

TPS56921EVM-188, 9-A, SWIFT™ Regulator Evaluation Module

This user's guide contains information for the TPS56921EVM-188 evaluation module (PWR188) as well as for the TPS56921 dc/dc converter. Also included are the performance specifications, the schematic, and the bill of materials for the TPS56921EVM-188.

Contents

1	Introduction	2
2	Test Setup and Results	4
3	Board Layout	12
4	Schematic and Bill of Materials	14

List of Figures

1	TPS56921EVM-188 Efficiency	5
2	TPS56921EVM-188 Low Current Efficiency	6
3	TPS56921EVM-188 Load Regulation	6
4	TPS56921EVM-188 Line Regulation	7
5	TPS56921EVM-188 Transient Response	7
6	TPS56921EVM-188 Loop Response, V _{OUT} Set by Resistor Divider	8
7	TPS56921EVM-188 Loop Response, V _{OUT} Set by I ² C Interface	8
8	TPS56921EVM-188 Output Ripple	9
9	TPS56921EVM-188 Input Ripple	9
10	TPS56921EVM-188 Start-Up Relative to V_{IN}	10
11	TPS56921EVM-188 Start-Up Relative to Enable	10
12	TPS56921EVM-188 Start-Up Relative to V_{IN} Detail	11
13	TPS56921EVM-188 Top-Side Assembly	12
14	TPS56921EVM-188 Top-Side Layout	12
15	TPS56921EVM-188 Internal Layer-1 Layout	12
16	TPS56921EVM-188 Internal Layer-2 Layout	12
17	TPS56921EVM-188 Bottom-Side Layout	13
18	TPS56921EVM-188 Schematic	14

List of Tables

1	Input Voltage and Output Current Summary	2
2	TPS56921EVM-188 Performance Specification Summary	2
3	Ideal VOUT versus Code	3
4	EVM Connectors and Test Points	5
5	TPS56921EVM-188 Bill of Materials	15

SWIFT is a trademark of Texas Instruments. I^2C is a trademark of NXP.

1 Introduction

1.1 Background

The TPS56921 dc/dc converter is designed to provide up to a 9-A output. The TPS56921 implements split-input power rails with separate input voltage inputs for the power stage and control circuitry. The power stage input (PVIN) is rated for 1.6 V to 17 V whereas the control input (VIN) is rated for 4.5 V to 17 V. The TPS56921EVM-188 provides both inputs but is designed and tested using the PVIN connected to VIN. Rated input voltage and output current range for the evaluation module are given in Table 1. This evaluation module is designed to demonstrate the small printed-circuit-board areas that may be achieved when designing with the TPS56921 regulator. The switching frequency is externally set at a nominal 500 kHz. The high-side and low-side MOSFETs are incorporated inside the TPS56921 package along with the gate drive circuitry. The low drain-to-source on-resistance of the MOSFET allows the TPS56921 to achieve high efficiencies and helps keep the junction temperature low at high output currents. The compensation components are external to the integrated circuit (IC), and an external divider allows for an adjustable output voltage. Additionally, the TPS56921 provides adjustable slow start, tracking, and undervoltage lockout inputs. The absolute maximum input voltage is 20 V for the TPS56921EVM-188.

EVM	INPUT VOLTAGE RANGE	OUTPUT CURRENT RANGE
TPS56921EVM-188	VIN = 4.5 V to 17 V	0 A to 9 A

Table 1. Input Voltage and Output Current Summary

1.2 Performance Specification Summary

A summary of the TPS56921EVM-188 performance specifications is provided in Table 2. Specifications are given for an input voltage of $V_{IN} = 12$ V and an output voltage of 1.1 V, unless otherwise specified. The TPS56921EVM-188 is designed and tested for $V_{IN} = 4.5$ V to 17 V with the VIN and PVIN pins connect together with the JP1 jumper. The ambient temperature is 25°C for all measurements, unless otherwise noted.

SPECIFICATION	TEST CON	MIN	TYP	MAX	UNIT	
V _{IN} voltage range (PVIN = VIN)			4.5	12	17	V
V _{IN} start voltage (internal UVLO)				4.0		V
V _{IN} stop voltage (internal UVLO)				3.85		V
Output voltage setpoint				1.1		V
Output current range	$V_{IN} = 8 V \text{ to } 17 V$		0		9	А
Line regulation	$I_0 = 4.5 \text{ A}, V_{IN} = 4.5 \text{ V}$	to 17 V		±0.01		%
Load regulation	$V_{IN} = 12 \text{ V}, I_O = 0 \text{ A to}$	9 A		±0.18		%
	I ₀ = 2.25 A to 6.75 A	Voltage change		-90		mV
Lood transient reasons		Recovery time		100		μs
Load transient response	$I_0 = 6.75 \text{ A to } 2.25 \text{ A}$	Voltage change		90		mV
		Recovery time		100		μs
Loop bandwidth	$V_{IN} = 12 \text{ V}, I_{O} = 4 \text{ A}$			50.1		kHz
Phase margin	$V_{IN} = 12 \text{ V}$, $I_O = 4 \text{ A}$			63		0
Input ripple voltage	$I_0 = 9$ A, measured with 330 μ F added capacitance at J2			300		mVPP
Output ripple voltage	I ₀ = 8 A			10		mVPP
Output rise time				4		ms
Operating frequency				500		kHz
Maximum efficiency	TPS56921EVM-188, V		88.1		%	

Table 2.	TPS56921EVM-188	Performance	Specification	Summarv

1.3 Modifications

These evaluation modules are designed to provide access to the features of the TPS56921. Some modifications can be made to this module.

1.3.1 Output Voltage Setpoint

The output voltage of the EVM is set either externally using a voltage divider or internally using the integrated l^2C^{TM} interface. The external adjustment of the output voltage is set by the resistor divider network of R10 and R11. R10 is fixed at 10 k Ω . To change the output voltage of the EVM, it is necessary to change the value of resistor R11. Changing the value of R11 can change the output voltage in the range of 0.72 V to 1.48 V. The value of R11 for a specific output voltage can be calculated using Equation 1.

$$R11 = \frac{10 \text{ k}\Omega \times 0.8 \text{ V}}{\text{V}_{\text{OUT}} - 0.8 \text{ V}}$$

(1)

The output voltage can also be set using the optional VID control using the I²C interface. The EVM is designed so that the J3 connector is compatible with the HPA665-001 USB2ANY interface. Using that control and USB2ANY_GUI software allows the output voltage to be programmed to any of 77 preset voltages from 0.72 V to 1.48 V. See the TPS56921 datasheet for a complete description of the available codes. With the software running and the cable attached, confirm the connection by clicking the "Read" button under "Firmware Revision". The firmware revision number will be returned if the connection is good. Set up the interface by selecting "Speed = _400kHz", "Address = _7Bits" and "Pull Ups = OFF" in the "I2C" section. Click on "Set I2C". In the "3.3V/5.0V" section set "3.3V = ON" and "5.0V = OFF". Click on "Set", then click on "Get Status". "GOOD" should be returned for both 3.3 V and 5.0 V. To communicate with the TPS56921EVM-188, in the "Single-Register" section set "I2C Address = 34". In the "Register Address" field, enter the data byte for the voltage you wish to set. Ignore the "Byte to Write" field. Click on "Write" to send the data.

Code	Binary	VOUT	Code	Binary	VOUT	Code	Binary	VOUT
0	0000000	0.720	26	0011010	0.980	52	0110100	1.240
1	0000001	0.730	27	0011011	0.990	53	0110101	1.250
2	0000010	0.740	28	0011100	1.000	54	0110110	1.260
3	0000011	0.750	29	0011101	1.010	55	0110111	1.270
4	0000100	0.760	30	0011110	1.020	56	0111000	1.280
5	0000101	0.770	31	0011111	1.030	57	0111001	1.290
6	0000110	0.780	32	0100000	1.040	58	0111010	1.300
7	0000111	0.790	33	0100001	1.050	59	0111011	1.310
8	0001000	0.800	34	0100010	1.060	60	0111100	1.320
9	0001001	0.810	35	0100011	1.070	61	0111101	1.330
10	0001010	0.820	36	0100100	1.080	62	0111110	1.340
11	0001011	0.830	37	0100101	1.090	63	0111111	1.350
12	0001100	0.840	38	0100110	1.100	64	1000000	1.360
13	0001101	0.850	39	0100111	1.110	65	1000001	1.370
14	0001110	0.860	40	0101000	1.120	66	1000010	1.380
15	0001111	0.870	41	0101001	1.130	67	1000011	1.390
16	0010000	0.880	42	0101010	1.140	68	1000100	1.400
17	0010001	0.890	43	0101011	1.150	69	1000101	1.410
18	0010010	0.900	44	0101100	1.160	70	1000110	1.420
19	0010011	0.910	45	0101101	1.170	71	1000111	1.430
20	0010100	0.920	46	0101110	1.180	72	1001000	1.440
21	0010101	0.930	47	0101111	1.190	73	1001001	1.450
22	0010110	0.940	48	0110000	1.200	74	1001010	1.460
23	0010111	0.950	49	0110001	1.210	75	1001011	1.470
24	0011000	0.960	50	0110010	1.220	76	1001100	1.480
25	0011001	0.970	51	0110011	1.230	>76	>1001100	Illegal / Special

Table 3. Ideal VOUT versus Code

(2)

1.3.2 Slow-Start Time

The slow-start time can be adjusted by changing the value of C5. Use Equation 2 to calculate the required value of C5 for a desired slow-start time

$$C5(nF) = \frac{Tss(ms) \times Iss(\mu A)}{Vref(V)}$$

1. .

The EVM is set for a slow-start time of 5.7 ms using C5 = 0.01 μ F.

1.3.3 Adjustable UVLO

The undervoltage lockout (UVLO) can be adjusted externally using R1 and R2. The EVM is set to use the internal UVLO and R1 and R2 are not populated. Use Equation 3 and Equation 4 to calculate required resistor values for different start and stop voltages.

$$R1 = \frac{V_{\text{START}} \left(\frac{V_{\text{ENFALLING}}}{V_{\text{ENRISING}}} \right) - V_{\text{STOP}}}{I_{p} \left(1 - \frac{V_{\text{ENFALLING}}}{V_{\text{ENRISING}}} \right) + I_{h}}$$
(3)
$$R2 = \frac{R1 \times V_{\text{ENFALLING}}}{V_{\text{STOP}} - V_{\text{ENFALLING}} + R1(I_{p} + I_{h})}$$
(4)

1.3.4 Input Voltage Rails

The EVM is designed to accommodate different input voltage levels for the power stage and control logic. During normal operation, the PVIN and VIN inputs are connected using a jumper across JP1. The single input voltage is supplied at J2. If desired, these two input voltage rails may be separated by removing the jumper across JP1. Two input voltages must then be provided at both J1 and J2.

2 Test Setup and Results

This section describes how to properly connect, set up, and use the TPS56921EVM-188 evaluation module. The section also includes test results typical for the evaluation module and covers efficiency, output voltage regulation, load transients, loop response, output ripple, input ripple, and start-up.

2.1 Input/Output Connections

The TPS56921EVM-188 is provided with input/output connectors and test points as shown in Table 4. A power supply capable of supplying 4 A must be connected to J2 through a pair of 20-AWG wires. The jumper across JP1 must be in place. See Section 1.3.4 for split-input voltage rail operation. The load must be connected to J4 through a pair of 20-AWG wires. The maximum load current capability must be 9 A. Wire lengths must be minimized to reduce losses in the wires. Test-point TP3 provides a place to monitor the V_{IN} input voltages with TP4 providing a convenient ground reference. TP9 is used to monitor the output voltage with TP10 as the ground reference.

Reference Designator	Function
J1	VIN input voltage connector. Not normally used.
J2	PVIN input voltage connector. (See Table 1 for V _{IN} range.)
J3	I ² C interface connector.
J4	V _{OUT} , 1.1 V at 9 A maximum
JP1	PVIN to VIN jumper. Normally closed to tie VIN to PVIN for common rail voltage operation.
JP2	2-pin header for enable. Connect EN to ground to disable, open to enable.
JP3	I ² C interface pull up jumper for SDA.
JP4	I ² C interface pull up jumper for SCL.
JP5	I ² C interface grounding jumper for A0.
JP6	I ² C interface grounding jumper for A1.
JP7	PWRGD pull up to Vin. (1)
TP1	VIN test point at VIN connector.
TP2	GND test point at VIN connector.
TP3	PVIN test point at PVIN connector.
TP4	GND test point at PVIN connector.
TP5	PWRGD test point.
TP6	PH test point.
TP7	COMP pin test point.
TP8	Analog GND test point.
TP9	Test point in voltage divider network at VO. Used for loop response measurements when output voltage is set using I ² C control.
TP10	Test point in voltage divider network. Used for loop response measurements when output voltage is set using external resistor divider network.
TP11	Output voltage test point at VOUT connector.
TP12	GND test point at VOUT connector.

 Table 4. EVM Connectors and Test Points

(1) Absolute maximum voltage for PWRGD is 6 V. Do not use JP7 to connect to VIN for input voltages above 6 V.

2.2 Efficiency

Figure 1 shows the efficiency for the TPS56921EVM-188 at an ambient temperature of 25°C.

Test Setup and Results

www.ti.com

Figure 2 shows the efficiency for the TPS56921EVM-188 using a semi-log scale to more easily show efficiency at lower output currents. The ambient temperature is 25°C.

Figure 2. TPS56921EVM-188 Low Current Efficiency

The efficiency may be lower at higher ambient temperatures, due to temperature variation in the drain-tosource resistance of the internal MOSFET.

2.3 Output Voltage Load Regulation

Figure 3 shows the load regulation for the TPS56921EVM-188.

Measurements are given for an ambient temperature of 25°C.

2.4 Output Voltage Line Regulation

Figure 4 shows the line regulation for the TPS56921EVM-188.

2.5 Load Transients

Figure 5 shows the TPS56921EVM-188 response to load transients. The current step is from 25% to 75% of maximum rated load at 12-V input. The current step slew rate is 100 mA/µs. Total peak-to-peak voltage variation is as shown, including ripple and noise on the output.

Time = 200 µsec / div

Figure 5. TPS56921EVM-188 Transient Response

Test Setup and Results

2.6 Loop Characteristics

Figure 6 shows the TPS56921EVM-188 loop-response characteristics when the output voltage is set by the external resistor divider network. Gain and phase plots are shown for V_{IN} voltage of 12 V. Load current for the measurement is 4 A.

Figure 6. TPS56921EVM-188 Loop Response, V_{out} Set by Resistor Divider

Figure 7 shows the TPS56921EVM-188 loop-response characteristics when the output voltage is set by the external resistor divider network. Gain and phase plots are shown for V_{IN} voltage of 12 V. Load current for the measurement is 4 A.

Figure 7. TPS56921EVM-188 Loop Response, V_{out} Set by I²C Interface

Test Setup and Results

www.ti.com

2.7 Output Voltage Ripple

Figure 8 shows the TPS56921EVM-188 output voltage ripple. The output current is the rated full load of 9 A and $V_{IN} = 12$ V. The ripple voltage is measured directly across the output capacitors.

Figure 8. TPS56921EVM-188 Output Ripple

2.8 Input Voltage Ripple

Figure 9 shows the TPS56921EVM-188 input voltage. The output current is the rated full load of 9 A and $V_{IN} = 12$ V. The ripple voltage is measured directly across the input capacitors.

Time = 1 µsec / div

Figure 9. TPS56921EVM-188 Input Ripple

2.9 Powering Up

Figure 10 and Figure 11 show the start-up waveforms for the TPS56921EVM-188. In Figure 10, the output voltage ramps up as soon as the input voltage reaches the UVLO threshold as set by the R1 and R2 resistor divider network. In Figure 11, the input voltage is initially applied and the output is inhibited by using a jumper at JP2 to tie EN to GND. When the jumper is removed, EN is released. When the EN voltage reaches the enable-threshold voltage, the start-up sequence begins and the output voltage ramps up to the externally set value of 1.1 V. The input voltage for these plots is 12 V and the load is 1 Ω . Figure 12 shows a detailed view of the output voltage ramp up.

Time = 2 msec / div

Figure 10. TPS56921EVM-188 Start-Up Relative to VIN

Time = 2 msec / div

Test Setup and Results

Time = 2 msec / div

Figure 12. TPS56921EVM-188 Start-Up Relative to V_{IN} Detail

3 Board Layout

This section provides a description of the TPS56921EVM-188 board layout and layer illustrations.

3.1 Layout

The board layout for the TPS56921EVM-188 is shown in Figure 13 through Figure 17. The top-side layer of the EVM is laid out in a manner typical of a user application. The top, bottom, and internal layers are 2-oz. copper.

The top layer contains the main power traces for PVIN, VIN, V_{OUT} , and VPHASE. Also on the top layer are connections for the remaining pins of the TPS56921 and a large area filled with ground. The internal layer-1 is dedicated to a power ground plane. the internal layer-2 contains an analog ground fill area. This analog ground is used as a return for the I²C interface as well as for sensitive analog circuits for RT, SS, EN, COMP and VSENSE. The analog ground is connected to the main power ground at one place to inhibit circulating currents. This connection is made at the via near TP7. Internal layer-2 also contains additional fill areas for PVIN and V_{OUT} , as well as connections to the I²C interface connector at J3. The bottom layer contains a power ground plane only. The top-side ground traces are connected to the bottom and internal ground planes with multiple vias placed around the board including nine vias directly under the TPS56921 and 12 vias directly adjacent to the TPS56921device to provide a thermal path from the top-side ground area to the internal layer-1 and bottom-side ground planes.

The input decoupling capacitors (C1,C2, C3 and C4) and bootstrap capacitor (C8) are all located as close to the IC as possible. Additionally, the voltage setpoint resistor divider components are kept close to the IC. The voltage divider network ties to the output voltage at the point of regulation, the copper V_{OUT} trace at the J4 output connector. For the TPS56921, an additional input bulk capacitor may be required, depending on the EVM connection to the input supply.

Figure 13. TPS56921EVM-188 Top-Side Assembly

Figure 14. TPS56921EVM-188 Top-Side Layout

Board Layout

Figure 15. TPS56921EVM-188 Internal Layer-1 Layout Figure 16. TPS56921EVM-188 Internal Layer-2 Layout

Figure 17. TPS56921EVM-188 Bottom-Side Layout

Schematic and Bill of Materials

4 Schematic and Bill of Materials

This section presents the TPS56921EVM-188 schematic and bill of materials.

4.1 Schematic

Figure 18 is the schematic for the TPS56921EVM-188.

Figure 18. TPS56921EVM-188 Schematic

4.2 Bill of Materials

Table 5 presents the bill of materials for the TPS56921EVM-188.

Cou nt	RefDes	Value	Description	Size	Part Number	MFR
1	C1	4.7uF	Capacitor, Ceramic, 25V, X5R, 10%	805	Std	Std
2	C2, C3	10uF	Capacitor, Ceramic, 25V, X5R, 10%	1206	Std	Std
2	C4, C8	0.1uF	Capacitor, Ceramic, 25V, X5R, 10%	603	Std	Std
1	C5	0.01uF	Capacitor, Ceramic, 25V, X7R, 10%	603	Std	Std
1	C6	220pF	Capacitor, Ceramic, 50V, NPO, 5%	603	Std	Std
1	C7	0.022uF	Capacitor, Ceramic, 50V, X7R, 10%	603	Std	Std
2	C9, C10	100uF	Capacitor, Ceramic, 6.3V, X5R, 20%	1210	Std	Std
0	C11	open	Capacitor, Ceramic	1210	Std	Std
0	C12	open	Capacitor, Ceramic	603	Std	Std
7	JP1, JP2, JP3, JP4, JP5, JP6, JP7	PEC02S AAN	Header, Male 2-pin, 100mil spacing,	0.100 inch x 2	PEC02SAAN	Sullins
2	J1, J2	ED555/2 DS	Terminal Block, 2-pin, 6-A, 3.5mm	0.27 x 0.25 inch	ED555/2DS	OST
1	J3	PEC05D AAN	Header, Male 2x5-pin, 100mil spacing	0.100 inch x 5 X 2	PEC05DAAN	Sullins
1	J4	ED120/2 DS	Terminal Block, 2-pin, 15-A, 5.1mm	0.40 x 0.35 inch	ED120/2DS	OST
1	L1	1.0uH	Inductor, Power Choke	7.0 x 6.9 mm	744311100	Wurth Elektronik
0	R1	open	Resistor, Chip, 1/16W, 1%	603	Std	Std
0	R2	open	Resistor, Chip, 1/16W, 1%	603	Std	Std
2	R3, R6	100k	Resistor, Chip, 1/16W, 1%	603	Std	Std
3	R4, R5, R10	10.0k	Resistor, Chip, 1/16W, 1%	603	Std	Std
1	R7	1.58k	Resistor, Chip, 1/16W, 1%	603	Std	Std
1	R8	0	Resistor, Chip, 1/16W, 1%	603	Std	Std
1	R9	51.1	Resistor, Chip, 1/16W, 1%	603	Std	Std
1	R11	26.7k	Resistor, Chip, 1/16W, 1%	603	Std	Std
3	TP1, TP3,TP11	5000	Test Point, Red, Thru Hole Color Keyed	0.100 x 0.100 inch	5000	Keystone
4	TP2, TP4 ,TP8, TP12	5001	Test Point, Black, Thru Hole Color Keyed	0.100 x 0.100 inch	5001	Keystone
5	TP5, TP6, TP7, TP9, TP10	5002	Test Point, White, Thru Hole Color Keyed	0.100 x 0.100 inch	5002	Keystone
1	U1	TPS569 21PWP	IC, 4.5V to 17V Input, 9A Synchronous Step Down SWIFTConverter With VID Control	HTSSOP	TPS56921PWP	TI
7			Shunt, 100-mil, Black	0.100	929950-00	3M
1			Label (See Note 5)	1.25 x 0.25 inch	THT-13-457-10	Brady
1			PCB, 3" x 3" x 0.062"		PWR188	Any

Table 5. TPS56921EVM-188 Bill of Materials

Schematic and Bill of Materials

Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 4.5 V to 17 V and the output voltage range of 0.6 V to 5 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 55°C. The EVM is designed to operate properly with certain components above 60°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconn	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated