

PIC24FV32KA304 Family Silicon Errata and Data Sheet Clarification

The PIC24FV32KA304 family devices that you have received conform functionally to the current Device Data Sheet (DS30009995**E**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC24FV32KA304 family silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A7).

Data sheet clarifications and corrections start on Page 6, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip's programmers, debuggers and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with MPLAB ICD 2 or PICkit[™] 3:

- Using the appropriate interface, connect the device to the MPLAB ICD 2 programmer/ debugger or PICkit™ 3.
- 2. From the main menu in MPLAB IDE, select <u>Configure>Select Device</u>, and then select the target part number in the dialog box.
- 3. Select the MPLAB hardware tool (<u>Debugger>Select Tool</u>).
- Perform a "Connect" operation to the device (<u>Debugger>Connect</u>). Depending on the development tool used, the part number and Device Revision ID value appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC24FV32KA304 family silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

Part Number	Device ID ⁽¹⁾	Revision ID fo			Part Number	Device ID ⁽¹⁾	Revision ID for Silicon Revision ⁽²⁾		
		A4	A6	A7				A6	A7
PIC24F32KA304	4516h				PIC24FV32KA304	4517h			
PIC24F32KA302	4512h				PIC24FV32KA302	4513h			
PIC24F32KA301	4518h	0004h	0006h	00007h	PIC24FV32KA301	4519h	0004h	0006h	0007h
PIC24F16KA304	4506h	000411	000611	0000711	PIC24FV16KA304	4507h	000411	000611	000711
PIC24F16KA302	4502h				PIC24FV16KA302	4503h			
PIC24F16KA301	4508h				PIC24FV16KA301	4509h			

- **Note 1:** The Device IDs (DEVID and DEVREV) are located at the last two implemented addresses of configuration memory space. They are shown in hexadecimal in the format, "DEVID DEVREV".
 - 2: Refer to the "PIC24FXXKA1XX/FVXXKA3XX Family Flash Programming Specifications" (DS39919) for detailed information on Device and Revision IDs for your specific device.

TABLE 2: SILICON ISSUE SUMMARY

Module	Feature	Item Number	Issue Summary		Affecte vision	
		Number		A4	A6	A7
Core	Low-Voltage Regulator	1.	High-voltage programming entry unavailable in Low-Voltage Sleep modes.	Х		
Reset	BOR	2.	Unexpected BOR events when BOR is disabled in Sleep mode.	Х	Х	Х
A/D	Threshold Detect	3.	Auto-scan feature may not trigger correctly in Sleep mode.	Х		
UART	TX Buffer	4.	Out-of-order transmit data when buffer is filled.	Х		
UART	Transmit	5.	UTXBF flag may not indicate correctly.	Χ		
A/D	Threshold Detect	6.	Current in Auto-Scan mode may exceed expected values.	Х		
A/D	Threshold Detect	7.	Interrupt may not trigger in certain Auto-Scan modes.	Χ		
HLVD	DC18 Value Changes	8.	Change in trip points.	Χ	Х	Х

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note:

This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A7).

1. Module: Core (Low-Voltage Regulator)

When operating in Low-Voltage Sleep mode, LVREN = 1 (RCON<12>) and LVRCFG = 0 (FPOR<2>), the device may not be able to enter programming modes using high-voltage entry (VIHH applied to \overline{MCLR}).

Work around

If entry into a programming mode is required while the device is in Low-Voltage Sleep mode, use <u>low-voltage</u> entry into programming. Verify that MCLR functionality is enabled, MCLRE = 1 (FPOR<7>), before attempting programming.

Affected Silicon Revisions

A4	A6	A7			
Χ					

2. Module: Reset (BOR)

Under certain conditions, the device may improperly perform a Brown-out Reset upon wake-up from a Sleep mode. This has been observed under two conditions:

- When the BOR is disabled in Sleep mode, BOREN<1:0> = 10 (FPOR<1:0>), a BOR may occur when the device wakes from Sleep, regardless of the supply voltage.
- 2. When the BOR is configured for software control (BOREN<1:0> = 01), the device enters and wakes from Sleep normally while the BOR is disabled in software, SBOREN = 0 (RCON<13>). However, if the BOR was disabled prior to entering Sleep mode and is subsequently enabled after waking from Sleep, a BOR may occur, regardless of the supply voltage.

BOR functions normally when it is always enabled or disabled (BOREN<1:0> = 11 or 00).

Work around

Do not use Sleep mode when BOREN<1:0> = 10.

If the BOR is to operate under software control, always enable the HLVD module, HLVDEN = 1 (HLVDCON<15>), before enabling the BOR in software (SBOREN = 1). This procedure activates the internal band gap reference and assures its stability for the BOR circuit.

Affected Silicon Revisions

	A4	A6	A7			
ı	Χ	Χ	Χ			

3. Module: A/D (Threshold Detect)

When the auto-scan feature of the Threshold Detect is enabled (AD1CON5<15> = 1), automatic scan may fail when these conditions occur together:

- · the Device is in Sleep mode, and
- Timer1 is selected as the sample trigger clock source (AD1CON1<7:4> = 0101).

Timer1 and other timers will function correctly as sample triggers in other power-saving modes, such as Idle mode.

Work around

If auto-scan functionality is required during Sleep, use INT0 as the sample trigger.

Affected Silicon Revisions

A4	A6	A7			
Χ					

4. Module: UART (TX Buffer)

If the transmit buffer is filled sequentially with four characters, the characters may not be transmitted in the correct order.

Work around

Do not completely fill the buffer before transmitting data; send three characters or less at a time.

Affected Silicon Revisions

A4	A6	A7			
Χ					

5. Module: UART (Transmit)

The UARTx Transmit Buffer Full flag, UTXBF (UxSTA<9>), may become cleared before data starts moving out of the full buffer. If the flag is used to determine when data can be written to the buffer, new data may not be accepted and data may not be transmitted.

Work around

Poll the Transmit Buffer Empty flag (TRMT, UxSTA<8>) to determine when the transmit buffer is empty and can be written to.

Alternatively, configure the UART to set the UARTx Transmit Interrupt Flag (UxTXIF) whenever a character is shifted into the Transmit Shift Register (UTXISEL<1:0> = 00). When a transmit interrupt occurs, this indicates that at least one buffer position is open and that the buffer can be written to.

Affected Silicon Revisions

A4	A6	A7			
Х					

6. Module: A/D (Threshold Detect)

In Auto-Scan mode, with low power enabled (AD1CON5<15> = 1, AD1CON5<14> = 1) and the device in Sleep mode, the ADRC may not turn off between scans, resulting in a higher current draw than anticipated.

Work around

None.

Affected Silicon Revisions

A4	A6	A7			
Χ					

7. Module: A/D (Threshold Detect)

In Auto-Scan mode (AD1CON5<15> = 1), when the Auto-Scan Interrupt mode bits are set to '11' (AD1CON5<9:8> = 11), the highest number channel selected for scanning in AD1CSSL or AD1CSSH may not trigger an interrupt on a valid comparison.

Work around

Add a dummy channel to the scanning sequence. For example, when scanning ANO and AN1, set AD1CSSL to 0x0007 or 0x8003, or whatever is practical given the implementation.

Also, if the highest number channel needs to be scanned, the AD1CHITH register can be polled to observe a valid comparison.

Affected Silicon Revisions

A4	A6	A7			
Χ					

8. Module: HLVD (DC18 Value Changes)

The maximum and minimum values of the High/Low-Voltage Detect Characteristics (DC18), shown in Table 29-4 of the data sheet, have changed for this revision. The new values are shown in Table 3.

Affected Silicon Revisions

A4	A6	A7			
Χ	Χ	Χ			

TABLE 3: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions: 1.8V to 3.6V PIC24F32KA3XX
2.0V to 5.5V PIC24FV32KA3XX
Operating temperature $-40^{\circ}\text{C} \leq \text{Ta} \leq +85^{\circ}\text{C}$ for Industrial

Operatii	ig tempera	-40 C	2 ≤ TA ≤ +85°C for industri	lai		1	1	
Param No.	Symbol	Chara	acteristic	Min	Тур	Max	Units	Conditions
DC18	VHLVD	HLVD Voltage on	$HLVDL<3:0> = 0000^{(2)}$	_	_	2.01	V	
		VDD Transition	HLVDL<3:0> = 0001	1.91	_	2.25	V	
			HLVDL<3:0> = 0010	2.12	_	2.48	V	
			HLVDL<3:0> = 0011	2.27	_	2.67	V	
			HLVDL<3:0> = 0100	2.36	_	2.76	٧	
			HLVDL<3:0> = 0101	2.55	_	2.99	>	
			HLVDL<3:0> = 0110	2.79	_	3.27	V	
			HLVDL<3:0> = 0111	2.93	_	3.43	V	
			HLVDL<3:0> = 1000	3.06	_	3.60	V	
			HLVDL<3:0> = 1001 ⁽¹⁾	3.23	_	3.79	V	
			HLVDL<3:0> = 1010 ⁽¹⁾	3.40	_	4.00	V	
			HLVDL<3:0> = 1011 ⁽¹⁾	3.61	_	4.23	V	
			HLVDL<3:0> = 1100 ⁽¹⁾	3.83	_	4.49	V	
			HLVDL<3:0> = 1101 ⁽¹⁾	4.08	_	4.80	V	
			HLVDL<3:0> = 1110 ⁽¹⁾	4.38	_	5.14	V	

Note 1: These trip points should not be used on PIC24FXXKA30X devices.

2: This trip point should not be used on PIC24FVXXKA30X devices.

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS30009995**E**):

1. Module: Electrical Characteristics

Adds LPRC specifications at +125°C, as shown in Table 29-21 below in **bold**.

TABLE 29-21: AC CHARACTERISTICS: INTERNAL RC ACCURACY

		0: 1		0	1141	4 0) / 1 0 0) / BIO 4	JE001(10)()/			
1		Standar	d Opera	ting Con	iditions:	1.8V to 3.6V PIC24	F32KA3XX			
۸C CH ۸	RACTERISTICS					2.0V to 5.5V PIC24	FV32KA3XX			
AC CHA	RACTERISTICS	Operation	Operating temperature -40°C ≤ TA ≤ +85°C for Industrial							
		l '	-40°C ≤ TA ≤ +125°C for Extended							
_										
Param	Characteristic Min Typ Max Units Conditions									
No.	Onaradionalio	101111	ТУР	WIGA	Office		orialions			
F20	Internal FRC Accuracy	ı @ a Mi	₋₁₇ (1)							
1 20	internal into Accuracy	y @ O IVII	IΔ				T			
	FRC	-2	_	+2	%	+25°C	$3.0V \le VDD \le 3.6V$, F device			
							$3.2V \le VDD \le 5.5V$, FV device			
		-6		+6	%	$-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$	$1.8V \le VDD \le 3.6V$, F device			
							$2.0V \le VDD \le 5.5V$, FV device			
F21	LPRC @ 31 kHz ⁽²⁾	-15		15	%	-40°C ≤ TA ≤ +85°C	$1.8V \le VDD \le 3.6V$, F device			
		-30		+30	%	$\text{-40°C} \leq \text{Ta} \leq \text{+125°C}$	$2.0V \le VDD \le 5.5V$, FV device			

Note 1: Frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

^{2:} The change of LPRC frequency as VDD changes.

APPENDIX A: DOCUMENT REVISION HISTORY

Rev A Document (3/2011)

Initial release of this document; issued for revision A4. Includes silicon issues 1 (Core, Low-Voltage Regulator) and 2 (Reset, BOR).

Rev B Document (5/2011)

Adds silicon issue 3 (A/D, Threshold Detect) to silicon revision A4.

Adds data sheet clarifications 1 (Overview and Other Locations), 2 (Overview) and 3 (A/D, Threshold Detect) for data sheet revision B.

Rev C Document (9/2011)

Adds silicon issues 4 (UART, TX Buffer), 5 (UART, Transmit), 6 (A/D, Threshold Detect), 7 (A/D, Threshold Detect) and 8 (HLVD, DC18 Value Changes) to silicon revision A4. Typographical correction in issue 1 (Core, Low-Voltage Regulator).

Adds data sheet clarifications 4 through 7 (A/D Converter), 8 and 9 (Comparator), 10 (Flash Program Memory), 11 (Electrical Specifications), 12 (A/D Converter) and 13 (Pin Diagrams) to data sheet revision B.

Rev D Document (8/2012)

Adds latest silicon revision (A6) and shows that both silicon issues 2 (Reset, BOR) and 8 (HLVD, DC18 Value Changes) are affected. Removes all data sheet clarifications that were addressed in the latest release of the data sheet.

Rev E Document (11/2013)

Adds data sheet clarification 1 (Electrical Characteristics).

Rev F Document (7/2015)

Adds current silicon revision A7.

Rev G Document (8/2017)

Adds Note 1 to HLVDL<3:0> = 1001 in silicon revision 8 (HLVD, DC18 Value Changes).

Rev H Document (10/2017)

Updates the data sheet reference to the latest revision (DS30009995**E**).

Removes data sheet data sheet clarification 1 (Electrical Characteristics) since this has been addressed in the latest revision of the data sheet.

Rev J Document (3/2018)

Adds data sheet clarification 1 (Electrical Characteristics).

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2835-0

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423

Fax: 972-818-2924 **Detroit** Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Fax: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC

Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto

Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 **Korea - Seoul** Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820