Full TCP/IP for 8-Bit Architectures

Adam Dunkels
Swedish Institute of Computer Science
adam@sics.se, http://lwww.sics.se/"adam/

Abstract used of the transport protocols in the TCP/IP stack. TCP
provides reliable full-duplex byte stream transmission
on top of the best-effort IP [20] layer. Because IP may

We describe two small and portable TCP/IP implemen-+eorder or drop packets between the sender and the re-

tations fulfilling the subset of RFC1122 requirementsceiver, TCP has to implement sequence numbering and

needed for full host-to-host interoperability. Our TCP/IP retransmissions in order to achieve reliable, ordered data
implementations do not sacrifice any of TCP’s mecha-ransfer.

nisms such as urgent data or congestion control. They

support IP fragment reassembly and the number of mulwe have implemented two small generic and portable

tiple simultaneous connections is limited only by the TCP/IP implementationswIP (lightweight IP) anculP

available RAM. Despite being small and simple, our im- (micro IP), with slightly different design goals. The lwIP

plementations do not require their peers to have comimplementation is a full-scale but simplified TCP/IP im-

plex, full-size stacks, but can communicate with peersplementation that includes implementations of IP, ICMP,

running a similarly light-weight stack. The code size is UDP and TCP and is modular enough to be easily ex-

on the order of 10 kilobytes and RAM usage can be coniended with additional protocols. IwIP has support for

figured to be as low as a few hundred bytes. multiple local network interfaces and has flexible con-
figuration options which makes it suitable for a wide va-
riety of devices.

1 Introduction The ulP implementation is designed to have only the ab-
solute minimal set of features needed for a full TCP/IP
stack. It can only handle a single network interface and

With the success of the Internet, the TCP/IP protocoldoes not implement UDP, but focuses on the IP, ICMP

suite has become a global standard for communicatiorand TCP protocols.

TCP/IP is the underlying protocol used for web page

transfers, e-mail transmissions, file transfers, and peeBoth implementations are fully written in the C pro-

to-peer networking over the Internet. For embedded sysgramming language. We have made the source code

tems, being able to run native TCP/IP makes it possi-available for both IwIP [7] and ulP [8]. Our imple-
ble to connect the system directly to an intranet or evermentations have been ported to numerous 8- and 16-bit
the global Internet. Embedded devices with full TCP/IP platforms such as the AVR, H8S/300, 8051, Z80, ARM,
support will be first-class network citizens, thus beingM16c, and the x86 CPUs. Devices running our imple-
able to fully communicate with other hosts in the net- mentations have been used in numerous places through-
work. out the Internet.

Traditional TCP/IP implementations have required farWe have studied how the code size and RAM usage of a
too much resources both in terms of code size and memFCP/IP implementation affect the features of the TCP/IP
ory usage to be useful in small 8 or 16-bit systems. Codémplementation and the performance of the communica-
size of a few hundred kilobytes and RAM requirementstion. We have limited our work to studying the imple-

of several hundreds of kilobytes have made it impossiimentation of TCP and IP protocols and the interaction
ble to fit the full TCP/IP stack into systems with a few between the TCP/IP stack and the application programs.
tens of kilobytes of RAM and room for less than 100 Aspects such as address configuration, security, and en-
kilobytes of code. ergy consumption are out of the scope of this work.

TCP [21] is both the most complex and the most widely The main contribution of our work is that we have shown

Web server application

that is it possible to implement a full TCP/IP stack that i
is small enough in terms of code size and memory usage '
to be useful even in limited 8-bit systems. D web srver spplcaton

Incoming
Network ooo TCPIP
interface packets stack

|

Web server application

Recently, other small implementations of the TCP/IP
stack have made it possible to run TCP/IP in small 8-bit

Mail sender application

Il

systems. Those implementations are often heavily spe- £ Daalogges ppicaion |
cialized for a particular application, usually an embed-
ded web server, and are not suited for handling generic Figure 1: TCP/IP input processing.

TCP/IP protocols. Future embedded networking appli-
cations such as peer-to-peer networking require that the
embedded devices are able to act as first-class network }
citizens and run a TCP/IP implementation that is not tai-Vic€; Pass through the TCP/IP stack, and are delivered to
lored for any specific application. the actual applications. In this example there are five ac-
tive connections, three that are handled by a web server
Furthermore, existing TCP/IP implementations for small@Pplication, one that is handled by the e-mail sender ap-
systems assume that the embedded device always wilication, and one thatis handled by a data logger appli-
communicate with a full-scale TCP/IP implementation C&tion.
running on a workstation-class machine. Under this as-

Web server application Application

sumption, it is possible to remove certain TCP/IP mech- deta
anisms that are very rarely used in such situations. Many =
of those mechanisms are essential, however, if the em- Optacira,

.) . . ‘Web server application TCPIP Network
bedded device is to communicate with another equally stack packets | interfece
limited device, e.g., when running distributed peer-to-
peer services and protocols. :Dmggwp,mn

This paper is organized as follows. After a short intro-
duction to TCP/IP in Section 2, related work is presented
in Section 3. Section 4 discusses RFC standards compli-

ance. How memory and buffer management is done i iy, Jevel view of the output processing can be seen

our i_mp!ementations_ s preserjteq in Secti(_)n 5 an_d the, Figure 2. The TCP/IP stack collects the data sent by
application program interface is discussed in Section 6ye aniications before it is actually sent onto the net-
Details of the protocol implementations is given in Sec-

Figure 2: TCP/IP output processing.

maximum throughput of our implementations,

throughput measurements from experiments and reporige, yansmitted. The data is not removed from the queue
on the code size of our implementations. Section 9 giveg | the receiver has acknowledged the reception of the
ideas for future work. Finally, the paper is summarizedya, i ng acknowledgment is received within a specific
and concluded in Section 10. time, the data is retransmitted.

Data arrives asynchronously from both the network and
the application, and the TCP/IP stack maintains queues
2 TCPI/IP overview in which packets are kept waiting for service. Because
packets might be dropped or reordered by the network,
incoming packets may arrive out of order. Such pack-
From a high level viewpoint, the TCP/IP stack can beets have to be queued by the TCP/IP stack until a packet
seen as a black box that takes incoming packets, and déhat fills the gap arrives. Furthermore, because TCP lim-
multiplexes them between the currently active connecits the rate at which data that can be transmitted over
tions. Before the data is delivered to the application,each TCP connection, application data might not be im-
TCP sorts the packets so that they appear in the ordenediately sent out onto the network.
they were sent. The TCP/IP stack will also send ac-
knowledgments for the received packets. The full TCP/IP suite consists of numerous protocols,
ranging from low level protocols such as ARP which
Figure 1 shows how packets come from the network detranslates IP addresses to MAC addresses, to application

level protocols such as SMTP that is used to transfer emunicate with a system such as a PC that runs a full
mail. We have concentrated our work on the TCP andscale, standards compliant TCP/IP implementation. By
IP protocols and will refer to upper layer protocols asrelying on the standards compliance of the remote host,
“the application”. Lower layer protocols are often im- even an extremely simplified, uncompliant, TCP/IP im-
plemented in hardware or firmware and will be referredplementation will be able to communicate. The commu-
to as “the network device” that are controlled by the net-nication may very well fail, however, once the system is
work device driver. to communicate with another simplified TCP/IP imple-
mentation such as another embedded system of the same
TCP provides a reliable byte stream to the upper layekind. We will briefly cover a number of such simplifica-
protocols. It breaks the byte stream into appropriatelytions that are used by existing implementations.
sized segments and each segment is sent in its own IP
packet. The IP packets are sent out on the network by¥one usual simplification is to tailor the TCP/IP stack for
the network device driver. If the destination is not on a specific application such as a web server. By doing
the physically connected network, the IP packet is for-this, only the parts of the TCP/IP protocols that are re-
warded onto another network by a router that is situatedjuired by the application need to be implemented. For
between the two networks. If the maximum packet sizeinstance, a web server application does not need support
of the other network is smaller than the size of the IPfor urgent data and does not need to actively open TCP
packet, the packet is fragmented into smaller packets bgonnections to other hosts. By removing those mech-
the router. If possible, the size of the TCP segments aranisms from the implementation, the complexity is re-
chosen so that fragmentation is minimized. The finalduced.
recipient of the packet will have to reassemble any frag-
mented IP packets before they can be passed to highdhe smallest TCP/IP implementations in terms of RAM
layers. and code space requirements are heavily specialized for
serving web pages and use an approach where the web
server does not hold any connection state at all. For ex-
ample, the iPic match-head sized server [26] and Jeremy
3 Related work Bentham’s PICmicro stack [1] require only a few tens of
bytes of RAM to serve simple web pages. In such an
implementation, retransmissions cannot be made by the

There are numerous small TCP/IP implementations forl CP module in the embedded system because nothing is

embedded systems. The target architectures range fro own about the active connections. In order to achieve
small 8-bit microcontrollers to 32-bit RISC architec- €liable transfers, the system has to rely on the remote
tures. Code size varies from a few kilobytes to hundreg£1St 10 perform retransmissions. It is possible to run a

of kilobytes. RAM requirements can be as low as 10Vvery simple web server with such an implementation,
bytes up to several megabytes but there are serious limitations such as not being able to

serve web pages that are larger than the size of a single

Existing TCP/IP implementations can roughly be di- 1 CP ségment, which typically is about one kilobyte.

vided into two categories; those that are adaptations))

of the Berkeley BSD TCP/IP implementation [18], and Other TCP/IP implementations such as _the Atmel
those that are written independently from the BSD code. CF/IP stack [5] save code space by leaving out cer-
The BSD implementation was originally written for [@in Vital TCP mechanisms. In particular, they often
workstation-class machines and was not designed for thi§2ve out TCP's congestion control mechanisms, which
limitations of small embedded systems. Because of tha@'€ USed to reduce the sending rate when the network

implementations that are derived from the BSD codeS Overloaded. While an implementation with no con-

base are usually suited for larger architectures than o g€Stion control might work well when connected to a
target. An example of a BSD-derived implementation isSin9le Ethernet segment, problems can arise when com-

the InterNiche NicheStack [11], which needs around 5gnunication spans several networks. In such cases, the
kilobytes of code space on a 32-bit ARM system. intermediate nodes such as switches and routers may be

overloaded. Because congestion primarily is caused by

Many of the independent TCP/IP implementations fortn€ @mount of packets in the network, and not the size
embedded processors use a simplified model of th@f these packets, even small 8-bit systems are able to

TCP/IP stack which makes several assumptions abod}fduce enough traffic to cause congestion. A TCP/IP

the communication environment. The most common aS_|mplementat|on lacking congestion control mechanisms

sumption is that the embedded system always will comShould not be used over the global Internet as it might

contribute to congestion collapse [9]. .
g pse [9] Table 1: TCP/IP features implemented by ulP and IwIP

Texas Instrument's MSP430 TCP/IP stack [6] and the | cature ulP IwiP
TinyTCP code [4] use another common simplificationin | P and TCP checksums X X
that they can handle only one TCP connection at a time. | P fragment reassembly X X
While this is a sensible simplification for many appli- | P options
cations, it seriously limits the usefulness of the TCP/Ip | Multiple interfaces X
implementation. For example, it is not possible to com- UDR . X
municate with two simultaneous peers with such an im- | Multiple TCP connections X X
plementation. The CMX Micronet stack [27] uses a sim- TCP options X X
ilar simplification in that it sets a hard limit of 16 on the | variable TCP MSS X X
maximum number of connections. RTT estimation X X
TCP flow control X X
Yet another simplification that is used by LiveDevices | Shding TCP window X
Embedinet implementation [12] and others is to disre- | |CF congestion control | Notneeded x
gard the maximum segment size that a receiver is pre- | Qut-of-sequence TCP data X
pared to handle. Instead, the implementation will send | | CP urgentdata _ X X
segments that fit into an Ethernet frame of 1500 bytes. |_Dat& buffered for rexmit X

This works in a lot of cases due to the fact that many
hosts are able to receive packets that are 1500 bytes or

larger. Communication will fail, however, if the receiver kind is“There MUST be a mechanism for reporting soft
is a system with limited memory resources that is NotTcp error conditions to the applicationA TCP/IP im-
able to handle packets of that size. plementation that violates requirements of the first kind
may not be able to communicate with other TCP/IP im-
Finally, the most common simplification is to leave out plementations and may even lead to network failures.
support for reassembling fragmented IP packets. EveRjpjation of the second kind of requirements will only

though fragmented IP packets are quite infrequent [25]gffect the communication within the system and will not
there are situations in which they may occur. If packetsyffect host-to-host communication.

travel over a path which fragments the packets, commu-

nication is impossible if the TCP/IP implementation is |n qur implementations, we have implemented all REC
unable to correctly reassemble them. TCP/IP implemenrequirements that affect host-to-host communication.
tations that are able to correctly reassemble fragmentedowever, in order to reduce code size, we have removed
IP packets, such as the Kadak KwikNET stack [22], arecertain mechanisms in the interface between the applica-
usually too large in terms of code size and RAM require-tion and the stack, such as the soft error reporting mech-
ments to be practical for 8-bit systems. anism and dynamically configurable type-of-service bits

for TCP connections. Since there are only very few ap-

plications that make use of those features, we believe

that they can be removed without loss of generality. Ta-
4 RFC-compliance ble 1 lists the features that ulP and IwIP implements.

The formal requirements for the protocols in the TCP/IP

stack is specified in a number of RFC documents pub5 Memory and buffer management

lished by the Internet Engineering Task Force, IETF.

Each of the protocols in the stack is defined in one more

RFC documents and RFC1122 [2] collects all require-In our target architecture, RAM is the most scarce re-

ments and updates the previous RFCs. source. With only a few kilobytes of RAM available for
the TCP/IP stack to use, mechanisms used in traditional

The RFC1122 requirements can be divided into two cat-TCP/IP cannot be directly applied.

egories; those that deal with the host to host communi-

cation and those that deal with communication betweerBecause of the different design goals for the IwIP and

the application and the networking stack. An example ofthe ulP implementations, we have chosen two different

the first kind is"A TCP MUST be able to receive a TCP memory management solutions. The IwIP implementa-

option in any segmentand an example of the second tion has dynamic buffer and memory allocation mecha-

nisms where memory for holding connection state andvice driver is finished sending the data, but held on a re-
packets is dynamically allocated from a global pool oftransmission queue. If the data is lost in the network and
available memory blocks. Packets are contained in on&ave to be retransmitted, the buffers on retransmission
or more dynamically allocated buffers of fixed size. Thequeue will be retransmitted. The buffers are not deallo-
size of the packet buffers is determined by a configura€ated until the data is known to be received by the peer.
tion option at compile time. Buffers are allocated by thelf the connection is aborted because of an explicit re-
network device driver when an incoming packet arrives.quest from the local application or a reset segment from
If the packet is larger than one buffer, more buffers arethe peer, the connection’s buffers are deallocated.
allocated and the packet is split into the buffers. If the
incoming packet is queued by higher layers of the stackn ulP, the same global packet buffer that is used for in-
or the application, a reference counter in the buffer is in-coming packets is also used for the TCP/IP headers of
cremented. The buffer will not be deallocated until theoutgoing data. If the application sends dynamic data, it
reference countis zero. may use the parts of the global packet buffer that are not
used for headers as a temporary storage buffer. To send
The ulP stack does not use explicit dynamic memory althe data, the application passes a pointer to the data as
location. Instead, it uses a single global buffer for hold-well as the length of the data to the stack. The TCP/IP
ing packets and has a fixed table for holding connectiorheaders are written into the global buffer and once the
state. The global packet buffer is large enough to conheaders have been produced, the device driver sends the
tain one packet of maximum size. When a packet arrivefieaders and the application data out on the network. The
from the network, the device driver places it in the globaldata is not queued for retransmissions. Instead, the ap-
buffer and calls the TCP/IP stack. If the packet containglication will have to reproduce the data if a retransmis-
data, the TCP/IP stack will notify the corresponding ap-sion is necessary.
plication. Because the data in the buffer will be over-
written by the next incoming packet, the application will The total amount of memory usage for our implementa-
either have to act immediately on the data or copy theions depends heavily on the applications of the partic-
data into a secondary buffer for later processing. Thaular device in which the implementations are to be run.
packet buffer will not be overwritten by new packets be-The memory configuration determines both the amount
fore the application has processed the data. Packets that traffic the system should be able to handle and the
arrive when the application is processing the data mustnaximum amount of simultaneous connections. A de-
be queued, either by the network device or by the deviceice that will be sending large e-mails while at the same
driver. Most single-chip Ethernet controllers have on-time running a web server with highly dynamic web
chip buffers that are large enough to contain at least $ages and multiple simultaneous clients, will require
maximum sized Ethernet frames. Devices that are hanmore RAM than a simple Telnet server. It is possible to
dled by the processor, such as RS-232 ports, can copyn the ulP implementation with as little as 200 bytes of
incoming bytes to a separate buffer during applicationRAM, but such a configuration will provide extremely
processing. If the buffers are full, the incoming packet islow throughput and will only allow a small number of
dropped. This will cause performance degradation, busimultaneous connections.
only when multiple connections are running in parallel.
This is because ulP advertises a very small receiver win-
dow, which means that only a single TCP segment will

be in the network per connection. 6 App“catlon program |nterface

Outgoing data is also handled differently because of the

different buffer schemes. In IwlIP, an application that-l-he Application Program Interface (API) defines the

wishes to send data passes the length and a pointer {g,,, 16 anplication program interacts with the TCP/IP
the data to the TCP/IP stack as well as a flag which in-

dicates whether the data is volatile or not. The TCP/IP

stack allocates buffers of suitable size and, depending on
the volatile flag, either copies the data into the buffers

or references the data through pointers. The allocated
buffers contain space for the TCP/IP stack to prepend
the TCP/IP and link layer headers. After the headers are
written, the stack passes the buffers to the network de-
vice driver. The buffers are not deallocated when the de-

Instead, we have chosen an event driven interface wheré.1 Main control loop

the application is invoked in response to certain events.

Examples of such events are data arriving on a connec-

tion, an incoming connection request, or a poll request

from the stack. The event based interface fits well in theThe IWIP and ulP stacks can be run either as a task in
event based structure used by operating systems such @dnultitasking system, or as the main program in a sin-
TinyOS [10]. Furthermore, because the application isgletasking system. In both cases, the main control loop
able to act on incoming data and connection requests d&igure 3) does two things repeatedly:

soon as the TCP/IP stack receives the packet, low re-

sponse times can be achieved even in low-end systems.

1. Check if a packet has arrived from the network.

)) 2. Check if a periodic timeout has occurred.
7 Protocol implementations

If a packet has arrived, the input handler of the TCP/IP

The protocols in the TCP/IP protocol suite are designe tack is quked. The input handler_functlon will never
: . lock, but will return at once. When it returns, the stack
in a layered fashion where each protocol performs a spe- - . . .

e X . : or the application for which the incoming packet was
cific function and the interactions between the protocol.
layers are strictly defined. While the layered approach ismtended may have produced one or more reply pack-

ts which should be sent out. If so, the network device

a good way to design protocols, it is not always the best, . " .
way to implement them. For the IwIP implementation, driver is called to send out these packets.

we have chosen a fully modular approach where eac o . .
y bp I&enodlc timeouts are used to drive TCP mechanisms

r | implementation is kept fairl rate from th .

protocol implementation Is gpt airly sepa ate fromt ethat depend on timers, such as delayed acknowledg-
others. 'In the smaller ulP implementation, the prOtO_ments retransmissions and round-trip time estimations
col implementations are tightly coupled in order to save ’ . . P S)
code space When the main control loop infers that the periodic timer

' should fire, it invokes the timer handler of the TCP/IP
stack. Because the TCP/IP stack may perform retrans-
missions when dealing with a timer event, the network
device driver is called to send out the packets that may

have been produced.

Check for packet H Process packet ‘

J' This is similar to how the BSD implementations drive
\ Application events \ the TCP/IP stack, but BSD uses software interrupts and
a task scheduler to initiate input handlers and timers. In
‘ Output packets ‘ our Iimite.d systgm, we do not depend on such mecha-
‘ nisms being available.

Check for timeout I—% Process timeout ‘ 7.2

|

‘ Application events ‘

IP — Internet Protocol

‘ When incoming packets are processed by IwlP and ulP,
‘ the IP layer is the first protocol that examines the packet.

The IP layer does a few simple checks such as if the des-
tination IP address of the incoming packet matches any
of the local IP address and verifies the IP header check-
Figure 3: The main control loop. sum. Since there are no IP options that are strictly re-
quired and because they are very uncommon, both IwIP
and ulP drop any IP options in received packets.

‘ Output packets

7.2.1 IP fragment reassembly constructed by simply swapping the source and destina-
tion IP addresses of incoming echo requests and rewrit-
ing the ICMP header with the Echo-Reply message type.

In both IwlIP and ulP, IP fragment reassembly is imple- . : :
. The ICMP check h-
mented using a separate buffer that holds the packet tﬂiqieg[ZS]C ecksum is adjusted using standard tec

be reassembled. An incoming fragment is copied into

the right place in the buffer and a bit map is used to kee%ince only the ICMP echo message is implemented
track of which fragments have been received. Becausghere is no support for Path MTU discovery or ICMP '

Lhe ::LStrby:ﬁ o:;i?rr]an frragrrilrent IS :rirl]lngetrjnonnin fr':yrt_ﬁredirect messages. Neither of these is strictly required
oundary, the ap requires a smafl amount otmems,, interoperability; they are performance enhancement
ory. When all fragments have been reassembled, the r

Fnechanisms.
sulting IP packet is passed to the transport layer. If all

fragments have not been received within a specified time
frame, the packetis dropped. 7.4 TCP — Transmission Control Protocol
The current implementation only has a single buffer for

holding packets to be reassembled, and therefore does , . _ .
not support simultaneous reassembly of more than on(-,[he TCP implementations in lwIP and ulP are driven by

packet. Since fragmented packets are uncommon, wiEcoming packets and timer events. IP calls TCP when a
belive this to be a reasonable decision. Extending ouf CP Packetarives and the main control loop calls TCP

implementation to support multiple buffers would be Periodically.

straightforward, however.) _
Incoming packets are parsed by TCP and if the packet

contains data that is to be delivered to the application,

the application is invoked by the means of a function

call. If the incoming packet acknowledges previously

sent data, the connection state is updated and the appli-

IP has the ability to broadcast and multicast packets o§ation is informed, allowing it to send out new data.

the local network. Such packets are addressed to special

broadcast and multicast addresses. Broadcast is used

heavily in.many U_DP bas_ed protocols such as the Mi-7 4 1 Listening connections

crosoft Windows file-sharing SMB protocol. Multicast

is primarily used in protocols used for multimedia dis-

tribution such as RTP. TCP is a point-to-point protocol TCP allows a connection to listen for incoming connec-

and does not use broadcast or multicast packets. tion requests. In our implementations, a listening con-
nection is identified by the 16-bit port number and in-

Because IwIP supports applications using UDP, it hagoming connection requests are checked against the list

support for both sending and receiving broadcast anaf listening connections. This list of listening connec-

multicast packets. In contrast, ulP does not have UDRions is dynamic and can be altered by the applications

support and therefore handling of such packets has ndn the system.

been implemented.

7.2.2 Broadcasts and multicasts

7.4.2 Sending data
7.3 ICMP — Internet Control Message Proto- g

col
When sending data, an application will have to check the
number of available bytes in the send window and adjust
The ICMP protocol is used for reporting soft error con- the number of bytes to send accordingly. The size of the
ditions and for querying host parameters. Its main usesend window is dictated by the memory configuration as
is, however, the echo mechanism which is used by thevell as the buffer space announced by the receiver of the
ping program. data. If no buffer space is available, the application has
to defer the send and wait until later.
The ICMP implementations in IwlP and ulP are very
simple as we have restricted them to only implementBuffer space becomes available when an acknowledg-
ICMP echo messages. Replies to echo messages ament from the receiver of the data has been received.

The stack informs the application of this event, and thesion timer for each connection is decremented. If the
application may then repeat the sending procedure. timer reaches zero, a retransmission should be made.

The actual retransmission operation is handled differ-
ently in ulP and in IwlP. IwIP maintains two output
gueues: one holds segments that have not yet been sent,
the other holds segments that have been sent but not yet
Most TCP implementations use a sliding window mech-been acknowledged by the peer. When a retransmission
anism for sending data. Multiple data segments are sen$ required, the first segment on the queue of segments

in succession without waiting for an acknowledgmentthat has not been acknowledged is sent. All other seg-
for each segment. ments in the queue are moved to the queue with unsent

segments.
The sliding window algorithm uses a lot of 32-bit opera-
tions and because 32-bit arithmetic is fairly expensive orAs UIP does not keep track of packet contents after they
most 8-bit CPUs, ulP does not implement it. Also, ulP have been sent by the device driver, ulP requires that
does not buffer sent packets and a sliding window im-the application takes an active partin performing the re-
plementation that does not buffer sent packets will havdransmission. When ulP decides that a segment should
to be supported by a complex application layer. Insteadbe retransmitted, it calls the application with a flag set
ulP allows only a single TCP segment per connectiorindicating that a retransmission is required. The appli-
to be unacknowledged at any given time. IwlP, on thecation checks the retransmission flag and produces the
other hand, implements TCP's sliding window mecha-same data that was previously sent. From the appli-
nism using output buffer queues and therefore does natation’s standpoint, performm_g_a retransmission Is not
add additional complexity to the application layer. different from how the data originally was sent. There-
fore the application can be written in such a way that the
It is important to note that even though most TCP imple-same code is used both for sending data and retransmit-
mentations use the sliding window algorithm, it is not ting data. Also, it is important to note that even though
required by the TCP specifications. Removing the slidthe actual retransmission operation is carried out by the
ing window mechanism does not affect interoperabilityapplication, it is the responsibility of the stack to know
in any way. when the retransmission should be made. Thus the com-
plexity of the application does not necessarily increase
because it takes an active part in doing retransmissions.

7.4.3 Sliding window

7.4.4 Round-trip time estimation

TCP continuously estimates the current Round—Trip7'4'6 Flow control

Time (RTT) of every active connection in order to find a

suitable value for the retransmission time-out. The purpose of TCP’s flow control mechanisms is to al-
low communication between hosts with wildly varying

We have implemented the RTT estimation using TCP’smemory dimensions. In each TCP segment, the sender

periodic timer. Each time the periodic timer fires, it in- of the segment indicates its available buffer space. A

crements a counter for each connection that has unac-=CP sender must not send more data than the buffer

knowledged data in the network. When an acknowledgspace indicated by the receiver.

ment is received, the current value of the counter is used

as a sample of the RTT. The sample is used together witth our implementations, the application cannot send

the standard TCP RTT estimation function [13] to calcu-more data than the receiving host can buffer. Before

late an estimate of the RTT. Karn’s algorithm [14] is usedsending data, the application checks how many bytes it

to ensure that retransmissions do not skew the estimatef allowed to send and does not send more data than the
other host can accept. If the remote host cannot accept
any data at all, the stack initiates the zero window prob-

7.4.5 Retransmissions ing mechanism.

The application is responsible for controlling the size of

Retransmissions are driven by the periodic TCP timerthe window size indicated in sent segments. If the ap-

Every time the periodic timer is invoked, the retransmis-plication must wait or buffer data, it can explicitly close

the window so that the sender will not send data until thetrack of the current sequence numbers of the connec-
application is able to handle it. tion, but also for remembering the sequence numbers of
the last window updates. Furthermore, because IwIP is
able to handle multiple local IP addresses, the connec-
7.4.7 Congestion control tion state must include the local IP address. Finally, as
IwlP maintains queues for outgoing segments, the mem-
ory for the queues is included in the connection state.
The congestion control mechanisms limit the number ofthis makes the state information needed for IwIP nearly

simultaneous TCP segments in the network. The algogg bytes larger than that of ulP which requires 30 bytes
rithms used for congestion control [13] are designed toyer connection.

be simple to implement and require only a few lines of
code.

Since ulP only handles one in-flight TCP segment perg
connection, the amount of simultaneous segments can-
not be further limited, thus the congestion control mech-
anisms are not needed. IwIP has the ability to have mulz3 1 Performance limits
tiple in-flight segments and therefore implements all of "

TCP’s congestion control mechanisms.

Results

In TCP/IP implementations for high-end systems, pro-
cessing time is dominated by the checksum calculation
loop, the operation of copying packet data and context
switching [15]. Operating systems for high-end sys-
TCP’s urgent data mechanism provides an app”cationtems often have multlple pI’OteCtion domains for prOteCt—
to-application notification mechanism, which can being kernel data from user processes and user processes
used by an app"cation to mark parts of the data Strearﬁ'om each other. Because the TCP/IP stack is run in the
as being more urgent than the normal stream. It is up td€rnel, data has to be copied between the kernel space

the receiving application to interpret the meaning of theand the address space of the user processes and a con-
urgent data. text switch has to be performed once the data has been

copied. Performance can be enhanced by combining the

In many TCP implementations, including the BSD im- COPY operation with the checksum calculation [19]. Be-
plementation, the urgent data feature increases the con§ause high-end systems usually have numerous active
plexity of the implementation because it requires anconnections, packet demultiplexing is also an expensive
asynchronous notification mechanism in an otherwiseoPeration [17].

synchronous API. As our implementations already use

an asynchronous event based API, the implementation gk Small embedded device does not have the necessary

the urgent data feature does not lead to increased conff0cessing power to have multiple protection domains
plexity. and the power to run a multitasking operating system.

Therefore there is no need to copy data between the
TCP/IP stack and the application program. With an
event based API there is no context switch between the
TCP/IP stack and the applications.

7.4.8 Urgent data

7.4.9 Connection state

Each TCP connection requires a certain amount of statén such limited systems, the TCP/IP processing overhead
information in the embedded device. Because the stats dominated by the copying of packet data from the net-
information uses RAM, we have aimed towards mini- work device to host memory, and checksum calculation.
mizing the amount of state needed for each connectioApart from the checksum calculation and copying, the
in our implementations. TCP processing done for an incoming packet involves

only updating a few counters and flags before handing
The ulP implementation, which does not use the slidingthe data over to the application. Thus an estimate of
window mechanism, requires far less state informatiorthe CPU overhead of our TCP/IP implementations can
than the IwlP implementation. The sliding window im- be obtained by calculating the amount of CPU cycles
plementation requires that the connection state includeseeded for the checksum calculation and copying of a
several 32-bit sequence numbers, not only for keepingnaximum sized packet.

8.2 The impact of delayed acknowledgments of flash ROM for code storage and 32 kilobytes of RAM.
The FreeBSD host was configured to run the Dummynet
delay emulator software [24] in order to facilitate con-

Most TCP receivers implement the delayed acknowl-trolled delays for the communication between the PC

edgment algorithm [3] for reducing the number of pureand the embedded system.

acknowledgment packets sent. A TCP receiver using

this algorithm will only send acknowledgments for every In the embedded system, a simple web server was run

other received segment. If no segment is received withiron top of the ulP and IwIP stacks. Using tfeich

a specific time-frame, an acknowledgment is sent. Thdile retrieval utility, a file consisting of null bytes was

time-frame can be as high as 500 ms but typically is 200downloaded ten times from the embedded system. The

ms. reported throughput was logged, and the mean through-
put of the ten downloads was calculated. By redirecting
A TCP sender such as ulP that only handles a single oufile outputto/dev/null , the file was immediately dis-

standing TCP segment will interact poorly with the de-carded by the FreeBSD host. The file size was 200 kilo-
layed acknowledgment algorithm. Because the receivebytes for the ulP tests, and 200 megabytes for the IwIP
only receives a single segment at a time, it will wait astests. The size of the file made it impossible to keep it
much as 500 ms before an acknowledgmentis sent. Thigll in the memory of the embedded system. Instead, the
means that the maximum possible throughputis severelfile was generated by the web server as it was sent out
limited by the 500 ms idle time. on the network.

Thus the maximum throughput equation when sendingl he total TCP/IP memory consumption in the embedded
data from ulP will bep = s/(t + t4) wheres is the seg- System was varied by changing the send window size.
ment size and, is the delayed acknowledgment time- For ulP, the send window was varied between 50 bytes
out, which typically is between 200 and 500 ms. With and the maximum possible value of 1450 bytes in steps
a segment size of 1000 bytes, a round-trip time of 400f 50 bytes. The send window configuration translates
ms and a delayed acknowledgment timeout of 200 msinto a total RAM usage of between 400 bytes and 3 kilo-

the maximum throughput will be 4166 bytes per secondbytes. The IwIP send window was varied between 500
With the delayed acknowledgment algorithm disabled a@ind 11000 bytes in steps of 500 bytes, leading to a total
the receiver, the maximum throughput would be 25000RAM consumption of between 5 and 16 kilobytes.

bytes per second.

It should be noted, however, that since small systems soo |
running ulP are not very likely to have large amounts .|
of data to send, the delayed acknowledgment through-

put degradation of ulP need not be very severe. Smallg
amounts of data sent by such a system will not span more§
than a single TCP segment, and would therefore not bes **°f
affected by the throughput degradation anyway.

Tiwroughpul W‘Ilh delayed /‘\CKS dlsabléd
Throughput with delayed ACKs enabled -------

350000

300000

200000

Throughpi

The maximum throughput when ulP acts as a receiveris 0 |
not affected by the delayed acknowledgment throughput
degradation.

50000

o—_— e L i I
0 200 400 600 800 1000 1200 1400 1600

Send window (bytes)

8.3 Measurements Figure 4: ulP sending data with 10 ms emulated delay.

For our experiments we connected a 450 MHz Pentiuntigure 4 shows the mean throughput of the ten file down-
[l PC running FreeBSD 4.7 to an Ethernut board [16] loads from the web server running on top of ulP, with an
through a dedicated 10 megabit/second Ethernet netdditional 10 ms delay created by the Dummynet delay
work. The Ethernut board is a commercially availableemulator. The two curves show the measured throughput
embedded system equipped with a RealTek RTL8019ASvith the delayed acknowledgment algorithm disabled
Ethernet controller, an Atmel Atmegal28 AVR micro- and enabled at the receiving FreeBSD host, respectively.
controller running at 14.7456 MHz with 128 kilobytes The performance degradation caused by the delayed ac-

500000

500000

Throughput with delayed ACKs disabled " Throughput without emulated delay
Throughput with delayed ACKs enabled ------- Throughput with 10 ms emulated delay -------
450000 - B 450000 - Throughput with 20 ms emulated delay |

400000 — 400000
350000 — 350000
300000 300000
250000 250000

200000 200000

Throughput (bytes/second)
Throughput (bytes/second)

150000 |- 1 150000 [

100000 [— 100000 [

50000 [1 50000 [

o 1 I I L y y :
0 200 400 600 800 1000 1200 1400 1600 6000 8000 10000

Send window (bytes) Send window (bytes)

Figure 5: ulP sending data without emulated delay. Figure 7: IwIP sending data with and without emulated
delays.

acteristics. Figure 7 shows three measured throughput
curves, without emulated delay, and with emulated de-
lays of 10 ms and 20 ms. For all measurements, the
delayed acknowledgment algorithm is enabled at the
FreeBSD receiver. We see that for small send win-
dow sizes, IwIP also suffers from the delayed acknowl-
edgment throughput degradation. With a send window
larger than two maximum TCP segment sizes (3000
bytes), IwIP is able to send out two TCP segments per
round-trip time and thereby avoids the delayed acknowl-

‘ ‘ ‘ ‘ ‘ ‘ ‘ edgments throughput degradation. Without emulated
O e M delay, the throughput quickly reaches a maximum of

about 415 kilobytes per second. This limit is likely to be

Figure 6: Round-trip time as a function of packet size. the processing limit of the IwIP code in the embedded
system and therefore is the maximum possible through-
put for IwIP in this particular system.

RTT (ms)

knowledgments is evident. The maximum throughput with emulated delays is lower
_ . than without delay emulation, and the similarity of the
Figure 5 shows the same setup, but without the 10 mgyo curves suggests that the throughput degradation

emulated delay. The lower curve, showing the throughould be caused by interaction with the Dummynet soft-
put with delayed acknowledgments enabled, is very simyare.

ilar to the lower one in Figure 4. The upper curve, how-

ever, does not show the same linear relation as the pre-

vious figure, but shows an increasing throughput where8.4 Code size

the increase declines with increasing send window size.

One explanation for the declining increase of throughput

is that the round-trip time increases with the send win-The code was compiled for the 32-bit Intel x86 and

dow size because of the increased per-packet processittige 8-bit Atmel AVR platforms using gcc [28] versions

time. Figure 6 shows the round-trip time as a function2.95.3 and 3.3 respectively, with code size optimization

of packet size. These measurements were taken usirtgrned on. The resulting size of the compiled code can

theping program and therefore include the cost for thebe seen in Tables 2 to 5. Even though both implemen-

packet copying operation twice; once for packet inputtations support ARP and SLIP and IwlIP includes UDP,

and once for packet output. only the protocols discussed in this paper are presented.
Because the protocol implementations in ulP are tightly

The throughput of IwlP shows slightly different char- coupled, the individual sizes of the implementations are

Table 2: Code size for ulP (x86) Table 4: Code size for IwIP (x86)

| Function | Code size (bytes) | Function | Code size (bytes)
Checksumming 464 Memory management 2512
IP, ICMP and TCP 4724 Checksumming 504
[Total | 5188 Network interfaces 364
IP 1624
ICMP 392
TCP 9192
Table 3: Code size for ulP (AVR) | Total | 14588
| Function | Code size (bytes)
Checksumming 712
IP, ICMP and TCP 4452 Table 5: Code size for IwIP (AVR)
[Total | 5164 | [Function [Code size (bytes)
Memory management 3142
Checksumming 1116
Network interfaces 458
not reported. P 2216
ICMP 594
There are several reasons for the dramatic difference in TCP 14230
code size between IwIP and ulP. In order to support the | Total | 21756|

more complex and configurable TCP implementation,
IwlP has significantly more complex buffer and mem-
ory managementthan ulP. Since IwlP can handle packets
that span several buffers, the checksum calculation funcsode is larger on the AVR than on the x86, while the ulP
tions in IwIP are more complex than those in ulP. Thecode is of about the same size on the two platforms. The
support for dynamically changing network interfaces inmain reason for this is that IwIP uses 32-bit arithmetic
IwlP also contributes to the size increase of the IP layeto a much larger degree than ulP and each 32-bit oper-
because the IP layer has to manage multiple local IP adation is compiled into a large number of machine code
dresses. The IP layer in IwlIP is further made larger byinstructions.

the fact that IwlP has support for UDP, which requires

that the IP layer is able handle broadcast and multicast

packets. Likewise, the ICMP implementation in IwIP

has support for UDP error messages which have notbee®@ Future work

implemented in ulP.

The TCP implementation is IwIP is nearly twice as largePrioritized connectionslt is advantageous to be able to
as the full IP, ICMP and TCP implementation in ulP. The prioritize certain connections such as Telnet connections
main reason for this is that IwIP implements the sliding for manual configuration of the device. Even in a system
window mechanism which requires a large amount ofthat is under heavy load from numerous clients, it should
buffer and queue management functionality that is note possible to remotely control and configure the device.
required in ulP. In order to do provide this, different connection types
could be given different priority. For efficiency, such
The different memory and buffer management schemedlifferentiation should be done as far down in the system
used by IwIP and ulP have implications on code sizeas possible, preferably in the device driver.
mainly in 8-bit systems. Because ulP uses a global
buffer for all incoming packets, the absolute memory ad-Security aspects.When connecting systems to a net-
dresses of the protocol header fields are known at comwork, or even to the global Internet, the security of the
pile time. Using this information, the compiler is able system is very important. Identifying levels of secu-
to generate code that uses absolute addressing, which oity and mechanisms for implementing security for em-
many 8-bit processors requires less code than indirediedded devices is crucial for connecting systems to the
addressing. global Internet.

Is it interesting to note that the size of the compiled IwIP Address auto-configurationlf hundreds or even thou-

sands of small embedded devices should be deployed,1
auto-configuration of IP addresses is advantageous.
Such mechanisms already exist in IPv6, the next version

Acknowledgments

of the Internet Protocol, and are currently being stan-Many thanks go to Martin Nilsson, who has provided en-
dardized for IPv4. couragement and been a source of inspiration throughout
the preparation of this paper. Thanks also go to Debo-
Improving throughput. The throughput degradation rah Wallach for comments and suggestions, the anony-
problem caused by the poor interaction with the delayednous reviewers whose comments were highly appreci-
acknowledgment algorithm should be fixed. By increas-ated, and to all who have contributed bugfixes, patches
ing the maximum number of in-flight segments from one and suggestions to the IwIP and ulP implementations.

to two, the problem will not appear. When increasing the
amount of in-flight segments, congestion control mecha-
nisms will have to be employed. Those mechanisms are

trivial, however, when the upper limit is two simultane- References

ous segments.

Performance enhancing proxyt might be possible to g
increase the performance of communication with the
embedded devices through the use of a proxy situated[2]
near the devices. Such a proxy would have more mem-
ory than the devices and could assume responsibility for
buffering data.

[3]

[4]

[3]
10 Summary and conclusions

[6]

J. BenthamTCP/IP Lean: Web servers for embed-
ded systemsCMP Books, October 2000.

R. Braden. Requirements for internet hosts — com-
munication layers. RFC 1122, Internet Engineer-
ing Task Force, October 1989.

D. D. Clark. Window and acknowledgement strat-
egy in TCP. RFC 813, Internet Engineering Task
Force, July 1982.

G. H. Cooper. TinyTCP. Web page. 2002-10-14.
URL: http://www.csonline.net/bpaddock/tinytcp/

Atmel Corporation. Embedded web server. AVR
460, January 2001. Avalible from www.atmel.com.

A. Dannenberg. MSP430 internet connectiv-
ity. SLAA 137, November 2001. Avalible from
www.ti.com.

[7] A. Dunkels. IwIP - a lightweight TCP/IP stack.

We have shown that it is possible to fit a full scale
TCP/IP implementation well within the limits of an 8-bit

Web page. 2002-10-14.
URL: http://www.sics.se/~adam/Iwip/

microcontroller, but that the throughput of such a small [8] A. Dunkels. ulP - a TCP/IP stack for 8- and 16-bit

implementation will suffer. We have not removed any
TCP/IP mechanisms in our implementations, but have
full support for reassembly of IP fragments and urgent
TCP data. Instead, we have minimized the interface be-[°]
tween the TCP/IP stack and the application.

The maximum achievable throughput for our implemen- 10]
tations is determined by the send window size that thé
TCP/IP stack has been configured to use. When sending
data with ulP, the delayed ACK mechanism at the re-
ceiver lowers the maximum achievable throughput con-
siderably. In many situations however, a limited sys-
tem running ulP will not produce so much data that this
will cause problems. IwlIP is not affected by the delayed[11]
ACK throughput degradation when using a large enough
send window.

microcontrollers. Web page. 2002-10-14.
URL: http://dunkels.com/adam/uip/

S. Floyd and K. Fall. Promoting the use of end-to-
end congestion control in the internédEEE/ACM
Transactions on Networkindugust 1999.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister. System architecture directions for
networked sensors. roceedings of the 9th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
November 2000.

InterNiche Technologies Inc. NicheStack portable
TCP/IP stack. Web page. 2002-10-14.

URL: http://www.iniche.com/products/tcpip.htm

[12] LiveDevices Inc. Embedinet - embedded internet[26] H. Shrikumar. IPic - a match head sized web-
software products. Web page. 2002-10-14. server. Web page. 2002-10-14.
URL: http://www.livedevices.com/ngroducts/embedinet.shtml URL: http:/mwww-ccs.cs.umass.edu/"shri/iPic.html

[13] V. Jacobson. Congestion avoidance and control[27] CMX Systems. CMX-MicroNet true TCP/IP net-
In Proceedings of the SIGCOMM '88 Conference working. Web page. 2002-10-14.

Stanford, California, August 1988. URL: http://www.cmx.com/micronet.htm

[14] P. Karn and C. Partridge. Improving round-trip [28] The GCC Team. The GNU compiler collection.
time estimates in reliablie transport protocols. In Web page. 2002-10-14.
Proceedings of the SIGCOMM '87 Conference URL: http://gcc.gnu.org/

Stowe, Vermont, August 1987.

[15] J. Kay and J. Pasquale. The importance of non-data
touching processing overheads in TCP/IP Pio-
ceedings of the ACM SIGCOMM ’'93 Symposium
pages 259-268, September 1993.

[16] H. Kipp. Ethernut embedded ethernet. Web page.
2002-10-14.
URL: http://iwww.ethernut.de/en/

[17] P. E. McKenney and K. F. Dove. Efficient demulti-
plexing of incoming TCP packets. Proceedings
of the SIGCOMM '92 Conferengpages 269-279,
Baltimore, Maryland, August 1992,

[18] M. K. McKusick, K. Bostic, M. J. Karels, and J. S.
Quarterman. The Design and Implementation of
the 4.4 BSD Operating Systeniddison-Wesley,
1996.

[19] C. Partridge and S. Pink. A faster UDIEEE/ACM
Transactions in Networkind (4):429-439, August
1993.

[20] J. Postel. Internet protocol. RFC 791, Internet En-
gineering Task Force, September 1981.

[21] J. Postel. Transmission control protocol. RFC 793,
Internet Engineering Task Force, September 1981.

[22] Kadak Products. Kadak KwikNET TCP/IP stack.
Web page. 2002-10-14.
URL: http:/iwww.kadak.com/html/kdkp1030.htm

[23] A. Rijsinghani. Computation of the internet check-
sum via incremental update. RFC 1624, Internet
Engineering Task Force, May 1994.

[24] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocolsACM Computer
Communication Reviev27(1):31-41, 1997.

[25] C. Shannon, D. Moore, and K. Claffy. Be-
yond folklore: Observations on fragmented traffic.
IEEE/ACM Transactions on Networkind0(6),
December 2002.

