
Keywords: FPGA counterfeit protection, DeepCover Secure Authenticator, challenge-and-response, IP
Protection

APPLICATION NOTE 5803

SECURE YOUR FPGA SYSTEM USING A
DEEPCOVER SECURE AUTHENTICATOR
By: Michael D'Onofrio

Abstract: This application note describes how designers can secure their Xilinx FPGA implementation, protect
IP, and prevent attached peripheral counterfeiting. Designers can achieve this security by using one of the
reference designs described in this application note. These designs implement either SHA-256 or ECDSA
challenge-and-response secure authentication between the FPGA and a DeepCover Secure Authenticator.

Introduction
This application note focuses on SHA-256 authentication reference designs (RDs) using MAXREFDES34# for
1-Wire and MAXREFDES43# for I C. Each of the reference designs (RD) describes either a Verilog
implementation of a state machine or a "C" bare-metal implementation in a microcontroller. Each
implementation is tested on the corresponding FPGA demo board.

To interface the Maxim secure authenticator IC with the FPGA demo board, each RD ships with a compatible
plugin module—a Pmod port standard developed by Digilent, Inc. The corresponding IC is soldered onto the
Pmod board. Regarding the 1-Wire designs, with minor tweaking a SHA-256 authenticator with larger memory
density could be used, such as the DS28E22 or DS28E25.

The section Why Apply Security to an FPGA System? details important security concerns that designers
face. The following section entitled Securing Your FPGA demonstrates how authentication actually secures
FPGA systems.

Why Apply Security to an FPGA System?
1. Counterfeit Protection of a Peripheral

Systems that use an FPGA to communicate and operate replacement peripherals, consumables,
modules, or sensors are commonly targeted by counterfeiters or unauthorized aftermarket companies.
These counterfeit versions of a peripheral can introduce safety concerns, reduce quality to the
application and, generally, negatively impact the OEM solution. Furthermore, the OEM loses the
revenue of peripherals to these counterfeiters. Introducing secure authentication into the solution
enables the FPGA to assure peripheral authenticity and to take application-specific action if a
counterfeit is detected. As shown in Figure 1, a challenge-and-response sequence between the system
and attached peripheral is exercised to confirm authenticity.

®

®

2 ®

®For 1-Wire designs, the reference code defines a combined SHA-256 processor and 1-Wire master on the
host FPGA. For I C designs, the reference code defines a SHA-256 processor and utilizes existing FPGA I C
protocol. The RDs use one of the following secure authenticators:

DS28E15 DeepCover Secure Authenticator with 1-Wire SHA-256 and 512-Bit User EEPROM
2

DS28C22 DeepCover Secure Memory with I C SHA-256 Authentication, Encryption, and 3Kb User
EEPROM
DS28E35 DeepCover Secure Authenticator with 1-Wire ECDSA and 1Kb User EEPROM

™

Page 1 of 10

2 2

http://www.maximintegrated.com/en/
http://www.maximintegrated.com/en/products/DS28E15
http://www.maximintegrated.com/en/products/DS28C22
http://www.maximintegrated.com/en/products/DS28E35

Figure 1. Testing for authenticity with a challenge-and-response sequence.

2. FPGA IP Protection and Implementation Protection
Spartan 6. Static-RAM-based (SRAM) FPGAs have few safeguards to protect that IP (i.e., the
configuration data or the FPGA implementation) against illegal copying and theft. The reason is that once
the data is loaded, it is held in SRAM memory cells, which can easily be probed to determine their
contents. In addition, without some type of security mechanism to protect the configuration data or bit file
before it is loaded into the chip, that data is open to snooping. Prowling through that data is possible
because the bit stream is usually stored in a separate memory chip read by the FPGA at power-up when
it loads its configuration pattern. A cloner could simply copy the configuration file and create clones of the
original. These types of FPGAs do not have built-in encryption that would otherwise protect the
configuration file from copying.
One way to make the SRAM-based FPGAs more secure is to leverage multichip packaging and mount
the nonvolatile (NV) memory inside a package along with the FPGA. Yet if someone opens the package,
the data interface between the memory and the FPGA is exposed and the configuration pattern can be
compromised. Multichip packaging can also be an expensive endeavor.

The structure of the configuration bit stream (i.e., the sequence of data elements and how they are coded
and identified) is largely undocumented. The obscurity, complexity, and size of the bit stream make the
reverse-engineering process difficult and time consuming, although theoretically possible. If successful,
even partial reverse engineering of the configuration stream makes it possible to hack a set-top box to
steal services or tamper with power-train settings in a vehicle, causing liability problems for the original
manufacturer.

Xilinx 7-Series. High-end FPGAs protect internal IP by using security keys and bit-stream encryption.
These protection mechanisms greatly mitigate the risk of the IP on the bit file being snooped.
Furthermore, these FPGAs do not store sensitive data in insecure SRAM. However, implementing these
built-in cryptographic security mechanisms can become cumbersome. Added manufacturing steps mean
greater cost. But more importantly, if these cryptographic keys are programmed during contract
manufacturing, then the subcontractor will know the keys and you can no longer be assured that your IP
is safe.

Page 2 of 10

Solution: In both the high- and low-end FPGAs, challenge-and-response authentication can be used to
provide IP protection. An authentication sequence is added to the FPGA implementation code. If there is
a Maxim secure authenticator with a valid security key on the bus, then the FPGA knows that the system
is authentic. Specifically in the case of an FPGA with built-in security, using this IP protection solution
could be an attractive alternative. A separate manufacturing step of programming the decryption key on
an FPGA's OTP EPROM is not required; nor is a battery required to support secure BBRAM. In the
Maxim alternative solution, the RD calls for the authentication key to be embedded securely into the
FPGA implementation code so that the subcontractor would never know this key.

3. Feature Management, License Management, and Overbuild Protection

Page 3 of 10

Feature Management. To decrease design time and effort, designers will create fully featured FPGA
systems and de-feature certain aspects using firmware to achieve different price points or feature levels.
This, however, creates a new problem: a smart customer who needs several fully featured systems
could just buy one fully featured unit and several units with reduced features. Then, copying the
software, the simpler units behave like the fully featured unit but for a lower price, shortchanging the
system vendor.

License Management. At other times, companies create and sell RDs. These are subsequently bought,
licensed to, and manufactured by third parties. The RD vendors require barriers to prevent unauthorized
use of the intellectual property. For revenue reasons, it is also necessary to track and confirm the
number of reference uses.

Overbuild Protection. In all cases, designers might wish to build their end product using third-party
contract manufacturing. Subcontractors can be a great extension of a supply chain, and they can
manufacture embedded systems efficiently and cost effectively. However, less scrupulous contract
manufacturers (CMs) have been known to build more widgets than contracted. Then they can produce
bootleg products of the same quality and authenticity as the originals. Indeed, by overbuilding, an
unscrupulous CM freeloads on all of the R&D and marketing costs that the designer incurred.

Solution. A practical solution for all three of these security issues is secure authentication. For Feature
Management, device settings would only be stored in the user EEPROM of the secure authenticator,
and a secure challenge and response would be required to read these settings. For License
Management, a RD vendor would require a secure authenticator with a valid secret to be supplied to the
licensee or third-party manufacturer. The RD would be made unable to operate without a secure
challenge and response. Licensees would be supplied to the secure authenticator through one of two
secure methods: 1) preprogrammed by the company licensing the reference, or 2) preprogrammed by
Maxim per the licensing company's input and then delivered to the third-party manufacturer. In either
case, the number of devices sent to the licensee or manufacturer is known and can be used to validate
license fees. Overbuild Protection works just like License Management in that a contract manufacturer
would only be able to build as many units as it can procure secure authenticators. A designer would be
able to control how many authenticators that the CM can procure by working with Maxim.

For more information on all the potential applications of secure authentication, refer to application note
3675, "Protect Your R&D Investment with Secure Authentication."

How Does the Authentication Work?
To implement the authentication in the most secure manner, the following are used as general guidelines:

Ensure that the random challenge is a cryptographically secure random number.
Know a secret key (called "FPGA Secret") that can be used for internal operations, but cannot be
discovered from outside.
Compute a hash that involves the secret key, a random number and additional data, just like the secure
memory.
Compare hash results.

In the context of the FPGA environment, the way that the challenge-and-response authentication works is
shown in the following numbered statements. The letters (e.g., A, B, C) correspond to data flows in Figure 2.
This section describes SHA-256 symmetric authentication.

1. Generate a random number and send it as a challenge (A) to the secure authenticator.
2. Instruct the authenticator to compute a hash based on its secret key, the challenge A, its unique ID, and

other fixed data. The hash is the output of the algorithm block (B).
3. Compute a hash (C), based on the same input and constants used by the secure authenticator and the

FPGA's secret key.
4. Take the hash computed by the secure authenticator (B) as the response and compare it to the expected

response (C).

If the expected response and the actual response are identical, then the FPGA knows that the authenticator is
genuine. If genuine, your security goals—IP protection, counterfeit protection, etc.—are achieved.

Page 4 of 10

http://www.maximintegrated.com/en/an3675

Figure 2. Challenge-and-response authentication flows in greater detail. Proves authenticity of hash originator
—the secure authenticator.

As previously mentioned, authentication between an FPGA and a secure authenticator achieves the security
of points 1 through 3 of the Why Apply Security to an FPGA? section. Now, let's observe how to physically
set up a security system based on the following block diagrams.

Counterfeit Protection of a Peripheral
To implement counterfeit protection, a system configuration, as shown in Figure 3, should be used. The
FPGA, and its corresponding security implementation, resides in an embedded system. Some peripheral
device—perhaps a sensor, disposable, consumable, or another embedded system—is the object that, as a
designer, we wish to secure. The Maxim secure authentication IC resides in this peripheral device.

Page 5 of 10

Figure 3. Block diagram for counterfeit protection of peripherals.

IP Protection, Feature Management, License Management, and Overbuild Protection
For all other security needs described in the section entitled, Why Apply Security to an FPGA?, the
hardware setup shown in Figure 4 should be used. The FPGA, and its corresponding security
implementation, resides in an embedded system along with the Maxim secure authentication IC.

Page 6 of 10

Figure 4. Block diagram for IP protection, and other applications.

Available Reference Designs

Reference
 Design FPGA

Demo
 Board Implementation

Authentication
 IC Used

Interface of
 Authentication
 IC

MAXREFDES34# Xilinx
Spartan-
6

Avnet
 Spartan-6
 LX9
 MicroBoard

Verilog DS28E15 1-Wire

Xilinx
Zynq

MicroZed 'C'

MAXREFDES43# Xilinx
Zynq

ZedBoard™ 'C' DS28C22 I C

MAXREFDES44# Xilinx
Zynq

MicroZed 'C' DS28E35 1-Wire

®

2

Page 7 of 10

http://www.maximintegrated.com/en/products/MAXREFDES34
http://www.maximintegrated.com/en/products/DS28E15
http://www.maximintegrated.com/en/products/MAXREFDES43
http://www.maximintegrated.com/en/products/DS28C22
http://www.maximintegrated.com/en/products/MAXREFDES44
http://www.maximintegrated.com/en/products/DS28E35

Reference Design-Specific Notes
MAXREFDES43# with the DS28C22 is unique because it implements bidirectional, small-message encryption
of sensitive data communicated between the FPGA and the DS28C22. This encryption feature is optional; the
most common use is when the DS28C22 is inside an attached peripheral subsystem. Or, perhaps it is
necessary to encrypt sensitive sensor data, calibration data, feature setting data, or personal data (e.g.,
patient heart rate or SSN).

For more information on the encryption feature of the DS28C22, refer to application note 5785, "Implement
Heightened Security with a SHA-256 Master/Slave Authentication System."

MAXREFDES44# with the DS28E35 utilizes asymmetric ECDSA authentication instead of implementing
symmetric SHA-256 authentication. For symmetric authentication, both the FPGA and authentication IC must
store the same key, and therefore the sensitive secret key data resides on both sides of the system. However,
with asymmetric authentication, the FPGA holds only the public key, and the DS28E35 holds the private key.
The only sensitive data is the private key; the public key need not be secured.

Using asymmetric cryptography could be more attractive from two standpoints:

You are licensing your product to your customers or using multiple contract manufacturers. Asymmetric
authentication offers a great management tool for adding new licenses or removing existing ones due to
the usage of certificates. Refer to application note 5767, "The Fundamentals of an ECDSA
Authentication System," for more information on certificates.
Implementations with poor security of FPGA configuration/bit file. Using SHA-256 symmetric
authentication for these applications could be risky if the FPGA secret key is exposed; however, note that
for relevant reference designs (e.g., MAXREFDES34# for Spartan-6 FPGAs), extra steps have been
taken to secure the FPGA-side secret key. Indeed if you are not implementing the built-in FPGA
encryption feature (on applicable FPGAs like Xilinx Zynq) or if you are using a previous generation FPGA
that does not secure the configuration/bit file, then using the DS28E35 is ideal.

MAXREFDES34# with DS28E15 implements symmetric authentication using SHA-256. These authentication
schemes require both the FPGA-side secret keys and secure authenticator keys to be secure. For the
following reasons, the MAXREFDES34# successfully secures the FPGA-side secret keys:

The secret key is stored in the FPGA bit file in a FLASH device. It is very difficult to reverse the bit file
from bits back to Verilog code (the Spartan-6 reference was written in Verliog). Therefore, the obscurity
and unwieldiness of the bit file provide the first layer of security.
The secret on the bit file is not the exact same secret as that stored in the DS28E15. The FPGA
computes the DS28E15 secret based on its own version of the secret.
There are other proprietary FPGA secret protection techniques that cannot be disclosed in this
application note.

Summary
Designers of FPGA embedded systems face many potential security threats including counterfeiting of
peripherals and copying of FPGA implementation, among others. Using a Maxim secure authenticator along
with either of these reference designs protects FPGA systems from these potential issues.

Page 8 of 10

http://www.maximintegrated.com/en/an5785
http://www.maximintegrated.com/en/an5785
http://www.maximintegrated.com/en/an5767
http://www.maximintegrated.com/en/an5767

1-Wire is a registered trademark of Maxim Integrated Products, Inc. Arduino is
a registered trademark of Arduino, LLC.
Avnet is a registered trademark and registered service mark of Avnet, Inc.
DeepCover is a registered trademark of Maxim Integrated Products, Inc.
Pmod is a trademark of Digilent Inc.
Spartan is a registered trademark of Xilinx, Inc.
Verilog is a registered trademark of Gateway Design Automation Corporation.
Xilinx is a registered trademark and registered service mark of Xilinx, Inc.
ZedBoard is a trademark of Avnet, Inc.

Related Parts

DS28C22 DeepCover Secure Memory with I C SHA-256 and 3Kb User
 EEPROM

Free Samples

DS28E15 DeepCover Secure Authenticator with 1-Wire SHA-256 and
512-Bit User EEPROM

Free Samples

DS28E22 DeepCover Secure Authenticator with 1-Wire SHA-256 and
 2Kb User EEPROM

Free Samples

DS28E25 DeepCover Secure Authenticator with 1-Wire SHA-256 and
 4Kb User EEPROM

Free Samples

DS28E35 DeepCover Secure Authenticator with 1-Wire ECDSA and
 1Kb User EEPROM

Free Samples

DS28EL15 DeepCover Secure Authenticator with 1-Wire SHA-256 and
512-Bit User EEPROM

Free Samples

DS28EL22 DeepCover Secure Authenticator with 1-Wire SHA-256 and
 2Kb User EEPROM

Free Samples

DS28EL25 DeepCover Secure Authenticator with 1-Wire SHA-256 and
 4Kb User EEPROM

Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/en/support
For Samples: http://www.maximintegrated.com/en/samples
Other Questions and Comments: http://www.maximintegrated.com/en/contact

 Application Note 5803: http://www.maximintegrated.com/en/an5803
 APPLICATION NOTE 5803, AN5803, AN 5803, APP5803, Appnote5803, Appnote 5803

2

Page 9 of 10

http://www.maximintegrated.com/en/products/DS28C22
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS28C22
http://www.maximintegrated.com/en/products/DS28E15
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS28E15
http://www.maximintegrated.com/en/products/DS28E22
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS28E22
http://www.maximintegrated.com/en/products/DS28E25
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS28E25
http://www.maximintegrated.com/en/products/DS28E35
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS28E35
http://www.maximintegrated.com/en/products/DS28EL15
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS28EL15
http://www.maximintegrated.com/en/products/DS28EL22
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS28EL22
http://www.maximintegrated.com/en/products/DS28EL25
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS28EL25
http://www.maximintegrated.com/en/support
http://www.maximintegrated.com/en/samples
http://www.maximintegrated.com/en/contact
http://www.maximintegrated.com/en/an5803

© 2014 Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For
requests to copy this content, contact us.
Additional Legal Notices: http://www.maximintegrated.com/en/legal

Page 10 of 10

https://support.maximintegrated.com/tech_support/submit_question.mvp?pl_id=0
http://www.maximintegrated.com/en/legal

	maximintegrated.com
	Secure Your FPGA System Using a DeepCover Secure Authenticator - Application Note - Maxim

