
Migrating to the PIC32MM Microcontroller Family
INTRODUCTION

This document describes many of the architectural
features of the PIC32MM devices to ease the migration
effort from other devices. This document assumes the
reader is knowledgeable about the device they are cur-
rently using, and therefore, offers a high-level overview
of the PIC32MM family rather than a comprehensive
comparison of peripheral differences between various
products. This document is intended to complement,
not to replace, the Family Reference Manuals and
Device Data Sheet.

CPU

The CPU is a 32-bit MIPS® microAptiv™ single-phase,
unified Harvard RISC architecture core with a 5-stage
pipeline that retires, or completes, one instruction per
system clock. Each instruction takes 5 clocks to
complete, but because of the pipeline 5 instructions at
different stages, they are progressing through the pipe-
line at the same time. This allows an instruction to
complete every clock. The core uses a load and store
architecture. This means that data is not operated on
while in memory. Instead, data is read from memory
into a core register, operated upon and then written
back to memory.

The MIPS MCU ASE extension is implemented. This
extension reduces interrupt latency and adds atomic
read and write instructions. The DSP ASE extension
and floating-point coprocessor are not implemented.

CPU Registers and the Zero Register

The CPU does not have a dedicated Accumulator
register; instead it contains thirty-two 32-bit General
Purpose Registers (GPRs), called Core registers. All of
these registers are functionally identical with the excep-
tion of the Zero register. Register Number 0, $0, is called
the Zero register. Reads of the Zero register will always
return ‘0’. Writes to the Zero register do not change
the Zero register’s contents. Some instructions, such
as Branch and Link, only operate on a specific non
user-selectable register.

By convention, registers are allocated to contain values,
such as a function’s return value or the Stack Pointer.

Program Counter

MIPS CPUs do not have a directly accessible Program
Counter (PC). Instead, the target address, or offset, is
loaded into a GPR register and a JUMP (J) or CALL
(JAL) instruction uses the register’s contents and the
current PC value to generate the target address.

CPU Configuration

The Coprocessor0 (CP0) registers are used to config-
ure the CPU, Interrupt mode and similar operations.
The CP0 registers also contain information about the
CPU implementation, such as the supported instruction
set(s) and the type of hardware multiplier implemented.
These registers are accessed through the special
instructions, MFC0 and MTC0, that move data between
the General Purpose Registers and the CP0 registers.

Data Width

The native data width is 32 bits. Math operations are
performed on 32-bit words, and byte and half-word
operations are performed by masking the result of a
32-bit operation. Because the maximum instruction
length and the data width are the same, the load imme-
diate instruction cannot contain all the possible 2^32-bit
values. Therefore, loading immediate values into a
register may take multiple instructions to ‘build up’ the
desired value (refer to “Assembly Language”). The
MPLAB® XC32 compiler supports char (8-bit), short
(16-bit), int (32-bit) and long long (64-bit) data types.

Instruction Set, Instruction Width and
Orthogonality

Only the microMIPS™ instruction set is supported. This
is a mixed dual length, 16-bit and 32-bit instruction set
that supports all MIPS32® assembly mnemonics, but is
not binary compatible with MIPS32 or MIPS16e®

instruction sets. The microMIPS instruction set pro-
vides code size reduction by providing 16-bit versions
of commonly used instructions. The 16-bit versions do
not support all registers, and have reduced offset and
value ranges. The compiler uses a 16-bit instruction
when possible; otherwise, a 32-bit instruction is used.
The instruction length is decoded as part of the fetch
operation, therefore, 16-bit and 32-bit instructions can
be adjacent, eliminating the need to use calls, as in
the MIPS16e implementation, to switch modes. The
MPLAB XC32 compiler automatically targets the
microMIPS instruction set for this product family. The
MIPS DSP ASE is not supported.
 2016 Microchip Technology Inc. DS00002191A-page 1

PIC32MM FAMILY
The instruction set is orthogonal. With the exception of
a few instructions, any instruction can use any CPU
register as a source and any register for the result,
including the Zero register.

Assembly Language

The microMIPS assembly language contains instruc-
tions and multiple pseudo instructions to simplify
coding common operations. The pseudo instructions
expand into single or multiple instructions, based on
the operation and operands (see Example 1).

EXAMPLE 1: EXAMPLE LOAD
IMMEDIATE PSEUDO
INSTRUCTION

No Operation Instructions (NOP)

The MIPS CPU does not have a dedicated NOP
instruction. Due to the Zero register, there are multiple
math operation instructions that execute but produce
no visible effect, such as adding a value to the Zero
register, thereby providing NOP functionality. By con-
vention, SLL32 $0, $0, 0 is used for the 32-bit NOP,
NOP32, and MOVE16 $0, $0 is used for the 16-bit NOP,
NOP16. MPLAB XC32 follows this convention and dis-
plays a NOP when these instructions are disassembled.
Some instructions must be followed by a NOP32, while
others must be followed by NOP16.

User and Kernel Modes

Only Kernel mode is supported. In Kernel mode,
firmware has direct access to the peripherals.

Bit Operations

Atomic single bit and multi-bit operations are supported
by the CPU and hardware.

Atomic single bit operations are supported with the ASET
and ACLR instructions. These instructions disable inter-
rupts, perform a multi-clock cycle Read-Modify-Write
operation and then re-enable interrupts. These are multi-
cycle instructions. Due to the atomic nature, they can be
used to implement semaphores, but should only be used
to access RAM memory, not peripherals.

Non-atomic single and multi-bit operations, such as
T1CONbits.ON, generate an instruction sequence to
perform a read, a logical OR operation and a write-back
to the register. To provide this functionality as an atomic
operation without the Read-Modify-Write sequence,
most peripherals support hardware Set/Clear/Invert
registers, collectively referred to as SCI registers. The
registers are addressed as offsets to the peripherals’
register address, +0x4, +0x8, +0xC, and are named,
xCLR, xSET, and xINV, accordingly (see Example 2).
For example, the Timer1 ON bit can be set via
T1CONSET = (1<<15). The SCI registers do not exist
as registers, but signal hardware to perform the operation
on the desired register using the provided mask pattern.
Multiple bits can be operated simultaneously based on
the mask value used. The SCI registers are write-only;
the values read from them are invalid. Interrupt flags
should only be cleared using the SCI registers. This is to
prevent inadvertently clearing an interrupt that was
asserted during a Read-Modify-Write sequence.

EXAMPLE 2: SCI ADDRESS OFFSETS
AND NAMES FOR LATA

Shift and Rotate Operations

Shift and rotate operations operate on 32 bits, can be
performed on any CPU register and have a range of
0-31 bits.

Multiply and Divide Unit (MDU)

The CPU has an autonomous Multiply and Divide Unit
(MDU) that can execute a multiply or divide in parallel
with CPU code execution. The multiply engine
performs a 32-bit by 16-bit MAC in 1 clock cycle, or a
32-bit by 32-bit signed or unsigned multiply in two clock
cycles. The divide engine can perform a 32-bit by
32-bit divide, signed or unsigned, in 11 to 34 clock
cycles based on the data size. No hardware floating
point is implemented; these operations are emulated
by software libraries.

CPU Math Status Flags

The MIPS CPU does not implement math status flags,
such as Borrow, Carry or Zero; instead, compare
instructions are used to determine if the result stored in
a register was zero, greater than, or less than zero
(refer to Example 3).

EXAMPLE 3: TEST FOR RESULT EQUALS
ZERO

LI $1, 0x12345678

Can be implemented in two 32-bit instructions by the
assembler:

LUI $2, 0x1234 # 0 | (0x1234<<16) -> $2
ORI $2, $0, 0x5678 #($2) | 0 | 0x5678 -> $2

While the same macro with a smaller operand:

LI $2, 0x12

Can be implemented in a single 16-bit instruction by the
assembler:

LI16 $2, 0x12 # 0x12 -> $2

0xBF802BE0 LATA
0xBF802BE4 LATACLR
0xBF802BE8 LATASET
0xBF802BEC LATAINV

Sum contents of registers. ($7 + $8) -> $6
ADDU $6, $7, $8
Test and branch to EqualsZero:
BEQZ $6, EqualsZero
DS00002191A-page 2  2016 Microchip Technology Inc.

PIC32MM FAMILY
Core Timer

The MIPS CPU has a general purpose timer (core
timer) that counts at ½ the CPU clock rate. The core
timer is accessed through the CP0 registers (refer to
Example 4 and Example 5). The timer can be
configured to generate an interrupt when a specified
value is reached.

EXAMPLE 4: SET/READ CORE TIMER

EXAMPLE 5: SET/READ CORE TIMER
WITH MACROS

Performance Counters

The MIPS microAptiv CPU supports two performance
counters. These counters can be configured to count
CPU instructions completed, CPU cycles, branch
instructions executed and other metrics for code profil-
ing. The performance counters are part of the CP0
registers, and are accessed using the MTC0 and MFC0
instructions or through the MPLAB XC32 macros (see
Example 6).

EXAMPLE 6: CONFIGURE COUNTER

//Set Core Timer
unsigned int counts = 0x12345678;
asm volatile("mtc0 %0, $9": "+r"(counts));

//Read Core Timer
asm volatile("mfc0 %0, $9": "=r"(counts));

//Set Core Timer
unsigned int counts = 0x12345678;
_CP0_SET_COUNT(counts);

//Read Core Timer
counts = _CP0_GET_COUNT();

/ configure counter
#define PCNTR0_MODE_NOPS (17<<5)
#define PCNTR_CNT_KERNEL (1<<1)
_CP0_SET_PERFCNT0_CONTROL(PCNTR0_MODE_NOPS | PCNTR_CNT_KERNEL
);

_CP0_SET_PERFCNT0_COUNT(0); // reset counts to 0
// user code
counts = _CP0_GET_PERFCNT0_COUNT(); // read counts
 2016 Microchip Technology Inc. DS00002191A-page 3

PIC32MM FAMILY
MEMORY AND BUS MATRIX

Wait States

Both Flash and RAM are zero Wait state access across
the device operating frequency range. The Flash and
RAM Wait state control bits are not implemented.

Prefetch and Cache

No prefetch or cache is implemented. A line buffer is
used to hold a Flash line of data, 64 bits after it has
been fetched. If the next instruction to fetch exists in the
line buffer, it is read from the line buffer instead of
generating another Flash fetch.

Execution from RAM

Because of the unified memory map, RAM memory is
mapped in the same manner as Flash memory. There-
fore, code can execute from RAM. When executing
from RAM, the instruction and data buses must
arbitrate for the access to RAM memory, generating
core Stalls. To execute code from RAM, the memory
must be logically partitioned into instruction and data
memory using the EXECADDRx bits (see Example 7).
The default partition is all program memory. The
compiler will automatically allocate the required
memory when a function is placed in RAM using the
__longramfunc__ attribute.

EXAMPLE 7: MANUALLY SETTING THE
RAM DATA/CODE
PARTITION

Flash Memory and ECC Error Correction

Flash memory is 64 bits wide with additional bits
reserved for ECC error correction. All Single Bit Errors
(SBE) in Flash can be detected and corrected. All
Double-Bit Errors (DBE) can be detected, but not cor-
rected, and generate a bus error exception (data load).
Due to the ECC bits, Flash data must be written as a
64-bit aligned, 64-bit double word or an aligned row.
Rewriting the data in Flash without a preceding erase
operation violates the Flash specification and will, if
data is different from the previous data, generate an
ECC error when the data is read. ECC errors are only
detected during a read operation.

Unified Memory Map

The CPU has a 4-Gbyte linear address range. There
are no page or bank select bits for memory. The unified
memory maps contains Flash, RAM and peripherals in
a common address range. This memory map is divided
into multiple sections, called segments. Some of the
segments alias other segments to provide compatibility
with devices that support caches.

Flash Programming

The self-programming of Flash memory can be
performed via double-word writes or row writes. When
a Flash write operation is in progress, any Flash
accesses by the CPU or DMAs will stall until the Flash
write operation completes. The Flash controller has an
independent hardware lock mechanism, similar to
SYSKEY, to prevent inadvertent operations. If the CPU
is executing from RAM, it can continue executing while
Flash is being programmed. The CPU will, however,
have to arbitrate with the Flash controller for RAM
access if a row write is being performed.

Physical and Virtual Memory Addresses

Physical memory addresses are in the address range
of: 0x0000_0000 through 0x7FFF_FFFF. This
contains the address of all accessible memory and
peripherals on the device. Physical addresses are only
used by DMA peripherals, including the Flash controller,
stand-alone DMA and the USB DMA.

The CPU accesses memory and peripherals through
virtual addressing. In virtual addressing, the contents of
the physical memory map are accessed through alias
addresses, called segments. These segments can
have unique attributes based on the CPU configura-
tion. The FMT translates the virtual addresses to
physical addresses.

Memory Segments (ksegx)

The contents of physical memory are accessible via
multiple addresses, called segments. Each segment
can have unique attributes. The upper 3 bits of the
virtual address are used to determine the segment.
kuseg addresses are identical to the physical
addresses. Only kseg1 and kseg0 are supported by
this implementation. kseg1 is non-cacheable memory
and kseg0 is cacheable. These regions are function-
ally identical because a cache is not implemented. To
improve code portability, the cacheable/non-cacheable
convention should be followed. Memory to be
accessed by both a DMA and the CPU should be non-
cacheable (kseg1) to prevent coherency issues.
Peripherals should be accessed as non-cacheable
(kseg1). Memory accessed only by the CPU (variables)
should use cacheable memory (kseg0).

CFGCONbits.EXECADDR = 1; // 1k of RAM is
 // dedicated to

// instruction memory
DS00002191A-page 4  2016 Microchip Technology Inc.

PIC32MM FAMILY
Fixed Map Translation Table (FMT)

The FMT is used to translate virtual addresses into
physical addresses for CPU reads and writes. The
operation of the FMT is transparent to the user. The
address supplied is used by the FMT to determine the
physical address for the desired operation.

Bus Matrix (BMX)

The bus matrix is a crossbar switch that connects the
CPU instruction bus, CPU data bus, peripherals and
memory. The CPU, Flash controller, general purpose
DMA and USB DMA are referred to as initiators
because they initiate reads or writes. Flash memory,
RAM and peripherals are called targets because data
is written to, or read from them. All peripherals are
accessed through a single target. Some peripherals,
such as DMA, are both a target and an initiator. The
BMX allows multiple initiators to perform concurrent
accesses to targets as the long they are not the same
target. If the targets are the same, arbitration occurs.
For example, a DMA can move data from a peripheral
to RAM, while the CPU is fetching instructions, or data
from Flash. If both the DMA and CPU attempt to access
the same target, arbitration occurs, stalling the CPU or
DMA.

INTERRUPTS

Exceptions

Exceptions are a generic term for interrupts. Excep-
tions can be generated by a peripheral interrupt,
instructions, address errors and math overflow. The
cause of the exception is contained in the Cause
register (CP0.13) and the address of the exception is
stored in the Exception Return register (EPC, CP0.14).

Exceptions include:

• Peripheral interrupts

• Address error exception (load or instruction fetch)

• Address error exception (store)

• Bus error exception (instruction fetch)

• Bus error exception (data reference: load or store)

• SYSCALL exception instruction

• Software Breakpoint exception

• Reserved instruction exception (not decoded as a
NOP)

• Coprocessor unusable exception (only CP0 is
supported)

• Arithmetic overflow exception

• Trap exception (conditionally generated by the
result of a TRAP instruction)

EXAMPLE 8: EXCEPTION HANDLER

volatile unsigned int epc, cause;

void __attribute__((naked)) _general_exception_handler(void)
{

// determine the source of the issue
epc = _CP0_GET_EPC();
cause = (((_CP0_GET_CAUSE()) & 0x0000007C) >> 2);

while(1);
}

 2016 Microchip Technology Inc. DS00002191A-page 5

PIC32MM FAMILY
Interrupts

Peripheral interrupt sources have a unique interrupt
vector and Interrupt Request (IRQ) for each interrupt
generation source. Each IRQ has a user-selectable
priority and sub-priority. Multivector and single vector
interrupt processing are supported.

INTERRUPT SERVICE ROUTINE (ISR)
FUNCTIONS

The compiler provides attributes to determine
implementation of an ISR function (Example 9).

EXAMPLE 9: ISR TO CONFIGURE AN ISR FOR TIMER1 ROLLOVER

INTERRUPT PRIORITIES

Each interrupt source, IRQ, has an associated priority,
sub-priority and a fixed natural priority. The interrupt
priority is used to determine interrupt preemption. An
interrupt with a higher priority will preempt an interrupt
with a lower priority. The sub-priority is only used when
multiple interrupts of the same priority are pending. If
multiple interrupts with the same priority and sub-
priority are pending, the natural order (the lowest IRQ
number) is used to determine the higher priority. Eight
levels of priority and 4 levels of sub-priority are avail-
able. The IRQ priority and sub-priority are set using bits
in the IPCx registers. Interrupt priority has no effect on
interrupt latency, assuming no higher priority interrupts
that would cause preemption, are pending.

ENABLING INTERRUPTS

Interrupts can be globally and individually enabled
and disabled. The individual interrupt enable bits
are contained in the IECx registers. Interrupts can
be globally enabled and disabled with the ‘ei’
and ‘di’ instructions, or by using compiler
macros, __builtin_enable_interrupts() and
__builtin_disable_interrupts(). For an inter-
rupt source to generate an interrupt, interrupts must be
globally enabled, the interrupt’s priority must be greater
than zero and the individual interrupt must be enabled.

unsigned int val = 0;

// Timer configuration is not shown

// set interrupt priority and enable peripheral interrupt
IPC1bits.T1IP = 7; // set Timer1’s interrupt priority to 7
IPC1bits.T1IS = 0; // set Timer1’s sub-priority to 0
IEC0bits.T1IE = 1; // enable timer1 int

PRISS = 1<<28; // pair IPL7 with Shadow Set 1

// enable of multi-vector mode is done by start-up code. The code below is not required.
asm volatile("mfc0 %0,$13":"=r"(val)); // set the CP0 cause IV bit high
val |= 0x00800000;
asm volatile("mtc0 %0,$13" : "+r"(val));
INTCONSET = _INTCON_MVEC_MASK;

__builtin_enable_interrupts(); // XC32 macro to enable interrupts

void __ISR(_TIMER_1_VECTOR, IPL7SRS) TimerISR(void) // ISR
{
IFS0CLR = (1<<17); // clear the timer interrupt flag
// user code
}

DS00002191A-page 6  2016 Microchip Technology Inc.

PIC32MM FAMILY
MULTIVECTOR, SINGLE VECTOR
INTERRUPTS AND SPACING

In Multivector mode, each IRQ has a corresponding
unique vector address for the interrupt handler. The
distance between all the vectors, the maximum Inter-
rupt Service Routine (ISR) length, can be set by the
user. The user can specify the ISR code to be located
at the vector address, or to use a JUMP instruction at
the vector address targeting the actual ISR code,
thereby reducing the space used by the vector table. By
default, a jump table is created at the vector address to
reduce the size of the vector table. The device start-up
code enables Multivector mode.

CLEARING INTERRUPTS

Interrupts should only be cleared using the interrupt
controller’s Interrupt Flag Clear (IFSxCLR) registers. A
software Read-Modify-Write operation to the IFSx
register would overwrite any interrupt flag that was set
between the read and write operation, thereby masking
that interrupt. The operation using the Clear register is
also faster to execute and uses fewer instructions
(Example 10).

EXAMPLE 10:

SHADOW SETS

One hardware shadow set is available for interrupt
processing. This is a second set of CPU Core registers,
associated with a particular interrupt priority, using
parameters in the ISR declaration and the PRISS
register. When an interrupt associated with the shadow
set occurs, the shadow set replaces the Core registers
to eliminate saving Core registers to the stack. For
interrupts that do not use the shadow set, the Core
registers will be saved on the stack. Typically, the
shadow set is used with the highest interrupt priority to
minimize that interrupt’s latency. The PRISS register is
used to pair an interrupt priority to the shadow set.

INTERRUPT LATENCY

The hardware interrupt latency is 8 clocks. This is the
time from when an interrupt is generated until the CPU
retires and completes execution of the first instruction
in the ISR prolog. The software latency depends on the
ISR type. For hardware shadow sets, there is no addi-
tional latency for the Core registers, but some CP0
registers may be saved by the interrupt prolog. For
software shadow sets, the latency can be 20 or more
clocks because multiple Core registers must be pushed
onto the stack. Implementing a jump table at the ISR
vector adds an additional 2 clock cycles for the JUMP
instruction.

PERSISTENT AND NON-PERSISTENT
INTERRUPTS

Peripherals that use a FIFO with a watermark as an
interrupt source and comparator have persistent inter-
rupts (UART and SPI). The interrupt is not clearable
until the cause of the interrupt is serviced. This type of
interrupt data must be read from the FIFO until it is
below the watermark. After the interrupt cause is ser-
viced, the interrupt flag can be cleared. The interrupt is
reasserted when the watermark threshold is exceeded

Non-watermark interrupt flags can be cleared before
reading the appropriate register. Clearing the interrupt
flag before reading the registers also reduces the time
in which a second interrupt can occur before the flag is
cleared and not detected.

NON-MASKABLE INTERRUPT (NMI)

When an NMI occurs, program execution jumps to the
NMI handler. If the user does not specify a handler, the
weak default handler is used that returns from the NMI.
The NMI vector is shared between multiple NMI
sources, wake from Sleep, WDT event and Reset. In
the case of the WDT event, the NMI timer is started. If
the NMI timer expires before the NMI is serviced, a
device Reset will occur. The time-out period of the NMI
timer in system clocks can be set with the RNMICON
register.

IFS0CLR = 1<< _IFS0_CTIF_POSITION;
// Clear the Core Timer interrupt
 2016 Microchip Technology Inc. DS00002191A-page 7

PIC32MM FAMILY
SYSTEM

Peripheral Bus (PB)

Only a single Peripheral Bus is implemented. The PB
divisor is fixed at 1:1.

System Key (SYSKEY)

To prevent unintended access to certain registers,
oscillators and Resets, they are protected by a hardware
locking mechanism. To unlock these registers, the key
value, 0xAA99665 5, and its inverse must be sequen-
tially written to the SYSKEY register. Any accesses to
other system registers between these writes will abort
the unlock operation. A write of a non-sequence value
will also relock the registers. To prevent this, interrupts
and DMA accesses should be disabled/suspended prior
to using the unlock sequence. The SYSKEY register can
be read to determine the lock status. The system is
locked automatically following any Reset.

EXAMPLE 11: UNLOCK SEQUENCE

Power Save Modes

Two types of power save modes are available; Sleep
and Idle.

There are multiple modes for Sleep depending on the
desired power consumption and wake-up time require-
ments. Most clocks are disabled in Sleep. Only select
peripherals, including the ADC and Change Notice
(CN), can operate in Sleep mode.

Retention Sleep is a lower power mode than Sleep. A
dedicated low-voltage regulator is used to maintain
state and RAM contents. Due to the lower operating
voltage of this mode, the wake-up time is longer than
Sleep mode.

There is a single Idle mode, but most peripherals have
a software writable bit, SIDL, that determines if the
peripheral is active in Idle mode. Clock sources that
were enabled in Run mode continue to run in Idle. The
CPU stops executing instructions until a wake-up event
occurs. The stand-alone DMA peripheral can perform
transfers while the device is in Idle.

The device enters power save modes via a WAIT
instruction. The mode entered depends on the status of
the SLPEN bit in the RCON register and the selected
Sleep mode. A wake from Sleep or Idle is a NMI event.
After waking up, the CPU jumps to the NMI handler.
The default NMI handler will return code execution to
the instruction following the WAIT.

Hardware Trace

Hardware trace is not supported by the PIC32MM
device family.

Debug Breakpoints

Four instruction and two data breakpoints are supported.
Data breakpoints can be configured to occur on access
to a particular location or reading/writing a specific value
to the particular location. Software breakpoints are avail-
able as a BREAK16 instruction. Complex breakpoints are
not supported.

Peripheral Pin Select (PPS)

Full PPS allows the mapping of inputs and/or outputs of
select peripherals to any device pin that has an RPn
function. PPS peripherals are not grouped as is
required by PPS Lite.

Dual Watchdog Timer (WDT) and
Determinism

The WDT has two timers; one for operation in Run
mode and the other for operation in Sleep mode. The
Run mode WDT increments at the rate of the user-
selected clock. The Sleep mode WDT operates using
the LPRC clock source. The DMA peripherals arbitrat-
ing for memory and peripheral access may reduce the
number of CPU instructions executed within a given
time period. This can make the CPU execution appear
non-deterministic, and therefore, cause unexpected
WDT time-outs when code is expected to clear the
WDT near the end of the period or window.

Oscillators and Clocks (FOSC vs. FCY)

Due to the single phase nature of the CPU FCY, the
system clock is 1:1 with FOSC. No divisors are used.

Clock Out

The signal on the clock out pin is derived from the PB
clock. It is the same frequency as the system clock.

Reference Clock (REFO)

The REFO peripheral divides a user-specified input
clock with a user-selected integer divider to create a
wide range of integer divided output. The output of this
peripheral is available on a GPIO pin and as the clock
input to select peripherals. This can be used to
generate frequencies from common device clocks,
such as the 48 MHz USB clock. Fractional output divide
is not supported.

SYSKEY = 0x00000000;
// force lock, reset sequence

SYSKEY = 0xAA996655; // unlock sequence
SYSKEY = 0x556699AA;
DS00002191A-page 8  2016 Microchip Technology Inc.

PIC32MM FAMILY
Software Reset

The CPU does not have a RESET instruction. A soft-
ware Reset is performed by writing a value to, and
reading back from, a Reset Control register, RSWRST
(see Example 12). The Reset Control register is
hardware locked by SYSKEY. The Reset sequence
should be followed by four NOPs or a while(1)
instruction to prevent any write operations during the
Reset sequence.

EXAMPLE 12:

Direct Memory Access (DMA) and
Peripherals with DMA

DMA engines are used to transfer data in either
direction between Flash, RAM and peripherals. The
only operation not supported by the stand-alone DMA
is a write to Flash. All DMA operations go through the
system bus matrix, and therefore, arbitrate with the
CPU and other DMA(s) for bus access. DMA transfers
are configured using physical memory addresses only.

The general purpose DMA peripheral is a stand-alone
DMA used to transfer data without CPU intervention.
Multiple DMA channels are implemented in the single
DMA controller. Data transfers occur based on the
DMA channel trigger event and the channel priority.
Only one DMA channel can actively transfer data at a
given time. All devices in the family do not have the
DMA peripheral.

The general purpose DMA also has an integrated
programmable CRC engine that can be linked to a
DMA channel.

The USB peripheral contains a dedicated linked
list-based DMA engine. The descriptors and data
transfer configurations are stored in system RAM. All
devices in the family do not have the USB peripheral.

The Flash controller contains a dedicated non-
programmable DMA engine used to transfer data from
system RAM to Flash during row write operations. This
is the only DMA that can perform Flash write
operations.

Cyclic Redundancy Check (CRC) Engine

The CRC engine is a programmable CRC calculator used
to offload calculations from the CPU. The CRC is part of
the general purpose DMA or a similar stand-alone CRC
module for devices without DMA.

unsigned int temp;
SYSKEY = 0x00000000;
// force lock, reset sequence

SYSKEY = 0xAA996655; // unlock sequence
SYSKEY = 0x556699AA;
RSWRST = 1; // write the reset bit
temp = RSWRST;
// read operation will generate a reset

while(1); // wait for the reset
 2016 Microchip Technology Inc. DS00002191A-page 9

PIC32MM FAMILY
REFERENCES

MIPS® Architecture for Programmers Volume I-A:
Introduction to the MIPS32® Architecture, Revision 5

MIPS® Architecture for Programmers Volume II-B: The
microMIPS32™ Instruction Set

MIPS32® M14K™ Processor Core Data Sheet

PIC32MM0064GPL036 Family Data Sheet
(DS60001324)

PIC32 Family Reference Manual, “Section 50. CPU for
Devices with MIPS32® microAptiv™ and M-Class
Cores” (DS60001192)

MPLAB® XC32 C/C++ Compiler User’s Guide,
“Chapter 14. Interrupts” (DS50001686)
DS00002191A-page 10  2016 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2016 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate,
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O
are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,
ETHERSYNCH, Hyper Speed Control, HyperLight Load,
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2016, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0711-9
DS00002191A-page 11

DS00002191A-page 12  2016 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

07/14/15

http://support.microchip.com
http://www.microchip.com

	Introduction
	CPU
	CPU Registers and the Zero Register
	Program Counter
	CPU Configuration
	Data Width
	Instruction Set, Instruction Width and Orthogonality
	Assembly Language
	EXAMPLE 1: Example Load Immediate Pseudo Instruction

	No Operation Instructions (NOP)
	User and Kernel Modes
	Bit Operations
	EXAMPLE 2: SCI Address Offsets and Names for LATA

	Shift and Rotate Operations
	Multiply and Divide Unit (MDU)
	CPU Math Status Flags
	EXAMPLE 3: Test for Result Equals Zero

	Core Timer
	EXAMPLE 4: Set/Read Core Timer
	EXAMPLE 5: Set/Read Core Timer with Macros

	Performance Counters
	EXAMPLE 6: Configure Counter

	Memory and Bus Matrix
	Wait States
	Prefetch and Cache
	Execution from RAM
	EXAMPLE 7: Manually Setting the RAM Data/Code Partition

	Flash Memory and ECC Error Correction
	Unified Memory Map
	Flash Programming
	Physical and Virtual Memory Addresses
	Memory Segments (ksegx)
	Fixed Map Translation Table (FMT)
	Bus Matrix (BMX)

	Interrupts
	Exceptions
	EXAMPLE 8: Exception Handler

	Interrupts
	Interrupt Service Routine (ISR) Functions
	EXAMPLE 9: ISR to Configure an ISR for Timer1 Rollover

	Interrupt Priorities
	Enabling Interrupts
	Multivector, Single Vector Interrupts and Spacing
	Clearing Interrupts
	EXAMPLE 10:

	Shadow Sets
	Interrupt Latency
	Persistent and Non-Persistent Interrupts
	Non-Maskable Interrupt (NMI)

	System
	Peripheral Bus (PB)
	System Key (SYSKEY)
	EXAMPLE 11: Unlock Sequence

	Power Save Modes
	Hardware Trace
	Debug Breakpoints
	Peripheral Pin Select (PPS)
	Dual Watchdog Timer (WDT) and Determinism
	Oscillators and Clocks (Fosc vs. Fcy)
	Clock Out
	Reference Clock (REFO)
	Software Reset
	EXAMPLE 12:

	Direct Memory Access (DMA) and Peripherals with DMA
	Cyclic Redundancy Check (CRC) Engine

	References
	Worldwide Sales and Service

