
Full TCP/IP for 8-Bit Architectures

Adam Dunkels
Swedish Institute of Computer Science

adam@sics.se, http://www.sics.se/˜adam/

Abstract

We describe two small and portable TCP/IP implemen-
tations fulfilling the subset of RFC1122 requirements
needed for full host-to-host interoperability. Our TCP/IP
implementations do not sacrifice any of TCP’s mecha-
nisms such as urgent data or congestion control. They
support IP fragment reassembly and the number of mul-
tiple simultaneous connections is limited only by the
available RAM. Despite being small and simple, our im-
plementations do not require their peers to have com-
plex, full-size stacks, but can communicate with peers
running a similarly light-weight stack. The code size is
on the order of 10 kilobytes and RAM usage can be con-
figured to be as low as a few hundred bytes.

1 Introduction

With the success of the Internet, the TCP/IP protocol
suite has become a global standard for communication.
TCP/IP is the underlying protocol used for web page
transfers, e-mail transmissions, file transfers, and peer-
to-peer networking over the Internet. For embedded sys-
tems, being able to run native TCP/IP makes it possi-
ble to connect the system directly to an intranet or even
the global Internet. Embedded devices with full TCP/IP
support will be first-class network citizens, thus being
able to fully communicate with other hosts in the net-
work.

Traditional TCP/IP implementations have required far
too much resources both in terms of code size and mem-
ory usage to be useful in small 8 or 16-bit systems. Code
size of a few hundred kilobytes and RAM requirements
of several hundreds of kilobytes have made it impossi-
ble to fit the full TCP/IP stack into systems with a few
tens of kilobytes of RAM and room for less than 100
kilobytes of code.

TCP [21] is both the most complex and the most widely

used of the transport protocols in the TCP/IP stack. TCP
provides reliable full-duplex byte stream transmission
on top of the best-effort IP [20] layer. Because IP may
reorder or drop packets between the sender and the re-
ceiver, TCP has to implement sequence numbering and
retransmissions in order to achieve reliable, ordered data
transfer.

We have implemented two small generic and portable
TCP/IP implementations,lwIP (lightweight IP) anduIP
(micro IP), with slightly different design goals. The lwIP
implementation is a full-scale but simplified TCP/IP im-
plementation that includes implementations of IP, ICMP,
UDP and TCP and is modular enough to be easily ex-
tended with additional protocols. lwIP has support for
multiple local network interfaces and has flexible con-
figuration options which makes it suitable for a wide va-
riety of devices.

The uIP implementation is designed to have only the ab-
solute minimal set of features needed for a full TCP/IP
stack. It can only handle a single network interface and
does not implement UDP, but focuses on the IP, ICMP
and TCP protocols.

Both implementations are fully written in the C pro-
gramming language. We have made the source code
available for both lwIP [7] and uIP [8]. Our imple-
mentations have been ported to numerous 8- and 16-bit
platforms such as the AVR, H8S/300, 8051, Z80, ARM,
M16c, and the x86 CPUs. Devices running our imple-
mentations have been used in numerous places through-
out the Internet.

We have studied how the code size and RAM usage of a
TCP/IP implementation affect the features of the TCP/IP
implementation and the performance of the communica-
tion. We have limited our work to studying the imple-
mentation of TCP and IP protocols and the interaction
between the TCP/IP stack and the application programs.
Aspects such as address configuration, security, and en-
ergy consumption are out of the scope of this work.

The main contribution of our work is that we have shown

that is it possible to implement a full TCP/IP stack that
is small enough in terms of code size and memory usage
to be useful even in limited 8-bit systems.

Recently, other small implementations of the TCP/IP
stack have made it possible to run TCP/IP in small 8-bit
systems. Those implementations are often heavily spe-
cialized for a particular application, usually an embed-
ded web server, and are not suited for handling generic
TCP/IP protocols. Future embedded networking appli-
cations such as peer-to-peer networking require that the
embedded devices are able to act as first-class network
citizens and run a TCP/IP implementation that is not tai-
lored for any specific application.

Furthermore, existing TCP/IP implementations for small
systems assume that the embedded device always will
communicate with a full-scale TCP/IP implementation
running on a workstation-class machine. Under this as-
sumption, it is possible to remove certain TCP/IP mech-
anisms that are very rarely used in such situations. Many
of those mechanisms are essential, however, if the em-
bedded device is to communicate with another equally
limited device, e.g., when running distributed peer-to-
peer services and protocols.

This paper is organized as follows. After a short intro-
duction to TCP/IP in Section 2, related work is presented
in Section 3. Section 4 discusses RFC standards compli-
ance. How memory and buffer management is done in
our implementations is presented in Section 5 and the
application program interface is discussed in Section 6.
Details of the protocol implementations is given in Sec-
tion 7 and Section 8 comments on the performance and
maximum throughput of our implementations, presents
throughput measurements from experiments and reports
on the code size of our implementations. Section 9 gives
ideas for future work. Finally, the paper is summarized
and concluded in Section 10.

2 TCP/IP overview

From a high level viewpoint, the TCP/IP stack can be
seen as a black box that takes incoming packets, and de-
multiplexes them between the currently active connec-
tions. Before the data is delivered to the application,
TCP sorts the packets so that they appear in the order
they were sent. The TCP/IP stack will also send ac-
knowledgments for the received packets.

Figure 1 shows how packets come from the network de-

Web server application
stack

Network
interface

Incoming

packets

Application
data

Web server application

Web server application

Data logger application

Mail sender application

TCP/IP

Figure 1: TCP/IP input processing.

vice, pass through the TCP/IP stack, and are delivered to
the actual applications. In this example there are five ac-
tive connections, three that are handled by a web server
application, one that is handled by the e-mail sender ap-
plication, and one that is handled by a data logger appli-
cation.

packets interface

Application
data

TCP/IP
stack

Web server application

Web server application

Data logger application

Mail sender application

Web server application

Outgoing

Network

Figure 2: TCP/IP output processing.

A high level view of the output processing can be seen
in Figure 2. The TCP/IP stack collects the data sent by
the applications before it is actually sent onto the net-
work. TCP has mechanisms for limiting the amount of
data that is sent over the network, and each connection
has a queue on which the data is held while waiting to
be transmitted. The data is not removed from the queue
until the receiver has acknowledged the reception of the
data. If no acknowledgment is received within a specific
time, the data is retransmitted.

Data arrives asynchronously from both the network and
the application, and the TCP/IP stack maintains queues
in which packets are kept waiting for service. Because
packets might be dropped or reordered by the network,
incoming packets may arrive out of order. Such pack-
ets have to be queued by the TCP/IP stack until a packet
that fills the gap arrives. Furthermore, because TCP lim-
its the rate at which data that can be transmitted over
each TCP connection, application data might not be im-
mediately sent out onto the network.

The full TCP/IP suite consists of numerous protocols,
ranging from low level protocols such as ARP which
translates IP addresses to MAC addresses, to application

level protocols such as SMTP that is used to transfer e-
mail. We have concentrated our work on the TCP and
IP protocols and will refer to upper layer protocols as
“the application”. Lower layer protocols are often im-
plemented in hardware or firmware and will be referred
to as “the network device” that are controlled by the net-
work device driver.

TCP provides a reliable byte stream to the upper layer
protocols. It breaks the byte stream into appropriately
sized segments and each segment is sent in its own IP
packet. The IP packets are sent out on the network by
the network device driver. If the destination is not on
the physically connected network, the IP packet is for-
warded onto another network by a router that is situated
between the two networks. If the maximum packet size
of the other network is smaller than the size of the IP
packet, the packet is fragmented into smaller packets by
the router. If possible, the size of the TCP segments are
chosen so that fragmentation is minimized. The final
recipient of the packet will have to reassemble any frag-
mented IP packets before they can be passed to higher
layers.

3 Related work

There are numerous small TCP/IP implementations for
embedded systems. The target architectures range from
small 8-bit microcontrollers to 32-bit RISC architec-
tures. Code size varies from a few kilobytes to hundreds
of kilobytes. RAM requirements can be as low as 10
bytes up to several megabytes.

Existing TCP/IP implementations can roughly be di-
vided into two categories; those that are adaptations
of the Berkeley BSD TCP/IP implementation [18], and
those that are written independently from the BSD code.
The BSD implementation was originally written for
workstation-class machines and was not designed for the
limitations of small embedded systems. Because of that,
implementations that are derived from the BSD code
base are usually suited for larger architectures than our
target. An example of a BSD-derived implementation is
the InterNiche NicheStack [11], which needs around 50
kilobytes of code space on a 32-bit ARM system.

Many of the independent TCP/IP implementations for
embedded processors use a simplified model of the
TCP/IP stack which makes several assumptions about
the communication environment. The most common as-
sumption is that the embedded system always will com-

municate with a system such as a PC that runs a full
scale, standards compliant TCP/IP implementation. By
relying on the standards compliance of the remote host,
even an extremely simplified, uncompliant, TCP/IP im-
plementation will be able to communicate. The commu-
nication may very well fail, however, once the system is
to communicate with another simplified TCP/IP imple-
mentation such as another embedded system of the same
kind. We will briefly cover a number of such simplifica-
tions that are used by existing implementations.

One usual simplification is to tailor the TCP/IP stack for
a specific application such as a web server. By doing
this, only the parts of the TCP/IP protocols that are re-
quired by the application need to be implemented. For
instance, a web server application does not need support
for urgent data and does not need to actively open TCP
connections to other hosts. By removing those mech-
anisms from the implementation, the complexity is re-
duced.

The smallest TCP/IP implementations in terms of RAM
and code space requirements are heavily specialized for
serving web pages and use an approach where the web
server does not hold any connection state at all. For ex-
ample, the iPic match-head sized server [26] and Jeremy
Bentham’s PICmicro stack [1] require only a few tens of
bytes of RAM to serve simple web pages. In such an
implementation, retransmissions cannot be made by the
TCP module in the embedded system because nothing is
known about the active connections. In order to achieve
reliable transfers, the system has to rely on the remote
host to perform retransmissions. It is possible to run a
very simple web server with such an implementation,
but there are serious limitations such as not being able to
serve web pages that are larger than the size of a single
TCP segment, which typically is about one kilobyte.

Other TCP/IP implementations such as the Atmel
TCP/IP stack [5] save code space by leaving out cer-
tain vital TCP mechanisms. In particular, they often
leave out TCP’s congestion control mechanisms, which
are used to reduce the sending rate when the network
is overloaded. While an implementation with no con-
gestion control might work well when connected to a
single Ethernet segment, problems can arise when com-
munication spans several networks. In such cases, the
intermediate nodes such as switches and routers may be
overloaded. Because congestion primarily is caused by
the amount of packets in the network, and not the size
of these packets, even small 8-bit systems are able to
produce enough traffic to cause congestion. A TCP/IP
implementation lacking congestion control mechanisms
should not be used over the global Internet as it might

contribute to congestion collapse [9].

Texas Instrument’s MSP430 TCP/IP stack [6] and the
TinyTCP code [4] use another common simplification in
that they can handle only one TCP connection at a time.
While this is a sensible simplification for many appli-
cations, it seriously limits the usefulness of the TCP/IP
implementation. For example, it is not possible to com-
municate with two simultaneous peers with such an im-
plementation. The CMX Micronet stack [27] uses a sim-
ilar simplification in that it sets a hard limit of 16 on the
maximum number of connections.

Yet another simplification that is used by LiveDevices
Embedinet implementation [12] and others is to disre-
gard the maximum segment size that a receiver is pre-
pared to handle. Instead, the implementation will send
segments that fit into an Ethernet frame of 1500 bytes.
This works in a lot of cases due to the fact that many
hosts are able to receive packets that are 1500 bytes or
larger. Communication will fail, however, if the receiver
is a system with limited memory resources that is not
able to handle packets of that size.

Finally, the most common simplification is to leave out
support for reassembling fragmented IP packets. Even
though fragmented IP packets are quite infrequent [25],
there are situations in which they may occur. If packets
travel over a path which fragments the packets, commu-
nication is impossible if the TCP/IP implementation is
unable to correctly reassemble them. TCP/IP implemen-
tations that are able to correctly reassemble fragmented
IP packets, such as the Kadak KwikNET stack [22], are
usually too large in terms of code size and RAM require-
ments to be practical for 8-bit systems.

4 RFC-compliance

The formal requirements for the protocols in the TCP/IP
stack is specified in a number of RFC documents pub-
lished by the Internet Engineering Task Force, IETF.
Each of the protocols in the stack is defined in one more
RFC documents and RFC1122 [2] collects all require-
ments and updates the previous RFCs.

The RFC1122 requirements can be divided into two cat-
egories; those that deal with the host to host communi-
cation and those that deal with communication between
the application and the networking stack. An example of
the first kind is“A TCP MUST be able to receive a TCP
option in any segment”and an example of the second

Table 1: TCP/IP features implemented by uIP and lwIP
Feature uIP lwIP
IP and TCP checksums x x
IP fragment reassembly x x
IP options
Multiple interfaces x
UDP x
Multiple TCP connections x x
TCP options x x
Variable TCP MSS x x
RTT estimation x x
TCP flow control x x
Sliding TCP window x
TCP congestion control Not needed x
Out-of-sequence TCP data x
TCP urgent data x x
Data buffered for rexmit x

kind is “There MUST be a mechanism for reporting soft
TCP error conditions to the application.”A TCP/IP im-
plementation that violates requirements of the first kind
may not be able to communicate with other TCP/IP im-
plementations and may even lead to network failures.
Violation of the second kind of requirements will only
affect the communication within the system and will not
affect host-to-host communication.

In our implementations, we have implemented all RFC
requirements that affect host-to-host communication.
However, in order to reduce code size, we have removed
certain mechanisms in the interface between the applica-
tion and the stack, such as the soft error reporting mech-
anism and dynamically configurable type-of-service bits
for TCP connections. Since there are only very few ap-
plications that make use of those features, we believe
that they can be removed without loss of generality. Ta-
ble 1 lists the features that uIP and lwIP implements.

5 Memory and buffer management

In our target architecture, RAM is the most scarce re-
source. With only a few kilobytes of RAM available for
the TCP/IP stack to use, mechanisms used in traditional
TCP/IP cannot be directly applied.

Because of the different design goals for the lwIP and
the uIP implementations, we have chosen two different
memory management solutions. The lwIP implementa-
tion has dynamic buffer and memory allocation mecha-

nisms where memory for holding connection state and
packets is dynamically allocated from a global pool of
available memory blocks. Packets are contained in one
or more dynamically allocated buffers of fixed size. The
size of the packet buffers is determined by a configura-
tion option at compile time. Buffers are allocated by the
network device driver when an incoming packet arrives.
If the packet is larger than one buffer, more buffers are
allocated and the packet is split into the buffers. If the
incoming packet is queued by higher layers of the stack
or the application, a reference counter in the buffer is in-
cremented. The buffer will not be deallocated until the
reference count is zero.

The uIP stack does not use explicit dynamic memory al-
location. Instead, it uses a single global buffer for hold-
ing packets and has a fixed table for holding connection
state. The global packet buffer is large enough to con-
tain one packet of maximum size. When a packet arrives
from the network, the device driver places it in the global
buffer and calls the TCP/IP stack. If the packet contains
data, the TCP/IP stack will notify the corresponding ap-
plication. Because the data in the buffer will be over-
written by the next incoming packet, the application will
either have to act immediately on the data or copy the
data into a secondary buffer for later processing. The
packet buffer will not be overwritten by new packets be-
fore the application has processed the data. Packets that
arrive when the application is processing the data must
be queued, either by the network device or by the device
driver. Most single-chip Ethernet controllers have on-
chip buffers that are large enough to contain at least 4
maximum sized Ethernet frames. Devices that are han-
dled by the processor, such as RS-232 ports, can copy
incoming bytes to a separate buffer during application
processing. If the buffers are full, the incoming packet is
dropped. This will cause performance degradation, but
only when multiple connections are running in parallel.
This is because uIP advertises a very small receiver win-
dow, which means that only a single TCP segment will
be in the network per connection.

Outgoing data is also handled differently because of the
different buffer schemes. In lwIP, an application that
wishes to send data passes the length and a pointer to
the data to the TCP/IP stack as well as a flag which in-
dicates whether the data is volatile or not. The TCP/IP
stack allocates buffers of suitable size and, depending on
the volatile flag, either copies the data into the buffers
or references the data through pointers. The allocated
buffers contain space for the TCP/IP stack to prepend
the TCP/IP and link layer headers. After the headers are
written, the stack passes the buffers to the network de-
vice driver. The buffers are not deallocated when the de-

vice driver is finished sending the data, but held on a re-
transmission queue. If the data is lost in the network and
have to be retransmitted, the buffers on retransmission
queue will be retransmitted. The buffers are not deallo-
cated until the data is known to be received by the peer.
If the connection is aborted because of an explicit re-
quest from the local application or a reset segment from
the peer, the connection’s buffers are deallocated.

In uIP, the same global packet buffer that is used for in-
coming packets is also used for the TCP/IP headers of
outgoing data. If the application sends dynamic data, it
may use the parts of the global packet buffer that are not
used for headers as a temporary storage buffer. To send
the data, the application passes a pointer to the data as
well as the length of the data to the stack. The TCP/IP
headers are written into the global buffer and once the
headers have been produced, the device driver sends the
headers and the application data out on the network. The
data is not queued for retransmissions. Instead, the ap-
plication will have to reproduce the data if a retransmis-
sion is necessary.

The total amount of memory usage for our implementa-
tions depends heavily on the applications of the partic-
ular device in which the implementations are to be run.
The memory configuration determines both the amount
of traffic the system should be able to handle and the
maximum amount of simultaneous connections. A de-
vice that will be sending large e-mails while at the same
time running a web server with highly dynamic web
pages and multiple simultaneous clients, will require
more RAM than a simple Telnet server. It is possible to
run the uIP implementation with as little as 200 bytes of
RAM, but such a configuration will provide extremely
low throughput and will only allow a small number of
simultaneous connections.

6 Application program interface

The Application Program Interface (API) defines the
way the application program interacts with the TCP/IP

Instead, we have chosen an event driven interface where
the application is invoked in response to certain events.
Examples of such events are data arriving on a connec-
tion, an incoming connection request, or a poll request
from the stack. The event based interface fits well in the
event based structure used by operating systems such as
TinyOS [10]. Furthermore, because the application is
able to act on incoming data and connection requests as
soon as the TCP/IP stack receives the packet, low re-
sponse times can be achieved even in low-end systems.

7 Protocol implementations

The protocols in the TCP/IP protocol suite are designed
in a layered fashion where each protocol performs a spe-
cific function and the interactions between the protocol
layers are strictly defined. While the layered approach is
a good way to design protocols, it is not always the best
way to implement them. For the lwIP implementation,
we have chosen a fully modular approach where each
protocol implementation is kept fairly separate from the
others. In the smaller uIP implementation, the proto-
col implementations are tightly coupled in order to save
code space.

Check for timeout Process timeout

Application events

Output packets

Process packet

Application events

Output packets

Check for packet

Figure 3: The main control loop.

7.1 Main control loop

The lwIP and uIP stacks can be run either as a task in
a multitasking system, or as the main program in a sin-
gletasking system. In both cases, the main control loop
(Figure 3) does two things repeatedly:

1. Check if a packet has arrived from the network.

2. Check if a periodic timeout has occurred.

If a packet has arrived, the input handler of the TCP/IP
stack is invoked. The input handler function will never
block, but will return at once. When it returns, the stack
or the application for which the incoming packet was
intended may have produced one or more reply pack-
ets which should be sent out. If so, the network device
driver is called to send out these packets.

Periodic timeouts are used to drive TCP mechanisms
that depend on timers, such as delayed acknowledg-
ments, retransmissions and round-trip time estimations.
When the main control loop infers that the periodic timer
should fire, it invokes the timer handler of the TCP/IP
stack. Because the TCP/IP stack may perform retrans-
missions when dealing with a timer event, the network
device driver is called to send out the packets that may
have been produced.

This is similar to how the BSD implementations drive
the TCP/IP stack, but BSD uses software interrupts and
a task scheduler to initiate input handlers and timers. In
our limited system, we do not depend on such mecha-
nisms being available.

7.2 IP — Internet Protocol

When incoming packets are processed by lwIP and uIP,
the IP layer is the first protocol that examines the packet.
The IP layer does a few simple checks such as if the des-
tination IP address of the incoming packet matches any
of the local IP address and verifies the IP header check-
sum. Since there are no IP options that are strictly re-
quired and because they are very uncommon, both lwIP
and uIP drop any IP options in received packets.

7.2.1 IP fragment reassembly

In both lwIP and uIP, IP fragment reassembly is imple-
mented using a separate buffer that holds the packet to
be reassembled. An incoming fragment is copied into
the right place in the buffer and a bit map is used to keep
track of which fragments have been received. Because
the first byte of an IP fragment is aligned on an 8-byte
boundary, the bit map requires a small amount of mem-
ory. When all fragments have been reassembled, the re-
sulting IP packet is passed to the transport layer. If all
fragments have not been received within a specified time
frame, the packet is dropped.

The current implementation only has a single buffer for
holding packets to be reassembled, and therefore does
not support simultaneous reassembly of more than one
packet. Since fragmented packets are uncommon, we
belive this to be a reasonable decision. Extending our
implementation to support multiple buffers would be
straightforward, however.

7.2.2 Broadcasts and multicasts

IP has the ability to broadcast and multicast packets on
the local network. Such packets are addressed to special
broadcast and multicast addresses. Broadcast is used
heavily in many UDP based protocols such as the Mi-
crosoft Windows file-sharing SMB protocol. Multicast
is primarily used in protocols used for multimedia dis-
tribution such as RTP. TCP is a point-to-point protocol
and does not use broadcast or multicast packets.

Because lwIP supports applications using UDP, it has
support for both sending and receiving broadcast and
multicast packets. In contrast, uIP does not have UDP
support and therefore handling of such packets has not
been implemented.

7.3 ICMP — Internet Control Message Proto-
col

The ICMP protocol is used for reporting soft error con-
ditions and for querying host parameters. Its main use
is, however, the echo mechanism which is used by the
ping program.

The ICMP implementations in lwIP and uIP are very
simple as we have restricted them to only implement
ICMP echo messages. Replies to echo messages are

constructed by simply swapping the source and destina-
tion IP addresses of incoming echo requests and rewrit-
ing the ICMP header with the Echo-Reply message type.
The ICMP checksum is adjusted using standard tech-
niques [23].

Since only the ICMP echo message is implemented,
there is no support for Path MTU discovery or ICMP
redirect messages. Neither of these is strictly required
for interoperability; they are performance enhancement
mechanisms.

7.4 TCP — Transmission Control Protocol

The TCP implementations in lwIP and uIP are driven by
incoming packets and timer events. IP calls TCP when a
TCP packet arrives and the main control loop calls TCP
periodically.

Incoming packets are parsed by TCP and if the packet
contains data that is to be delivered to the application,
the application is invoked by the means of a function
call. If the incoming packet acknowledges previously
sent data, the connection state is updated and the appli-
cation is informed, allowing it to send out new data.

7.4.1 Listening connections

TCP allows a connection to listen for incoming connec-
tion requests. In our implementations, a listening con-
nection is identified by the 16-bit port number and in-
coming connection requests are checked against the list
of listening connections. This list of listening connec-
tions is dynamic and can be altered by the applications
in the system.

7.4.2 Sending data

When sending data, an application will have to check the
number of available bytes in the send window and adjust
the number of bytes to send accordingly. The size of the
send window is dictated by the memory configuration as
well as the buffer space announced by the receiver of the
data. If no buffer space is available, the application has
to defer the send and wait until later.

Buffer space becomes available when an acknowledg-
ment from the receiver of the data has been received.

The stack informs the application of this event, and the
application may then repeat the sending procedure.

7.4.3 Sliding window

Most TCP implementations use a sliding window mech-
anism for sending data. Multiple data segments are sent
in succession without waiting for an acknowledgment
for each segment.

The sliding window algorithm uses a lot of 32-bit opera-
tions and because 32-bit arithmetic is fairly expensive on
most 8-bit CPUs, uIP does not implement it. Also, uIP
does not buffer sent packets and a sliding window im-
plementation that does not buffer sent packets will have
to be supported by a complex application layer. Instead,
uIP allows only a single TCP segment per connection
to be unacknowledged at any given time. lwIP, on the
other hand, implements TCP’s sliding window mecha-
nism using output buffer queues and therefore does not
add additional complexity to the application layer.

It is important to note that even though most TCP imple-
mentations use the sliding window algorithm, it is not
required by the TCP specifications. Removing the slid-
ing window mechanism does not affect interoperability
in any way.

7.4.4 Round-trip time estimation

TCP continuously estimates the current Round-Trip
Time (RTT) of every active connection in order to find a
suitable value for the retransmission time-out.

We have implemented the RTT estimation using TCP’s
periodic timer. Each time the periodic timer fires, it in-
crements a counter for each connection that has unac-
knowledged data in the network. When an acknowledg-
ment is received, the current value of the counter is used
as a sample of the RTT. The sample is used together with
the standard TCP RTT estimation function [13] to calcu-
late an estimate of the RTT. Karn’s algorithm [14] is used
to ensure that retransmissions do not skew the estimates.

7.4.5 Retransmissions

Retransmissions are driven by the periodic TCP timer.
Every time the periodic timer is invoked, the retransmis-

sion timer for each connection is decremented. If the
timer reaches zero, a retransmission should be made.

The actual retransmission operation is handled differ-
ently in uIP and in lwIP. lwIP maintains two output
queues: one holds segments that have not yet been sent,
the other holds segments that have been sent but not yet
been acknowledged by the peer. When a retransmission
is required, the first segment on the queue of segments
that has not been acknowledged is sent. All other seg-
ments in the queue are moved to the queue with unsent
segments.

As uIP does not keep track of packet contents after they
have been sent by the device driver, uIP requires that
the application takes an active part in performing the re-
transmission. When uIP decides that a segment should
be retransmitted, it calls the application with a flag set
indicating that a retransmission is required. The appli-
cation checks the retransmission flag and produces the
same data that was previously sent. From the appli-
cation’s standpoint, performing a retransmission is not
different from how the data originally was sent. There-
fore the application can be written in such a way that the
same code is used both for sending data and retransmit-
ting data. Also, it is important to note that even though
the actual retransmission operation is carried out by the
application, it is the responsibility of the stack to know
when the retransmission should be made. Thus the com-
plexity of the application does not necessarily increase
because it takes an active part in doing retransmissions.

7.4.6 Flow control

The purpose of TCP’s flow control mechanisms is to al-
low communication between hosts with wildly varying
memory dimensions. In each TCP segment, the sender
of the segment indicates its available buffer space. A
TCP sender must not send more data than the buffer
space indicated by the receiver.

In our implementations, the application cannot send
more data than the receiving host can buffer. Before
sending data, the application checks how many bytes it
is allowed to send and does not send more data than the
other host can accept. If the remote host cannot accept
any data at all, the stack initiates the zero window prob-
ing mechanism.

The application is responsible for controlling the size of
the window size indicated in sent segments. If the ap-
plication must wait or buffer data, it can explicitly close

the window so that the sender will not send data until the
application is able to handle it.

7.4.7 Congestion control

The congestion control mechanisms limit the number of
simultaneous TCP segments in the network. The algo-
rithms used for congestion control [13] are designed to
be simple to implement and require only a few lines of
code.

Since uIP only handles one in-flight TCP segment per
connection, the amount of simultaneous segments can-
not be further limited, thus the congestion control mech-
anisms are not needed. lwIP has the ability to have mul-
tiple in-flight segments and therefore implements all of
TCP’s congestion control mechanisms.

7.4.8 Urgent data

TCP’s urgent data mechanism provides an application-
to-application notification mechanism, which can be
used by an application to mark parts of the data stream
as being more urgent than the normal stream. It is up to
the receiving application to interpret the meaning of the
urgent data.

In many TCP implementations, including the BSD im-
plementation, the urgent data feature increases the com-
plexity of the implementation because it requires an
asynchronous notification mechanism in an otherwise
synchronous API. As our implementations already use
an asynchronous event based API, the implementation of
the urgent data feature does not lead to increased com-
plexity.

7.4.9 Connection state

Each TCP connection requires a certain amount of state
information in the embedded device. Because the state
information uses RAM, we have aimed towards mini-
mizing the amount of state needed for each connection
in our implementations.

The uIP implementation, which does not use the sliding
window mechanism, requires far less state information
than the lwIP implementation. The sliding window im-
plementation requires that the connection state includes
several 32-bit sequence numbers, not only for keeping

track of the current sequence numbers of the connec-
tion, but also for remembering the sequence numbers of
the last window updates. Furthermore, because lwIP is
able to handle multiple local IP addresses, the connec-
tion state must include the local IP address. Finally, as
lwIP maintains queues for outgoing segments, the mem-
ory for the queues is included in the connection state.
This makes the state information needed for lwIP nearly
60 bytes larger than that of uIP which requires 30 bytes
per connection.

8 Results

8.1 Performance limits

In TCP/IP implementations for high-end systems, pro-
cessing time is dominated by the checksum calculation
loop, the operation of copying packet data and context
switching [15]. Operating systems for high-end sys-
tems often have multiple protection domains for protect-
ing kernel data from user processes and user processes
from each other. Because the TCP/IP stack is run in the
kernel, data has to be copied between the kernel space
and the address space of the user processes and a con-
text switch has to be performed once the data has been
copied. Performance can be enhanced by combining the
copy operation with the checksum calculation [19]. Be-
cause high-end systems usually have numerous active
connections, packet demultiplexing is also an expensive
operation [17].

A small embedded device does not have the necessary
processing power to have multiple protection domains
and the power to run a multitasking operating system.
Therefore there is no need to copy data between the
TCP/IP stack and the application program. With an
event based API there is no context switch between the
TCP/IP stack and the applications.

In such limited systems, the TCP/IP processing overhead
is dominated by the copying of packet data from the net-
work device to host memory, and checksum calculation.
Apart from the checksum calculation and copying, the
TCP processing done for an incoming packet involves
only updating a few counters and flags before handing
the data over to the application. Thus an estimate of
the CPU overhead of our TCP/IP implementations can
be obtained by calculating the amount of CPU cycles
needed for the checksum calculation and copying of a
maximum sized packet.

8.2 The impact of delayed acknowledgments

Most TCP receivers implement the delayed acknowl-
edgment algorithm [3] for reducing the number of pure
acknowledgment packets sent. A TCP receiver using
this algorithm will only send acknowledgments for every
other received segment. If no segment is received within
a specific time-frame, an acknowledgment is sent. The
time-frame can be as high as 500 ms but typically is 200
ms.

A TCP sender such as uIP that only handles a single out-
standing TCP segment will interact poorly with the de-
layed acknowledgment algorithm. Because the receiver
only receives a single segment at a time, it will wait as
much as 500 ms before an acknowledgment is sent. This
means that the maximum possible throughput is severely
limited by the 500 ms idle time.

Thus the maximum throughput equation when sending
data from uIP will bep = s=(t+ td) wheres is the seg-
ment size andtd is the delayed acknowledgment time-
out, which typically is between 200 and 500 ms. With
a segment size of 1000 bytes, a round-trip time of 40
ms and a delayed acknowledgment timeout of 200 ms,
the maximum throughput will be 4166 bytes per second.
With the delayed acknowledgment algorithm disabled at
the receiver, the maximum throughput would be 25000
bytes per second.

It should be noted, however, that since small systems
running uIP are not very likely to have large amounts
of data to send, the delayed acknowledgment through-
put degradation of uIP need not be very severe. Small
amounts of data sent by such a system will not span more
than a single TCP segment, and would therefore not be
affected by the throughput degradation anyway.

The maximum throughput when uIP acts as a receiver is
not affected by the delayed acknowledgment throughput
degradation.

8.3 Measurements

For our experiments we connected a 450 MHz Pentium
III PC running FreeBSD 4.7 to an Ethernut board [16]
through a dedicated 10 megabit/second Ethernet net-
work. The Ethernut board is a commercially available
embedded system equipped with a RealTek RTL8019AS
Ethernet controller, an Atmel Atmega128 AVR micro-
controller running at 14.7456 MHz with 128 kilobytes

of flash ROM for code storage and 32 kilobytes of RAM.
The FreeBSD host was configured to run the Dummynet
delay emulator software [24] in order to facilitate con-
trolled delays for the communication between the PC
and the embedded system.

In the embedded system, a simple web server was run
on top of the uIP and lwIP stacks. Using thefetch
file retrieval utility, a file consisting of null bytes was
downloaded ten times from the embedded system. The
reported throughput was logged, and the mean through-
put of the ten downloads was calculated. By redirecting
file output to/dev/null , the file was immediately dis-
carded by the FreeBSD host. The file size was 200 kilo-
bytes for the uIP tests, and 200 megabytes for the lwIP
tests. The size of the file made it impossible to keep it
all in the memory of the embedded system. Instead, the
file was generated by the web server as it was sent out
on the network.

The total TCP/IP memory consumption in the embedded
system was varied by changing the send window size.
For uIP, the send window was varied between 50 bytes
and the maximum possible value of 1450 bytes in steps
of 50 bytes. The send window configuration translates
into a total RAM usage of between 400 bytes and 3 kilo-
bytes. The lwIP send window was varied between 500
and 11000 bytes in steps of 500 bytes, leading to a total
RAM consumption of between 5 and 16 kilobytes.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

Send window (bytes)

Throughput with delayed ACKs disabled
Throughput with delayed ACKs enabled

Figure 4: uIP sending data with 10 ms emulated delay.

Figure 4 shows the mean throughput of the ten file down-
loads from the web server running on top of uIP, with an
additional 10 ms delay created by the Dummynet delay
emulator. The two curves show the measured throughput
with the delayed acknowledgment algorithm disabled
and enabled at the receiving FreeBSD host, respectively.
The performance degradation caused by the delayed ac-

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

Send window (bytes)

Throughput with delayed ACKs disabled
Throughput with delayed ACKs enabled

Figure 5: uIP sending data without emulated delay.

 0

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000 1200 1400 1600

R
T

T
 (

m
s)

Packet size (bytes)

Round-trip time

Figure 6: Round-trip time as a function of packet size.

knowledgments is evident.

Figure 5 shows the same setup, but without the 10 ms
emulated delay. The lower curve, showing the through-
put with delayed acknowledgments enabled, is very sim-
ilar to the lower one in Figure 4. The upper curve, how-
ever, does not show the same linear relation as the pre-
vious figure, but shows an increasing throughput where
the increase declines with increasing send window size.
One explanation for the declining increase of throughput
is that the round-trip time increases with the send win-
dow size because of the increased per-packet processing
time. Figure 6 shows the round-trip time as a function
of packet size. These measurements were taken using
theping program and therefore include the cost for the
packet copying operation twice; once for packet input
and once for packet output.

The throughput of lwIP shows slightly different char-

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t (

by
te

s/
se

co
nd

)

Send window (bytes)

Throughput without emulated delay
Throughput with 10 ms emulated delay
Throughput with 20 ms emulated delay

Figure 7: lwIP sending data with and without emulated
delays.

acteristics. Figure 7 shows three measured throughput
curves, without emulated delay, and with emulated de-
lays of 10 ms and 20 ms. For all measurements, the
delayed acknowledgment algorithm is enabled at the
FreeBSD receiver. We see that for small send win-
dow sizes, lwIP also suffers from the delayed acknowl-
edgment throughput degradation. With a send window
larger than two maximum TCP segment sizes (3000
bytes), lwIP is able to send out two TCP segments per
round-trip time and thereby avoids the delayed acknowl-
edgments throughput degradation. Without emulated
delay, the throughput quickly reaches a maximum of
about 415 kilobytes per second. This limit is likely to be
the processing limit of the lwIP code in the embedded
system and therefore is the maximum possible through-
put for lwIP in this particular system.

The maximum throughput with emulated delays is lower
than without delay emulation, and the similarity of the
two curves suggests that the throughput degradation
could be caused by interaction with the Dummynet soft-
ware.

8.4 Code size

The code was compiled for the 32-bit Intel x86 and
the 8-bit Atmel AVR platforms using gcc [28] versions
2.95.3 and 3.3 respectively, with code size optimization
turned on. The resulting size of the compiled code can
be seen in Tables 2 to 5. Even though both implemen-
tations support ARP and SLIP and lwIP includes UDP,
only the protocols discussed in this paper are presented.
Because the protocol implementations in uIP are tightly
coupled, the individual sizes of the implementations are

Table 2: Code size for uIP (x86)
Function Code size (bytes)

Checksumming 464
IP, ICMP and TCP 4724

Total 5188

Table 3: Code size for uIP (AVR)
Function Code size (bytes)

Checksumming 712
IP, ICMP and TCP 4452

Total 5164

not reported.

There are several reasons for the dramatic difference in
code size between lwIP and uIP. In order to support the
more complex and configurable TCP implementation,
lwIP has significantly more complex buffer and mem-
ory management than uIP. Since lwIP can handle packets
that span several buffers, the checksum calculation func-
tions in lwIP are more complex than those in uIP. The
support for dynamically changing network interfaces in
lwIP also contributes to the size increase of the IP layer
because the IP layer has to manage multiple local IP ad-
dresses. The IP layer in lwIP is further made larger by
the fact that lwIP has support for UDP, which requires
that the IP layer is able handle broadcast and multicast
packets. Likewise, the ICMP implementation in lwIP
has support for UDP error messages which have not been
implemented in uIP.

The TCP implementation is lwIP is nearly twice as large
as the full IP, ICMP and TCP implementation in uIP. The
main reason for this is that lwIP implements the sliding
window mechanism which requires a large amount of
buffer and queue management functionality that is not
required in uIP.

The different memory and buffer management schemes
used by lwIP and uIP have implications on code size,
mainly in 8-bit systems. Because uIP uses a global
buffer for all incoming packets, the absolute memory ad-
dresses of the protocol header fields are known at com-
pile time. Using this information, the compiler is able
to generate code that uses absolute addressing, which on
many 8-bit processors requires less code than indirect
addressing.

Is it interesting to note that the size of the compiled lwIP

Table 4: Code size for lwIP (x86)
Function Code size (bytes)

Memory management 2512
Checksumming 504
Network interfaces 364
IP 1624
ICMP 392
TCP 9192

Total 14588

Table 5: Code size for lwIP (AVR)
Function Code size (bytes)

Memory management 3142
Checksumming 1116
Network interfaces 458
IP 2216
ICMP 594
TCP 14230

Total 21756

code is larger on the AVR than on the x86, while the uIP
code is of about the same size on the two platforms. The
main reason for this is that lwIP uses 32-bit arithmetic
to a much larger degree than uIP and each 32-bit oper-
ation is compiled into a large number of machine code
instructions.

9 Future work

Prioritized connections.It is advantageous to be able to
prioritize certain connections such as Telnet connections
for manual configuration of the device. Even in a system
that is under heavy load from numerous clients, it should
be possible to remotely control and configure the device.
In order to do provide this, different connection types
could be given different priority. For efficiency, such
differentiation should be done as far down in the system
as possible, preferably in the device driver.

Security aspects.When connecting systems to a net-
work, or even to the global Internet, the security of the
system is very important. Identifying levels of secu-
rity and mechanisms for implementing security for em-
bedded devices is crucial for connecting systems to the
global Internet.

Address auto-configuration.If hundreds or even thou-

sands of small embedded devices should be deployed,
auto-configuration of IP addresses is advantageous.
Such mechanisms already exist in IPv6, the next version
of the Internet Protocol, and are currently being stan-
dardized for IPv4.

Improving throughput. The throughput degradation
problem caused by the poor interaction with the delayed
acknowledgment algorithm should be fixed. By increas-
ing the maximum number of in-flight segments from one
to two, the problem will not appear. When increasing the
amount of in-flight segments, congestion control mecha-
nisms will have to be employed. Those mechanisms are
trivial, however, when the upper limit is two simultane-
ous segments.

Performance enhancing proxy.It might be possible to
increase the performance of communication with the
embedded devices through the use of a proxy situated
near the devices. Such a proxy would have more mem-
ory than the devices and could assume responsibility for
buffering data.

10 Summary and conclusions

We have shown that it is possible to fit a full scale
TCP/IP implementation well within the limits of an 8-bit
microcontroller, but that the throughput of such a small
implementation will suffer. We have not removed any
TCP/IP mechanisms in our implementations, but have
full support for reassembly of IP fragments and urgent
TCP data. Instead, we have minimized the interface be-
tween the TCP/IP stack and the application.

The maximum achievable throughput for our implemen-
tations is determined by the send window size that the
TCP/IP stack has been configured to use. When sending
data with uIP, the delayed ACK mechanism at the re-
ceiver lowers the maximum achievable throughput con-
siderably. In many situations however, a limited sys-
tem running uIP will not produce so much data that this
will cause problems. lwIP is not affected by the delayed
ACK throughput degradation when using a large enough
send window.

11 Acknowledgments

Many thanks go to Martin Nilsson, who has provided en-
couragement and been a source of inspiration throughout
the preparation of this paper. Thanks also go to Debo-
rah Wallach for comments and suggestions, the anony-
mous reviewers whose comments were highly appreci-
ated, and to all who have contributed bugfixes, patches
and suggestions to the lwIP and uIP implementations.

References

[1] J. Bentham.TCP/IP Lean: Web servers for embed-
ded systems. CMP Books, October 2000.

[2] R. Braden. Requirements for internet hosts – com-
munication layers. RFC 1122, Internet Engineer-
ing Task Force, October 1989.

[3] D. D. Clark. Window and acknowledgement strat-
egy in TCP. RFC 813, Internet Engineering Task
Force, July 1982.

[4] G. H. Cooper. TinyTCP. Web page. 2002-10-14.
URL: http://www.csonline.net/bpaddock/tinytcp/

[5] Atmel Corporation. Embedded web server. AVR
460, January 2001. Avalible from www.atmel.com.

[6] A. Dannenberg. MSP430 internet connectiv-
ity. SLAA 137, November 2001. Avalible from
www.ti.com.

[7] A. Dunkels. lwIP - a lightweight TCP/IP stack.
Web page. 2002-10-14.
URL: http://www.sics.se/˜adam/lwip/

[8] A. Dunkels. uIP - a TCP/IP stack for 8- and 16-bit
microcontrollers. Web page. 2002-10-14.
URL: http://dunkels.com/adam/uip/

[9] S. Floyd and K. Fall. Promoting the use of end-to-
end congestion control in the internet.IEEE/ACM
Transactions on Networking, August 1999.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister. System architecture directions for
networked sensors. InProceedings of the 9th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
November 2000.

[11] InterNiche Technologies Inc. NicheStack portable
TCP/IP stack. Web page. 2002-10-14.
URL: http://www.iniche.com/products/tcpip.htm

[12] LiveDevices Inc. Embedinet - embedded internet
software products. Web page. 2002-10-14.
URL: http://www.livedevices.com/netproducts/embedinet.shtml

[13] V. Jacobson. Congestion avoidance and control.
In Proceedings of the SIGCOMM ’88 Conference,
Stanford, California, August 1988.

[14] P. Karn and C. Partridge. Improving round-trip
time estimates in reliablie transport protocols. In
Proceedings of the SIGCOMM ’87 Conference,
Stowe, Vermont, August 1987.

[15] J. Kay and J. Pasquale. The importance of non-data
touching processing overheads in TCP/IP. InPro-
ceedings of the ACM SIGCOMM ’93 Symposium,
pages 259–268, September 1993.

[16] H. Kipp. Ethernut embedded ethernet. Web page.
2002-10-14.
URL: http://www.ethernut.de/en/

[17] P. E. McKenney and K. F. Dove. Efficient demulti-
plexing of incoming TCP packets. InProceedings
of the SIGCOMM ’92 Conference, pages 269–279,
Baltimore, Maryland, August 1992.

[18] M. K. McKusick, K. Bostic, M. J. Karels, and J. S.
Quarterman. The Design and Implementation of
the 4.4 BSD Operating System. Addison-Wesley,
1996.

[19] C. Partridge and S. Pink. A faster UDP.IEEE/ACM
Transactions in Networking, 1(4):429–439, August
1993.

[20] J. Postel. Internet protocol. RFC 791, Internet En-
gineering Task Force, September 1981.

[21] J. Postel. Transmission control protocol. RFC 793,
Internet Engineering Task Force, September 1981.

[22] Kadak Products. Kadak KwikNET TCP/IP stack.
Web page. 2002-10-14.
URL: http://www.kadak.com/html/kdkp1030.htm

[23] A. Rijsinghani. Computation of the internet check-
sum via incremental update. RFC 1624, Internet
Engineering Task Force, May 1994.

[24] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols.ACM Computer
Communication Review, 27(1):31–41, 1997.

[25] C. Shannon, D. Moore, and K. Claffy. Be-
yond folklore: Observations on fragmented traffic.
IEEE/ACM Transactions on Networking, 10(6),
December 2002.

[26] H. Shrikumar. IPic - a match head sized web-
server. Web page. 2002-10-14.
URL: http://www-ccs.cs.umass.edu/˜shri/iPic.html

[27] CMX Systems. CMX-MicroNet true TCP/IP net-
working. Web page. 2002-10-14.
URL: http://www.cmx.com/micronet.htm

[28] The GCC Team. The GNU compiler collection.
Web page. 2002-10-14.
URL: http://gcc.gnu.org/

