PIC16(L)F1615/1619 Family Silicon Errata and Data Sheet Clarification

The PIC16(L)F1615/1619 family devices that you have received conform functionally to the current Device Data Sheet (DS40001770**C**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC16(L)F1615/1619 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A4).

Data Sheet clarifications and corrections start on page 6, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate website (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

- Using the appropriate interface, connect the device to the hardware debugger.
- 2. Open an MPLAB IDE project.
- Configure the MPLAB IDE project for the appropriate device and hardware debugger.
- 4. Based on the version of MPLAB IDE you are using, do one of the following:
 - a) For MPLAB IDE 8, select <u>Programmer ></u> Reconnect.
 - b) For MPLAB X IDE, select <u>Window > Dashboard</u> and click the **Refresh Debug**Tool Status icon ().
- Depending on the development tool used, the part number and Device Revision ID value appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC16(L)F1615/1619 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREY VALUES

	DEVICE ID<13:0> ^(1,2)						
Part Number	DEV 49.05	Revision ID for Silicon Revision					
	DEV<8:0>	A4					
PIC16F1615	307Ch	4h					
PIC16LF1615	307Eh	4h					
PIC16F1619	307Dh	4h					
PIC16LF1619	307Fh	4h					

Note 1: The Device ID is located in the configuration memory at address 8006h.

2: Refer to the "PIC12(L)F1612/16(L)F161X Memory Programming Specification" (DS40001720) for detailed information on Device and Revision IDs for your specific device.

TABLE 2: SILICON ISSUE SUMMARY

Module	Feature	Item Number	Issue Summary	Affected Revisions ⁽¹⁾
		Number		A4
EUSART	Transmit	1.1	Duplicate transmission.	X
Master	SPI Slave Mode	2.1	Slave Select release during Sleep corrupts data.	X
Synchronous Serial Port	SPI Slave Mode	2.2	Receive data lost when Slave Select enable occurs just before Sleep execution.	Х
(MSSP)	SPI Slave Mode	2.3	WCOL improperly set during Sleep.	Х
Enhanced Capture/Compare/ PWM (ECCP)	e/Compare/ results.			Х
Fixed Voltage Reference (FVR) ADC Conversion 4.1 First conversion of FVR signal merors.		First conversion of FVR signal may contain errors.	Х	
Analog-to-Digital Converter (ADC)	Positive Voltage Reference	5.1	Using the FVR as the ADC positive voltage reference may cause missing codes.	Х

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note:

This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A4).

1. Module: EUSART

1.1 Duplicate Transmission

Under certain conditions, a byte written to the TXREG register can be transmitted twice. This happens when a byte is written to TXREG just as the TSR register becomes empty. This new byte is immediately transferred to the TSR register, but also remains in the TXREG register until the completion of the current instruction cycle. If the new byte in the TSR register is transmitted before this instruction cycle has completed, the duplicate in the TXREG register will subsequently be transferred to the TSR register on the following instruction clock cycle and transmitted.

Work around

- Monitor the transmit interrupt flag bit (TXIF).
 Writes to the TXREG register can be performed once the TXIF bit is set, indicating that the TXREG register is empty.
- Monitor the TMRT bit of the TXSTA register. Writes to the TXREG register can be performed once the TMRT bit is set, indicating that the Transmit Shift Register (TSR) is empty.

Affected Silicon Revisions

A4				
X				

2. Module: Master Synchronous Serial Port (MSSP)

2.1 Slave Select Release During Sleep Corrupts Data

When the MSSP module is configured in SPI Slave mode with SS pin control enabled (SSPM = 0100) and the device is in Sleep mode during SPI activity, if the SPI master releases the SS line (SS goes high) before the device wakes from Sleep and updates SSPBUF, the received data will be lost.

Work around

Method 1: The SPI master must wait a minimum of parameter SP83 (1.5TcY + 40 ns) after the last SCK edge AND the additional wake-up time from Sleep (device dependent) before releasing the SS line.

Method 2: If both the master and slave devices have an available pin, once the slave has completed the transaction and BF or SSPIF is set, the slave could toggle an output to inform the master that the transaction is complete and that it is safe to release the SS line.

Affected Silicon Revisions

A4				
Χ				

2.2 Receive Data Lost

When the MSSP module is configured in SPI Slave mode with SS pin control enabled (SSPM = 0100) and the device is in Sleep mode during SPI activity, if the SPI master enables SS (SS goes low) within 1 Tcy before Sleep is executed, the data written into the SSPBUF by the slave for transmission will remain in the SSPBUF, and the byte received by the slave will be completely discarded. The MSb of the data byte that is currently loaded into SSPBUF will be transmitted on each of the eight SCK clocks, resulting in either a 0x00 or 0xFF to be incorrectly transmitted. This issue typically occurs when the device wakes up from Sleep to process data and immediately goes back to Sleep during the next transmission.

Work around

The SPI slave must wait a minimum of 2.25 * Tcy from the time the SS line becomes active (SS goes low) before executing the Sleep command.

Affected Silicon Revisions

A4				
Х				

2.3 WCOL Improperly Set During Sleep

When the MSSP module is configured with either of the Slave modes listed below and Sleep is executed during transmission, the WCOL bit is erroneously set. Although the WCOL bit is set, it does not cause a break in transmission or reception.

Mode 1: SPI slave mode with SS disabled (SSPM = 0101) and CKE = 0.

<u>Mode 2</u>: SPI slave mode with SS enabled (SSPM = 0100) and SS is not set and then cleared before each consecutive transmission. This typically occurs during multiple byte transmissions in which the master does not release the SS line until all transmission has completed.

Work around

Method 1: The WCOL bit can be ignored since the issue does not interfere with MSSP hardware.

Method 2: Clear the SSPEN bit after each transaction, then set SSPEN before the next transmission.

Affected Silicon Revisions

A4				
Χ				

3. Module: Enhanced Capture/Compare/PWM (ECCP)

3.1 Compare Toggle Mode Yields Unexpected Results

The ECCP Compare Toggle mode (CCP1M<3:0> bits = 0010) works properly as long as the Timer1 Prescaler value is configured to 1:1. When the Timer1 prescaler value is configured to any other value, the ECCP Compare output yields unexpected results.

Work around

Only use the Compare Toggle mode when the Timer1 Prescaler value is set to 1:1.

Affected Silicon Revisions

A4				
Χ				

4. Module: Fixed Voltage Reference (FVR)

4.1 First Conversion of FVR Signal May Contain Errors

When using the ADC to sample the output of the FVR, the first conversion result may contain errors. This can occur particularly if both the FVR and ADC modules have been powered down for significant time prior to the conversion.

Work around

Method 1:

Prior to the conversion, provide 'FVR Stabilization Period' per the graph provided in the Electrical Specification chapter of the data sheet. As shown in this graph, this stabilization time is typically in the range 25 to 30 us. During this stabilization time, the ADC should be enabled and set to sample the VREFL (Vss) node. The following steps should be followed:

- 1. Enable ADC with sample path set to VREFL (Vss);
- 2. Enable FVR with ADFVR bits set to zero;
- 3. Configure FVR gain to the desired level per data sheet instructions:
- 4. Allow time for FVR stabilization. (Poll for FVRRDY = 1);
- 5. Configure ADC sample path to FVR and required ADC acquisition time allowed;
- 6. Initiate the ADC conversion.

Method 2:

Alternately, the FVR and ADC modules can be enabled and a series of ADC conversions of the sampled FVR output performed while both modules remain active. In this case, the first conversion result should be discarded and the subsequent results utilized. It is noted that this approach, in effect, provides for the stabilization time referred to above.

Affected Silicon Revisions

A4				
X				

- 5. Module: Analog-to-Digital Converter (ADC)
- 5.1 Using the FVR as the ADC Positive Voltage Reference May Cause Missing Codes

Using the FVR as the positive voltage reference for the ADC can cause an increase in missing codes.

Work around

Increase the bit conversion time, known as TAD, to 8 μs or higher.

Affected Silicon Revisions

A4				
Χ				

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS40001770**C**):

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

1. Module: eXtreme Low-Power (XLP) Features

The line stating:

 Secondary Oscillator: 500 nA @ 32 kHz should be removed. This device does not have a secondary oscillator feature.

2. Module: Electrical Characteristics

Parameters D080A and D090A should be as follows:

Standard	Standard Operating Conditions (unless otherwise stated)											
Param. No.	Sym.	Characteristic	Characteristic Min. Typ† Max. Units Conditions									
	Vol	Output Low Voltage ⁽³⁾										
D080A		High Drive I/O ⁽¹⁾	_	2.5V	_	V	IOL = 100 mA, VDD = 5.0V					
	Voн	Output High Voltage ⁽³⁾										
D090A		High Drive I/O ⁽¹⁾	_	2.5V	_	V	IOL = 100 mA, VDD = 5.0V					

3. Module: DC and AC Characteristics Graphs and Charts

Figures 36-29 and 36-30 should be removed from the document.

APPENDIX A: DOCUMENT REVISION HISTORY

Rev A Document (12/2014)

Initial release of this document.

Rev B Document (09/2017)

Added modules 1-5 to Silicon Errata Issues.

Data Sheet Clarifications: Deleted modules 3-6 and modules 8-15.

Other minor corrections.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2173-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongging Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou

Tel: 86-20-8755-8029 China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000

Fax: 86-21-3326-8021 China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444

Fax: 91-80-3090-4123 India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857

Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870

Fax: 60-4-227-4068 Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 Germany - Haan

Tel: 49-2129-3766400 Germany - Heilbronn

Tel: 49-7131-67-3636 Germany - Karlsruhe

Tel: 49-721-625370 Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 Norway - Trondheim

Tel: 47-7289-7561 Poland - Warsaw

Tel: 48-22-3325737 Romania - Bucharest

Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820