For example, from the factory it will be a 3. After NVM_WRITE, the value will be 15.

Alternatively, steps 5 and 6 can be replaced with a Hard Reset, either by RSTb pin, HARD_RST register bit, or power cycling the device to generate a POR. All of these actions will load the new NVM contents back into the device registers.

The ClockBuilder Pro Field Programmer kit is a USB attached device to program supported devices either in-system (wired to your PCB) or in-socket (by purchasing the appropriate field programmer socket). ClockBuilder Pro software is then used to burn a device configuration (project file). Learn more at https://www.silabs.com/products/development-tools/timing/cbprogrammer.

Table 3.2. NVM Programming Registers

Register Name	Hex Address	Function
	[Bit Field]	
ACTIVE_NVM_BANK	0x00E2[7:0]	Identifies the active NVM bank.
NVM_WRITE	0x00E3[7:0]	Initiates an NVM write when written with value 0xC7.
NVM_READ_BANK	0x00E4[0]	Download register values with content stored in NVM.
DEVICE_READY	0x00FE[7:0]	Indicates that the device is ready to accept commands when value = 0x0F.

Warning: Any attempt to read or write any register other than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the NVM programming and may corrupt the register contents, as they are read from NVM. Note that this includes accesses to the PAGE register.

3.2 Free Run Mode

Once power is applied to the Si5347 and initialization is complete, all DSPLLs will automatically enter freerun mode, generating the frequencies determined by the NVM. The frequency accuracy of the generated output clocks in freerun mode is entirely dependent on the frequency accuracy of the external crystal or reference clock on the XA/XB pins. For example, if the crystal frequency is ±100 ppm, then all the output clocks will be generated at their configured frequency ±100 ppm in freerun mode. Any drift of the crystal frequency will be tracked at the output clock frequencies. A TCXO or OCXO is recommended for applications that need better frequency accuracy and stability while in freerun or holdover modes.

3.3 Lock Acquisition Mode

Each of the DSPLLs independently monitors its configured inputs for a valid clock. If at least one valid clock is available for synchronization, a DSPLL will automatically start the lock acquisition process. If the fast lock feature is enabled, a DSPLL will acquire lock using the Fastlock Loop Bandwidth setting and then transition to the DSPLL Loop Bandwidth setting when lock acquisition is complete. During lock acquisition the outputs will generate a clock that follows the VCO frequency change as it pulls-in to the input clock frequency.

3.4 Locked Mode

Once locked, a DSPLL will generate output clocks that are both frequency and phase locked to their selected input clocks. At this point any XTAL frequency drift will not affect the output frequency. Each DSPLL has its own LOL pin and status bit to indicate when lock is achieved. See 4.3.4 LOL Detection for more details on the operation of the loss of lock circuit.

3.5 Holdover Mode

Any of the DSPLLs programmed for holdover mode automatically enter holdover when the selected input clock becomes invalid (i.e. when either OOF or LOS are asserted) and no other valid input clocks are available for selection. Each DSPLL calculates a historical average of the input frequency while in locked mode to minimize the initial frequency offset when entering the holdover mode.

The averaging circuit for each DSPLL stores up to 120 seconds of historical frequency data while locked to a valid clock input. The final averaged holdover frequency value is calculated from a programmable window with the stored historical frequency data. The window size determines the amount of holdover frequency averaging. The delay value is used to ignore frequency data that may be corrupt just before the input clock failure. Both the window size and the delay are programmable as shown in the figure below. Each DSPLL computes its own holdover frequency average to maintain complete holdover independence between the DSPLLs.

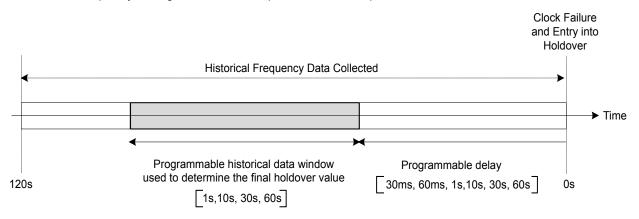


Figure 3.3. Programmable Holdover Window

When entering holdover, a DSPLL will pull its output clock frequency to the calculated average holdover frequency. While in holdover, the output frequency drift is entirely dependent on the external crystal or external reference clock connected to the XA/XB pins. If a clock input becomes valid, a DSPLL will automatically exit holdover mode and re-acquire lock to the new input clock. This process involves adjusting the output clock to achieve frequency and phase lock with the new input clock.

The recommended holdover exit mode is a frequency ramp. Just before the exit begins, the difference between the current holdover output frequency and the desired, new output frequency is measured. It is likely that the new output clock frequency and the holdover output frequency will not be the same - the new input clock frequency might have changed and/or the holdover history circuit may have changed the holdover output frequency.

Using the calculated frequency difference (holdover v. new frequency) and the user-selectable ramp rate a ramp time is calculated. The output ramp rate is then applied for this ramp time ensuring a smooth and linear transition between the holdover and the final desired frequency. The ramp rate can be very slow (0.2 ppm/s), very fast (40,000 ppm/s) or any of about 40 values in between. The loop BW values do not limit or affect the ramp rate selections (and vice versa). CBPro defaults to ramped exit from holdover.

Note that the same ramp rate settings are used for both exit from holdover and clock switching. For more information on ramped clock switching, see 4.2.2 Ramped Input Switching.

Hex Address [Bit Field] Setting Name Function Si5347 Si5346 Holdover Status HOLD PLL(D,C,B,A) 000E[7:4] 000E[5:4] Holdover status indicator. Indicates when a DSPLL is in holdover or free-run mode and is not synchronized to the input reference. The DSPLL goes into holdover only when the historical frequency data is valid, otherwise the DSPLL will be in free-run mode. HOLD_FLG_PLL(D,C,B,A) 0013[7:4] 0013[5:4] Holdover status monitor sticky bits. Sticky bits will remain asserted when an holdover event occurs until cleared. Writing a zero to a sticky bit will clear it. HOLD_HIST_VALID_PLLA Holdover historical frequency data valid. Indicates if 043F[1] 043F[1] there is enough historical frequency data collected for HOLD HIST VALID PLLB 053F[1] 053F[1] valid holdover value. HOLD HIST VALID PLLC 063F[1] HOLD_HIST_VALID_PLLD 0740[1] ____ Holdover Control and Settings Window Length time for historical average frequency HOLD_HIST_LEN_PLLA 042E[4:0] 042E[4:0] used in Holdover mode. Window Length in seconds (s): HOLD_HIST_LEN_PLLB 052E[4:0] 052E[4:0] Window Length = $((2^{\text{LEN}}) - 1)^{*}268$ nsec HOLD_HIST_LEN_PLLC 062E[4:0] ____ HOLD_HIST_LEN_PLLD 072F[4:0] HOLD HIST DELAY PLLA 042F[4:0] Delay Time to ignore data for historical average frequen-042F[4:0] cy in Holdover mode. Delay Time in seconds (s): Delay HOLD_HIST_DELAY_PLLB 052F[4:0] 052F[4:0] Time = $(2^{\text{DELAY}}) \times 268$ nsec HOLD_HIST_DELAY_PLLC 062F[4:0] HOLD HIST DELAY PLLD 0730[4:0] FORCE_HOLD_PLLA These bits allow forcing any of the DSPLLs into hold-0435[0] 0435[0] over FORCE_HOLD_PLLB 0535[0] 0535[0] FORCE HOLD PLLC 0635[0] ____ FORCE_HOLD_PLLD 0736[0] ____ HOLD_EXIT_BW_SEL1_PLLA 042C[4] 042C[4] Selects the exit from holdover bandwidth. Options are: HOLD EXIT BW SEL1 PLLB 052C[4] 052C[4] 0: Exit of holdover using the fastlock bandwidth HOLD_EXIT_BW_SEL1_PLLC 062C[4] ____ 1: Exit of holdover using the DSPLL loop bandwidth HOLD EXIT BW SEL1 PLLD 072D[4] HOLD EXIT BW SEL0 PLLA 049B[6] 049B[6] HOLD EXIT BW SEL0 PLLB 059B[6] 059B[6] HOLD_EXIT_BW_SEL0_PLLC 069B[6] ____

Table 3.3. DSPLL Holdover Control and Status Registers

079B[6]

HOLD EXIT BW SEL0 PLLD

Si5347, Si5346 Revision D Reference Manual Modes of Operation

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
HOLD_RAMP_EN_PLLA	042C[3]	042C[3]	Must be set to 1 for normal operation.
HOLD_RAMP_EN_PLLB	052C[3]	052C[3]	
HOLD_RAMP_EN_PLLC	062C[3]		
HOLD_RAMP_EN_PLLD	072D[3]	_	

4. Clock Inputs

There are four inputs that can be used to synchronize any of the DSPLLs. The inputs accept both standard format inputs and low duty cycle pulsed CMOS clocks. The input P dividers can be either fractional or integer. A crosspoint between the inputs and the DSPLLs allows any of the inputs to connect to any of the DSPLLs as shown in Figure 4.1 DSPLL Input Selection Crosspoint on page 17.

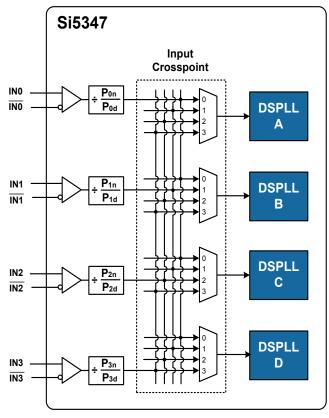


Figure 4.1. DSPLL Input Selection Crosspoint

4.1 Input Source Selection

Input source selection for each of the DSPLLs can be made manually through register control or automatically using an internal state machine.

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
CLK_SWITCH_MODE_PLLA	0436[1:0]	0436[1:0]	Selects manual or automatic switching mode for DSPLL
CLK_SWITCH_MODE_PLLB	0536[1:0]	0536[1:0]	A, B, C, D.
CLK_SWITCH_MODE_PLLC	0636[1:0]		0: For manual
CLK_SWITCH_MODE_PLLD	0737[1:0]	_	1: For automatic, non-revertive
			2: For automatic, revertive
			3: Reserved

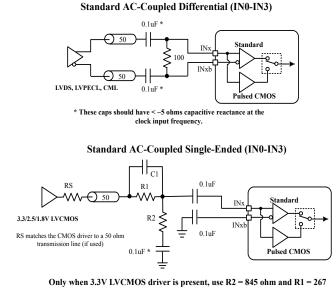
Table 4.1. Manual or Automatic Input Clock Selection Control Registers

In manual mode the input selection is made by writing to a register. If there is no clock signal on the selected input, the DSPLL will automatically enter holdover mode if the holdover history is valid or Freerun if it is not.

Table 4.2. Manual Input Select Control Registers

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
IN_SEL_PLLA	042A[2:0]	042A[2:0]	Selects the clock input used to synchronize DSPLL A, B,
IN_SEL_PLLB	052A[3:1]	052A[3:1]	C, or D. Selections are: IN0, IN1, IN2, IN3, correspond- ing to the values 0, 1, 2, and 3. Selections 4–7 are re-
IN_SEL_PLLC	062A[2:0]		served.
IN_SEL_PLLD	072B[2:0]	_	

Automatic input switching is available in addition to the manual selection described previously. In automatic mode, the switching criteria is based on input clock qualification, input priority and the revertive option. The IN_SEL_PLLx register bits are not used in automatic input switching. Also, only input clocks that are valid (i.e., with no active fault indicators) can be selected by the automatic clock switching. If there are no valid input clocks available, the DSPLL will enter Holdover or Freerun mode. With Revertive switching enabled, the highest priority input with a valid input clock is always selected. If an input with a higher priority becomes valid then an automatic switchover to that input will be initiated. With Non-revertive switching, the active input will always remain selected while it is valid. If it becomes invalid, an automatic switchover to the highest priority valid input will be initiated.


Table 4.3. Automatic Input Select Control Registers

Setting Name	Hex A	ddress	Function
	Si5347	Si5346	
IN(3,2,1,0)_PRIORITY_PLLA	0x0438–0x0439	0x0438–0x0439	Selects the automatic selection priority for [IN3, IN2,
IN(3,2,1,0)_PRIORITY_PLLB	0x0538–0x0539	0x0538–0x0539	IN1, IN0] for each DSPLL A, B, C, D. Selections are: 1st, 2nd, 3rd, 4th, or never select. Default is IN0=1st,
IN(3,2,1,0)_PRIORITY_PLLC	0x0638–0x0639		N1=2nd, IN2=3rd, IN3=4th.
IN(3,2,1,0)_PRIORITY_PLLD	0x0739–0x073A		
IN(3,2,1,0)_LOS_MSK_PLLA	0x0437	0x0437	Determines if the LOS status for [IN3, IN2, IN1, IN0] is
IN(3,2,1,0)_LOS_MSK_PLLB	0x0537	0x0537	used in determining a valid clock for the automatic input selection state machine for DSPLL A, B, C, D. Default is
IN(3,2,1,0)_LOS_MSK_PLLC	0x0637	_	LOS is enabled (un-masked).
IN(3,2,1,0)_LOS_MSK_PLLD	0x0738	_	

Setting Name	Hex Address		Function
	Si5347	Si5346	
IN(3,2,1,0)_OOF_MSK_PLLA	0x0437	0x0437	Determines if the OOF status for [IN3, IN2, IN1, IN0] is
IN(3,2,1,0)_OOF_MSK_PLLB	0x0537	0x0537	used in determining a valid clock for the automatic input selection state machine for DSPLL A, B, C, D. Default is
IN(3,2,1,0)_OOF_MSK_PLLC	0x0637		OOF enabled (un-masked).
IN(3,2,1,0)_OOF_MSK_PLLD	0x0738	_	


4.2 Types of Inputs

Each of the four different inputs IN0-IN3 can be configured as standard LVDS, LVPECL, HCL, CML, and single-ended LVCMOS formats, or as a low duty cycle pulsed CMOS format. The standard format inputs have a nominal 50% duty cycle, must be ac-coupled and use the "Standard" Input Buffer selection as these pins are internally dc-biased to approximately 0.83 V. The pulsed CMOS input format allows pulse-based inputs, such as frame-sync and other synchronization signals having a duty cycle much less than 50%. These pulsed CMOS signals are dc-coupled and use the "Pulsed CMOS" Input Buffer selection. In all cases, the inputs should be terminated near the device input pins as shown below in Figure 4.2 Input Termination for Standard and Pulsed CMOS Inputs on page 20. The resistor divider values given below will work with up to 1 MHz pulsed inputs. In general, following the "Standard AC Coupled Single Ended" arrangement shown below will give superior jitter performance.

Only when 3.3V LVCMOS driver is present, use R2 = 845 ohm and R1 = 267 ohm if needed to keep the signal at INx < 3.6 Vpp_se. Including C1 = 6 pf may improve the output jitter due to faster input slew rate at INx. If attenuation is not needed for Inx<3.6Vppse, make R1 = 0 ohm and omit C1, R2 and the capacitor below R2. C1, R1, and R2 should be physically placed as close as practicle to the device input pins. *This cap should have less than ~20 ohms of capacitive reactance at the clock input frequency

DC-Coupled Pulsed CMOS only for Frequencies < 1MHz (IN0-IN3)

Note: See Datasheet for input clock specifications

Figure 4.2. Input Termination for Standard and Pulsed CMOS Inputs

Floating clock inputs are noise sensitive. Add a cap to ground for all non-CMOS unused clock inputs. Input clock buffers are enabled by setting the IN_EN 0x0949[3:0] bits appropriately for IN3 through IN0. Unused clock inputs may be powered down and left unconnected at the system level. For standard mode inputs, both input pins must be properly connected as shown in Figure 4.2 Input Termination for Standard and Pulsed CMOS Inputs on page 20, including the "Standard AC Coupled Single Ended" case. In Pulsed CMOS mode, it is not necessary to connect the inverting INx input pin. To place the input buffer into Pulsed CMOS mode, the corresponding bit must be set in IN_PULSED_CMOS_EN 0x0949[7:4] for IN3 through IN0.

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
IN_EN	0x0949[3:0]	0x0949[3:0]	Enable each of the input clock buffers for IN3 through IN0.
IN_PULSED_CMOS_EN	0x0949[7:4]	0x0949[7:4]	Enable Pulsed CMOS mode for each input IN3 through IN0.

Table 4.4. Input Clock Control and Configuration Registers

4.2.1 Hitless Input Switching with Phase Buildout

Phase buildout, also referred to as hitless switching, prevents a phase change from propagating to the output when switching between two clock inputs with the exact same frequency and a fixed phase relationship (i.e., they are phase/frequency locked, but with a non-zero phase difference). When phase buildout is enabled, the DSPLL absorbs the phase difference between the two input clocks during a clock switch. When phase buildout is disabled, the phase difference between the two inputs is propagated to the output at a rate determined by the DSPLL loop bandwidth. The phase buildout feature can be enabled on a per DPSLL basis. It supports a minimum input frequency of 8 kHz, but if a fractional P input divider is used, the input frequency must be 300 MHz or higher in order to ensure proper operation.

Table 4.5. DSPLL Phase Buildout Switching Control Registers

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
HSW_EN_PLLA	0436[2]	0436[2]	Phase Buildout Switching Enable/Disable for DSPLL A,
HSW_EN_PLLB	0536[2]	0536[2]	B, C, D. Phase Buildout Switching is enabled by default.
HSW_EN_PLLC	0636[2]		
HSW_EN_PLLD	0737[2]	_	

4.2.2 Ramped Input Switching

If switching between input clocks that are not exactly the same frequency (i.e. are plesiochronous), ramped switching should be enabled to ensure a smooth transition between the two inputs. In this situation, it is also advisable to enable phase buildout to minimize the input-to-output clock skew after the clock switch ramp has completed.

When ramped clock switching is enabled, the Si5347/46 will very briefly go into holdover and then immediately exit from holdover. This means that ramped switching will behave the same as an exit from holdover. This is particularly important when switching between two input clocks that are not the same frequency because the transition between the two frequencies will be smooth and linear. Ramped switching should be turned off when switching between input clocks that are always frequency locked (i.e. are the same exact frequency). Because ramped switching avoids frequency transients and overshoot when switching between clocks that are not the same frequency, CBPro defaults to ramped clock switching. The same ramp rate settings are used for both exit from holdover and clock switching. For more information on ramped exit from holdover including the ramp rate, see section 3.5 Holdover Mode.

Setting Name	Hex Address [Bit Field]	Function
RAMP_SWITCH_EN_PLLA	0x04A6[3]	Enable frequency ramping on an input switch
RAMP_SWITCH_EN_PLLB	0x05A6[3]	
RAMP_SWITCH_EN_PLLC	0x06A6[3]	
RAMP_SWITCH_EN_PLLD	0x07A6[3]	
HSW_MODE_PLLA	0x043A[1:0]	Input switching mode select
HSW_MODE_PLLB	0x053A[1:0]	
HSW_MODE_PLLC	0x063A[1:0]	
HSW_MODE_PLLD	0x073A[1:0]	

Table 4.6. Ramped Input Switching Control Registers

4.2.3 Hitless Switching, LOL (loss of lock) and Fastlock

When doing a clock switch between clock inputs that are frequency locked, LOL might momentarily be asserted. If so programmed, the assertion of LOL will invoke Fastlock. Because Fastlock temporarily increases the loop BW by asynchronously inserting new filter parameters into the DSPLL's closed loop, there may be transients at the clock outputs when Fastlock is either entered or exited. For this reason, it is suggested that automatic entry into Fastlock be disabled by writing a zero to FASTLOCK_AUTO_EN at 0x52B[0] whenever a clock switch might occur. For more details on hitless switching please refer to AN1057: Hitless Switching using Si534x/8x Devices.

4.2.4 External Clock Switching

External clock switches should be avoided because the Si5347/6 has no way of knowing when a clock switch will or has occurred. Because of this, neither the phase buildout engine or the ramp logic can be used. If expansion beyond the four clock inputs is an important issue, please see AN1111: Si534x/8x Input Clock Expander which describes how an external FPGA can be used for this purpose.

4.2.5 Synchronizing to Gapped Input Clocks

The DSPLL supports locking to a gapped input clock with missing clock edges. The purpose of gapped clocking is to modulate the frequency of a periodic clock by selectively removing some of its edges. Gapping a clock significantly increases its jitter so a phase-locked loop with high jitter tolerance and low loop bandwidth is required to produce a low-jitter, periodic clock. The resulting output will be a periodic non-gapped clock with an average frequency of the input with its missing cycles. For example, an input clock of 100 MHz with one cycle removed every 10 cycles will result in a 90 MHz periodic non-gapped output clock. A valid gapped clock input must have a minimum frequency of 10 MHz with a maximum of 2 missing cycles out of every 8.

When properly configured, locking to a gapped clock will not trigger the LOS, OOF, and LOL fault monitors. Clock switching between gapped clocks may violate the hitless switching specification for a maximum phase transient, when the switch occurs during a gap in either input clocks. Figure 4.3 Gapped Input Clock Use on page 23 shows a 100 MHz clock with one cycle removed every 10 cycles that results in a 90 MHz periodic non-gapped output clock.

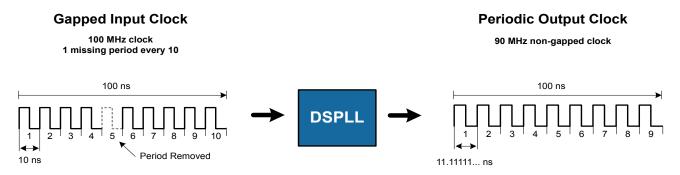


Figure 4.3. Gapped Input Clock Use

4.2.6 Rise Time Considerations

It is well known that slow rise time signals with low slew rates are a cause of increased jitter. In spite of the fact that the low loop BW of the Si5347/46 will attenuate a good portion of the jitter that is associated with a slow rise time clock input, if the slew rate is low enough, the output jitter will increase. The following figure shows the effect of a low slew rate on RMS jitter for a differential clock input. The figure shows the relative increase in the amount of RMS jitter due to slow rise time and is not intended to show absolute jitter values.

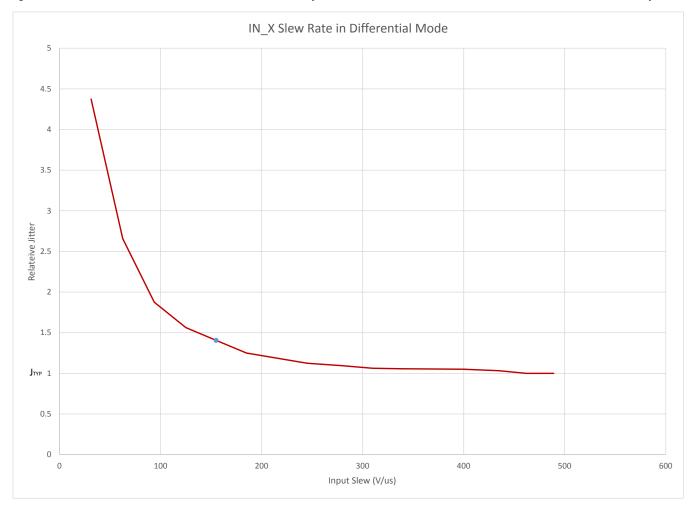


Figure 4.4. Effect of Low Slew Rate on RMS Jitter

4.3 Fault Monitoring

All four input clocks (IN0, IN1, IN2, IN3) are monitored for loss of signal (LOS) and out-of-frequency (OOF) as shown in Figure 4.5 Fault Monitors on page 25. The reference at the XA/XB pins is also monitored for LOS since it provides a critical reference clock for the DSPLLs. Each of the DSPLLs also has a Loss Of Lock (LOL) indicator which is asserted when synchronization is lost with their selected input clock.

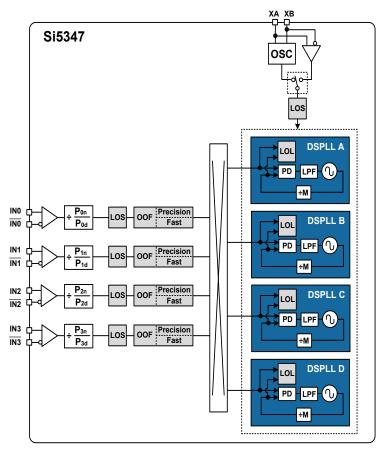


Figure 4.5. Fault Monitors

4.3.1 Input Loss of Signal (LOS) Detection

The loss of signal monitor measures the period of each input clock cycle to detect phase irregularities or missing clock edges. Each of the input LOS circuits has its own programmable sensitivity which allows ignoring missing edges or intermittent errors. Loss of signal sensitivity is configurable using the ClockBuilder Pro utility. The LOS status for each of the monitors is accessible by reading a status register. The live LOS register always displays the current LOS state and a sticky register, when set, always stays asserted until cleared.

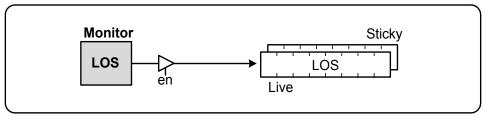


Figure 4.6. LOS Status Indicator

4.3.2 XA/XB LOS Detection

A LOS monitor is available to ensure that the external crystal or reference clock is valid. By default the output clocks are disabled when XAXB_LOS is detected. This feature can be disabled such that the device will continue to produce output clocks when XAXB_LOS is detected.

Table 4.7. LOS Sta	tus Monitor Registers
--------------------	-----------------------

Setting Name	Hex Addres	ss [Bit Field]	Function			
	Si5347	Si5346				
LOS Status Indicators						
LOS(3,2,1,0)	000D[3:0]	000D[3:0]	LOS status monitor for IN3, IN2, IN1, IN0. Indicates if a valid clock is detected or if a LOS condition is present.			
LOSXAXB	000C[1]	000C[1]	LOS status monitor for the XTAL or REFCLK at the XA/XB pins.			
LOS(3,2,1,0)_FLG	0012[3:0]	0012[3:0]	LOS status monitor sticky bits for IN3, IN2, IN1, IN0. Sticky bits will remain asserted when an LOS event oc- curs until they are cleared. Writing a zero to a sticky bit will clear it.			
LOSXAXB_FLG	0011[1]	0011[1]	LOS status monitor sticky bits for XAXB. Sticky bits will remain asserted when an LOS event occurs until cleared. Writing a zero to a sticky bit will clear it.			
LOS Fault Monitor Controls and Se	LOS Fault Monitor Controls and Settings					
LOS(3,2,1,0)_EN	002C[3:0]	002C[3:0]	LOS monitor enable for IN3, IN2, IN1, IN0. Allows disabling the monitor if unused.			
LOS(3,2,1,0)_TRIG_THR	002E[7:0] - 0035[7:0]	002E[7:0] - 0035[7:0]	Sets the LOS trigger threshold and clear sensitivity for IN3, IN2, IN1, IN0. These 16-bit values are determined			
LOS(3,2,1,0)_CLR_THR	0036[7:0] - 003D[7:0]	0036[7:0] - 003D[7:0]	with the ClockBuilder Pro utility.			
LOS(3,2,1,0)_VAL_TIME	002D[7:0]	002D[7:0]	LOS clear validation time for IN3, IN2, IN1, IN0. This sets the time that an input must have a valid clock before the LOS condition is cleared. Settings of 2 ms, 100 ms, 200 ms, and 1 s are available.			

4.3.3 OOF Detection

Each input clock is monitored for frequency accuracy with respect to a OOF reference which it considers as its "0 ppm" reference. This OOF reference can be selected as either:

- · XA/XB pins
- Any input clock (IN0, IN1, IN2, IN3)

The final OOF status is determined by the combination of both a precise OOF monitor and a fast OOF monitor as shown in Figure 4.7 OOF Status Indicator on page 26. An option to disable either monitor is also available. The live OOF register always displays the current OOF state and its sticky register bit stays asserted until cleared.

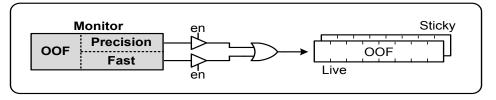


Figure 4.7. OOF Status Indicator

4.3.3.1 Precision OOF Monitor

The precision OOF monitor circuit measures the frequency of all input clocks to within ± 0.0625 ppm accuracy with respect to the selected OOF frequency reference. A valid input clock frequency is one that remains within the register-programmable OOF frequency range of from ± 0.0625 ppm to ± 512 ppm in steps of 1/16 ppm. A configurable amount of hysteresis is also available to prevent the OOF status from toggling at the failure boundary. An example is shown in the figure below. In this case, the OOF monitor is configured with a valid frequency range of ± 6 ppm and with 2 ppm of hysteresis. An option to use one of the input pins (IN0-IN3) as the 0 ppm OOF reference instead of the XAXB pins is available. These options are all register configurable.

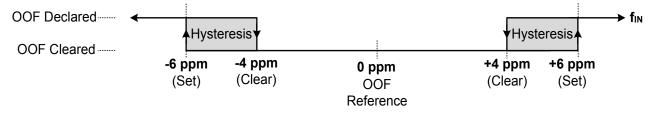


Figure 4.8. Example of Precise OOF Monitor Assertion and Deassertion Triggers

4.3.3.2 Fast OOF Monitor

Because the precision OOF monitor needs to provide 1/16 ppm of frequency measurement accuracy, it must measure the monitored input clock frequencies over a relatively long period of time. This may be too slow to detect an input clock that is quickly ramping in frequency. An additional level of OOF monitoring called the Fast OOF monitor runs in parallel with the precision OOF monitors to quickly detect a ramping input frequency. The Fast OOF responds more quickly and has larger thresholds.

Table 4.8. OOF Status Monitor Registers

Setting Name	Hex Addres	ss [Bit Field]	Function		
	Si5347	Si5346			
OOF Status Indicators					
OOF(3,2,1,0)	000D[7:4]	000D[7:4]	OOF status monitor for IN3, IN2, IN1, IN0. Indicates if a valid clock is detected or if a OOF condition is detected.		
OOF(3,2,1,0)_FLG	0012[7:4]	0012[7:4]	OOF status monitor sticky bits for IN3, IN2, IN1, IN0. Sticky bits will remain asserted when an OOF event oc- curs until cleared. Writing a zero to a sticky bit will clear it.		
OOF(3,2,1,0)_INTR_MSK	0x0018[7:4]	0x0018[7:4]	Marks OOF from generating INTRb interrupt for IN3-IN0.		
			0: Allow OOF interrupt (default)		
			1: Mask (ignore) OOF for interrupt		
OOF Monitor Control and Settings					
OOF_REF_SEL	0040[2:0]	0040[2:0]	This selects the clock that the OOF monitors use as their "0 ppm" reference. Selections are: XA/XB, IN0, IN1, IN2, IN3.		
OOF(3,2,1,0)_EN	003F[3:0]	003F[3:0]	This allows to enable/disable the precision OOF monitor for IN3, IN2, IN1, IN0.		
FAST_OOF(3,2,1,0)_EN	003F[7:4]	003F[7:4]	To enable/disable the fast OOF monitor for IN3, IN2, IN1, IN0.		
OOF(3,2,1,0)_SET_THR	0046[7:0] - 0049[7:0]	0046[7:0] - 0049[7:0]	Determines the OOF alarm set threshold for IN3, IN2, IN1, IN0. Range is from ± 2 ppm to ± 500 ppm in steps of 2 ppm.		
OOF(3,2,1,0)_CLR_THR	004A[7:0] - 004D[7:0]	004A[7:0] - 004D[7:0]	Determines the OOF alarm clear threshold for INx. Range is from ±2 ppm to ±500 ppm in steps of 2 ppm.		
FAST_OOF(3,2,1,0)_SET_THR	0x0051[7:0] -	0x0051[7:0] -	Determines the fast OOF alarm set threshold for IN3,		
	0x0054[7:0]	0x0054[7:0]	IN2, IN1, IN0.		
FAST_OOF(3,2,1,0)_	0x0055 [7:0] -	0x0055 [7:0] -	Determines the fast OOF alarm clear threshold for IN3,		
CLR_THR	0x0058[7:0]	0x0058[7:0]	IN2, IN1, IN0.		

4.3.4 LOL Detection

There is a loss of lock (LOL) monitor for each of the DSPLLs. The LOL monitor asserts a LOL register bit when a DSPLL has lost synchronization with its selected input clock. There is also a dedicated loss of lock pin that reflects the loss of lock condition for each of the DSPLLs (LOL_A, LOL_B, LOL_C, LOL_D). The LOL monitor functions by measuring the frequency difference between the input and feedback clocks at the phase detector. There are two LOL frequency monitors, one that sets the LOL indicator (LOL Set) and another that clears the indicator (LOL Clear).

A block diagram of the LOL monitor is shown in Figure 4.9 LOL Status Indicators on page 29. The live LOL register always displays the current LOL state and a sticky register always stays asserted until cleared. The LOL pin reflects the current state of the LOL monitor.

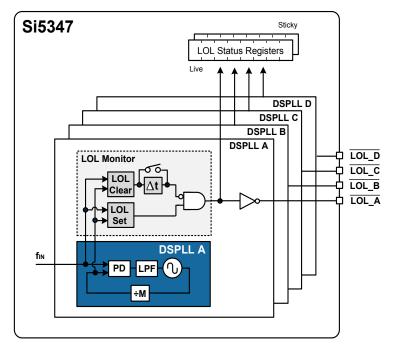


Figure 4.9. LOL Status Indicators

Each of the LOL frequency monitors has adjustable sensitivity which is register configurable from 0.1 ppm to 10000 ppm. Having two separate frequency monitors allows for hysteresis to help prevent chattering of LOL status. An example configuration of the LOL set and clear thresholds is shown in Figure 4.10 LOL Set and Clear Thresholds on page 29.

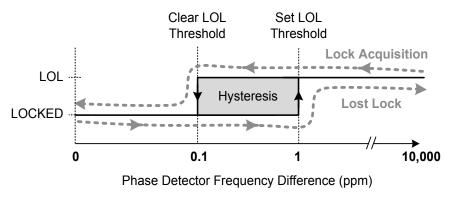


Figure 4.10. LOL Set and Clear Thresholds

An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to completely lock to the input clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes lock acquisition. The configurable delay value depends on frequency configuration and loop bandwidth of the DSPLL and is automatically calculated using the ClockBuilder Pro utility.

It is important to know that, in addition to being status bits, LOL optionally enables Fastlock.

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
LOL Status Indicators			
LOL_PLL(D,C,B,A)	000E[3:0]	000E[1:0]	Status bit that indicates if DSPLL A, B, C, or D is locked to an input clock.
LOL_FLG_PLL(D,C,B,A)	0013[3:0]	0013[1:0]	Sticky bits for LOL_[D,C,B,A]_STATUS register. Writing a zero to a sticky bit will clear it.
LOL Fault Monitor Controls and Settin	gs		
LOL_SET_THR_PLL(D,C,B,A)	009E[7:0] - 009F[7:0]	009E[7:0]	Configures the loss of lock set thresholds for DSPLL A, B, C, D.
LOL_CLR_THR_PLL(D,C,B,A)	00A0[7:0] - 00A1[7:0]	00A0[7:0]	Configures the loss of lock clear thresholds for DSPLL A, B, C, D.
LOL_CLR_DE- LAY_DIV256_PLL(D,C,B,A)	00A4[7:0] - 00B6[7:0]	00A4[7:0] - 00AC[7:0]	This is a 29-bit register that configures the delay value for the LOL Clear delay. Selectable from 4 ns to over 500 seconds. This value depends on the DSPLL fre- quency configuration and loop bandwidth. It is calcula- ted using the ClockBuilder Pro utility
LOL_TIMER_EN_PLL(D,C,B,A)	00A2[3:0]	00A2[1:0]	Allows bypassing the LOL Clear timer for DSPLL A, B, C, D. 0- bypassed, 1-enabled

Table 4.9. LOL Status Monitor Registers

The settings in Table 4.9 LOL Status Monitor Registers on page 30 are handled by ClockBuilder Pro. Manual settings should be avoided.

4.3.5 Interrupt Pin (INTR)

An interrupt pin (INTR) indicates a change in state with any of the status indicators for any of the DSPLLs. All status indicators are maskable to prevent assertion of the interrupt pin. The state of the INTR pin is reset by clearing the sticky status registers.

Table 4.10. Interrupt Mask Registers

Setting Name	Hex Addres	s [Bit Field]	Function
	Si5347	Si5346	-
LOS(3, 2, 1, 0)_INTR_MSK	0018[3:0]	0018[1:0]	Prevents IN3, IN2, IN1, IN0 LOS from asserting the INTR pin
OOF(3, 2, 1, 0)_INTR_MSK	0018[7:4]	0018[5:4]	Prevents IN3, IN2, IN1, IN0 OOF from asserting the INTR pin
LOSXAXB_INTR_MSK	0017[1]	0017[1]	Prevents XAXB LOS from asserting the INTR pin
LOL_INTR_MSK_PLL(D,C,B,A)	0019[3:0]	0019[1:0]	Prevents DSPLL D, C, B, A LOL from asserting the INTR pin
HOLD_INTR_MSK_PLL(D,C,B,A)	0019[7:4]	0019[5:4]	Prevents DSPLL D, C, B, A HOLD from asserting the INTR pin

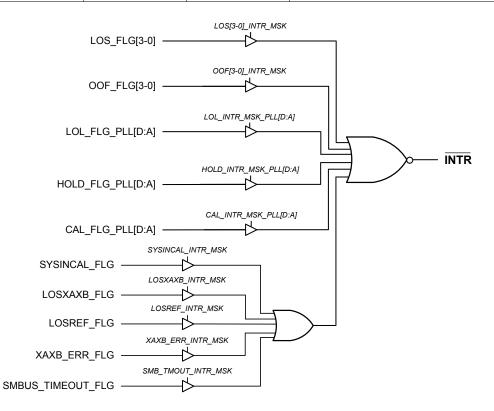


Figure 4.11. Interrupt Triggers and Masks

The _FLG bits are "sticky" versions of the alarm bits and will stay high until cleared. A _FLG bit can be cleared by writing a zero to the _FLG bit. When a _FLG bit is high and its corresponding alarm bit is low, the _FLG bit can be cleared.

During run time, the source of an interrupt can be determined by reading the _FLG register values and logically ANDing them with the corresponding _MSK register bits (after inverting the _MSK bit values). If the result is a logic one, then the _FLG bit will cause an interrupt.

For example, if LOS_FLG[0] is high and LOS_INTR_MSK[0] is low, then the INTR pin will be active (low) and cause an interrupt. If LOS[0] is zero and LOS_MSK[0] is one, writing a zero to LOS_MSK[0] will clear the interrupt (assuming that there are no other interrupt sources). If LOS[0] is high, then LOS_FLG[0] and the interrupt cannot be cleared.

5. Output Clocks

5.1 Outputs

The Si5347 supports up to eight differential output drivers and the Si5346 supports four. Each driver has a configurable voltage amplitude and common mode voltage covering a wide variety of differential signal formats including LVPECL, LVDS, HCSL, with CML-compatible amplitudes. In addition to supporting differential signals, any of the outputs can be configured as dual single-ended LVCMOS (3.3 V, 2.5 V, or 1.8 V) providing up to 16 single-ended outputs, or any combination of differential and single-ended outputs.

5.1.1 Output Crosspoint

A crosspoint allows any of the output drivers to connect with any of the DSPLLs as shown in Figure 5.1 DSPLL to Output Driver Crosspoint on page 32. The crosspoint configuration is programmable and can be stored in NVM so that the desired output configuration is ready at power up.

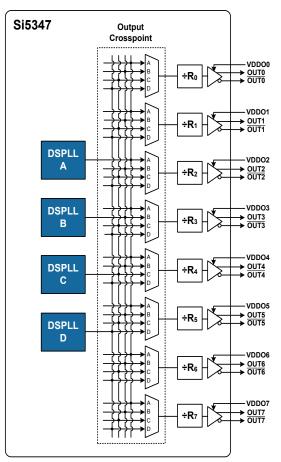


Figure 5.1. DSPLL to Output Driver Crosspoint

5.1.2 Output Divider (R) Synchronization

All the output R dividers are reset to a known state during the power-up initialization period. This ensures consistent and repeatable phase alignment. Resetting the device using the RST pin or asserting the hard reset bit 0x001E[1] will give the same result. Soft reset does not affect output alignment.

5.2 Performance Guidelines for Outputs

Whenever a number of high frequency, fast rise time, large amplitude signals are all close to one another, there will be some amount of crosstalk. The jitter generation of the Si5347/46 is so low that crosstalk can become a significant portion of the final measured output jitter. Some of the crosstalk will come from the Si5347/46, and some will be introduced by the PCB. It is difficult (and possibly irrelevant) to allocate the jitter portions between these two sources since the Si5347/46 must be attached to a board in order to measure jitter.

For extra fine tuning and optimization in addition to following the usual PCB layout guidelines, crosstalk can be minimized by modifying the arrangements of different output clocks. For example, consider the following lineup of output clocks in Table 5.1 Example of Output Clock Placement on page 33.

Output	Not Recommended (Frequency MHz)	Recommended (Frequency MHz)
0	155.52	155.52
1	156.25	155.52
2	155.52	622.08
3	156.25	Not used
4	622.08	Not used
5	625	156.25
6	Not used	156.25
7	Not used	625

Table 5.1. Example of Output Clock Placement

Using this example, a few guidelines are illustrated:

- 1. Avoid adjacent frequency values that are close. For example, a 155.52 MHz clock should not be placed next to a 156.25 MHz clock. If the jitter integration bandwidth goes up to 20 MHz then keep adjacent frequencies at least 20 MHz apart.
- 2. Adjacent frequency values that are integer multiples of one another are allowed, and these outputs should be grouped together when possible. Noting that because 155.52 MHz x 4 = 622.08 MHz and 156.25 MHz x 4 = 625 MHz, it is okay to place each pair of these frequency values close to one another.
- 3. Unused outputs can be used to separate clock outputs that might otherwise interfere with one another. In this case, see OUT3 and OUT4.

If some outputs have tight jitter requirements while others are relatively loose, rearrange the clock outputs so that the critical outputs are the least susceptible to crosstalk. These guidelines need to be followed by those applications that wish to achieve the highest possible levels of jitter performance. Because CMOS outputs have large pk-pk swings, are single ended, and do not present a balanced load to the VDDO supplies, CMOS outputs generate much more crosstalk than differential outputs. For this reason, CMOS outputs should be avoided in jitter-sensitive applications. When CMOS clocks are unavoidable, even greater care must be taken with respect to the above guidelines. For more information on these issues, see application note, "AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure Systems."

The ClockBuilder Pro Clock Placement Wizard is an easy way to reduce crosstalk for a given frequency plan. This feature can be accessed on the "Define Output Frequencies" page of ClockBuilder Pro in the lower left hand corner of the GUI. It is recommended to use this tool after each project frequency plan change.

5.2.1 Output Crosspoint and Signal Format Selection

The differential output swing and common mode voltage are both fully programmable and compatible with a wide variety of signal formats, including LVDS, LVPECL, HCSL, and CML. The differential formats can be either normal- or low-power mode. Low-power format uses less power for the same amplitude but has the drawback of slower rise/fall times. See for register settings to implement variable amplitude differential outputs. In addition to supporting differential signals, any of the outputs can be configured as LVCMOS (3.3, 2.5, or 1.8 V) drivers providing up to 20 single-ended outputs or any combination of differential and single-ended outputs. Note also that CMOS can create much more crosstalk than differential outputs, so extra care must be taken in their pin placement so that other clocks that need the lowest jitter are not on nearby pins. With all outputs, see "AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure Systems" for additional information on frequency planning considerations.

Setting Name	Hex Address [Bit Field]		eld]	Function
	Si5347A/B	Si5347C/D	Si5346	
OUT0_MUX_SEL	010B[2:0]	010B[2:0]	0115[2:0]	Selects the DSPLL that each of the outputs are
OUT1_MUX_SEL	0115[2:0]	011F[2:0]	011A[2:0]	connected to. Options are DSPLL_A, DSPLL_B, DSPLL_C, or DSPLL_D.
OUT2_MUX_SEL	011A[2:0]	0129[2:0]	0129[2:0]	
OUT3_MUX_SEL	011F[2:0]	012E[2:0]	012E[2:0]	
OUT4_MUX_SEL	0129[2:0]	—	_	
OUT5_MUX_SEL	012E[2:0]	—	_	
OUT6_MUX_SEL	0133[2:0]	_	_	
OUT7_MUX_SEL	013D[2:0]	_		

Table 5.2. Output Crosspoint Selection Registers

Table 5.3. Output Signal Format Control Registers

Setting Name	Hex Address [Bit Field]		eld]	Function
	Si5347A/B	Si5347C/D	Si5346	
OUT0_FORMAT	0109[2:0]	0109[2:0]	0113[2:0]	Selects the output signal format as differential or
OUT1_FORMAT	0113[2:0]	011D[2:0]	0118[2:0]	LVCMOS.
OUT2_FORMAT	0118[2:0]	0127[2:0]	0127[2:0]	
OUT3_FORMAT	011D[2:0]	012C[2:0]	012C[2:0]	
OUT4_FORMAT	0127[2:0]	_	_	
OUT5_FORMAT	012C[2:0]	_	_	
OUT6_FORMAT	0131[2:0]	_	_	
OUT7_FORMAT	013B[2:0]	_	_	

5.2.2 Output Terminations

The differential output drivers support both ac coupled and dc coupled terminations as shown below.

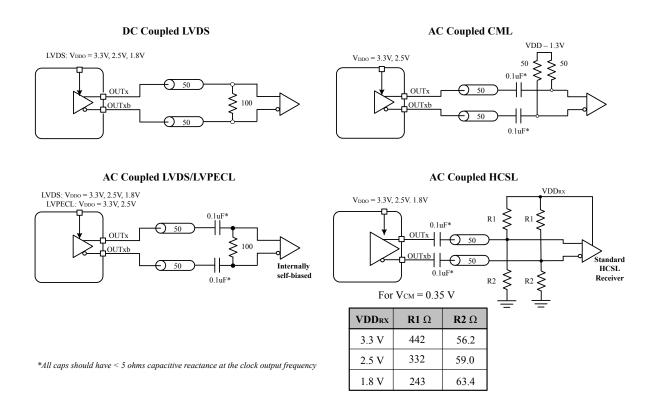


Figure 5.2. Output Terminations for Differential Outputs

5.3 Differential Outputs

5.3.1 Differential Output Amplitude Controls

The differential amplitude of each output can be controlled with the following registers. See for register settings for non-standard amplitudes.

Setting Name	Hex Address [Bit Field]		eld]	Function
	Si5347A/B	Si5347C/D	Si5346	
OUT0_AMPL	010A[6:4]	010A[6:4]	0114[6:4]	Sets the differential voltage swing (amplitude) for
OUT1_AMPL	0114[6:4]	011E[6:4]	0119[6:4]	the output drivers in both normal and low-power modes. See Table 5.6 Recommended Settings
OUT2_AMPL	0119[6:4]	0128[6:4]	0128[6:4]	for Differential LVDS, LVPECL, HCSL, and CML on page 37 for more information.
OUT3_AMPL	011E[6:4]	012D[6:4]	012D[6:4]	
OUT4_AMPL	0128[6:4]	_	_	
OUT5_AMPL	012D[6:4]	_	_	
OUT6_AMPL	0132[6:4]	_	_	
OUT7_AMPL	013C[6:4]	_	_	

5.3.2 Differential Output Common Mode Voltage Selection

The common mode voltage (VCM) for differential output normal and low-power modes is selectable depending on the supply voltage provided at the output's VDDO pin. See Table 5.6 Recommended Settings for Differential LVDS, LVPECL, HCSL, and CML on page 37. for recommended OUTx_CM settings for common signal formats. See for recommended OUTx_CM settings when using custom output amplitude.

Setting Name	Hex Address [Bit Field]			Function
	Si5347A/B	Si5347C/D	Si5346	
OUT0_CM	010A[3:0]	010A[3:0]	0114[3:0]	Sets the common mode voltage for the differen-
OUT1_CM	0114[3:0]	011E[3:0]	0119[3:0]	tial output driver. See Table 5.6 Recommended Settings for Differential LVDS, LVPECL, HCSL,
OUT2_CM	0119[3:0]	0128[3:0]	0128[3:0]	and CML on page 37 for more information.
OUT3_CM	011E[3:0]	012D[3:0]	012D[3:0]	
OUT4_CM	0128[3:0]	_	_	
OUT5_CM	012D[3:0]	_	_	
OUT6_CM	0132[3:0]	_	_	
OUT7_CM	013C[3:0]	_	_	

Table 5.5. Differential Output Common Mode Voltage Control Registers

5.3.3 Recommended Settings for Differential LVPECL, LVDS, HCSL, and CML

Each differential output has four settings for control:

- 1. Normal or Low Power Format
- 2. Amplitude (sometimes called Swing)
- 3. Common Mode Voltage
- 4. Stop High or Stop Low

The Normal mode setting includes an internal 100 Ω resistor between the OUTx pins. In Low Power mode, this resistor is removed, resulting in a higher output impedance. The increased impedance creates larger amplitudes for the same power while reducing edge rates that may increase jitter or phase noise. In either mode, the differential receiver must be properly terminated to the PCB trace impedance for good system signal integrity. Note that ClockBuilder Pro does not provide low-power mode settings. Contact Silicon Labs Technical Support for assistance with low-power mode use.

Amplitude controls are as described in the previous section and also in more detail in . Common mode voltage selection is also described in more detail in Appendix A. The Stop High or Stop Low choice is described above.

Table 5.6. Recommended Settings for Differential LVDS, LVPECL, HCSL, and CML

Standard	VDDOx	Mode	OUTx_FORMAT	OUTx_CM	OUTx_AMPL	
	(V)		(dec)	(dec)	(dec)	
LVPECL	3.3	Normal	1	11	6	
LVPECL	2.5	Normal	1	11	6	
LVPECL	3.3	Low-Power	2	11	3	
LVPECL	2.5	Low-Power	2	11	3	
LVDS	3.3	Normal	1	3	3	
LVDS	2.5	Normal	1	11	3	
Sub-LVDS1	1.8	Normal	1	13	3	
LVDS	3.3	Low-Power	2	3	1	
LVDS	2.5	Low-Power	2	11	1	
Sub-LVDS1	1.8	Low-Power	2	13	1	
HCSL2	3.3	Low-Power	2	11	3	
HCSL2	2.5	Low-Power	2	11	3	
HCSL2	1.8	Low-Power	2	13	3	

LVDS receiver is highly recommended.

2. Creates HCSL compatible signals, see HCSL receiver biasing network in Figure 16.

The output differential driver can also produce a wide range of CML compatible output amplitudes. See for additional information.

5.4 LVCMOS Outputs

5.4.1 LVCMOS Output Terminations

LVCMOS outputs may be ac- or dc-coupled, as shown in Figure 5.2 Output Terminations for Differential Outputs on page 35. AC coupling is recommended for best jitter and phase noise performance. For dc-coupled LVCMOS, as shown again in Figure 5.3 LVCMOS Output Terminations on page 38 below, series termination resistors are required in order to increase the total source resistance to match the trace impedance of the circuit board.

DC Coupled LVCMOS

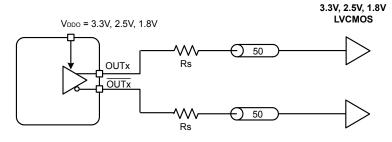


Figure 5.3. LVCMOS Output Terminations

5.4.2 LVCMOS Output Impedance And Drive Strength Selection

Each LVCMOS driver has a configurable output impedance to accommodate different trace impedances and drive strengths. A series source termination resistor (Rs) is recommended close to the output to match the selected output impedance to the trace impedance (i.e., Rs = Trace Impedance – Zs). There are multiple programmable output impedance selections for each VDDO option as shown in Table 5.7 LVCMOS Output Impedance and Drive Strength Selections on page 39. Generally, the lowest impedance for a given supply voltage is preferable, since it will give the fastest edge rates.

Table 5.7. LVCMOS Output Impedance and Drive Strength Selections

VDDO	OUTx_CMOS_DRV	Source Impedance (Zs)	Drive Strength (Iol/Ioh)
3.3 V	0x01	38 Ω	10 mA
	0x02	30 Ω	12 mA
	0x03*	22 Ω	17 mA
2.5 V	0x01	43 Ω	6 mA
	0x02	35 Ω	8 mA
	0x03*	24 Ω	11 mA
1.8 V	0x03*	31 Ω	5 mA
Note: Use o	f the lowest impedance setting	is recommended for all supply volta	ages for best edge rates.

Table 5.8. LVCMOS Drive Strength Control Registers

Setting Name	Hex Address [Bit Field]			Function
	Si5347A/B	Si5347C/D	Si5346	
OUT0_CMOS_DRV	0109[7:6]	0109[7:6]	0118[7:6]	LVCMOS output impedance. See Table
OUT1_CMOS_DRV	0113[7:6]	011D[7:6]	011D[7:6]	5.7 LVCMOS Output Impedance and Drive Strength Selections on page 39.
OUT2_CMOS_DRV	0118[7:6]	0127[7:6]	0127[7:6]	
OUT3_CMOS_DRV	011D[7:6]	012C[7:6]	012C[7:6]	
OUT4_CMOS_DRV	0127[7:6]	_	_	
OUT5_CMOS_DRV	012C[7:6]	_	_	
OUT6_CMOS_DRV	0131[7:6]	_	_	
OUT7_CMOS_DRV	013B[7:6]	_	_	

5.4.3 LVCMOS Output Signal Swing

The signal swing (V_{OL}/V_{OH}) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output driver has its own VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers.

5.4.4 LVCMOS Output Polarity

When a driver is configured as an LVCMOS output it generates a clock signal on both pins (OUTx and OUTx). By default the clock on the OUTx pin is generated with the same polarity (in phase) with the clock on the OUTx pin. The polarity of these clocks is configurable enabling complimentary clock generation and/or inverted polarity with respect to other output drivers.

Setting Name	Hex Address [Bit Field]		Function					
	Si5347A/B	Si5347C/D	Si5346					
OUT0_INV	010B[7:6]	010B[7:6]	0115[7:6]	Controls output polarity of the OUTx and OUTx pins when in LVCMOS mode. Selections are:				and OUTx pins when in
OUT1_INV	0115[7:6]	011F[7:6]	011A[7:6]					
OUT2_INV	011A[7:6]	0129[7:6]	0129[7:6]	OU	Tx_IN	OUTx	OUTx	Comment
OUT3_INV	011F[7:6]	012E[7:6]	012E[7:6]		v gister			
OUT4_INV	0129[7:6]	_	_	Set	ttings			
OUT5_INV	012E[7:6]	_	_	C	0 0	CLK	CLK	Both in phase (de- fault)
OUT6_INV	0133[7:6]	—	_	C	01	CLK	CLK	OUTx inverted
OUT7_INV	013D[7:6]	_	_	1	10	CLK	CLK	OUTx and OUTx in- verted
				1	11	CLK	CLK	Both out of phase

Table 5.9.	LVCMOS Output	t Polarity Contro	I Registers
------------	---------------	-------------------	-------------

ОПТО

OUTO

OUT1

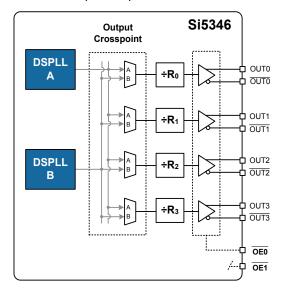
OUT2

OUT3

OE1

Si5346

5.5 Output Enable/Disable


The Si5347/46 allows enabling/disabling outputs by either pin, register control, or a combination of both. Two output enable pins are available (OE0, OE1). The output enable pins can be mapped to any of the outputs (OUTx) through register configuration. By default OE0 controls all of the outputs while OE1 remains unmapped and has no affect until configured. Figure 5.4 Example of Configuring Output Enable Pins on page 41 shows an example of a output enable mapping scheme that is register configurable and can be stored in NVM as the default at power-up.

DSPLL

Α

DSPLL

В

In its default state the $\overline{OE0}$ pin enables/ disables all outputs. The $\overline{OE1}$ pin is not mapped and has no effect on outputs.

An example of an configurable output enable scheme. In this case OE0 controls the outputs associated with DSPLL A, while OE1 controls the outputs of DSPLL B.

Output

Crosspoint

Enabling and disabling outputs can also be controlled by register control. This allows disabling one or more output when the OE pin(s) has them enabled. By default the output enable register settings are configured to allow the OE pins to have full control.

5.5.1 Output Disable State Selection

When the output driver is disabled, the outputs will drive either logic high or logic low, selectable by the user. The output common mode voltage is maintained while the driver is disabled, reducing enable/disable transients.

By contrast, powering down the driver rather than disabling it increases output impedance and shuts off the output common mode voltage. For all output drivers connected in the system, it is recommended to use Disable rather than Powerdown to reduce enable/disable common mode transients. Unused outputs may be left unconnected, powered down to reduce current draw, and, with the corresponding VDDOx, left unconnected.

5.5.2 Output Disable During LOL

By default a DSPLL that is out of lock will generate an output clock. There is an option to disable the outputs when a DSPLL is out of lock (LOL). This option can be useful to force a downstream PLL into holdover.

5.5.3 Output Disable During XAXB_LOS

The internal oscillator circuit, in combination with the external crystal, provides a critical function for the operation of the DSPLLs. In the event of a crystal failure the device will assert an XAXB_LOS alarm. By default all outputs will be disabled during assertion of the XAXB_LOS alarm.

5.5.4 Output Driver State When Disabled

The disabled state of an output driver is register-configurable as disable low or disable high.

Table 5.10.	Output Enable/Disable Control Registers
-------------	--

Setting Name	Name Hex Address [Bit Field]			Function
	Si5347A/B	Si5347C/D	Si5346	
OUTALL_DISABLE_ LOW	0102[0]	0102[0]	0102[0]	Allows disabling all output drivers: 0 - all outputs disabled, 1 - all outputs controlled by the OUTx_OE bits. Note that if the OE pin is held high (disabled), then all assigned outputs will be disabled regardless of the state of this register bit.
OUT0_OE	0108[1]	0108[1]	0012[1]	Allows enabling/disabling individual output driv-
OUT1_OE	0112[1]	011C[1]	0117[1]	ers. Note that the OE pin must be held low in or- der to enable an output with these register bits.
OUT2_OE	0117[1]	0126[1]	0126[1]	
OUT3_OE	011C[1]	012B[1]	012B[1]	
OUT4_OE	0126[1]	_	—	
OUT5_OE	012B[1]	_	_	
OUT6_OE	0130[1]	_	_	
OUT7_OE	013A[1]	_	_	
OUT_DIS_MSK_LOL_ PLL(D,C,B,A)	0142[3:0]	0142[3:0]	0142[1:0]	Determines if the outputs are disabled during an LOL condition. 0 = outputs disable on LOL, 1 = outputs remain enabled during LOL (default). This option is independently configured for each DSPLL. See DRVx_DIS_SRC registers.
OUT_DIS_MSK_ LOSXAXB	0141[6]	0141[6]	0141[6]	Determines if outputs are disabled during an LOSXAXB condition. 0 = all outputs disabled on LOSXAXB (default), 1 = outputs remain enabled during LOSXAXB condition.
OUT0_DIS_STATE	0109[5:4]	0109[5:4]	0113[5:4]	Sets the state for the outputs when they are disa-
OUT1_DIS_STATE	0113[5:4]	011D[5:4]	0118[5:4]	bled.
OUT2_DIS_STATE	0118[5:4]	0127[5:4]	0127[5:4]	
OUT3_DIS_STATE	011D[5:4]	012C[5:4]	012C[5:4]	
OUT4_DIS_STATE	0127[5:4]	_	_	
OUT5_DIS_STATE	012C[5:4]	_	_	
OUT6_DIS_STATE	0131[5:4]	_	_	
OUT7_DIS_STATE	013B[5:4]		_	

5.5.5 Synchronous/Asynchronous Output Selection

Outputs can be configured to enable and disable either synchronously or asynchronously. In synchronous disable mode the output will wait until a clock period has completed before the driver is disabled. This prevents unwanted runt pulses from occurring when disabling an output. In asynchronous disable mode, the output clock will disable immediately without waiting for the period to complete.

Table 5.11	. Synchronous/Asynchronous Disable Control Registers
------------	--

Setting Name	Hex Address [Bit Field]			Function
	Si5347A/B	Si5347C/D	Si5346	
OUT0_SYNC_EN	0109[3]	0109[3]	0113[3]	Selects Synchronous or Asynchronous output
OUT1_SYNC_EN	0113[3]	011D[3]	0118[3]	disable. 1= synchronous, 0 = asynchronous. De- fault is asynchronous mode.
OUT2_SYNC_EN	0118[3]	0127[3]	0127[3]	
OUT3_SYNC_EN	011D[3]	012C[3]	012C[3]	
OUT4_SYNC_EN	0127[3]	_	_	
OUT5_SYNC_EN	012C[3]	_	_	
OUT6_SYNC_EN	0131[3]	_	_	
OUT7_SYNC_EN	013B[3]	_	_	

5.5.6 Output Driver Disable Source Summary

There are a number of conditions that may cause the outputs to be automatically disabled. The user may mask out unnecessary disable sources to match the system requirements. Any one of the unmasked sources may cause the outputs to be disabled; this is more powerful but similar in concept to open source "wired-OR" configurations. Table 5.12 Output Driver Disable Sources Summary on page 44 summarizes the output disable sources with additional information for each source.

Table 5.12. Output Driver Disable Sources Summary

		Individually	Maskable?	Related Regi	sters[Bits]		Comments	
Disable Source	Outputs when	Assignable?		(Hex)		Hex)		
	Source			Si5347A/B	Si5347C/D	Si5346		
OUTALL_DISA- BLE_LOW	Low	N	N	0102[0]	0102[0]	0102[0]	User Controllable	
OUT0_OE	Low	Y	N	0108[1]	0108[1]	0112[1]	User Controllable	
OUT1_OE				0112[1]	011C[1]	0117[1]		
OUT2_OE				0117[1]	0126[1]	0126[1]		
OUT3_OE				011C[1]	012B[1]	012B[1]		
OUT4_OE				0126[1]	_	_		
OUT5_OE				012B[1]	_	_		
OUT6_OE				0130[1]	_	_		
OUT7_OE				013A[1]	_	_		
OE0 (pin)	High	Y	N	0022[1:0],	0022[1:0],	0022[1:0],	User Controllable	
OE0 (register)	Low	-		0023-0024	0023-0024	0023-0024		
OE1 (pin)	High	Y	N	0022[2,0],	0022[2,0],	0022[2,0],	User Controllable	
OE1 (register)	Low	-		0025, 0026	0025, 0026	0025, 0026		
LOL_PLL[D:A]	High	Y	Y	000D[3:0],	000D[3:0],	000D[1:0],	Maskable separately for	
				0142[3:0]	0142[3:0]	0142[1:0]	each DSPLL	
LOS_XAXB	High	N	Y	000C[1],	000C[1],	000C[1],	Maskable	
				0141[6]	0141[6]	0141[6]		
SYSINCAL	High	Ν	N	000C[0]	000C[0]	000C[0]	Automatic, not user-control- lable	

6. Digitally Controlled Oscillator (DCO) Mode

The DSPLLs support a DCO mode where their output frequencies are adjustable in pre-defined steps given by frequency step words (FSTEPW). The frequency adjustments are controlled through the serial interface or by pin control using frequency increments (FINC) or decrements (FDEC). A FINC will add the frequency step word to the DSPLL output frequency, while a FDEC will decrement it. The DCO mode is available when the DSPLL is operating in locked mode. Note that the maximum FINC/FDEC update rate, by either hardware or software, is 1 MHz. Each DSPLL being used in DCO mode should have fractional M division enabled by setting the appropriate M_FRAC_EN_PLLx = 0x3B for proper operation.

Note: DCO mode is not available when in free run or when in holdover. A large freq step can assert LOL on the relevant DSPLL. The step sizes and frequency of operation need to be considered with the LOL settings and BW.

Setting Name	Hex Addres	s [Bit Field]	Function
	Si5347	Si5346	
M_FRAC_EN_PLLA	0x0421[5:0]	0x0421[5:0]	DSPLL feedback M divider fractional enable.
M_FRAC_EN_PLLB	0x0521[5:0]	0x0521[5:0]	0x2B: Integer-only division
M_FRAC_EN_PLLC	0x0621[5:0]		0x3B Fractional (or Integer) division
M_FRAC_EN_PLLD	0x0721[5:0]		Required for DCO operation.

Table 6.1. Fractional M Divider Enable Controls

6.1 Frequency Increment/Decrement Using Pin Controls

Controlling the output frequency with pin controls is available on the Si5347. This feature involves asserting the FINC or FDEC pins to increment or decrement the DSPLL frequency. The DSPLL_SEL pins select which DSPLL output frequency is affected by the frequency change. The frequency step words (FSTEPW) define the amount of frequency change for each FINC or FDEC. The FSTEPW may be written once or may be changed after every FINC/FDEC assertion. Note that the DSPLL_SEL pins are not available on the Si5346. Both the FINC and FDEC inputs are rising-edge-triggered and must meet the data sheet minimum pulse width (PW) specifications.

Note: When the FINC/FDEC pins on the Si5347 are unused, the FDEC pin must be pulled down with an external pull-down resistor or jumper. The FINC pin has an internal pull-down and may be left unconnected when not in use.

Table 6.2. 0x0020 DSPLL_SEL[1:0] Control of FINC/FDEC for DCO

Reg Address	Bit Field	Туре	Name	Description
0x0020	0	R/W	FSTEP_PLL_SIN- GLE	0: DSPLL_SEL[1:0] pins and bits are disabled.
			GLE	1: DSPLL_SEL[1:0] pins or FSTEP_PLL bits are ena- bled. See FSTEP_PLL_REGCTRL
0x0020	1	R/W	FSTEP_PLL_REGC	Only functions when FSTEP_PLL_SINGLE = 1.
			TRL	0: DSPLL_SELx pins are enabled, and the correspond- ing register bits are disabled.
				1: DSPLL_SELx_REG register bits are enabled, and the corresponding pins are disabled.
0x0020	3:2	R/W	FSTEP_PLL[1:0]	Register version of the DSPLL_SEL[1:0] pins. Used to select which PLL (M divider) is affected by FINC/FDEC.
				0: DSPLL A M-divider
				1: DSPLL B M-divider
				2: DSPLL C M-divider
				3: DSPLL D M-divider

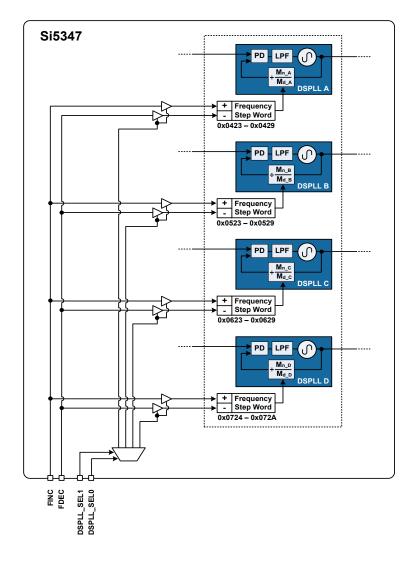


Figure 6.1. Controlling the DCO Mode By Pin Control

6.2 Frequency Increment/Decrement Using the Serial Interface

Controlling the DSPLL frequency through the serial interface is available on both the Si5347 and Si5346. This can be performed by asserting the FINC or FDEC bits to activate the frequency change defined by the frequency step word. A set of mask bits selects the DSPLL(s) that is affect by the frequency change. The FINC and FDEC pins can also be used to trigger a frequency change. Note that both the FINC and FDEC register bits are rising-edge-triggered and self-clearing.

Each DSPLL being used in DCO mode should have fractional M division enabled by setting the appropriate M_FRAC_EN_PLLx=0x3B for proper operation. See AN909: DCO Application with the Si5347/46 for related information.

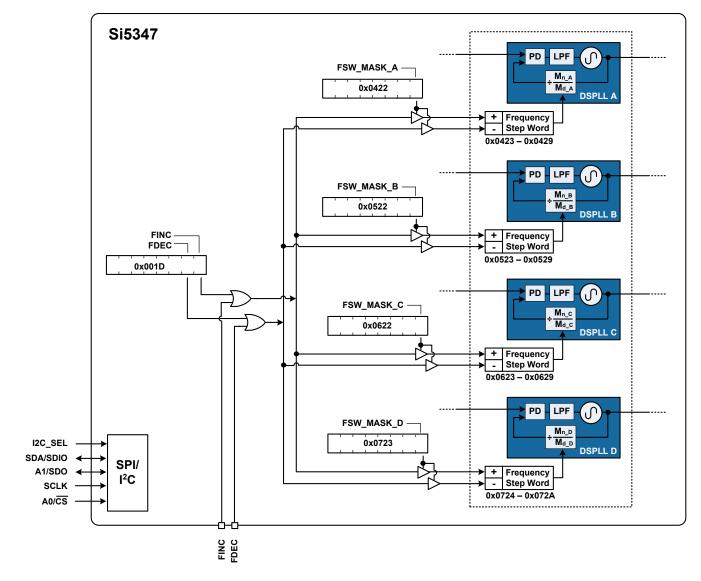


Figure 6.2. Controlling the DCO Mode Using the Serial Interface

Setting Name	Hex Address [Bit Field]		Function	
	Si5347	Si5346		
FINC	001D[0]	001D[0]	Asserting this bit will increase the DSPLL output fre- quency by the frequency step word.	
FDEC	001D[1]	001D[1]	Asserting this bit will decrease the DSPLL output fre- quency by the frequency step word.	
M_FSTEPW_PLLA	0423[7:0] - 0429[7:0]	0423[7:0] - 0429[7:0]	This is a 56-bit frequency step word for DSPLL A, B, C, D. The FSTEPW will be added or subtracted to the	
M_FSTEPW_PLLB	0523[7:0] - 0529[7:0]	0523[7:0] - 0529[7:0]	DSPLL output frequency during assertion of the FINC/ FDEC bits or pins. The FSTEPW is calculated based on the frequency configuration and is easily calculated us-	
M_FSTEPW_PLLC	0623[7:0] - 0629[7:0]	_	ing ClockBuilder Pro utility.	
M_FSTEPW_PLLD	0724[7:0] - 072A[7:0]	_		
M_FSTEP_MSK_PLLA	0422[0]	0422[0]	This mask bit determines if a FINC or FDEC affects	
M_FSTEP_MSK_PLLB	LB 0522[0] 0522[0		DSPLL A, B, C, D. 0 = FINC/FDEC will increment/dec ment the FSTEPW to the DSPLL. 1 = Ignores FINC/	
M_FSTEP_MSK_PLLC	0622[0]	—	FDEC.	
M_FSTEP_MSK_PLLD	0723[0]			
M_FRAC_EN_PLLA	0x0421[5:0]	0x0421[5:0]	DSPLL feedback M divider fractional enable.	
M_FRAC_EN_PLLB	0x0521[5:0]	0x0521[5:0]	0x2B: Integer-only division	
M_FRAC_EN_PLLC	0x0621[5:0]	_	0x3B: Fractional (or Integer) division	
M_FRAC_EN_PLLD	0x0721[5:0]	_	Required for DCO operation.	

Table 6.3. Frequency Increment/Decrement Control Registers

6.2.1 DCO with Direct Register Writes

In addition to the register-based FINC/FDEC described above, updated values for the DSPLL feedback M divider value may be updated directly by the user. When the M divider numerator (Mx_NUM) and its corresponding update bit (Mx_UPDATE) is written, the new numerator value will take effect and the output frequency will change without any glitches. The M divider numerator and denominator terms (Mx_NUM and Mx_DEN) can be left and right-shifted so that the least significant bit of the numerator word represents the exact step resolution that is needed for your application. Each individual M divider has its own update bit (Mx_UPDATE) that must be written to cause the new numerator value to take effect. All M dividers can be updated at the same time by issuing a Soft Reset.

Changing the DSPLL feedback M divider value while the device is operating will not generate any glitches on affected outputs. The frequency settling to the new value will be determined by the Loop BW of the DSPLL. All other outputs generated by other DSPLLs will be unaffected by this update. It is generally recommended to avoid dynamically changing the M divider denominator (Mx_DEN) as, in some cases, a small output phase shift may be observed when the update becomes active. However, by using the proper combination of settings for the particular frequency plan, it is possible to avoid this entirely. If your application requires dynamic changes to an M divider denominator, contact Silicon Labs at https://www.silabs.com/support/pages/contacttechnicalsupport.aspx.

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
M_NUM_PLLA	0x0415–0x041B	0x0415–0x041B	56-bit DSPLL feedback M divider Numerator.
M_NUM_PLLB	0x0515–0x051B	0x0515–0x051B	
M_NUM_PLLC	0x0615–0x061B		
M_NUM_PLLD	0x0716–0x071C		
M_DEN_PLLA	0x041C-0x041F	0x041C-0x041F	32-bit DSPLL feedback M divider Denominator.
M_DEN_PLLB	0x051C-0x051F	0x051C-0x051F	
M_DEN_PLLC	0x061C-0x061F		
M_DEN_PLLD	0x071D-0x0720		
M_UPDATE_PLLA	0x0420[0]	0x0420[0]	Must write a 1 to this bit to cause the individual M divider
M_UPDATE_PLLB	0x0520[0]	0x0520[0]	changes to take effect. Note that a corresponding SOFT_RST_PLLx or device SOFT_RST will also update
M_UPDATE_PLLC	0x0620[0]		the M divider values.
M_UPDATE_PLLD	0x0721[0]		

Table 6.4. Direct DCO Control Registers

7. Serial Interface

Configuration and operation of the Si5347/46 is controlled by reading and writing registers using the I^2C or SPI serial interface. The I2C_SEL pin selects between I²C or SPI operation. The Si5347/46 supports communication with either a 3.3 V or 1.8 V host by setting the I0_VDD_SEL (0x0943[0]) configuration bit. The SPI mode supports 4-wire or 3-wire by setting the SPI_3WIRE configuration bit. See Figure 7.1 I²C/SPI Device Connectivity Configurations on page 51 for supported modes of operation and settings. The I²C pins are open drain and are ESD clamped to 3.3 V, regardless of the host supply level. The I²C pins are clamped to 3.3 V so that they may be externally pulled up to 3.3 V regardless of IO_VDD_SEL (in register 0x0943).

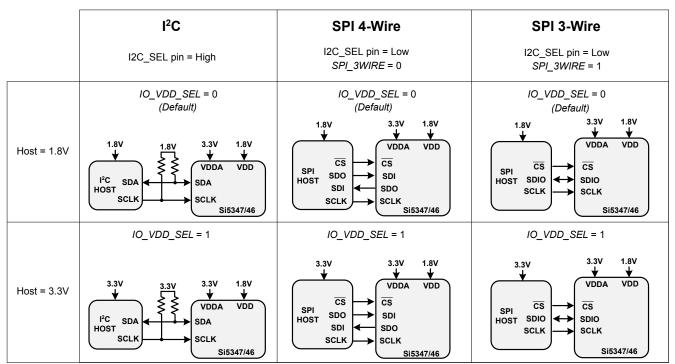


Figure 7.1. I²C/SPI Device Connectivity Configurations

Table 7.1 I²C/SPI Register Settings on page 52 lists register settings of interest for the I²C/SPI.

If neither serial interface is used, leave I2C_SEL unconnected. Pull pins SDA/SDIO, SCLK, A1/SDO, and A0/CS all low.

Note that the Si5347/46 is not I^2C fail-safe upon loss of power. Applications that require fail-safe operation should isolate the device from a shared I^2C bus.

Setting Name	Hex Addres	s [Bit Field]	Function	
	Si5347 Si5346			
IO_VDD_SEL	0x0943[0]	0x0943[0]	The IO_VDD_SEL configuration bit optimizes the V _{IL} , V _{IH} , V _{OL} , and V _{OH} thresholds to match the VDDS voltage. By default the IO_VDD_SEL bit is set to the VDD option. The serial interface pins are always 3.3 V tolerant even when the device's VDD pin is supplied from a 1.8 V source. When the I ² C or SPI host is operat- ing at 3.3 V and the Si5347/46 at VDD = 1.8 V, the host must write the IO_VDD_SEL configuration bit to the VDDA option. This will ensure that both the host and the serial interface are operating at the optimum voltage thresholds.	
SPI_3WIRE	0x002B[3]	0x002B[3]	The SPI_3WIRE configuration bit selects the option of 4-wire or 3- wire SPI communication. By default, this configuration bit is set to the 4-wire option. In this mode the Si5347/46 will accept write commands from a 4-wire or 3- wire SPI host allowing configura- tion of device registers. For full bidirectional communication in 3- wire mode, the host must write the SPI_3WIRE configuration bit to "1".	

Table 7.1. I²C/SPI Register Settings

7.1 I²C Interface

When in I^2C mode, the serial interface operates in slave mode with 7-bit addressing and can operate in Standard-Mode (100 kbps) or Fast-Mode (400 kbps) and supports burst data transfer with auto address increments. The I^2C bus consists of a bidirectional serial data line (SDA) and a serial clock input (SCL) as shown in the figure below. Both the SDA and SCL pins must be connected to a supply via an external pull-up (4.7 k Ω) as recommended by the I^2C specification as shown in Figure 7.2 I^2C Configuration on page 53. Two address select bits (A0, A1) are provided allowing up to four Si5347/46 devices to communicate on the same bus. This also allows four choices in the I^2C address for systems that may have other overlapping addresses for other I^2C devices.

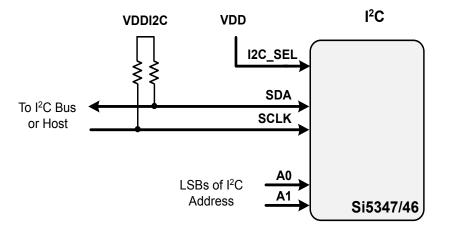


Figure 7.2. I²C Configuration

The 7-bit slave device address of the Si5347/46 consists of a 5-bit fixed address plus 2 pins which are selectable for the last two bits, as shown in Figure 7.3 7-bit I²C Slave Address Bit-Configuration on page 53.

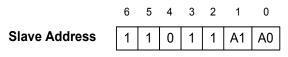
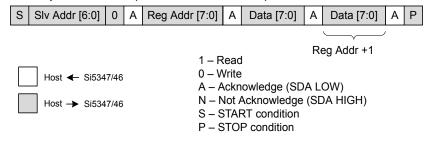
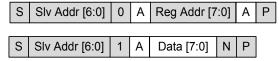
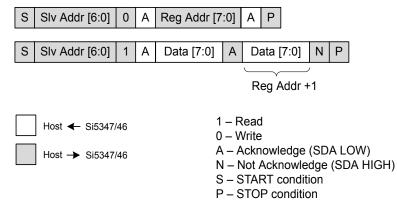



Figure 7.3. 7-bit I²C Slave Address Bit-Configuration

Data is transferred MSB first in 8-bit words as specified by the I²C specification. A write command consists of a 7-bit device (slave) address + a write bit, an 8-bit register address, and 8 bits of data as shown in Figure 7.6 SPI Interface Connections on page 55. A write burst operation is also shown where subsequent data words are written using to an auto-incremented address.

Write Operation – Single Byte								
S	Slv Addr [6:0]	0	А	Reg Addr [7:0]	А	Data [7:0]	А	Р


Write Operation - Burst (Auto Address Increment)



A read operation is performed in two stages. A data write is used to set the register address, then a data read is performed to retrieve the data from the set address. A read burst operation is also supported. This is shown in Figure 7.5 $I^{2}C$ Read Operation on page 54.

Read Operation – Single Byte

Read Operation - Burst (Auto Address Increment)

7.2 SPI Interface

When in SPI mode, the serial interface operates in 4-wire or 3-wire depending on the state of the SPI_3WIRE configuration bit. The 4wire interface consists of a clock input (SCLK), a chip select input (CS), serial data input (SDI), and serial data output (SDO). The 3wire interface combines the SDI and SDO signals into a single bidirectional data pin (SDIO). Both 4-wire and 3-wire interface connections are shown in Figure 7.6 SPI Interface Connections on page 55.

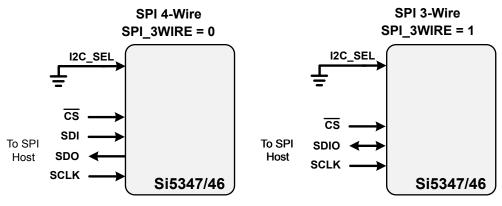


Figure 7.6. SPI Interface Connections

Table 7.2. SPI Command Format

Instruction	I st Byte ¹	2 nd Byte	3 rd Byte	Nth Byte ^{2,3}
Set Address	000x xxxx	8-bit Address	—	—
Write Data	010x xxxx	8-bit Data	—	
Read Data	100x xxxx	8-bit Data		
Write Data + Address Increment	011x xxxx	8-bit Data	—	—
Read Data + Address Increment	101x xxxx	8-bit Data	—	
Burst Write Data	1110 0000	8-bit Address	8-bit Data	8-bit Data

1.X = don't care (1 or 0).

2. The Burst Write Command is terminated by de-asserting /CS (/CS = high).

3. There is no limit to the number of data bytes that follow the Burst Write Command, but the address will wrap around to zero in the byte after address 255 is written.

Writing or reading data consist of sending a "Set Address" command followed by a "Write Data" or "Read Data" command. The 'Write Data + Address Increment' or "Read Data + Address Increment" commands are available for cases where multiple byte operations in sequential address locations is necessary. The "Burst Write Data" instruction provides a compact command format for writing data since it uses a single instruction to define starting address and subsequent data bytes. Figure 7.7 Example Writing Three Data Bytes using the SPI Write Commands on page 56 shows an example of writing three bytes of data using the write commands. As can be seen, the "Write Burst Data" command is the most efficient method for writing data to sequential address locations. Figure 7.8 Example of Reading Three Data Bytes Using the SPI Read Commands on page 56 provides a similar comparison for reading data with the read commands. Note that there is no equivalent burst read; the read increment function is used in this case.

'Set Address' and 'Write Data'						
'Set Addr'	Addr [7:0]	'Write Da	ta' Data [7	7:0]		
'Set Addr'	Addr [7:0]	'Write Da	ta' Data [7	7:0]		
'Set Addr'	Addr [7:0]	'Write Da	ta' Data [7	7:0]		
Set Addres	ss' and 'Wri	te Data + A	Address In	crem	nent'	
'Set Addr'	Addr [7:0]	'Write Da	ita + Addr I	nc'	Data [7:0	D]
'Write Data	+ Addr Inc'	Data [7:	0]			
'Write Data	+ Addr Inc'	Data [7:	0]			
		_				
'Burst Write Data'						
'Burst Write	e Data' Ad	dr [7:0]	Data [7:0]	Da	ata [7:0]	Data [7:0]
Host →	Si5347/46		Host 🗲	Si53	47/46	

Figure 7.7. Example Writing Three Data Bytes using the SPI Write Commands

'Set Address' and 'Read Data'

'Set Addr'	Addr [7:0]	'Read Data'	Data [7:0]
'Set Addr'	Addr [7:0]	'Read Data'	Data [7:0]
'Set Addr'	Addr [7:0]	'Read Data'	Data [7:0]

'Set Address' and 'Read Data + Address Increment'

'Set Addr'	Addr [7:0]	'Read Data + Addr Inc'	Data [7:0]
'Read Data	+ Addr Inc'	Data [7:0]	
'Read Data	+ Addr Inc'	Data [7:0]	
Host -	Si5347/46	🔵 Host 🗲 Si53	47/46

Figure 7.8. Example of Reading Three Data Bytes Using the SPI Read Commands

The timing diagrams for the SPI commands are shown in Figures Figure 7.9 SPI "Set Address" Command Timing on page 57, Figure 7.10 SPI "Write Data" and "Write Data+ Address Increment" Instruction Timing on page 57, Figure 7.11 SPI "Read Data" and "Read Data + Address Increment" Instruction Timing on page 58, and Figure 7.12 SPI "Burst Data Write" Instruction Timing on page 58.

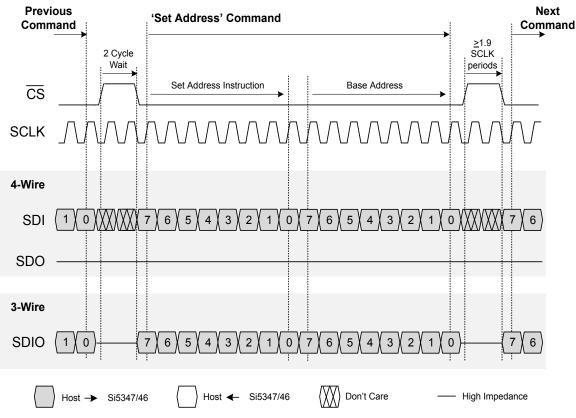


Figure 7.9. SPI "Set Address" Command Timing

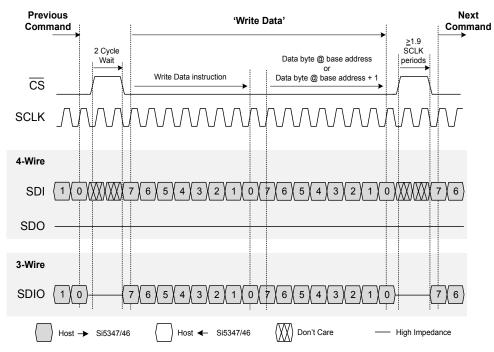


Figure 7.10. SPI "Write Data" and "Write Data+ Address Increment" Instruction Timing

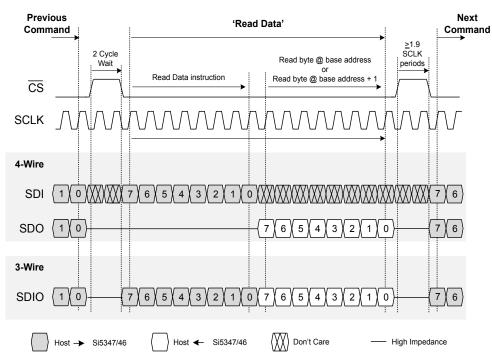


Figure 7.11. SPI "Read Data" and "Read Data + Address Increment" Instruction Timing

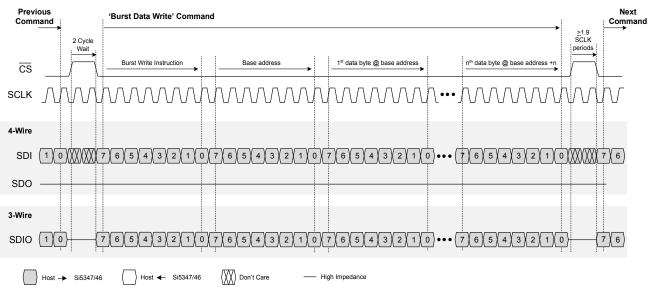
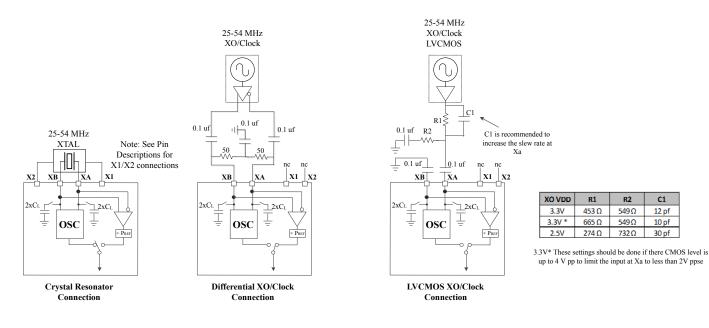


Figure 7.12. SPI "Burst Data Write" Instruction Timing

Note that for all SPI communication the chip select (CS) must be high for the minimum time period between commands. When chip select goes high it indicates the termination of the command. The SCLK can be turned off between commands, particularly if there are very long delays between commands.

8. Field Programming


To simplify design and software development of systems using the Si5347/46, a field programmer is available in addition to the evaluation board. The ClockBuilder Pro Field Programmer supports both "in-system" programming (for devices already mounted on a PCB), as well as "in-socket" programming of Si5347/46 sample devices. Refer to www.silabs.com/CBProgrammer for information about this kit.

9. XAXB External References

9.1 Performance of External References

An external standard non-pullable crystal (XTAL) is recommended in combination with the internal oscillator (OSC) to produce an ultra low phase noise reference clock for the DSPLL, as well as providing a stable reference for the Freerun and Holdover modes. Simplified connection diagrams are shown below. The device includes internal 8 pF crystal loading capacitors which eliminates the need for external capacitors and also has the benefit of reduced noise coupling from external sources. In most applications, using the internal OSC with an external crystal provides the best phase noise performance. See AN905: Si534x External References; Optimizing Performance for more information on the performance of various XO's with these devices. The recommended crystal suppliers are listed in the Si534x/8x Jitter Attenuators Recommended Crystal, TCXO and OCXOs Reference Manual.

Note: See Datasheet for input clock specifications

In addition to crystal operations, the Si5347/46 accepts a clipped sine wave, CMOS, or differential reference clock on the XA/XB interface. Most clipped sine wave and CMOS TCXOs have insufficient drive strength to drive a 100 Ω or 50 Ω load. For this reason, place the TCXO as close to the Si5347/46 as possible to minimize PCB trace length. In addition, ensure that both the Si5347/46 and the TCXO are both connected directly to the ground plane. Figure 9.1 XAXB Crystal Resonator and External Reference Clock Connection Options on page 60 shows the recommended method of connecting a clipped sine wave TCXO to the Si5347/46. Because the Si5347/46 provides dc bias at the XA and XB pins, the ~800 mV peak-peak swing can be input directly into the XA interface of the Si5347/46 once it has been ac-coupled. Because the signal is single-ended, the XB input is ac-coupled to ground. Figure 9.1 XAXB Crystal Resonator and External Reference Clock Connection Options on page 60 illustrates the recommended method of connecting a CMOS rail-to-rail output to the XA/XB inputs of the Si5347/46. The resistor network attenuates the rail-to-rail output swing to ensure that the maximum input voltage swing at the XA pin is less than the data sheet specification. The signal is ac-coupled before connecting it to the Si5347/46 XA input. Again, since the signal is single-ended, the XB input should be ac-coupled to ground. For applications with loop BW values less than 10 Hz that require low wander output clocks, using a TCXO as the XAXB reference source should be considered to avoid the wander of a crystal.

If an external oscillator is used as the XAXB reference, it is important to use a low jitter source because there is effectively no jitter attenuation from the XAXB pins to the outputs. To minimize jitter at the XA/XB pins, the rise time of the XA/XB signals should be as fast as possible.

For best jitter performance, use a XAXB frequency above 40 MHz. Also, for XAXB frequencies higher than 125 MHz, the PXAXB control must be used to divide the input frequency down below 125 MHz.

9.2 Recommend Crystals and Oscillators

Refer to the Si534x/8x Jitter Attenuators Recommended Crystal, TCXO and OCXOs Reference Manual for more information.

9.3 Register Settings to Configure for External XTAL Reference

The following registers can be used to control and make adjustments for the external reference source used.

9.3.1 XAXB_EXTCLK_EN Reference Clock Selection Register

Table 9.1. XAXB External Clock Selection Register

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
XAXB_EXTCLK_EN	090E[0]	090E[0]	Selects between the XTAL or external reference clock on the XA/XB pins. Default is 0, XTAL. Set to 1 to use an external reference oscillator.

The internal crystal loading capacitors (CL) are disabled when an external clock source is selected.

9.3.2 PXAXB Pre-scale Divide Ratio for Reference Clock Register

Table 9.2. XAXB Pre-Scale Divide Ratio Register

Setting Name	Hex Address [Bit Field]		Function
	Si5347	Si5346	
PXAXB	0206[1:0]	0206[1:0]	Sets the XAXB input divider value according to the table below.

The following table lists the values, along with the corresponding divider ratio.

Table 9.3. XAXB Pre-Scale Divide Values

Value (Decimal)	PXAXB Divider Value
0	1
1	2
2	4
3	8

10. Crystal and Device Circuit Layout Recommendations

The main layout issues that should be carefully considered include the following:

Number and size of the ground vias for the Epad (see 11.4 Grounding Vias).

- Output clock trace routing
- Input clock trace routing
- · Control and Status signals to input or output clock trace coupling
- Xtal signal coupling
- Xtal layout

If the application uses a crystal for the XAXB inputs a shield should be placed underneath the crystal connected to the X1 and X2 pins to provide the best possible performance. The shield should not be connected to the ground plane(s), and the layers underneath should have as little area under the shield as possible. It may be difficult to do this for all the layers, but it is important to do this for the layers that are closest to the shield.

Go to www.silabs.com/Si538x-4x-EVB to obtain Si5347-EVB and Si5346-EVB schematics, layouts, and component BOM files.

10.1 64-Pin QFN Si5347 Layout Recommendations

This section details the recommended guidelines for the crystal layout of the 64-pin Si5347 device using an example 8-layer PCB. The following are the descriptions of each of the eight layers.

- · Layer 1: device layer, with low speed CMOS control/status signals
- · Layer 2: crystal shield
- · Layer 3: ground plane
- · Layer 4: power distribution
- Layer 5: power routing layer
- · Layer 6: input clocks
- · Layer 7: output clocks layer
- Layer 8: ground layer

Figure 10.1 64-pin Si5347 Crystal Layout Recommendations Top Layer (Layer 1) on page 63 shows the top layer layout of the Si5347 device mounted on the top PCB layer. This particular layout was designed to implement either a crystal or an external oscillator as the XAXB reference. The crystal/ oscillator area is outlined with the white box around it. In this case, the top layer is flooded with ground. Note that this layout has a resistor in series with each pin of the crystal. In typical applications, these resistors should be removed.

10.1.1 Si5347 Applications without a Crystal

For applications that do not use a crystal, leave X1 and X2 pins as "no connect". Do not tie to ground. In this case, there is no need for a crystal shield or the voids underneath the shield. The XAXB connection should be treated as a high speed critical path that is ac coupled and terminated at the end of the etch run. The layout should minimize the stray capacitance from the XA pin to the XB pin. Jitter is very critical at the XAXB pins and therefore split termination and differential signaling should be used whenever possible.

10.1.2 Si5347 Crystal Guidelines

The following are five recommended crystal guidelines:

- 1. Place the crystal as close as possible to the XA/XB pins.
- 2. Do not connect the crystal's X1 or X2 pins to PCB ground.
- 3. Connect the crystal's GND pins to the DUT's X1 and X2 pins via a local crystal shield placed around and under the crystal. See Figure 10.1 64-pin Si5347 Crystal Layout Recommendations Top Layer (Layer 1) on page 63 at the bottom left for an illustration of how to create a crystal shield by placing vias connecting the top layer traces to the shield layer underneath. Note the zoom view of the crystal shield layer on the next layer down is shown in Figure 10.2 Zoom View Crystal Shield Layer, Below the Top Layer (Layer 2) on page 63.
- 4. Minimize traces adjacent to the crystal/oscillator area especially if they are clocks or frequently toggling digital signals.
- 5. In general do not route GND, power planes/traces, or locate components on the other side, below the crystal GND shield. As an exception if it is absolutely necessary to use the area on the other side of the board for layout or routing, then place the next reference plane in the stack-up at least two layers away or at least 0.05 inches away. The Si5347 should have all layers underneath the ground shield removed.

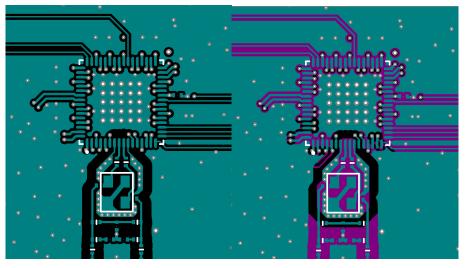


Figure 10.1. 64-pin Si5347 Crystal Layout Recommendations Top Layer (Layer 1)

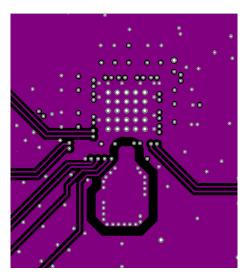


Figure 10.2. Zoom View Crystal Shield Layer, Below the Top Layer (Layer 2)

Figure 10.2 Zoom View Crystal Shield Layer, Below the Top Layer (Layer 2) on page 63 shows the layer that implements the shield underneath the crystal. The shield extends underneath the entire crystal and the X1 and X2 pins. This layer also has the clock input pins. The clock input pins go to layer 2 using vias to avoid crosstalk. As soon as the clock inputs are on layer 2 they have a ground shield above below and on the sides for protection.

Figure 10.3 Crystal Ground Plane (Layer 3) on page 64 is the ground plane and shows a void underneath the crystal shield. Figure 10.4 Power Plane (Layer 4) on page 64 is a power plane and shows the clock output power supply traces. The void underneath the crystal shield is continued.

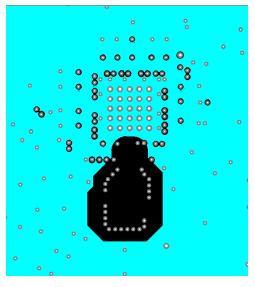


Figure 10.3. Crystal Ground Plane (Layer 3)

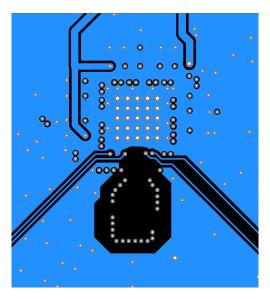


Figure 10.4. Power Plane (Layer 4)

Figure 10.5 Layer 5 Power Routing on Power Plane (Layer 5) on page 65 shows layer 5, which is the power plane with the power routed to the clock output power pins.

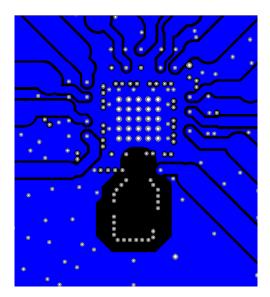


Figure 10.5. Layer 5 Power Routing on Power Plane (Layer 5)

Figure 10.6 Ground Plane (Layer 6) on page 65 is another ground plane similar to layer 3.

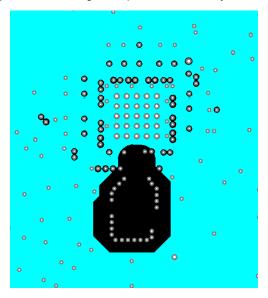


Figure 10.6. Ground Plane (Layer 6)

10.1.3 Si5347 Output Clocks

Figure 10.7 Output Clock Layer (Layer 7) on page 66 shows the output clocks. Similar to the input clocks the output clocks have vias that immediately go to a buried layer with a ground plane above them and a ground flooded bottom layer. There is a ground flooding between the clock output pairs to avoid crosstalk. There should be a line of vias through the ground flood on either side of the output clocks to ensure that the ground flood immediately next to the differential pairs has a low inductance path to the ground plane on layers 3 and 6.

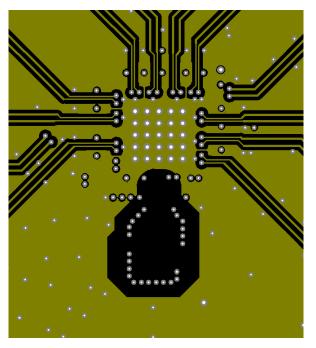


Figure 10.7. Output Clock Layer (Layer 7)

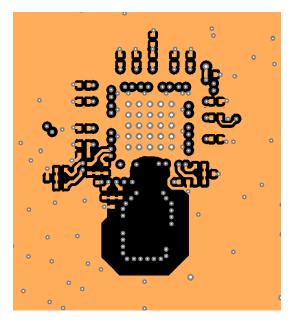
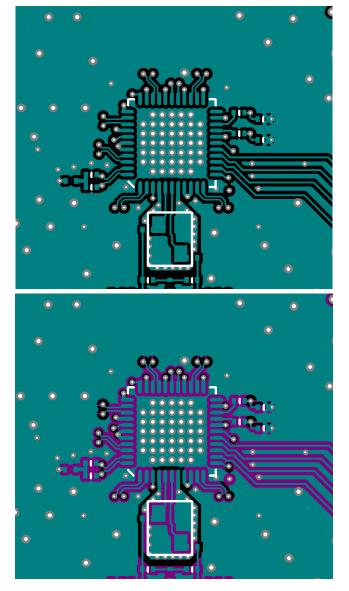


Figure 10.8. Bottom Layer Ground Flooded (Layer 8)

10.2 44-Pin QFN Si5346 Layout Recommendations

This section details the layout recommendations for the 44-pin Si5346 device using an example 6-layer PCB.


The following guidelines details images of a six layer board with the following stack:

- · Layer 1: device layer, with low speed CMOS control/status signals, ground flooded
- · Layer 2: crystal shield, output clocks, ground flooded
- Layer 3: ground plane
- · Layer 4: power distribution, ground flooded
- Layer 5: input clocks, ground flooded
- · Layer 6: low-speed CMOS control/status signals, ground flooded

This layout was designed to implement either a crystal or an external oscillator as the XAXB reference. The top layer is flooded with ground. The clock output pins go to layer 2 using vias to avoid crosstalk during transit. When the clock output signals are on layer 2 there is a ground shield above, below and on all sides for protection. Output clocks should always be routed on an internal layer with ground reference planes directly above and below. The plane that has the routing for the output clocks should have ground flooded near the clock traces to further isolate the clocks from noise and other signals.

10.2.1 Si5346 Applications without a Crystal

If the application does not use a crystal, then the X1 and X2 pins should be left as "no connect" and should not be tied to ground. In addition, there is no need for a crystal shield or the voids underneath the shield. If there is a differential external clock input on XAXB there should be a termination circuit near the XA and XB pins. This termination circuit should be two 50 Ω resistors and one 0.1 μ F cap connected in the same manner as on the other clock inputs (IN0, IN1 and IN2). The clock input on XAXB must be ac-coupled. Care should be taken to keep all clock inputs well isolated from each other as well as any other dynamic signal.

10.2.2 Si5346 Crystal Guidelines

Figure 10.10 Crystal Shield Layer 2 on page 69 is the second layer. The second layer implements the shield underneath the crystal. The shield extends underneath the entire crystal and the X1 and X2 pins. There should be no less than 12 vias to connect the X1 and X2 planes on layers 1 and 2. These vias are not shown in any other figures. All traces with signals that are not static must be kept well away from the crystal and the X1 and X2 plane.

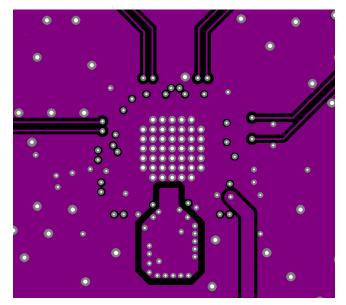


Figure 10.10. Crystal Shield Layer 2

Figure 10.11 Ground Plane (Layer 3) on page 69 is the ground plane and shows a void underneath the crystal shield.

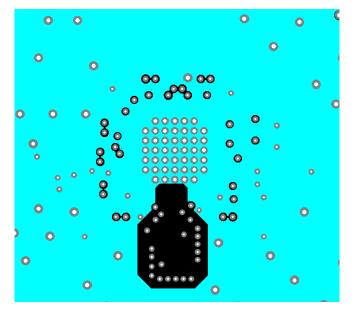


Figure 10.11. Ground Plane (Layer 3)

Figure 10.12 Power Plane and Clock Output Power Supply Traces (Layer 4) on page 70 is a power plane showing the clock output power supply traces. The void underneath the crystal shield is continued.

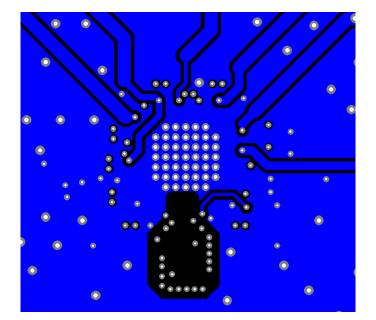


Figure 10.12. Power Plane and Clock Output Power Supply Traces (Layer 4)

Figure 10.13 Clock Input Traces (Layer 5) on page 70 shows layer 5 and the clock input traces. Similar to the clock output traces, they are routed to an inner layer and surrounded by ground to avoid crosstalk.

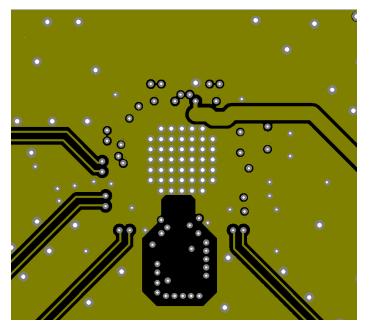


Figure 10.13. Clock Input Traces (Layer 5)

Figure 10.14 Low-Speed CMOS Control and Status Signal Layer 6 (Bottom Layer) on page 71 shows the bottom layer, which continues the void underneath the shield. Layer 6 and layer 1 are mainly used for low speed CMOS control and status signals for which crosstalk is not a significant issue. PCB ground can be placed under the X1 and X2 shield as long as the PCB ground is at least 0.05 inches below it.

Figure 10.14. Low-Speed CMOS Control and Status Signal Layer 6 (Bottom Layer)

For any high-speed, low-jitter application, the clock signal runs should be impedance-controlled to 100 Ω differential or 50 Ω singleended. Differential signaling is preferred because of its increased immunity to common-mode noise. All clock I/O runs should be properly terminated.

11. Power Management

11.1 Power Management Features

Several unused functions can be powered down to minimize power consumption. The registers listed in Table 11.1 Power Management Registers on page 72 are used for powering down different features.

Table 11.1. Power Management Registers

Setting Name	Hex Address [Bit Field]		eld]	Function
	Si5347A/B	Si5347C/D	Si5346	
PDN	0x001E[0]			This bit allows powering down the device. The serial interface remains powered during power down mode and the registers are available to be read and written.
OUT0_PDN	0x0108[0]	0x0108[0]	0x0112[0]	Powers down unused clock outputs. When pow- ered down, output pins will be high-impedance with a light pull-down effect.
OUT1_PDN	0x0112[0]	0x011C[0]	0x0117[0]	
OUT2_PDN	0x0117[0]	0x0126[0]	0x0126[0]	
OUT3_PDN	0x011C[0]	0x012B[0]	0x012B[0]	
OUT4_PDN	0x0126[0]	_	—	
OUT5_PDN	0x012B[0]	_	—	
OUT6_PDN	0x0130[0]	_	_	
OUT7_PDN	0x013A[0]	_	_	
OUT_PDN_ALL	0x0145[0]			Power down all output drivers

11.2 Power Supply Recommendations

The power supply filtering generally is important for optimal timing performance. The Si5347/46 devices have multiple stages of on-chip regulation to minimize the impact of board level noise on clock jitter. Following conventional power supply filtering and layout techniques will further minimize signal degradation from the power supply.

It is recommended to use a 1 µF 0402 ceramic capacitor on each VDD for optimal performance. It is also suggested to include an optional, single 0603 (resistor/ferrite) bead in series with each supply to enable additional filtering if needed.

11.3 Power Supply Sequencing

Four classes of supply voltages exist on the Si5347/46:

- 1. VDD = 1.8 V ± 5% (Core digital supply)
- 2. VDDA = 3.3 V ± 5% (Analog supply)
- 3. VDDOx = 1.8/2.5/3.3 V ± 5% (Clock output supply)
- 4. VDDS = 1.8/3.3V ± 5% (Digital I/O supply)

There is no requirement for power supply sequencing unless the output clocks are required to be phase aligned with each other. In this case, the VDDO of each clock which needs to be aligned must be powered up before VDD and VDDA. VDDS has no effect on output clock alignment.

If output-to-output alignment is required for applications where it is not possible to properly sequence the power supplies, then the output clocks can be aligned by asserting the SOFT_RST 0x001C[0] or Hard Reset 0x001E[1] register bits or driving the RSTB pin. Note that using a hard reset will reload the register with the contents of the NVM and any unsaved changes will be lost.

One may observe that when powering up the VDD = 1.8 V rail first, that the VDDA = 3.3 V rail will initially follow the 1.8 V rail. Likewise, if the VDDA rail is powered down first then it will not drop far below VDD until VDD itself is powered down. This is due to the pad I/O circuits which have large MOSFET switches to select the local supply from either the VDD or VDDA rails. These devices are relatively large and yield a parasitic diode between VDD and VDDA. Please allow for both VDD and VDDA to power-up and power-down before measuring their respective voltages.

11.4 Grounding Vias

The pad on the bottom of the device functions as both the sole electrical ground and primary heat transfer path. Hence it is important to minimize the inductance and maximize the heat transfer from this pad to the internal ground plane of the PCB. Use no fewer than 25 vias from the center pad to a ground plane under the device. In general, more vias will perform better. Having the ground plane near the top layer will also help to minimize the via inductance from the device to ground and maximize the heat transfer away from the device.

12. Base vs. Factory Preprogrammed Devices

The Si5347/46 devices can be ordered as "base" or "factory-preprogrammed" (also known as "custom OPN") versions.

12.1 "Base" Devices (Also Known as "Blank" Devices)

Example "base" orderable part numbers (OPNs) are of the form "Si5341A-A-GM" or "Si5340B-A-GM".

Base devices are available for applications where volatile reads and writes are used to program and configure the device for a particular application.

- Base devices do not power up in a usable state (all output clocks are disabled).
- Base devices are, however, configured by default to use a 48 MHz crystal on the XAXB reference and a 1.8 V compatible I/O voltage setting for the host I2C/SPI interface.
- · Additional programming of a base device is mandatory to achieve a usable configuration.
- See the on-line lookup utility at: www.silabs.com/products/clocksoscillators/pages/clockbuilderlookup.aspx to access the default configuration plan and register settings for any base OPN.

12.2 "Factory Preprogrammed" (Custom OPN) Devices

Factory preprogammed devices use a "custom OPN", such as Si5341A-A-xxxxx-GM, where "xxxxx" is a sequence of characters assigned by Silicon Labs for each customer-specific configuration. These characters are referred to as the "OPN ID". Customers must initiate custom OPN creation using the ClockBuilder Pro software.

- Many customers prefer to order devices which are factory preprogrammed for a particular application that includes specifying the XAXB reference frequency/type, the clock input frequencies, the clock output frequencies, as well as the other options, such as automatic clock selection, loop BW, etc. The ClockBuilder software is required to select among all of these options and to produce a project file that Silicon Labs uses to preprogram all devices with custom orderable part number ("custom OPN").
- Custom OPN devices contain all of the initialization information in their non-volatile memory (NVM) so that it powers up fully configured and ready to go.
- Because preprogrammed device applications are inherently quite different from one another, the default power up values of the register settings can be determined using the custom OPN utility at: www.silabs.com/products/clocksoscillators/pages/clockbuilderlookup.aspx.
- Custom OPN devices include a device top mark that includes the unique OPN ID. Refer to the device data sheet's Ordering Guide and Top Mark sections for more details.

Both "base" and "factory preprogrammed" devices can have their operating configurations changed at any time using volatile reads and writes to the registers. Both types of devices can also have their current register configuration written to the NVM by executing an NVM bank burn sequence (see 3.1.2 NVM Programming).

13. Register Map

13.1 Register Map Overview and Default Settings Values

The Si5347/46 family parts have large register maps that are divided into separate "Pages" of register banks. This allows more register addresses than either the I²C or SPI serial interface standards 8-bit addressing provide. Each page has a maximum of 256 addresses, however not all addresses are used on every page. Every register has a maximum data size of 8-bits, or 1 byte. Writing the page number to the 8-bit serial interface address of 0x01 on any page (0x0001, 0x0101, 0x0201, etc.) updates the page selection for subsequent register reads and writes. For example, to access the value in register 0x040E, it is first necessary to write the page value 0x04 to serial interface register address 0x01. At this point, the value of serial interface address 0x0E (0x040E) may be read or written. Note that is it not necessary to write the page select register again when accessing other registers on the same page. Similarly, the read-only DE-VICE_READY status is available from every page at serial interface address 0xFE (0x00FE, 0x01FE, 0x02FE, etc.).

It is recommended to use dynamic Read-Modify-Write methods when writing to registers which contain multiple settings, such as register 0x0011. To do this, first read the current contents of the register. Next, update only the select bit or bits that are being modified. This may involve using both logical AND and logical OR operations. Finally, write the updated contents back to the register. Writing to pages, registers, or bits not documented below may cause undesired behavior in the device.

Details of the register and settings information are organized hierarchically below. To find the relevant information for your application, first choose the section corresponding to the base part number, Si5347 or Si5346, for your design. Then, choose the section under that for the page containing the desired register(s). For example, to find information on Page 2 register 0x02030 for the Si5346, see 13.4.3 Page 2 Registers Si5346.

Default register contents and settings differ for each device part number, or OPN. This information may be found by searching for the Custom OPN for your device using the link below. Both Base/Blank and Custom OPNs are available there. See the previous section on "Base vs. Factory Preprogrammed Devices" for more information on part numbers. The Private Addendum to the datasheet lists the default settings and frequency plan information. You must be logged into the Silicon Labs website to access this information. The Public addendum gives only the general frequency plan information (www.silabs.com/products/clocksoscillators/pages/clockbuilderlook-up.aspx).

Page	Start Address (Hex)	Start Address (Decimal)	Contents
Page 0	0000h	0	Alarms, interrupts, reset, and other configuration
Page 1	0100h	256	Output clock configuration
Page 2	0200h	512	P and R dividers, user scratch area
Page 3	0300h	768	Internal divider value updates
Page 4	0400h	1024	DSPLLA
Page 5	0500h	1280	DSPLLB
Page 6	0600h	1536	DSPLLC, Si5347 only
Page 7	0700h	1792	DSPLLD, Si5347 only
Page 9	0900h	2304	Control IO configuration
Page A	0A00h	2560	Internal divider enables
Page B	0B00h	2816	Internal clock disables and control

Table 13.1. Register Map Page Descriptions

R = Read Only

R/W = Read Write

S = Self Clearing

A self-clearing bit will be cleared by the device once the operation initiated by this bit is complete. Registers with "sticky" flag bits, such as LOS0_FLG, are cleared by writing "0" to the bit that has been automatically set high by the device.

13.2 Si5347A/B Register Map

13.2.1 Page 0 Registers Si5347A/B

Table 13.2. 0x0001 Page

Reg Address	Bit Field	Туре	Setting Name	Description
0x0001	7:0	R/W	PAGE	Selects one of 256 possible pages.

The "Page Select" register is located at address 0x01 on every page. When read, it indicates the current page. When written, it will change the page to the value entered. There is a page register at address 0x0001, 0x0101, 0x0201, 0x0301, ... etc.

Table 13.3. 0x0002–0x0003 Base Part Number

Reg Address	Bit Field	Туре	Setting Name	Value	Description
0x0002	7:0	R	PN_BASE	0x47	Four-digit "base" part number, one nibble per
0x0003	15:8	R	PN_BASE	0x53	digit Example: Si5347A-A-GM. The base part num- ber (OPN) is 5347, which is stored in this regis- ter

Table 13.4. 0x0004 Device Grade

Reg Address	Bit Field	Туре	Setting Name	Description
0x0004	7:0	R	GRADE	One ASCII character indicating the device speed/ synthesis mode.
				0 = A
				1 = B
				2 = C
				3 = D

Refer to the device data sheet Ordering Guide section for more information about device grades.

Table 13.5. 0x0005 Device Revision

Reg Address	Bit Field	Туре	Setting Name	Description
0x0005	7:0	R	DEVICE_REV	One ASCII character indicating the device revision lev- el.
				0 = A; 1 = B, etc.
				Example Si5347C-A12345-GM, the device revision is "A" and stored as 0

Table 13.6. 0x0006-0x0008 TOOL_VERSION

Reg Address	Bit Field	Туре	Name	Description
0x0006	3:0	R/W	TOOL_VERSION[3:0]	Special
0x0006	7:4	R/W	TOOL_VERSION[7:4]	Revision

Reg Address	Bit Field	Туре	Name	Description
0x0007	7:0	R/W	TOOL_VERSION[15:8]	Minor[7:0]
0x0008	0	R/W	TOOL_VERSION[15:8]	Minor[8]
0x0008	4:1	R/W	TOOL_VERSION[16]	Major
0x0008	7:5	R/W	TOOL_VERSION[13:17]	Tool. 0 for ClockBuilder Pro

Table 13.7. 0x0009–0x000A NVM Identifier, Pkg ID

Reg Address	Bit Field	Туре	Setting Name	Description
0x0009	7:0	R	TEMP_GRADE	Device temperature grading
				0 = Industrial (–40 °C to 85 °C) ambient conditions
0x000A	7:0	R	PKG_ID	Package ID
				0 = 9x9 mm 64 QFN

Part numbers are of the form:

Si<Part Num Base><Grade>-<Device Revision><OPN ID>-<Temp Grade><Package ID>

Examples:

Si5347C-A12345-GM.

Applies to a "base" or "blank" OPN (Ordering Part Number) device. These devices are factory pre-programmed with the frequency plan and all other operating characteristics defined by the user's ClockBuilder Pro project file.

Si5347C-A-GM.

Applies to a "base" or "blank" OPN device. Base devices are factory pre-programmed to a specific base part type (e.g., Si5347 but exclude any user-defined frequency plan or other user-defined operating characteristics selected in ClockBuilder Pro.

Table 13.8. 0x000B I2C Address

Reg Address	Bit Field	Туре	Setting Name	Description
0x000B	6:0	R/W	I2C_ADDR	7-bit I2C Address. Note: This register is not bank burnable.

Table 13.9. 0x000C Internal Status Bits

Reg Address	Bit Field	Туре	Setting Name	Description
0x000C	0	R	SYSINCAL	1 if the device is calibrating.
0x000C	1	R	LOSXAXB	1 if there is no signal at the XAXB pins.
0x000C	2	R	LOSREF	1 if there is no signal detected on the XAXB input signal.
0x000C	3	R	XAXB_ERR	1 if there is a problem locking to the XAXB input signal.
0x000C	5	R	SMBUS_TIMEOUT	1 if there is an SMBus timeout error.

Bit 1 is the LOS status monitor for the XTAL or REFCLK at the XA/XB pins. Bit 3 is the XAXB problem status monitor and may indicate the XAXB input signal has excessive jitter, ringing, or low amplitude. Bit 5 indicates a timeout error when using SMBUS with the I²C serial port.

Reg Address	Bit Field	Туре	Setting Name	Description
0x000D	3:0	R	LOS	1 if the clock input [3 2 1 0] is currently LOS.
0x000D	7:4	R	OOF	1 if the clock input [3 2 1 0] is currently OOF.

Table 13.10. 0x000D Loss-of Signal (LOS) Alarms

Note that each bit corresponds to the input. The LOS bits are not sticky.

• Input 0 (IN0) corresponds to LOS 0x000D [0], OOF 0x000D[4]

• Input 1 (IN1) corresponds to LOS 0x000D [1], OOF 0x000D[5]

• Input 2 (IN2) corresponds to LOS 0x000D [2], OOF 0x000D[6]

• Input 3 (IN3) corresponds to LOS 0x000D [3], OOF 0x000D[7]

Table 13.11. 0x000EHoldover and LOL Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x000E	3:0	R	LOL_PLL[D:A]	1 if the DSPLL is out of lock
0x000E	7:4	R	HOLD_PLL[D:A]	1 if the DSPLL is in holdover (or free run)

DSPLL_A corresponds to bit 0,4

DSPLL_B corresponds to bit 1,5

DSPLL_C corresponds to bit 2,6

DSPLL_D corresponds to bit 3,7

Table 13.12. 0x000F INCAL Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x000F	7:4	R	CAL_PLL[D:A]	1 if the DSPLL internal calibration is busy.

DSPLL_A corresponds to bit 4

DSPLL_B corresponds to bit 5

DSPLL_C corresponds to bit 6

DSPLL_D corresponds to bit 7

Table 13.13. 0x0011 Internal Error Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0011	0	R/W	SYSINCAL_FLG	Sticky version of SYSINCAL. Write a 0 to this bit to clear.
0x0011	1	R/W	LOSXAXB_FLG	Sticky version of LOSXAXB. Write a 0 to this bit to clear.
0x0011	2	R/W	LOSREF_FLG	Sticky version of LOSREF. Write a 0 to clear the flag.
0x0011	3	R/W	XAXB_ERR_FLG	Sticky version of XAXB_ERR. Write a 0 to this bit to clear.
0x0011	5	R/W	SMBUS_TIME- OUT_FLG	Sticky version of SMBUS_TIMEOUT. Write a 0 to this bit to clear.

These are sticky flag versions of 0x000C. They are cleared by writing zero to the bit that has been set.

Reg A	Address	Bit Field	Туре	Setting Name	Description
0x(0012	3:0	R/W	LOS_FLG	Sticky version of LOS. Write a 0 to this bit to clear.
0x0	0012	7:4	R/W	OOF_FLG	Sticky version of OOF. Write a 0 to this bit to clear.

Table 13.14. 0x0012 Sticky OOF and LOS Flags

These are sticky flag versions of 0x000D.

Input 0 (IN0) corresponds to LOS_FLG 0x0012 [0], OOF_FLG 0x0012[4]

• Input 1 (IN1) corresponds to LOS_FLG 0x0012 [1], OOF_FLG 0x0012[5]

• Input 2 (IN2) corresponds to LOS_FLG 0x0012 [2], OOF_FLG 0x0012[6]

• Input 3 (IN3) corresponds to LOS_FLG 0x0012 [3], OOF_FLG 0x0012[7]

Table 13.15. 0x0013 Holdover and LOL Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0013	3:0	R/W	LOL_FLG_PLL[D:A]	1 if the DSPLL was unlocked
0x0013	7:4	R/W	HOLD_FLG_PLL[D: A]	1 if the DSPLL was in holdover (or freerun)

Sticky flag versions of address 0x000E.

DSPLL_A corresponds to bit 0,4

DSPLL_B corresponds to bit 1,5

DSPLL_C corresponds to bit 2,6

DSPLL_D corresponds to bit 3,7

Table 13.16. 0x0014 INCAL Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0014	7:4	R/W	CAL_FLG_PLL[D:A]	1 if the DSPLL internal calibration was busy

These are sticky-flag versions of 0x000F.

DSPLL A corresponds to bit 4

DSPLL B corresponds to bit 5

DSPLL C corresponds to bit 6

DSPLL D corresponds to bit 7

Table 13.17. 0x0016

Reg Address	Bit Field	Туре	Setting Name	Description
0x0016	3:0	R/W	LOL_ON_HOLD_PL L[D:A]	Set by CBPro.

Table 13.18. 0x0017 Fault Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0017	0	R/W	SYSIN- CAL_INTR_MSK	1 to mask SYSINCAL_FLG from causing an interrupt

Reg Address	Bit Field	Туре	Setting Name	Description
0x0017	1	R/W	LOS- XAXB_INTR_MSK	1 to mask the LOSXAXB_FLG from causing an interrupt
0x0017	2	R/W	LOS- REF_INTR_MSK	1 to mask LOSREF_FLG from causing an interrupt
0x0017	3	R/W	XAXB_ERR_INTR_ MSK	
0x0017	5	R/W	SMB_TMOUT_INT R_MSK	1 to mask SMBUS_TIMEOUT_FLG from causing an in- terrupt
0x0017	6	R/W	Reserved	Factory set to 1 to mask reserved bit from causing an interrupt. Do not clear this bit.
0x0017	7	R/W	Reserved	Factory set to 1 to mask reserved bit from causing an interrupt. Do not clear this bit.

The interrupt mask bits for the fault flags in register 0x011. If the mask bit is set, the alarm will be blocked from causing an interrupt. The default for this register is 0x035.

Table 13.19. 0x0018 OOF and LOS Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0018	3:0	R/W	LOS_INTR_MSK	1: To mask the clock input LOS flag
0x0018	7:4	R/W	OOF_INTR_MSK	1: To mask the clock input OOF flag

• Input 0 (IN0) corresponds to LOS_IN_INTR_MSK 0x0018 [0], OOF_IN_INTR_MSK 0x0018 [4]

• Input 1 (IN1) corresponds to LOS IN INTR MSK 0x0018 [1], OOF IN INTR MSK 0x0018 [5]

• Input 2 (IN2) corresponds to LOS_IN_INTR_MSK 0x0018 [2], OOF_IN_INTR_MSK 0x0018 [6]

• Input 3 (IN3) corresponds to LOS_IN_INTR_MSK 0x0018 [3], OOF_IN_INTR_MSK 0x0018 [7]

These are the interrupt mask bits for the OOF and LOS flags in register 0x0012. If a mask bit is set, the alarm will be blocked from causing an interrupt.

Table 13.20. 0x0019 Holdover and LOL Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0019	3:0	R/W	LOL_INTR_MSK_P LL[D:A]	1: To mask the clock input LOL flag
0x0019	7:4	R/W	HOLD_INTR_MSK_ PLL[D:A]	1: To mask the holdover flag

DSPLL A corresponds to LOL_INTR_MSK_PLL 0x0019 [0], HOLD_INTR_MSK_PLL 0x0019 [4]

• DSPLL B corresponds to LOL_INTR_MSK_PLL 0x0019 [1], HOLD_INTR_MSK_PLL 0x0019 [5]

• DSPLL C corresponds to LOL_INTR_MSK_PLL 0x0019 [2], HOLD_INTR_MSK_PLL 0x0019 [6]

• DSPLL D corresponds to LOL_INTR_MSK_PLL 0x0019 [3], HOLD_INTR_MSK_PLL 0x0019 [7]

These are the interrupt mask bits for the LOS and HOLD flags in register 0x0013. If a mask bit is set, the alarm will be blocked from causing an interrupt.

Table 13.21. 0x001A INCAL Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x001A	7:4	R/W	CAL_INTR_MSK_D SPLL[D:A]	1: To mask the DSPLL internal calibration busy flag

DSPLL A corresponds to bit 0

DSPLL B corresponds to bit 1

DSPLL C corresponds to bit 2

DSPLL D corresponds to bit 3

Table 13.22.	0x001C Soft Reset and Calibration
--------------	-----------------------------------

Reg Address	Bit Field	Туре	Setting Name	Description
0x001C	0	S	SOFT_RST_ALL	0: No effect
				1: Initialize and calibrate the entire device.
0x001C	1	S	SOFT_RST_PLLA	1 initialize and calibrate DSPLLA
0x001C	2	S	SOFT_RST_PLLB	1 initialize and calibrate DSPLLB
0x001C	3	S	SOFT_RST_PLLC	1 initialize and calibrate DSPLLC
0x001C	4	S	SOFT_RST_PLLD	1 initialize and calibrate DSPLLD

These bits are of type "S", which means self-clearing. Unlike SOFT_RST_ALL, the SOFT_RST_PLLx bits do not update the loop BW values. If these have changed, the update can be done by writing to BW_UPDATE_PLLA, BW_UPDATE_PLLB, BW_UPDATE_PLLC, and BW_UPDATE_PLLD at addresses 0x0414, 0x514, 0x0614, and 0x0715.

Table 13.23. 0x001D FINC, FDEC

Reg Address	Bit Field	Туре	Setting Name	Description
0x001D	0	S	FINC	0: No effect
				1: A rising edge will cause an frequency increment.
0x001D	1	S	FDEC	0: No effect
				1: A rising edge will cause an frequency decrement.

Table 13.24. 0x001E Sync, Power Down, and Hard Reset

Reg Address	Bit Field	Туре	Setting Name	Description
0x001E	0	R/W	PDN	1: To put the device into low power mode
0x001E	1	R/W	HARD_RST	Perform hard Reset with NVM read.
				0: Normal Operation
				1: Hard Reset the device
0x001E	2	S	SYNC	1 to set all the R dividers to the same state.

Table 13.25. 0x0020 DSPLL_SEL[1:0] Control of FINC/FDEC for DCO

Reg Address	Bit Field	Туре	Name	Description
0x0020	0	R/W	FSTEP_PLL_SIN- GLE	0: DSPLL_SEL[1:0] pins and bits are disabled.
			-	1: DSPLL_SEL[1:0] pins or FSTEP_PLL bits are ena- bled. See FSTEP_PLL_REGCTRL

Reg Address	Bit Field	Туре	Name	Description
0x0020	1	R/W		Only functions when FSTEP_PLL_SINGLE = 1.
				0: DSPLL_SELx pins are enabled, and the correspond- ing register bits are disabled.
				1: DSPLL_SELx_REG register bits are enabled, and the corresponding pins are disabled.
0x0020	3:2	R/W	FSTEP_PLL	Register version of the DSPLL_SEL[1:0] pins. Used to select which PLL (M divider) is affected by FINC/FDEC.
				0: DSPLL A M-divider
				1: Reserved
				2: DSPLL C M-divider
				3: DSPLL D M-divider

By default ClockBuilder Pro sets OE0 controlling all outputs. OUTALL_DISABLE_LOW 0x0102[0] must be high (enabled) to observe the effects of OE0. Note that the OE0 register bits (active high) have inverted logic sense from the pins (active low).

Table 13.26. 0x002B SPI 3 vs 4 Wire

Reg Address	Bit Field	Туре	Setting Name	Description
0x002B	3	R/W	SPI_3WIRE	0: For 4-wire SPI
				1: For 3-wire SPI.

Table 13.27. 0x002C LOS Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x002C	3:0	R/W	LOS_EN	0: For disable.
				1: To enable LOS for a clock input.
0x002C	4	R/W	LOSXAXB_DIS	Enable LOS detection on the XAXB inputs.
				0: Enable LOS Detection (default)
				1: Disable LOS Detection

• Input 0 (IN0): LOS_EN[0]

• Input 1 (IN1): LOS_EN[1]

• Input 2 (IN2): LOS_EN[2]

• Input 3 (IN3): LOS_EN[3]

Table 13.28. 0x002D Loss of Signal Re-Qualification Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x002D	1:0	R/W	LOS0_VAL_TIME	Clock Input 0
				0: For 2 msec
				1: For 100 msec
				2: For 200 msec
				3: For one second
0x002D	3:2	R/W	LOS1_VAL_TIME	Clock Input 1, same as above

Reg Address	Bit Field	Туре	Setting Name	Description
0x002D	5:4	R/W	LOS2_VAL_TIME	Clock Input 2, same as above
0x002D	7:6	R/W	LOS3_VAL_TIME	Clock Input 3,same as above

When an input clock is gone (and therefore has an active LOS alarm), if the clock returns, there is a period of time that the clock must be within the acceptable range before the alarm is removed. This is the LOS_VAL_TIME.

Table 13.29. 0x002E-0x002F LOS0 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x002E	7:0	R/W	LOS0_TRG_THR	16-bit Threshold Value
0x002F	15:8	R/W	LOS0_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 0, given a particular frequency plan.

Table 13.30. 0x0030-0x0031 LOS1 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0030	7:0	R/W	LOS1_TRG_THR	16-bit Threshold Value
0x0031	15:8	R/W	LOS1_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 1, given a particular frequency plan.

Table 13.31. 0x0032-0x0033 LOS2 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0032	7:0	R/W	LOS2_TRG_THR	16-bit Threshold Value
0x0033	15:8	R/W	LOS2_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 2, given a particular frequency plan.

Table 13.32. 0x0034-0x0035 LOS3 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0034	7:0	R/W	LOS3_TRG_THR	16-bit Threshold Value
0x0035	15:8	R/W	LOS3_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 3, given a particular frequency plan.

Table 13.33. 0x0036-0x0037 LOS0 Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0036	7:0	R/W	LOS0_CLR_THR	16-bit Threshold Value
0x0037	15:8	R/W	LOS0_CLR_THR	

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 0, given a particular frequency plan.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0038	7:0	R/W	LOS1_CLR_THR	16-bit Threshold Value
0x0039	15:8	R/W	LOS1_CLR_THR	

Table 13.34. 0x0038-0x0039 LOS1 Clear Threshold

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 1, given a particular frequency plan.

Table 13.35. 0x003A-0x003B LOS2 Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x003A	7:0	R/W	LOS2_CLR_THR	16-bit Threshold Value
0x003B	15:8	R/W	LOS2_CLR_THR	

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 2, given a particular frequency plan.

Table 13.36. 0x003C-0x003D LOS3 Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x003C	7:0	R/W	LOS3_CLR_THR	16-bit Threshold Value
0x003D	15:8	R/W	LOS3_CLR_THR	

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 3, given a particular frequency plan.

Table 13.37. 0x003F OOF Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x003F	3:0	R/W	OOF_EN	0: To disable
0x003F	7:4	R/W	FAST_OOF_EN	1: To enable

Table 13.38. 0x0040 OOF Reference Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x0040	2:0	R/W	OOF_REF_SEL	0: IN0
				1: IN1
				2: IN2
				3: IN3
				4: XAXB
				5–7: Reserved

ClockBuilder Pro provides the OOF register values for a particular frequency plan.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0041	4:0	R/W	OOF0_DIV_SEL	Sets a divider for the OOF circuitry for each input clock
0x0042	4:0	R/W	OOF1_DIV_SEL	0,1,2,3. The divider value is 2 ^{OOFx_DIV_SEL} . CBPro sets these dividers.
0x0043	4:0	R/W	OOF2_DIV_SEL	
0x0044	4:0	R/W	OOF3_DIV_SEL	
0x0045	4:0	R/W	OOFXO_DIV_SEL	

Table 13.39. 0x0041-0x0045 OOF Divider Select

Table 13.40. 0x0046-0x0049 Out of Frequency Set Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0046	7:0	R/W	OOF0_SET_THR	OOF Set Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x0047	7:0	R/W	OOF1_SET_THR	OOF Set Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x0048	7:0	R/W	OOF2_SET_THR	OOF Set Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x0049	7:0	R/W	OOF3_SET_THR	OOF Set Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.

Table 13.41. 0x004A-0x004D Out of Frequency Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x004A	7:0	R/W	OOF0_CLR_THR	OOF Clear Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x004B	7:0	R/W	OOF1_CLR_THR	OOF Clear Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x004C	7:0	R/W	OOF2_CLR_THR	OOF Clear Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x004D	7:0	R/W	OOF3_CLR_THR	OOF Clear Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.

Table 13.42. 0x004E-0x004F OOF Detection Windows

Reg Address	Bit Field	Туре	Setting Name	Description
0x004E	2:0	R/W	OOF0_DET- WIN_SEL	Values calculated by CBPro.
0x004E	6:4	R/W	OOF1_DET- WIN_SEL	
0x004F	2:0	R/W	OOF2_DET- WIN_SEL	
0x004F	6:4	R/W	OOF3_DET- WIN_SEL	

Table 13.43. 0x0050

Reg Address	Bit Field	Туре	Setting Name	Description
0x0050	3:0	R/W	OOF_ON_LOS	Set by CBPro.

Table 13.44. 0x0051-0x0054 Fast Out of Frequency Set Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0051	3:0	R/W	FAST_OOF0_SET_ THR	(1+ value) x 1000 ppm
0x0052	3:0	R/W	FAST_OOF1_SET_ THR	(1+ value) x 1000 ppm
0x0053	3:0	R/W	FAST_OOF2_SET_ THR	(1+ value) x 1000 ppm
0x0054	3:0	R/W	FAST_OOF3_SET_ THR	(1+ value) x 1000 ppm

These registers determine the OOF alarm set threshold for IN3, IN2, IN1 and IN0 when the fast control is enabled. The value in each of the register is (1+ value) x 1000 ppm. ClockBuilder Pro is used to determine the values for these registers.

Table 13.45. 0x0055-0x0058 Fast Out of Frequency Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0055	3:0	R/W	FAST_OOF0_CLR_ THR	(1+ value) x 1000 ppm
0x0056	3:0	R/W	FAST_OOF1_CLR_ THR	(1+ value) x 1000 ppm
0x0057	3:0	R/W	FAST_OOF2_CLR_ THR	(1+ value) x 1000 ppm
0x0058	3:0	R/W	FAST_OOF3_CLR_ THR	(1+ value) x 1000 ppm

These registers determine the OOF alarm clear threshold for IN3, IN2, IN1 and IN0 when the fast control is enabled. The value in each of the register is (1+ value) x 1000 ppm. ClockBuilder Pro is used to determine the values for these registers.

OOF needs a frequency reference. ClockBuilder Pro provides the OOF register values for a particular frequency plan.

Table 13.46. 0x0059 Fast OOF Detection Windows

Reg Address	Bit Field	Туре	Setting Name	Description
0x0059	1:0	R/W	FAST_OOF0_DET- WIN_SEL	Values calculated by CBPro.
0x0059	3:2	R/W	FAST_OOF1_DET- WIN_SEL	
0x0059	5:4	R/W	FAST_OOF2_DET- WIN_SEL	
0x0059	7:6	R/W	FAST_OOF3_DET- WIN_SEL	

Reg Address	Bit Field	Туре	Setting Name	Description
0x005A	7:0	R/W	OOF0_RATIO_REF	Values calculated by CBPro
0x005B	15:8	R/W	OOF0_RATIO_REF	
0x005C	23:16	R/W	OOF0_RATIO_REF	
0x005D	25:24	R/W	OOF0_RATIO_REF	

Table 13.47. 0x005A-0x005D OOF0 Ratio for Reference

Table 13.48. 0x005E-0x0061 OOF1 Ratio for Reference

Reg Address	Bit Field	Туре	Setting Name	Description
0x005E	7:0	R/W	OOF1_RATIO_REF	Values calculated by CBPro
0x005F	15:8	R/W	OOF1_RATIO_REF	
0x0060	23:16	R/W	OOF1_RATIO_REF	
0x0061	25:24	R/W	OOF1_RATIO_REF	

Table 13.49. 0x0062-0x0065 OOF2 Ratio for Reference

Reg Address	Bit Field	Туре	Setting Name	Description
0x0062	7:0	R/W	OOF2_RATIO_REF	Values calculated by CBPro
0x0063	15:8	R/W	OOF2_RATIO_REF	
0x0064	23:16	R/W	OOF2_RATIO_REF	
0x0065	25:24	R/W	OOF2_RATIO_REF	

Table 13.50. 0x0066-0x0069 OOF3 Ratio for Reference

Reg Address	Bit Field	Туре	Setting Name	Description
0x0066	7:0	R/W	OOF3_RATIO_REF	Values calculated by CBPro
0x0067	15:8	R/W	OOF3_RATIO_REF	
0x0068	23:16	R/W	OOF3_RATIO_REF	
0x0069	25:24	R/W	OOF3_RATIO_REF	

Table 13.51. 0x0092 Fast LOL Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0092	0	R/W	LOL_FST_EN_PLL A	Enables fast detection of LOL for PLLx. A large input frequency error will quickly assert LOL when this is ena-
0x0092	1	R/W	LOL_FST_EN_PLL B	bled.
0x0092	2	R/W	LOL_FST_EN_PLL C	
0x0092	3	R/W	LOL_FST_EN_PLL D	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0093	3:0	R/W	LOL_FST_DET- WIN_SEL_PLLA	Values calculated by CBPro
0x0093	7:4	R/W	LOL_FST_DET- WIN_SEL_PLLB	
0x0094	3:0	R/W	LOL_FST_DET- WIN_SEL_PLLC	
0x0094	7:4	R/W	LOL_FST_DET- WIN_SEL_PLLD	

Table 13.52. 0x0093-0x0094 Fast LOL Detection Window

Table 13.53. 0x0095 Fast LOL Detection Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x0095	1:0	R/W	LOL_FST_VAL- WIN_SEL_PLLA	Values calculated by CBPro
0X0095	3:2	R/W	LOL_FST_VAL- WIN_SEL_PLLB	
0x0095	5:4	R/W	LOL_FST_VAL- WIN_SEL_PLLC	
0X0095	7:6	R/W	LOL_FST_VAL- WIN_SEL_PLLD	

Table 13.54. 0x0096-0x0097 Fast LOL Set Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0096	3:0	R/W	LOL_FST_SET_TH R_SEL_PLLA	Values calculated by CBPro
0x0096	7:4	R/W	LOL_FST_SET_TH R_SEL_PLLB	
0x0097	3:0	R/W	LOL_FST_SET_TH R_SEL_PLLC	
0x0097	7:4	R/W	LOL_FST_SET_TH R_SEL_PLLD	

Table 13.55. 0x0098-0x0099 Fast LOL Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0098	3:0	R/W	LOL_FST_CLR_TH R_SEL_PLLA	Values calculated by CBPro
0x0098	7:4	R/W	LOL_FST_CLR_TH R_SEL_PLLB	
0x0099	3:0	R/W	LOL_FST_CLR_TH R_SEL_PLLC	
0x0099	7:4	R/W	LOL_FST_CLR_TH R_SEL_PLLD	

Reg Address	Bit Field	Туре	Setting Name	Description
0x009A	0 1 2	R/W	LOL_SLOW_EN_P LLA LOL_SLOW_EN_P LLB	0: To disable LOL. 1: To enable LOL.
	3		LOL_SLOW_EN_P LLC LOL_SLOW_EN_P LLD	

Table 13.56. 0x009A LOL Enable

Table 13.57. 0x009B-0x009C Slow LOL Detection Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x009B	3:0	R/W	LOL_SLW_DET- WIN_SEL_PLLA	Values calculated by CBPro
0x009B	7:4	R/W	LOL_SLW_DET- WIN_SEL_PLLB	
0x009C	3:0	R/W	LOL_SLW_DET- WIN_SEL_PLLC	
0x009C	7:4	R/W	LOL_SLW_DET- WIN_SEL_PLLD	

Table 13.58. 0x009D Slow LOL Detection Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x009D	1:0	R/W	LOL_SLW_VAL- WIN_SEL_PLLA	Values calculated by CBPro
0x009D	3:2	R/W	LOL_SLW_VAL- WIN_SEL_PLLB	
0x009D	5:4	R/W	LOL_SLW_VAL- WIN_SEL_PLLC	
0x009D	7:6	R/W	LOL_SLW_VAL- WIN_SEL_PLLD	

Table 13.59. 0x009E LOL Set Thresholds

Reg Address	Bit Field	Туре	Setting Name	Description
0x009E	3:0	R/W		Configures the loss of lock set thresholds. See list be- low for selectable values.
0x009E	7:4	R/W		Configures the loss of lock set thresholds. See list be- low for selectable values.

Reg Address	Bit Field	Туре	Setting Name	Description
0x009F	3:0	R/W	LOL_SLW_SET_TH R_PLLC	Configures the loss of lock set thresholds. See list be- low for selectable values.
0x009F	7:4	R/W		Configures the loss of lock set thresholds. See list be- low for selectable values.

Table 13.60. 0x009F LOL Set Thresholds

The following are the LOL_SLW_SET_THR_PLLx thresholds for the value that is placed in the four bits for DSPLLs.

- 0 = ±0.1 ppm
- 1 = ±0.3 ppm
- 2 = ±1 ppm
- 3 = ±3 ppm
- 4 = ±10 ppm
- 5 = ±30 ppm
- 6 = ±100 ppm
- 7 = ±300 ppm
- 8 = ±1000 ppm
- 9 = ±3000 ppm
- 10 = ±10000 ppm
- 11 15 Reserved

Table 13.61. 0x00A0 LOL Clear Thresholds

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A0	3:0	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.
0x00A0	7:4	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.

Table 13.62. 0x00A1 LOL Clear Thresholds

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A1	3:0	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.
0x00A1	7:4	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.

The following are the LOL_SLW_CLR_THR_PLLx thresholds for the value that is placed in the four bits of the DSPLLs. ClockBuilder Pro sets these values.

- 0 = ±0.1 ppm
- 1 = ±0.3 ppm
- 2 = ±1 ppm
- 3 = ±3 ppm
- 4 = ±10 ppm
- 5 = ±30 ppm
- 6 = ±100 ppm
- 7 = ±300 ppm
- 8 = ±1000 ppm
- 9 = ±3000 ppm
- 10 = ±10000 ppm

• 11 - 15 Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A2	0 1 2	R/W	LOL_TIM- ER_EN_PLLA LOL_TIM-	Enable Delay for LOL Clear. 0: Disable Delay for LOL Clear
	3		ER_EN_PLLB LOL_TIM- ER_EN_PLLC	1: Enable Delay for LOL Clear
			LOL_TIM- ER_EN_PLLD	

Table 13.63. 0x00A2 LOL Timer Enable

Table 13.64. 0x00A4-0x00A7 LOL Clear Delay DSPLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A4	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	29-bit value. Sets the clear timer 0x00AA 15:8 R/W LOL_CLR_DLY for LOL. CBPro sets this value.
0x00A5	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	
0x00A6	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	
0x00A7	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	

Table 13.65. 0x00A9-0x00AC LOL Clear Delay DSPLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A9	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	29-bit value. Sets the clear timer 0x00AA 15:8 R/W LOL_CLR_DLY for LOL. CBPro sets this value.
0x00AA	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	
0x00AB	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	
0x00AC	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	

Reg Address	Bit Field	Туре	Setting Name	Description
0x00AE	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLC	29-bit value. Sets the clear timer 0x00AA 15:8 R/W LOL_CLR_DLY for LOL. CBPro sets this value.
0x00AF	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLC	
0x00B0	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLC	
0x00B1	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLC	

Table 13.66. 0x00AE-0x00B1 LOL Clear Delay DSPLL C

Table 13.67. 0x00B3-0x00B6 LOL Clear Delay DSPLL D

Reg Address	Bit Field	Туре	Setting Name	Description
0x00B3	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLD	29-bit value. Sets the clear timer 0x00AA 15:8 R/W LOL_CLR_DLY for LOL. CBPro sets this value.
0x00B4	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLD	
0x00B5	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLD	
0x00B6	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLD	

Table 13.68. 0x00E2 Active NVM Bank

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E2	7:0	R	AC- TIVE_NVM_BANK	0x03 when no NVM has been burned 0x0F when 1 NVM bank has been burned
				0x3F when 2 NVM banks have been burned When ACTIVE_NVM_BANK = 0x3F, the last bank has already been burned. See 3.1.1 Updating Registers during Device Operation for a detailed description of how to program the NVM.

Table 13.69. 0x00E3

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E3	7:0	R/W	NVM_WRITE	Write 0xC7 to initiate an NVM bank burn.

Table 13.70. 0x00E4

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E4	0	S	NVM_READ_BANK	When set, this bit will read the NVM down into the vola- tile memory.

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E5	4	R/W	FASTLOCK_EX- TEND_EN_PLLA	Enables FASTLOCK_EXTEND.
0x00E5	5	R/W	FASTLOCK_EX- TEND_EN_PLLB	
0x00E5	6	R/W	FASTLOCK_EX- TEND_EN_PLLC	
0x00E5	7	R/W	FASTLOCK_EX- TEND_EN_PLLD	

Table 13.71. 0x00E5

Table 13.72. 0x00E6-0x00E9 FASTLOCK_EXTEND_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E6	7:0	R/W	FASTLOCK_EX- TEND_PLLA	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00E7	15:8	R/W	FASTLOCK_EX- TEND_PLLA	LOCK_EXTEND_SCL_PLLx.
0x00E8	23:16	R/W	FASTLOCK_EX- TEND_PLLA	
0x00E9	28:24	R/W	FASTLOCK_EX- TEND_PLLA	

Table 13.73. 0x00EA-0x00ED FASTLOCK_EXTEND_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x00EA	7:0	R/W	FASTLOCK_EX- TEND_PLLB	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00EB	15:8	R/W	FASTLOCK_EX- TEND_PLLB	LOCK_EXTEND_SCL_PLLx.
0x00EC	23:16	R/W	FASTLOCK_EX- TEND_PLLB	
0x00ED	28:24	R/W	FASTLOCK_EX- TEND_PLLB	

Table 13.74. 0x00EE-0x00F1 FASTLOCK_EXTEND_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x00EE	7:0	R/W	FASTLOCK_EX- TEND_PLLC	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00EF	15:8	R/W	FASTLOCK_EX- TEND_PLLC	LOCK_EXTEND_SCL_PLLx.
0x00F0	23:16	R/W	FASTLOCK_EX- TEND_PLLC	
0x00F1	28:24	R/W	FASTLOCK_EX- TEND_PLLC	

Reg Address	Bit Field	Туре	Setting Name	Description
0x00F2	7:0	R/W	FASTLOCK_EX- TEND_PLLD	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00F3	15:8	R/W	FASTLOCK_EX- TEND_PLLD	LOCK_EXTEND_SCL_PLLx.
0x00F4	23:16	R/W	FASTLOCK_EX- TEND_PLLD	
0x00F5	28:24	R/W	FASTLOCK_EX- TEND_PLLD	

Table 13.75. 0x00F2-0x00F5 FASTLOCK_EXTEND_PLLD

Table 13.76. 0x00F6

Reg Address	Bit Field	Туре	Name	Description
0x00F6	0	R	REG_0XF7_INT R	Set by CBPro.
0x00F6	1	R	REG_0XF8_INT R	Set by CBPro.
0x00F6	2	R	REG_0XF9_INT R	Set by CBPro.

Table 13.77. 0x00F7

Reg Address	Bit Field	Туре	Name	Description
0x00F7	0	R	SYSINCAL_INTR	Set by CBPro.
0x00F7	1	R	LOSXAXB_INTR	Set by CBPro.
0x00F7	2	R	LOSREF_INTR	Set by CBPro.
0x00F7	4	R	LOSVCO_INTR	Set by CBPro.
0x00F7	5	R	SMBUS_TIME_O UT_INTR	Set by CBPro.

Table 13.78. 0x00F8

Reg Address	Bit Field	Туре	Name	Description
0x00F8	3:0	R	LOS_INTR	Set by CBPro.
0x00F8	7:4	R	OOF_INTR	Set by CBPro.

Table 13.79. 0x00F9

Reg Address	Bit Field	Туре	Name	Description
0x00F9	0:3	R	LOL_INTR_PLL[D:A]	Set by CBPro.
0x00F9	7:4	R	HOLD_INTR_PL L[D:A]	Set by CBPro.

Table 13.80. 0x00FE Device Ready

Reg Address	Bit Field	Туре	Setting Name	Description
0x00FE	7:0	R	DEVICE_READY	Ready Only byte to indicate device is ready. When read data is 0x0F one can safely read/write registers. This register is repeated on every page so that a page write is not ever required to read the DEVICE_READY status.

WARNING: Any attempt to read or write any register other than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the NVM programming. Note this includes writes to the PAGE register.

13.2.2 Page 1 Registers Si5347A/B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0102	0	R/W	_	0: Disables all output drivers
			BLE_LOW	1: Pass through the output enables.

Table 13.82. 0x0108, 0x0112, 0x0117, 0x011C, 0x0126, 0x012B, 0x0130, 0x013AClock Output Driver and R-Divider Configuration

Reg Address	Bit Field	Туре	Setting Name	Description
0x0108	0	R/W	OUT0_PDN	0: To power up the regulator,
0x0112			OUT1_PDN	1: To power down the regulator.
0x0117			OUT2_PDN	When powered down, output pins will be high-impe-
0x011C			OUT3_PDN	dance with a light pull-down effect.
0x0126			OUT4_PDN	
0x012B			OUT5_PDN	
0x0130			OUT6_PDN	
0x013A			OUT7_PDN	
0x0108	1	R/W	OUT0_OE	0: To disable the output
0x0112			OUT1_OE	1: To enable the output
0x0117			OUT2_OE	
0x011C			OUT3_OE	
0x0126			OUT4_OE	
0x012B			OUT5_OE	
0x0130			OUT6_OE	
0x013A			OUT7_OE	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0108	2	R/W		Force Rx output divider divide-by-2.
0x0112				0: Rx_REG sets divide value (default)
0x0117			OUT1_RDIV_FORC E	1: Divide value forced to divide-by-2
0x011C			OUT2_RDIV_FORC	
0x0126			E	
0x012B			OUT3_RDIV_FORC	
0x0130			OUT4_RDIV_FORC	
0x013A			E	
			OUT5_RDIV_FORC E	
			OUT6_RDIV_FORC E	
			OUT7_RDIV_FORC E	

The output drivers are all identical. See 5.2 Performance Guidelines for Outputs.

Table 13.83. 0x0109, 0x0113, 0x0118, 0x011D, 0x0127, 0x012C, 0x0131, 0x013B Output Format

Reg Address	Bit Field	Туре	Setting Name	Description
0x0109	2:0	R/W	OUT0_FORMAT	0: Reserved
0x0113			OUT1_FORMAT	1: Differential Normal mode
0x0118			OUT2_FORMAT	2: Differential Low-Power mode
0x011D			OUT3_FORMAT	3: Reserved
0x0127			OUT4_FORMAT	4: LVCMOS single ended
0x012C			OUT5_FORMAT	5: LVCMOS (+pin only)
0x0131			OUT6_FORMAT	6: LVCMOS (-pin only)
0x013B			OUT7_FORMAT	7: Reserved
0x0109	3	R/W	OUT0_SYNC_EN	0: Disable
0x0113			OUT1_SYNC_EN	1: Enable
0x0118			OUT2_SYNC_EN	
0x011D			OUT3_SYNC_EN	
0x0127			OUT4_SYNC_EN	
0x012C			OUT5_SYNC_EN	
0x0131			OUT6_SYNC_EN	
0x013B			OUT7_SYNC_EN	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0109	5:4	R/W	OUT0_DIS_STATE	Determines the state of an output driver when disabled,
0x0113			OUT1_DIS_STATE	selectable as
0x0118			OUT2_DIS_STATE	0: Disable low
0x011D			OUT3_DIS_STATE	1: Disable high
0x0127			OUT4_DIS_STATE	2-3: Reserved
0x012C			OUT5_DIS_STATE	
0x0131			OUT6_DIS_STATE	
0x013B			OUT7_DIS_STATE	
0x0109	7:6	R/W	OUT0_CMOS_DRV	
0x0113			OUT1_CMOS_DRV	5.8 LVCMOS Drive Strength Control Registers on page 39.
0x0118			OUT2_CMOS_DRV	
0x011D			OUT3_CMOS_DRV	
0x0127			OUT4_CMOS_DRV	
0x012C			OUT5_CMOS_DRV	
0x0131			OUT6_CMOS_DRV	
0x013B			OUT7_CMOS_DRV	

The output drivers are all identical.

Table 13.84. 0x010A, 0x0114, 0x0119, 0x011E, 0x0128, 0x012D, 0x0132, 0x0137 Output Amplitude and Common Mode

Reg Address	Bit Field	Туре	Setting Name	Description
0x010A	3:0	R/W	OUT0_CM	OUTx common-mode voltage selection. This field only
0x0114			OUT1_CM	applies when OUTx_FORMAT = 1 or 2.
0x0119			OUT2_CM	See Table 5.6 Recommended Settings for Differential LVDS, LVPECL, HCSL, and CML on page 37.
0x011E			OUT3_CM	
0x0128			OUT4_CM	
0x012D			OUT5_CM	
0x0132			OUT6_CM	
0x0137			OUT7_CM	
0x010A	6:4	R/W	OUT0_AMPL	OUTx common-mode voltage selection. This field only
0x0114			OUT1_AMPL	applies when OUTx_FORMAT = 1 or 2.
0x0119			OUT2_AMPL	See Table 5.6 Recommended Settings for Differential LVDS, LVPECL, HCSL, and CML on page 37.
0x011E			OUT3_AMPL	
0x0128			OUT4_AMPL	
0x012D			OUT5_AMPL	
0x0132			OUT6_AMPL	
0x0137			OUT7_AMPL	

ClockBuilder Pro is used to select the correct settings for this register. The output drivers are all identical.

Table 13.85. 0x010B, 0x0115, 0x011A, 0x011F, 0x0129, 0x012E, 0x0133, 0x013D Output Format

Reg Address	Bit Field	Туре	Setting Name	Description
0x010B	2:0	R/W	OUT0_MUX_SEL	Output driver input mux select. This selects the source of the output clock.
0x0115			OUT1_MUX_SEL	0: DSPLL A
0x011A			OUT2_MUX_SEL	1: DSPLL B
0x011F			OUT3_MUX_SEL	2: DSPLL C
0x0129			OUT4_MUX_SEL	3: DSPLL D
0x012E			OUT5_MUX_SEL	
0x0133			OUT6_MUX_SEL	5-7: Reserved
0x013D			OUT7_MUX_SEL	
0x010B	3	R/W	OUT0_VDD_SEL_E	0: Reserved
0x0115				1: Enable manual OUTx_VDD_SEL
0x011A			OUT1_VDD_SEL_E N	
0x011F			OUT2_VDD_SEL_E	
0x0129			N	
0x012E			OUT3_VDD_SEL_E	
0x0133			OUT4_VDD_SEL_E	
0x013D			N .	
			OUT5_VDD_SEL_E N	
			OUT6_VDD_SEL_E N	
			OUT7_VDD_SEL_E	
0x010B	5:4	R/W	OUT0_VDD_SEL	0: 3.3 V
0x0115			OUT1_VDD_SEL	1: 1.8 V
0x011A			OUT2_VDD_SEL	2: 2.5 V
0x011F			OUT3_VDD_SEL	3: Reserved
0x0129			OUT4_VDD_SEL	
0x012E			OUT5_VDD_SEL	
0x0133			OUT6_VDD_SEL	
0x013D			OUT7_VDD_SEL	

Reg Address	Bit Field	Туре	Setting Name	Description
0x010B	7:6	R/W	OUT0_INV	LVCMOS output inversion. Only applies when
0x0115			OUT1_INV	OUT0A_FORMAT = 4. See 5.4.4 LVCMOS Output Po- larity for more information.
0x011A			OUT2_INV	
0x011F			OUT3_INV	
0x0129			OUT4_INV	
0x012E			OUT5_INV	
0x0133			OUT6_INV	
0x013D			OUT7_INV	

Each output can be connected to any of the four DSPLLs using the OUTx_MUX_SEL. The output drivers are all identical. The OUTx_MUX_SEL settings should match the corresponding OUTx_DIS_SRC selections. Note that the setting codes for OUTx_DIS_SRC and OUTx_MUX_SEL are different when selecting the same DSPLL. OUTx_DIS_SRC = OUTx_MUX_SEL + 1

Table 13.86. 0x010C, 0x0116, 0x011B, 0x0120, 0x012A, 0x012F, 0x0134, 0x0139 Output Disable Source DSPLL

Reg Address	Bit Field	Туре	Setting Name	Description
0x010C	2:0	R/W	OUT0_DIS_SRC	Output driver 0 input mux select. This selects the
0x0116			OUT1_DIS_SRC	source of the output clock.
0x011B			OUT2 DIS SRC	0: DSPLL A squelches output
0x0120			OUT3 DIS SRC	1: DSPLL B squelches output
				2: DSPLL C squelches output
0x012A			OUT4_DIS_SRC	3: DSPLL D squelches output
0x012F			OUT5_DIS_SRC	
0x0134			OUT6_DIS_SRC	5-7: Reserved
0x013E			OUT7_DIS_SRC	

These CLKx_DIS_SRC settings should match the corresponding OUTx_MUX_SEL selections. Note that the setting codes for OUTx_DIS_SRC and OUTx_MUX_SEL are different when selecting the same DSPLL. OUTx_DIS_SRC = OUTx_MUX_SEL + 1

Table 13.87. 0x013F

Reg Address	Bit Field	Туре	Setting Name	Description
0x013F	11:0	R/W	OUTX_AL- WAYS_ON	Set by CBPro

Reg Address	Bit Field	Туре	Setting Name	Description
0x0141	0	R/W	OUT_DIS_MSK_PL LA	Set by CBPro
0x0141	1	R/W	OUT_DIS_MSK_PL LB	
0x0141	2	R/W	OUT_DIS_MSK_PL LC	
0x0141	3	R/W	OUT_DIS_MSK_PL LD	
0x0141	5	R/W	OUT_DIS_LOL_MS K	
0x0141	6	R/W	OUT_DIS_LOS- XAXB_MSK	Determines if outputs are disabled during an LOSXAXB condition.
				0: All outputs disabled on LOSXAXB
				1: All outputs remain enabled during LOSXAXB condi- tion
0x0141	7	R/W	OUT_DIS_MSK_LO S_PFD	Set by CBPro

Table 13.88. 0x0141 Output Disable Mask for LOS XAXB

Table 13.89. 0x0142 Output Disable Loss of Lock PLL

Reg Address	Bit Field	Туре	Setting Name	Description
0x0142	3:0	R/W		0: LOL will disable all connected outputs
			L_PLL[D:A]	1: LOL does not disable any outputs
0x0142	7:4	R/W	OUT_DIS_MSK_H OLD_PLL[D:A]	Set by CBPro.

Bit 0 LOL_DSPLL_A mask

Bit 1 LOL_DSPLL_B mask

Bit 2 LOL_DSPLL_C mask

Bit 3 LOL_DSPLL_D mask

13.2.3 Page 2 Registers Si5347A/B

Table 13.90. 0x0206 Pre-scale Reference Divide Ratio

F	Reg Address	Bit Field	Туре	Setting Name	Description
	0x0206	1:0	R/W	PXAXB	The divider value for the XAXB input

This valid with external clock sources, not crystals.

- 0 = pre-scale value 1
- 1 = pre-scale value 2
- 2 = pre-scale value 4
- 3 = pre-scale value 8

Note that changing this register furing operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.91. 0x	0208-0x020D P0	Divider Numerator
-----------------	----------------	-------------------

Reg Address	Bit Field	Туре	Setting Name	Description
0x0208	7:0	R/W	P0_NUM	48-bit Integer Number
0x0209	15:8	R/W	P0_NUM	
0x020A	23:16	R/W	P0_NUM	
0x020B	31:24	R/W	P0_NUM	
0x020C	39:32	R/W	P0_NUM	
0x020D	47:40	R/W	P0_NUM	

The following set of registers configure the P-dividers corresponding to each of the four input clocks seen in Figure 2.1 Block Diagrams on page 6. ClockBuilder Pro calculates the correct values for the P-dividers. Note that changing these registers during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.92. 0x020E-0x0211 P0 Divider Denominator

Reg Address	Bit Field	Туре	Setting Name	Description
0x020E	7:0	R/W	P0_DEN	32-bit Integer Number
0x020F	15:8	R/W	P0_DEN	
0x0210	23:16	R/W	P0_DEN	
0x0211	31:24	R/W	P0_DEN	

The P1, P2 and P3 divider numerator and denominator follow the same format as P0 described above. ClockBuilder Pro calculates the correct values for the P-dividers. Note that changing these registers during operation may cause indefinite loss of lock unless the guide-lines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.93. Si5347A/B P1–P3 Divider Registers that Follow P0 Definitions

Register Address	Description	Size	Same as Address
0x0212-0x0217	P1_NUM	48-bit Integer Number	0x0208-0x020D
0x0218-0x021B	P1_DEN	32-bit Integer Number	0x020E-0x0211
0x021C-0x0221	P2_NUM	48-bit Integer Number	0x0208-0x020D
0x0222-0x0225	P2_DEN	32-bit Integer Number	0x020E-0x0211

Register Address	Description	Size	Same as Address
0x0226-0x022B	P3_NUM	48-bit Integer Number	0x0208-0x020D
0x022C-0x022F	P3_DEN	32-bit Integer Number	0x020E-0x0211

The following set of registers configure the P-dividers corresponding to each of the four input clocks seen in Figure 2.1 Block Diagrams on page 6. ClockBuilder Pro calculates the correct values for the P-dividers. Note that changing these registers during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.94. 0x0230 Px_UPDATE

Reg Address	Bit Field	Туре	Setting Name	Description
0x0230	0	S	P0_UPDATE	0: No update for P-divider value
0x0230	1	S	P1_UPDATE	1: Update P-divider value
0x0230	2	S	P2_UPDATE	
0x0230	3	S	P3_UPDATE	

Note that these controls are not needed when following the guidelines in 3.1.1 Updating Registers during Device Operation. Specifically, they are not needed when using the global soft reset "SOFT_RST_ALL". However, these are required when using the individual DSPLL soft reset controls, SOFT_RST_PLLA, SOFT_RST_PLLB, etc., as these do not update the Px_NUM or Px_DEN values.

Table 13.95. 0x0231 P0 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0231	3:0	R/W	P0_FRACN_MODE	P0 (IN0) input divider fractional mode. Must be set to 0xB for proper operation.
0x0231	4	R/W	P0_FRAC_EN	P0 (IN0) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.96. 0x0232 P1 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0232	3:0	R/W	P1_FRACN_MODE	P1 (IN1) input divider fractional mode. Must be set to 0xB for proper operation.
0x0232	4	R/W	P1_FRAC_EN	P1 (IN1) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.97. 0x0233 P2 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0233	3:0	R/W	P2_FRACN_MODE	P2 (IN2) input divider fractional mode. Must be set to 0xB for proper operation.
0x0233	4	R/W	P2_FRAC_EN	P2 (IN2) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0234	3:0	R/W	P3_FRACN_MODE	P3 (IN3) input divider fractional mode. Must be set to 0xB for proper operation.
0x0234	4	R/W	P3_FRAC_EN	P3 (IN3) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.98. 0x0234 P3 Factional Division Enable

Table 13.99. 0x0235-0x023A MXAXB Divider Numerator

Reg Address	Bit Field	Туре	Setting Name	Description
0x0235	7:0	R/W	MXAXB_NUM	44-bit Integer Number
0x0236	15:8	R/W	MXAXB_NUM	
0x0237	23:16	R/W	MXAXB_NUM	
0x0238	31:24	R/W	MXAXB_NUM	
0x0239	39:32	R/W	MXAXB_NUM	
0x023A	43:40	R/W	MXAXB_NUM	

Note that changing this register during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.100. 0x023B-0x023E MXAXB Divider Denominator

Reg Address	Bit Field	Туре	Setting Name	Description
0x023B	7:0	R/W	MXAXB_DEN	32-bit Integer Number
0x023C	15:8	R/W	MXAXB_DEN	
0x023D	23:16	R/W	MXAXB_DEN	
0x023E	31:24	R/W	MXAXB_DEN	

The M-divider numerator and denominator are set by ClockBuilder Pro for a given frequency plan. Note that changing this register during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.101. 0x023F

Reg Address	Bit Field	Туре	Setting Name	Description
0x023F	0	R/W	MXAXB_UPDATE	The divider value for the XAXB input

Reg Address	Bit Field	Туре	Setting Name	Description
0x024A	7:0	R/W	R0_REG	24-bit Integer output divider
0x024B	15:8	R/W	R0_REG	divide value = (R0_REG+1) x 2
0x024C	23:16	R/W	R0_REG	To set R0 = 2, set
				OUT0_RDIV_FORCE2 = 1 and then the R0_REG value is irrelevant.

Table 13.102. 0x024A-0x024C R0 Divider

The R dividers are at the output clocks and are purely integer division. The R1–R9 dividers follow the same format as the R0 divider described above.

Table 13.103. Si5347A/B R1–R7 Divider Registers that Follow R0 Definitions

Register Address	Description	Size	Same as Address
0x0250-0x0252	R1_REG	24-bit Integer Number	0x024A-0x024C
0x0253-0x0255	R2_REG	24-bit Integer Number	0x024A-0x024C
0x0256-0x0258	R3_REG	24-bit Integer Number	0x024A-0x024C
0x025C-0x025E	R4_REG	24-bit Integer Number	0x024A-0x024C
0x025F-0x0261	R5_REG	24-bit Integer Number	0x024A-0x024C
0x0262-0x0264	R6_REG	24-bit Integer Number	0x024A-0x024C
0x0268-0x026A	R7_REG	24-bit Integer Number	0x024A-0x024C

Table 13.104. 0x026B-0x0272 Design Identifier

Reg Address	Bit Field	Туре	Setting Name	Description
0x026B	7:0	R/W	DESIGN_ID0	ASCII encoded string defined by ClockBuilder Pro user,
0x026C	15:8	R/W	DESIGN_ID1	with user defined space or null padding of unused char- acters. A user will normally include a configuration ID +
0x026D	23:16	R/W	DESIGN_ID2	revision ID. For example, "ULT.1A" with null character padding sets:
0x026E	31:24	R/W	DESIGN_ID3	DESIGN ID0: 0x55
0x026F	39:32	R/W	DESIGN_ID4	DESIGN ID1: 0x4C
0x0270	47:40	R/W	DESIGN_ID5	DESIGN_ID2: 0x54
0x0271	55:48	R/W	DESIGN_ID6	DESIGN_ID3: 0x2E
0x0272	63:56	R/W	DESIGN_ID7	DESIGN_ID4: 0x31
				DESIGN_ID5: 0x41
				DESIGN_ID6:0x 00
				DESIGN_ID7: 0x00

Reg Address	Bit Field	Туре	Setting Name	Description
0x0278	7:0	R/W	OPN_ID0	OPN unique identifier. ASCII encoded. For example,
0x0279	15:8	R/W	OPN_ID1	with OPN:
0x027A	23:16	R/W	OPN_ID2	5347C-A12345-GM, 12345 is the OPN unique identifier:
0x027B	31:24	R/W	OPN_ID3	OPN_ID0: 0x31
0x027C	39:32	R/W	OPN_ID4	OPN_ID1: 0x32
				OPN_ID2: 0x33
				OPN_ID3: 0x34
				OPN_ID4: 0x35

Table 13.105. 0x0278-0x027C OPN Identifier

Part numbers are of the form:

Si<Part Num Base><Grade>-<Device Revision><OPN ID>-<Temp Grade><Package ID>

Examples:

Si5347C-A12345-GM.

Applies to a "custom" OPN (Ordering Part Number) device. These devices are factory pre-programmed with the frequency plan and all other operating characteristics defined by the user's ClockBuilder Pro project file.

Si5347C-A-GM.

Applies to a "base" or "non-custom" OPN device. Base devices are factory pre-programmed to a specific base part type (e.g., Si5347 but exclude any user-defined frequency plan or other user-defined operating characteristics selected in ClockBuilder Pro.

Table 13.106. 0x027D

Reg Address	Bit Field	Туре	Setting Name	Description
0x027D	7:0	R/W	OPN_REVISION	

Table 13.107. 0x027E

Reg Address	Bit Field	Туре	Setting Name	Description
0x027E	7:0	R/W	BASELINE_ID	

Table 13.108. 0x028A-0x028D

Reg Address	Bit Field	Туре	Setting Name	Description
0x028A	4:0	R/W	OOF0_TRG_THR_ EXT	The OOF0 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)
0x028B	4:0	R/W	OOF1_TRG_THR_ EXT	The OOF1 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)
0x028C	4:0	R/W	OOF2_TRG_THR_ EXT	The OOF2 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)
0x028D	4:0	R/W	OOF3_TRG_THR_ EXT	The OOF3 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)

Reg Address	Bit Field	Туре	Setting Name	Description
0x028E	4:0	R/W	OOF0_CLR_THR_ EXT	The OOF0 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)
0x028F	4:0	R/W	OOF1_CLR_THR_ EXT	The OOF1 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)
0x0290	4:0	R/W	OOF2_CLR_THR_ EXT	The OOF2 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)
0x0291	4:0	R/W	OOF3_CLR_THR_ EXT	The OOF3 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)

Table 13.109. 0x028E-0x0291

Table 13.110. 0x0294-0x0295 FASTLOCK EXTEND SCL PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x0294	3:0	R/W	FASTLOCK_EX- TEND_SCL_PLLA	Scales LOLB_INT_TIMER_DIV256. Set by CBPro.
0x0294	7:4	R/W	FASTLOCK_EX- TEND_SCL_PLLB	
0x0295	3:0	R/W	FASTLOCK_EX- TEND_SCL_PLLC	
0x0295	7:4	R/W	FASTLOCK_EX- TEND_SCL_PLLD	

Table 13.111. 0x0296 LOL SLW VALWIN SELX PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x0296	0	R/W	LOL_SLW_VAL- WIN_SELX_PLLA	Set by CBPro.
0x0296	1	R/W	LOL_SLW_VAL- WIN_SELX_PLLB	
0x0296	2	R/W	LOL_SLW_VAL- WIN_SELX_PLLC	
0x0296	3	R/W	LOL_SLW_VAL- WIN_SELX_PLLD	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0297	0	R/W	FAST- LOCK_DLY_ONSW _EN_PLLA	Set by CBPro.
0x0297	1	R/W	FAST- LOCK_DLY_ONSW _EN_PLLB	
0x0297	2	R/W	FAST- LOCK_DLY_ONSW _EN_PLLC	
0x0297	3	R/W	FAST- LOCK_DLY_ONSW _EN_PLLD	

Table 13.112. 0x0297 FASTLOCK_DLY_ONSW_EN_PLLx

Table 13.113. 0x0299 FASTLOCK_DLY_ONLOL_EN_PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x0299	0	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLA	Set by CBPro.
0x0299	1	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLB	
0x0299	2	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLC	
0x0299	3	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLD	

Table 13.114. 0x029A-0x029C FASTLOCK_DLY_ONLOL_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x029A	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLA	Set by CBPro.
0x029B	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLA	
0x029C	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLA	

Reg Address	Bit Field	Туре	Setting Name	Description
0x029D	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLB	Set by CBPro.
0x029E	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLB	
0x029F	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLB	

Table 13.115. 0x029D-0x029F FASTLOCK_DLY_ONLOL_PLLB

Table 13.116. 0x02A0-0x02A2 FASTLOCK_DLY_ONLOL_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A0	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLC	Set by CBPro.
0x02A1	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLC	
0x02A2	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLC	

Table 13.117. 0x02A3-0x02A5 FASTLOCK_DLY_ONLOL_PLLD

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A3	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLD	Set by CBPro.
0x02A4	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLD	
0x02A5	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLD	

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A6	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLA	20-bit value. Set by CBPro.
0x02A7	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLA	
0x02A8	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLA	

Table 13.118. 0x02A6-0x02A8 FASTLOCK DLY ONSW PLLA

Table 13.119. 0x02A9-0x02AB FASTLOCK DLY ONSW PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A9	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLB	20-bit value. Set by CBPro.
0x02AA	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLB	
0x02AB	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLB	

Table 13.120. 0x02AC-0x02AE FASTLOCK_DLY_ONSW_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x02AC	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLC	20-bit value. Set by CBPro.
0x02AD	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLC	
0x02AE	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLC	

Reg Address	Bit Field	Туре	Setting Name	Description
0x02AF	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLD	20-bit value. Set by CBPro.
0x02B0	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLD	
0x02B1	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLD	

Table 13.121. 0x02AF-0x02B1 FASTLOCK_DLY_ONSW_PLLD

Table 13.122. 0x02B7 LOL_NOSIG_TIME_PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x02B7	1:0	R/W	LOL_NO- SIG_TIME_PLLA	Set by CBPro.
0x02B7	3:2	R/W	LOL_NO- SIG_TIME_PLLB	
0x02B7	5:4	R/W	LOL_NO- SIG_TIME_PLLC	
0x02B7	7:6	R/W	LOL_NO- SIG_TIME_PLLD	

Table 13.123. 0x02B8 LOL LOS REFCLK PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x02B8	0	R/W	LOL_LOS_REFCLK _PLLA	Set by CBPro.
0x02B8	1	R/W	LOL_LOS_REFCLK _PLLB	Set by CBPro.
0x02B8	2	R/W	LOL_LOS_REFCLK _PLLC	Set by CBPro.
0x02B8	3	R/W	LOL_LOS_REFCLK _PLLD	Set by CBPro.

Table 13.124. 0x02B9 LOL NOSIG TIME PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x02B9	0	R/W	LOL_LOS_REFCLK _PLLA_FLG	Set by CBPro.
0x02B9	1	R/W	LOL_LOS_REFCLK _PLLB_FLG	Set by CBPro.
0x02B9	2	R/W	LOL_LOS_REFCLK _PLLC_FLG	Set by CBPro.
0x02B9	3	R/W	LOL_LOS_REFCLK _PLLD_FLG	Set by CBPro.

13.2.4 Page 3 Registers Si5347A/B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0302	7:0	R/W	N0_NUM	N Output Divider Numerator. 44-bit
0x0303	15:8			Integer.
0x0304	23:16			
0x0305	31:24			
0x0306	39:32			
0x0307	43:40			

Table 13.125. 0x0302-0x0307 N0 Numerator

Table 13.126. 0x0308-0x030B N0 Denominator

Reg Address	Bit Field	Туре	Setting Name	Description
0x0308	7:0	R/W	N0_DEN	N Output Divider Denominator. 32-bit
0x0309	15:8			Integer.
0x030A	23:16			
0x030B	31:24			

The N output divider values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.127. 0x030C N0 Update

Reg Address	Bit Field	Туре	Setting Name	Description
0x030C	0	S	N0_UPDATE	Set this bit to latch the N output divider
				registers into operation.

Setting this self-clearing bit to 1 latches the new N output divider register values into operation. A Soft Reset will have the same effect.

Table 13.128. N0_NUM and N0_DEN Definitions

Reg Address	Description	Size	Same as Address
0x030D-0x0312	N1_NUM	44-bit Integer	0x0302-0x0307
0x0313-0x0316	N1_DEN	32-bit Integer	0x0308-0x030B
0x0317	N1_UPDATE	one bit	0x030C
0x0318-0x031D	N2_NUM	44-bit Integer	0x0302-0x0307
0x031E-0x0321	N2_DEN	32-bit Integer	0x0308-0x030B
0x0322	N2_UPDATE	one bit	0x030C
0x0323-0x0328	N3_NUM	44-bit Integer	0x0302-0x0307
0x0329-0x032C	N3_DEN	32-bit Integer	0x0308-0x030B
0x032D	N3_UPDATE	one bit	0x030C

Reg Address	Bit Field	Туре	Setting Name	Description
0x0338	1	S	N_UPDATE	Writing a 1 to this bit will update all DSPLL internal di- vider values. When this bit is written, all other bits in this register must be written as zeros.

Table 13.129. 0x0338 All DSPLL Internal Dividers Update Bit

ClockBuilder Pro handles these updates when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

13.2.5 Page 4 Registers Si5347A/B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0407	7:6	R	IN_PLLA_ACTV	Currently selected DSPLL input clock.
				0: IN0
				1: IN1
				2: IN2
				3: IN3

Table 13.130. 0x0407 DSPLL A Active Input

Table 13.131. 0x0408-0x040D DSPLL A Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0408	5:0	R/W	BW0_PLLA	Parameters that create the normal PLL bandwidth
0x0409	5:0	R/W	BW1_PLLA	
0x040A	5:0	R/W	BW2_PLLA	
0x040B	5:0	R/W	BW3_PLLA	
0x040C	5:0	R/W	BW4_PLLA	
0x040D	5:0	R/W	BW5_PLLA	

This group of registers determines the DSPLL A loop bandwidth. In ClockBuilder Pro it is selectable from 200 Hz to 4 kHz in steps of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLA bit (reg 0x0414[0]) must be used to cause all of the BWx_PLLA, FAST_BWx_PLLA, and BWx_HO_PLLA parameters to take effect. Note that individual SOFT_RST_PLLA (0x001C[1]) does not update the bandwidth parameters.

Table 13.132. 0x040E-0x0414 DSPLL A Fast Lock Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x040E	5:0	R/W	FAST- LOCK_BW0_PLLA	Parameters that create the fast lock PLL bandwidth
0x040F	5:0	R/W	FAST- LOCK_BW1_PLLA	
0x0410	5:0	R/W	FAST- LOCK_BW2_PLLA	
0x0411	5:0	R/W	FAST- LOCK_BW3_PLLA	
0x0412	5:0	R/W	FAST- LOCK_BW4_PLLA	
0x0413	5:0	R/W	FAST- LOCK_BW5_PLLA	
0x0414	0	S	BW_UP- DATE_PLLA	0: No effect 1: Update both the Normal and Fastlock BWs for PLL A.

This group of registers determines the DSPLL Fastlock bandwidth. Clock Builder Pro will determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLA bit (reg 0x0414[0]) must be used to cause all of the

BWx_PLLA, FAST_BWx_PLLA, and BWx_HO_PLLA parameters to take effect. Note that individual SOFT_RST_PLLA (0x001C[1]) does not update the bandwidth parameters.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0415	7:0	R/W	M_NUM_PLLA	56-bit number.
0x0416	15:8	R/W	M_NUM_PLLA	
0x0417	23:16	R/W	M_NUM_PLLA	
0x0418	31:24	R/W	M_NUM_PLLA	
0x0419	39:32	R/W	M_NUM_PLLA	
0x041A	47:40	R/W	M_NUM_PLLA	
0x041B	55:48	R/W	M_NUM_PLLA	

Table 13.133. 0x0415-0x041B MA Divider Numerator for DSPLL A

The MA divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.134. 0x041C-0x041F MA Divider Denominator for DSPLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x041C	7:0	R/W	M_DEN_PLLA	32-bit number.
0x041D	15:8	R/W	M_DEN_PLLA	
0x041E	23:16	R/W	M_DEN_PLLA	
0x041F	31:24	R/W	M_DEN_PLLA	

The loop MA divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.135. 0x0420 M Divider Update Bit for PLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x0420	0	S		Must write a 1 to this bit to cause PLL A M divider changes to take effect.

Bits 7:1 of this register have no function and can be written to any value.

Table 13.136. 0x0421 DSPLL A M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0421	3:0	R/W		M feedback divider fractional mode.
			LLA	Must be set to 0xB for proper operation
0x0421	4	R/W	M_FRAC_EN_PLLA	M feedback divider fractional enable.
				0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.
0x0421	5	R/W	Reserved	Must be set to 1 for DSPLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x0422	0	R/W		0: To enable FINC/FDEC updates.
			LLA	1: To disable FINC/FDEC updates.
0x0422	1	R/W	M_FSTEP_DEN_PL	Set by CBPro.
Ux0422		K/W	LA	Set by CBPro.

Table 13.137. 0x0422 DSPLL A FINC/FDEC Control

Table 13.138. 0x0423-0x0429 DSPLLA MA Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0423	7:0	R/W	M_FSTEPW_PLLA	56-bit number
0x0424	15:8	R/W	M_FSTEPW_PLLA	
0x0425	23:16	R/W	M_FSTEPW_PLLA	
0x0426	31:24	R/W	M_FSTEPW_PLLA	
0x0427	39:32	R/W	M_FSTEPW_PLLA	
0x0428	47:40	R/W	M_FSTEPW_PLLA	
0x0429	55:48	R/W	M_FSTEPW_PLLA	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL A is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also registers 0x0415–0x041F.

Table 13.139. 0x042A DSPLL A Input Clock Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x042A	2:0	R/W	IN_SEL_PLLA	0: For IN0
				1: For IN1
				2: For IN2
				3: For IN3
				4–7: Reserved

This is the input clock selection for manual register-based clock selection.

Table 13.140. 0x042B DSPLL A Fast Lock Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x042B	0	R/W	FASTLOCK_AU-	Applies when FASTLOCK_MAN_PLLA=0.
			TO_EN_PLLA	0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLA is out of lock
0x042B	1	R/W	FAST-	0: For normal operation
			LOCK_MAN_PLLA	1: For force fast lock

Reg Address	Bit Field	Туре	Setting Name	Description
0x042C	0	R/W	HOLD_EN_PLLA	Holdover Enable
				0: Holdover Disabled
				1: Holdover Enabled
0x042C	3	R/W	HOLD_RAMP_BYP _PLLA	Set by CBPro.
0x042C	4	R/W	HOLDEX- IT_BW_SEL1_PLLA	Holdover Exit Bandwidth select. Selects the exit band- width from Holdover when ramped exit is disabled (HOLD_RAMP_BYP_PLLA = 1). 0: Exit Holdover using Holdover Exit or Fastlock bandwidths (default). See HOLDEXIT_BW_SEL0_PLLA (0x049B[6]) for additional information. 1: Exit Holdover using the Normal loop bandwidth
0x042C	5:7	R/W	RAMP_STEP_IN- TERVAL_PLLA	Time Interval of the frequency ramp steps when ramp- ing between inputs or when exiting holdover. Calculated by CBPro based on selection.

Table 13.141. 0x042C Holdover Exit Control

Table 13.142. 0x042D

Reg Address	Bit Field	Туре	Setting Name	Description
0x042D	1	R/W	HOLD_RAMP- BYP_NOH- IST_PLLA	Set by CBPro.

Table 13.143. 0x042E DSPLL A Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x042E	4:0	R/W	HOLD_HIST_LEN_ PLLA	5- bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.144. 0x042F DSPLLA Holdover History Delay

Reg Address	Bit Field	Туре	Setting Name	Description
0x042F	4:0	R/W	HOLD_HIST_DE- LAY_PLLA	5- bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the window length from the register value. time = $(2^{DELAY})^*268$ nsec

Table 13.145. 0x0431

Reg Address	Bit Field	Туре	Setting Name	Description
0x0431	4:0	R/W	HOLD_REF_COUN T_FRC_PLLA	5- bit value

Reg Address	Bit Field	Туре	Setting Name	Description
0x0432	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLA	Value calculated by CBPro
0x0433	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLA	
0x0434	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLA	

Table 13.146. 0x0432

Table 13.147. 0x0435 DSPLL A Force Holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0435	0	R/W	<u> </u>	0: For normal operation
			LA	1: To force holdover

Table 13.148. 0x0436 DSPLLA Input Clock Switching Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0436	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLA	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0436	2	R/W	HSW_EN_PLLA	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.149. 0x0437 DSPLLA Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0437	3:0	R/W	IN_LOS_MSK_PLL	For each clock input LOS alarm
			A	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0437	7:4	R/W	IN_OOF_MSK_PLL	For each clock input OOF alarm
			A	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0437[0], OOF alarm 0x0437[4]

IN1 Input 1 applies to LOS alarm 0x0437[1], OOF alarm 0x0437[5]

IN2 Input 2 applies to LOS alarm 0x0437[2], OOF alarm 0x0437[6]

IN3 Input 3 applies to LOS alarm 0x0437[3], OOF alarm 0x0437[7]

Reg Address	Bit Field	Туре	Setting Name	Description
0x0438	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0438	6:4	R/W	IN1_PRIORI-	The priority for clock input 1 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.150. 0x0438 DSPLL A Clock Inputs 0 and 1 Priority

Table 13.151. 0x0439 DSPLL A Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0439	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0439	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x043A	1:0	R/W	HSW_MODE_PLLA	2: Default setting, do not modify
				0,1,3: Reserved
0x043A	3:2	R/W		0: Default setting, do not modify
			RL_PLLA	1,2,3: Reserved

Table 13.152. 0x043A Hitless Switching Mode

Table 13.153. 0x043B-0x043C Hitless Switching Phase Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x043B	7:0	R/W	HSW_PHMEAS_TH R_PLLA	Set by CBPro.
0x043C	9:8	R/W	HSW_PHMEAS_TH R_PLLA	

Table 13.154. 0x043D

Reg Address	Bit Field	Туре	Setting Name	Description
0x043D	4:0	R/W	HSW_COARSE_P M_LEN_PLLA	Set by CBPro

Table 13.155. 0x043E

Reg Address	Bit Field	Туре	Setting Name	Description
0x043E	4:0	R/W	HSW_COARSE_P M_DLY_PLLA	Set by CBPro

Table 13.156. 0x043F DSPLL A Hold Valid History and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x043F	1	R	ID_PLLĀ	Holdover Valid historical frequency data indicator.
				0: Invalid Holdover History - Freerun on input fail or switch
				1: Valid Holdover History - Holdover on input fail or switch
0x043F	2	R	FASTLOCK_STA-	Fastlock engaged indicator.
			TUS_PLLA	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

When the input fails or is switched and the DSPLL switches to Holdover or Freerun mode, HOLD_HIST_VALID_PLLA accumulation will stop.

When a valid input clock is presented to the DSPLL, the holdover frequency history measurements will be cleared and will begin to accumulate once again.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0442	7:0	R/W	FINE_ADJ_OVR_P LLA	Set by CBPro
0x0443	15:8	R/W	FINE_ADJ_OVR_P LLA	
0x0444	17:16	R/W	FINE_ADJ_OVR_P LLA	

Table 13.157. 0x0442-0x0444

Table 13.158. 0x0445

Reg Address	Bit Field	Туре	Setting Name	Description
0x0445	1	R/W	FORCE_FINE_ADJ _PLLA	Set by CBPro

Table 13.159. 0x0488 HSW_FINE_PM_LEN_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x0488	3:0	R/W	HSW_FINE_PM_LE N_PLLA	Set by CBPro.

Table 13.160. 0x0489 PFD_EN_DELAY_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x0489	7:0	R/W	PFD_EN_DE- LAY_PLLA	Set by CBPro.
0x048A	12:8	R/W	PFD_EN_DE- LAY_PLLA	

Table 13.161. 0x049B HOLDEXIT_BW_SEL0_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x049B	1	R/W	IN- IT_LP_CLOSE_HO _PLLA	Set by CBPro.
0x049B	2	R/W	HO_SKIP_PHASE_ PLLA	Set by CBPro.
0x049B	4	R/W	HOLD_PRE- SERVE_HIST_PLL A	Set by CBPro.
0x049B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLA	Set by CBPro.
0x049B	6	R/W	HOLDEX- IT_BW_SEL0_PLLA	Set by CBPro.
0x049B	7	R/W	HOLDEX- IT_STD_BO_PLLA	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x049D	5:0	R/W	BW0_HO_PLLA	DSPLL A Holdover Bandwidth parameters.
0x049E	5:0	R/W	BW1_HO_PLLA	
0x049F	5:0	R/W	BW2_HO_PLLA	
0x04A0	5:0	R/W	BW3_HO_PLLA	
0x04A1	5:0	R/W	BW4_HO_PLLA	
0x04A2	5:0	R/W	BW5_HO_PLLA	

Table 13.162. 0x049D-0x04A2 DSPLL Holdover Exit Bandwidth for DSPLL A

This group of registers determines the DSPLL A bandwidth used when exiting Holdover Mode. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLA bit (reg 0x0414[0]) must be used to cause all of the BWx_PLLA, FAST_BWx_PLLA, and BWx_HO_PLLA parameters to take effect. Note that the individual SOFT_RST_PLLA (0x001C[1]) does not update these bandwidth parameters.

Table 13.163. 0x04A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x04A6	2:0	R/W	RAMP_STEP_SIZE _PLLA	Set by CBPro.
0x04A6	3	R/W	RAMP_SWITCH_E N_PLLA	Set by CBPro.

13.2.6 Page 5 Registers Si5347A/B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0507	7:6	R	IN_PLLB_ACTV	Currently selected DSPLL input clock
				0: IN0
				1: IN1
				2: IN2
				3: IN3

Table 13.164. 0x0507 DSPLL B Active Input

Table 13.165. 0x0508-0x050D DSPLL B Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0508	5:0	R/W	BW0_PLLB	Parameters that create the normal PLL bandwidth
0x0509	5:0	R/W	BW1_PLLB	
0x050A	5:0	R/W	BW2_PLLB	
0x050B	5:0	R/W	BW3_PLLB	
0x050C	5:0	R/W	BW4_PLLB	
0x050D	5:0	R/W	BW5_PLLB	

This group of registers determines the DSPLL B loop bandwidth. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLB bit (reg 0x0514[0]) must be used to cause all of the BWx_PLLB, FAST_BWx_PLLB, and BWx_HO_PLLB parameters to take effect. Note that individual SOFT_RST_PLLB (0x001C[2]) does not update the bandwidth parameters.

Table 13.166. 0x050E-0x0514 DSPLL B Fast Lock Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x050E	5:0	R/W	FAST- LOCK_BW0_PLLB	Parameters that create the fast lock PLL bandwidth
0x050F	5:0	R/W	FAST- LOCK_BW1_PLLB	
0x0510	5:0	R/W	FAST- LOCK_BW2_PLLB	
0x0511	5:0	R/W	FAST- LOCK_BW3_PLLB	
0x0512	5:0	R/W	FAST- LOCK_BW4_PLLB	
0x0513	5:0	R/W	FAST- LOCK_BW5_PLLB	
0x0514	0	S	BW_UP- DATE_PLLB	0: No effect 1: Update both the Normal and Fastlock BWs for PLL B.

This group of registers determines the DSPLL Fastlock bandwidth. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLB bit (reg 0x0514[0]) must be used to cause all of

the BWx_PLLB, FAST_BWx_PLLB, and BWx_HO_PLLB parameters to take effect. Note that individual SOFT_RST_PLLB (0x001C[2]) does not update the bandwidth parameters.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0515	7:0	R/W	M_NUM_PLLB	56- bit number
0x0516	15:8	R/W	M_NUM_PLLB	
0x0517	23:16	R/W	M_NUM_PLLB	
0x0518	31:24	R/W	M_NUM_PLLB	
0x0519	39:32	R/W	M_NUM_PLLB	
0x051A	47:40	R/W	M_NUM_PLLB	
0x051B	55:48	R/W	M_NUM_PLLB	

Table 13.167. 0x0515-0x051B MB Divider Numerator for DSPLL B

The MA divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.168. 0x051C-0x051F MB Divider Denominator for DSPLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x051C	7:0	R/W	M_DEN_PLLB	32-bit number
0x051D	15:8	R/W	M_DEN_PLLB	
0x051E	23:16	R/W	M_DEN_PLLB	
0x051F	31:24	R/W	M_DEN_PLLB	

The loop MB divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.169. 0x0520 M Divider Update Bit for PLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0520	0	S		Must write a 1 to this bit to cause PLL B M divider changes to take effect.

Bits 7:1 of this register have no function and can be written to any value.

Table 13.170. 0x0521 DSPLL B M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0521	3:0	R/W		M feedback divider fractional mode.
			LLB	Must be set to 0xB for proper operation.
0x0521	4	R/W	M_FRAC_EN_PLLB	M feedback divider fractional enable.
				0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0522	0	R/W		0: To enable FINC/FDEC updates
			LLB	1: To disable FINC/FDEC updates
0x0522	1	R/W		0: Modify numerator
			PLLB	1: Modify denominator

Table 13.171. 0x0522 DSPLL B FINC/FDEC Control

Table 13.172. 0x0523-0x0529 DSPLLB MB Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0523	7:0	R/W	M_FSTEPW_PLLB	56-bit number
0x0524	15:8	R/W	M_FSTEPW_PLLB	
0x0525	23:16	R/W	M_FSTEPW_PLLB	
0x0526	31:24	R/W	M_FSTEPW_PLLB	
0x0527	39:32	R/W	M_FSTEPW_PLLB	
0x0528	47:40	R/W	M_FSTEPW_PLLB	
0x0529	55:48	R/W	M_FSTEPW_PLLB	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL B is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also registers 0x0515–0x051F.

Table 13.173. 0x052A DSPLL B Input Clock Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x052A	0	R/W	IN_SEL_REGCTRL	0: Pin Control
			_PLLB	1: Register Control
0x052A	3:1	R/W	IN_SEL_PLLB	0: For IN0
				1: For IN1
				2: For IN2
				3: For IN3
				4–7: Reserved

This is the input clock selection for manual register based clock selection.

Table 13.174. 0x052B DSPLL B Fast Lock Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x052B	0	R/W	FASTLOCK_AU- TO_EN_PLLB	Applies when FASTLOCK_MAN_PLLB=0. 0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLB is out of lock

Reg Address	Bit Field	Туре	Setting Name	Description
0x052B	1	R/W		0: For normal operation
			LOCK_MAN_PLLB	1: For force fast lock

Table 13.175. 0x052C DSPLL B Holdover Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x052C	0	R/W	HOLD_EN_PLLB	0: Holdover Disabled
				1: Holdover Enabled
0x052C	3	R/W	HOLD_RAMP_BYP _PLLB	Must be set to 1 for normal operation.
0x052C	4	R/W	HOLD_EX- IT_BW_SEL1_PLLB	0: To use the fastlock loop BW when exiting from hold- over
				1: To use the normal loop BW when exiting from hold- over
0x52C	7:5	R/W	RAMP_STEP_IN- TERVAL_PLLB	Controls the frequency ramp rate when exiting from holdover. Set by CBPro.

Table 13.176. 0x052D

Reg Address	Bit Field	Туре	Setting Name	Description
0x052D	1	R/W	HOLD_RAMP- BYP_NOH- IST_PLLB	Set by CBPro.

Table 13.177. 0x052E DSPLL B Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x052E	4:0	R/W	HOLD_HIST_LEN_ PLLB	5-bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.178. 0x052F DSPLLB Holdover History Delay

Reg Address	Bit Field	Туре	Setting Name	Description
0x052F	4:0	R/W	HOLD_HIST_DE- LAY_PLLB	5-bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the ignore delay time from the register value. time = $(2^{DELAY})^*268$ nsec

Table 13.179. 0x0531

Reg Address	Bit Field	Туре	Setting Name	Description
0x0531	4:0	R/W	HOLD_REF_COUN T_FRC_PLLB	5- bit value

Reg Address	Bit Field	Туре	Setting Name	Description
0x0532	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLB	Set by CBPro.
0x0533	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLB	
0x0534	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLB	

Table 13.180. 0x0532

Table 13.181. 0x0535 DSPLL B Force Holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0535	0	R/W	FORCE_HOLD_PL LB	0: For normal operation
				1: To force holdover

Table 13.182. 0x0536 DSPLLB Input Clock Switching Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0536	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLB	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0536	2	R/W	HSW_EN_PLLB	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.183. 0x0537 DSPLLB Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0537	3:0	R/W		For each clock input LOS alarm
			В	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0537	7:4	R/W		For each clock input OOF alarm
			В	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0537[0], OOF alarm 0x0537[4]

IN1 Input 1 applies to LOS alarm 0x0537[1], OOF alarm 0x0537[5]

IN2 Input 2 applies to LOS alarm 0x0537[2], OOF alarm 0x0537[6]

IN3 Input 3 applies to LOS alarm 0x0537[3], OOF alarm 0x0537[7]

Reg Address	Bit Field	Туре	Setting Name	Description
0x0538	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0538	6:4	R/W	IN1_PRIORI-	The priority for clock input 1 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
			3: For priority 3	
				4: For priority 4
				5–7: Reserved

Table 13.184. 0x0538 DSPLL B Clock Inputs 0 and 1 Priority

Table 13.185. 0x0539 DSPLL B Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0539	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0539	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x053A	1:0	R/W	HSW_MODE_PLLB	2:Default setting, do not modify
				0,1,3: Reserved
0x053A	3:2	R/W		0: Default setting, do not modify
			RL_PLLB	1,2,3: Reserved

Table 13.186. 0x053A DSPLL B Hitless Switching Mode

Table 13.187. 0x053B-0x053C Hitless Switching Phase Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x053B	7:0	R/W	HSW_PHMEAS_TH R_PLLB	10-bit value. Set by CBPro.
0x053C	9:8	R/W	HSW_PHMEAS_TH R_PLLB	

Table 13.188. 0x053D

Reg Address	Bit Field	Туре	Setting Name	Description
0x053D	4:0	R/W	HSW_COARSE_P M_LEN_PLLB	Set by CBPro.

Table 13.189. 0x053E

Reg Address	Bit Field	Туре	Setting Name	Description
0x053E	4:0	R/W	HSW_COARSE_P M_DLY_PLLB	Set by CBPro.

Table 13.190. 0x053F DSPLL B Hold Valid History and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x053F	1	R	HOLD_HIST_VAL-	Holdover Valid historical frequency data indicator.
				0: Invalid Holdover History - Freerun on input fail or switch
				1: Valid Holdover History - Holdover on input fail or switch
0x053F	2	R	FASTLOCK_STA-	Fastlock engaged indicator.
			TUS_PLLB	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

When the input fails or is switched and the DSPLL switches to Holdover or Freerun mode, HOLD_HIST_VALID_PLLB accumulation will stop.

When a valid input clock is presented to the DSPLL, the holdover frequency history measurements will be cleared and will begin to accumulate once again.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0542	7:0	R/W	FINE_ADJ_OVR_P LLB	Set by CBPro.
0x0543	15:8	R/W	FINE_ADJ_OVR_P LLB	
0x0544	17:16	R/W	FINE_ADJ_OVR_P LLB	

Table 13.191. 0x0542-0x0544 FINE_ADJ_OVR_PLLB

Table 13.192. 0x0545 FORCE_FINE_ADJ_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x0545	1	R/W	FORCE_FINE_ADJ _PLLB	Set by CBPro.

Table 13.193. 0x0588 HSW_FINE_PM_LEN_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x0588	3:0	R/W	HSW_FINE_PM_LE N_PLLB	Set by CBPro.

Table 13.194. 0x0589 PFD_EN_DELAY_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x0589	7:0	R/W	PFD_EN_DE- LAY_PLLB	Set by CBPro.
0x0589	12:8	R/W	PFD_EN_DE- LAY_PLLB	

Table 13.195. 0x059B HOLDEXIT_BW_SEL0_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x059B	1	R/W	IN- IT_LP_CLOSE_HO _PLLB	Set by CBPro.
0x059B	2	R/W	HO_SKIP_PHASE_ PLLB	
0x059B	4	R/W	HOLD_PRE- SERVE_HIST_PLL B	
0x059B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLB	
0x059B	6	R/W	HOLDEX- IT_BW_SEL0_PLLB	
0x059B	7	R/W	HOLDEX- IT_STD_BO_PLLB	

Reg Address	Bit Field	Туре	Setting Name	Description
0x059D	5:0	R/W	HOLDEX- IT_BW0_PLLB	DSPLL B Fastlock Bandwidth parameters.
0x059E	5:0	R/W	HOLDEX- IT_BW1_PLLB	Set by CBPro to set the PLL bandwidth when exiting holdover, works with HOLDEXIT_BW_SEL0 and
0x059F	5:0	R/W	HOLDEX- IT_BW2_PLLB	HOLD_BW_SEL1.
0x05A0	5:0	R/W	HOLDEX- IT_BW3_PLLB	
0x05A1	5:0	R/W	HOLDEX- IT_BW4_PLLB	
0x05A2	5:0	R/W	HOLDEX- IT_BW5_PLLB	

Table 13.196. 0x059D-0x05A2 DSPLL Holdover Exit Bandwidth for DSPLL B

This group of registers determines the DSPLL B bandwidth used when exiting Holdover Mode. In ClockBuilder Pro it is selectable from 200 Hz to 4 kHz in steps of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLB bit (reg 0x0514[0]) must be used to cause all of the BWx_PLLB, FAST_BWx_PLLB, and BWx_HO_PLLB parameters to take effect. Note that the individual SOFT_RST_PLLB (0x001C[2]) does not update these bandwidth parameters.

Table 13.197. 0x05A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x05A6	2:0	R/W	RAMP_STEP_SIZE _PLLB	Sets the size of the frequency step when frequency ramping is used for holdover exit. Set by CBPro.
0x05A6	3	R/W	RAMP_SWITCH_E N_PLLB	1 = enable frequency ramping on holdover exit.

13.2.7 Page 6 Registers Si5347A/B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0607	7:6	R	IN_PLLC_ACTV	Currently selected DSPLL input clock
				0: IN0
				1: IN1
				2: IN2
				3: IN3

Table 13.198. 0x0607 DSPLL C Active Input

Table 13.199. 0x0608-0x060D DSPLL C Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0608	5:0	R/W	BW0_PLLC	Parameters that create the normal PLL bandwidth
0x0609	5:0	R/W	BW1_PLLC	
0x060A	5:0	R/W	BW2_PLLC	
0x060B	5:0	R/W	BW3_PLLC	_
0x060C	5:0	R/W	BW4_PLLC	_
0x060D	5:0	R/W	BW5_PLLC	

This group of registers determines the DSPLL C loop bandwidth. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLC bit (reg 0x0614[0]) must be used to cause all of the BWx_PLLC, FAST_BWx_PLLC, and BWx_HO_PLLC parameters to take effect. Note that individual SOFT_RST_PLLC (0x001C[3]) does not update the bandwidth parameters.

Table 13.200. 0x060E-0x0614 DSPLL C Fast Lock Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x060E	5:0	R/W	FAST- LOCK_BW0_PLLC	Parameters that create the fast lock PLL bandwidth
0x060F	5:0	R/W	FAST- LOCK_BW1_PLLC	
0x0610	5:0	R/W	FAST- LOCK_BW2_PLLC	
0x0611	5:0	R/W	FAST- LOCK_BW3_PLLC	
0x0612	5:0	R/W	FAST- LOCK_BW4_PLLC	
0x0613	5:0	R/W	FAST- LOCK_BW5_PLLC	
0x0614	0	S	BW_UP- DATE_PLLC	0: No effect. 1: Update both the Normal and Fastback BWs for PLL C.

This group of registers determines the DSPLL Fastlock bandwidth. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLC bit (reg 0x0614[0]) must be used to cause all of

the BWx_PLLC, FAST_BWx_PLLC, and BWx_HO_PLLC parameters to take effect. Note that individual SOFT_RST_PLLC (0x001C[3]) does not update the bandwidth parameters.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0615	7:0	R/W	M_NUM_PLLC	56-bit number
0x0616	15:8	R/W	M_NUM_PLLC	
0x0617	23:16	R/W	M_NUM_PLLC	
0x0618	31:24	R/W	M_NUM_PLLC	
0x0619	39:32	R/W	M_NUM_PLLC	
0x061A	47:40	R/W	M_NUM_PLLC	
0x061B	55:48	R/W	M_NUM_PLLC	

Table 13.201. 0x0615-0x061B MC Divider Numerator for DSPLL C

The MC divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.202. 0x061C-0x061F MC Divider Denominator for DSPLL C

Reg Address	Bit Field	Туре	Setting Name	Description
0x061C	7:0	R/W	M_DEN_PLLC	32-bit number
0x061D	15:8	R/W	M_DEN_PLLC	
0x061E	23:16	R/W	M_DEN_PLLC	
0x061F	31:24	R/W	M_DEN_PLLC	

The loop MC divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.203. 0x0620 M Divider Update Bit for PLL C

Reg Address	Bit Field	Туре	Setting Name	Description
0x0620	0	S		Must write a 1 to this bit to cause PLL C M divider changes to take effect.

Bits 7:1 of this register have no function and can be written to any value.

Table 13.204. 0x0621 DSPLL C M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0621	3:0	R/W	M_FRAC_MODE_P	M feedback divider fractional mode.
			LLC	Must be set to 0xB for proper operation.
0x0621	4	R/W	M_FRAC_EN_PLL	M feedback divider fractional enable.
			С	0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.
0x0621	5	R/W	Reserved	Must be set to 1 for DSPLL C

Reg Address	Bit Field	Туре	Setting Name	Description
0x0622	0	R/W		0: To enable FINC/FDEC updates.
			LLC	1: To disable FINC/FDEC updates.
0x0622	1	R/W	M_FSTEPW_DEN_	0: Modify numerator
			PLLC	1: Modify denominator

Table 13.205. 0x0622 DSPLL C FINC/FDEC Control

Table 13.206. 0x0623-0x0629 DSPLLC MC Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0623	7:0	R/W	M_FSTEPW_PLLC	56-bit number
0x0624	15:8	R/W	M_FSTEPW_PLLC	
0x0625	23:16	R/W	M_FSTEPW_PLLC	
0x0626	31:24	R/W	M_FSTEPW_PLLC	
0x0627	39:32	R/W	M_FSTEPW_PLLC	
0x0628	47:40	R/W	M_FSTEPW_PLLC	
0x0629	55:48	R/W	M_FSTEPW_PLLC	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL C is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also Registers 0x0615–0x061F.

Table 13.207. 0x062A DSPLL C Input Clock Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x062A	2:0	R/W	IN_SEL_PLLC	0: For IN0
				1: For IN1
				2: For IN2
				3: For IN3
				4–7: Reserved

This is the input clock selection for manual register based clock selection.

Table 13.208. 0x062B DSPLL C Fast Lock Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x062B	0	R/W	FASTLOCK_AU-	Applies when FASTLOCK_MAN_PLLC=0.
			TO_EN_PLLC	0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLC is out of lock
0x062B	1	R/W	FAST-	0: For normal operation
			LOCK_MAN_PLLC	1: For force fast lock

Reg Address	Bit Field	Туре	Setting Name	Description
0x062C	0	R/W	HOLD_EN_PLLC	0: Holdover disabled
				1: Holdover enabled
0x062C	3	R/W	HOLD_RAMP_BYP _PLLC	Must be set to 1 for normal operation.
0x062C	4	R/W	HOLD_EX- IT_BW_SEL1_PLL C	0: Use Fastlock bandwidth for Holdover Entry/Exit (default)1: Use the normal loop BW when exiting from holdover
0x062C	7:5	R/W	RAMP_STEP_IN- TERVAL_PLLC	Set by CBPro.

Table 13.209. 0x062C DSPLL C Holdover Control

Table 13.210. 0x062D

Reg Address	Bit Field	Туре	Setting Name	Description
0x062D	1	R/W	HOLD_RAMP- BYP_NOH- IST_PLLC	Set by CBPro.

Table 13.211. 0x062E DSPLL C Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x062E	4:0	R/W	HOLD_HIST_LEN_ PLLC	5- bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.212. 0x062F DSPLLC Holdover History Delay

Reg Address	Bit Field	Туре	Setting Name	Description
0x062F	4:0	R/W	HOLD_HIST_DE- LAY_PLLC	5- bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the ignore delay time from the register value. time = $(2^{DELAY})^*268$ nsec

Table 13.213. 0x0631

Reg Address	Bit Field	Туре	Setting Name	Description
0x0631	4:0	R/W	HOLD_REF_COUN T_FRC_PLLC	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0632	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLC	Set by CBPro.
0x0633	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLC	
0x0634	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLC	

Table 13.214. 0x0632-0x0634

Table 13.215. 0x0635 DSPLL C Force Holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0635	0	R/W		0: For normal operation
			LC	1: To force holdover

Table 13.216. 0x0636 DSPLLC Input Clock Switching Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0636	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLC	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0636	2	R/W	HSW_EN_PLLC	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.217. 0x0637 DSPLLC Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0637	3:0	R/W		For each clock input LOS alarm
			С	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0637	7:4	R/W	IN_OOF_MSK_PLL	For each clock input OOF alarm
			C	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0637[0], OOF alarm 0x0637[4]

IN1 Input 1 applies to LOS alarm 0x0637[1], OOF alarm 0x0637[5]

IN2 Input 2 applies to LOS alarm 0x0637[2], OOF alarm 0x0637[6]

IN3 Input 3 applies to LOS alarm 0x0637[3], OOF alarm 0x0637[7]

Reg Address	Bit Field	Туре	Setting Name	Description
0x0638	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLC	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0638	6:4	R/W	IN1_PRIORI-	The priority for clock input 1 is:
			TY_PLLC	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.218. 0x0638 DSPLL C Clock Inputs 0 and 1 Priority

Table 13.219. 0x0639 DSPLL C Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0639	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLC	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0639	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLC	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x063A	1:0	R/W	HSW_MODE_PLLC	2:Default setting, do not modify
				0,1,3: Reserved
0x063A	3:2	R/W		0: Default setting, do not modify
			RL_PLLC	1,2,3: Reserved

Table 13.220. 0x063A Hitless Switching Mode

Table 13.221. 0x063B-0x063C Hitless Switching Phase Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x063B	7:0	R/W	HSW_PHMEAS_TH R_PLLC	10-bit value. Set by CBPro.
0x063C	9:8	R/W	HSW_PHMEAS_TH R_PLLC	

Table 13.222. 0x063D

Reg Address	Bit Field	Туре	Setting Name	Description
0x063D	4:0	R/W	HSW_COARSE_P M_LEN_PLLC	Set by CBPro.

Table 13.223. 0x063E

Reg Address	Bit Field	Туре	Setting Name	Description
0x063E	4:0	R/W	HSW_COARSE_P M_DLY_PLLC	Set by CBPro.

Table 13.224. 0x063F DSPLL C Hold Valid History and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x063F	1	R	HOLD_HIST_VAL-	Holdover Valid historical frequency data indicator.
			ID_PLLC	0: Invalid Holdover History - Freerun on input fail or switch
				1: Valid Holdover History - Holdover on input fail or switch
0x063F	2	R	FASTLOCK_STA-	Fastlock engaged indicator.
			TUS_PLLC	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

When the input fails or is switched and the DSPLL switches to Holdover or Freerun mode, HOLD_HIST_VALID_PLLC accumulation will stop.

When a valid input clock is presented to the DSPLL, the holdover frequency history measurements will be cleared and will begin to accumulate once again.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0642	7:0	R/W	FINE_ADJ_OVR_P LLC	Set by CBPro.
0x0643	15:8	R/W	FINE_ADJ_OVR_P LLC	
0x0644	17:16	R/W	FINE_ADJ_OVR_P LLC	

Table 13.225. 0x0642-0x0644

Table 13.226. 0x0645

Reg Address	Bit Field	Туре	Setting Name	Description
0x0645	1	R/W	FORCE_FINE_ADJ _PLLC	Set by CBPro.

Table 13.227. 0x0688 HSW_FINE_PM_LEN_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x0688	3:0	R/W	HSW_FINE_PM_LE N_PLLC	Set by CBPro.

Table 13.228. 0x0689 PFD_EN_DELAY_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x0689	7:0	R/W	PFD_EN_DE- LAY_PLLC	Set byCBPro.
0x0689	12:8	R/W	PFD_EN_DE- LAY_PLLC	

Table 13.229. 0x069B HOLDEXIT_BW_SEL0_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x069B	1	R/W	IN- IT_LP_CLOSE_HO _PLLB	
0x069B	2	R/W	HO_SKIP_PHASE_ PLLC	Set by CBPro.
0x069B	4	R/W	HOLD_PRE- SERVE_HIST_PLL C	Set by CBPro.
0x069B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLC	Set by CBPro.
0x069B	6	R/W	HOLDEX- IT_BW_SEL0_PLL C	Set by CBPro.
0x069B	7	R/W	HOLDEX- IT_STD_BO_PLLC	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x069D	5:0	R/W	HOLDEX- IT_BW0_PLLC	DSPLL C Fastlock Bandwidth parameters.
0x069E	5:0	R/W	HOLDEX- IT_BW1_PLLC	
0x069F	5:0	R/W	HOLDEX- IT_BW2_PLLC	
0x06A0	5:0	R/W	HOLDEX- IT_BW3_PLLC	
0x06A1	5:0	R/W	HOLDEX- IT_BW4_PLLC	
0x06A2	5:0	R/W	HOLDEX- IT_BW5_PLLC	

Table 13.230. 0x069D-0x06A2 DSPLL Holdover Exit Bandwidth for DSPLL C

This group of registers determines the DSPLL C bandwidth used when exiting Holdover Mode. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLC bit (reg 0x0614[0]) must be used to cause all of the BWx_PLLC, FAST_BWx_PLLC, and BWx_HO_PLLC parameters to take effect. Note that the individual SOFT_RST_PLLC (0x001C[3]) does not update these bandwidth parameters.

Table 13.231. 0x06A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x06A6	2:0	R/W	RAMP_STEP_SIZE _PLLC	Set by CBPro.
0x06A6	3	R/W	RAMP_SWITCH_E N_PLLC	

13.2.8 Page 7 Registers Si5347A/B

Note that register addresses for Page 7 DSPLL D Registers 0x0709–0x074D are incremented relative to similar DSPLL A/B/C addresses on Pages 4, 5, and 6. For example, Register 0x0709 has the equivalent function to Registers 0x0408/0x0508/0x0608.

Table 13.232. 0x0708 DSPLL D Active Input

Reg Address	Bit Field	Туре	Setting Name	Description
0x0708	2:0	R	IN_PLLD_ACTV	Currently selected DSPLL input clock
				0: IN0
				1: IN1
				2: IN2
				3: IN3
				4: Reserved

Table 13.233. 0x0709-0x070E DSPLL D Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0709	5:0	R/W	BW0_PLLD	Parameters that create the normal PLL bandwidth
0x070A	5:0	R/W	BW1_PLLD	
0x070B	5:0	R/W	BW2_PLLD	
0x070C	5:0	R/W	BW3_PLLD	
0x070D	5:0	R/W	BW4_PLLD	
0x070E	5:0	R/W	BW5_PLLD	

This group of registers determines the DSPLL D loop bandwidth. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLD bit (reg 0x0715[0]) must be used to cause all of the BWx_PLLD, FAST_BWx_PLLD, and BWx_HO_PLLD parameters to take effect. Note that individual SOFT_RST_PLLD (0x001C[4]) does not update the bandwidth parameters.

Table 13.234. 0x070F-0x0715 DSPLL D Fast Lock Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x070F	5:0	R/W	FAST- LOCK_BW0_PLLD	Parameters that create the fast lock PLL bandwidth
0x0710	5:0	R/W	FAST- LOCK_BW_1PLLD	
0x0711	5:0	R/W	FAST- LOCK_BW2_PLLD	
0x0712	5:0	R/W	FAST- LOCK_BW3_PLLD	
0x0713	5:0	R/W	FAST- LOCK_BW_4PLLD	
0x0714	5:0	R/W	FAST- LOCK_BW5_PLLD	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0715	0	S	BW_UP- DATE_PLLD	0: No effect 1: Update both the Normal and Fastlock BWs for PLL D.

This group of registers determines the DSPLL Fastlock bandwidth. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLD bit (reg 0x0715[0]) must be used to cause all of the BWx_PLLD, FAST_BWx_PLLD, and BWx_HO_PLLD parameters to take effect. Note that individual SOFT_RST_PLLD (0x001C[4]) does not update the bandwidth parameters.

Table 13.235. 0x0716-0x071C MD Divider Numerator for DSPLL D

Reg Address	Bit Field	Туре	Setting Name	Description
0x0716	7:0	R/W	M_NUM_PLLD	56- bit number
0x0717	15:8	R/W	M_NUM_PLLD	
0x0718	23:16	R/W	M_NUM_PLLD	
0x0719	31:24	R/W	M_NUM_PLLD	
0x071A	39:32	R/W	M_NUM_PLLD	
0x071B	47:40	R/W	M_NUM_PLLD	
0x071C	55:48	R/W	M_NUM_PLLD	

The MD divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.236. 0x071D-0x0720 MD Divider Denominator for DSPLL D

Reg Address	Bit Field	Туре	Setting Name	Description
0x071D	7:0	R/W	M_DEN_PLLD	32-bit number
0x071E	15:8	R/W	M_DEN_PLLD	
0x071F	23:16	R/W	M_DEN_PLLD	
0x0720	31:24	R/W	M_DEN_PLLD	

The loop MD divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.237. 0x0721 M Divider Update Bit for PLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0721	0	S		Must write a 1 to this bit to cause PLL D M divider changes to take effect.

Bits 7:1 of this register have no function and can be written to any value.

Table 13.238. 0x0722 DSPLL D M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0722	3:0	R/W		M feedback divider fractional mode.
			LLD	Must be set to 0xB for proper operation.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0722	4	R/W		M feedback divider fractional enable.
			D	0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.
0x0722	5	R/W	Reserved	Must be set to 1 for DSPLL D

Table 13.239. 0x0723 DSPLL D FINC/FDEC Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0723	0	R/W		0: To enable FINC/FDEC updates
			LLD	1: To disable FINC/FDEC updates
0x0723	1	R/W		0: Modify numerator
			PLLD	1: Modify denominator

Table 13.240. 0x0724-0x072A DSPLLD MD Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0724	7:0	R/W	M_FSTEPW_PLLD	56-bit number
0x0725	15:8	R/W	M_FSTEPW_PLLD	
0x0726	23:16	R/W	M_FSTEPW_PLLD	
0x0727	31:24	R/W	M_FSTEPW_PLLD	
0x0728	39:32	R/W	M_FSTEPW_PLLD	
0x0729	47:40	R/W	M_FSTEPW_PLLD	
0x072A	55:48	R/W	M_FSTEPW_PLLD	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL D is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also Registers 0x0716–0x0720.

Reg Address	Bit Field	Туре	Setting Name	Description
0x072B	2:0	R/W	IN_SEL_PLLD	0: For IN0
				1: For IN1
				2: For IN2
				3: For IN3
				4–7: Reserved

This is the input clock selection for manual register based clock selection.

Reg Address	Bit Field	Туре	Setting Name	Description
0x072C	0	R/W	FASTLOCK_AU-	Applies when FASTLOCK_MAN_PLLD=0.
			TO_EN_PLLD	0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLD is out of lock
0x072C	1	R/W	FAST-	0: For normal operation
			LOCK_MAN_PLLD	1: For force fast lock

Table 13.242. 0x072C DSPLL D Fast Lock Control

Table 13.243. 0x072D DSPLL D Holdover Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x072D	0	R/W	HOLD_EN_PLLD	0: Holdover disabled
				1: Holdover enabled
0x072D	3	R/W	HOLD_RAMP_BYP _PLLD	Must be set to 1 for normal operation.
0x072D	4	R/W	HOLDEX- IT_BW_SEL1_PLL D	0: Use Fastlock bandwidth for Holdover Entry/Exit (default)1: Use the normal loop BW when exiting from holdover
0x072D	7:5	R/W	RAMP_STEP_IN- TERVAL_PLLD	Set by CBPro.

Table 13.244. 0x072E

Reg Address	Bit Field	Туре	Setting Name	Description
0x072E	1	R/W	HOLD_RAMP- BYP_NOH- IST_PLLD	Set by CBPro.

Table 13.245. 0x072F DSPLL D Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x072F	4:0	R/W	HOLD_HIST_LEN_ PLLD	5- bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.246. 0x0730 DSPLLD Holdover History Delay

Reg Address	Bit Field	Туре	Setting Name	Description
0x0730	4:0	R/W	HOLD_HIST_DE- LAY_PLLD	5- bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the ignore delay time from the register value. time = $(2^{DELAY})^*268$ nsec

Table 13.247. 0	x0732
-----------------	-------

Reg Address	Bit Field	Туре	Setting Name	Description
0x0732	4:0	R/W	HOLD_REF_COUN T_FRC_PLLD	5- bit value

Table 13.248. 0x0733-0x0735

Reg Address	Bit Field	Туре	Setting Name	Description
0x0733	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLD	Set by CBPro.
0x0734	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLD	
0x0735	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLD	

Table 13.249. 0x0736 DSPLL D Force Holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0736	0	R/W	FORCE_HOLD_PL LD	0: For normal operation
			LD	1: To force holdover

Table 13.250. 0x0737 DSPLLD Input Clock Switching Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0737	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLD	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0737	2	R/W	HSW_EN_PLLD	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.251. 0x0738 DSPLLD Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0738	3:0	R/W	IN_LOS_MSK_PLL	For each clock input LOS alarm
			D	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0738	7:4	R/W		For each clock input OOF alarm
			D	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0738[0], OOF alarm 0x0738[4]

IN1 Input 1 applies to LOS alarm 0x0738[1], OOF alarm 0x0738[5]

IN2 Input 2 applies to LOS alarm 0x0738[2], OOF alarm 0x0738[6]

IN3 Input 3 applies to LOS alarm 0x0738[3], OOF alarm 0x0738[7]

Table 13.252. 0x0739 DSPLL D Clock Inputs 0 and 1 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0739	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLD	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0739	6:4	R/W	IN1_PRIORI-	The priority for clock input 1 is:
			TY_PLLD	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.253. 0x073A DSPLL D Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x073A	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLD	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x073A	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLD	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.254. 0x073B Hitless Switching Mode

Reg Address	Bit Field	Туре	Setting Name	Description
0x073B	1:0	R/W	HSW_MODE_PLLD	2:Default setting, do not modify
				0,1,3: Reserved
0x073B	3:2	R/W		0: Default setting, do not modify
			RL_PLLD	1,2,3: Reserved

Table 13.255. 0x073C-0x073D Hitless Switching Phase Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x073C	7:0	R/W	HSW_PHMEAS_TH R_PLLD	10-bit value. Set by CBPro.
0x073D	9:8	R/W	HSW_PHMEAS_TH R_PLLD	

Table 13.256. 0x073E

Reg Address	Bit Field	Туре	Setting Name	Description
0x073E	4:0	R/W	HSW_COARSE_P M_LEN_PLLD	Set by CBPro.

Table 13.257. 0x073F

Reg Address	Bit Field	Туре	Setting Name	Description
0x073F	4:0	R/W	HSW_COARSE_P M_DLY_PLLD	Set by CBPro.

Table 13.258. 0x0740 DSPLL D Hold Valid History and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x0740	1	R	HOLD_HIST_VAL- ID_PLLD	 Holdover Valid historical frequency data indicator. 0: Invalid Holdover History - Freerun on input fail or switch 1: Valid Holdover History - Holdover on input fail or switch

Reg Address	Bit Field	Туре	Setting Name	Description
0x0740	2	R	FASTLOCK_STA-	Fastlock engaged indicator.
			TUS_PLLD	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

When the input fails or is switched and the DSPLL switches to Holdover or Freerun mode, HOLD_HIST_VALID_PLLD accumulation will stop.

When a valid input clock is presented to the DSPLL, the holdover frequency history measurements will be cleared and will begin to accumulate once again.

Table 13.259. 0x0743-0x0745

Reg Address	Bit Field	Туре	Setting Name	Description
0x0743	7:0	R/W	FINE_ADJ_OVR_P LLD	Set by CBPro.
0x0744	15:8	R/W	FINE_ADJ_OVR_P LLD	Set by CBPro.
0x0745	17:16	R/W	FINE_ADJ_OVR_P LLD	Set by CBPro.

Table 13.260. 0x0746

Reg Address	Bit Field	Туре	Setting Name	Description
0x0746	1	R/W	FORCE_FINE_ADJ _PLLD	Set by CBPro.

Table 13.261. 0x0789-0x078A

Reg Address	Bit Field	Туре	Setting Name	Description
0x0789	7:0	R/W	PFD_EN_DE- LAY_PLLD	Set by CBPro.
0x078A	12:8	R/W	PFD_EN_DE- LAY_PLLD	Set by CBPro.

Table 13.262. 0x079B

Reg Address	Bit Field	Туре	Setting Name	Description
0x079B	1	R/W	IN- IT_LP_CLOSE_HO _PLLD	
0x079B	2	R/W	HO_SKIP_PHASE_ PLLD	Set by CBPro.
0x079B	4	R/W	HOLD_PRE- SERVE_HIST_PLL D	Set by CBPro.
0x079B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLD	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x079B	6	R/W	HOLDEX- IT_BW_SEL0_PLL D	Set by CBPro.
0x079B	7	R/W	HOLDEX- IT_STD_BO_PLLD	Set by CBPro.

Table 13.263. 0x079D-0x07A2 DSPLL Holdover Exit Bandwidth for DSPLL D

Reg Address	Bit Field	Туре	Setting Name	Description
0x079D	5:0	R/W	HOLDEX- IT_BW0_PLLD	DSPLL D Fastlock Bandwidth parameters.
0x079E	5:0	R/W	HOLDEX- IT_BW1_PLLD	
0x079F	5:0	R/W	HOLDEX- IT_BW2_PLLD	
0x07A0	5:0	R/W	HOLDEX- IT_BW3_PLLD	
0x07A1	5:0	R/W	HOLDEX- IT_BW4_PLLD	
0x07A2	5:0	R/W	HOLDEX- IT_BW5_PLLD	

This group of registers determines the DSPLL D bandwidth used when exiting Holdover Mode. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLD bit (reg 0x0715[0]) must be used to cause all of the BWx_PLLD, FAST_BWx_PLLD, and BWx_HO_PLLD parameters to take effect. Note that the individual SOFT_RST_PLLD (0x001C[4]) does not update these bandwidth parameters.

Table 13.264. 0x07A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x07A6	2:0	R/W	RAMP_STEP_SIZE _PLLD	Set by CBPro.
0x07A6	3	R/W	RAMP_SWITCH_E N_PLLD	

13.2.9 Page 9 Registers Si5347A/B

Table 13.265. 0x090E XAXB Configuration

Reg Address	Bit Field	Туре	Setting Name	Description
0x090E	0	R/W		Selects between the XTAL or external reference clock on the XA/XB pins. Default is 0, XTAL. Set to 1 to use an external reference oscillator.

Table 13.266. 0x0943 Control I/O Voltage Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x0943	0	R/W	IO_VDD_SEL	0: For 1.8 V external connections
				1: For 3.3 V external connections

The IO_VDD_SEL configuration bit selects between 1.8 V and 3.3 V digital I/O. All digital I/O pins, including the serial interface pins, are 3.3 V-tolerant. Setting this to the default 1.8 V is the safe default choice that allows writes to the device regardless of the serial interface used or the host supply voltage. When the I2C or SPI host is operating at 3.3 V and the Si5347/46 at VDD=1.8 V, the host must write IO_VDD_SEL=1. This will ensure that both the host and the serial interface are operating with the optimum signal thresholds.

Table 13.267. 0x0949 Clock Input Control and Configuration

Reg Address	Bit Field	Туре	Setting Name	Description
0x0949	3:0	R/W	IN_EN	0: Disable and Powerdown Input Buffer
				1: Enable Input Buffer
				for IN3–IN0.
0x0949	7:4	R/W	IN_PULSED_CMO	0: Standard Input Format
			S_EN	 Pulsed CMOS Input Format for IN3–IN0. See Clock Inputs for more information.

When a clock is disabled, it is powered down.

Input 0 corresponds to IN_EN 0x0949 [0], IN_PULSED_CMOS_EN 0x0949 [4]

Input 1 corresponds to IN_EN 0x0949 [1], IN_PULSED_CMOS_EN 0x0949 [5]

Input 2 corresponds to IN_EN 0x0949 [2], IN_PULSED_CMOS_EN 0x0949 [6]

Input 3 corresponds to IN_EN 0x0949 [3], IN_PULSED_CMOS_EN 0x0949 [7]

Table 13.268. 0x094A Input Clock Enable to DSPLL

Reg Address	Bit Field	Туре	Setting Name	Description
0x094A	3:0	R/W	INX_TO_PFD_EN	Value calculated in CBPro

Table 13.269. 0x094E-0x094F Input Clock Buffer Hysteresis

Reg Address	Bit Field	Туре	Setting Name	Description
0x094E	7:0	R/W	REFCLK_HYS_SEL	Value calculated in CBPro
0x094F	11:8	R/W	REFCLK_HYS_SEL	

Reg Address	Bit Field	Туре	Setting Name	Description
0x095E	0	R/W	MXAXB_INTEGER	0: Integer MXAXB
				1: Fractional MXAXB

Table 13.270. 0x095E MXAXB Fractional Mode

13.2.10 Page A Registers Si5347A/B

Table 13.271. 0x0A03 Enable DSPLL Internal Divider Clocks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0A03	4:0	R/W	EN EN	Enable the internal dividers for PLLs (D C B A). Must be set to 1 to enable the dividers. See related registers 0x0A05 and 0x0B4A[4:0].

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.272. 0x0A04 DSPLL Internal Divider Integer Force

Reg Address	Bit Field	Туре	Setting Name	Description
0x0A04	4:0	R/W	N_PIBYP	Bypass fractional divider for N[3:0].
				0: Fractional (or Integer) division - Recommended if changing settings during operation
				1: Integer-only division - best phase noise - Recommen- ded for Integer N values
				Note that a device Soft Reset (0x001C[0]=1) must be is- sued after changing the settings in this register.

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.273. 0x0A05 DSPLL Internal Divider Power Down

Reg Address	Bit Field	Туре	Setting Name	Description
0x0A05	4:0	R/W	N_PDNB	Powers down the internal dividers for PLLs (D C B A). Set to 0 to power down unused PLLs. Must be set to 1 for all active PLLs. See related registers 0x0A03 and 0x0B4A[4:0].

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

13.2.11 Page B Registers Si5347A/B

Table 13.274. 0x0B24 Reserved Control

Reg Address	Bit Field	Туре	Name	Description
0x0B24	7:0	R/W	RESERVED	Internal use for initilization. See CBPro.

Table 13.275. 0x0B25 Reserved Control

Reg Address	Bit Field	Туре	Name	Description
0x0B25	7:0	R/W	RESERVED	Internal use for initilization. See CBPro.

Table 13.276. 0x0B44 Clock Control for Fractional Dividers

Reg Address	Bit Field	Туре	Name	Description
0x0B44	3:0	R/W	PDIV_FRACN_CLK _DIS	Clock Disable for the fractional divide of the input P dividers. [P3, P2, P1, P0]. Must be set to a 0 if the P divider has a fractional value.
				0: Enable the clock to the fractional divide part of the P divider.
				1: Disable the clock to the fractional divide part of the P divider.
0x0B44	4	R/W	FRACN_CLK_DIS_ PLLA	Clock disable for the fractional divide of the M divider in PLLA. Must be set to a 0 if this M divider has a fractional value.
				0: Enable the clock to the fractional divide part of the M divider.
				1: Disable the clock to the fractional divide part of the M divider.
0x0B44	5	R/W	FRACN_CLK_DIS_ PLLB	Clock disable for the fractional divide of the M divider in PLLB. Must be set to a 0 if this M divider has a fractional value.
				0: Enable the clock to the fractional divide part of the M divider.
				1: Disable the clock to the fractional divide part of the M divider.
0x0B44	6	R/W	FRACN_CLK_DIS_ PLLC	Clock disable for the fractional divide of the M divider in PLLC. Must be set to a 0 if this M divider has a fractional value.
				0: Enable the clock to the fractional divide part of the M divider.
				1: Disable the clock to the fractional divide part of the M divider.

Reg Address	Bit Field	Туре	Name	Description
0x0B44	7	R/W	FRACN_CLK_DIS_ PLLD	 Clock disable for the fractional divide of the M divider in PLLD. Must be set to a 0 if this M divider has a fractional value. 0: Enable the clock to the fractional divide part of the M divider. 1: Disable the clock to the fractional divide part of the M divider.

Table 13.277. 0x0B45 LOL Clock Disable

Reg Address	Bit Field	Туре	Name	Description
0x0B45	0	R/W	CLK_DIS_PLLA	1: Clock disabled.
0x0B45	1	R/W	CLK_DIS_PLLB	1: Clock disabled.
0x0B45	2	R/W	CLK_DIS_PLLC	1: Clock disabled.
0x0B45	3	R/W	CLK_DIS_PLLD	1: Clock disabled.

Table 13.278. 0x0B46 Loss of Signal Clock Disable

Reg Address	Bit Field	Туре	Name	Description
0x0B46	3:0	R/W	LOS_CLK_DIS	Disables LOS for (IN3 IN2 IN1 IN0). Must be set to 0 to enable the LOS function of the respective inputs.

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.279. 0x0B47

Reg Address	Bit Field	Туре	Name	Description
0x0B47	4:0	R/W	OOF_CLK_DIS	Set by CBPro.

Table 13.280. 0x0B48

Reg Address	Bit Field	Туре	Name	Description
0x0B48	4:0	R/W	OOF_DIV_CLK_DI S	Set by CBPro.

Table 13.281. 0x0B4A Divider Clock Disables

Reg Address	Bit Field	Туре	Name	Description
0x0B4A	4:0	R/W	N_CLK_DIS	Disable internal dividers for PLLs (D C B A). Must be set to 0 to use the DSPLL. See related registers 0x0A03 and 0x0A05.
0x0B4A	5	R/W	M_CLK_DIS	Disable M dividers. Must be set to 0 to enable the M divider.
0x0B4A	6	R/W	M_DIV_CAL_DIS	Disable M divider calibration. Must be set to 0 to allow calibration.

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.282. 0x0B4E Reserved Control

Reg Address	Bit Field	Туре	Name	Description
0x0B4E	7:0	R/W	RESERVED	Internal use for initilization. See CBPro.

Table 13.283. 0x0B57 VCO_RESET_CALCODE

Reg Address	Bit Field	Туре	Name	Description
0x0B57	7:0	R/W	VCO_RESET_CAL- CODE	
0x0B58	11:8	R/W	VCO_RESET_CAL- CODE	

13.3 Si5347C/D Register Map

13.3.1 Page 0 Registers Si5347C/D

Table 13.284. 0x0001 Page

Reg Address	Bit Field	Туре	Setting Name	Description
0x0001	7:0	R/W	PAGE	Selects one of 256 possible pages.

The "Page Select" register is located at address 0x01 on every page. When read, it indicates the current page. When written, it will change the page to the value entered. There is a page register at address 0x0001, 0x0101, 0x0201, 0x0301, ... etc.

Table 13.285. 0x0002-0x0003 Base Part Number

Reg Address	Bit Field	Туре	Setting Name	Value	Description
0x0002	7:0	R	PN_BASE	0x47	Four-digit "base" part number, one nibble per
0x0003	15:8	R	PN_BASE	0x53	digit Example: Si5347A-A-GM. The base part num- ber (OPN) is 5347, which is stored in this regis- ter

Table 13.286. 0x0004 Device Grade

Reg Address	Bit Field	Туре	Setting Name	Description
0x0004	7:0	R	GRADE	One ASCII character indicating the device speed/ synthesis mode.
				0 = A
				1 = B
				2 = C
				3 = D

Refer to the device data sheet Ordering Guide section for more information about device grades.

Table 13.287. 0x0005 Device Revision

Reg Address	Bit Field	Туре	Setting Name	Description
0x0005	7:0	R	DEVICE_REV	One ASCII character indicating the device revision level.
				0 = A; 1 = B, etc.
				Example Si5347C-A12345-GM, the device revision is "A" and stored as 0

Table 13.288. 0x0006-0x0008 TOOL_VERSION

Reg Address	Bit Field	Туре	Name	Description
0x0006	3:0	R/W	TOOL_VERSION[3:0]	Special
0x0006	7:4	R/W	TOOL_VERSION[7:4]	Revision

Reg Address	Bit Field	Туре	Name	Description
0x0007	7:0	R/W	TOOL_VERSION[15:8]	Minor[7:0]
0x0008	0	R/W	TOOL_VERSION[15:8]	Minor[8]
0x0008	4:1	R/W	TOOL_VERSION[16]	Major
0x0008	7:5	R/W	TOOL_VERSION[13:17]	Tool. 0 for ClockBuilder Pro

Table 13.289. 0x0009-0x000A NVM Identifier, Pkg ID

Reg Address	Bit Field	Туре	Setting Name	Description
0x0009	7:0	R	TEMP_GRADE	Device temperature grading
				0 = Industrial (–40 °C to 85 °C) ambient conditions
0x000A	7:0	R	PKG_ID	Package ID
				0 = 9x9 mm 64 QFN

Part numbers are of the form:

Si<Part Num Base><Grade>-<Device Revision><OPN ID>-<Temp Grade><Package ID>

Examples:

Si5347C-A12345-GM.

Applies to a "base" or "blank" OPN (Ordering Part Number) device. These devices are factory pre-programmed with the frequency plan and all other operating characteristics defined by the user's ClockBuilder Pro project file.

Si5347C-A-GM.

Applies to a "base" or "blank" OPN device. Base devices are factory pre-programmed to a specific base part type (e.g., Si5347 but exclude any user-defined frequency plan or other user-defined operating characteristics selected in ClockBuilder Pro.

Table 13.290. 0x000B I2C Address

Reg Address	Bit Field	Туре	Setting Name	Description
0x000B	6:0	R/W	I2C_ADDR	7-bit I2C Address. Note: This register is not bank burnable.

Table 13.291. 0x000C Internal Status Bits

Reg Address	Bit Field	Туре	Setting Name	Description
0x000C	0	R	SYSINCAL	1 if the device is calibrating.
0x000C	1	R	LOSXAXB	1 if there is no signal at the XAXB pins.
0x000C	2	R	LOSREF	1 if there is no signal detected on the XAXB input signal.
0x000C	3	R	XAXB_ERR	1 if there is a problem locking to the XAXB input signal.
0x000C	5	R	SMBUS_TIMEOUT	1 if there is an SMBus timeout error.

Bit 1 is the LOS status monitor for the XTAL or REFCLK at the XA/XB pins. Bit 3 is the XAXB problem status monitor and may indicate the XAXB input signal has excessive jitter, ringing, or low amplitude. Bit 5 indicates a timeout error when using SMBUS with the I²C serial port.

Reg Address	Bit Field	Туре	Setting Name	Description
0x000D	3:0	R	LOS	1 if the clock input [3 2 1 0] is currently LOS.
0x000D	7:4	R	OOF	1 if the clock input [3 2 1 0] is currently OOF.

Table 13.292. 0x000D Loss-of Signal (LOS) Alarms

Note that each bit corresponds to the input. The LOS bits are not sticky.

- Input 0 (IN0) corresponds to LOS 0x000D [0], OOF 0x000D[4]
- Input 1 (IN1) corresponds to LOS 0x000D [1], OOF 0x000D[5]
- Input 2 (IN2) corresponds to LOS 0x000D [2], OOF 0x000D[6]
- Input 3 (IN3) corresponds to LOS 0x000D [3], OOF 0x000D[7]

Table 13.293. 0x000EHoldover and LOL Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x000E	3:0	R	LOL_PLL[D:A]	1 if the DSPLL is out of lock
0x000E	7:4	R	HOLD_PLL[D:A]	1 if the DSPLL is in holdover (or free run)

DSPLL_A corresponds to bit 0,4

DSPLL_B corresponds to bit 1,5

DSPLL_C corresponds to bit 2,6

DSPLL_D corresponds to bit 3,7

Table 13.294. 0x000F INCAL Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x000F	7:4	R	CAL_PLL[D:A]	1 if the DSPLL internal calibration is busy.

DSPLL_A corresponds to bit 4

DSPLL_B corresponds to bit 5

DSPLL_C corresponds to bit 6

DSPLL_D corresponds to bit 7

Table 13.295. 0x0011 Internal Error Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0011	0	R/W	SYSINCAL_FLG	Sticky version of SYSINCAL. Write a 0 to this bit to clear.
0x0011	1	R/W	LOSXAXB_FLG	Sticky version of LOSXAXB. Write a 0 to this bit to clear.
0x0011	2	R/W	LOSREF_FLG	Sticky version of LOSREF. Write a 0 to clear the flag.
0x0011	3	R/W	XAXB_ERR_FLG	Sticky version of XAXB_ERR. Write a 0 to this bit to clear.
0x0011	5	R/W	SMBUS_TIME- OUT_FLG	Sticky version of SMBUS_TIMEOUT. Write a 0 to this bit to clear.

These are sticky flag versions of 0x000C. They are cleared by writing zero to the bit that has been set.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0012	3:0	R/W	LOS_FLG	Sticky version of LOS. Write a 0 to this bit to clear.
0x0012	7:4	R/W	OOF_FLG	Sticky version of OOF. Write a 0 to this bit to clear.

Table 13.296. 0x0012 Sticky OOF and LOS Flags

These are sticky flag versions of 0x000D.

Input 0 (IN0) corresponds to LOS_FLG 0x0012 [0], OOF_FLG 0x0012[4]

• Input 1 (IN1) corresponds to LOS_FLG 0x0012 [1], OOF_FLG 0x0012[5]

• Input 2 (IN2) corresponds to LOS FLG 0x0012 [2], OOF FLG 0x0012[6]

• Input 3 (IN3) corresponds to LOS_FLG 0x0012 [3], OOF_FLG 0x0012[7]

Table 13.297. 0x0013 Holdover and LOL Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0013	3:0	R/W	LOL_FLG_PLL[D:A]	1 if the DSPLL was unlocked
0x0013	7:4	R/W	HOLD_FLG_PLL[D: A]	1 if the DSPLL was in holdover (or freerun)

Sticky flag versions of address 0x000E.

DSPLL_A corresponds to bit 0,4

DSPLL_B corresponds to bit 1,5

DSPLL_C corresponds to bit 2,6

DSPLL_D corresponds to bit 3,7

Table 13.298. 0x0014 INCAL Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0014	7:4	R/W	CAL_FLG_PLL[D:A]	1 if the DSPLL internal calibration was busy

These are sticky-flag versions of 0x000F.

DSPLL A corresponds to bit 4

DSPLL B corresponds to bit 5

DSPLL C corresponds to bit 6

DSPLL D corresponds to bit 7

Table 13.299. 0x0016

Reg Address	Bit Field	Туре	Setting Name	Description
0x0016	3:0	R/W	LOL_ON_HOLD_PL L[D:A]	

Table 13.300. 0x0017 Fault Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0017	0	R/W	SYSIN- CAL_INTR_MSK	1 to mask SYSINCAL_FLG from causing an interrupt

Reg Address	Bit Field	Туре	Setting Name	Description
0x0017	1	R/W	LOS- XAXB_INTR_MSK	1 to mask the LOSXAXB_FLG from causing an interrupt
0x0017	2	R/W	LOS- REF_INTR_MSK	1 to mask LOSREF_FLG from causing an interrupt
0x0017	3	R/W	XAXB_ERR_INTR_ MSK	
0x0017	5	R/W	SMB_TMOUT_INT R_MSK	1 to mask SMBUS_TIMEOUT_FLG from causing an in- terrupt
0x0017	6	R/W	Reserved	Factory set to 1 to mask reserved bit from causing an interrupt. Do not clear this bit.
0x0017	7	R/W	Reserved	Factory set to 1 to mask reserved bit from causing an interrupt. Do not clear this bit.

The interrupt mask bits for the fault flags in register 0x011. If the mask bit is set, the alarm will be blocked from causing an interrupt. The default for this register is 0x035.

Table 13.301. 0x0018 OOF and LOS Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0018	3:0	R/W	LOS_INTR_MSK	1: To mask the clock input LOS flag
0x0018	7:4	R/W	OOF_INTR_MSK	1: To mask the clock input OOF flag

• Input 0 (IN0) corresponds to LOS_IN_INTR_MSK 0x0018 [0], OOF_IN_INTR_MSK 0x0018 [4]

• Input 1 (IN1) corresponds to LOS IN INTR MSK 0x0018 [1], OOF IN INTR MSK 0x0018 [5]

• Input 2 (IN2) corresponds to LOS_IN_INTR_MSK 0x0018 [2], OOF_IN_INTR_MSK 0x0018 [6]

• Input 3 (IN3) corresponds to LOS_IN_INTR_MSK 0x0018 [3], OOF_IN_INTR_MSK 0x0018 [7]

These are the interrupt mask bits for the OOF and LOS flags in register 0x0012. If a mask bit is set, the alarm will be blocked from causing an interrupt.

Table 13.302. 0x0019 Holdover and LOL Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0019	3:0	R/W	LOL_INTR_MSK_P LL[D:A]	1: To mask the clock input LOL flag
0x0019	7:4	R/W	HOLD_INTR_MSK_ PLL[D:A]	1: To mask the holdover flag

DSPLL A corresponds to LOL_INTR_MSK_PLL 0x0019 [0], HOLD_INTR_MSK_PLL 0x0019 [4]

• DSPLL B corresponds to LOL_INTR_MSK_PLL 0x0019 [1], HOLD_INTR_MSK_PLL 0x0019 [5]

• DSPLL C corresponds to LOL_INTR_MSK_PLL 0x0019 [2], HOLD_INTR_MSK_PLL 0x0019 [6]

• DSPLL D corresponds to LOL_INTR_MSK_PLL 0x0019 [3], HOLD_INTR_MSK_PLL 0x0019 [7]

These are the interrupt mask bits for the LOS and HOLD flags in register 0x0013. If a mask bit is set, the alarm will be blocked from causing an interrupt.

Table 13.303. 0x001A INCAL Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x001A	7:4	R/W	CAL_INTR_MSK_D SPLL[D:A]	1: To mask the DSPLL internal calibration busy flag

DSPLL A corresponds to bit 0

DSPLL B corresponds to bit 1

DSPLL C corresponds to bit 2

DSPLL D corresponds to bit 3

Table 13.304. 0x001C Soft Reset and Calibration

Reg Address	Bit Field	Туре	Setting Name	Description
0x001C	0	S	SOFT_RST_ALL	0: No effect
				1: Initialize and calibrate the entire device.
0x001C	1	S	SOFT_RST_PLLA	1 initialize and calibrate DSPLLA
0x001C	2	S	SOFT_RST_PLLB	1 initialize and calibrate DSPLLB
0x001C	3	S	SOFT_RST_PLLC	1 initialize and calibrate DSPLLC
0x001C	4	S	SOFT_RST_PLLD	1 initialize and calibrate DSPLLD

These bits are of type "S", which means self-clearing. Unlike SOFT_RST_ALL, the SOFT_RST_PLLx bits do not update the loop BW values. If these have changed, the update can be done by writing to BW_UPDATE_PLLA, BW_UPDATE_PLLB, BW_UPDATE_PLLC, and BW_UPDATE_PLLD at addresses 0x0414, 0x514, 0x0614, and 0x0715.

Table 13.305. 0x001D FINC, FDEC

Reg Address	Bit Field	Туре	Setting Name	Description
0x001D	0	S	FINC	0: No effect
				1: A rising edge will cause an frequency increment.
0x001D	1	S	FDEC	0: No effect
				1: A rising edge will cause an frequency decrement.

Table 13.306. 0x001E Sync, Power Down, and Hard Reset

Reg Address	Bit Field	Туре	Setting Name	Description
0x001E	0	R/W	PDN	1: To put the device into low power mode
0x001E	1	R/W	HARD_RST	Perform hard Reset with NVM read.
				0: Normal Operation
				1: Hard Reset the device
0x001E	2	S	SYNC	1 to reset all the R dividers to the same state.

Table 13.307. 0x0020 DSPLL_SEL[1:0] Control of FINC/FDEC for DCO

Reg Address	Bit Field	Туре	Name	Description
0x0020	0	R/W	GLE	0: DSPLL_SEL[1:0] pins and bits are disabled. 1: DSPLL_SEL[1:0] pins or FSTEP_PLL bits are ena- bled. See FSTEP_PLL_REGCTRL

Reg Address	Bit Field	Туре	Name	Description
0x0020	1	R/W	FSTEP_PLL_REGC	Only functions when FSTEP_PLL_SINGLE = 1.
			TRL	0: DSPLL_SELx pins are enabled, and the correspond- ing register bits are disabled.
				1: DSPLL_SELx_REG register bits are enabled, and the corresponding pins are disabled.
0x0020	3:2	R/W	FSTEP_PLL	Register version of the DSPLL_SEL[1:0] pins. Used to select which PLL (M divider) is affected by FINC/FDEC.
				0: DSPLL A M-divider
				1: Reserved
				2: DSPLL C M-divider
				3: DSPLL D M-divider

By default ClockBuilder Pro sets OE0 controlling all outputs and OE1 unused. OUTALL_DISABLE_LOW 0x0102[0] must be high (enabled) to observe the effects of OE0 and OE1. Note that the OE0 and OE1 register bits (active high) have inverted logic sense from the pins (active low).

Table 13.308. 0x002B SPI 3 vs 4 Wire

Reg Address	Bit Field	Туре	Setting Name	Description
0x002B	3	R/W	SPI_3WIRE	0: For 4-wire SPI
				1: For 3-wire SPI.

Table 13.309. 0x002C LOS Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x002C	3:0	R/W	LOS_EN	0: For disable.
				1: To enable LOS for a clock input.
0x002C	4	R/W	LOSXAXB_DIS	Enable LOS detection on the XAXB inputs.
				0: Enable LOS Detection (default)
				1: Disable LOS Detection

Input 0 (IN0): LOS_EN[0]

• Input 1 (IN1): LOS_EN[1]

• Input 2 (IN2): LOS_EN[2]

• Input 3 (IN3): LOS_EN[3]

Table 13.310. 0x002D Loss of Signal Re-Qualification Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x002D	1:0	R/W	LOS0_VAL_TIME	Clock Input 0
				0: For 2 msec
				1: For 100 msec
				2: For 200 msec
				3: For one second
0x002D	3:2	R/W	LOS1_VAL_TIME	Clock Input 1, same as above

Reg Address	Bit Field	Туре	Setting Name	Description
0x002D	5:4	R/W	LOS2_VAL_TIME	Clock Input 2, same as above
0x002D	7:6	R/W	LOS3_VAL_TIME	Clock Input 3,same as above

When an input clock is gone (and therefore has an active LOS alarm), if the clock returns, there is a period of time that the clock must be within the acceptable range before the alarm is removed. This is the LOS_VAL_TIME.

Table 13.311. 0x002E-0x002F LOS0 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x002E	7:0	R/W	LOS0_TRG_THR	16-bit Threshold Value
0x002F	15:8	R/W	LOS0_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 0, given a particular frequency plan.

Table 13.312. 0x0030-0x0031 LOS1 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0030	7:0	R/W	LOS1_TRG_THR	16-bit Threshold Value
0x0031	15:8	R/W	LOS1_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 1, given a particular frequency plan.

Table 13.313. 0x0032-0x0033 LOS2 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0032	7:0	R/W	LOS2_TRG_THR	16-bit Threshold Value
0x0033	15:8	R/W	LOS2_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 2, given a particular frequency plan.

Table 13.314. 0x0034-0x0035 LOS3 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0034	7:0	R/W	LOS3_TRG_THR	16-bit Threshold Value
0x0035	15:8	R/W	LOS3_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 3, given a particular frequency plan.

Table 13.315. 0x0036-0x0037 LOS0 Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0036	7:0	R/W	LOS0_CLR_THR	16-bit Threshold Value
0x0037	15:8	R/W	LOS0_CLR_THR	

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 0, given a particular frequency plan.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0038	7:0	R/W	LOS1_CLR_THR	16-bit Threshold Value
0x0039	15:8	R/W	LOS1_CLR_THR	

Table 13.316. 0x0038-0x0039 LOS1 Clear Threshold

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 1, given a particular frequency plan.

Table 13.317. 0x003A-0x003B LOS2 Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x003A	7:0	R/W	LOS2_CLR_THR	16-bit Threshold Value
0x003B	15:8	R/W	LOS2_CLR_THR	

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 2, given a particular frequency plan.

Table 13.318. 0x003C-0x003D LOS3 Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x003C	7:0	R/W	LOS3_CLR_THR	16-bit Threshold Value
0x003D	15:8	R/W	LOS3_CLR_THR	

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 3, given a particular frequency plan.

Table 13.319. 0x003F OOF Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x003F	3:0	R/W	OOF_EN	0: To disable
0x003F	7:4	R/W	FAST_OOF_EN	1: To enable

Table 13.320. 0x0040 OOF Reference Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x0040	2:0	R/W	OOF_REF_SEL	0: IN0
				1: IN1
				2: IN2
				3: IN3
				4: XAXB
				5–7: Reserved

ClockBuilder Pro provides the OOF register values for a particular frequency plan.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0041	4:0	R/W	OOF0_DIV_SEL	Sets a divider for the OOF circuitry for each input clock
0x0042	4:0	R/W	OOF1_DIV_SEL	0,1,2,3. The divider value is 2 ^{OOFx_DIV_SEL} . CBPro sets these dividers.
0x0043	4:0	R/W	OOF2_DIV_SEL	
0x0044	4:0	R/W	OOF3_DIV_SEL	
0x0045	4:0	R/W	OOFXO_DIV_SEL	

Table 13.321. 0x0041-0x0045 OOF Divider Select

Table 13.322. 0x0046-0x0049 Out of Frequency Set Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0046	7:0	R/W	OOF0_SET_THR	OOF Set Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x0047	7:0	R/W	OOF1_SET_THR	OOF Set Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x0048	7:0	R/W	OOF2_SET_THR	OOF Set Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x0049	7:0	R/W	OOF3_SET_THR	OOF Set Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.

Table 13.323. 0x004A-0x004D Out of Frequency Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x004A	7:0	R/W	OOF0_CLR_THR	OOF Clear Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x004B	7:0	R/W	OOF1_CLR_THR	OOF Clear Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x004C	7:0	R/W	OOF2_CLR_THR	OOF Clear Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x004D	7:0	R/W	OOF3_CLR_THR	OOF Clear Threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.

Table 13.324. 0x004E-0x004F OOF Detection Windows

Reg Address	Bit Field	Туре	Setting Name	Description
0x004E	2:0	R/W	OOF0_DET- WIN_SEL	Values calculated by CBPro.
0x004E	6:4	R/W	OOF1_DET- WIN_SEL	
0x004F	2:0	R/W	OOF2_DET- WIN_SEL	
0x004F	6:4	R/W	OOF3_DET- WIN_SEL	

Table 13.325. 0x0050

Reg Address	Bit Field	Туре	Setting Name	Description
0x0050	3:0	R/W	OOF_ON_LOS	Set by CBPro.

Table 13.326. 0x0051-0x0054 Fast Out of Frequency Set Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0051	3:0	R/W	FAST_OOF0_SET_ THR	(1+ value) x 1000 ppm
0x0052	3:0	R/W	FAST_OOF1_SET_ THR	(1+ value) x 1000 ppm
0x0053	3:0	R/W	FAST_OOF2_SET_ THR	(1+ value) x 1000 ppm
0x0054	3:0	R/W	FAST_OOF3_SET_ THR	(1+ value) x 1000 ppm

These registers determine the OOF alarm set threshold for IN3, IN2, IN1 and IN0 when the fast control is enabled. The value in each of the register is (1+ value) x 1000 ppm. ClockBuilder Pro is used to determine the values for these registers.

Table 13.327. 0x0055-0x0058 Fast Out of Frequency Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0055	3:0	R/W	FAST_OOF0_CLR_ THR	(1+ value) x 1000 ppm
0x0056	3:0	R/W	FAST_OOF1_CLR_ THR	(1+ value) x 1000 ppm
0x0057	3:0	R/W	FAST_OOF2_CLR_ THR	(1+ value) x 1000 ppm
0x0058	3:0	R/W	FAST_OOF3_CLR_ THR	(1+ value) x 1000 ppm

These registers determine the OOF alarm clear threshold for IN3, IN2, IN1 and IN0 when the fast control is enabled. The value in each of the register is (1+ value) x 1000 ppm. ClockBuilder Pro is used to determine the values for these registers.

OOF needs a frequency reference. ClockBuilder Pro provides the OOF register values for a particular frequency plan.

Table 13.328. 0x0059 Fast OOF Detection Windows

Reg Address	Bit Field	Туре	Setting Name	Description
0x0059	1:0	R/W	FAST_OOF0_DET- WIN_SEL	Values calculated by CBPro.
0x0059	3:2	R/W	FAST_OOF1_DET- WIN_SEL	
0x0059	5:4	R/W	FAST_OOF2_DET- WIN_SEL	
0x0059	7:6	R/W	FAST_OOF3_DET- WIN_SEL	

Reg Address	Bit Field	Туре	Setting Name	Description
0x005A	7:0	R/W	OOF0_RATIO_REF	Values calculated by CBPro
0x005B	15:8	R/W	OOF0_RATIO_REF	
0x005C	23:16	R/W	OOF0_RATIO_REF	
0x005D	25:24	R/W	OOF0_RATIO_REF	

Table 13.329. 0x005A-0x005D OOF0 Ratio for Reference

Table 13.330. 0x005E-0x0061 OOF1 Ratio for Reference

Reg Address	Bit Field	Туре	Setting Name	Description
0x005E	7:0	R/W	OOF1_RATIO_REF	Values calculated by CBPro
0x005F	15:8	R/W	OOF1_RATIO_REF	
0x0060	23:16	R/W	OOF1_RATIO_REF	
0x0061	25:24	R/W	OOF1_RATIO_REF	

Table 13.331. 0x0062-0x0065 OOF2 Ratio for Reference

Reg Address	Bit Field	Туре	Setting Name	Description
0x0062	7:0	R/W	OOF2_RATIO_REF	Values calculated by CBPro
0x0063	15:8	R/W	OOF2_RATIO_REF	
0x0064	23:16	R/W	OOF2_RATIO_REF	
0x0065	25:24	R/W	OOF2_RATIO_REF	

Table 13.332. 0x0066-0x0069 OOF3 Ratio for Reference

Reg Address	Bit Field	Туре	Setting Name	Description
0x0066	7:0	R/W	OOF3_RATIO_REF	Values calculated by CBPro
0x0067	15:8	R/W	OOF3_RATIO_REF	
0x0068	23:16	R/W	OOF3_RATIO_REF	
0x0069	25:24	R/W	OOF3_RATIO_REF	

Table 13.333. 0x0092 Fast LOL Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0092	0	R/W	LOL_FST_EN_PLL A	Enables fast detection of LOL for PLLx. A large input frequency error will quickly assert LOL when this is ena-
0x0092	1	R/W	LOL_FST_EN_PLL B	bled.
0x0092	2	R/W	LOL_FST_EN_PLL C	
0x0092	3	R/W	LOL_FST_EN_PLL D	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0093	3:0	R/W	LOL_FST_DET- WIN_SEL_PLLA	Values calculated by CBPro
0x0093	7:4	R/W	LOL_FST_DET- WIN_SEL_PLLB	
0x0094	3:0	R/W	LOL_FST_DET- WIN_SEL_PLLC	
0x0094	7:4	R/W	LOL_FST_DET- WIN_SEL_PLLD	

Table 13.334. 0x0093-0x0094 Fast LOL Detection Window

Table 13.335. 0x0095 Fast LOL Detection Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x0095	1:0	R/W	LOL_FST_VAL- WIN_SEL_PLLA	Values calculated by CBPro
0X0095	3:2	R/W	LOL_FST_VAL- WIN_SEL_PLLB	
0x0095	5:4	R/W	LOL_FST_VAL- WIN_SEL_PLLC	
0X0095	7:6	R/W	LOL_FST_VAL- WIN_SEL_PLLD	

Table 13.336. 0x0096-0x0097 Fast LOL Set Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0096	3:0	R/W	LOL_FST_SET_TH R_SEL_PLLA	Values calculated by CBPro
0x0096	7:4	R/W	LOL_FST_SET_TH R_SEL_PLLB	
0x0097	3:0	R/W	LOL_FST_SET_TH R_SEL_PLLC	
0x0097	7:4	R/W	LOL_FST_SET_TH R_SEL_PLLD	

Table 13.337. 0x0098-0x0099 Fast LOL Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0098	3:0	R/W	LOL_FST_CLR_TH R_SEL_PLLA	Values calculated by CBPro
0x0098	7:4	R/W	LOL_FST_CLR_TH R_SEL_PLLB	
0x0099	3:0	R/W	LOL_FST_CLR_TH R_SEL_PLLC	
0X0099	7:4	R/W	LOL_FST_CLR_TH R_SEL_PLLD	

Reg Address	Bit Field	Туре	Setting Name	Description
0x009A	0 1 2	R/W	LOL_SLOW_EN_P LLA LOL_SLOW_EN_P	0: To disable LOL. 1: To enable LOL.
	3		LLB LOL_SLOW_EN_P LLC	
			LOL_SLOW_EN_P LLD	

Table 13.338. 0x009A LOL Enable

Table 13.339. 0x009B-0x009C Slow LOL Detection Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x009B	3:0	R/W	LOL_SLW_DET- WIN_SEL_PLLA	Values calculated by CBPro
0x009B	7:4	R/W	LOL_SLW_DET- WIN_SEL_PLLB	
0x009C	3:0	R/W	LOL_SLW_DET- WIN_SEL_PLLC	
0x009C	7:4	R/W	LOL_SLW_DET- WIN_SEL_PLLD	

Table 13.340. 0x009D Slow LOL Detection Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x009D	1:0	R/W	LOL_SLW_VAL- WIN_SEL_PLLA	Values calculated by CBPro
0x009D	3:2	R/W	LOL_SLW_VAL- WIN_SEL_PLLB	
0x009D	5:4	R/W	LOL_SLW_VAL- WIN_SEL_PLLC	
0x009D	7:6	R/W	LOL_SLW_VAL- WIN_SEL_PLLD	

Table 13.341. 0x009E LOL Set Thresholds

Reg Address	Bit Field	Туре	Setting Name	Description
0x009E	3:0	R/W		Configures the loss of lock set thresholds. See list be- low for selectable values.
0x009E	7:4	R/W	LOL_SLW_SET_TH R_PLLB	Configures the loss of lock set thresholds. See list be- low for selectable values.

Reg Address	Bit Field	Туре	Setting Name	Description
0x009F	3:0	R/W	LOL_SLW_SET_TH R_PLLC	Configures the loss of lock set thresholds. See list be- low for selectable values.
0x009F	7:4	R/W	LOL_SLW_SET_TH R_PLLD	Configures the loss of lock set thresholds. See list be- low for selectable values.

Table 13.342. 0x009F LOL Set Thresholds

The following are the LOL_SLW_SET_THR_PLLx thresholds for the value that is placed in the four bits for DSPLLs.

- 0 = ±0.1 ppm
- 1 = ±0.3 ppm
- 2 = ±1 ppm
- 3 = ±3 ppm
- 4 = ±10 ppm
- 5 = ±30 ppm
- 6 = ±100 ppm
- 7 = ±300 ppm
- 8 = ±1000 ppm
- 9 = ±3000 ppm
- 10 = ±10000 ppm
- 11 15 Reserved

Table 13.343. 0x00A0 LOL Clear Thresholds

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A0	3:0	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.
0x00A0	7:4	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.

Table 13.344. 0x00A1 LOL Clear Thresholds

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A1	3:0	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.
0x00A1	7:4	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.

The following are the LOL_SLW_CLR_THR_PLLx thresholds for the value that is placed in the four bits of the DSPLLs. ClockBuilder Pro sets these values.

- 0 = ±0.1 ppm
- 1 = ±0.3 ppm
- 2 = ±1 ppm
- 3 = ±3 ppm
- 4 = ±10 ppm
- 5 = ±30 ppm
- 6 = ±100 ppm
- 7 = ±300 ppm
- 8 = ±1000 ppm
- 9 = ±3000 ppm
- 10 = ±10000 ppm

• 11 - 15 Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A2	0 1 2	R/W	LOL_TIM- ER_EN_PLLA LOL_TIM-	Enable Delay for LOL Clear. 0: Disable Delay for LOL Clear
	3		ER_EN_PLLB LOL_TIM- ER_EN_PLLC	1: Enable Delay for LOL Clear
			LOL_TIM- ER_EN_PLLD	

Table 13.345. 0x00A2 LOL Timer Enable

Table 13.346. 0x00A4-0x00A7 LOL Clear Delay DSPLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A4	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	29-bit value. Sets the clear timer 0x00AA 15:8 R/W LOL_CLR_DLY for LOL. CBPro sets this value.
0x00A5	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	
0x00A6	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	
0x00A7	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	

Table 13.347. 0x00A9-0x00AC LOL Clear Delay DSPLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A9	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	29-bit value. Sets the clear timer 0x00AA 15:8 R/W LOL_CLR_DLY for LOL. CBPro sets this value.
0x00AA	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	
0x00AB	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	
0x00AC	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	

Reg Address	Bit Field	Туре	Setting Name	Description
0x00AE	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLC	29-bit value. Sets the clear timer 0x00AA 15:8 R/W LOL_CLR_DLY for LOL. CBPro sets this value.
0x00AF	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLC	
0x00B0	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLC	
0x00B1	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLC	

Table 13.348. 0x00AE-0x00B1 LOL Clear Delay DSPLL C

Table 13.349. 0x00B3-0x00B6 LOL Clear Delay DSPLL D

Reg Address	Bit Field	Туре	Setting Name	Description
0x00B3	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLD	29-bit value. Sets the clear timer 0x00AA 15:8 R/W LOL_CLR_DLY for LOL. CBPro sets this value.
0x00B4	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLD	
0x00B5	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLD	
0x00B6	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLD	

Table 13.350. 0x00E2 Active NVM Bank

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E2	7:0	R	AC- TIVE_NVM_BANK	0x03 when no NVM has been burned 0x0F when 1 NVM bank has been burned
				0x3F when 2 NVM banks have been burned When ACTIVE_NVM_BANK = 0x3F, the last bank has already been burned. See 3.1.1 Updating Registers during Device Operation for a detailed description of how to program the NVM.

Table 13.351. 0x00E3

Reg Add	ress	Bit Field	Туре	Setting Name	Description
0x00E	3	7:0	R/W	NVM_WRITE	Write 0xC7 to initiate an NVM bank burn.

Table 13.352. 0x00E4

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E4	0	S	NVM_READ_BANK	When set, this bit will read the NVM down into the vola- tile memory.

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E5	4	R/W	FASTLOCK_EX- TEND_EN_PLLA	Enables FASTLOCK_EXTEND.
0x00E5	5	R/W	FASTLOCK_EX- TEND_EN_PLLB	
0x00E5	6	R/W	FASTLOCK_EX- TEND_EN_PLLC	
0x00E5	7	R/W	FASTLOCK_EX- TEND_EN_PLLD	

Table 13.353. 0x00E5

Table 13.354. 0x00E6-0x00E9 FASTLOCK_EXTEND_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E6	7:0	R/W	FASTLOCK_EX- TEND_PLLA	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00E7	15:8	R/W	FASTLOCK_EX- TEND_PLLA	LOCK_EXTEND_SCL_PLLx.
0x00E8	23:16	R/W	FASTLOCK_EX- TEND_PLLA	
0x00E9	28:24	R/W	FASTLOCK_EX- TEND_PLLA	

Table 13.355. 0x00EA-0x00ED FASTLOCK_EXTEND_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x00EA	7:0	R/W	FASTLOCK_EX- TEND_PLLB	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00EB	15:8	R/W	FASTLOCK_EX- TEND_PLLB	LOCK_EXTEND_SCL_PLLx.
0x00EC	23:16	R/W	FASTLOCK_EX- TEND_PLLB	
0x00ED	28:24	R/W	FASTLOCK_EX- TEND_PLLB	

Table 13.356. 0x00EE-0x00F1 FASTLOCK_EXTEND_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x00EE	7:0	R/W	FASTLOCK_EX- TEND_PLLC	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00EF	15:8	R/W	FASTLOCK_EX- TEND_PLLC	LOCK_EXTEND_SCL_PLLx.
0x00F0	23:16	R/W	FASTLOCK_EX- TEND_PLLC	
0x00F1	28:24	R/W	FASTLOCK_EX- TEND_PLLC	

Reg Address	Bit Field	Туре	Setting Name	Description
0x00F2	7:0	R/W	FASTLOCK_EX- TEND_PLLD	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00F3	15:8	R/W	FASTLOCK_EX- TEND_PLLD	LOCK_EXTEND_SCL_PLLx.
0x00F4	23:16	R/W	FASTLOCK_EX- TEND_PLLD	
0x00F5	28:24	R/W	FASTLOCK_EX- TEND_PLLD	

Table 13.357. 0x00F2-0x00F5 FASTLOCK_EXTEND_PLLD

Table 13.358. 0x00F6

Reg Address	Bit Field	Туре	Name	Description
0x00F6	0	R	REG_0XF7_INT R	Set by CBPro.
0x00F6	1	R	REG_0XF8_INT R	Set by CBPro.
0x00F6	2	R	REG_0XF9_INT R	Set by CBPro.

Table 13.359. 0x00F7

Reg Address	Bit Field	Туре	Name	Description
0x00F7	0	R	SYSINCAL_INTR	Set by CBPro.
0x00F7	1	R	LOSXAXB_INTR	Set by CBPro.
0x00F7	2	R	LOSREF_INTR	Set by CBPro.
0x00F7	4	R	LOSVCO_INTR	Set by CBPro.
0x00F7	5	R	SMBUS_TIME_O UT_INTR	Set by CBPro.

Table 13.360. 0x00F8

Reg Address	Bit Field	Туре	Name	Description
0x00F8	3:0	R	LOS_INTR	Set by CBPro.
0x00F8	7:4	R	OOF_INTR	Set by CBPro.

Table 13.361. 0x00F9

Reg Address	Bit Field	Туре	Name	Description
0x00F9	0:3	R	LOL_INTR_PLL[D:A]	Set by CBPro.
0x00F9	7:4	R	HOLD_INTR_PL L[D:A]	Set by CBPro.

Table 13.362. 0x00FE Device Ready

Reg Address	Bit Field	Туре	Setting Name	Description
0x00FE	7:0	R	DEVICE_READY	Ready Only byte to indicate device is ready. When read data is 0x0F one can safely read/write registers. This register is repeated on every page so that a page write is not ever required to read the DEVICE_READY status.

WARNING: Any attempt to read or write any register other than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the NVM programming. Note this includes writes to the PAGE register.

13.3.2 Page 1 Registers Si5347C/D

Reg Address	Bit Field	Туре	Setting Name	Description
0x0102	0	R/W	-	0: Disables all output drivers
			BLE_LOW	1: Pass through the output enables.

Table 13.363. 0x0102 Global OE Gating for all Clock Output Drivers

Table 13.364. 0x0108, 0x011C, 0x0126, 0x012B Clock Output Driver and R-Divider Configuration

Reg Address	Bit Field	Туре	Setting Name	Description
0x0108	0	R/W	OUT0_PDN	0: To power up the regulator,
0x011C			OUT1_PDN	1: To power down the regulator.
0x0126			OUT2_PDN	When powered down, output pins will be high-impe-
0x012B			OUT3_PDN	dance with a light pull-down effect.
0x0108	1	R/W	OUT0_OE	0: To disable the output
0x011C			OUT1_OE	1: To enable the output
0x0126			OUT2_OE	
0x012B			OUT3_OE	
0x0108	2	R/W	OUT0_RDIV	Force Rx output divider divide-by-2.
0x011C			FORCE	0: Rx_REG sets divide value (default)
0x0126			OUT1_RDIV FORCE	1: Divide value forced to divide-by-2
0x012B			OUT2_RDIV FORCE	
			OUT3_RDIV FORCE	

The output drivers are all identical. See 5.2 Performance Guidelines for Outputs.

Table 13.365. 0x0109, 0x011D, 0x0127, 0x012C Output Format

Reg Address	Bit Field	Туре	Setting Name	Description
0x0109	2:0	R/W	OUT0_FORMAT	0: Reserved
0x011D			OUT1_FORMAT	1: Differential Normal mode
0x0127			OUT2_FORMAT	2: Differential Low-Power mode
0x012C			OUT3_FORMAT	3: Reserved
				4: LVCMOS single ended
				5: LVCMOS (+pin only)
				6: LVCMOS (-pin only)
				7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x0109	3	R/W	OUT0_SYNC_EN	0: Disable
0x011D			OUT1_SYNC_EN	1: Enable
0x0127			OUT2_SYNC_EN	
0x012C			OUT3_SYNC_EN	
0x0109	5:4	R/W	OUT0_DIS_STATE	Determines the state of an output driver when disabled,
0x011D			OUT1_DIS_STATE	selectable as
0x0127			OUT2_DIS_STATE	0: Disable low
0x012C			OUT3_DIS_STATE	1: Disable high
				2-3: Reserved
0x0109	7:6	R/W	OUT0_CMOS_DRV	
0x011D			OUT1_CMOS_DRV	5.8 LVCMOS Drive Strength Control Registers on page 39.
0x0127			OUT2_CMOS_DRV	
0x012C			OUT3_CMOS_DRV	

The output drivers are all identical.

Table 13.366. 0x010A, 0x011E, 0x0128, 0x012D Output Amplitude and Common Mode

Reg Address	Bit Field	Туре	Setting Name	Description
0x010A	3:0	R/W	OUT0_CM	OUTx common-mode voltage selection. This field only
0x011E			OUT1_CM	applies when OUTx_FORMAT = 1 or 2.
0x0128			OUT2_CM	See Table 5.6 Recommended Settings for Differential LVDS, LVPECL, HCSL, and CML on page 37.
0x012D			OUT3_CM	
0x010A	6:4	R/W	OUT0_AMPL	OUTx common-mode voltage selection. This field only
0x011E			OUT1_AMPL	applies when OUTx_FORMAT = 1 or 2.
0x0128			OUT2_AMPL	See Table 5.6 Recommended Settings for Differential LVDS, LVPECL, HCSL, and CML on page 37.
0x012D			OUT3_AMPL	

ClockBuilder Pro is used to select the correct settings for this register. The output drivers are all identical.

Table 13.367. 0x010B, 0x011F, 0x0129, 0x012E Output Format

Reg Address	Bit Field	Туре	Setting Name	Description
0x010B	2:0	R/W	OUT0_MUX_SEL	Output driver input mux select. This selects the
0x011F			OUT1_MUX_SEL	source of the output clock.
0x0129			OUT2_MUX_SEL	0: DSPLL A
0x012E			OUT3_MUX_SEL	1: DSPLL B
				2: DSPLL C
				3: DSPLL D
				5-7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x010B	3	R/W	OUT0_VDD_SEL_EN	1: Enable OUTx_VDD_SEL
0x011F			OUT1_VDD_SEL_EN	
0x0129			OUT2_VDD_SEL_EN	
0x012E			OUT3_VDD_SEL_EN	
0x010B	5:4	R/W	OUT0_VDD_SEL	0: 3.3 V
0x011F			OUT1_VDD_SEL	1: 1.8 V
0x0129			OUT2_VDD_SEL	2: 2.5 V
0x012E			OUT3_VDD_SEL	3: Reserved
0x010B	7:6	R/W	OUT0_INV	LVCMOS output inversion. Only applies when
0x011F			OUT1_INV	OUT0A_FORMAT = 4. See 5.4.4 LVCMOS Output Polarity for more information.
0x0129			OUT2_INV	
0x012E			OUT3_INV	

Each output can be connected to any of the four DSPLLs using the OUTx_MUX_SEL. The output drivers are all identical. The OUTx_MUX_SEL settings should match the corresponding OUTx_DIS_SRC selections. Note that the setting codes for OUTx_DIS_SRC and OUTx_MUX_SEL are different when selecting the same DSPLL. OUTx_DIS_SRC = OUTx_MUX_SEL + 1

Table 13.368. 0x010C, 0x0116, 0x011B, 0x0120, 0x012A, 0x012F, 0x0134, 0x0139 Output Disable Source DSPLL

Reg Address	Bit Field	Туре	Setting Name	Description
0x010C	2:0	R/W	OUT0_DIS_SRC	Output driver 0 input mux select. This selects the
0x0120			OUT1_DIS_SRC	source of the output clock.
0x012A			OUT2_DIS_SRC	0: DSPLL A squelches output
0x012F			OUT3 DIS SRC	1: DSPLL B squelches output
				2: DSPLL C squelches output
				3: DSPLL D squelches output
				5-7: Reserved

These CLKx_DIS_SRC settings should match the corresponding OUTx_MUX_SEL selections. Note that the setting codes for OUTx_DIS_SRC and OUTx_MUX_SEL are different when selecting the same DSPLL. OUTx_DIS_SRC = OUTx_MUX_SEL + 1

Table 13.369. 0x0141 Output Disable Mask for LOS XAXB

Reg Address	Bit Field	Туре	Setting Name	Description
0x0141	0	R/W	OUT_DIS_MSK_PL LA	Set by CBPro.
0x0141	1	R/W	OUT_DIS_MSK_PL LB	
0x0141	2	R/W	OUT_DIS_MSK_PL LC	
0x0141	3	R/W	OUT_DIS_MSK_PL LD	
0x0141	5	R/W	OUT_DIS_LOL_MS K	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0141	6	R/W	OUT_DIS_LOS- XAXB_MSK	Determines if outputs are disabled during an LOSXAXB condition.
				0: All outputs disabled on LOSXAXB
				1: All outputs remain enabled during LOSXAXB condi- tion
0x0141	7	R/W	OUT_DIS_MSK_LO S_PFD	Set by CBPro.

Table 13.370. 0x0142 Output Disable Loss of Lock PLL

Reg Address	Bit Field	Туре	Setting Name	Description
0x0142	3:0	R/W	OUT_DIS_MSK_LO L_PLL[D:A]	0: LOL will disable all connected outputs 1: LOL does not disable any outputs
0x0142	7:4	R/W	OUT_DIS_MSK_H OLD_PLL[D:A]	Set by CBPro.

Bit 0 LOL_DSPLL_A mask

Bit 1 LOL_DSPLL_B mask

Bit 2 LOL_DSPLL_C mask

Bit 3 LOL_DSPLL_D mask

13.3.3 Page 2 Registers Si5347C/D

Table 13.371. 0x0206 Pre-scale Reference Divide Ratio

Reg Address	Bit Field	Туре	Setting Name	Description
0x0206	1:0	R/W	PXAXB	The divider value for the XAXB input

This valid with external clock sources, not crystals.

- 0 = pre-scale value 1
- 1 = pre-scale value 2
- 2 = pre-scale value 4
- 3 = pre-scale value 8

Note that changing this register furing operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.372.	0x0208-0x020D	P0 Divider Numerator
---------------	---------------	----------------------

Reg Address	Bit Field	Туре	Setting Name	Description
0x0208	7:0	R/W	P0_NUM	48-bit Integer Number
0x0209	15:8	R/W	P0_NUM	
0x020A	23:16	R/W	P0_NUM	
0x020B	31:24	R/W	P0_NUM	
0x020C	39:32	R/W	P0_NUM	
0x020D	47:40	R/W	P0_NUM	

The following set of registers configure the P-dividers corresponding to each of the four input clocks seen in Figure 2.1 Block Diagrams on page 6. ClockBuilder Pro calculates the correct values for the P-dividers. Note that changing these registers during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.373. 0x020E-0x0211 P0 Divider Denominator

Reg Address	Bit Field	Туре	Setting Name	Description
0x020E	7:0	R/W	P0_DEN	32-bit Integer Number
0x020F	15:8	R/W	P0_DEN	
0x0210	23:16	R/W	P0_DEN	
0x0211	31:24	R/W	P0_DEN	

The P1, P2 and P3 divider numerator and denominator follow the same format as P0 described above. ClockBuilder Pro calculates the correct values for the P-dividers. Note that changing these registers during operation may cause indefinite loss of lock unless the guide-lines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.374. Si5347C/D P1-P3 Divider Registers that Follow P0 Definitions

Register Address	Description	Size	Same as Address
0x0212-0x0217	P1_NUM	48-bit Integer Number	0x0208-0x020D
0x0218-0x021B	P1_DEN	32-bit Integer Number	0x020E-0x0211
0x021C-0x0221	P2_NUM	48-bit Integer Number	0x0208-0x020D
0x0222-0x0225	P2_DEN	32-bit Integer Number	0x020E-0x0211

Register Address	Description	Size	Same as Address
0x0226-0x022B	P3_NUM	48-bit Integer Number	0x0208-0x020D
0x022C-0x022F	P3_DEN	32-bit Integer Number	0x020E-0x0211

The following set of registers configure the P-dividers corresponding to each of the four input clocks seen in Figure 2.1 Block Diagrams on page 6. ClockBuilder Pro calculates the correct values for the P-dividers. Note that changing these registers during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.375. 0x0230 Px_UPDATE

Reg Address	Bit Field	Туре	Setting Name	Description
0x0230	0	S	P0_UPDATE	0: No update for P-divider value
0x0230	1	S	P1_UPDATE	1: Update P-divider value
0x0230	2	S	P2_UPDATE	
0x0230	3	S	P3_UPDATE	

Note that these controls are not needed when following the guidelines in 3.1.1 Updating Registers during Device Operation. Specifically, they are not needed when using the global soft reset "SOFT_RST_ALL". However, these are required when using the individual DSPLL soft reset controls, SOFT_RST_PLLA, SOFT_RST_PLLB, etc., as these do not update the Px_NUM or Px_DEN values.

Table 13.376. 0x0231 P0 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0231	3:0	R/W	P0_FRACN_MODE	P0 (IN0) input divider fractional mode. Must be set to 0xB for proper operation.
0x0231	4	R/W	P0_FRAC_EN	P0 (IN0) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.377. 0x0232 P1 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0232	3:0	R/W	P1_FRACN_MODE	P1 (IN1) input divider fractional mode. Must be set to 0xB for proper operation.
0x0232	4	R/W	P1_FRAC_EN	P1 (IN1) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.378. 0x0233 P2 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0233	3:0	R/W	P2_FRACN_MODE	P2 (IN2) input divider fractional mode. Must be set to 0xB for proper operation.
0x0233	4	R/W	P2_FRAC_EN	P2 (IN2) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0234	3:0	R/W	P3_FRACN_MODE	P3 (IN3) input divider fractional mode. Must be set to 0xB for proper operation.
0x0234	4	R/W	P3_FRAC_EN	P3 (IN3) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.379. 0x0234 P3 Factional Division Enable

Table 13.380. 0x0235-0x023A MXAXB Divider Numerator

Reg Address	Bit Field	Туре	Setting Name	Description
0x0235	7:0	R/W	MXAXB_NUM	44-bit Integer Number
0x0236	15:8	R/W	MXAXB_NUM	
0x0237	23:16	R/W	MXAXB_NUM	
0x0238	31:24	R/W	MXAXB_NUM	
0x0239	39:32	R/W	MXAXB_NUM	
0x023A	43:40	R/W	MXAXB_NUM	

Note that changing this register during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.381. 0x023B-0x023E MXAXB Divider Denominator

Reg Address	Bit Field	Туре	Setting Name	Description
0x023B	7:0	R/W	MXAXB_DEN	32-bit Integer Number
0x023C	15:8	R/W	MXAXB_DEN	
0x023D	23:16	R/W	MXAXB_DEN	
0x023E	31:24	R/W	MXAXB_DEN	

The M-divider numerator and denominator are set by ClockBuilder Pro for a given frequency plan. Note that changing this register during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.382. 0x023F

Reg Address	Bit Field	Туре	Setting Name	Description
0x023F	0	R/W	MXAXB_UPDATE	The divider value for the XAXB input

Reg Address	Bit Field	Туре	Setting Name	Description
0x024A	7:0	R/W	R0_REG	24-bit Integer output divider
0x024B	15:8	R/W	R0_REG	divide value = (R0_REG+1) x 2
0x024C	23:16	R/W	R0_REG	To set R0 = 2, set
				OUT0_RDIV_FORCE2 = 1 and then the R0_REG value is irrelevant.

Table 13.383. 0x024A-0x024C R0 Divider

The R dividers are at the output clocks and are purely integer division. The R1–R9 dividers follow the same format as the R0 divider described above.

Table 13.384. Si5347C/D R1-R3 Divider Registers that Follow R0 Definitions

Register Address	Description	Size	Same as Address
0x0256-0x0258	R1_REG	24-bit Integer Number	0x024A-0x024C
0x025C-0x025E	R2_REG	24-bit Integer Number	0x024A-0x024C
0x025F-0x0261	R3_REG	24-bit Integer Number	0x024A-0x024C

Table 13.385. 0x026B-0x0272 Design Identifier

Reg Address	Bit Field	Туре	Setting Name	Description
0x026B	7:0	R/W	DESIGN_ID0	ASCII encoded string defined by ClockBuilder Pro user,
0x026C	15:8	R/W	DESIGN_ID1	with user defined space or null padding of unused char- acters. A user will normally include a configuration ID +
0x026D	23:16	R/W	DESIGN_ID2	revision ID. For example, "ULT.1A" with null character padding sets:
0x026E	31:24	R/W	DESIGN_ID3	DESIGN ID0: 0x55
0x026F	39:32	R/W	DESIGN_ID4	DESIGN ID1: 0x4C
0x0270	47:40	R/W	DESIGN_ID5	DESIGN ID2: 0x54
0x0271	55:48	R/W	DESIGN_ID6	DESIGN ID3: 0x2E
0x0272	63:56	R/W	DESIGN_ID7	DESIGN_ID4: 0x31
				DESIGN_ID5: 0x41
				DESIGN_ID6:0x 00
				DESIGN_ID7: 0x00

Reg Address	Bit Field	Туре	Setting Name	Description
0x0278	7:0	R/W	OPN_ID0	OPN unique identifier. ASCII encoded. For example,
0x0279	15:8	R/W	OPN_ID1	with OPN:
0x027A	23:16	R/W	OPN_ID2	5347C-A12345-GM, 12345 is the OPN unique identifier:
0x027B	31:24	R/W	OPN_ID3	OPN_ID0: 0x31
0x027C	39:32	R/W	OPN_ID4	OPN_ID1: 0x32
				OPN_ID2: 0x33
				OPN_ID3: 0x34
				OPN_ID4: 0x35

Table 13.386. 0x0278-0x027C OPN Identifier

Part numbers are of the form:

Si<Part Num Base><Grade>-<Device Revision><OPN ID>-<Temp Grade><Package ID>

Examples:

Si5347C-A12345-GM.

Applies to a "custom" OPN (Ordering Part Number) device. These devices are factory pre-programmed with the frequency plan and all other operating characteristics defined by the user's ClockBuilder Pro project file.

Si5347C-A-GM.

Applies to a "base" or "non-custom" OPN device. Base devices are factory pre-programmed to a specific base part type (e.g., Si5347 but exclude any user-defined frequency plan or other user-defined operating characteristics selected in ClockBuilder Pro.

Table 13.387. 0x027D

Reg Address	Bit Field	Туре	Setting Name	Description
0x027D	7:0	R/W	OPN_REVISION	

Table 13.388. 0x027E

Reg Address	Bit Field	Туре	Setting Name	Description
0x027E	7:0	R/W	BASELINE_ID	

Table 13.389. 0x028A-0x028D

Reg Address	Bit Field	Туре	Setting Name	Description
0x028A	4:0	R/W	OOF0_TRG_THR_ EXT	The OOF0 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)
0x028B	4:0	R/W	OOF1_TRG_THR_ EXT	The OOF1 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)
0x028C	4:0	R/W	OOF2_TRG_THR_ EXT	The OOF2 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)
0x028D	4:0	R/W	OOF3_TRG_THR_ EXT	The OOF3 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)

Reg Address	Bit Field	Туре	Setting Name	Description
0x028E	4:0	R/W	OOF0_CLR_THR_ EXT	The OOF0 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)
0x028F	4:0	R/W	OOF1_CLR_THR_ EXT	The OOF1 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)
0x0290	4:0	R/W	OOF2_CLR_THR_ EXT	The OOF2 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)
0x0291	4:0	R/W	OOF3_CLR_THR_ EXT	The OOF3 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)

Table 13.390. 0x028E-0x0291

Table 13.391. 0x0294-0x0295 FASTLOCK EXTEND SCL PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x0294	3:0	R/W	FASTLOCK_EX- TEND_SCL_PLLA	Scales LOLB_INT_TIMER_DIV256. Set by CBPro.
0x0294	7:4	R/W	FASTLOCK_EX- TEND_SCL_PLLB	
0x0295	3:0	R/W	FASTLOCK_EX- TEND_SCL_PLLC	
0x0295	7:4	R/W	FASTLOCK_EX- TEND_SCL_PLLD	

Table 13.392. 0x0296 LOL SLW VALWIN SELX PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x0296	0	R/W	LOL_SLW_VAL- WIN_SELX_PLLA	Set by CBPro.
0x0296	1	R/W	LOL_SLW_VAL- WIN_SELX_PLLB	
0x0296	2	R/W	LOL_SLW_VAL- WIN_SELX_PLLC	
0x0296	3	R/W	LOL_SLW_VAL- WIN_SELX_PLLD	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0297	0	R/W	FAST- LOCK_DLY_ONSW _EN_PLLA	Set by CBPro.
0x0297	1	R/W	FAST- LOCK_DLY_ONSW _EN_PLLB	
0x0297	2	R/W	FAST- LOCK_DLY_ONSW _EN_PLLC	
0x0297	3	R/W	FAST- LOCK_DLY_ONSW _EN_PLLD	

Table 13.393. 0x0297 FASTLOCK_DLY_ONSW_EN_PLLx

Table 13.394. 0x0299 FASTLOCK_DLY_ONLOL_EN_PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x0299	0	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLA	Set by CBPro.
0x0299	1	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLB	
0x0299	2	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLC	
0x0299	3	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLD	

Table 13.395. 0x029A-0x29C FASTLOCK_DLY_ONLOL_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x029A	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLA	Set by CBPro.
0x029B	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLA	
0x029C	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLA	

Reg Address	Bit Field	Туре	Setting Name	Description
0x029D	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLB	Set by CBPro.
0x029E	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLB	
0x029F	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLB	

Table 13.396. 0x029D-0x29F FASTLOCK_DLY_ONLOL_PLLB

Table 13.397. 0x02A0-0x2A2 FASTLOCK_DLY_ONLOL_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A0	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLC	Set by CBPro.
0x02A1	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLC	
0x02A2	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLC	

Table 13.398. 0x02A3-0x02A5 FASTLOCK_DLY_ONLOL_PLLD

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A3	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLD	Set by CBPro.
0x02A4	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLD	
0x02A5	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLD	

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A6	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLA	20-bit value. Set by CBPro.
0x02A7	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLA	
0x02A8	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLA	

Table 13.399. 0x02A6-0x02A8 FASTLOCK DLY ONSW PLLA

Table 13.400. 0x02A9-0x02AB FASTLOCK DLY ONSW PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A9	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLB	20-bit value. Set by CBPro.
0x02AA	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLB	
0x02AB	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLB	

Table 13.401. 0x02AC-0x02AE FASTLOCK_DLY_ONSW_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x02AC	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLC	20-bit value. Set by CBPro.
0x02AD	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLC	
0x02AE	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLC	

Reg Address	Bit Field	Туре	Setting Name	Description
0x02AF	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLD	20-bit value. Set by CBPro.
0x02B0	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLD	
0x02B1	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLD	

Table 13.402. 0x02AF-0x02B1 FASTLOCK_DLY_ONSW_PLLD

Table 13.403. 0x02B7 LOL_NOSIG_TIME_PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x02B7	1:0	R/W	LOL_NO- SIG_TIME_PLLA	Set by CBPro.
0x02B7	3:2	R/W	LOL_NO- SIG_TIME_PLLB	
0x02B7	5:4	R/W	LOL_NO- SIG_TIME_PLLC	
0x02B7	7:6	R/W	LOL_NO- SIG_TIME_PLLD	

Table 13.404. 0x02B8 LOL LOS REFCLK PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x02B8	0	R/W	LOL_LOS_REFCLK _PLLA	Set by CBPro.
0x02B8	1	R/W	LOL_LOS_REFCLK _PLLB	Set by CBPro.
0x02B8	2	R/W	LOL_LOS_REFCLK _PLLC	Set by CBPro.
0x02B8	3	R/W	LOL_LOS_REFCLK _PLLD	Set by CBPro.

Table 13.405. 0x02B9 LOL NOSIG TIME PLLx

Reg Address	Bit Field	Туре	Setting Name	Description
0x02B9	0	R/W	LOL_LOS_REFCLK _PLLA_FLG	Set by CBPro.
0x02B9	1	R/W	LOL_LOS_REFCLK _PLLB_FLG	Set by CBPro.
0x02B9	2	R/W	LOL_LOS_REFCLK _PLLC_FLG	Set by CBPro.
0x02B9	3	R/W	LOL_LOS_REFCLK _PLLD_FLG	Set by CBPro.

13.3.4 Page 3 Registers Si5347C/D

Reg Address	Bit Field	Туре	Setting Name	Description
0x0302	7:0	R/W	N0_NUM	N Output Divider Numerator. 44-bit
0x0303	15:8			Integer.
0x0304	23:16			
0x0305	31:24			
0x0306	39:32			
0x0307	43:40			

Table 13.406. 0x0302-0x0307 N0 Numerator

Table 13.407. 0x0308-0x030B N0 Denominator

Reg Address	Bit Field	Туре	Setting Name	Description
0x0308	7:0	R/W	N0_DEN	N Output Divider Denominator. 32-bit
0x0309	15:8			Integer.
0x030A	23:16			
0x030B	31:24			

The N output divider values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.408. 0x030C N0 Update

Reg Address	Bit Field	Туре	Setting Name	Description
0x030C	0	S	N0_UPDATE	Set this bit to latch the N output divider
				registers into operation.

Setting this self-clearing bit to 1 latches the new N output divider register values into operation. A Soft Reset will have the same effect.

Table 13.409. N0_NUM and N0_DEN Definitions

Reg Address	Description	Size	Same as Address
0x030D-0x0312	N1_NUM	44-bit Integer	0x0302-0x0307
0x0313-0x0316	N1_DEN	32-bit Integer	0x0308-0x030B
0x0317	N1_UPDATE	one bit	0x030C
0x0318-0x031D	N2_NUM	44-bit Integer	0x0302-0x0307
0x031E-0x0321	N2_DEN	32-bit Integer	0x0308-0x030B
0x0322	N2_UPDATE	one bit	0x030C
0x0323-0x0328	N3_NUM	44-bit Integer	0x0302-0x0307
0x0329-0x032C	N3_DEN	32-bit Integer	0x0308-0x030B
0x032D	N3_UPDATE	one bit	0x030C

Reg Address	Bit Field	Туре	Setting Name	Description
0x0338	1	S	N_UPDATE	Writing a 1 to this bit will update all DSPLL internal di- vider values. When this bit is written, all other bits in this register must be written as zeros.

Table 13.410. 0x0338 All DSPLL Internal Dividers Update Bit

ClockBuilder Pro handles these updates when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

13.3.5 Page 4 Registers Si5347C/D

Reg Address	Bit Field	Туре	Setting Name	Description
0x0407	7:6	R	IN_PLLA_ACTV	Currently selected DSPLL input clock.
				0: IN0
				1: IN1
				2: IN2
				3: IN3

Table 13.411. 0x0407 DSPLL A Active Input

Table 13.412. 0x0408-0x040D DSPLL A Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0408	5:0	R/W	BW0_PLLA	Parameters that create the normal PLL bandwidth
0x0409	5:0	R/W	BW1_PLLA	
0x040A	5:0	R/W	BW2_PLLA	
0x040B	5:0	R/W	BW3_PLLA	
0x040C	5:0	R/W	BW4_PLLA	
0x040D	5:0	R/W	BW5_PLLA	

This group of registers determines the DSPLL A loop bandwidth. In ClockBuilder Pro it is selectable from 200 Hz to 4 kHz in steps of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLA bit (reg 0x0414[0]) must be used to cause all of the BWx_PLLA, FAST_BWx_PLLA, and BWx_HO_PLLA parameters to take effect. Note that individual SOFT_RST_PLLA (0x001C[1]) does not update the bandwidth parameters.

Table 13.413. 0x040E-0x0414 DSPLL A Fast Lock Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x040E	5:0	R/W	FAST- LOCK_BW0_PLLA	Parameters that create the fast lock PLL bandwidth
0x040F	5:0	R/W	FAST- LOCK_BW1_PLLA	
0x0410	5:0	R/W	FAST- LOCK_BW2_PLLA	
0x0411	5:0	R/W	FAST- LOCK_BW3_PLLA	
0x0412	5:0	R/W	FAST- LOCK_BW4_PLLA	
0x0413	5:0	R/W	FAST- LOCK_BW5_PLLA	
0x0414	0	S	BW_UP- DATE_PLLA	0: No effect 1: Update both the Normal and Fastlock BWs for PLL A.

This group of registers determines the DSPLL Fastlock bandwidth. Clock Builder Pro will determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLA bit (reg 0x0414[0]) must be used to cause all of the

BWx_PLLA, FAST_BWx_PLLA, and BWx_HO_PLLA parameters to take effect. Note that individual SOFT_RST_PLLA (0x001C[1]) does not update the bandwidth parameters.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0415	7:0	R/W	M_NUM_PLLA	56-bit number.
0x0416	15:8	R/W	M_NUM_PLLA	
0x0417	23:16	R/W	M_NUM_PLLA	
0x0418	31:24	R/W	M_NUM_PLLA	
0x0419	39:32	R/W	M_NUM_PLLA	
0x041A	47:40	R/W	M_NUM_PLLA	
0x041B	55:48	R/W	M_NUM_PLLA	

Table 13.414. 0x0415-0x041B MA Divider Numerator for DSPLL A

The MA divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.415. 0x041C-0x041F MA Divider Denominator for DSPLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x041C	7:0	R/W	M_DEN_PLLA	32-bit number.
0x041D	15:8	R/W	M_DEN_PLLA	
0x041E	23:16	R/W	M_DEN_PLLA	
0x041F	31:24	R/W	M_DEN_PLLA	

The loop MA divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.416. 0x0420 M Divider Update Bit for PLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x0420	0	S		Must write a 1 to this bit to cause PLL A M divider changes to take effect.

Bits 7:1 of this register have no function and can be written to any value.

Table 13.417. 0x0421 DSPLL A M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0421	3:0	R/W		M feedback divider fractional mode.
			LLA	Must be set to 0xB for proper operation
0x0421	4	R/W	M_FRAC_EN_PLLA	M feedback divider fractional enable.
				0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.
0x0421	5	R/W	Reserved	Must be set to 1 for DSPLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x0422	0	R/W		0: To enable FINC/FDEC updates.
			LLA	1: To disable FINC/FDEC updates.
0x0422	1	R/W	M_FSTEP_DEN_PL	Set by CBPro.
Ux0422		K/W	LA	Set by CBPro.

Table 13.418. 0x0422 DSPLL A FINC/FDEC Control

Table 13.419. 0x0423-0x0429 DSPLLA MA Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0423	7:0	R/W	M_FSTEPW_PLLA	56-bit number
0x0424	15:8	R/W	M_FSTEPW_PLLA	
0x0425	23:16	R/W	M_FSTEPW_PLLA	
0x0426	31:24	R/W	M_FSTEPW_PLLA	
0x0427	39:32	R/W	M_FSTEPW_PLLA	
0x0428	47:40	R/W	M_FSTEPW_PLLA	
0x0429	55:48	R/W	M_FSTEPW_PLLA	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL A is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also registers 0x0415–0x041F.

Table 13.420. 0x042A DSPLL A Input Clock Select

Reg Ad	dress	Bit Field	Туре	Setting Name	Description
0x04	2A	2:0	R/W	IN_SEL_PLLA	0: For IN0
					1: For IN1
					2: For IN2
					3: For IN3
					4–7: Reserved

This is the input clock selection for manual register-based clock selection.

Table 13.421. 0x042B DSPLL A Fast Lock Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x042B	0	R/W	FASTLOCK_AU-	Applies when FASTLOCK_MAN_PLLA=0.
			TO_EN_PLLA	0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLA is out of lock
0x042B	1	R/W		0: For normal operation
			LOCK_MAN_PLLA	1: For force fast lock

Reg Address	Bit Field	Туре	Setting Name	Description
0x042C	0	R/W	HOLD_EN_PLLA	Holdover Enable
				0: Holdover Disabled
				1: Holdover Enabled
0x042C	3	R/W	HOLD_RAMP_BYP _PLLA	Set by CBPro.
0x042C	4	R/W	HOLDEX- IT_BW_SEL1_PLLA	Holdover Exit Bandwidth select. Selects the exit band- width from Holdover when ramped exit is disabled (HOLD_RAMP_BYP_PLLA = 1). 0: Exit Holdover using Holdover Exit or Fastlock bandwidths (default). See HOLDEXIT_BW_SEL0_PLLA (0x049B[6]) for additional information. 1: Exit Holdover using the Normal loop bandwidth
0x042C	5:7	R/W	RAMP_STEP_IN- TERVAL_PLLA	Time Interval of the frequency ramp steps when ramp- ing between inputs or when exiting holdover. Calculated by CBPro based on selection.

Table 13.422. 0x042C Holdover Exit Control

Table 13.423. 0x042D

Reg Address	Bit Field	Туре	Setting Name	Description
0x042D	1	R/W	HOLD_RAMP- BYP_NOH- IST_PLLA	Set by CBPro.

Table 13.424. 0x042E DSPLL A Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x042E	4:0	R/W	HOLD_HIST_LEN_ PLLA	5- bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.425. 0x042F DSPLLA Holdover History Delay

Reg Address	Bit Field	Туре	Setting Name	Description
0x042F	4:0	R/W	HOLD_HIST_DE- LAY_PLLA	5- bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the window length from the register value. time = $(2^{DELAY})^{*}268$ nsec

Table 13.426. 0x0431

Reg Address	Bit Field	Туре	Setting Name	Description
0x0431	4:0	R/W	HOLD_REF_COUN T_FRC_PLLA	5- bit value

Reg Address	Bit Field	Туре	Setting Name	Description
0x0432	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLA	Value calculated by CBPro
0x0433	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLA	
0x0434	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLA	

Table 13.427. 0x0432

Table 13.428. 0x0435 DSPLL A Force Holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0435	0	R/W	<u> </u>	0: For normal operation
			LA	1: To force holdover

Table 13.429. 0x0436 DSPLLA Input Clock Switching Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0436	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLA	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0436	2	R/W	HSW_EN_PLLA	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.430. 0x0437 DSPLLA Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0437	3:0	R/W	·	For each clock input LOS alarm
			A	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0437	7:4	R/W		For each clock input OOF alarm
			A	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0437[0], OOF alarm 0x0437[4]

IN1 Input 1 applies to LOS alarm 0x0437[1], OOF alarm 0x0437[5]

IN2 Input 2 applies to LOS alarm 0x0437[2], OOF alarm 0x0437[6]

IN3 Input 3 applies to LOS alarm 0x0437[3], OOF alarm 0x0437[7]

Reg Address	Bit Field	Туре	Setting Name	Description
0x0438	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0438	6:4	R/W	IN1_PRIORI-	The priority for clock input 1 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.431. 0x0438 DSPLL A Clock Inputs 0 and 1 Priority

Table 13.432. 0x0439 DSPLL A Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0439	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0439	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x043A	1:0	R/W	HSW_MODE_PLLA	2: Default setting, do not modify
				0,1,3: Reserved
0x043A	3:2	R/W		0: Default setting, do not modify
			RL_PLLA	1,2,3: Reserved

Table 13.433. 0x043A Hitless Switching Mode

Table 13.434. 0x043B-0x043C Hitless Switching Phase Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x043B	7:0	R/W	HSW_PHMEAS_TH R_PLLA	Set by CBPro.
0x043C	9:8	R/W	HSW_PHMEAS_TH R_PLLA	

Table 13.435. 0x043D

Reg Address	Bit Field	Туре	Setting Name	Description
0x043D	4:0	R/W	HSW_COARSE_P M_LEN_PLLA	Set by CBPro

Table 13.436. 0x043E

Reg Address	Bit Field	Туре	Setting Name	Description
0x043E	4:0	R/W	HSW_COARSE_P M_DLY_PLLA	Set by CBPro

Table 13.437. 0x043F DSPLL A Hold Valid History and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x043F	1	R	HOLD_HIST_VAL-	Holdover Valid historical frequency data indicator.
				0: Invalid Holdover History - Freerun on input fail or switch
				1: Valid Holdover History - Holdover on input fail or switch
0x043F	2	R	FASTLOCK_STA-	Fastlock engaged indicator.
			TUS_PLLA	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

When the input fails or is switched and the DSPLL switches to Holdover or Freerun mode, HOLD_HIST_VALID_PLLA accumulation will stop.

When a valid input clock is presented to the DSPLL, the holdover frequency history measurements will be cleared and will begin to accumulate once again.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0442	7:0	R/W	FINE_ADJ_OVR_P LLA	Set by CBPro
0x0443	15:8	R/W	FINE_ADJ_OVR_P LLA	
0x0444	17:16	R/W	FINE_ADJ_OVR_P LLA	

Table 13.438. 0x0442-0x0444

Table 13.439. 0x0445

Reg Address	Bit Field	Туре	Setting Name	Description
0x0445	1	R/W	FORCE_FINE_ADJ _PLLA	Set by CBPro

Table 13.440. 0x0488 HSW_FINE_PM_LEN_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x0488	3:0	R/W	HSW_FINE_PM_LE N_PLLA	Set by CBPro.

Table 13.441. 0x0489 PFD_EN_DELAY_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x0489	7:0	R/W	PFD_EN_DE- LAY_PLLA	Set by CBPro.
0x048A	12:8	R/W	PFD_EN_DE- LAY_PLLA	

Table 13.442. 0x049B HOLDEXIT_BW_SEL0_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x049B	1	R/W	IN- IT_LP_CLOSE_HO _PLLA	Set by CBPro.
0x049B	2	R/W	HO_SKIP_PHASE_ PLLA	Set by CBPro.
0x049B	4	R/W	HOLD_PRE- SERVE_HIST_PLL A	Set by CBPro.
0x049B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLA	Set by CBPro.
0x049B	6	R/W	HOLDEX- IT_BW_SEL0_PLLA	Set by CBPro.
0x049B	7	R/W	HOLDEX- IT_STD_BO_PLLA	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x049D	7:0	R/W	BW0_HO_PLLA	DSPLL A Holdover Bandwidth parameters.
0x049E	7:0	R/W	BW1_HO_PLLA	
0x049F	7:0	R/W	BW2_HO_PLLA	
0x04A0	7:0	R/W	BW3_HO_PLLA	
0x04A1	7:0	R/W	BW4_HO_PLLA	
0x04A2	7:0	R/W	BW5_HO_PLLA	

Table 13.443. 0x049D-0x04A2 DSPLL Holdover Exit Bandwidth for DSPLL A

This group of registers determines the DSPLL A bandwidth used when exiting Holdover Mode. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLA bit (reg 0x0414[0]) must be used to cause all of the BWx_PLLA, FAST_BWx_PLLA, and BWx_HO_PLLA parameters to take effect. Note that the individual SOFT_RST_PLLA (0x001C[1]) does not update these bandwidth parameters.

Table 13.444. 0x04A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x04A6	2:0	R/W	RAMP_STEP_SIZE _PLLA	Set by CBPro.
0x04A6	3	R/W	RAMP_SWITCH_E N_PLLA	Set by CBPro.

13.3.6 Page 5 Registers Si5347C/D

Reg Address	Bit Field	Туре	Setting Name	Description
0x0507	7:6	R	IN_PLLB_ACTV	Currently selected DSPLL input clock.
				0: IN0
				1: IN1
				2: IN2
				3: IN3

Table 13.445. 0x0507 DSPLL B Active Input

Table 13.446. 0x0508-0x050D DSPLL B Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0508	5:0	R/W	BW0_PLLB	Parameters that create the normal PLL bandwidth
0x0509	5:0	R/W	BW1_PLLB	
0x050A	5:0	R/W	BW2_PLLB	
0x050B	5:0	R/W	BW3_PLLB	
0x050C	5:0	R/W	BW4_PLLB	
0x050D	5:0	R/W	BW5_PLLB	

This group of registers determines the DSPLL B loop bandwidth. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLB bit (reg 0x0514[0]) must be used to cause all of the BWx_PLLB, FAST_BWx_PLLB, and BWx_HO_PLLB parameters to take effect. Note that individual SOFT_RST_PLLB (0x001C[2]) does not update the bandwidth parameters.

Table 13.447. 0x050E-0x0514 DSPLL B Fast Lock Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x050E	5:0	R/W	FAST- LOCK_BW0_PLLB	Parameters that create the fast lock PLL bandwidth
0x050F	5:0	R/W	FAST- LOCK_BW1_PLLB	
0x0510	5:0	R/W	FAST- LOCK_BW2_PLLB	
0x0511	5:0	R/W	FAST- LOCK_BW3_PLLB	
0x0512	5:0	R/W	FAST- LOCK_BW4_PLLB	
0x0513	5:0	R/W	FAST- LOCK_BW5_PLLB	
0x0514	0	S	BW_UP- DATE_PLLB	0: No effect 1: Update both the Normal and Fastlock BWs for PLL B.

This group of registers determines the DSPLL Fastlock bandwidth. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLB bit (reg 0x0514[0]) must be used to cause all of

the BWx_PLLB, FAST_BWx_PLLB, and BWx_HO_PLLB parameters to take effect. Note that individual SOFT_RST_PLLB (0x001C[2]) does not update the bandwidth parameters.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0515	7:0	R/W	M_NUM_PLLB	56- bit number
0x0516	15:8	R/W	M_NUM_PLLB	
0x0517	23:16	R/W	M_NUM_PLLB	
0x0518	31:24	R/W	M_NUM_PLLB	
0x0519	39:32	R/W	M_NUM_PLLB	
0x051A	47:40	R/W	M_NUM_PLLB	
0x051B	55:48	R/W	M_NUM_PLLB	

Table 13.448. 0x0515-0x051B MB Divider Numerator for DSPLL B

The MA divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.449. 0x051C-0x051F MB Divider Denominator for DSPLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x051C	7:0	R/W	M_DEN_PLLB	32-bit number
0x051D	15:8	R/W	M_DEN_PLLB	
0x051E	23:16	R/W	M_DEN_PLLB	
0x051F	31:24	R/W	M_DEN_PLLB	

The loop MA divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.450. 0x0520 M Divider Update Bit for PLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0520	0	S		Must write a 1 to this bit to cause PLL B M divider changes to take effect.

Bits 7:1 of this register have no function and can be written to any value.

Table 13.451. 0x0521 DSPLL B M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0521	3:0	R/W		M feedback divider fractional mode.
			LLB	Must be set to 0xB for proper operation.
0x0521	4	R/W	M_FRAC_EN_PLLB	M feedback divider fractional enable.
				0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0522	0	R/W		0: To enable FINC/FDEC updates
			LLB	1: To disable FINC/FDEC updates
0x0522	1	R/W		0: Modify numerator
			PLLB	1: Modify denominator

Table 13.452. 0x0522 DSPLL B FINC/FDEC Control

Table 13.453. 0x0523-0x0529 DSPLLB MB Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0523	7:0	R/W	M_FSTEPW_PLLB	56-bit number
0x0524	15:8	R/W	M_FSTEPW_PLLB	
0x0525	23:16	R/W	M_FSTEPW_PLLB	
0x0526	31:24	R/W	M_FSTEPW_PLLB	
0x0527	39:32	R/W	M_FSTEPW_PLLB	
0x0528	47:40	R/W	M_FSTEPW_PLLB	
0x0529	55:48	R/W	M_FSTEPW_PLLB	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL B is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also registers 0x0515–0x051F.

Table 13.454. 0x052A DSPLL B Input Clock Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x052A	0	R/W	IN_SEL_REGCTRL	0: Pin Control
			_PLLB	1: Register Control
0x052A	3:1	R/W	IN_SEL_PLLB	0: For IN0
				1: For IN1
				2: For IN2
				3: For IN3
				4–7: Reserved

This is the input clock selection for manual register based clock selection.

Table 13.455. 0x052B DSPLL B Fast Lock Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x052B	0	R/W	FASTLOCK_AU- TO_EN_PLLB	Applies when FASTLOCK_MAN_PLLB=0. 0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLB is out of lock

Reg Address	Bit Field	Туре	Setting Name	Description
0x052B	1	R/W		0: For normal operation
			LOCK_MAN_PLLB	1: For force fast lock

Table 13.456. 0x052C DSPLL B Holdover Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x052C	0	R/W	HOLD_EN_PLLB	0: Holdover Disabled
				1: Holdover Enabled
0x052C	3	R/W	HOLD_RAMP_BYP _PLLB	Must be set to 1 for normal operation.
0x052C	4	R/W	HOLD_EX- IT_BW_SEL1_PLLB	0: To use the fastlock loop BW when exiting from hold- over
				1: To use the normal loop BW when exiting from hold- over
0x052C	7:5	R/W	RAMP_STEP_IN- TERVAL_PLLB	

Table 13.457. 0x052D

Reg Addı	ess	Bit Field	Туре	Setting Name	Description
0x052I)	1	R/W	HOLD_RAMP- BYP_NOH- IST_PLLB	Set by CBPro.

Table 13.458. 0x052E DSPLL B Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x052E	4:0	R/W	HOLD_HIST_LEN_ PLLB	5-bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.459. 0x052F DSPLLB Holdover History Delay

Reg Address	Bit Field	Туре	Setting Name	Description
0x052F	4:0	R/W	HOLD_HIST_DE- LAY_PLLB	5-bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the ignore delay time from the register value. time = $(2^{DELAY})*268$ nsec

Table 13.460. 0x0531

Reg Address	Bit Field	Туре	Setting Name	Description
0x0531	4:0	R/W	HOLD_REF_COUN T_FRC_PLLB	5- bit value

Reg Address	Bit Field	Туре	Setting Name	Description
0x0532	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLB	Set by CBPro.
0x0533	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLB	
0x0534	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLB	

Table 13.461. 0x0532

Table 13.462. 0x0535 DSPLL B Force Holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0535	0	R/W	FORCE_HOLD_PL LB	0: For normal operation
				1: To force holdover

Table 13.463. 0x0536 DSPLLB Input Clock Switching Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0536	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLB	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0536	2	R/W	HSW_EN_PLLB	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.464. 0x0537 DSPLLB Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0537	3:0	R/W	IN_LOS_MSK_PLL	For each clock input LOS alarm
			В	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0537	7:4	R/W	IN_OOF_MSK_PLL	For each clock input OOF alarm
			В	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0537[0], OOF alarm 0x0537[4]

IN1 Input 1 applies to LOS alarm 0x0537[1], OOF alarm 0x0537[5]

IN2 Input 2 applies to LOS alarm 0x0537[2], OOF alarm 0x0537[6]

IN3 Input 3 applies to LOS alarm 0x0537[3], OOF alarm 0x0537[7]

Reg Address	Bit Field	Туре	Setting Name	Description
0x0538	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0538	6:4	R/W	IN1_PRIORI- TY_PLLB	The priority for clock input 1 is:
				0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.465. 0x0538 DSPLL B Clock Inputs 0 and 1 Priority

Table 13.466. 0x0539 DSPLL B Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0539	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0539	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x053A	1:0	R/W	HSW_MODE_PLLB	2:Default setting, do not modify
				0,1,3: Reserved
0x053A	3:2	R/W		0: Default setting, do not modify
			RL_PLLB	1,2,3: Reserved

Table 13.467. 0x053A DSPLL B Hitless Switching Mode

Table 13.468. 0x053B-0x053C Hitless Switching Phase Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x053B	7:0	R/W	HSW_PHMEAS_TH R_PLLB	10-bit value. Set by CBPro.
0x053C	9:8	R/W	HSW_PHMEAS_TH R_PLLB	

Table 13.469. 0x053D

Reg Address	Bit Field	Туре	Setting Name	Description
0x053D	4:0	R/W	HSW_COARSE_P M_LEN_PLLB	Set by CBPro.

Table 13.470. 0x053E

Reg Address	Bit Field	Туре	Setting Name	Description
0x053E	4:0	R/W	HSW_COARSE_P M_DLY_PLLB	Set by CBPro.

Table 13.471. 0x053F DSPLL B Hold Valid History and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x053F	1	R	HOLD_HIST_VAL-	Holdover Valid historical frequency data indicator.
				0: Invalid Holdover History - Freerun on input fail or switch
				1: Valid Holdover History - Holdover on input fail or switch
0x053F	2	R	FASTLOCK_STA-	Fastlock engaged indicator.
			TUS_PLLB	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

When the input fails or is switched and the DSPLL switches to Holdover or Freerun mode, HOLD_HIST_VALID_PLLB accumulation will stop.

When a valid input clock is presented to the DSPLL, the holdover frequency history measurements will be cleared and will begin to accumulate once again.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0542	7:0	R/W	FINE_ADJ_OVR_P LLB	Set by CBPro.
0x0543	15:8	R/W	FINE_ADJ_OVR_P LLB	
0x0544	17:16	R/W	FINE_ADJ_OVR_P LLB	

Table 13.472. 0x0542-0x0544 FINE_ADJ_OVR_PLLB

Table 13.473. 0x0545 FORCE_FINE_ADJ_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x0545	1	R/W	FORCE_FINE_ADJ _PLLB	Set by CBPro.

Table 13.474. 0x0588 HSW_FINE_PM_LEN_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x0588	3:0	R/W	HSW_FINE_PM_LE N_PLLB	

Table 13.475. 0x0589 PFD_EN_DELAY_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x0589	7:0	R/W	PFD_EN_DE- LAY_PLLB	Set by CBPro.
0x0589	12:8	R/W	PFD_EN_DE- LAY_PLLB	

Table 13.476. 0x059B HOLDEXIT_BW_SEL0_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x059B	1	R/W	IN- IT_LP_CLOSE_HO _PLLB	Set by CBPro.
0x059B	2	R/W	HO_SKIP_PHASE_ PLLB	
0x059B	4	R/W	HOLD_PRE- SERVE_HIST_PLL B	
0x059B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLB	
0x059B	6	R/W	HOLDEX- IT_BW_SEL0_PLLB	
0x059B	7	R/W	HOLDEX- IT_STD_BO_PLLB	

Reg Address	Bit Field	Туре	Setting Name	Description
0x059D	5:0	R/W	HOLDEX- IT_BW0_PLLB	DSPLL B Fastlock Bandwidth parameters.
0x059E	5:0	R/W	HOLDEX- IT_BW1_PLLB	Set by CBPro to set the PLL bandwidth when exiting holdover, works with HOLDEXIT_BW_SEL0 and
0x059F	5:0	R/W	HOLDEX- IT_BW2_PLLB	HOLD_BW_SEL1.
0x05A0	5:0	R/W	HOLDEX- IT_BW3_PLLB	
0x05A1	5:0	R/W	HOLDEX- IT_BW4_PLLB	
0x05A2	5:0	R/W	HOLDEX- IT_BW5_PLLB	

Table 13.477. 0x059D-0x05A2 DSPLL Holdover Exit Bandwidth for DSPLL B

This group of registers determines the DSPLL B bandwidth used when exiting Holdover Mode. In ClockBuilder Pro it is selectable from 200 Hz to 4 kHz in steps of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLB bit (reg 0x0514[0]) must be used to cause all of the BWx_PLLB, FAST_BWx_PLLB, and BWx_HO_PLLB parameters to take effect. Note that the individual SOFT_RST_PLLB (0x001C[2]) does not update these bandwidth parameters.

Table 13.478. 0x05A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x05A6	2:0	R/W	RAMP_STEP_SIZE _PLLB	
0x05A6	3		RAMP_SWITCH_E N_PLLB	

13.3.7 Page 6 Registers Si5347C/D

Reg Address	Bit Field	Туре	Setting Name	Description
0x0607	7:6	R	IN_PLLC_ACTV	Currently selected DSPLL input clock.
				0: IN0
				1: IN1
				2: IN2
				3: IN3

Table 13.479. 0x0607 DSPLL C Active Input

Table 13.480. 0x0608-0x060D DSPLL C Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0608	5:0	R/W	BW0_PLLC	Parameters that create the normal PLL bandwidth
0x0609	5:0	R/W	BW1_PLLC	
0x060A	5:0	R/W	BW2_PLLC	
0x060B	5:0	R/W	BW3_PLLC	_
0x060C	5:0	R/W	BW4_PLLC	_
0x060D	5:0	R/W	BW5_PLLC	

This group of registers determines the DSPLL C loop bandwidth. In ClockBuilder Pro it is selectable from 200 Hz to 4 kHz in steps of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLC bit (reg 0x0614[0]) must be used to cause all of the BWx_PLLC, FAST_BWx_PLLC, and BWx_HO_PLLC parameters to take effect. Note that individual SOFT_RST_PLLC (0x001C[3]) does not update the bandwidth parameters.

Table 13.481. 0x060E-0x0614 DSPLL C Fast Lock Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x060E	5:0	R/W	FAST- LOCK_BW0_PLLC	Parameters that create the fast lock PLL bandwidth
0x060F	5:0	R/W	FAST- LOCK_BW1_PLLC	
0x0610	5:0	R/W	FAST- LOCK_BW2_PLLC	
0x0611	5:0	R/W	FAST- LOCK_BW3_PLLC	
0x0612	5:0	R/W	FAST- LOCK_BW4_PLLC	
0x0613	5:0	R/W	FAST- LOCK_BW5_PLLC	
0x0614	0	S	BW_UP- DATE_PLLC	0: No effect. 1: Update both the Normal and Fastback BWs for PLL C.

This group of registers determines the DSPLL Fastlock bandwidth. In Clock Builder Pro, it is selectable from 200 Hz to 4 kHz in factors of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLC bit (reg 0x0614[0]) must be used to cause all of the BWx_PLLC, FAST_BWx_PLLC, and BWx_HO_PLLC parameters to take effect. Note that individual SOFT_RST_PLLC (0x001C[3]) does not update the bandwidth parameters.

Table 13.482. 0x0615-0x061B MC Divider Numerator for DSPLL C

Reg Address	Bit Field	Туре	Setting Name	Description
0x0615	7:0	R/W	M_NUM_PLLC	56-bit number
0x0616	15:8	R/W	M_NUM_PLLC	
0x0617	23:16	R/W	M_NUM_PLLC	
0x0618	31:24	R/W	M_NUM_PLLC	
0x0619	39:32	R/W	M_NUM_PLLC	
0x061A	47:40	R/W	M_NUM_PLLC	
0x061B	55:48	R/W	M_NUM_PLLC	

The MA divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.483. 0x061C-0x061F MC Divider Denominator for DSPLL C

Reg Address	Bit Field	Туре	Setting Name	Description
0x061C	7:0	R/W	M_DEN_PLLC	32-bit number
0x061D	15:8	R/W	M_DEN_PLLC	
0x061E	23:16	R/W	M_DEN_PLLC	
0x061F	31:24	R/W	M_DEN_PLLC	

The loop MA divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.484. 0x0620 M Divider Update Bit for PLL C

Reg Address	Bit Field	Туре	Setting Name	Description
0x0620	0	S		Must write a 1 to this bit to cause PLL C M divider changes to take effect.

Bits 7:1 of this register have no function and can be written to any value.

Table 13.485. 0x0621 DSPLL C M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0621	3:0	R/W		M feedback divider fractional mode.
			LLC	Must be set to 0xB for proper operation.
0x0621	4	R/W	M_FRAC_EN_PLL	M feedback divider fractional enable.
			L L	0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.
0x0621	5	R/W	Reserved	Must be set to 1 for DSPLL C

Reg Address	Bit Field	Туре	Setting Name	Description
0x0622	0	R/W		0: To enable FINC/FDEC updates.
			LLC	1: To disable FINC/FDEC updates.
0x0622	1	R/W	M_FSTEPW_DEN_	0: Modify numerator
			PLLC	1: Modify denominator

Table 13.486. 0x0622 DSPLL C FINC/FDEC Control

Table 13.487. 0x0623-0x0629 DSPLLC MC Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0623	7:0	R/W	M_FSTEPW_PLLC	56-bit number
0x0624	15:8	R/W	M_FSTEPW_PLLC	
0x0625	23:16	R/W	M_FSTEPW_PLLC	
0x0626	31:24	R/W	M_FSTEPW_PLLC	
0x0627	39:32	R/W	M_FSTEPW_PLLC	
0x0628	47:40	R/W	M_FSTEPW_PLLC	
0x0629	55:48	R/W	M_FSTEPW_PLLC	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL C is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also Registers 0x0615–0x061F.

Table 13.488. 0x062A DSPLL C Input Clock Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x062A	2:0	R/W	IN_SEL_PLLC	0: For IN0
				1: For IN1
				2: For IN2
				3: For IN3
				4–7: Reserved

This is the input clock selection for manual register based clock selection.

Table 13.489. 0x062B DSPLL C Fast Lock Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x062B	0	R/W	FASTLOCK_AU-	Applies when FASTLOCK_MAN_PLLC=0.
			TO_EN_PLLC	0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLC is out of lock
0x062B	1	R/W	FAST-	0: For normal operation
			LOCK_MAN_PLLC	1: For force fast lock

Reg Address	Bit Field	Туре	Setting Name	Description
0x062C	0	R/W	HOLD_EN_PLLC	0: Holdover disabled
				1: Holdover enabled
0x062C	3	R/W	HOLD_RAMP_BYP _PLLC	Must be set to 1 for normal operation.
0x062C	4	R/W	HOLDEX- IT_BW_SEL1_PLL C	0: Use Fastlock bandwidth for Holdover Entry/Exit (default)1: Use the normal loop BW when exiting from holdover
0x062C	7:5	R/W	RAMP_STEP_IN- TERVAL_PLLC	Set by CBPro.

Table 13.490. 0x062C DSPLL C Holdover Control

Table 13.491. 0x062D

Reg Address	Bit Field	Туре	Setting Name	Description
0x062D	1	R/W	HOLD_RAMP- BYP_NOH- IST_PLLC	Set by CBPro.

Table 13.492. 0x062E DSPLL C Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x062E	4:0	R/W	HOLD_HIST_LEN_ PLLC	5- bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.493. 0x062F DSPLLC Holdover History Delay

Reg Address	Bit Field	Туре	Setting Name	Description
0x062F	4:0	R/W	HOLD_HIST_DE- LAY_PLLC	5- bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the ignore delay time from the register value. time = $(2^{DELAY})^*268$ nsec

Table 13.494. 0x0631

Reg Address	Bit Field	Туре	Setting Name	Description
0x0631	4:0	R/W	HOLD_REF_COUN T_FRC_PLLC	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0632	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLC	Set by CBPro.
0x0633	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLC	
0x0634	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLC	

Table 13.495. 0x0632-0x0634

Table 13.496. 0x0635 DSPLL C Force Holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0635	0	R/W		0: For normal operation
			LC	1: To force holdover

Table 13.497. 0x0636 DSPLLC Input Clock Switching Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0636	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLC	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0636	2	R/W	HSW_EN_PLLC	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.498. 0x0637 DSPLLC Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0637	3:0	R/W		For each clock input LOS alarm
			С	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0637	7:4	R/W	IN_OOF_MSK_PLL	For each clock input OOF alarm
			C	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0637[0], OOF alarm 0x0637[4]

IN1 Input 1 applies to LOS alarm 0x0637[1], OOF alarm 0x0637[5]

IN2 Input 2 applies to LOS alarm 0x0637[2], OOF alarm 0x0637[6]

IN3 Input 3 applies to LOS alarm 0x0637[3], OOF alarm 0x0637[7]

Reg Address	Bit Field	Туре	Setting Name	Description
0x0638	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLC	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0638	6:4	R/W	IN1_PRIORI-	The priority for clock input 1 is:
			TY_PLLC	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.499. 0x0638 DSPLL C Clock Inputs 0 and 1 Priority

Table 13.500. 0x0639 DSPLL C Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0639	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLC	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0639	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLC	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x063A	1:0	R/W	HSW_MODE_PLLC	2:Default setting, do not modify
				0,1,3: Reserved
0x063A	3:2	R/W		0: Default setting, do not modify
			RL_PLLC	1,2,3: Reserved

Table 13.501. 0x063A Hitless Switching Mode

Table 13.502. 0x063B-0x063C Hitless Switching Phase Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x063B	7:0	R/W	HSW_PHMEAS_TH R_PLLC	10-bit value. Set by CBPro.
0x063C	9:8	R/W	HSW_PHMEAS_TH R_PLLC	

Table 13.503. 0x063D

Reg Address	Bit Field	Туре	Setting Name	Description
0x063D	4:0	R/W	HSW_COARSE_P M_LEN_PLLC	Set by CBPro.

Table 13.504. 0x063E

Reg Address	Bit Field	Туре	Setting Name	Description
0x063E	4:0	R/W	HSW_COARSE_P M_DLY_PLLC	Set by CBPro.

Table 13.505. 0x063F DSPLL C Hold Valid History and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x063F	1	R	ID_PLLC	Holdover Valid historical frequency data indicator.
				0: Invalid Holdover History - Freerun on input fail or switch
				1: Valid Holdover History - Holdover on input fail or switch
0x063F	2	R	FASTLOCK_STA-	Fastlock engaged indicator.
			TUS_PLLC	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

When the input fails or is switched and the DSPLL switches to Holdover or Freerun mode, HOLD_HIST_VALID_PLLC accumulation will stop.

When a valid input clock is presented to the DSPLL, the holdover frequency history measurements will be cleared and will begin to accumulate once again.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0642	7:0	R/W	FINE_ADJ_OVR_P LLC	Set by CBPro.
0x0643	15:8	R/W	FINE_ADJ_OVR_P LLC	
0x0644	17:16	R/W	FINE_ADJ_OVR_P LLC	

Table 13.506. 0x0642-0x0644

Table 13.507. 0x0645

Reg Address	Bit Field	Туре	Setting Name	Description
0x0645	1	R/W	FORCE_FINE_ADJ _PLLC	Set by CBPro.

Table 13.508. 0x0688 HSW_FINE_PM_LEN_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x0688	3:0	R/W	HSW_FINE_PM_LE N_PLLC	

Table 13.509. 0x0689 PFD_EN_DELAY_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x0689	7:0	R/W	PFD_EN_DE- LAY_PLLC	
0x068A	12:8	R/W	PFD_EN_DE- LAY_PLLC	

Table 13.510. 0x069B HOLDEXIT_BW_SEL0_PLLC

Reg Address	Bit Field	Туре	Setting Name	Description
0x069B	1	R/W	IN- IT_LP_CLOSE_HO _PLLC	
0x069B	2	R/W	HO_SKIP_PHASE_ PLLC	Set by CBPro.
0x069B	4	R/W	HOLD_PRE- SERVE_HIST_PLL C	Set by CBPro.
0x069B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLC	Set by CBPro.
0x069B	6	R/W	HOLDEX- IT_BW_SEL0_PLL	Set by CBPro.
0x069B	7	R/W	HOLDEX- IT_STD_BO_PLLC	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x069D	5:0	R/W	HOLDEX- IT_BW0_PLLC	DSPLL C Fastlock Bandwidth parameters.
0x069E	5:0	R/W	HOLDEX- IT_BW1_PLLC	
0x069F	5:0	R/W	HOLDEX- IT_BW2_PLLC	
0x06A0	5:0	R/W	HOLDEX- IT_BW3_PLLC	
0x06A1	5:0	R/W	HOLDEX- IT_BW4_PLLC	
0x06A2	5:0	R/W	HOLDEX- IT_BW5_PLLC	

Table 13.511. 0x069D-0x06A2 DSPLL Holdover Exit Bandwidth for DSPLL C

This group of registers determines the DSPLL C bandwidth used when exiting Holdover Mode. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLC bit (reg 0x0614[0]) must be used to cause all of the BWx_PLLC, FAST_BWx_PLLC, and BWx_HO_PLLC parameters to take effect. Note that the individual SOFT_RST_PLLC (0x001C[3]) does not update these bandwidth parameters.

Table 13.512. 0x06A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x06A6	2:0	R/W	RAMP_STEP_SIZE _PLLC	Set by CBPro.
0x06A6	3	R/W	RAMP_SWITCH_E N_PLLC	

13.3.8 Page 7 Registers Si5347C/D

Note that register addresses for Page 7 DSPLL D Registers 0x0709–0x074D are incremented relative to similar DSPLL A/B/C addresses on Pages 4, 5, and 6. For example, Register 0x0709 has the equivalent function to Registers 0x0408/0x0508/0x0608.

Reg AddressBit FieldTypeSetting NameDescription0x07082:0RIN_PLLD_ACTVCurrently selected DSPLL input clock.0: IN01: IN11: IN12: IN23: IN34: Reserved

Table 13.513. 0x0708 DSPLL D Active Input

This register displays the currently selected input for the DSPLL. In manual select mode, this reflects either the voltages on the IN_SEL1 and INSEL0 pins or the register value. In automatic switching mode, it reflects the input currently chosen by the automatic algorithm. If there are no valid input clocks in the automatic mode, this value will retain its previous value until a valid input clock is presented. Note that this value is not meaningful in Holdover or Freerun modes.

Table 13.514. 0x0709-0x070E DSPLL D Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0709	5:0	R/W	BW0_PLLD	Parameters that create the normal PLL bandwidth
0x070A	5:0	R/W	BW1_PLLD	
0x070B	5:0	R/W	BW2_PLLD	
0x070C	5:0	R/W	BW3_PLLD	
0x070D	5:0	R/W	BW4_PLLD	
0x070E	5:0	R/W	BW5_PLLD	

This group of registers determines the DSPLL D loop bandwidth. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLD bit (reg 0x0715[0]) must be used to cause all of the BWx_PLLD, FAST_BWx_PLLD, and BWx_HO_PLLD parameters to take effect. Note that individual SOFT_RST_PLLD (0x001C[4]) does not update the bandwidth parameters.

Reg Address	Bit Field	Туре	Setting Name	Description
0x070F	5:0	R/W	FAST- LOCK_BW0_PLLD	Parameters that create the fast lock PLL bandwidth
0x0710	5:0	R/W	FAST- LOCK_BW_1PLLD	
0x0711	5:0	R/W	FAST- LOCK_BW2_PLLD	
0x0712	5:0	R/W	FAST- LOCK_BW3_PLLD	
0x0713	5:0	R/W	FAST- LOCK_BW_4PLLD	
0x0714	5:0	R/W	FAST- LOCK_BW5_PLLD	
0x0715	0	S	BW_UP- DATE_PLLD	0: No effect 1: Update both the Normal and Fastlock BWs for PLL D.

Table 13.515. 0x070F-0x0715 DSPLL D Fast Lock Loop Bandwidth

This group of registers determines the DSPLL Fastlock bandwidth. In Clock Builder Pro, it is selectable from 200 Hz to 4 kHz in factors of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLD bit (reg 0x0715[0]) must be used to cause all of the BWx_PLLD, FAST_BWx_PLLD, and BWx_HO_PLLD parameters to take effect. Note that individual SOFT_RST_PLLD (0x001C[4]) does not update the bandwidth parameters.

Table 13.516. 0x0716-0x071C MD Divider Numerator for DSPLL D

Reg Address	Bit Field	Туре	Setting Name	Description
0x0716	7:0	R/W	M_NUM_PLLD	56- bit number
0x0717	15:8	R/W	M_NUM_PLLD	
0x0718	23:16	R/W	M_NUM_PLLD	
0x0719	31:24	R/W	M_NUM_PLLD	
0x071A	39:32	R/W	M_NUM_PLLD	
0x071B	47:40	R/W	M_NUM_PLLD	
0x071C	55:48	R/W	M_NUM_PLLD	

The MA divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.517. 0x071D-0x0720 MD Divider Denominator for DSPLL D

Reg Address	Bit Field	Туре	Setting Name	Description
0x071D	7:0	R/W	M_DEN_PLLD	32-bit number
0x071E	15:8	R/W	M_DEN_PLLD	
0x071F	23:16	R/W	M_DEN_PLLD	
0x0720	31:24	R/W	M_DEN_PLLD	

The loop MA divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Reg Address Bit Field Type Setting Name Description 0x0721 0 S M_UPDATE_PLLD Must write a 1 to this bit to cause PLL D M divider changes to take effect.

Table 13.518. 0x0721 M Divider Update Bit for PLL B

Bits 7:1 of this register have no function and can be written to any value.

Table 13.519. 0x0722 DSPLL D M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0722	3:0	R/W	M_FRAC_MODE_P LLD	M feedback divider fractional mode. Must be set to 0xB for proper operation.
0x0722	4	R/W	M_FRAC_EN_PLL	M feedback divider fractional enable.
				0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.
0x0722	5	R/W	Reserved	Must be set to 1 for DSPLL D

Table 13.520. 0x0723 DSPLL D FINC/FDEC Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0723	0	R/W		0: To enable FINC/FDEC updates
			LLD	1: To disable FINC/FDEC updates
0x0723	1	R/W	M_FSTEPW_DEN_	0: Modify numerator
			PLLD	1: Modify denominator

Table 13.521. 0x0724-0x072A DSPLLD MD Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0724	7:0	R/W	M_FSTEPW_PLLD	56-bit number
0x0725	15:8	R/W	M_FSTEPW_PLLD	
0x0726	23:16	R/W	M_FSTEPW_PLLD	
0x0727	31:24	R/W	M_FSTEPW_PLLD	
0x0728	39:32	R/W	M_FSTEPW_PLLD	
0x0729	47:40	R/W	M_FSTEPW_PLLD	
0x072A	55:48	R/W	M_FSTEPW_PLLD	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL D is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also Registers 0x0716–0x0720

Reg Address	Bit Field	Туре	Setting Name	Description
0x072B	2:0	R/W	IN_SEL_PLLD	0: For IN0
				1: For IN1
				2: For IN2
				3: For IN3
				4–7: Reserved

Table 13.522. 0x072B DSPLL D Input Clock Select

This is the input clock selection for manual register based clock selection.

Reg Address	Bit Field	Туре	Setting Name	Description
0x072C	0	R/W	FASTLOCK_AU-	Applies when FASTLOCK_MAN_PLLD=0.
			TO_EN_PLLD	0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLD is out of lock
0x072C	1	R/W	FAST-	0: For normal operation
			LOCK_MAN_PLLD	1: For force fast lock

Table 13.524. 0x072D DSPLL D Holdover Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x072D	0	R/W	HOLD_EN_PLLD	0: Holdover disabled
				1: Holdover enabled
0x072D	3	R/W	HOLD_RAMP_BYP _PLLD	Must be set to 1 for normal operation.
0x072D	4	R/W	HOLD_EX- IT_BW_SEL1_PLL D	0: To use the fastlock loop BW when exiting from hold- over1: To use the normal loop BW when exiting from hold- over
0x072D	7:5	R/W	RAMP_STEP_IN- TERVAL_PLLD	

Table 13.525. 0x072E

Reg Address	Bit Field	Туре	Setting Name	Description
0x072E	1	R/W	HOLD_RAMP- BYP_NOH- IST_PLLD	Set by CBPro.

Table 13.526. 0x072F DSPLL D Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x072F	4:0	R/W	HOLD_HIST_LEN_ PLLD	5- bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.527. 0x0730 DSPLLD Holdover History Delay

Reg Address	Bit Field	Туре	Setting Name	Description
0x0730	4:0	R/W	HOLD_HIST_DE- LAY_PLLD	5- bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the ignore delay time from the register value. time = $(2^{DELAY})^*268$ nsec

Table 13.528. 0x0732

Reg Address	Bit Field	Туре	Setting Name	Description
0x0732	4:0	R/W	HOLD_REF_COUN T_FRC_PLLD	5- bit value

Table 13.529. 0x0733-0x0735

Reg Address	Bit Field	Туре	Setting Name	Description
0x0733	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLD	Set by CBPro.
0x0734	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLD	
0x0735	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLD	

Table 13.530. 0x0736 DSPLL D Force Holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0736	0	R/W		0: For normal operation
			LD	1: To force holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0737	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLD	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0737	2	R/W	HSW_EN_PLLD	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.531. 0x0737 DSPLLD Input Clock Switching Control

Table 13.532. 0x0738 DSPLLD Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0738	3:0	R/W	IN_LOS_MSK_PLL	For each clock input LOS alarm
			D	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0738	7:4	R/W		For each clock input OOF alarm
			D	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0738[0], OOF alarm 0x0738[4]

IN1 Input 1 applies to LOS alarm 0x0738[1], OOF alarm 0x0738[5]

IN2 Input 2 applies to LOS alarm 0x0738[2], OOF alarm 0x0738[6]

IN3 Input 3 applies to LOS alarm 0x0738[3], OOF alarm 0x0738[7]

Table 13.533. 0x0739 DSPLL D Clock Inputs 0 and 1 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0739	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLD	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x0739	6:4	R/W	IN1_PRIORI-	The priority for clock input 1 is:
			TY_PLLD	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.534. 0x073A DSPLL D Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x073A	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLD	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x073A	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLD	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.535. 0x073B Hitless Switching Mode

Reg Address	Bit Field	Туре	Setting Name	Description
0x073B	1:0	R/W	HSW_MODE_PLLD	2:Default setting, do not modify
				0,1,3: Reserved
0x073B	3:2	R/W		0: Default setting, do not modify
			RL_PLLD	1,2,3: Reserved

Table 13.536. 0x073C-0x073D Hitless Switching Phase Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x073C	7:0	R/W	HSW_PHMEAS_TH R_PLLD	10-bit value. Set by CBPro.
0x073D	9:8	R/W	HSW_PHMEAS_TH R_PLLD	

Table 13.537. 0x073E

Reg Address	Bit Field	Туре	Setting Name	Description
0x073E	4:0	R/W	HSW_COARSE_P M_LEN_PLLD	Set by CBPro.

Table 13.538. 0x073F

Reg Address	Bit Field	Туре	Setting Name	Description
0x073F	4:0	R/W	HSW_COARSE_P M_DLY_PLLD	Set by CBPro.

Table 13.539. 0x0740 DSPLL D Hold Valid History and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x0740	1	R	HOLD_HIST_VAL- ID_PLLD	Holdover Valid historical frequency data indicator. 0: Invalid Holdover History - Freerun on input fail or switch
				1: Valid Holdover History - Holdover on input fail or switch
0x0740	2	R	FASTLOCK_STA- TUS PLLD	Fastlock engaged indicator.
			105_FLLD	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

Table 13.540. 0x0743-0x0745

Reg Address	Bit Field	Туре	Setting Name	Description
0x0743	7:0	R/W	FINE_ADJ_OVR_P LLD	Set by CBPro.
0x0744	15:8	R/W	FINE_ADJ_OVR_P LLD	Set by CBPro.
0x0745	17:16	R/W	FINE_ADJ_OVR_P LLD	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0746	1	R/W	FORCE_FINE_ADJ _PLLD	Set by CBPro.

Table 13.541. 0x0746

Table 13.542. 0x0789-0x078A

Reg Address	Bit Field	Туре	Setting Name	Description
0x0789	7:0	R/W	PFD_EN_DE- LAY_PLLD	Set by CBPro.
0x078A	12:8	R/W	PFD_EN_DE- LAY_PLLD	Set by CBPro.

Table 13.543. 0x079B

Reg Address	Bit Field	Туре	Setting Name	Description
0x079B	1	R/W	IN- IT_LP_CLOSE_HO _PLLB	
0x079B	2	R/W	HO_SKIP_PHASE_ PLLD	Set by CBPro.
0x079B	4	R/W	HOLD_PRE- SERVE_HIST_PLL D	Set by CBPro.
0x079B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLD	Set by CBPro.
0x079B	6	R/W	HOLDEX- IT_BW_SEL0_PLL D	Set by CBPro.
0x079B	7	R/W	HOLDEX- IT_STD_BO_PLLD	Set by CBPro.

Table 13.544. 0x079D-0x07A2 DSPLL Holdover Exit Bandwidth for DSPLL D

Reg Address	Bit Field	Туре	Setting Name	Description
0x079D	5:0	R/W	HOLDEX- IT_BW0_PLLD	DSPLL D Fastlock Bandwidth parameters.
0x079E	5:0	R/W	HOLDEX- IT_BW1_PLLD	
0x079F	5:0	R/W	HOLDEX- IT_BW2_PLLD	
0x07A0	5:0	R/W	HOLDEX- IT_BW3_PLLD	
0x07A1	5:0	R/W	HOLDEX- IT_BW4_PLLD	
0x07A2	5:0	R/W	HOLDEX- IT_BW5_PLLD	

This group of registers determines the DSPLL D bandwidth used when exiting Holdover Mode. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLD bit (reg 0x0715[0]) must be used to cause all of the BWx_PLLD, FAST_BWx_PLLD, and BWx_HO_PLLD parameters to take effect. Note that the individual SOFT_RST_PLLD (0x001C[4]) does not update these bandwidth parameters.

Table 13.545. 0x07A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x07A6	2:0	R/W	RAMP_STEP_SIZE _PLLD	Set by CBPro.
0x07A6	3	R/W	RAMP_SWITCH_E N_PLLD	

13.3.9 Page 9 Registers Si5347C/D

Table 13.546. 0x090E XAXB Configuration

Reg Address	Bit Field	Туре	Setting Name	Description
0x090E	0	R/W		Selects between the XTAL or external reference clock on the XA/XB pins. Default is 0, XTAL. Set to 1 to use an external reference oscillator.

Table 13.547. 0x0943 Control I/O Voltage Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x0943	0	R/W	IO_VDD_SEL	0: For 1.8 V external connections
				1: For 3.3 V external connections

The IO_VDD_SEL configuration bit selects between 1.8 V and 3.3 V digital I/O. All digital I/O pins, including the serial interface pins, are 3.3 V tolerant. Setting this to the default 1.8 V is the safe default choice that allows writes to the device regardless of the serial interface used or the host supply voltage. When the I2C or SPI host is operating at 3.3 V and the Si5347/46 at VDD=1.8 V, the host must write IO_VDD_SEL=1. This will ensure that both the host and the serial interface are operating with the optimum signal thresholds.

Table 13.548. 0x0949 Clock Input Control and Configuration

Reg Address	Bit Field	Туре	Setting Name	Description
0x0949	3:0	R/W	IN_EN	0: Disable and Powerdown Input Buffer
				1: Enable Input Buffer
				for IN3–IN0.
0x0949	7:4	R/W	IN_PULSED_CMO	0: Standard Input Format
			S_EN	 Pulsed CMOS Input Format for IN3–IN0. See Clock Inputs for more information.

When a clock is disabled, it is powered down.

Input 0 corresponds to IN_EN 0x0949 [0], IN_PULSED_CMOS_EN 0x0949 [4]

Input 1 corresponds to IN_EN 0x0949 [1], IN_PULSED_CMOS_EN 0x0949 [5]

Input 2 corresponds to IN_EN 0x0949 [2], IN_PULSED_CMOS_EN 0x0949 [6]

Input 3 corresponds to IN_EN 0x0949 [3], IN_PULSED_CMOS_EN 0x0949 [7]

Table 13.549. 0x094A Input Clock Enable to DSPLL

Reg Address	Bit Field	Туре	Setting Name	Description
0x094A	3:0	R/W	INX_TO_PFD_EN	Value calculated in CBPro

Table 13.550. 0x094E-0x094F Input Clock Buffer Hysteresis

Reg Address	Bit Field	Туре	Setting Name	Description
0x094E	7:0	R/W	REFCLK_HYS_SEL	Value calculated in CBPro
0x094F	11:8	R/W	REFCLK_HYS_SEL	

Reg Address	Bit Field	Туре	Setting Name	Description
0x095E	0	R/W	MXAXB_INTEGER	0: Integer MXAXB
				1: Fractional MXAXB

Table 13.551. 0x095E MXAXB Fractional Mode

13.3.10 Page A Registers Si5347C/D

Table 13.552. 0x0A03 Enable DSPLL Internal Divider Clocks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0A03	4:0	R/W	EN EN	Enable the internal dividers for PLLs (D C B A). Must be set to 1 to enable the dividers. See related registers 0x0A05 and 0x0B4A[4:0].

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.553. 0x0A04 DSPLL Internal Divider Integer Force

Reg Address	Bit Field	Туре	Setting Name	Description
0x0A04	4:0	R/W	N_PIBYP	Bypass fractional divider for N[3:0].
				0: Fractional (or Integer) division - Recommended if changing settings during operation
				1: Integer-only division - best phase noise - Recommen- ded for Integer N values
				Note that a device Soft Reset (0x001C[0]=1) must be is- sued after changing the settings in this register.

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.554. 0x0A05 DSPLL Internal Divider Power Down

Reg Address	Bit Field	Туре	Setting Name	Description
0x0A05	4:0	R/W	N_PDNB	Powers down the internal dividers for PLLs (D C B A). Set to 0 to power down unused PLLs. Must be set to 1 for all active PLLs. See related registers 0x0A03 and 0x0B4A[4:0].

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

13.3.11 Page B Registers Si5347C/D

Table 13.555. 0x0B24 Reserved Control

Reg Address	Bit Field	Туре	Name	Description
0x0B24	7:0	R/W	RESERVED	Internal use for initilization. See CBPro.

Table 13.556. 0x0B25 Reserved Control

Reg Address	Bit Field	Туре	Name	Description
0x0B25	7:0	R/W	RESERVED	Internal use for initilization. See CBPro.

Table 13.557. 0x0B44 Clock Control for Fractional Dividers

Reg Address	Bit Field	Туре	Name	Description
0x0B44	3:0	R/W	PDIV_FRACN_CLK _DIS	Clock Disable for the fractional divide of the input P dividers. [P3, P2, P1, P0]. Must be set to a 0 if the P divider has a fractional value.
				0: Enable the clock to the fractional divide part of the P divider.
				1: Disable the clock to the fractional divide part of the P divider.
0x0B44	4	R/W	FRACN_CLK_DIS_ PLLA	Clock disable for the fractional divide of the M divider in PLLA. Must be set to a 0 if this M divider has a fractional value.
				0: Enable the clock to the fractional divide part of the M divider.
				1: Disable the clock to the fractional divide part of the M divider.
0x0B44	5	R/W	FRACN_CLK_DIS_ PLLB	Clock disable for the fractional divide of the M divider in PLLB. Must be set to a 0 if this M divider has a fractional value.
				0: Enable the clock to the fractional divide part of the M divider.
				1: Disable the clock to the fractional divide part of the M divider.
0x0B44	6	R/W	FRACN_CLK_DIS_ PLLC	Clock disable for the fractional divide of the M divider in PLLC. Must be set to a 0 if this M divider has a fraction- al value.
				0: Enable the clock to the fractional divide part of the M divider.
				1: Disable the clock to the fractional divide part of the M divider.

Reg Address	Bit Field	Туре	Name	Description
0x0B44	7	R/W	FRACN_CLK_DIS_ PLLD	 Clock disable for the fractional divide of the M divider in PLLD. Must be set to a 0 if this M divider has a fractional value. 0: Enable the clock to the fractional divide part of the M divider. 1: Disable the clock to the fractional divide part of the M divider.

Table 13.558. 0x0B45 LOL Clock Disable

Reg Address	Bit Field	Туре	Name	Description
0x0B45	0	R/W	CLK_DIS_PLLA	1: Clock disabled.
0x0B45	1	R/W	CLK_DIS_PLLB	1: Clock disabled.
0x0B45	2	R/W	CLK_DIS_PLLC	1: Clock disabled.
0x0B45	3	R/W	CLK_DIS_PLLD	1: Clock disabled.

Table 13.559. 0x0B46 Loss of Signal Clock Disable

Reg Address	Bit Field	Туре	Name	Description
0x0B46	3:0	R/W	LOS_CLK_DIS	Disables LOS for (IN3 IN2 IN1 IN0). Must be set to 0 to enable the LOS function of the respective inputs.

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.560. 0x0B47

Reg Address	Bit Field	Туре	Name	Description
0x0B47	4:0	R/W	OOF_CLK_DIS	

Table 13.561. 0x0B48

Reg Address	Bit Field	Туре	Name	Description
0x0B48	4:0	R/W	OOF_DIV_CLK_DI S	

Table 13.562. 0x0B4A Divider Clock Disables

Reg Address	Bit Field	Туре	Name	Description
0x0B4A	4:0	R/W	N_CLK_DIS	Disable internal dividers for PLLs (D C B A). Must be set to 0 to use the DSPLL. See related registers 0x0A03 and 0x0A05.
0x0B4A	5	R/W	M_CLK_DIS	Disable M dividers. Must be set to 0 to enable the M divider.
0x0B4A	6	R/W	M_DIV_CAL_DIS	Disable M divider calibration. Must be set to 0 to allow calibration.

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.563. 0x0B4E Reserved Control

Reg Address	Bit Field	Туре	Name	Description
0x0B4E	7:0	R/W	RESERVED	Internal use for initilization. See CBPro.

Table 13.564. 0x0B57 VCO_RESET_CALCODE

Reg Address	Bit Field	Туре	Name	Description
0x0B57	7:0	R/W	VCO_RESET_CAL- CODE	
0x0B58	11:8	R/W	VCO_RESET_CAL- CODE	

13.4 Si5346 Register Map

13.4.1 Page 0 Registers Si5346

Table 13.565. 0x0001 Page

Reg Address	Bit Field	Туре	Setting Name	Description
0x0001	7:0	R/W	PAGE	Selects one of 256 possible pages.

The "Page Register" is located at address 0x01 on every page. When read, it indicates the current page. When written, it will change the page to the value entered. There is a page register at address 0x0001, 0x0101, 0x0201, 0x0301, ... etc.

Table 13.566. 0x0002-0x0003 Base Part Number

Reg Address	Bit Field	Туре	Setting Name	Value	Description
0x0002	7:0	R	PN_BASE	0x46	Four-digit "base" part number, one nibble per
0x0003	15:8	R	PN_BASE	0x53	 digit Example: Si5346A-A-GM. The base part number (OPN) is 5346, which is stored in this register.

Table 13.567. 0x0004 Device Grade

Reg Address	Bit Field	Туре	Setting Name	Description
0x0004	7:0	R	GRADE	One ASCII character indicating the device speed/ synthesis mode
				0 = A
				1 = B
				2 = C
				3 = D

Refer to the device data sheet Ordering Guide section for more information about device grades.

Table 13.568. 0x0005 Device Revision

Reg Address	Bit Field	Туре	Setting Name	Description
0x0005	7:0	R	DEVICE_REV	One ASCII character indicating the device revision lev- el.
				0 = A; 1 = B, etc.
				Example Si5346C-A12345-GM, the device revision is "A" and stored as 0

Table 13.569. 0x0006-0x0008 TOOL_VERSION

Reg Address	Bit Field	Туре	Name	Description
0x0006	3:0	R/W	TOOL_VERSION[3:0]	Special
0x0006	7:4	R/W	TOOL_VERSION[7:4]	Revision
0x0007	7:0	R/W	TOOL_VERSION[15:8]	Minor[7:0]

Reg Address	Bit Field	Туре	Name	Description
0x0008	0	R/W	TOOL_VERSION[15:8]	Minor[8]
0x0008	4:1	R/W	TOOL_VERSION[16]	Major
0x0008	7:5	R/W	TOOL_VERSION[13:17]	Tool. 0 for ClockBuilder Pro

Table 13.570. 0x0009-0x000A NVM Identifier, Pkg ID

Reg Address	Bit Field	Туре	Setting Name	Description
0x0009	7:0	R	TEMP_GRADE	Device temperature grading
				0 = Industrial (–40 °C to 85 °C) ambient conditions
0x000A	7:0	R	PKG_ID	Package ID
				0 = 9x9 mm 64 QFN

Part numbers are of the form:

Si<Part Num Base><Grade>-<Device Revision><OPN ID>-<Temp Grade><Package ID>

Examples:

Si5346C-A12345-GM.

Applies to a "base" or "blank" OPN (Ordering Part Number) device. These devices are factory pre-programmed with the frequency plan and all other operating characteristics defined by the user's ClockBuilder Pro project file.

Si5346C-A-GM.

Applies to a "base" or "non-custom" OPN device. Base devices are factory pre-programmed to a specific base part type (e.g., Si5346 but exclude any user-defined frequency plan or other user-defined operating characteristics selected in ClockBuilder Pro.

Table 13.571. 0x000B I2C Address

Reg Address	Bit Field	Туре	Setting Name	Description
0x000B	6:0	R/W	I2C_ADDR	7-bit I2C Address. Note: This register is not bank burnable.

Table 13.572. 0x000C Internal Fault Bits

Reg Address	Bit Field	Туре	Setting Name	Description
0x000C	0	R	SYSINCAL	1 if the device is calibrating.
0x000C	1	R	LOSXAXB	1 if there is no signal at the XAXB pins.
0x000C	2	R	LOSREF	1 if no signal is detected on the XAXB pins.
0x000C	3	R	XAXB_ERR	1 if there is a problem locking to the XAXB input signal.
0x000C	5	R	SMBUS_TIMEOUT	1 if there is an SMBus timeout error.

Bit 1 is the LOS status monitor for the XTAL or REFCLK at the XA/XB pins. Bit 3 is the XAXB problem status monitor and may indicate the XAXB input signal has excessive jitter, ringing, or low amplitude. Bit 5 indicates a timeout error when using SMBUS with the I²C serial port.

Reg Address	Bit Field	Туре	Setting Name	Description
0x000D	3:0	R	LOS	1 if the clock input is currently LOS
0x000D	7:4	R	OOF	1 if the clock input is currently OOF

Table 13.573. 0x000D Loss-of Signal (LOS) Alarms

Note that each bit corresponds to the input. The LOS bits are not sticky.

Input 0 (IN0) corresponds to LOS 0x000D [0], OOF 0x000D[4]

Input 1 (IN1) corresponds to LOS 0x000D [1], OOF 0x000D[5]

Input 2 (IN2) corresponds to LOS 0x000D [2], OOF 0x000D[6]

Input 3 (IN3) corresponds to LOS 0x000D [3], OOF 0x000D[7]

Table 13.574. 0x000EHoldover and LOL Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x000E	1:0	R	LOL_PLL[B:A]	1 if the DSPLL is out of lock
0x000E	5:4	R	HOLD_PLL[B:A]	1 if the DSPLL is in holdover (or free run)

DSPLL_A corresponds to bit 0,4

DSPLL_B corresponds to bit 1,5

Table 13.575. 0x000F INCAL Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x000F	5:4	R	CAL_PLL[B:A]	1 if the DSPLL internal calibration is busy.

DSPLL_A corresponds to bit 4

DSPLL_B corresponds to bit 5

Table 13.576. 0x0011 Internal Error Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0011	0	R/W	SYSINCAL_FLG	Sticky version of SYSINCAL. Write a 0 to this bit to clear.
0x0011	1	R/W	LOSXAXB_FLG	Sticky version of LOSXAXB. Write a 0 to this bit to clear.
0x0011	2	R/W	LOSREF_FLG	Sticky version of LOSREF. Write a 0 to this bit to clear.
0x0011	3	R/W	XAXB_ERR	Sticky version of XAXB_ERR. Write a 0 to this bit to clear.
0x0011	5	R/W	SMBUS_TIME- OUT_FLG	Sticky version of SMBUS_TIMEOUT. Write a 0 to this bit to clear.

These are sticky flag versions of 0x000C.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0012	3:0	R/W	LOS_FLG	1 if the clock input is LOS
0x0012	7:4	R/W	OOF_FLG	1 if the clock input is OOF

Table 13.577. 0x0012 Sticky OOF and LOS Flags

These are sticky flag versions of 0x000D.

Input 0 (IN0) corresponds to LOS_FLG 0x0012 [0], OOF_FLG 0x0012[4]

Input 1 (IN1) corresponds to LOS_FLG 0x0012 [1], OOF_FLG 0x0012[5]

Input 2 (IN2) corresponds to LOS_FLG 0x0012 [2], OOF_FLG 0x0012[6]

Input 3 (IN3) corresponds to LOS_FLG 0x0012 [3], OOF_FLG 0x0012[7]

Table 13.578. 0x0013 Holdover and LOL Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0013	1:0	R/W	LOL_FLG_PLL[B:A]	1 if the DSPLL was unlocked
0x0013	5:4	R/W	HOLD_FLG_PLL[B: A]	1 if the DSPLL was in holdover (or freerun)

Sticky flag versions of address 0x000E.

DSPLL_A corresponds to bit 0,4

DSPLL_B corresponds to bit 1,5

Table 13.579. 0x0014 INCAL Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0014	5:4	R/W	CAL_FLG_PLL[B:A]	1 if the DSPLL internal calibration was busy

These are sticky flag versions of 0x000F.

DSPLL A corresponds to bit 4

DSPLL B corresponds to bit 5

Table 13.580. 0x0016 INCAL Flags

Reg Address	Bit Field	Туре	Setting Name	Description
0x0016	1:0	R/W	LOL_ON_HOLD_PL L[B:A]	Set by CBPro.

Table 13.581. 0x0017 Fault Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0017	0	R/W	SYSIN- CAL_INTR_MSK	
0x0017	1	R/W	LOS- XAXB_INTR_MSK	1 to mask out LOSXAXB.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0017	2	R/W	LOS- REF_INTR_MSK	
0x0017	3	R/W	XAXB_ERR_INTR_ MSK	
0x0017	5	R/W	SMB_TMOUT_INT R_MSK	1 to mask out SMBUS_TIMEOUT.
0x0017	6	R/W	Reserved	Factory set to 1 to mask reserved bit from causing an interrupt. Do not clear this bit.
0x0017	7	R/W	Reserved	Factory set to 1 to mask reserved bit from causing an interrupt. Do not clear this bit.

The interrupt mask bits for the fault flags in register 0x011. If the mask bit is set, the alarm will be blocked from causing an interrupt.

Table 13.582. 0x0018 OOF and LOS Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0018	3:0	R/W	LOS_INTR_MSK	1 to mask the clock input LOS flag
0x0018	7:4	R/W	OOF_INTR_MSK	1 to mask the clock input OOF flag

Input 0 (IN0) corresponds to LOS_IN_INTR_MSK 0x0018 [0], OOF_IN_INTR_MSK 0x0018 [4]

Input 1 (IN1) corresponds to LOS_IN_INTR_MSK 0x0018 [1], OOF_IN_INTR_MSK 0x0018 [5]

Input 2 (IN2) corresponds to LOS_IN_INTR_MSK 0x0018 [2], OOF_IN_INTR_MSK 0x0018 [6]

Input 3 (IN3) corresponds to LOS_IN_INTR_MSK 0x0018 [3], OOF_IN_INTR_MSK 0x0018 [7]

These are the interrupt mask bits for the OOF and LOS flags in register 0x0012. If a mask bit is set, the alarm will be blocked from causing an interrupt.

Table 13.583. 0x0019 Holdover and LOL Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0019	1:0	R/W	LOL_INTR_MSK_P LL[B:A]	1 to mask the clock input LOL flag
0x0019	5:4	R/W	HOLD_INTR_MSK_ PLL[B:A]	1 to mask the holdover flag

DSPLL A corresponds to LOL_INTR_MSK_PLL 0x0019 [0], HOLD_INTR_MSK_PLL 0x0019 [4]

DSPLL B corresponds to LOL_INTR_MSK_PLL 0x0019 [1], HOLD_INTR_MSK_PLL 0x0019 [5]

These are the interrupt mask bits for the LOS and HOLD flags in register 0x0013. If a mask bit is set, the alarm will be blocked from causing an interrupt.

Table 13.584. 0x001A INCAL Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x001A	5:4	R/W	CAL_INTR_MSK_P LL[B:A]	1 to mask the DSPLL internal calibration busy flag

DSPLL A corresponds to bit 0

DSPLL B corresponds to bit 1

Reg Address	Bit Field	Туре	Setting Name	Description
0x001C	0	S	SOFT_RST_ALL	0: No effect
				1: initialize and calibrate the entire device.
0x001C	1	S	SOFT_RST_PLLA	1 initialize and calibrate DSPLLA
0x001C	2	S	SOFT_RST_PLLB	1 initialize and calibrate DSPLLB

Table 13.585. 0x001C Soft Reset and Calibration

These bits are of type "S", which means self-clearing. Unlike SOFT_RST_ALL, the SOFT_RST_PLLa bits do not update the loop BW values. If these have changed, the update can be done by writing to BW_UPDATE_PLLA and BW_UPDATE_PLLB at addresses 0x0414 and 0x514.

Table 13.586. 0x001D FINC, FDEC

Reg Address	Bit Field	Туре	Setting Name	Description
0x001D	0	S	FINC	0: No effect
				1: A rising edge will cause an frequency increment
0x001D	1	S	FDEC	0: No effect
				1: A rising edge will cause an frequency decrement

Table 13.587. 0x001E Sync, Power Down and Hard Reset

R	eg Address	Bit Field	Туре	Setting Name	Description
	0x001E	0	R/W	PDN	1 to put the device into low power mode
	0x001E	1	S	HARD_RST	Perform Hard Reset with NVM read.
					0: Normal Operation
					1: Hard Reset the device
	0x001E	2	S	SYNC	1 to reset all the R dividers to the same state.

Table 13.588. 0x0020 DSPLL_SEL[1:0] Control of FINC/FDEC for DCO

Reg Address	Bit Field	Туре	Name	Description
0x0020	1	R/W	FSTEP_PLL_REGC	Only functions when FSTEP_PLL_SINGLE = 1.
			TRL	0: DSPLL_SELx pins are enabled, and the correspond- ing register bits are disabled.
				1: DSPLL_SELx_REG register bits are enabled, and the corresponding pins are disabled.
0x0020	3:2	R/W	FSTEP_PLL	Register version of the DSPLL_SEL[1:0] pins. Used to select which PLL (M divider) is affected by FINC/FDEC.
				0: DSPLL A M-divider
				1: Reserved
				2: DSPLL C M-divider
				3: DSPLL D M-divider

By default ClockBuilder Pro sets OE0 controlling all outputs and OE1 unused. OUTALL_DISABLE_LOW 0x0102[0] must be high (enabled) to observe the effects of OE0 and OE1. Note that the OE0 and OE1 register bits (active high) have inverted logic sense from the pins (active low).

Table 13.589. 0x002B SPI 3 vs 4 Wire

Reg Address	Bit Field	Туре	Setting Name	Description
0x002B	3	R/W	SPI_3WIRE	0: For 4-wire SPI
				1: For 3-wire SPI

Table 13.590. 0x002C LOS Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x002C	3:0	R/W	LOS_EN	0: For disable
				1: To enable LOS for a clock input
0x002C	4	R/W	LOSXAXB_DIS	Enable LOS detection on the XAXB inputs.
				0: Enable LOS Detection
				1: Disable LOS Detection

Input 0 (IN0): LOS_EN[0]

Input 1 (IN1): LOS_EN[1]

Input 2 (IN2): LOS_EN[2]

Input 3 (IN3): LOS_EN[3]

Table 13.591. 0x002D Loss of Signal Re-Qualification Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x002D	1:0	R/W	LOS0_VAL_TIME	Clock Input 0
				0: For 2 msec
				1: For 100 msec
				2: For 200 msec
				3: For one second
0x002D	3:2	R/W	LOS1_VAL_TIME	Clock Input 1, same as above
0x002D	5:4	R/W	LOS2_VAL_TIME	Clock Input 2, same as above
0x002D	7:6	R/W	LOS3_VAL_TIME	Clock Input 3,same as above

When an input clock is gone (and therefore has an active LOS alarm), if the clock returns, there is a period of time that the clock must be within the acceptable range before the alarm is removed. This is the LOS_VAL_TIME.

Table 13.592. 0x002E-0x002F LOS0 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x002E	7:0	R/W	LOS0_TRG_THR	16-bit Threshold Value
0x002F	15:8	R/W	LOS0_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 0, given a particular frequency plan.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0030	7:0	R/W	LOS1_TRG_THR	16-bit Threshold Value
0x0031	15:8	R/W	LOS1_TRG_THR	

Table 13.593. 0x0030-0x0031 LOS1 Trigger Threshold

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 1, given a particular frequency plan.

Table 13.594. 0x0032-0x0033 LOS2 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0032	7:0	R/W	LOS2_TRG_THR	16-bit Threshold Value
0x0033	15:8	R/W	LOS2_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 2, given a particular frequency plan.

Table 13.595. 0x0034-0x0035 LOS3 Trigger Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0034	7:0	R/W	LOS3_TRG_THR	16-bit Threshold Value
0x0035	15:8	R/W	LOS3_TRG_THR	

ClockBuilder Pro calculates the correct LOS register threshold trigger value for Input 3, given a particular frequency plan.

Table 13.596. 0x0036-0x0037 LOS0 Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0036	7:0	R/W	LOS0_CLR_THR	16-bit Threshold Value
0x0037	15:8	R/W	LOS0_CLR_THR	

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 0, given a particular frequency plan.

Table 13.597. 0x0038-0x0039 LOS1 Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0038	7:0	R/W	LOS1_CLR_THR	16-bit Threshold Value
0x0039	15:8	R/W	LOS1_CLR_THR	

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 1, given a particular frequency plan.

Table 13.598. 0x003A-0x003B LOS2 Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x003A	7:0	R/W	LOS2_CLR_THR	16-bit Threshold Value
0x003B	15:8	R/W	LOS2_CLR_THR	

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 2, given a particular frequency plan.

Reg Address	Bit Field	Туре	Setting Name	Description
0x003C	7:0	R/W	LOS3_CLR_THR	16-bit Threshold Value
0x003D	15:8	R/W	LOS3_CLR_THR	

Table 13.599. 0x003C-0x003D LOS3 Clear Threshold

ClockBuilder Pro calculates the correct LOS register clear threshold value for Input 3, given a particular frequency plan.

Table 13.600. 0x003F OOF Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x003F	3:0	R/W	OOF_EN	0: To disable
0x003F	7:4	R/W	FAST_OOF_EN	1: To enable

bit 0,4 correspond to IN0

bit 1,5 correspond to IN1

bit 2,6 correspond to IN2

bit 3,7 correspond to IN3

Table 13.601. 0x0040 OOF Reference Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x0040	2:0	R/W	OOF_REF_SEL	0: IN0
				1: IN1
				2: IN2
				3: IN3
				4: XAXB
				5–7: Reserved

ClockBuilder Pro provides the OOF register values for a particular frequency plan.

Table 13.602. 0x0041-0X0045 OOF Divider Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x0041	4:0	R/W	OOF0_DIV_SEL	Sets a divider for the OOF circuitry for each input clock
0x0042	4:0	R/W	OOF1_DIV_SEL	0,1,2,3. The divider value is 2 ^{OOFx_DIV_SEL} . CBPro sets these dividers.
0x0043	4:0	R/W	OOF2_DIV_SEL	
0x0044	4:0	R/W	OOF3_DIV_SEL	
0x0045	4:0	R/W	OOFXO_DIV_SEL	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0046	7:0	R/W	OOF0_SET_THR	OOF Set threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x0047	7:0	R/W	OOF1_SET_THR	OOF Set threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x0048	7:0	R/W	OOF2_SET_THR	OOF Set threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x0049	7:0	R/W	OOF3_SET_THR	OOF Set threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.

Table 13.603. 0x0046-0x0049 Out of Frequency Set Threshold

Table 13.604. 0x004A-0x004D Out of Frequency Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x004A	7:0	R/W	OOF0_CLR_THR	OOF Clear threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x004B	7:0	R/W	OOF1_CLR_THR	OOF Clear threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x004C	7:0	R/W	OOF2_CLR_THR	OOF Clear threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.
0x004D	7:0	R/W	OOF3_CLR_THR	OOF Clear threshold. Range is up to \pm 500 ppm in steps of 1/16 ppm.

Table 13.605. 0x004E-0x004F OOF Detection Windows

Reg Address	Bit Field	Туре	Setting Name	Description
0x004E	2:0	R/W	OOF0_DET- WIN_SEL	Values calculated by CBPro
0x004E	6:4	R/W	OOF1_DET- WIN_SEL	
0x004F	2:0	R/W	OOF2_DET- WIN_SEL	
0x004F	6:4	R/W	OOF3_DET- WIN_SEL	

Table 13.606. 0x0050 OOF_ON_LOS

Reg Address	Bit Field	Туре	Setting Name	Description
0x0050	3:0	R/W	OOF_ON_LOS	Set by CBPro

Reg Address	Bit Field	Туре	Setting Name	Description
0x0051	3:0	R/W	FAST_OOF0_SET_ THR	(1 + Value) x 1000 ppm
0x0052	3:0	R/W	FAST_OOF1_SET_ THR	
0x0053	3:0	R/W	FAST_OOF2_SET_ THR	
0x0054	3:0	R/W	FAST_OOF3_SET_ THR	

Table 13.607. 0x0051-0x0054 Fast Out of Frequency Set Threshold

Table 13.608. 0x0055-0x0058

Reg Address	Bit Field	Туре	Setting Name	Description
0x0055	3:0	R/W	FAST_OOF0_CLR_ THR	(1 + Value) x 1000 ppm
0x0056	3:0	R/W	FAST_OOF1_CLR_ THR	
0x0057	3:0	R/W	FAST_OOF2_CLR_ THR	
0x0058	3:0	R/W	FAST_OOF3_CLR_ THR	

Table 13.609. 0x0059 Fast OOF Detection Windows

Reg Address	Bit Field	Туре	Setting Name	Description
0x0059	1:0	R/W	FAST_OOF0_DET- WIN_SEL	Values calculated by CBPro
0x0059	3:2	R/W	FAST_OOF1_DET- WIN_SEL	
0x0059	5:4	R/W	FAST_OOF2_DET- WIN_SEL	
0x0059	7:6	R/W	FAST_OOF3_DET- WIN_SEL	

Table 13.610. 0x005A-0x005D OOF0 Ratio for Reference

Reg Address	Bit Field	Туре	Setting Name	Description
0x005A	7:0	R/W	OOF0_RATIO_REF	Values calculated by CBPro
0x005B	15:8	R/W	OOF0_RATIO_REF	
0x005C	23:16	R/W	OOF0_RATIO_REF	
0x005D	25:24	R/W	OOF0_RATIO_REF	

Reg Address	Bit Field	Туре	Setting Name	Description
0x005E	7:0	R/W	OOF1_RATIO_REF	Values calculated by ClockBuilder Pro
0x005F	15:8	R/W	OOF1_RATIO_REF	
0x0060	23:16	R/W	OOF1_RATIO_REF	
0x0061	25:24	R/W	OOF1_RATIO_REF	

Table 13.611. 0x005E-0x0061 OOF1 Ratio for Reference

Table 13.612. 0x0062-0x0065 OOF2 Ratio for Reference

Reg Address	Bit Field	Туре	Setting Name	Description
0x0062	7:0	R/W	OOF2_RATIO_REF	Values calculated by ClockBuilder Pro
0x0063	15:8	R/W	OOF2_RATIO_REF	
0x0064	23:16	R/W	OOF2_RATIO_REF	
0x0065	25:24	R/W	OOF2_RATIO_REF	

Table 13.613. 0x0066-0x0069 OOF3 Ratio for Reference

Reg Address	Bit Field	Туре	Setting Name	Description
0x0066	7:0	R/W	OOF3_RATIO_REF	Values calculated by ClockBuilder Pro
0x0067	15:8	R/W	OOF3_RATIO_REF	
0x0068	23:16	R/W	OOF3_RATIO_REF	
0x0069	25:24	R/W	OOF3_RATIO_REF	

Table 13.614. 0x0092 Fast LOL Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0092	0	R/W		Enables fast detection of LOL for PLLx. A large input frequency error will quickly assert LOL when this is ena-
0x0092	1	R/W	LOL_FST_EN_PLL B	bled.

Table 13.615. 0x0093 Fast LOL Detection Window

Reg Address	Bit Field	Туре	Setting Name	Description
0x0093	3:0	R/W	LOL_FST_DET- WIN_SEL_PLLA	Values calculated by ClockBuilder Pro
0x0093	7:4	R/W	LOL_FST_DET- WIN_SEL_PLLB	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0095	1:0	R/W	LOL_FST_VAL- WIN_SEL_PLLA	Values calculated by ClockBuilder Pro
0x0095	3:2	R/W	LOL_FST_VAL- WIN_SEL_PLLB	

Table 13.616. 0x0095

Table 13.617. 0x0096 Fast LOL Set Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0096	3:0	R/W	LOL_FST_SET_TH R_SEL_PLLA	Values calculated by CBPro
0x0096	7:4	R/W	LOL_FST_SET_TH R_SEL_PLLB	

Table 13.618. 0x0098 Fast LOL Clear Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x0098	3:0	R/W	LOL_FST_CLR_TH R_SEL_PLLA	Values calculated by CBPro
0x0098	7:4	R/W	LOL_FST_CLR_TH R_SEL_PLLB	

Table 13.619. 0x009A LOL Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x009A	0	R/W	LOL_SLOW_EN_P LLA	0: to disable LOL
	1		LOL_SLOW_EN_P LLB	1: To enable LOL

Table 13.620. 0x009B Slow LOL Detection Window

Reg Address	Bit Field	Туре	Setting Name	Description
0x009B	3:00	R/W	LOL_SLW_DET- WIN_SEL_PLLB	Values calculated by CBPro
0x009B	7:04	R/W	LOL_SLW_DET- WIN_SEL_PLLA	

Table 13.621. 0x009D LOL Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x009D	1:0	R/W	LOL_SLW_VAL- WIN_SEL_PLLA	Values calculated by CBPro
0x009D	3:2	R/W	LOL_SLW_VAL- WIN_SEL_PLLB	

Reg Address	Bit Field	Туре	Setting Name	Description
0x009E	3:0	R/W	LOL_SLW_SET_TH R_PLLA	Configures the loss of lock set thresholds. See list be- low for selectable values.
0x009E	7:4	R/W	LOL_SLW_SET_TH R_PLLB	Configures the loss of lock set thresholds. See list be- low for selectable values.

Table 13.622. 0x009E LOL Set Thresholds

Table 13.623. 0x00A0 LOL Clear Thresholds

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A0	3:0	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.
0x00A0	7:4	R/W		Configures the loss of lock clear thresholds. See list be- low for selectable values.

Table 13.624. 0x00A2 LOL Timer Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A2	0	R/W	LOL_TIM- ER_EN_PLLA LOL_TIM- ER_EN_PLLB	0: To disable 1: To enable

Table 13.625. 0x00A4-0x00A7 LOL Clear Delay DSPLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A4	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	29-bit value
0x00A5	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	
0x00A6	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	
0x00A7	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLA	

Table 13.626. 0x00A9-0x00AC LOL Clear Delay DSPLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x00A9	7:0	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	29-bit value. Sets the clear timer 0x00AA 15:8 R/W LOL_CLR_DLY for LOL. CBPro sets this value.
0x00AA	15:8	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	
0x00AB	23:16	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	
0x00AC	28:24	R/W	LOL_CLR_DE- LAY_DIV256_PLLB	

ClockBuilder Pro is used to set these values.

Table 13.627. 0x00E2 Active NVM Bank

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E2	7:0	R	AC- TIVE_NVM_BLANK	0x03 when no NVM has been burned 0x0F when 1 NVM bank has been burned 0x3F when 2 NVM banks have been burned When ACTIVE_NVM_BANK = 0x3F, the last bank has already been burned. See 3.1.1 Updating Registers during Device Operation for a detailed description of how to program the NVM.

Table 13.628. 0x00E5

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E5	4	R/W	FASTLOCK_EX- TEND_EN_PLLA	Enables FASTLOCK_EXTEND.
0x00E5	5	R/W	FASTLOCK_EX- TEND_EN_PLLB	

Table 13.629. 0x00E6-0x00E9 FASTLOCK_EXTEND_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x00E6	7:0	R/W	FASTLOCK_EX- TEND_PLLA	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00E7	15:8	R/W	FASTLOCK_EX- TEND_PLLA	LOCK_EXTEND_SCL_PLLx.
0x00E8	23:16	R/W	FASTLOCK_EX- TEND_PLLA	
0x00E9	28:24	R/W	FASTLOCK_EX- TEND_PLLA	

Table 13.630. 0x00EA-0x00ED FASTLOCK_EXTEND_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x00EA	7:0	R/W	FSTLK_TIM- ER_EXT_PLLB	29-bit value. Set by CBPro to minimize the phase tran- sients when switching the PLL bandwidth. See FAST-
0x00EB	15:8	R/W	FSTLK_TIM- ER_EXT_PLLB	LOCK_EXTEND_SCL_PLLx.
0x00EC	23:16	R/W	FSTLK_TIM- ER_EXT_PLLB	
0x00ED	28:24	R/W	FSTLK_TIM- ER_EXT_PLLB	

Reg Address	Bit Field	Туре	Name	Description
0x00F6	0	R	REG_0XF7_INT R	Set by CBPro.
0x00F6	1	R	REG_0XF8_INT R	Set by CBPro.
0x00F6	2	R	REG_0XF9_INT R	Set by CBPro.

Table 13.631. 0x00F6

Table 13.632. 0x00F7

Reg Address	Bit Field	Туре	Name	Description
0x00F7	0	R	SYSINCAL_INTR	Set by CBPro.
0x00F7	1	R	LOSXAXB_INTR	Set by CBPro.
0x00F7	2	R	LOSREF_INTR	Set by CBPro.
0x00F7	4	R	LOSVCO_INTR	Set by CBPro.
0x00F7	5	R	SMBUS_TIME_O UT_INTR	Set by CBPro.

Table 13.633. 0x00F8

Reg Address	Bit Field	Туре	Name	Description
0x00F8	3:0	R	LOS_INTR	Set by CBPro.
0x00F8	7:4	R	OOF_INTR	Set by CBPro.

Table 13.634. 0x00F9

Reg Address	Bit Field	Туре	Name	Description
0x00F9	0:1	R	LOL_INTR_PLL[B:A]	Set by CBPro.
0x00F9	5:4	R	HOLD_INTR_PL L[B:A]	Set by CBPro.

Table 13.635. 0x00FE Device Ready

R	eg Address	Bit Field	Туре	Setting Name	Description
	0x00FE	7:0	R	DEVICE_READY	Ready Only byte to indicate device is ready. When read data is 0x0F one can safely read/write registers. This register is repeated on every page so that a page write is not ever required to read the DEVICE_READY status.

WARNING: Any attempt to read or write any register other than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the NVM programming. Note this includes writes to the PAGE register.

13.4.2 Page 1 Registers Si5346

Reg Address	Bit Field	Туре	Setting Name	Description
0x0102	0	R/W	OUTALL_DISA-	0: Disables all output drivers
			BLE_LOW	1: Pass through the output enables

Table 13.636. 0x0102 Global OE Gating for all Clock Output Drivers

Table 13.637. 0x0112, 0x0117, 0x0126, 0x012B Clock Output Driver and R-Divider Configuration

Reg Address	Bit Field	Туре	Setting Name	Description
0x0112	0	R/W	OUT0_PDN	0: To power up the regulator,
0x0117			OUT1_PDN	1: To power down the regulator.
0x0126			OUT2_PDN	When powered down, output pins will be high-impe-
0x012B			OUT3_PDN	dance with a light pulldown effect.
0x0112	1	R/W	OUT0_OE	0: To disable the output
0x0117			OUT1_OE	1: To enable the output
0x0126			OUT2_OE	
0x012B			OUT3_OE	
0x0112	2	R/W	OUT0_RDIV	Force Rx output divider divide-by-2.
0x0117			FORCE	0: Rx_REG sets divide value (default)
0x0126			OUT1_RDIV FORCE	1: Divide value forced to divide-by-2.
0x012B			OUT2_RDIV FORCE	
			OUT3_RDIV FORCE	

The output drivers are all identical.

Table 13.638. 0x0113, 0x0118, 0x0127, 0x012C Output Format

Reg Address	Bit Field	Туре	Setting Name	Description
0x0113	2:0	R/W	OUT0_FORMAT	0: Reserved
0x0118			OUT1_FORMAT	1: Differential Normal mode
0x0127			OUT2_FORMAT	2: Differential Low-Power mode
0x012C			OUT3_FORMAT	3: Reserved
				4: LVCMOS single ended
				5: LVCMOS (+pin only)
				6: LVCMOS (-pin only)
				7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x0113	3	R/W	OUT0_SYNC_EN	0: Disable
0x0118			OUT1_SYNC_EN	1: Enable
0x0127			OUT2_SYNC_EN	
0x012C			OUT3_SYNC_EN	
0x0113	5:4	R/W	OUT0_DIS_STATE	Determines the state of an output driver when disabled,
0x0118			OUT1_DIS_STATE	selectable as
0x0127			OUT2_DIS_STATE	0: Disable low
0x012C			OUT3_DIS_STATE	1: Disable high
				2-3: Reserved
0x0113	7:6	R/W	OUT0_CMOS_DRV	
0x0118			OUT1_CMOS_DRV	5.7 LVCMOS Output Impedance and Drive Strength Selections on page 39.
0x0127			OUT2_CMOS_DRV	
0x012C			OUT3_CMOS_DRV	

The output drivers are all identical.

Table 13.639. 0x0114, 0x0119, 0x0128, 0x012D Output Amplitude

Reg Address	Bit Field	Туре	Setting Name	Description
0x0114	3:0	R/W	OUT0_CM	OUTx common-mode voltage selection.
0x0119			OUT1_CM	This field only applies when OUTx_FORMAT = 1 or 2.
0x0128			OUT2_CM	See Table 5.6 Recommended Settings for Differential
0x012D			OUT3_CM	LVDS, LVPECL, HCSL, and CML on page 37.
0x0114	6:4	R/W	OUT0_AMPL	OUTx common-mode voltage selection.
0x0119			OUT1_AMPL	This field only applies when OUTx_FORMAT = 1 or 2.
0x0128			OUT2_AMPL	See Table 5.6 Recommended Settings for Differential
0x012D			OUT3_AMPL	LVDS, LVPECL, HCSL, and CML on page 37.

ClockBuilder Pro is used to select the correct settings for this register. The output drivers are all identical.

Table 13.640. 0x0115, 0x011A, 0x00129, 0x012E R-Divider Mux Selection

Reg Address	Bit Field	Туре	Setting Name	Description
0x0115	2:0	R/W	OUT0_MUX_SEL	Output driver 0 input mux select. This selects the source
0x011A			OUT1_MUX_SEL	of the multisynth.
0x0129			OUT2_MUX_SEL	0: DSPLL A
0x012E			OUT3_MUX_SEL	1: DSPLL B
				2-7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x0115	3	R/W	OUT0_VDD_SEL EN	1: Enable OUTx_VDD_SEL
0x011A				
0x0129			OUT1_VDD_SEL EN	
0x012E			OUT2_VDD_SEL EN	
			OUT3_VDD_SEL EN	
0x0115	5:4	R/W	OUT0_VDD_SEL	0: 3.3 V
0x011A			OUT1_VDD_SEL	1: 1.8 V
0x0129			OUT2_VDD_SEL	2: 2.5 V
0x012E			OUT3_VDD_SEL	3: Reserved
0x0115	7:6	R/W	OUT0_INV	LVCMOS output inversion. Only applies when
0x011A			OUT1_INV	OUT0A_FORMAT = 4. See 5.4.4 LVCMOS Output Po- larity for more information.
0x0129			OUT2_INV	
0x012E			OUT3_INV	

Each output can be connected to either of the two DSPLLs using $OUTx_MUX_SEL$. The output drivers are all identical. The $OUTx_MUX_SEL$ settings should match the corresponding $OUTx_DIS_SRC$ selections. Note that the setting codes for $OUTx_DIS_SRC$ and $OUTx_MUX_SEL$ are different when selecting the same DSPLL. $OUTx_DIS_SRC = OUTx_MUX_SEL + 1$

Table 13.641. 0x0116, 0x011B, 0x012A, 0x012F Output Disable Source DSPLL

Reg Address	Bit Field	Туре	Setting Name	Description
0x0116	2:0	R/W	OUT0_DIS_SRC	Output clock Squelched (temporary disable) on DSPLL
0x011B			OUT1_DIS_SRC	Soft Reset:
0x012A			OUT2_DIS_SRC	0: Reserved
0x012F			OUT3_DIS_SRC	1: DSPLL A squelches output
				2: DSPLL B squelches output
				3: DSPLL C squelches output
				4: DSPLL D squelches output
				5-7: Reserved

These CLKx_DIS_SRC settings should match the corresponding OUTx_MUX_SEL selections. Note that the setting codes for OUTx_DIS_SRC and OUTx_MUX_SEL are different when selecting the same DSPLL. OUTx_DIS_SRC = OUTx_MUX_SEL + 1

Table 13.642. 0x013F

Reg Address	Bit Field	Туре	Setting Name	Description
0x013F	11:0	R/W	OUTX_AL- WAYS_ON	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0141	0	R/W	OUT_DIS_MSK_PL LA	
0x0141	1	R/W	OUT_DIS_MSK_PL LB	
0x0141	5	R/W	OUT_DIS_LOL_MS K	
0x0141	6	R/W	OUT_DIS_LOS- XAXB_MSK	Determines if outputs are disabled during an LOSXAXB condition.
				0: All outputs disabled on LOSXAXB
				1: All outputs remain enabled during LOSXAXB condi- tion
0x0141	7	R/W	OUT_DIS_MSK_LO S_PFD	

Table 13.643. 0x0141 Output Disable Mask for LOS XAXB

 Table 13.644.
 0x0142 Output Disable Loss of Lock PLL

Reg Address	Bit Field	Туре	Setting Name	Description
0x0142	1:0	R/W	OUT_DIS_MSK_LO L_PLL[B:A]	0: LOL will disable all connected outputs1: LOL does not disable any outputs
0x0142	5:4	R/W	OUT_DIS_MSK_H OLD_PLL[B:A]	

Bit 0 LOL_DSPLL_A mask

Bit 1 LOL_DSPLL_B mask

13.4.3 Page 2 Registers Si5346

Table 13.645. 0x0206 XAXB Clock Input Reference Divide Value

Reg Address	Bit Field	Туре	Setting Name	Description
0x0206	1:0	R/W	PXAXB	The divider value for the XAXB input

This can be used with external clock sources, not crystals.

- 0 = pre-scale value 1
- 1 = pre-scale value 2
- 2 = pre-scale value 4
- 3 = pre-scale value 8

Note that changing this register during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0208	7:0	R/W	P0_NUM	48-bit Integer Number
0x0209	15:8	R/W	P0_NUM	
0x020A	23:16	R/W	P0_NUM	
0x020B	31:24	R/W	P0_NUM	
0x020C	39:32	R/W	P0_NUM	
0x020D	47:40	R/W	P0_NUM	

Table 13.646. 0x0208-0x020D P0 Divider Numerator

The following set of registers configure the P-dividers corresponding to each of the four input clocks seen in Figure 2.1 Block Diagrams on page 6. ClockBuilder Pro calculates the correct values for the P-dividers.

Table 13.647. 0x020E-0x0211 P0 Divider Denominator

Reg Address	Bit Field	Туре	Setting Name	Description
0x020E	7:0	R/W	P0_DEN	32-bit Integer Number
0x020F	15:8	R/W	P0_DEN	
0x0210	23:16	R/W	P0_DEN	
0x0211	31:24	R/W	P0_DEN	

The P1, P2 and P3 divider numerator and denominator follow the same format as P0 described above. ClockBuilder Pro calculates the correct values for the P-dividers. Note that changing these registers during operation may cause indefinite loss of lock unless the guide-lines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.648. Si5346 P1–P3 Divider Registers that Follow P0 Definitions

Register Address	Description	Size	Same as Address
0x0212-0x0217	P1_NUM	48-bit Integer Number	0x0208-0x020D
0x0218-0x021B	P1_DEN	32-bit Integer Number	0x020E-0x0211
0x021C-0x0221	P2_NUM	48-bit Integer Number	0x0208-0x020D

Register Address	Description	Size	Same as Address
0x0222-0x0225	P2_DEN	32-bit Integer Number	0x020E-0x0211
0x0226-0x022B	P3_NUM	48-bit Integer Number	0x0208-0x020D
0x022C-0x022F	P3_DEN	32-bit Integer Number	0x020E-0x0211

The following set of registers configure the P-dividers corresponding to each of the four input clocks seen in Figure 2.1 Block Diagrams on page 6. ClockBuilder Pro calculates the correct values for the P-dividers. Note that changing these registers during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.649. 0x0230 Px_UPDATE

Reg Address	Bit Field	Туре	Setting Name	Description
0x0230	0	S	P0_UPDATE	0: No update for P-divider value
0x0230	1	S	P1_UPDATE	1: Update P-divider value
0x0230	2	S	P2_UPDATE	
0x0230	3	S	P3_UPDATE	

Note that these controls are not needed when following the guidelines in 3.1.1 Updating Registers during Device Operation. Specifically, they are not needed when using the global soft reset "SOFT_RST_ALL". However, these are required when using the individual DSPLL soft reset controls, SOFT_RST_PLLA and SOFT_RST_PLLB do not update the Px_NUM or Px_DEN values.

Table 13.650. 0x0231 P0 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0231	3:0	R/W	P0_FRACN_MODE	P0 (IN0) input divider fractional mode. Must be set to 0xB for proper operation.
0x0231	4	R/W	P0_FRAC_EN	P0 (IN0) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.651. 0x0232 P1 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0232	3:0	R/W	P1_FRACN_MODE	P1 (IN1) input divider fractional mode. Must be set to 0xB for proper operation.
0x0232	4	R/W	P1_FRAC_EN	P1 (IN1) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.652. 0x0233 P2 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0233	3:0	R/W		P2 (IN2) input divider fractional mode. Must be set to 0xB for proper operation.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0233	4	R/W	P2_FRAC_EN	P2 (IN2) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.653. 0x0234 P3 Factional Division Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0234	3:0	R/W	P3_FRACN_MODE	P3 (IN3) input divider fractional mode. Must be set to 0xB for proper operation.
0x0234	4	R/W	P3_FRAC_EN	P3 (IN3) input divider fractional enable
				0: Integer-only division.
				1: Fractional (or Integer) division.

Table 13.654. 0x0235-0x023A MXAXB Divider Numerator

Reg Address	Bit Field	Туре	Setting Name	Description
0x0235	7:0	R/W	MXAXB_NUM	44-bit Integer Number
0x0236	15:8	R/W	MXAXB_NUM	
0x0237	23:16	R/W	MXAXB_NUM	
0x0238	31:24	R/W	MXAXB_NUM	
0x0239	39:32	R/W	MXAXB_NUM	
0x023A	43:40	R/W	MXAXB_NUM	

Note that changing this register during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.655. 0x023B-0x023E MXAXB Divider Denominator

Reg Address	Bit Field	Туре	Setting Name	Description
0x023B	7:0	R/W	MXAXB_DEN	32-bit Integer Number
0x023C	15:8	R/W	MXAXB_DEN	
0x023D	23:16	R/W	MXAXB_DEN	
0x023E	31:24	R/W	MXAXB_DEN	

The M-divider numerator and denominator are set by ClockBuilder Pro for a given frequency plan. Note that changing this register during operation may cause indefinite loss of lock unless the guidelines in 3.1.1 Updating Registers during Device Operation are followed.

Table 13.656. 0x023F

Reg Address	Bit Field	Туре	Setting Name	Description
0x023F	0	S	MXAXB_UPDATE	The divider value for the XAXB input

Reg Address	Bit Field	Туре	Setting Name	Description
0x0250	7:0	R/W	R0_REG	24-bit Integer divider
0x0251	15:8	R/W	R0_REG	divider value = (R0_REG+1) x 2
0x0252	23:16	R/W	R0_REG	To set R0 = 2, set
				OUT0_RDIV_FORCE2 = 1 and then the R0_REG value is irrelevant.

Table 13.657. 0x0250-0x0252 R0 Divider

The R dividers are at the output clocks and are purely integer division. The R1–R9 dividers follow the same format as the R0 divider described above.

Table 13.658. Si5346-R1–R3 Divider Registers that Follow R0 Definitions

Register Address	Description	Size	Same as Address
0x0253-0x0255	R1_REG	24-bit Integer Number	0x0250-0x0252
0x025C-0x025E	R2_REG	24-bit Integer Number	0x0250-0x0252
0x025F-0x0261	R3_REG	24-bit Integer Number	0x0250-0x0252

Table 13.659. 0x026B-0x0272 Design Identifier

Reg Address	Bit Field	Туре	Setting Name	Description
0x026B	7:0	R/W	DESIGN_ID0	ASCII encoded string defined by ClockBuilder Pro user,
0x026C	15:8	R/W	DESIGN_ID1	with user defined space or null padding of unused char- acters. A user will normally include a configuration ID +
0x026D	23:16	R/W	DESIGN_ID2	revision ID. For example, "ULT.1A" with null character padding sets:
0x026E	31:24	R/W	DESIGN_ID3	DESIGN ID0: 0x55
0x026F	39:32	R/W	DESIGN_ID4	DESIGN ID1: 0x4C
0x0270	47:40	R/W	DESIGN_ID5	DESIGN ID2: 0x54
0x0271	55:48	R/W	DESIGN_ID6	DESIGN ID3: 0x2E
0x0272	63:56	R/W	DESIGN_ID7	DESIGN_ID4: 0x31
				DESIGN_ID5: 0x41
				DESIGN_ID6:0x 00
				DESIGN_ID7: 0x00

Reg Address	Bit Field	Туре	Setting Name	Description
0x0278	7:0	R/W	OPN_ID0	OPN unique identifier. ASCII encoded. For example,
0x0279	15:8	R/W	OPN_ID1	with OPN:
0x027A	23:16	R/W	OPN_ID2	5346C-A12345-GM, 12345 is the OPN unique identifier:
0x027B	31:24	R/W	OPN_ID3	OPN_ID0: 0x31
0x027C	39:32	R/W	OPN_ID4	OPN_ID1: 0x32
				OPN_ID2: 0x33
				OPN_ID3: 0x34
				OPN_ID4: 0x35

Table 13.660. 0x0278- 0x027D OPN Identifier

Part numbers are of the form:

Si<Part Num Base><Grade>-<Device Revision><OPN ID>-<Temp Grade><Package ID>

Examples:

Si5346C-A12345-GM.

Applies to a "custom" OPN (Ordering Part Number) device. These devices are factory pre-programmed with the frequency plan and all other operating characteristics defined by the user's ClockBuilder Pro project file.

Si5346C-A-GM.

Applies to a "base" or "non-custom" OPN device. Base devices are factory preprogrammed to a specific base part type (e.g., Si5346 but exclude any user-defined frequency plan or other user-defined operating characteristics selected in ClockBuilder Pro.

Table 13.661. 0x027D

Reg Address	Bit Field	Туре	Setting Name	Description
0x027D	7:0	R/W	OPN_REVISION	

Table 13.662. 0x027E

Reg Address	Bit Field	Туре	Setting Name	Description
0x027E	7:0	R/W	BASELINE_ID	

Table 13.663. 0x028A-0x028D

Reg Address	Bit Field	Туре	Setting Name	Description
0x028A	4:0	R/W	OOF0_TRG_THR_ EXT	The OOF0 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)
0x028B	4:0	R/W	OOF1_TRG_THR_ EXT	The OOF1 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)
0x028C	4:0	R/W	OOF2_TRG_THR_ EXT	The OOF2 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)
0x028D	4:0	R/W	OOF3_TRG_THR_ EXT	The OOF3 trigger threshold extension (increases threshold precision from 2 ppm to 0.0625 ppm)

Reg Address	Bit Field	Туре	Setting Name	Description
0x028E	4:0	R/W	OOF0_CLR_THR_ EXT	The OOF0 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)
0x028F	4:0	R/W	OOF1_CLR_THR_ EXT	The OOF1 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)
0x0290	4:0	R/W	OOF2_CLR_THR_ EXT	The OOF2 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)
0x0291	4:0	R/W	OOF3_CLR_THR_ EXT	The OOF3 clear threshold extension (increases thresh- old precision from 2 ppm to 0.0625 ppm)

Table 13.664. 0x028E-0x0291

Table 13.665. 0x0294

Reg Address	Bit Field	Туре	Setting Name	Description
0x0294	3:0	R/W	FASTLOCK_EX- TEND_SCL_PLLA	Scales LOLB_INT_TIMER_DIV256. Set by CBPro
0x0294	7:4	R/W	FASTLOCK_EX- TEND_SCL_PLLB	

Table 13.666. 0x0296

Reg Address	Bit Field	Туре	Setting Name	Description
0x0296	0	R/W	LOL_SLW_VAL- WIN_SELX_PLLA	Set by CBPro.
0x0296	1	R/W	LOL_SLW_VAL- WIN_SELX_PLLB	

Table 13.667. 0x0297

Reg Address	Bit Field	Туре	Setting Name	Description
0x0297	0	R/W	FAST- LOCK_DLY_ONSW _EN_PLLA	Set by CBPro.
0x0297	1	R/W	FAST- LOCK_DLY_ONSW _EN_PLLB	

Table 13.668. 0x0299

Reg Address	Bit Field	Туре	Setting Name	Description
0x0299	0	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLA	Set by CBPro.
0x0299	1	R/W	FAST- LOCK_DLY_ON- LOL_EN_PLLB	

Reg Address	Bit Field	Туре	Setting Name	Description
0x029A	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLA	Set by CBPro.
0x029B	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLA	
0x029C	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLA	

Table 13.669. 0x029A-0x29C

Table 13.670. 0x029D-0x29F

Reg Address	Bit Field	Туре	Setting Name	Description
0x029D	7:0	R/W	FAST- LOCK_DLY_ON- LOL_PLLB	Set by CBPro.
0x029E	15:8	R/W	FAST- LOCK_DLY_ON- LOL_PLLB	
0x029F	19:16	R/W	FAST- LOCK_DLY_ON- LOL_PLLB	

Table 13.671. 0x02A6-0x2A8

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A6	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLA	Set by CBPro.
0x02A7	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLA	
0x02A8	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLA	

Reg Address	Bit Field	Туре	Setting Name	Description
0x02A9	7:0	R/W	FAST- LOCK_DLY_ONSW _PLLB	Set by CBPro.
0x02AA	15:8	R/W	FAST- LOCK_DLY_ONSW _PLLB	
0x02AB	19:16	R/W	FAST- LOCK_DLY_ONSW _PLLB	

Table 13.672. 0x02A9-0x2AB

Table 13.673. 0x02B7

Reg Address	Bit Field	Туре	Setting Name	Description
0x02B7	1:0	R/W	LOL_NO- SIG_TIME_PLLA	Set by CBPro.
0x02B7	3:2	R/W	LOL_NO- SIG_TIME_PLLB	

Table 13.674. 0x02B8

Reg Address	Bit Field	Туре	Setting Name	Description
0x02B8	0	R/W	LOL_LOS_REFCLK _PLLA	Set by CBPro.
0x02B8	1	R/W	LOL_LOS_REFCLK _PLLB	Set by CBPro.

Table 13.675. 0x02B9

Reg Address	Bit Field	Туре	Setting Name	Description
0x02B9	0	R/W	LOL_LOS_REFCLK _PLLA_FLG	Set by CBPro.
0x02B9	1	R/W	LOL_LOS_REFCLK _PLLB_FLG	Set by CBPro.

13.4.4 Page 3 Registers Si5346

Reg Address	Bit Field	Туре	Setting Name	Description
0x0302	7:0	R/W	N0_NUM	N Output Divider Numerator. 44-bit
0x0303	15:8			Integer.
0x0304	23:16			
0x0305	31:24			
0x0306	39:32			
0x0307	43:40			

Table 13.676. 0x0302-0x0307 N0 Numerator

Table 13.677. 0x0308-0x030B N0 Denominator

Reg Address	Bit Field	Туре	Setting Name	Description
0x0308	7:0	R/W	N0_DEN	N Output Divider Denominator. 32-bit
0x0309	15:8			Integer.
0x030A	23:16			
0x030B	31:24			

The N output divider values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.678. 0x030C N0 Update

Reg Address	Bit Field	Туре	Setting Name	Description
0x030C	0	S	N0_UPDATE	Set this bit to latch the N output divider
				registers into operation.

Setting this self-clearing bit to 1 latches the new N output divider register values into operation. A Soft Reset will have the same effect.

Table 13.679. that Follow the N0_NUM and N0_DEN Definitions

Reg Address	Description	Size	Same as Address
0x030D-0x0312	N1_NUM	44-bit Integer	0x0302-0x0307
0x0313-0x0316	N1_DEN	32-bit Integer	0x0308-0x030B
0x0317	N1_UPDATE	one bit	0x030C
0x0318-0x031D	N2_NUM	44-bit Integer	0x0302-0x0307
0x031E-0x0321	N2_DEN	32-bit Integer	0x0308-0x030B
0x0322	N2_UPDATE	one bit	0x030C
0x0323-0x0328	N3_NUM	44-bit Integer	0x0302-0x0307
0x0329-0x032C	N3_DEN	32-bit Integer	0x0308-0x030B
0x032D	N3_UPDATE	one bit	0x030C

Table 13.680. 0x0338 All DSPLL Internal Dividers Update Bit

Reg Address	Bit Field	Туре	Name	Description
0x0338	1	S	N_UPDATE	Writing a 1 to this bit will update all DSPLL internal di- vider values. When this bit is written, all other bits in this register must be written as zeros.

ClockBuilder Pro handles these updates when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

13.4.5 Page 4 Registers Si5346

Reg Address	Bit Field	Туре	Setting Name	Description
0x0407	7:6	R	IN_PLLA_ACTV	Currently selected DSPLL input clock
				0: IN0
				1: IN1
				2: IN2
				3: IN3

Table 13.681. 0x0407 DSPLL A Active Input

Table 13.682. 0x0408-0x040D DSPLL A Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0408	5:0	R/W	BW0_PLLA	Parameters that create the normal PLL bandwidth
0x0409	5:0	R/W	BW1_PLLA	
0x040A	5:0	R/W	BW2_PLLA	
0x040B	5:0	R/W	BW3_PLLA	
0x040C	5:0	R/W	BW4_PLLA	
0x040D	5:0	R/W	BW5_PLLA	

This group of registers determines the DSPLL A loop bandwidth. In ClockBuilder Pro it is selectable from 200 Hz to 4 kHz in steps of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLA bit (reg 0x0414[0]) must be used to cause all of the BWx_PLLA, FAST_BWx_PLLA, and BWx_HO_PLLA parameters to take effect. Note that individual SOFT_RST_PLLA (0x001C[1]) does not update the bandwidth parameters. Appendix A—Custom Differential Amplitude Controls

The loop bandwidth values are calculated by ClockBuilder Pro and written into these registers.

Table 13.683. 0x040E-0x0414 DSPLL A Fast Lock Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x040E	5:0	R/W	FAST- LOCK_BW0_PLLA	Parameters that create the fast lock PLL bandwidth
0x040F	5:0	R/W	FAST- LOCK_BW1_PLLA	
0x0410	5:0	R/W	FAST- LOCK_BW2_PLLA	
0x0411	5:0	R/W	FAST- LOCK_BW3_PLLA	
0x0412	5:0	R/W	FAST- LOCK_BW4_PLLA	
0x0413	5:0	R/W	FAST- LOCK_BW5_PLLA	
0x0414	0	S	BW_UP- DATE_PLLA	0: No effect. 1: Update both the Normal and Fastlock BWs for PLL A.

The fast lock loop bandwidth values are calculated by ClockBuilder Pro and are written into these registers. Note that a 1 must be written to BW_UPDATE_PLLA to update the BW parameters for this DSPLL. Soft Reset does not update the DSPLL bandwidth parameters.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0415	7:0	R/W	M_NUM_PLLA	56-bit number
0x0416	15:8	R/W	M_NUM_PLLA	
0x0417	23:16	R/W	M_NUM_PLLA	
0x0418	31:24	R/W	M_NUM_PLLA	
0x0419	39:32	R/W	M_NUM_PLLA	
0x041A	47:40	R/W	M_NUM_PLLA	
0x041B	55:48	R/W	M_NUM_PLLA	

Table 13.684. 0x0415-0x041B MA Divider Numerator for DSPLL A

The MA divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.685. 0x041C-0x041F M Divider Denominator for DSPLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x041C	7:0	R/W	M_DEN_PLLA	32-bit number
0x041D	15:8	R/W	M_DEN_PLLA	
0x041E	23:16	R/W	M_DEN_PLLA	
0x041F	31:24	R/W	M_DEN_PLLA	

The loop MA divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.686. 0x0420 M Divider Update Bit for PLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x0420	0	S		Must write a 1 to this bit to cause PLL A M divider changes to take effect.

Bits 7:1 of this register have no function and can be written to any value.

Table 13.687. 0x0421 DSPLL A M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0421	3:0	R/W		M feedback divider fractional mode.
			LLA	Must be set to 0xB for proper operation
0x0421	4	R/W	M_FRAC_EN_PLLA	M feedback divider fractional enable.
				0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.
0x0421	5	R/W	Reserved	Must be set to 1 for DSPLL A

Reg Address	Bit Field	Туре	Setting Name	Description
0x0422	0	R/W	M_FSTEP_MSK_P	0: To enable FINC/FDEC updates
			LLA	1: To disable FINC/FDEC updates

Table 13.688. 0x0422 DSPLL A FINC/FDEC Masking

Table 13.689. 0x0423-0x0429 DSPLLA M Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0423	7:0	R/W	M_FSTEPW_PLLA	56-bit number
0x0424	15:8	R/W	M_FSTEPW_PLLA	
0x0425	23:16	R/W	M_FSTEPW_PLLA	
0x0426	31:24	R/W	M_FSTEPW_PLLA	
0x0427	39:32	R/W	M_FSTEPW_PLLA	
0x0428	47:40	R/W	M_FSTEPW_PLLA	
0x0429	55:48	R/W	M_FSTEPW_PLLA	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL A is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also Registers 0x0415–0x041F.

Table 13.690. 0x042A DSPLL A Input Clock Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x042A	2:0	R/W	IN_SEL_PLLA	0: For IN0
				1: For IN1
				2: For IN2
				3: For IN3
				4–7: Reserved

This is the input clock selection for manual register based clock selection.

Table 13.691. 0x042B DSPLL A Fast Lock Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x042B	0	R/W	FASTLOCK_AU-	Applies when FASTLOCK_MAN_PLLA=0.
			TO_EN_PLLA	0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLA is out of lock
0x042B	1	R/W		0: For normal operation
			LOCK_MAN_PLLA	1: For force fast lock

Table 13.692. 0x042E DSPLL A Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x042E	4:0	R/W	HOLD_HIST_LEN_ PLLA	5- bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.693. 0x042F DSPLLA Holdover History Delay

Reg Address	Bit Field	Туре	Setting Name	Description
0x042F	4:0	R/W	HOLD_HIST_DE- LAY_PLLA	5- bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the ignore delay time from the register value. time = $(2^{DELAY})^*268$ nsec

Table 13.694. 0x0431

Reg Address	Bit Field	Туре	Setting Name	Description
0x0431	4:0	R/W	HOLD_REF_COUN T_FRC_PLLA	5- bit value

Table 13.695. 0x0432

Reg Address	Bit Field	Туре	Setting Name	Description
0x0432	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLA	Values calculated by CBPro
0x0433	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLA	
0x0434	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLA	

Table 13.696. 0x0435 DSPLL A Force Holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0435	0	R/W		0: For normal operation
			LA	1: To force holdover

Reg Address	Bit Field	Туре	Setting Name	Description
0x0436	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLA	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0436	2	R/W	HSW_EN_PLLA	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.697. 0x0436 DSPLLA Input Clock Switching Control

Table 13.698. 0x0437 DSPLLA Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0437	3:0	R/W	IN_LOS_MSK_PLL	For each clock input LOS alarm
			A	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0437	7:4	R/W	IN_OOF_MSK_PLL	For each clock input OOF alarm
			A	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0437[0], OOF alarm 0x0437[4]

IN1 Input 1 applies to LOS alarm 0x0437[1], OOF alarm 0x0437[5]

IN2 Input 2 applies to LOS alarm 0x0437[2], OOF alarm 0x0437[6]

IN3 Input 3 applies to LOS alarm 0x0437[3], OOF alarm 0x0437[7]

Table 13.699. 0x0438 DSPLL A Clock Inputs 0 and 1 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0438	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x0438	6:4	R/W	IN1_PRIORI-	The priority for clock input 1 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.700. 0x0439 DSPLL A Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0439	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0439	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLA	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.701. 0x043A Hitless Switching Mode

Reg Address	Bit Field	Туре	Setting Name	Description
0x043A	1:0	R/W	HSW_MODE_PLLA	2: Default setting, do not modify
				0,1,3: Reserved
0x043A	3:2	R/W		0: Default setting, do not modify
			RL_PLLA	1,2,3: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x043B	7:0	R/W	HSW_PHMEAS_TH R_PLLA	Set by CBPro.
0x043C	9:8	R/W	HSW_PHMEAS_TH R_PLLA	

Table 13.702. 0x043B-0x043C Hitless Switching Phase Threshold

Table 13.703. 0x043D

Reg Address	Bit Field	Туре	Setting Name	Description
0x043D	4:0	R/W	HSW_COARSE_P M_LEN_PLLA	Set by CBPro

Table 13.704. 0x043E

Reg Address	Bit Field	Туре	Setting Name	Description
0x043E	4:0	R/W	HSW_COARSE_P M_DLY_PLLA	Set by CBPro

Table 13.705. 0x043F DSPLL A Hold Valid History and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x043F	1	R/O	HOLD_HIST_VAL- ID_PLLA	Holdover Valid historical frequency data indicator. 0: Invalid Holdover History - Freerun on input fail or
				switch
				1: Valid Holdover History - Holdover on input fail or switch
0x043F	2	R/O	FASTLOCK_STA- TUS PLLA	Fastlock engaged indicator.
			TUS_FLLA	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

When the input fails or is switched and the DSPLL switches to Holdover or Freerun mode, HOLD_HIST_VALID_PLLA accumulation will stop.

When a valid input clock is presented to the DSPLL, the holdover frequency history measurements will be cleared and will begin to accumulate once again.

Table 13.706. 0x0442-0x0444

Reg Address	Bit Field	Туре	Setting Name	Description
0x0442	7:0	R/W	FINE_ADJ_OVR_P LLA	Set by CBPro
0x0443	15:8	R/W	FINE_ADJ_OVR_P LLA	
0x0444	17:16	R/W	FINE_ADJ_OVR_P LLA	

Table 13.707. 0x0445

Reg Address	Bit Field	Туре	Setting Name	Description
0x0445	1	R/W	FORCE_FINE_ADJ _PLLA	Set by CBPro

Table 13.708. 0x0488 HSW_FINE_PM_LEN_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x0488	3:0	R/W	HSW_FINE_PM_LE N_PLLA	

Table 13.709. 0x0489 PFD_EN_DELAY_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x0489	7:0	R/W	PFD_EN_DE- LAY_PLLA	
0x048A	12:8	R/W	PFD_EN_DE- LAY_PLLA	

Table 13.710. 0x049B HOLDEXIT_BW_SEL0_PLLA

Reg Address	Bit Field	Туре	Setting Name	Description
0x049B	1	R/W	IN- IT_LP_CLOSE_HO _PLLA	Set by CBPro.
0x049B	2	R/W	HO_SKIP_PHASE_ PLLA	Set by CBPro.
0x049B	4	R/W	HOLD_PRE- SERVE_HIST_PLL A	Set by CBPro.
0x049B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLA	Set by CBPro.
0x049B	6	R/W	HOLDEX- IT_BW_SEL0_PLLA	Set by CBPro.
0x049B	7	R/W	HOLDEX- IT_STD_BO_PLLA	Set by CBPro.

Reg Address	Bit Field	Туре	Setting Name	Description
0x049D	7:0	R/W	BW0_HO_PLLA	DSPLL A Holdover Bandwidth parameters.
0x049E	7:0	R/W	BW1_HO_PLLA	
0x049F	7:0	R/W	BW2_HO_PLLA	
0x04A0	7:0	R/W	BW3_HO_PLLA	
0x04A1	7:0	R/W	BW4_HO_PLLA	
0x04A2	7:0	R/W	BW5_HO_PLLA	

Table 13.711. 0x049D-0x04A2 DSPLL Holdover Exit Bandwidth for DSPLL A

Table 13.712. 0x04A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x04A6	2:0	R/W	RAMP_STEP_SIZE _PLLA	
0x04A6	3	R/W	RAMP_SWITCH_E N_PLLA	

13.4.6 Page 5 Registers Si5346

Reg Address	Bit Field	Туре	Setting Name	Description
0x0507	7:6	R	IN_PLLB_ACTV	Currently selected DSPLL input clock
				0: IN0
				1: IN1
				2: IN2
				3: IN3

Table 13.713. 0x0507 DSPLL B Active Input

Table 13.714. 0x0508-0x050D DSPLL B Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x0508	5:0	R/W	BW0_PLLB	Parameters that create the normal PLL bandwidth
0x0509	5:0	R/W	BW1_PLLB	
0x050A	5:0	R/W	BW2_PLLB	
0x050B	5:0	R/W	BW3_PLLB	
0x050C	5:0	R/W	BW4_PLLB	
0x050D	5:0	5:0 R/W BW5_PLLB		

This group of registers determines the DSPLL B loop bandwidth. In ClockBuilder Pro it is selectable from 10 Hz to 100 Hz in steps of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL (0x001C[0]) or the BW_UPDATE_PLLB bit (reg 0x0514[0]) must be used to cause all of the BWx_PLLB, FAST_BWx_PLLB, and BWx_HO_PLLB parameters to take effect. Note that individual SOFT_RST_PLLB (0x001C[2]) does not update the bandwidth parameters.

Table 13.715. 0x050E-0x0514 DSPLL B Fast Lock Loop Bandwidth

Reg Address	Bit Field	Туре	Setting Name	Description
0x050E	5:0	R/W	FAST- LOCK_BW0_PLLB	Parameters that create the fast lock PLL bandwidth
0x050F	5:0	R/W	FAST- LOCK_BW1_PLLB	
0x0510	5:0	R/W	FAST- LOCK_BW2_PLLB	
0x0511	5:0	R/W	FAST- LOCK_BW3_PLLB	
0x0512	5:0	R/W	FAST- LOCK_BW4_PLLB	
0x0513	5:0	R/W	FAST- LOCK_BW5_PLLB	
0x0514	0	S	BW_UP- DATE_PLLB	0: No effect 1: Update both the Normal and Fastlock BWs for PLL B.

This group of registers determines the DSPLL Fastlock bandwidth. In Clock Builder Pro, it is selectable from 10 Hz to 4 kHz in factors of roughly 2x each. Clock Builder Pro will then determine the values for each of these registers. Either a full device SOFT_RST_ALL

(0x001C[0]) or the BW_UPDATE_PLLB bit (reg 0x0514[0]) must be used to cause all of the BWx_PLLB, FAST_BWx_PLLB, and BWx_HO_PLLB parameters to take effect. Note that individual SOFT_RST_PLLB (0x001C[2]) does not update the bandwidth parameters.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0515	7:0	R/W	M_NUM_PLLB[56- bit number
0x0516	15:8	R/W	M_NUM_PLLB[
0x0517	23:16	R/W	M_NUM_PLLB[
0x0518	31:24	R/W	M_NUM_PLLB	
0x0519	39:32	R/W	M_NUM_PLLB	
0x051A	47:40	R/W	M_NUM_PLLB	
0x051B	55:48	R/W	M_NUM_PLLB	

Table 13.716. 0x0515-0x051B MB Divider Numerator for DSPLL B

The M divider numerator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.717. 0x051C-0x051F MB Divider Denominator for DSPLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x051C	7:0	R/W	M_DEN_PLLB	32-bit number
0x051D	15:8	R/W	M_DEN_PLLB	
0x051E	23:16	R/W	M_DEN_PLLB	
0x051F	31:24	R/W	M_DEN_PLLB	

The loop MA divider denominator values are calculated by ClockBuilder Pro for a particular frequency plan and are written into these registers.

Table 13.718. 0x0520 M Divider Update Bit for PLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0520	0	S		Must write a 1 to this bit to cause PLL B M divider changes to take effect.

Bits 7:1 of this register have no function and can be written to any value.

Table 13.719. 0x0521 DSPLL B M Divider Fractional Enable

Reg Address	Bit Field	Туре	Setting Name	Description
0x0521	3:0	R/W	M_FRAC_MODE_P LLB	M feedback divider fractional mode.
				Must be set to 0xB for proper operation.
0x0521	4	R/W	M_FRAC_EN_PLLB	M feedback divider fractional enable.
				0: Integer-only division
				1: Fractional (or integer) division - Required for DCO operation.
0x0521	5	R/W	Reserved	Must be set to 1 for DSPLL B

Reg Address	Bit Field	Туре	Setting Name	Description
0x0522	0	R/W	M_FSTEP_MSK_P LLB	0: To enable FINC/FDEC updates 1: To disable FINC/FDEC updates
0x0522	1	R/W	M_FSTEPW_DEN_ PLLB	

Table 13.720. 0x0522 DSPLL B FINC/FDEC Control

Table 13.721. 0x0523-0x0529 DSPLLB MB Divider Frequency Step Word

Reg Address	Bit Field	Туре	Setting Name	Description
0x0523	7:0	R/W	M_FSTEP_PLLB	56-bit number
0x0524	15:8	R/W	M_FSTEP_PLLB	
0x0525	23:16	R/W	M_FSTEP_PLLB	
0x0526	31:24	R/W	M_FSTEP_PLLB	
0x0527	39:32	R/W	M_FSTEP_PLLB	
0x0528	47:40	R/W	M_FSTEP_PLLB	
0x0529	55:48	R/W	M_FSTEP_PLLB	

The frequency step word (FSTEPW) for the feedback M divider of DSPLL B is always a positive integer. The FSTEPW value is either added to or subtracted from the feedback M divider Numerator such that an FINC will increase the output frequency and an FDEC will decrease the output frequency. See also Registers 0x0515–0x051F.

Table 13.722. 0x052A DSPLL B Input Clock Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x052A	3:1	R/W	IN_SEL_PLLB	0: For IN0
				1: For IN1
				2: For IN2
				3: For IN3
				4–7: Reserved
0x052A	0	R/W	IN_SEL_REGCTRL	0: Pin Control
			_PLLB	1: Register Control

This is the input clock selection for manual register based clock selection.

Table 13.723. 0x052B DSPLL B Fast Lock Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x052B	0	R/W	FASTLOCK_AU-	Applies when FASTLOCK_MAN_PLLB=0.
			TO_EN_PLLB	0: Disable Auto Fastlock
				1: Enable Auto Fastlock when PLLB is out of lock
0x052B	1	R/W		0: For normal operation
			LOCK_MAN_PLLB	1: For force fast lock

Reg Address	Bit Field	Туре	Setting Name	Description
0x052C	0	R/W	HOLD_EN_PLLB	
0x052C	3	R/W	HOLD_RAMP_BYP _PLLB	Must be set to 1 for normal operation.
0x052C	4	R/W	HOLDEX- IT_BW_SEL1_PLLB	0: To use the fastlock loop BW when exiting from hold- over
				1: To use the normal loop BW when exiting from hold- over
0x52C	7:5	R/W	RAMP_STEP_IN- TERVAL_PLLB	

Table 13.724. 0x052C DSPLL B Holdover Control

Table 13.725. 0x052E DSPLL B Holdover History Average Length

Reg Address	Bit Field	Туре	Setting Name	Description
0x052E	4:0	R/W	HOLD_HIST_LEN_ PLLB	5- bit value

The holdover logic averages the input frequency over a period of time whose duration is determined by the history average length. The average frequency is then used as the holdover frequency. See 3.5 Holdover Mode to calculate the window length from the register value. time = $((2^{\text{LEN}}) - 1)^*268$ nsec

Table 13.726. 0x052F DSPLLB Holdover History Delay and Fastlock Status

Reg Address	Bit Field	Туре	Setting Name	Description
0x052F	4:0	R	HOLD_HIST_DE- LAY_PLLB	5- bit value

The most recent input frequency perturbations can be ignored during entry into holdover. The holdover logic pushes back into the past. The amount the average window is delayed is the holdover history delay. See 3.5 Holdover Mode to calculate the ignore delay time from the register value. time = $(2^{DELAY})^*268$ nsec

Table 13.727. 0x0531

Reg Address	Bit Field	Туре	Setting Name	Description
0x0531	4:0	R/W	HOLD_REF_COUN T_FRC_PLLB	5- bit value

Table 13.728. 0x0532

Reg Address	Bit Field	Туре	Setting Name	Description
0x0532	7:0	R/W	HOLD_15M_CYC_ COUNT_PLLB	Values calculated by CBPro
0x0533	15:8	R/W	HOLD_15M_CYC_ COUNT_PLLB	
0x0534	23:16	R/W	HOLD_15M_CYC_ COUNT_PLLB	

Reg Address	Bit Field	Туре	Setting Name	Description
0x0535	0	R/W		0: For normal operation
			LB	1: To force holdover

Table 13.729. 0x0535 DSPLL B Force Holdover

Table 13.730. 0x0536 DSPLLB Input Clock Switching Control

Reg Address	Bit Field	Туре	Setting Name	Description
0x0536	1:0	R/W	CLK_SWITCH_MO	Clock Selection Mode
			DE_PLLB	0: Manual
				1: Automatic, non-revertive
				2: Automatic, revertive
				3: Reserved
0x0536	2	R/W	HSW_EN_PLLB	0: Glitchless switching mode (phase buildout turned off)
				1: Hitless switching mode (phase buildout turned on)

Table 13.731. 0x0537 DSPLLB Input Alarm Masks

Reg Address	Bit Field	Туре	Setting Name	Description
0x0537	3:0	R/W	IN_LOS_MSK_PLL	For each clock input LOS alarm
			В	0: To use LOS in the clock selection logic
				1: To mask LOS from the clock selection logic
0x0537	7:4	R/W		For each clock input OOF alarm
			В	0: To use OOF in the clock selection logic
				1: To mask OOF from the clock selection logic

For each of the four clock inputs the OOF and or the LOS alarms can be used for the clock selection logic or they can be masked from it. Note that the clock selection logic can affect entry into holdover.

IN0 Input 0 applies to LOS alarm 0x0537[0], OOF alarm 0x0537[4]

IN1 Input 1 applies to LOS alarm 0x0537[1], OOF alarm 0x0537[5]

IN2 Input 2 applies to LOS alarm 0x0537[2], OOF alarm 0x0537[6]

IN3 Input 3 applies to LOS alarm 0x0537[3], OOF alarm 0x0537[7]

Reg Address	Bit Field	Туре	Setting Name	Description
0x0538	2:0	R/W	IN0_PRIORI-	The priority for clock input 0 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0538	6:4	R/W	IN1_PRIORI-	The priority for clock input 1 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Table 13.732. 0x0538 DSPLL B Clock Inputs 0 and 1 Priority

Table 13.733. 0x0539 DSPLL B Clock Inputs 2 and 3 Priority

Reg Address	Bit Field	Туре	Setting Name	Description
0x0539	2:0	R/W	IN2_PRIORI-	The priority for clock input 2 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved
0x0539	6:4	R/W	IN3_PRIORI-	The priority for clock input 3 is:
			TY_PLLB	0: No priority
				1: For priority 1
				2: For priority 2
				3: For priority 3
				4: For priority 4
				5–7: Reserved

Reg Address	Bit Field	Туре	Setting Name	Description
0x053A	1:0	R/W	HSW_MODE_PLLB	2:Default setting, do not modify
				0,1,3: Reserved
0x053A	3:2	R/W		0: Default setting, do not modify
			RL_PLLB	1,2,3: Reserved

Table 13.734. 0x053A DSPLL B Hitless Switching Mode

Table 13.735. 0x053B-0x053C Hitless Switching Phase Threshold

Reg Address	Bit Field	Туре	Setting Name	Description
0x053B	7:0	R/W	HSW_PHMEAS_TH R_PLLB	10-bit value. Set by CBPro.
0x053C	9:8	R/W	HSW_PHMEAS_TH R_PLLB	

Table 13.736. 0x053D

Reg Address	Bit Field	Туре	Setting Name	Description
0x053D	4:0	R/W	HSW_COARSE_P M_LEN_PLLB	Set by CBPro.

Table 13.737. 0x053E

Reg Address	Bit Field	Туре	Setting Name	Description
0x053E	4:0	R/W	HSW_COARSE_P M_DLY_PLLB	Set by CBPro.

Table 13.738. 0x053F DSPLL B Hold Valid History

Reg Address	Bit Field	Туре	Setting Name	Description
0x053F	1	R/W	HOLD_HIST_VAL-	Holdover Valid historical frequency data indicator.
				0: Invalid Holdover History - Freerun on input fail or switch
				1: Valid Holdover History - Holdover on input fail or switch
0x053F	2	R	FASTLOCK_STA-	Fastlock engaged indicator.
			TUS_PLLB	0: DSPLL Loop BW is active
				1: Fastlock DSPLL BW currently being used

When the input fails or is switched and the DSPLL switches to Holdover or Freerun mode, HOLD_HIST_VALID_PLLB accumulation will stop.

When a valid input clock is presented to the DSPLL, the holdover frequency history measurements will be cleared and will begin to accumulate once again.

Reg Address	Bit Field	Туре	Setting Name	Description
0x0542	7:0	R/W	FINE_ADJ_OVR_P LLB	Set by CBPro.
0x0543	15:8	R/W	FINE_ADJ_OVR_P LLB	
0x0544	17:16	R/W	FINE_ADJ_OVR_P LLB	

Table 13.739. 0x0542-0x0544 FINE_ADJ_OVR_PLLB

Table 13.740. 0x0545 FORCE_FINE_ADJ_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x0545	1	R/W	FORCE_FINE_ADJ _PLLB	Set by CBPro.

Table 13.741. 0x0588

Reg Address	Bit Field	Туре	Setting Name	Description
0x0588	3:0	R/W	HSW_FINE_PM_LE N_PLLB	

Table 13.742. 0x0589

Reg Address	Bit Field	Туре	Setting Name	Description
0x0589	7:0	R/W	PFD_EN_DE- LAY_PLLB	
0x0589	12:8	R/W	PFD_EN_DE- LAY_PLLB	

Table 13.743. 0x059B HOLDEXIT_BW_SEL0_PLLB

Reg Address	Bit Field	Туре	Setting Name	Description
0x059B	1	R/W	IN- IT_LP_CLOSE_HO _PLLB	Set by CBPro.
0x059B	2	R/W	HO_SKIP_PHASE_ PLLB	
0x059B	4	R/W	HOLD_PRE- SERVE_HIST_PLL B	
0x059B	5	R/W	HOLD_FRZ_WITH_ INTONLY_PLLB	
0x059B	6	R/W	HOLDEX- IT_BW_SEL0_PLLB	
0x059B	7	R/W	HOLDEX- IT_STD_BO_PLLB	

Table 13.744. 0x059D

Reg Address	Bit Field	Туре	Setting Name	Description
0x059D	5:0	R/W	HOLDEX- IT_BW0_PLLB	

Table 13.745. 0x059E

Reg Address	Bit Field	Туре	Setting Name	Description
0x059E	5:0	R/W	HOLDEX- IT_BW1_PLLB	

Table 13.746. 0x059F

Reg Address	Bit Field	Туре	Setting Name	Description
0x059F	5:0	R/W	HOLDEX- IT_BW2_PLLB	

Table 13.747. 0x05A0

Reg Address	Bit Field	Туре	Setting Name	Description
0x05A0	5:0	R/W	HOLDEX- IT_BW3_PLLB	

Table 13.748. 0x05A1

Reg Address	Bit Field	Туре	Setting Name	Description
0x05A1	5:0	R/W	HOLDEX- IT_BW4_PLLB	

Table 13.749. 0x059A2

Reg Address	Bit Field	Туре	Setting Name	Description
0x05A2	5:0	R/W	HOLDEX- IT_BW5_PLLB	

Table 13.750. 0x05A6

Reg Address	Bit Field	Туре	Setting Name	Description
0x05A6	2:0	R/W	RAMP_STEP_SIZE _PLLB	
0x05A6	3	R/W	RAMP_SWITCH_E N_PLLB	

13.4.7 Page 9 Registers Si5346

Table 13.751. 0x090E XAXB Configuration

Reg Address	Bit Field	Туре	Setting Name	Description
0x090E	0	R/W		Selects between the XTAL or external reference clock on the XA/XB pins. Default is 0, XTAL. Set to 1 to use an external reference oscillator.

Table 13.752. 0x0943 Control I/O Voltage Select

Reg Address	Bit Field	Туре	Setting Name	Description
0x0943	0	R/W	IO_VDD_SEL	0: For 1.8 V external connections
				1: For 3.3 V external connections

The IO_VDD_SEL configuration bit selects between 1.8 V and 3.3 V digital I/O. All digital I/O pins, including the serial interface pins, are 3.3 V-tolerant. Setting this to the default 1.8 V is the safe default choice that allows writes to the device regardless of the serial interface used or the host supply voltage. When the I2C or SPI host is operating at 3.3 V and the Si5347/46 at VDD=1.8 V, the host must write IO_VDD_SEL=1. This will ensure that both the host and the serial interface are operating with the optimum signal thresholds.

Table 13.753. 0x0949 Clock Input Control and Configuration

Reg Address	Bit Field	Туре	Setting Name	Description
0x0949	3:0	R/W	IN_EN	0: Disable and Powerdown Input Buffer
				1: Enable Input Buffer
				for IN3–IN0
0x0949	7:4	R/W	IN_PULSED_CMO	0: Standard Input Format
			S_EN	1: Pulsed CMOS Input Format for IN3–IN0. See 4. Clock Inputs for more information.

When a clock is disabled, it is powered down.

Input 0 corresponds to IN_EN 0x0949 [0], IN_PULSED_CMOS_EN 0x0949 [4]

Input 1 corresponds to IN_EN 0x0949 [1], IN_PULSED_CMOS_EN 0x0949 [5]

Input 2 corresponds to IN_EN 0x0949 [2], IN_PULSED_CMOS_EN 0x0949 [6]

Input 3 corresponds to IN_EN 0x0949 [3], IN_PULSED_CMOS_EN 0x0949 [7]

Table 13.754. 0x094A Input Clock Enable to DSPLL

Reg Address	Bit Field	Туре	Setting Name	Description
0x094A	3:0	R/W	INX_TO_PFD_EN	Value calculated in CBPro

Table 13.755. 0x094E-0x094F Input Clock Buffer Hysteresis

Reg Address	Bit Field	Туре	Setting Name	Description
0x094E	7:0	R/W	REFCLK_HYS_SEL	Value calculated in CBPro
0x094F	11:8	R/W	REFCLK_HYS_SEL	

Table 13.756. 0x095E MXAXB Fractional Mode

Reg Address	Bit Field	Туре	Setting Name	Description
0x095E	0	R/W	MXAXB_INTEGER	Set by CBPro

13.4.8 Page A Registers Si5346

Table 13.757. 0x0A03 Enable DSPLL Internal Divider Clocks

Reg Address	Bit Field	Туре	Name	Description
0x0A03	1:0	R/W	N_CLK_TO_OUTX_ EN	Enable the internal dividers for PLLs (B A). Must be set to 1 to enable the dividers. See related registers 0x0A05 and 0x0B4A[4:0].

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.758. 0x0A04 DSPLL Internal Divider Integer Force

Reg Address	Bit Field	Туре	Name	Description
0x0A04	1:0	R/W	N_PIBYP	Bypass fractional divider for N[1:0].
				0: Fractional (or Integer) division - Recommended if changing settings during operation
				1: Integer-only division - best phase noise - Recommen- ded for Integer N values
				Note that a device Soft Reset (0x001C[0]=1) must be is- sued after changing the settings in this register.

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.759. 0x0A05 DSPLL Internal Divider Power Down

Reg Address	Bit Field	Туре	Name	Description
0x0A05	1:0	R/W	N_PDNB	Powers down the internal dividers for PLLs (B A). Set to 0 to power down unused PLLs. Must be set to 1 for all active PLLs. See related registers 0x0A03 and 0x0B4A[4:0]

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

13.4.9 Page B Registers Si5346

Table 13.760. 0x0B24 Reserved Control

Reg Address	Bit Field	Туре	Name	Description
0x0B24	7:0	R/W	RESERVED	Internal use for initilization. See CBPro.

Table 13.761. 0x0B25 Reserved Control

Reg Address	Bit Field	Туре	Name	Description
0x0B25	7:0	R/W	RESERVED	Internal use for initilization. See CBPro.

Table 13.762. 0x0B44 Clock Control for Fractional Dividers

Reg Address	Bit Field	Туре	Name	Description
0x0B44	3:0	R/W	PDIV_FRACN_CLK _DIS	Clock Disable for the fractional divide of the input P dividers. [P3, P2, P1, P0]. Must be set to a 0 if the P divider has a fractional value.
				0: Enable the clock to the fractional divide part of the P divider.
				1: Disable the clock to the fractional divide part of the P divider.
0x0B44	4	R/W	FRACN_CLK_DIS_ PLLA	Clock disable for the fractional divide of the M divider in PLLA. Must be set to a 0 if this M divider has a fractional value.
				0: Enable the clock to the fractional divide part of the M divider.
				1: Disable the clock to the fractional divide part of the M divider.
0x0B44	5	R/W	FRACN_CLK_DIS_ PLLB	Clock disable for the fractional divide of the M divider in PLLB. Must be set to a 0 if this M divider has a fractional value.
				0: Enable the clock to the fractional divide part of the M divider.
				1: Disable the clock to the fractional divide part of the M divider.

Table 13.763. 0x0B45

Reg Address	Bit Field	Туре	Name	Description
0x0B45	0	R/W	CLK_DIS_PLLA	Set by CBPro.
0x0B45	1	R/W	CLK_DIS_PLLB	Set by CBPro.

Table 13.764. 0x0B46 Loss of Signal Clock Disable

Reg Address	Bit Field	Туре	Name	Description
0x0B46	3:0	R/W	LOS_CLK_DIS	Controls the clock to the digital LOS circuitry. Must be set to 0 to enable the LOS function of the respective Inputs (IN3 IN2 IN1 IN0).

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.765. 0x0B47

Reg Address	Bit Field	Туре	Name	Description
0x0B47	4:0	R/W	OOF_CLK_DIS	Set by CBPro.

Table 13.766. 0x0B48

Reg Address	Bit Field	Туре	Name	Description
0x0B48	4:0	R/W	OOF_DIV_CLK_DI S	Set by CBPro.

Table 13.767. 0x0B4A Divider Clock Disables

Reg Address	Bit Field	Туре	Name	Description
0x0B4A	4:0	R/W	N_CLK_DIS	Disable internal dividers for PLLs (B A). Must be set to 0 to use the DSPLL. See related registers 0x0A03 and 0x0A05.

ClockBuilder Pro handles these bits when changing settings for all portions of the device. This control bit is only needed when changing the settings for only a portion of the device while the remaining portion of the device operates undisturbed.

Table 13.768. 0x0B4E Reserved Control

Reg Address	Bit Field	Туре	Name	Description
0x0B4E	7:0	R/W	RESERVED	Internal use for initilization. See CBPro.

Table 13.769. 0x0B57 VCO_RESET_CALCODE

Reg Addres	s Bit Field	Туре	Name	Description
0x0B57	7:0	R/W	VCO_RESET_CAL- CODE	
0x0B58	11:8	R/W	VCO_RESET_CAL- CODE	

14. Revision History

Revision 1.3

September 2018

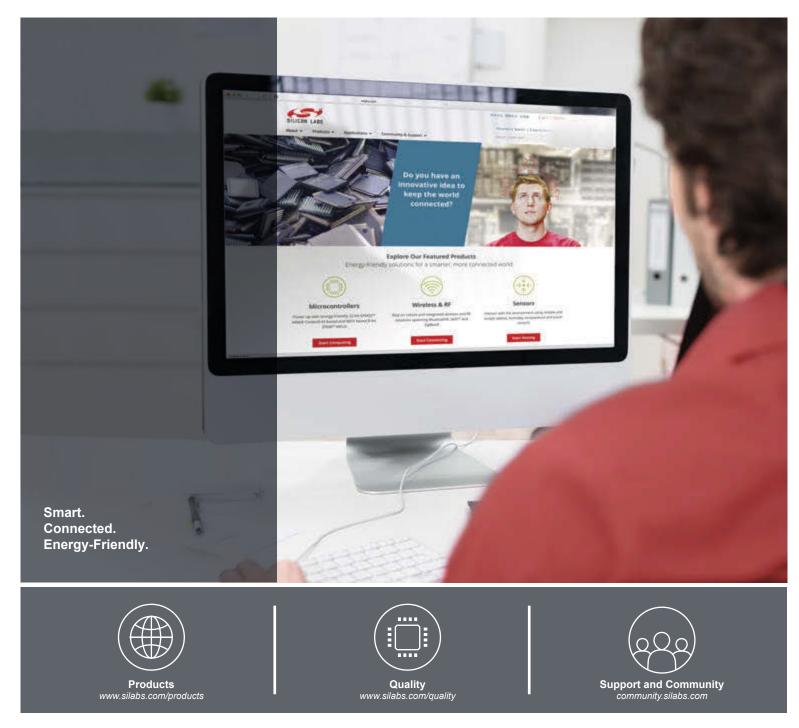
• Updated input and output termination diagrams.

Revision 1.2

January 2018

- · Updated register descriptions to include all reported registers from CBPro.
- · General content revisions throughout to address minor updates to descriptive sections.

Revision 1.1


July 2017

- Removed the recommended crystals and oscillators list. The list will now be maintained in the Si534x-8x Recommended Crystals Reference Manual.
- Updated 3.1.1.1 Dynamic PLL Changes .

Revision 1.0

July 2016

· Initial release.

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, EZRadio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com