
October 2019 ES0102 Rev 7 1/18
1

STM8S001J3/003xx/103xx/903xx
Errata sheet

STM8S001J3, STM8S003xx, STM8S103xx and STM8S903xx
device limitations

This errata sheet applies to the STMicroelectronics STM8S001J3, STM8S003xx,
STM8S103xx and STM8S903xx devices.

The full list of root part numbers is given in Table 2.

The products can be identified as shown in Table 1:
• By the revision code marked on the device package
• By the last three digits of the Internal sales type printed on the box label

Table 1. Device identification
Sales type Revision code marked on the device(1)

1. Refer to the device data sheet for how to identify this code on different types of package.

STM8S001J3xx Y/6, 7

STM8S003xxxx Y/6, 7

STM8S103xxxx Z and Y/6, 7

STM8S903xxxx Z and Y/6, 7

Table 2. Device summary
Reference Part number

STM8S001J3 STM8S001J3

STM8S003xx STM8S003K3, STM8S003F3

STM8S103xx STM8S103K3, STM8S103F3, STM8S103F2

STM8S903xx STM8S903K3, STM8S903F3

www.st.com

http://www.st.com

Contents STM8S001J3/003xx/103xx/903xx

2/18 ES0102 Rev 7

Contents

1 Product evolution . 4

2 Silicon limitations . 6
2.1 Core limitations . 6

2.1.1 Activation level (AL bit) not functional in Halt mode 6
2.1.2 JRIL and JRIH instructions not available . 6
2.1.3 Interrupt service routine (ISR) executed with priority of main process . . 6

2.1.4 Unexpected DIV/DIVW instruction result in ISR 7

2.2 System limitations . 8
2.2.1 HSI RC oscillator cannot be switched off in Run mode 8
2.2.2 LSI oscillator remains on in Active-halt mode when the AWU unit uses

the HSE as input clock . 8
2.2.3 Flash / EEPROM memory is read incorrectly after wakeup from power

down mode . 8

2.2.4 VDD rise-time rate for 100mV < VDD < 1V . 10

2.3 EXTI limitations . 10
2.3.1 Possible collision in servicing of external interrupts (EXTI) 10

2.4 Timer peripheral limitations .11
2.4.1 Corruption of read sequence for the 16-bit counter registers 11

2.5 UART peripheral limitations . 12
2.5.1 UART PE flag cannot be cleared during the reception of

the first half of Stop bit . 12

2.6 I2C peripheral limitations . 12
2.6.1 I2C event management . 12
2.6.2 Corrupted last received data in I2C Master Receiver mode 13
2.6.3 Wrong behavior of I2C peripheral in Master mode after

misplaced STOP . 14

2.6.4 Violation of I2C “setup time for repeated START condition” parameter . 14
2.6.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected

and may generate bus errors . 15
2.6.6 I2C pulse missed . 16

3 Revision history . 17

ES0102 Rev 7 3/18

STM8S001J3/003xx/103xx/903xx List of tables

3

List of tables

Table 1. Device identification . 1
Table 2. Device summary . 1
Table 3. Product evolution summary . 4
Table 4. VDD rise-time and fall-time rates . 10
Table 5. Potential interrupt conflicts . 10
Table 6. Document revision history . 17

Product evolution STM8S001J3/003xx/103xx/903xx

4/18 ES0102 Rev 7

1 Product evolution

Table 3 gives a summary of the fix status.

Legend for Table 3: A = workaround available; N = no workaround available; P = partial
workaround available, ‘-’ and grayed = fixed.

Table 3. Product evolution summary
Section Limitation Rev Z Rev Y/6, 7

Section 2.1: Core
limitations

Section 2.1.1: Activation level (AL bit) not
functional in Halt mode N N

Section 2.1.2: JRIL and JRIH instructions not
available N N

Section 2.1.3: Interrupt service routine (ISR)
executed with priority of main process A A

Section 2.1.4: Unexpected DIV/DIVW
instruction result in ISR A A

Section 2.2:
System limitations

Section 2.2.1: HSI RC oscillator cannot be
switched off in Run mode N N

Section 2.2.2: LSI oscillator remains on in
Active-halt mode when the AWU unit uses the
HSE as input clock

N N

Section 2.2.3: Flash / EEPROM memory is
read incorrectly after wakeup from power down
mode

A A

Section 2.2.4: VDD rise-time rate for 100mV <
VDD < 1V N N

Section 2.3: EXTI
limitations

Section 2.3.1: Possible collision in servicing of
external interrupts (EXTI) N N

Section 2.4:
Timer peripheral

limitations

Section 2.4.1: Corruption of read sequence for
the 16-bit counter registers A A

Section 2.5:
UART peripheral

limitations

Section 2.5.1: UART PE flag cannot be cleared
during the reception of the first half of Stop bit A A

ES0102 Rev 7 5/18

STM8S001J3/003xx/103xx/903xx Product evolution

17

Section 2.6: I2C
peripheral
limitations

Section 2.6.1: I2C event management A A

Section 2.6.2: Corrupted last received data in
I2C Master Receiver mode A A

Section 2.6.3: Wrong behavior of I2C
peripheral in Master mode after misplaced
STOP

A A

Section 2.6.4: Violation of I2C “setup time for
repeated START condition” parameter A A

Section 2.6.5: In I2C slave “NOSTRETCH”
mode, underrun errors may not be detected
and may generate bus errors

A A

Section 2.6.6: I2C pulse missed A -

Table 3. Product evolution summary
Section Limitation Rev Z Rev Y/6, 7

Silicon limitations STM8S001J3/003xx/103xx/903xx

6/18 ES0102 Rev 7

2 Silicon limitations

2.1 Core limitations

2.1.1 Activation level (AL bit) not functional in Halt mode

Description
The AL bit is not supported in Halt mode. In particular, when the AL bit of the CFG_GCR
register is set, the CPU does not return to Halt mode after exiting an interrupt service routine
(ISR). It returns to the main program and executes the next instruction after the HALT
instruction. The AL bit is supported correctly in WFI mode.

Workaround
No workaround available.

No fix is planned for this limitation.

2.1.2 JRIL and JRIH instructions not available
Description

The JRIL (jump if port INT pin = 0) and JRIH (jump if port INT pin = 1) instructions are not
supported by the devices covered by this errata sheet. These instructions perform
conditional jumps: JRIL and JRIH jump if one of the external interrupt lines is low or high
respectively.

In the devices covered by this errata sheet, JRIL is equivalent to an unconditional jump and
JRIH is equivalent to NOP. For further details on these instructions, see the STM8 CPU
programming manual (PM0044).

Workaround
No workaround available.

No fix is planned for this limitation.

2.1.3 Interrupt service routine (ISR) executed with priority of main process

Description
If an interrupt is cleared or masked when the context saving has already started, the
corresponding ISR is executed with the priority of the main process. The next interrupt
request can interrupt execution of the service routine

Workaround
At the beginning of the interrupt routine, change the current priority level in the CCR register
by software.

ES0102 Rev 7 7/18

STM8S001J3/003xx/103xx/903xx Silicon limitations

17

2.1.4 Unexpected DIV/DIVW instruction result in ISR

Description
In very specific conditions, a DIV/DIVW instruction may return a false result when executed
inside an interrupt service routine (ISR). This error occurs when the DIV/DIVW instruction is
interrupted and a second interrupt is generated during the execution of the IRET instruction
of the first ISR. Under these conditions, the DIV/DIVW instruction executed inside the
second ISR, including function calls, may return an unexpected result.

The applications that do not use the DIV/DIVW instruction within ISRs are not impacted.

Workaround 1
If an ISR or a function called by this routine contains a division operation, the following
assembly code should be added inside the ISR before the DIV/DIVW instruction:

push cc
pop a
and a,#$BF
push a
pop cc

This sequence should be placed by C compilers at the beginning of the ISR using
DIV/DIVW. Refer to your compiler documentation for details on the implementation and
control of automatic or manual code insertion.

Workaround 2
To optimize the number of cycles added by workaround 1, you can use this workaround
instead. Workaround 2 can be used in applications with fixed interrupt priorities, identified at
the program compilation phase:

push #value
pop cc

where bits 5 and 3 of #value have to be configured according to interrupt priority given by I1
and I0, and bit 6 kept cleared.

In this case, compiler workaround 1 has to be disabled by using compiler directives.

No fix is planned for this limitation.

Silicon limitations STM8S001J3/003xx/103xx/903xx

8/18 ES0102 Rev 7

2.2 System limitations

2.2.1 HSI RC oscillator cannot be switched off in Run mode

Description
The internal 16 MHz HSI RC oscillator cannot be switched off in Run mode even if the
HSIEN bit is programmed to 0.

Workaround
No workaround available.

No fix is planned for this limitation.

2.2.2 LSI oscillator remains on in Active-halt mode when the AWU unit uses
the HSE as input clock

Description
When the auto wake-up unit (AWU) uses the high speed external clock (HSE) divided by the
prescaler (clock source enabled by setting the CKAWUSEL option bit), the LSI RC oscillator
is not switched off when the device operates in Active Halt mode with the main voltage
regulator (MVR) on. This causes negligible extra power consumption compared to the total
consumption of the MCU in Active Halt mode with the MVR on.

Workaround
No workaround available.

No fix is planned for this limitation.

2.2.3 Flash / EEPROM memory is read incorrectly after wakeup from power
down mode

Description
If Flash/EEPROM memory has been put in power down mode (IDDQ), the first read access
after wakeup could return incorrect content when fCPU is greater than 250 kHz + 5%.

By default, the Flash/EEPROM memory is put in IDDQ mode when the MCU enters Halt
mode and depending on the FLASH_CR1 register settings made by software, the
Flash/EEPROM may be forced to IDDQ mode during active halt mode.

As a consequence, the following behavior may be seen on some devices:
• After wakeup from Low power mode, with Flash memory in IDDQ mode, program

execution gets lost due to an incorrect read of the vector table.
• Code reads an incorrect value from Flash/EEPROM memory, when forced in IDDQ

mode.
• Reset could be forced by an illegal opcode execution due to incorrect read of

instruction.

Note: The use of the watchdog helps the application to recover in case of failure.

ES0102 Rev 7 9/18

STM8S001J3/003xx/103xx/903xx Silicon limitations

17

Workaround 1
Keep the Flash/EEPROM in operating mode when MCU is put in Halt mode or Active-halt
mode. This is done by configuring both the HALT and AHALT bits in the FLASH_CR1
register before executing a HALT instruction to prevent the Flash/EEPROM entering IDDQ
mode.

Set HALT (bit 3) to ‘1’:
0: Flash in power-down mode when MCU is in Halt mode
1: Flash in operating mode when MCU is in Halt mode

Keep AHALT (bit 2) at ‘0’:
0: Flash in operating mode when MCU is in Active-halt mode
1: Flash in power-down when MCU is in Active-halt mode

Please refer to the datasheet for details on the impact on current consumption and wakeup
time.

Workaround 2
Reduce fCPU frequency to 250 kHz or lower before entering Low power mode to ensure
correct Flash memory wakeup. This may be done using the clock divider (CPUDIV[2:0] bits
in the CLK_CKDIVR register). The clock divider can be reconfigured back to its previous
state by software after wakeup.

This is illustrated by the following code example, assuming no divider is used in the
application by default.
CLK_CKDIVR = 0x06;

_asm("HALT");

CLK_CKDIVR = 0x00;

The interrupt service routine executed after wakeup could either stay at the slower clock
speed, or reconfigure the clock setting. Care has to be taken to restore the previous clock
divider setting at the end of interrupt routines when modifying the clock divider.

Silicon limitations STM8S001J3/003xx/103xx/903xx

10/18 ES0102 Rev 7

2.2.4 VDD rise-time rate for 100mV < VDD < 1V

Description
The product datasheet did not specify the VDD rise-time initial conditions as the VDD rise-
time was implicitly specified for a VDD starting from 0 V. Nevertheless, it was observed that
some very specific applications could have a VDD starting from a residual voltage already
above 0 V and thus it is required to explicitly specify these conditions.

The tVDD parameter must stay below 50 μs/V when VDD is rising from 100 mV to 1 V.

Workaround
Not applicable.

2.3 EXTI limitations

2.3.1 Possible collision in servicing of external interrupts (EXTI)

Description
When an interrupt handler starts executing a service routine and an external interrupt (EXTI)
request is pending or arrives during the same cycle, the external interrupt is not executed.

In addition, in nested interrupt mode, when the EXTI arrives between the 1st and the 2nd
cycles before an interrupt handler with lower software priority starts executing its service
routine, this EXTI interrupt tries to nest it. However, the EXTI request is cleared before
fetching the interrupt vector and the previous handler is fetched instead. As a result the
previous handler is executed twice and the EXTI service routine is not executed.

The limitation described above is valid for interrupts with address differing by 16, as shown
in Table 5.

Table 4. VDD rise-time and fall-time rates
Symbol Parameter Conditions Min Typ Max Unit

tVDD
VDD rise-time rate

VDD < 100mV 2(1)

1. Guaranteed by design.

- ∞

μs/V
100mV < VDD < 1V 2(1) - 50

VDD > 1V 2(1) - ∞

VDD fall-time rate - 2(1) - ∞

Table 5. Potential interrupt conflicts
EXTI source Conflicting vector

EXTI0 – Port A I2C interrupt

EXTI1 – Port B No conflict – reserved vector

EXTI2 – Port C No conflict – reserved vector

ES0102 Rev 7 11/18

STM8S001J3/003xx/103xx/903xx Silicon limitations

17

Workaround
No software workaround is available. It is recommended to choose the EXTI source to avoid
conflicts.

No fix is planned for this limitation.

2.4 Timer peripheral limitations

2.4.1 Corruption of read sequence for the 16-bit counter registers

Description
An 8-bit buffer is implemented for reading the 16-bit counter registers. Software must read
the MS byte first, after which the LS byte value is buffered automatically (see Figure 1). This
buffered value remains unchanged until the 16-bit read sequence is completed.

When any multi-cycle instruction precedes the read of the LSB, the content of the buffer is
lost and the second read returns the immediate content of the counter directly.

Figure 1. 16-bit read sequence for the counter (TIMx_CNTR)

Workaround
Do not use multi-cycle instructions before reading the LSB.

No fix is planned for this limitation.

EXTI3 – Port D ADC interrupt

EXTI 4 – Port E TIM4 interrupt

Table 5. Potential interrupt conflicts
EXTI source Conflicting vector

is buffered
Read

At t0

Read Returns the buffered
LS byte value at t0At t0 +Dt

Other
instructions

Beginning of the sequence

Sequence completed

LS byte

LS byte

MS byte

Silicon limitations STM8S001J3/003xx/103xx/903xx

12/18 ES0102 Rev 7

2.5 UART peripheral limitations

2.5.1 UART PE flag cannot be cleared during the reception of
the first half of Stop bit

Description
The PE flag is set by hardware when the UART is in reception mode and a parity error (PE)
occurs. This flag cannot be cleared during the first half of the Stop bit period. If the software
attempts to clear the PE flag at this moment, the flag is set again by hardware, thus
generating an unwanted interrupt (assuming the PIEN bit has been set in the UART_CR1
register.

Workaround
1. Disable PE interrupts by setting PIEN to 0.
2. After the RXNE bit is set (received data ready to be read), poll the PE flag to check if it

a parity error occurred. For example, this could be done in the RXNE interrupt service
routine.

2.6 I2C peripheral limitations

2.6.1 I2C event management

Description
As described in the I2C section of the STM8S and STM8A microcontroller reference manual
(RM0016), the application firmware has to manage several software events before the
current byte is transferred. If the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events
are not managed before the current byte is transferred, problems may occur such as
receiving an extra byte, reading the same data twice, or missing data.

Workaround
When the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events cannot be managed
before the current byte transfer, and before the acknowledge pulse when the ACK control bit
changes, it is recommended to use I2C interrupts in nested mode and to make them
uninterruptible by increasing their priority to the highest priority in the application.

No fix is planned for this limitation.

ES0102 Rev 7 13/18

STM8S001J3/003xx/103xx/903xx Silicon limitations

17

2.6.2 Corrupted last received data in I2C Master Receiver mode

Conditions
In Master Receiver mode, when the communication is closed using method 2, the content of
the last read data may be corrupted. The following two sequences are concerned by the
limitation:
• Sequence 1: transfer sequence for master receiver when N = 2

a) BTF = 1 (Data N-1 in DR and Data N in shift register)
b) Program STOP = 1
c) Read DR twice (Read Data N-1 and Data N) just after programming the STOP bit.

• Sequence 2: transfer sequence for master receiver when N > 2
a) BTF = 1 (Data N-2 in DR and Data N-1 in shift register)
b) Program ACK = 0
c) Read Data N-2 in DR
d) Program STOP bit to 1
e) Read Data N-1.

Description
The content of the shift register (data N) is corrupted (data N is shifted 1 bit to the left) if the
user software is not able to read data N-1 before the STOP condition is generated on the
bus. In this case, reading data N returns a wrong value.

Workarounds
• Workaround 1

– Sequence 1
When sequence 1 is used to close communication using method 2, mask all active
interrupts between STOP bit programming and Read data N-1.

– Sequence 2
When sequence 2 is used to close communication using method 2, mask all active
interrupts between Read data N-2, STOP bit programming and Read data N-1.

• Workaround 2
Manage I2C RxNE and TxE events with interrupts of the highest priority level, so that
the condition BTF = 1 never occurs.

Silicon limitations STM8S001J3/003xx/103xx/903xx

14/18 ES0102 Rev 7

2.6.3 Wrong behavior of I2C peripheral in Master mode after
misplaced STOP

Description
The I2C peripheral does not enter Master mode properly if a misplaced STOP is generated
on the bus. This can happen in the following conditions:
• If a void message is received (START condition immediately followed by a STOP): the

BERR (bus error) flag is not set, and the I2C peripheral is not able to send a START
condition on the bus after writing to the START bit in the I2C_CR2 register.

• In the other cases of a misplaced STOP, the BERR flag is set in the IC2_CR2 register.
If the START bit is already set in I2C_CR2, the START condition is not correctly
generated on the bus and can create bus errors.

Workaround
In the I2C standard, it is not allowed to send a STOP before the full byte is transmitted (8 bits
+ acknowledge). Other derived protocols like CBUS allow it, but they are not supported by
the I²C peripheral.

In case of noisy environment in which unwanted bus errors can occur, it is recommended to
implement a timeout to ensure that the SB (start bit) flag is set after the START control bit is
set. In case the timeout has elapsed, the peripheral must be reset by setting the SWRST bit
in the I2C_CR2 control register. The I2C peripheral should be reset in the same way if a
BERR is detected while the START bit is set in I2C_CR2.

No fix is planned for this limitation.

2.6.4 Violation of I2C “setup time for repeated START condition” parameter

Description
In case of a repeated Start, the “setup time for repeated START condition” parameter
(named tSU(STA) in the datasheet and Tsu:sta in the I2C specifications) may be slightly
violated when the I2C operates in Master Standard mode at a frequency ranging from 88 to
100 kHz. tSU(STA) minimum value may be 4 µs instead of 4.7 µs.

The issue occurs under the following conditions:
1. The I2C peripheral operates in Master Standard mode at a frequency ranging from 88

to 100 kHz (no issue in Fast mode)
2. and the SCL rise time meets one of the following conditions:

– The slave does not stretch the clock and the SCL rise time is more than 300 ns
(the issue cannot occur when the SCL rise time is less than 300 ns), or

– the slave stretches the clock.

Workaround
Reduce the frequency down to 88 kHz or use the I2C Fast mode if it is supported by the
slave.

ES0102 Rev 7 15/18

STM8S001J3/003xx/103xx/903xx Silicon limitations

17

2.6.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected
and may generate bus errors

Description
The data valid time (tVD;DAT, tVD;ACK) described by the I2C specifications may be violated as
well as the maximum current data hold time (tHD;DAT) under the conditions described below.
In addition, if the data register is written too late and close to the SCL rising edge, an error
may be generated on the bus: SDA toggles while SCL is high. These violations cannot be
detected because the OVR flag is not set (no transmit buffer underrun is detected).

This issue occurs under the following conditions:
1. The I2C peripheral operates In Slave transmit mode with clock stretching disabled

(NOSTRETCH=1)
2. and the application is late to write the DR data register, but not late enough to set the

OVR flag (the data register is written before the SCL rising edge).

Workaround
If the master device supports it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not support it, ensure that the write operation to the data register
is performed just after TXE or ADDR events. You can use an interrupt on the TXE or ADDR
flag and boost its priority to the higher level.

Using the “NOSTRETCH” mode with a slow I2C bus speed can prevent the application from
being late to write the DR register (second condition).

Note: The first data to be transmitted must be written into the data register after the ADDR flag is
cleared, and before the next SCL rising edge, so that the time window to write the first data
into the data register is less than tLOW.
If this is not possible, a possible workaround can be the following:
1. Clear the ADDR flag
2. Wait for the OVR flag to be set
3. Clear OVR and write the first data.
The time window for writing the next data is then the time to transfer one byte. In that case,
the master must discard the first received data.

Silicon limitations STM8S001J3/003xx/103xx/903xx

16/18 ES0102 Rev 7

2.6.6 I2C pulse missed

Description
When the I2C interface is used for long transmit/receive transactions, the MCU may return a
NACK somewhere during the transaction instead of returning an ACK for all data. The
received data may also be corrupted. In Master mode the I2C may not detect an incoming
ACK. This is due to a weakness in the noise filter of the I/O pad which in certain conditions
may cause the STM8 I2C to miss a pulse.

The workaround described below is not a clean solution.

Workaround
Since data corruption is caused by noise generated by the CPU, CPU activity should be
minimized during data reception and/or transmission. This is done by performing physical
data transmission (Master mode) and reception (slave mode) in WFI state (wait for
interrupt).

To allow the device to be woken up from WFI, I2C transmission and reception routines must
be implemented through interrupt routines instead of polling mechanisms. Receive and
transmit interrupts (received data processing) must be triggered only by the BTF bit flag
(byte transfer finished) in the I2C_SR1 register. This flag indicates that the I2C is in
stretched state (data transfers are stretched on the bus).

Clock stretching must be enabled to allow data transfers from the slave to be stopped and to
allow the CPU to be woken up to read the received byte.

To recover from possible errors, periodically check if the I2C does not remain in busy state
for too long (BUSY bit set in I2C_SR3 register). If so, it should be reinitialized.

Example of I2C slave code:

//...
//---
void main()
{
 Init_I2C(); // init I2C to use interrupts: ITBUFEN=0, ITEVTEN=1,
ITERREN=1
 while(1)

ES0102 Rev 7 17/18

STM8S001J3/003xx/103xx/903xx Revision history

17

3 Revision history

– Section 2.2.4: VDD rise-time rate for 100mV < VDD < 1V

– Table 3: Product evolution summary

Table 6. Document revision history
Date Revision Changes

01-Apr-2010 1 Initial release.

21-Feb-2011 2

Added revision 6.
Added Section 2.1.4: Unexpected DIV/DIVW instruction result in
ISR.
Updated Table 3 and Section 2.6: I2C peripheral limitations.

16-May-2012 3

Added references to device STM8S003 throughout the document.
Updated Section 2.1.1: Activation level (AL bit) not functional in Halt
mode.
Renamed Section 2.2.

06-Dec-2013 4

Added workaround to Section 2.1.3: Interrupt service routine (ISR)
executed with priority of main process
Added Section 2.2.3: Flash / EEPROM memory is read incorrectly
after wakeup from power down mode
Added Section 2.3.1: Possible collision in servicing of external
interrupts (EXTI)
Added Section 2.4.1: Corruption of read sequence for the 16-bit
counter registers

06-Jul-2017 5
Deleted Appendix A.
Added STM8S001J3 reference in the document (only cover page
was updated).

25-Apr-2019 6

Added:

Updated:

02-Oct-2019 7 Added revision 7.

STM8S001J3/003xx/103xx/903xx

18/18 ES0102 Rev 7

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

	Table 1. Device identification
	Table 2. Device summary
	1 Product evolution
	Table 3. Product evolution summary

	2 Silicon limitations
	2.1 Core limitations
	2.1.1 Activation level (AL bit) not functional in Halt mode
	2.1.2 JRIL and JRIH instructions not available
	2.1.3 Interrupt service routine (ISR) executed with priority of main process
	2.1.4 Unexpected DIV/DIVW instruction result in ISR

	2.2 System limitations
	2.2.1 HSI RC oscillator cannot be switched off in Run mode
	2.2.2 LSI oscillator remains on in Active-halt mode when the AWU unit uses the HSE as input clock
	2.2.3 Flash / EEPROM memory is read incorrectly after wakeup from power down mode
	2.2.4 VDD rise-time rate for 100mV < VDD < 1V
	Table 4. VDD rise-time and fall-time rates

	2.3 EXTI limitations
	2.3.1 Possible collision in servicing of external interrupts (EXTI)
	Table 5. Potential interrupt conflicts

	2.4 Timer peripheral limitations
	2.4.1 Corruption of read sequence for the 16-bit counter registers
	Figure 1. 16-bit read sequence for the counter (TIMx_CNTR)

	2.5 UART peripheral limitations
	2.5.1 UART PE flag cannot be cleared during the reception of the first half of Stop bit

	2.6 I2C peripheral limitations
	2.6.1 I2C event management
	2.6.2 Corrupted last received data in I2C Master Receiver mode
	2.6.3 Wrong behavior of I2C peripheral in Master mode after misplaced STOP
	2.6.4 Violation of I2C “setup time for repeated START condition” parameter
	2.6.5 In I2C slave “NOSTRETCH” mode, underrun errors may not be detected and may generate bus errors
	2.6.6 I2C pulse missed

	3 Revision history
	Table 6. Document revision history

