FreeRTOS

User Guide

dWS

N

FreeRTOS User Guide

FreeRTOS: User Guide
Copyright © 2020 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

FreeRTOS User Guide

Table of Contents

WHAt 1S FrEERTIOSY .. euiiiiiiiei ittt ettt ettt ettt ettt et et et et et et eaea et eaesaenannennannenenarnseneennenaennenns 1
FreeRTOS archit@CIUIE ...c..ee ittt et sttt et e e et s e e e s e e e eenes 1
Fre@RTOS KEINEL .. cuteiini i ettt et et e e st et st et s e et s e e e s e en s e eaeenes 2
FreeRTOS kernel fuNdamentalsoiuiiiiiiiiiieii e ettt e et e et e et e et e easeaaeeanseans 3

FreeRTOS kernel SCheAULEKve it aas 3
MemOry ManageMENT ... ettt ettt eeneaes 3
Intertask CoOrdiNAtionc.iiuiiiiiii e ettt e e e e eaes 4
Yo i VT LI 0 1 1= PP 7
o) VYA o Yo}V /=] gE T[] o o] o A T PP PP PP PPPPPPPN 7
YoYU 0T ofe) o B i K's I < NP TP PPN 8
Fre@RTOS LIDFari@s «.o..eueieiiiitiie ittt ettt ettt et st e e st et s e et s e et s e e e s e e en s e enseneens 8
OVEI-thE-AIT UPAates ...uiniiiiiiii ittt e et e et e et e et e e et et e e eneeeneaaenaaeeneaaans 8
TAGGING OTA FESOUICES ..euenieinenin ettt ettt et e et e et ea st en et en e eneataensaenenaensaaenenanaenns 9
OTA UPAAte Prer@QUISIEES ...vuiniiinittietie ettt ettt e et e e e e e e e et et eteaaan et eneaaeaeaesesesaenenaeneens 9
OTA BUEOIIAL ettt ettt et et et et et et e e et e e e e eaeaaeeneanees 25
OTA Update Manager SEIVICEc.ueuniuieiiiiieiie ettt ettt ettt eteeaeeneenereneeneeneenaeneraeneenaennas 53
Integrating the OTA Agent into your applicationccoveuiiiiiiiiiiiiie e, 53
OTA SEOUMTY +eeneitiiit ettt ettt e et et et et ea s e e e e e e et ea et en e eneaeneanens 57
OTA troubleshOOtingouiiiii ettt et e e e e eanas 57
Downloading FreeRTOS SOUICE COUR ...uuiunirniiniiiieiii ettt ettt et et et ea et enerenenennernennerennenns 65
Fre@RTOS CONSOLE ...ttt ettt ettt ettt et e et et et et e e et et et eaneaaeaneaneaneenes 65
Fre@RTOS CONSOLE «.eteniiiiiii ettt ettt ettt et e et et et et e e et ea et eaeaaeaneaneaneenes 65
Predefined FreeRTOS cONfigUIrationsc.uviuniiiniiiiiieii ittt et et et e e e e e eeens 65
Custom FreeRTOS CONfIGUIAtiONSuuiiuniiiiiiiiii ettt et et et e et e e e e e e s eaneeans 66
QUICK CONNEEE WOTKILOW ..uvinitieiiiiiii i ettt e ettt ettt e e e e e e e enenenenenens 67
Tagging CONFIGUIAtIONS ...euuiiiiiiiii it e e e et e e et e et e e e s et eaaeaneeanenns 67
FreeRTOS-qualified hardware platformsiiiiii i e ae e 68
DeVvelopmMENt WOPKFLOWiniiiii et et et e e et e e et e e e e e e e e e ee s e eneanaanns 69
AWS 10T Device SDK for EMbedded €couuiiiiiiiiiiiii ittt et et et e et s e e s et s et s e e e eannaes 69
AdItiONAl FESOUICES ...eneeieieiei ettt ettt ettt ettt e ittt et et et et et et et et eaneaaeaneaaeeneaneenennsanees 70

Getting Started With Fre@RTOS ...ttt et ettt et e e et e e e e eenes 71
FreeRTOS demo appliCationo.iuiieiiiii et e e e et et et et e e e et e e e e eae e eneaenaaenns 71
]]] o LS P PPt 71
Board-specific getting started QUIAESc.iiuiiiiiiiiiii et et e e e e e e ea e 71
TrOUDLESNOOTING .eniiiiiii ettt ettt ettt ettt et et e b et et et et et et ea et enaraeas 71
Developing FreeRTOS appliCationsceuiiuiiniiiiiitie ettt ettt e e e e e e e e e e e 71
]]] o LS P PPt 72

Setting up your AWS account and PermiSSIONScuveuiiuriueiniineinrieireee et eeereneeneeneenenes 72
Registering your MCU board with AWS 10Tcuiiiiiiiiir et e e 73
Downloading Fre@RTOScuiiiiiiieiti ettt e ettt et et et e et et e e e e e e et e e e e eeneennen 75
Configuring the FreeRTOS dEIMOS ...c.uiiuniiiiiiiii ittt et ei et e e e et e e e e et e et eaaneaneeanenns 75
Developer-mode Key ProViSIONINGc.ceuiiuieuiintieitiie ittt et et e et et et e e e e e e e e e eneennes 77
INEFOAUCTION ettt ettt e et e et eteea e eneea e ebeenseneenenenenenanns 77
Option #1: private key import from AWS 10Tcouviiniiiiiiiiiii e e e e e e eaaeeans 77
Option #2: onboard private key generationcccooveiiiiiiiiiiiii e 77
TrOUDLESNOOTING ..eniiiiiii ittt et ettt ettt et et et et et et et e a et et et en et enaraaas 79
General getting started troubleshooting tipsccovuiiiiiiiiiiiiii e 79
Installing @ terminal @mMULAtOrcouiiniiii et e 79
Using CMake With FreERTOSeuiiiiiiiiiiiiit ettt et e e st e e st et s e et s e e e e ens 80
= = To [BT =T P PPN 81
Developing FreeRTOS applications with third-party code editors and debugging tools 81
Building FreeRTOS With CMaKecuiniiiiii et 82
Board-specific getting started QUIAESc.iiuiiiniiiiiii ettt e e et e e e e 86
Cypress CYW943907AEVALTF Development Kitc.veeiiiiiiiiiiiiiiiie e 87

FreeRTOS User Guide

Cypress CYW954907AEVALTF Development Kitc.veiiiiiiiriiiiiriiiei e e e e 90
Microchip ATECC608A Secure Element with Windows simulatorccoeveviiviiniininineninennen. 93
Espressif ESP32-DevKitC and the ESP-WROVER-KITcuiuiiiiiiiiiiineiniineieeineieeieeieeieeiennennannas 97
Espressif ESP32-WROOM-32SE (PreVIEW)uiiuiiuiiiiiiiiieieiie et et et et et e e e e ae e s ae e eaneens 112
Infineon XMC4800 10T ConnectiVity Kitcouuiiiiiiiiiiiiiiiiii e e ees 117
Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kitccieiuiiiiiiiiiiiiiiiiiineenneen, 121
Marvell MW320 AWS 10T Starter Kitoouveiiiiiiiiie et e e e e e ees 126
Marvell MW322 AWS 10T Starter Kitoo.veriiiiiiie ettt e e e e ees 136
MediaTek MT7697Hx development Kitcooiiiiiiiiiiiiie et ee e e 147
Microchip Curiosity PIC32ZMZ EFc.iuiiiiiiiiie ettt et et e e e e e et e e e e e aean e 151
NOFdIiC NRFS52840-DK ...cuuiiiiiiiiieii ettt et ettt et et et et e et e et e et e et e eaeeneeaneeeneeanaenns 154
NUVOLON NUMAKEI-T0T-MABTcrniiiiiiiiieiie et ee e ee e e e e eteeteeteete et et aae et aaeeteaanennannenns 158

NXP LPC540T8 10T MOULE ...cuneiiiiieiie ettt ettt e e e e e e e e en e e eens 164
Renesas Starter Kit+ for RXE5N-2MBiuiiiiiiiiiriiiieeieeieeieeieeieeieeieeteeteeneeieeneeteeseesnesessnees 167
STMicroelectronics STM32L4 Discovery Kit 10T NOEovuiiniiniiiiiiiiiiiiiiiiiei e 170
Texas Instruments CC3220SF-LAUNCHXLoninini ettt e e e e nes 172
WiINdoWSs DeVvice SIMULATONouiniiiiiii it e e e e e e e e e e e e e e eans 176
Xilinx Avnet MicroZed Industrial 10T Kitcuviniiniiniiiiiiir e e e e 178
FrEE@RTOS LiDIaries .uuieii ittt et et et et et et et et et e e et st e e s ae e s e eaneanaennas 185
FreeRTOS Porting lDrariescu ittt et et e et e e e e e e e 185
FreeRTOS application LBrariesc.. oottt eane 190
FreeRTOS cOMMON LIDFariEsuuiuniiiiiiiiei et e e e et e e e e e e et e e e e e aneanaanas 193
Configuring the FreeRTOS LIBrariesc..oeuniiiiiiiie et e e e 194
COmMMON LDFAMIES ...eeiii ettt e e e e e e e e e e e e e e et e et e et ete et et aaneanannaans 195
ALOMIC OPEIAtIONS .. eniniiiii ittt ettt et e et e et e et et sa e et e eseeaeaeaeneannn 195
LiN@ar CONTAINEIS «..euiniiiii ettt et e e et e et et st e et e et e eaetaenstaneaanesnenenaenenns 195
[oTe o |2 [« IR PP PP PPTPPNN 196
Y L (ol (G [T 4[] o VA TP PP PP 196

B S e T | R PP 196
BLUETOOTN LOW ENEIGY ..iuiiniiiiiiiiiie ittt ettt e e e e e e e et e e et e e et s e e e e e eeneanaanaan 199
OVEIVIBW . eetiitei ittt ettt ettt et e et et et e et e e et et ea st e a e e e et anea e aa st enetaeneananesnanensanenanns 199

A e g [=Tl U PP PP PP 199
Dependencies and reqUIrEMIENTSviuiiuiiiiie it ie et ee e ee e e et e ee e s ee e e ene e saneaneanns 201
Library configuration fileou. oo 201

(@]5] 413417 1 o] s IO P PP PSPPI 202
UL [l 1] o e o] PP P TP PPN 202

Lol A £F= Y o] s E USRS 203

F N o T T o ol T PPN 204
EXQIMPLE USAGE 1.uiuiiiiiiitiiete ettt et e et e et eeeee et e ete et et e e e et e et e et et et et atasneanesneeneeneenees 204
[eoT o 413 [« I PP P PSPPI 206
Mobile SDKs for FreeRTOS Bluetooth devicesc..eeuuiiiiiiiiiiiiii e 208

AWS [OT DEVICE DO NN ..euiiiiiiiiii et ettt e e e et e e et e e et eaneaneaneanaanenns 210
OVEIVIBW . eeiiiiteie ettt et et et ettt e et et et e et e e et et ea st e e e e et anes e ea st eneaaanetanesnanensanenanns 210
Dependencies and reqUIrEMIENTSviuiiriiieiiiie ettt e ee e s e et e ee e e ee e e eneaasaneaneanes 210

B L o]0] o] 1=1 Ve o} i 5 T« TSP PPRN 211
DEVELOPEI SUPPOIT cuuituiiiiiiiiti ettt ettt et ettt ettt ettt et et et eaa st sansanetnsanesnetnsanstnrensensenenns 211
UL To [l T o e o] TP P TP PPN 211

Lol A £F= Y o] s E USRS 212
FreeRTOS Device Defender APl ...t e e e e e et e e e e e eans 212
EXQMPLE USAGE 1.uiuiiiiiiiitiie ittt et e et e et e e et e e e et e ete et et e e e et e et e et aae et et ateaneanasneeneeneenees 212

AWS 10T DEVICE SHAUOW . euiiniiiiiiiiie ettt et et et et e e et e e et e e et e e eansanaaneanaannen 212
OVEIVIBW ettt ettt ettt ettt et e et et et e et e e et et et st ea et aa et aa e s e aa s e eneaaenetnanesnanensanenenns 212
Dependencies and reqUIrEMIENTSviuiiuriiie ittt et ee s e et e ee e e ee e e ane e saneaneanns 212

F N 4 T T o ol TP 213
EXQIMPLE USAGE 1uuiuniiiiiiitiie ittt et et et et e e e ee et e ete et e et e e e et e et e et aae et aaeateaneanesneeseeneennes 213

F N A (o € == g [« L P 214
OVEIVIBW ettt ettt ettt ettt et e et et et e et e e et et st e a et e et anea e ea st eneeaanetnanesnanensanenanns 214

FreeRTOS User Guide

Dependencies and reqUIrEMIENTSviuiiriiiie ittt ee e st e e e ee e e ee e e ane e s anaanaanns 214
APL FEEFEIEINCE .. ettt e e et et et et e e e e e eans 215
EXQMIPLE USAGE 1uuiuiiiiiiiiit ittt ettt et e e et et e e e ee et e ete et e et e e e et e et e et aae et et eteaneaneaneeneeneenees 215
MOQTT (V2.0.0) cenieiniineiietie ettt ettt e e e et et e et e et e eaetu et et e et e eaeeaeenseaneaneenaeenneaneeneenaeenaennne 216
OVEIVIBW ettt ettt ettt et ettt e ettt ea et ea s ebeea e eneea e ebeeaeneaenenenenneneennenns 216
Dependencies and reqUIrEMIENTSviuiiuriiiieitiie ittt ee e ee e s ee e e ee e e ee e e aneansaneaneanns 216
FATUIES .t e 217
APL FEIEIEINCE ..ttt et et e e et et e et e eaeeans 217
EXQMIPLE USAGE 1uuiuniiiiiiit ittt ittt et et e et e et e e e et e et e et e et e e e et e ea e et aae et et eteaneataaneeneeneenees 217
MOQTT (VT.0.0) ceniiniieiieii ettt et ettt e e ettt e et e et et e et et e et e eaeea e eenseaneeaneenaeenaeaneaneeneenaennns 218
OVEIVIBW .etieetee ettt ettt ettt ettt e e ebeea e ebeea e eneea e ebeaeneaeneaennaeneensenns 218
Dependencies and reqUIrEMIENTSviuiiriiiiei et ee e ee e e e e e e ee e e ee e e aneansaneansanes 218
FATUIES .t e 218
[\ F=1 o] gl eloTa 2 1e [0 =Yoo F PSR PPRN 219
(@]5] 4114172 1i o] s IUET R P PP PP P TP 219
DLV U] o1 AU 7o o T PP PPRP 220
INIHTALIZAION oottt ettt et e e e eans 221
APL FEIEIEINCE . ettt et e et et et e e e et e eaeeans 221
[eoT 5 413 [« T PP P PSPPI 221
HT TP S ettt ettt ettt ettt et e et e et e et et et et et ettt e et e ta e tn et eba e ebeeheaneannas 221
OVEIVIBW «.eteeeieie ettt ettt ettt ettt bt ettt e ebeea e ebeea e eneea e ebeaeneaenenenerneneennenns 221
Dependencies and reqUIrEMIENTSviuiiuiiiiie it ie et ee e ee e e et e ee e s ee e e ene e saneaneanns 221
FATUIES .t 222
APL FEFEIEINCE .ottt et et et et et e et e eaeeans 222
(0] 1N Yo <] o | S TP PPN 222
OVEIVIBW ettt ettt ettt ettt e et et ea e ebeea et e e ebeea s eneaeneaenenenenneneensenns 222
FATUIES .t 222
APL FEIEIEINCE ..ttt e e et et et et e e et e e e eans 223
o T aa] o LT Y- Ve [PRSPPI 223
[eoT 5 413 [« I PP P PSPPI 223
Public Key Cryptography Standard (PKCS) #17T ...cuuiiniiiiiieieeii ettt et e e e 224
OVEIVIBW .eteteiee ettt et ettt ettt ettt et ea e ebeea e ebeea e ebeea s enea e eneaeneneneenenaennenns 224
FAUIES .t e 224
ASymmetric CryptoSYStEM SUPPOIT ..euenii ettt ettt et et e et et et e eaeneaneneseeneneenens 225
[eoT 5 413 [« I PP P PSPPI 226
SECUNE SOCKEES ...eneeiie ittt ettt et e et et et et e e e et e et e et e ea e aneeaneeaaeenaeenaan 226
OVEIVIBW ettt ettt ettt ettt ettt ettt ebeta e ebeea e eneea e eneaeneaenenenennenensenns 226
Dependencies and reqUIrEMIENTSviuiiuriiie ittt et ee s e et e ee e e ee e e ane e saneaneanns 227
== =N 227
B Lo]0] o] 1=1 y oo} i 5 T« TSP PRN 227
DEVELOPEI SUPPOIT tuuitnitiiieitiei ettt et ettt et et ettt ettt et eaa et et eaneansaneenetnransenrensenseneens 228
UE= Lo [l] o e o] L PP PP PPPPPPN 228
INIHTALIZAION oot e et et ettt e e e e e 228
APL FEEFEIEINCE .. ettt e e et et et et e e e e e eans 228
o T aa] o LI T Y- T [PP PR 228
[eoT 5 413 [« I PP P PSPPI 230
TranSPOIt LAYEr SECUIITY .ueuneniiiiiiiiii et ettt e et et e e et eaeebeaenaeaenennenes 230
L R TP PSP PPT PP PRUPRTORt 230
OVEIVIBW .eneteiei ettt ettt ettt ettt et ea et ea e ebeea e ebeea e eneea s eneaeneaenenennneneennenns 230
Dependencies and reqUIrEMIENTSviuiiriiiie ittt ee e st e e e ee e e ee e e ane e s anaanaanns 230
FATUIES .t 231
[@e]a1 3 [[=1 o] IR RNN 232
INIHIALIZAION oot e et ettt e e e e ans 232
APL FEIEIEINCE ..ttt ettt e e e et et et e et e eaeeans 233
EXQIMPLE USAGE 1uuiuniiiiiiitiie ittt et et et et e e e ee et e ete et e et e e e et e et e et aae et aaeateaneanesneeseeneennes 233
[eoT 5 413 [« T PP PRSPPI 234
(o] aa] aTe T I V4@ RPN 234

FreeRTOS User Guide

L =TT O L D= 5 T 236
RUNNING the Fre@RTOS dEMIOS . .c.uinniiieii ettt et ettt et ettt e e et et et e et et e e ean e eaneeaaeenns 236
ConfIgUING the BMOS ...vuiiniiii et e e e e e et et e e te et et et et aaasnaaaasnaenenns 236
BLUETOOTN LOW ENEIGY ..iuiiniiiiiiiiiie ittt ettt e e e e e e e et e e et e e et s e e e e e eeneanaanaan 236

OVEIVIBW ettt ettt ettt et ettt e ettt ea et ea s ebeea e eneea e ebeeaeneaenenenenneneennenns 236
PrEIEQUISITES «eneniiiiie ittt ettt et e et e et e e et et et e et e et a e e et anaans 237
COMMON COMPONENTS ...ttt ettt ettt et e e e e e e et ettt e e e e e e enenenanananaaans 239
MQTT over BlUetoOth LOW ENEIGY ...uivuiiniiiiiiiiiiiiiie ettt et e e e e e e et e e eaaanas 243
WIi=Fi PrOVISIONING ...eneniiinii ittt ettt et e e e et e e e e et e et e eneaneneaaeneananns 245
GENENIC ALEMDULES SEIVEL ..eceiiii ettt e e et e eaaee 247
Bootloader for the Microchip Curiosity PIC32ZMZEFcciiiiiiiiiiiiiiieiieii et e ee e e ans 248
BOOTLOAAEN SEALES . ..uieiiiiii ittt et e et e e e e e e aaaae 248
FLASH AEVICE . ettt ettt et et et e e et e et e e e e e e eennae 249
ApPPLiIcation IMAge SEIUCTUIiuieiiii ettt et et e e et e e et e e e e e e e e s ane e eanas 250
[aaF o TN 3 1o [a =Y TP 250
(g aF Lo T a [T ol {0 o SRR PPPPPIN 251
[[aaF o LI o = 1] PP 252
Bootloader CoNfigUIationiuiiiiiiiii e e e e e e aaaas 252
BUilding the Bootloaderiuniiiii e 253
AWS 10T DEVICE DEFENAELeeiiteiieie e ettt et et et et et e e e e eaaeenaeens 253
F N A (o € == g [« | L 254
AMAZON EC2 c.eiiiiiiiiii et et aaes 256
OVEI-TNE-aIT UPAAtES .iiiiiiiiii ittt e et e e et e e et e e et s e e e e e et e aeeneanaans 257
Texas Instruments CC3220SF-LAUNCHXLcuiiiiiiiiiiiiiiiiiii e 260
Microchip CUriosity PIC32MZEFc..iiniiniiiiiiieii ettt e et et e et e e e e et e e e e e e e aeenaanas 262
o T | o] 37 TPt 266
HT TP S ettt ettt ettt et ettt e et e et e et et et et et ettt e eh et e tn et e eba e ebeeh e e aanaas 266
OVEIVIBW .eteteiee ettt et ettt ettt ettt et ea e ebeea e ebeea e ebeea s enea e eneaeneneneenenaennenns 266
USAQe INSEIUCTIONS . euiniiiii ittt et ettt et e e e e e e e e e eaaeanes 267
AWS 10T DEVICE SHAUOWcuniiiiiieie ettt e et et e e e et e e e e eanees 267
SECUNE SOCKEES ...ttt ettt et et et et et et e et e et e et e en e e e et e eaaeenaeenaaes 269

Using AWS 10T Device Tester for FFEEBRTOSc.uiuuiiieiieiie et ettt ettt et et et e et e ebeebeenaees 270

Supported versions of IDT for Fre@RTOSiuniiiiiiei ettt et eea e e e eaaeeaaeens 271
Latest version of IDT for Fre@eRTOScuuiiiiiiiiieie ettt e e e e e eane 271
EQrlier IDT VEISIONSceueeneiineit ettt et et et et e et e et e et e et e et e aa et e et e et e ebaeenaeeneeneeneeenns 272

UNSUPPOIEE IDT VEISIONS ..ceneeneiieiie ettt et et et e et et et e et et et e et e et e et e et een e eaneeaneenaeenneeneannees 273

PrEIEQUISITES «.nenieiniie ittt ettt e e et e e et et et e et ea et e e et et e et et eeae e en e 274
DoWNLOAd FrEERTOS ...ttt ettt ettt e et et e e et e et e e b e et e eneebeeneeneeeneeanns 274
Download IDT for FFEERTOSeuneiiiiieii ettt et ettt e e et et e e et e een e et e eneeneenenns 274
Create and configure an AWS QCCOUNTcuuiiiiiiiie ettt eea e e e e e 274
AWS IoT Device Tester managed POLICY ...c.ueuniiuiiiiiieie et e e e e eens 276
(Optional) Install the AWS Command Line INterfaceccouviiiiiiiiiiiiiiiiiic e 276

Preparing to test your microcontroller board for the first timecccooviiiiiiiiiiiiii s 277
Add Library porting LAYErscue e ettt e e e ans 277
Configure your AWS credentialscouuieunieiiiiei ettt e e 277
Create a device pool in IDT for Fre@RTOSc.uiuniiiiieii ettt e e ea e eenae 277
Configure build, flash, and test SEttINGSviiiiiiii e 280

RUNNING BLUELOOth LOW ENEIGY tESTS ..uuiuiniiiiiiiiiiiieie it ee et ee e ee e eeeeeeeeeieeae et eaeeaeaneeanans 286
PrEIEQUISITES «.eneniiieii ittt ettt e et e et e et e et et et e et e et e et en et anaans 286
RASPDEITY Pi SEEUP .. euiniiiiiii ittt e et e et et e e et e e et e e et ea e e eanaanaanns 286
Fre@RTOS deVICE SETUP .oeuieieii ettt et ettt et e et et e et et et e e e eaneenneens 288
RUNNING The BLE TESES ..evuiuiiiiiiiiiiiit ittt et e et e e et et e e e e et e ee e e e e e s ee e s ane e saneaneanaens 288
Troubleshooting BLE tEStS ..uiuuiiiiiiiiiiie ettt e e e e e e et e eie et e ete et eateenseneaneanaannas 289

Running the FreeRTOS qualification SUITEccueiiuiiiiiiii e e 289
IDT for FreeRTOS COMMANGS ...cuuiiiniiiiiiii ettt ettt et ettt et et et e een e eaeeaeeneenneens 291
Test for re-qQUAlIfICation ... 292

TEST SUILE VEISIONS «ceteniiiiii ittt ettt ettt e e et e et e e e e ea e ennes 292

Vi

FreeRTOS User Guide

Understanding results and LOgSeun i ettt et e e e e 293
VIBWING FESULES «evnittiiiiiiiit ettt e et e e e ete et et e ete et e et et et et et eaeetaansaseansssneneesnennes 293

B Lo 18] o] 1=T Voo i o T« TSP RO PPPPTRIRPRt 295
Troubleshooting device configurationo.viuiiiiiiiiiiii e e e eans 295
Troubleshooting tIMEOUL @ITOISiiuiiiiiii i et et e e e e e e e et eaneanaanns 301
Y0 o] o Yo o Al o Yo] Loy YA PP PPRN 301
SECUNILY INM AWS ottt ettt ettt e et ettt et et e e e e e e e e e e e e e e e e e e e ans 302
Identity and AcCCesS MaNAgeMIENTiiniiii i e e e it et et et et et et et aan et aan et aanaans 302
AUIBINCE ..ottt et et e et et et et e et e et e et e ta e ta e ean e ean e eaeen e e eenees 303
Authenticating With identitiescouvieiiiii e 303
Managing access USING POLICIESvuiiniiiiiiiiiii ettt e e e e e e e s ee e e e ens 305
L= o T 0 T = P 306

How AWS services Work With TAM ... ettt e e 306
Identity-based pPolicy @XaMIPLEScu.iuiiiiiiiiie e e e e e e e e e aaaa 309

B L o]0] o] 1=1 Ve o} i 5 T« TSP PPRN 311
Compliance Validationiue it ettt et et a et a e ans 313
RESILIEINCE ...ttt ettt et e e et et et et et et et ettt et et e e e e eans 313
INFraSEIUCTUNE SECUNTEY 1uiniiniitit ittt et et et e e et et et e e e e e et e et e et e ea e et eaaeateaneeneaneanns 313

vii

FreeRTOS User Guide
FreeRTOS architecture

What Is FreeRTOS?

Developed in partnership with the world's leading chip companies over a 15-year period, and now
downloaded every 175 seconds, FreeRTOS is a market-leading real-time operating system (RTOS)
for microcontrollers and small microprocessors. Distributed freely under the MIT open source license,
FreeRTOS includes a kernel and a growing set of libraries suitable for use across all industry sectors.
FreeRTOS is built with an emphasis on reliability and ease of use.

FreeRTOS includes libraries for connectivity, security, and over-the-air (OTA) updates. FreeRTOS also
includes demo applications that show FreeRTOS features on qualified boards.

FreeRTOS is an open-source project. You can download the source code, contribute changes or
enhancements, or report issues on the GitHub site at https://github.com/aws/amazon-freertos. We
release FreeRTOS code under the MIT open source license, so you can use it in commercial and personal
projects.

We also welcome contributions to the FreeRTOS documentation (FreeRTOS User Guide, FreeRTOS Porting
Guide, and FreeRTOS Qualification Guide). The markdown source for the documentation is available at
https://github.com/awsdocs/aws-freertos-docs. It is released under the Creative Commons (CC BY-ND)
license.

The FreeRTOS kernel and components are released individually and use semantic versioning. Integrated
FreeRTOS releases are made periodically. The three types of FreeRTOS releases are major, minor, and
long-term support (LTS). A major denotation indicates the addition of new features or significant
updates to multiple libraries. All releases use date-based versioning with the format YYYYMM.NN, where:

Y represents the year.
« M represents the month.
« N represents the release order within the designated month (00 being the first release).

For example, a second release in June 2019 would be 201906.01.

Previously, FreeRTOS releases used semantic versioning for major releases. Although it has moved to
date-based versioning (FreeRTOS 1.4.8 updated to FreeRTOS 201906.00), the FreeRTOS kernel and each
individual FreeRTOS library still retain semantic versioning. In semantic versioning, the version number
itself (X.Y.Z) indicates whether the release is a major, minor, or point release. This can create situations
where semantic versioning indicates a major release based on changes that don't affect an individual
application. You can use the semantic version of a library to assess the scope and impact of a new release
on your application.

LTS releases are maintained differently than other release types. Major and minor releases are frequently
updated with new features in addition to defect resolutions. LTS releases are only updated with changes
to address critical defects and security vulnerabilities. No new features are introduced in a given LTS
release after launch. They are maintained for at least three calendar years after release, and provide
device manufacturers the option to use a stable baseline as opposed to a more dynamic baseline
represented by major and minor releases.

FreeRTOS architecture

FreeRTOS is typically flashed to devices as a single compiled image with all of the components required
for device applications. This image combines functionality for the applications written by the embedded

https://devices.amazonaws.com/search?page=1&sv=freertos
https://github.com/aws/amazon-freertos
https://github.com/awsdocs/aws-freertos-docs

FreeRTOS User Guide
FreeRTOS kernel

developer, the software libraries provided by Amazon, the FreeRTOS kernel, and drivers and board
support packages (BSPs) for the hardware platform. Independent of the individual microcontroller being
used, embedded application developers can expect the same standardized interfaces to the FreeRTOS
kernel and all FreeRTOS software libraries.

Embedded Applications

var s | el | Geemme | pede
OTA Updates PKCS #11 SS;;:‘ETS
Wi-Fi BLE +POSIX +TCP TLS
TRl InteFrLEa?T_-:—lggries
Vendor Drivers
Hardware

FreeRTOS kernel

The FreeRTOS kernel is a real-time operating system that supports numerous architectures and is ideal
for building embedded microcontroller applications. The kernel provides:

« A multitasking scheduler.
« Multiple memory allocation options (including the ability to create statically allocated systems).

« Inter-task coordination primitives, including task notifications, message queues, multiple types of
semaphores, and stream and message buffers.

For the most up-to-date documentation about the FreeRTOS kernel, see FreeRTOS.org. FreeRTOS.org
offers a number of detailed tutorials and guides about using the FreeRTOS kernel, including a Quick
Start Guide and the more in-depth Mastering the FreeRTOS Real Time Kernel. For more information
about the FreeRTOS kernel in this guide, see FreeRTOS kernel fundamentals (p. 3).

https://freertos.org/RTOS.html
https://freertos.org/FreeRTOS-quick-start-guide.html#page_top
https://freertos.org/FreeRTOS-quick-start-guide.html#page_top
https://freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf

FreeRTOS User Guide
FreeRTOS kernel fundamentals

FreeRTOS kernel fundamentals

The FreeRTOS kernel is a real-time operating system that supports numerous architectures. It is ideal for
building embedded microcontroller applications. It provides:

« A multitasking scheduler.

« Multiple memory allocation options (including the ability to create completely statically-allocated
systems).

« Intertask coordination primitives, including task notifications, message queues, multiple types of
semaphore, and stream and message buffers.

The FreeRTOS kernel never performs non-deterministic operations, such as walking a linked list, inside
a critical section or interrupt. The FreeRTOS kernel includes an efficient software timer implementation
that does not use any CPU time unless a timer needs servicing. Blocked tasks do not require time-
consuming periodic servicing. Direct-to-task notifications allow fast task signaling, with practically no
RAM overhead. They can be used in most intertask and interrupt-to-task signaling scenarios.

The FreeRTOS kernel is designed to be small, simple, and easy to use. A typical RTOS kernel binary image
is in the range of 4000 to 9000 bytes.

FreeRTOS kernel scheduler

An embedded application that uses an RTOS can be structured as a set of independent tasks. Each task
executes within its own context, with no dependency on other tasks. Only one task in the application

is running at any point in time. The real-time RTOS scheduler determines when each task should run.
Each task is provided with its own stack. When a task is swapped out so another task can run, the task’s
execution context is saved to the task stack so it can be restored when the same task is later swapped
back in to resume its execution.

To provide deterministic real-time behavior, the FreeRTOS tasks scheduler allows tasks to be assigned
strict priorities. RTOS ensures the highest priority task that is able to execute is given processing

time. This requires sharing processing time between tasks of equal priority if they are ready to run
simultaneously. FreeRTOS also creates an idle task that executes only when no other tasks are ready to
run.

Memory management

This section provides information about kernel memory allocation and application memory
management.

Kernel memory allocation

The RTOS kernel needs RAM each time a task, queue, or other RTOS object is created. The RAM can be
allocated:

« Statically at compile time.
« Dynamically from the RTOS heap by the RTOS API object creation functions.

When RTOS objects are created dynamically, using the standard C librarymalloc() and free()
functions is not always appropriate for a number of reasons:

« They might not be available on embedded systems.
« They take up valuable code space.

FreeRTOS User Guide
Intertask coordination

« They are not typically thread-safe.
« They are not deterministic.

For these reasons, FreeRTOS keeps the memory allocation API in its portable layer. The portable

layer is outside of the source files that implement the core RTOS functionality, so you can provide an
application-specific implementation appropriate for the real-time system you're developing. When the
RTOS kernel requires RAM, it calls pvPortMalloc() instead of malloc()(). When RAM is being freed,
the RTOS kernel calls vPortFree() instead of free().

Application memory management

When applications need memory, they can allocate it from the FreeRTOS heap. FreeRTOS offers several
heap management schemes that range in complexity and features. You can also provide your own heap
implementation.

The FreeRTOS kernel includes five heap implementations:
heap_1

Is the simplest implementation. Does not permit memory to be freed.
heap_2

Permits memory to be freed, but not does coalesce adjacent free blocks.
heap_3

Wraps the standard malloc() and free() for thread safety.
heap_ 4

Coalesces adjacent free blocks to avoid fragmentation. Includes an absolute address placement
option.
heap_ 5

Is similar to heap_4. Can span the heap across multiple, non-adjacent memory areas.

Intertask coordination

This section contains information about FreeRTOS primitives.

Queues

Queues are the primary form of intertask communication. They can be used to send messages between
tasks and between interrupts and tasks. In most cases, they are used as thread-safe, First In First Out
(FIFO) buffers with new data being sent to the back of the queue. (Data can also be sent to the front

of the queue.) Messages are sent through queues by copy, meaning the data (which can be a pointer to
larger buffers) is itself copied into the queue rather than simply storing a reference to the data.

Queue APIs permit a block time to be specified. When a task attempts to read from an empty queue, the
task is placed into the Blocked state until data becomes available on the queue or the block time elapses.
Tasks in the Blocked state do not consume any CPU time, allowing other tasks to run. Similarly, when

a task attempts to write to a full queue, the task is placed into the Blocked state until space becomes
available in the queue or the block time elapses. If more than one task blocks on the same queue, the
task with the highest priority is unblocked first.

Other FreeRTOS primitives, such as direct-to-task notifications and stream and message buffers, offer
lightweight alternatives to queues in many common design scenarios.

FreeRTOS User Guide
Intertask coordination

Semaphores and mutexes

The FreeRTOS kernel provides binary semaphores, counting semaphores, and mutexes for both mutual
exclusion and synchronization purposes.

Binary semaphores can only have two values. They are a good choice for implementing synchronization
(either between tasks or between tasks and an interrupt). Counting semaphores take more than two
values. They allow many tasks to share resources or perform more complex synchronization operations.

Mutexes are binary semaphores that include a priority inheritance mechanism. This means that if a high
priority task blocks while attempting to obtain a mutex that is currently held by a lower priority task, the
priority of the task holding the token is temporarily raised to that of the blocking task. This mechanism is
designed to ensure the higher priority task is kept in the Blocked state for the shortest time possible, to
minimize the priority inversion that has occurred.

Direct-to-task notifications

Task notifications allow tasks to interact with other tasks, and to synchronize with interrupt service
routines (ISRs), without the need for a separate communication object like a semaphore. Each RTOS task
has a 32-bit notification value that is used to store the content of the notification, if any. An RTOS task
notification is an event sent directly to a task that can unblock the receiving task and optionally update
the receiving task's notification value.

RTOS task notifications can be used as a faster and lightweight alternative to binary and counting
semaphores and, in some cases, queues. Task notifications have both speed and RAM footprint
advantages over other FreeRTOS features that can be used to perform equivalent functionality. However,
task notifications can only be used when there is only one task that can be the recipient of the event.

Stream buffers

Stream buffers allow a stream of bytes to be passed from an interrupt service routine to a task, or from
one task to another. A byte stream can be of arbitrary length and does not necessarily have a beginning
or an end. Any number of bytes can be written at one time, and any number of bytes can be read at one
time. You enable stream buffer functionality by including the stream buffer.c source file in your
project.

Stream buffers assume there is only one task or interrupt that writes to the buffer (the writer), and only
one task or interrupt that reads from the buffer (the reader). It is safe for the writer and reader to be
different tasks or interrupt service routines, but it is not safe to have multiple writers or readers.

The stream buffer implementation uses direct-to-task notifications. Therefore, calling a stream buffer
API that places the calling task into the Blocked state can change the calling task's notification state and
value.

Sending data

xStreamBufferSend() is used to send data to a stream buffer in a task.
xStreamBufferSendFromISR() is used to send data to a stream buffer in an interrupt service routine
(ISR).

xStreamBufferSend() allows a block time to be specified. If xStreamBufferSend() is called with a
non-zero block time to write to a stream buffer and the buffer is full, the task is placed into the Blocked
state until space becomes available or the block time expires.

sbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called (internally, by
the FreeRTOS API) when data is written to a stream buffer. It takes the handle of the stream buffer that

FreeRTOS User Guide
Intertask coordination

was updated. Both of these macros check to see if there is a task blocked on the stream buffer waiting
for data, and if so, removes the task from the Blocked state.

You can change this default behavior by providing your own implementation of sbSEND_COMPLETED()
in FreeRTOSConfig.h (p. 8). This is useful when a stream buffer is used to pass data between

cores on a multicore processor. In that scenario, sbSEND_COMPLETED() can be implemented to
generate an interrupt in the other CPU core, and the interrupt's service routine can then use the
xStreamBufferSendCompletedFromISR() APl to check, and if necessary unblock, a task that is
waiting for the data.

Receiving data

xStreamBufferReceive() is used to read data from a stream buffer in a task.
xStreamBufferReceiveFromISR() is used to read data from a stream buffer in an interrupt service
routine (ISR).

xStreamBufferReceive() allows a block time to be specified. If xStreamBufferReceive() is called
with a non-zero block time to read from a stream buffer and the buffer is empty, the task is placed into
the Blocked state until either a specified amount of data becomes available in the stream buffer, or the
block time expires.

The amount of data that must be in the stream buffer before a task is unblocked is called the
stream buffer's trigger level. A task blocked with a trigger level of 10 is unblocked when at least 10
bytes are written to the buffer or the task's block time expires. If a reading task's block time expires
before the trigger level is reached, the task receives any data written to the buffer. The trigger
level of a task must be set to a value between 1 and the size of the stream buffer. The trigger level
of a stream buffer is set when xStreamBufferCreate() is called. It can be changed by calling
xStreamBufferSetTriggerLevel().

SbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are
called (internally, by the FreeRTOS API) when data is read from a stream buffer. The macros
check to see if there is a task blocked on the stream buffer waiting for space to become available
within the buffer, and if so, they remove the task from the Blocked state. You can change the
default behavior of sbRECEIVE_COMPLETED() by providing an alternative implementation in
FreeRTOSConfig.h (p. 8).

Message buffers

Message buffers allow variable-length discrete messages to be passed from an interrupt service routine
to a task, or from one task to another. For example, messages of length 10, 20, and 123 bytes can all be
written to, and read from, the same message buffer. A 10-byte message can only be read as a 10-byte

message, not as individual bytes. Message buffers are built on top of stream buffer implementation. you
can enable message buffer functionality by including the stream buffer. c source file in your project.

Message buffers assume there is only one task or interrupt that writes to the buffer (the writer), and only
one task or interrupt that reads from the buffer (the reader). It is safe for the writer and reader to be
different tasks or interrupt service routines, but it is not safe to have multiple writers or readers.

The message buffer implementation uses direct-to-task notifications. Therefore, calling a stream buffer
API that places the calling task into the Blocked state can change the calling task's notification state and
value.

To enable message buffers to handle variable-sized messages, the length of each message is written into
the message buffer before the message itself. The length is stored in a variable of type size_t, which is
typically 4 bytes on a 32-byte architecture. Therefore, writing a 10-byte message into a message buffer
actually consumes 14 bytes of buffer space. Likewise, writing a 100-byte message into a message buffer
actually uses 104 bytes of buffer space.

FreeRTOS User Guide
Software timers

Sending data

xMessageBufferSend() is used to send data to a message buffer from a task.
xMessageBufferSendFromISR() is used to send data to a message buffer from an interrupt service
routine (ISR).

xMessageBufferSend() allows a block time to be specified. If xMessageBufferSend() is called
with a non-zero block time to write to a message buffer and the buffer is full, the task is placed into the
Blocked state until either space becomes available in the message buffer, or the block time expires.

SbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called (internally,
by the FreeRTOS API) when data is written to a stream buffer. It takes a single parameter, which is

the handle of the stream buffer that was updated. Both of these macros check to see if there is a task

blocked on the stream buffer waiting for data, and if so, they remove the task from the Blocked state.

You can change this default behavior by providing your own implementation of sbSEND_COMPLETED()
in FreeRTOSConfig.h (p. 8). This is useful when a stream buffer is used to pass data between

cores on a multicore processor. In that scenario, sbSEND_COMPLETED() can be implemented to
generate an interrupt in the other CPU core, and the interrupt's service routine can then use the
xStreamBufferSendCompletedFromISR() APl to check, and if necessary unblock, a task that was
waiting for the data.

Receiving data

xMessageBufferReceive() is used to read data from a message buffer in a task.
xMessageBufferReceiveFromISR() is used to read data from a message buffer in an interrupt
service routine (ISR). xMessageBufferReceive() allows a block time to be specified. If
xMessageBufferReceive() is called with a non-zero block time to read from a message buffer and
the buffer is empty, the task is placed into the Blocked state until either data becomes available, or the
block time expires.

SbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are
called (internally, by the FreeRTOS API) when data is read from a stream buffer. The macros
check to see if there is a task blocked on the stream buffer waiting for space to become available
within the buffer, and if so, they remove the task from the Blocked state. You can change the
default behavior of sbRECEIVE_COMPLETED() by providing an alternative implementation in
FreeRTOSConfig.h (p. 8).

Software timers

A software timer allows a function to be executed at a set time in the future. The function executed by
the timer is called the timer's callback function. The time between a timer being started and its callback
function being executed is called the timer’s period. The FreeRTOS kernel provides an efficient software
timer implementation because:

« It does not execute timer callback functions from an interrupt context.

« It does not consume any processing time unless a timer has actually expired.

« It does not add any processing overhead to the tick interrupt.

« It does not walk any link list structures while interrupts are disabled.

Low power support

Like most embedded operating systems, the FreeRTOS kernel uses a hardware timer to generate
periodic tick interrupts, which are used to measure time. The power saving of regular hardware timer

FreeRTOS User Guide
FreeRTOSConfig.h

implementations is limited by the necessity to periodically exit and then re-enter the low power state to
process tick interrupts. If the frequency of the tick interrupt is too high, the energy and time consumed
entering and exiting a low power state for every tick outweighs any potential power-saving gains for all
but the lightest power-saving modes.

To address this limitation, FreeRTOS includes a tickless timer mode for low-power applications. The
FreeRTOS tickless idle mode stops the periodic tick interrupt during idle periods (periods when there are
no application tasks that are able to execute), and then makes a correcting adjustment to the RTOS tick
count value when the tick interrupt is restarted. Stopping the tick interrupt allows the microcontroller to
remain in a deep power-saving state until either an interrupt occurs, or it is time for the RTOS kernel to
transition a task into the ready state.

Kernel configuration

You can configure the FreeRTOS kernel for a specific board and application with the
FreeRTOSConfig.h header file. Every application built on the kernel must have a FreeRTOSConfig.h
header file in its preprocessor include path. FreeRTOSConfig.h is application-specific and should be
placed under an application directory, and not in one of the FreeRTOS kernel source code directories.

The FreeRTOSConfig.h files for the FreeRTOS demo and test applications are located at freertos/
vendors/vendor/boards/board/aws_demos/config files/FreeRTOSConfig.h and
freertos/vendors/vendor/boards/board/aws_tests/config files/FreeRTOSConfig.h.

For a list of the available configuration parameters to specify in FreeRTOSConfig.h, see FreeRTOS.org.

FreeRTOS libraries

FreeRTOS includes libraries that make it possible to:

« Securely connect devices to the AWS loT Cloud using MQTT and device shadows.
« Discover and connect to AWS loT Greengrass cores.

« Manage Wi-Fi connections.

« Listen for and process FreeRTOS Over-the-Air Updates (p. 8).

For more information, see FreeRTOS Libraries.

FreeRTOS Over-the-Air Updates

Over-the-air (OTA) updates allow you to deploy firmware updates to one or more devices in your fleet.
Although OTA updates were designed to update device firmware, you can use them to send any files to
one or more devices registered with AWS loT. When you send updates over the air, we recommend that
you digitally sign them so that the devices that receive the files can verify they haven't been tampered
with en route.

You can use Code Signing for AWS IoT to sign your files, or you can sign your files with your own code-
signing tools.

When you create an OTA update, the OTA Update Manager service (p. 53) creates an AWS IoT job

to notify your devices that an update is available. The OTA demo application runs on your device and
creates a FreeRTOS task that subscribes to notification topics for AWS loT jobs and listens for update
messages. When an update is available, the OTA Agent publishes requests to AWS loT and receives

https://www.freertos.org/a00110.html
https://docs.aws.amazon.com/freertos/latest/userguide/dev-guide-freertos-libraries.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html

FreeRTOS User Guide
Tagging OTA resources

updates using the HTTP or MQTT protocol, depending on the settings you chose. The OTA Agent

checks the digital signature of the downloaded files and, if the files are valid, installs the firmware
update. If you don't use the FreeRTOS OTA Update demo application, you must integrate the OTA Agent
library (p. 222) into your own application to get the firmware update capability.

FreeRTOS over-the-air updates make it possible for you to:

« Digitally sign firmware before deployment.

« Deploy new firmware images to a single device, a group of devices, or your entire fleet.
« Deploy firmware to devices as they are added to groups, reset, or reprovisioned.

« Verify the authenticity and integrity of new firmware after it's deployed to devices.

« Monitor the progress of a deployment.

« Debug a failed deployment.

Tagging OTA resources

To help you manage your OTA resources, you can optionally assign your own metadata to updates

and streams in the form of tags. Tags make it possible for you to categorize your AWS IoT resources in
different ways (for example, by purpose, owner, or environment). This is useful when you have many
resources of the same type. You can quickly identify a resource based on the tags you've assigned to it.

For more information, see Tagging Your AWS loT Resources.

OTA update prerequisites

To use over-the-air (OTA) updates, do the following:

 Check the Prerequisites for OTA updates using HTTP (p. 22) or the Prerequisites for OTA updates
using MQTT (p. 20).

« Create an Amazon S3 bucket to store your update (p. 9).

« Create an OTA Update service role (p. 10).

« Create an OTA user policy (p. 11).

» Create a code-signing certificate (p. 13).

« If you are using Code Signing for AWS loT, Grant access to code signing for AWS IoT (p. 19).

« Download FreeRTOS with the OTA library (p. 20).

Create an Amazon S3 bucket to store your update

OTA update files are stored in Amazon S3 buckets.

If you're using Code Signing for AWS IoT, the command that you use to create a code-signing job takes
a source bucket (where the unsigned firmware image is located) and a destination bucket (where the
signed firmware image is written). You can specify the same bucket for the source and destination. The
file names are changed to GUIDs so the original files are not overwritten.

To create an Amazon S3 bucket

1. Sign in to the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. Choose Create bucket.
3. Type a bucket name, and then choose Next.

https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot.html
https://console.aws.amazon.com/s3/

FreeRTOS User Guide
OTA update prerequisites

4.
5.
6.

Select Versioning to keep all versions in the same bucket, and then choose Next.
Choose Next to accept the default permissions.
Choose Create bucket.

For more information about Amazon S3, see Amazon Simple Storage Service Console User Guide.

Create an OTA Update service role

The OTA Update service assumes this role to create and manage OTA update jobs on your behalf.

To create an OTA service role

LW e N U AW =

Sign in to the https://console.aws.amazon.com/iam/.

From the navigation pane, choose Roles.

Choose Create role.

Under Select type of trusted entity, choose AWS Service.
Choose 10T from the list of AWS services.

Under Select your use case, choose loT.

Choose Next: Tags.

Choose Next: Review.

Enter a role name and description, and then choose Create role.

For more information about IAM roles, see IAM Roles.

To add OTA update permissions to your OTA service role

1.

In the search box on the IAM console page, enter the name of your role, and then choose it from the
list.

Choose Attach policies.

In the Search box, enter "AmazonFreeRTOSOTAUpdate", select AmazonFreeRTOSOTAUpdate from
the list of filtered policies, and then choose Attach policy to attach the policy to your service role.

To add the required IAM permissions to your OTA service role

1.

In the search box on the IAM console page, enter the name of your role, and then choose it from the
list.

Choose Add inline policy.
Choose the JSON tab.
Copy and paste the following policy document into the text box:

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",
"Action": [
"iam:GetRole",
"iam:PassRole"
1,

"Resource": "arn:aws:iam::your_account_id:role/your_role_name"

10

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

FreeRTOS User Guide
OTA update prerequisites

}

Make sure that you replace your_account_1id with your AWS account ID, and your_role_name
with the name of the OTA service role.

5. Choose Review policy.
6. Enter a name for the policy, and then choose Create policy.

Note

The following procedure isn't required if your Amazon S3 bucket name begins with "afr-ota". If
it does, the AWS managed policy AmazonFreeRTOSOTAUpdate already includes the required
permissions.

To add the required Amazon S3 permissions to your OTA service role

1. In the search box on the IAM console page, enter the name of your role, and then choose it from the
list.

2. Choose Add inline policy.
Choose the JSON tab.
4. Copy and paste the following policy document into the box.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObjectVersion",
"s3:GetObject",
"s3:PutObject"
]I
"Resource": [
"arn:aws:s3:::example-bucket/*"
]
¥
]
¥

This policy grants your OTA service role permission to read Amazon S3 objects. Make sure that you
replace example-bucket with the name of your bucket.

5. Choose Review policy.
6. Enter a name for the policy, and then choose Create policy.

Create an OTA user policy

You must grant your IAM user permission to perform over-the-air updates. Your IAM user must have
permissions to:

« Access the S3 bucket where your firmware updates are stored.
« Access certificates stored in AWS Certificate Manager.

+ Access the AWS loT Streaming service.

« Access FreeRTOS OTA updates.

« Access AWS loT jobs.

» Access IAM.

11

FreeRTOS User Guide
OTA update prerequisites

« Access Code Signing for AWS IoT. See Grant access to code signing for AWS IoT (p. 19).
o List FreeRTOS hardware platforms.

To grant your IAM user the required permissions, create an OTA user policy and then attach it to your IAM
user. For more information, see IAM Policies.

To create an OTA user policy

1. Open the https://console.aws.amazon.com/iam/ console.
2. Inthe navigation pane, choose Users.
3. Choose your IAM user from the list.
4. Choose Add permissions.
5. Choose Attach existing policies directly.
6. Choose Create policy.
7. Choose the JSON tab, and copy and paste the following policy document into the policy editor:
{
"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:ListAllMyBuckets",
"s3:CreateBucket",
"s3:PutBucketVersioning",
"s3:GetBucketLocation",
"s3:GetObjectVersion",
"acm:ImportCertificate",
"acm:ListCertificates",
"iot:*",
"iam:ListRoles",
"freertos:ListHardwarePlatforms",
"freertos:DescribeHardwarePlatform"
] 4
"Resource": "*"
T
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:PutObject"
] 4
"Resource": "arn:aws:s3:::example-bucket/*"
T
{
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "arn:aws:iam::your-account-id:role/role-name"
}
]
}

Replace example-bucket with the name of the Amazon S3 bucket where your OTA update
firmware image is stored. Replace your-account-1id with your AWS account ID. You can find your
AWS account ID in the upper right of the console. When you enter your account ID, remove any
dashes (-). Replace role-name with the name of the 1AM service role you just created.

8. Choose Review policy.

12

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://console.aws.amazon.com/iam/

FreeRTOS User Guide
OTA update prerequisites

9. Enter a name for your new OTA user policy, and then choose Create policy.

To attach the OTA user policy to your IAM user

In the IAM console, in the navigation pane, choose Users, and then choose your user.
Choose Add permissions.

Choose Attach existing policies directly.

Search for the OTA user policy you just created and select the check box next to it.
Choose Next: Review.

oA nWDN =

Choose Add permissions.

Create a code-signing certificate

To digitally sign firmware images, you need a code-signing certificate and private key. For testing
purposes, you can create a self-signed certificate and private key. For production environments, purchase
a certificate through a well-known certificate authority (CA).

Different platforms require different types of code-signing certificates. The following sections describe
how to create code-signing certificates for different FreeRTOS-qualified platforms.

Topics
« Creating a code-signing certificate for the Texas Instruments CC3220SF-LAUNCHXL (p. 13)
» Creating a code-signing certificate for the Microchip Curiosity PIC32MZEF (p. 15)
» Creating a code-signing certificate for the Espressif ESP32 (p. 16)
« Creating a code-signing certificate for the Nordic nrf52840-dk (p. 17)
» Creating a code-signing certificate for the FreeRTOS Windows simulator (p. 18)
» Creating a code-signing certificate for custom hardware (p. 18)

Creating a code-signing certificate for the Texas Instruments CC3220SF-
LAUNCHXL

The SimpleLink Wi-Fi CC3220SF Wireless Microcontroller Launchpad Development Kit supports two
certificate chains for firmware code signing:

« Production (certificate-catalog)

To use the production certificate chain, you must purchase a commercial code-signing certificate and
use the Tl Uniflash tool to set the board to production mode.

« Testing and development (certificate-playground)

The playground certificate chain allows you to try out OTA updates with a self-signed code-signing
certificate.

Use the AWS Command Line Interface to import your code-signing certificate, private key, and certificate
chain into AWS Certificate Manager. For more information see Installing the AWS CLI in the AWS
Command Line Interface User Guide.

Download and install the latest version of SimpleLink CC3220 SDK. By default, the files you need are
located here:

C:\ti\simplelink cc32xx_sdk version\tools\cc32xx tools\certificate-playground
(Windows)

13

http://www.ti.com/tool/UNIFLASH
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
http://www.ti.com/tool/download/SIMPLELINK-CC3220-SDK

FreeRTOS User Guide
OTA update prerequisites

/Applications/Ti/simplelink cc32xx version/tools/cc32xx_tools/certificate-
playground (macOS)

The certificates in the SimpleLink CC3220 SDK are in DER format. To create a self-signed code-signing
certificate, you must convert them to PEM format.

Follow these steps to create a code-signing certificate that is linked to the Texas Instruments playground
certificate hierarchy and meets AWS Certificate Manager and Code Signing for AWS IoT criteria.

Note

To create a code signing certificate, install OpenSSL on your machine. After you install
OpenSSL, make sure that openss1 is assigned to the OpenSSL executable in your command
prompt or terminal environment.

To create a self-signed code signing certificate

Open a command prompt or terminal with administrator permissions.

2. Inyour working directory, use the following text to create a file named cert_config.txt. Replace
test_signer@amazon.com with your email address.

[req]

prompt = no
distinguished_name = my dn

[my dn]

commonName = test_signer@amazon.com
[my_exts]

keyUsage = digitalSignature
extendedKeyUsage = codeSigning

3. Create a private key and certificate signing request (CSR):

openssl req -config cert_config.txt -extensions my_exts -nodes -days 365 -newkey
rsa:2048 -keyout tisigner.key -out tisigner.csr

4. Convert the Texas Instruments playground root CA private key from DER format to PEM format.
The Tl playground root CA private key is located here:

C:\ti\simplelink cc32xx_sdk_version\tools\cc32xx_tools\certificate-
playground\dummy-root-ca-cert-key (Windows)

/Applications/Ti/simplelink_ cc32xx_sdk_version/tools/cc32xx_tools/
certificate-playground/dummy-root-ca-cert-key (macQOS)

openssl rsa -inform DER -in dummy-root-ca-cert-key -out dummy-root-ca-cert-key.pem

5. Convert the Texas Instruments playground root CA certificate from DER format to PEM format.
The Tl playground root certificate is located here:

C:\ti\simplelink cc32xx_sdk version\tools\cc32xx_tools\certificate-
playground/dummy-root-ca-cert (Windows)

/Applications/Ti/simplelink_ cc32xx_sdk_version/tools/cc32xx_tools/
certificate-playground/dummy-root-ca-cert (macOS)

openssl x509 -inform DER -in dummy-root-ca-cert -out dummy-root-ca-cert.pem

14

https://www.openssl.org/

FreeRTOS User Guide
OTA update prerequisites

6. Sign the CSR with the Texas Instruments root CA:

openssl x509 -extfile cert_config.txt -extensions my_exts -req -days 365 -in
tisigner.csr -CA dummy-root-ca-cert.pem -CAkey dummy-root-ca-cert-key.pem -set_serial
01 -out tisigner.crt.pem -shal

7. Convert your code-signing certificate (tisigner.crt.pem) to DER format:

openssl x509 -in tisigner.crt.pem -out tisigner.crt.der -outform DER

Note
You write the tisigner.crt.der certificate onto the Tl development board later.

8. Import the code-signing certificate, private key, and certificate chain into AWS Certificate Manager:

aws acm import-certificate --certificate fileb://tisigner.crt.pem --private-key
fileb://tisigner.key --certificate-chain fileb://dummy-root-ca-cert.pem

This command displays an ARN for your certificate. You need this ARN when you create an OTA
update job.

Note

This step is written with the assumption that you are going to use Code Signing for
AWS loT to sign your firmware images. Although the use of Code Signing for AWS loT is
recommended, you can sign your firmware images manually.

Creating a code-signing certificate for the Microchip Curiosity PIC32MZEF

The Microchip Curiosity PIC32MZEF supports a self-signed SHA256 with ECDSA code-signing certificate.

Note

To create a code-signing certificate, install OpenSSL on your machine. After you install
OpenSSL, make sure that openss1 is assigned to the OpenSSL executable in your command
prompt or terminal environment.

Use the AWS Command Line Interface to import your code-signing certificate, private key, and
certificate chain into AWS Certificate Manager. For information about installing the AWS CLI, see
Installing the AWS CLI.

1. In your working directory, use the following text to create a file named cert_config.txt. Replace
test_signer@amazon.com with your email address:

[req]
prompt = no
distinguished_name = my_dn

[my_dn]
commonName = test_signer@amazon.com

[my_exts]
keyUsage = digitalSignature
extendedKeyUsage = codeSigning

2. Create an ECDSA code-signing private key:

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt
ec_param_enc:named_curve -outform PEM -out ecdsasigner.key

3. Create an ECDSA code-signing certificate:

15

https://www.openssl.org/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

FreeRTOS User Guide
OTA update prerequisites

openssl req -new -x509 -config cert_config.txt -extensions my_exts -nodes -days 365 -
key ecdsasigner.key -out ecdsasigner.crt

4. Import the code-signing certificate, private key, and certificate chain into AWS Certificate Manager:

aws acm import-certificate --certificate fileb://ecdsasigner.crt --private-key fileb://
ecdsasigner.key

This command displays an ARN for your certificate. You need this ARN when you create an OTA
update job.

Note

This step is written with the assumption that you are going to use Code Signing for
AWS IoT to sign your firmware images. Although the use of Code Signing for AWS IoT is
recommended, you can sign your firmware images manually.

Creating a code-signing certificate for the Espressif ESP32

The Espressif ESP32 boards support a self-signed SHA-256 with ECDSA code-signing certificate.

Note

To create a code signing certificate, install OpenSSL on your machine. After you install
OpenSSL, make sure that openss1 is assigned to the OpenSSL executable in your command
prompt or terminal environment.

Use the AWS Command Line Interface to import your code-signing certificate, private key, and
certificate chain into AWS Certificate Manager. For information about installing the AWS CLI, see
Installing the AWS CLI.

1. In your working directory, use the following text to create a file named cert_config. txt. Replace
test_signere@eamazon.com with your email address:

[req]
prompt = no
distinguished_name = my_dn

[my_dn]
commonName = test_signer@amazon.com

[my_exts]
keyUsage
extendedKeyUsage

digitalSignature
codeSigning

2. Create an ECDSA code-signing private key:

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt
ec_param_enc:named_curve -outform PEM -out ecdsasigner.key

3. Create an ECDSA code-signing certificate:

openssl req -new -x509 -config cert_config.txt -extensions my_exts -nodes -days 365 -
key ecdsasigner.key -out ecdsasigner.crt

4. Import the code-signing certificate, private key, and certificate chain into AWS Certificate Manager:

aws acm import-certificate --certificate fileb://ecdsasigner.crt --private-key fileb://
ecdsasigner.key

16

https://www.openssl.org/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

FreeRTOS User Guide
OTA update prerequisites

This command displays an ARN for your certificate. You need this ARN when you create an OTA
update job.

Note

This step is written with the assumption that you are going to use Code Signing for
AWS IoT to sign your firmware images. Although the use of Code Signing for AWS IloT is
recommended, you can sign your firmware images manually.

Creating a code-signing certificate for the Nordic nrf52840-dk

The Nordic nrf52840-dk supports a self-signed SHA256 with ECDSA code-signing certificate.

Note

To create a code signing certificate, install OpenSSL on your machine. After you install OpenSSL,
make sure that openss1 is assigned to the OpenSSL executable in your command prompt or
terminal environment.

Use the AWS Command Line Interface to import your code-signing certificate, private key, and
certificate chain into AWS Certificate Manager. For information about installing the AWS CLI, see
Installing the AWS CLI.

In your working directory, use the following text to create a file named cert_config.txt. Replace
test_signer@amazon.com with your email address:

[req]
prompt = no
distinguished_name = my_dn

[my_dn]
commonName = test_signer@amazon.com

[my_exts]
keyUsage
extendedKeyUsage

digitalSignature
codeSigning

Create an ECDSA code-signing private key:

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt
ec_param_enc:named_curve -outform PEM -out ecdsasigner.key

Create an ECDSA code-signing certificate:

openssl req -new -x509 -config cert_config.txt -extensions my_exts -nodes -days 365 -
key ecdsasigner.key -out ecdsasigner.crt

Import the code-signing certificate, private key, and certificate chain into AWS Certificate Manager:

aws acm import-certificate --certificate fileb://ecdsasigner.crt --private-key fileb://
ecdsasigner.key

This command displays an ARN for your certificate. You need this ARN when you create an OTA
update job.

Note

This step is written with the assumption that you are going to use Code Signing for
AWS IoT to sign your firmware images. Although the use of Code Signing for AWS IoT is
recommended, you can sign your firmware images manually.

17

https://www.openssl.org/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

FreeRTOS User Guide
OTA update prerequisites

Creating a code-signing certificate for the FreeRTOS Windows simulator

The FreeRTOS Windows simulator requires a code-signing certificate with an ECDSA P-256 key and
SHA-256 hash to perform OTA updates. If you don't have a code-signing certificate, follow these steps to
create one.

Note

To create a code-signing certificate, install OpenSSL on your machine. After you install
OpenSSL, make sure that openss1 is assigned to the OpenSSL executable in your command
prompt or terminal environment.

Use the AWS Command Line Interface to import your code-signing certificate, private key, and
certificate chain into AWS Certificate Manager. For information about installing the AWS CLI, see
Installing the AWS CLI.

In your working directory, use the following text to create a file named cert_config.txt. Replace
test_signere@amazon.com with your email address:

[req]
prompt = no
distinguished_name = my_dn

[my_dn]
commonName = test_signer@amazon.com

[my_exts]
keyUsage
extendedKeyUsage

digitalSignature
codeSigning

Create an ECDSA code-signing private key:

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt
ec_param_enc:named_curve -outform PEM -out ecdsasigner.key

Create an ECDSA code-signing certificate:

openssl req -new -x509 -config cert_config.txt -extensions my_exts -nodes -days 365 -
key ecdsasigner.key -out ecdsasigner.crt

Import the code-signing certificate, private key, and certificate chain into AWS Certificate Manager:

aws acm import-certificate --certificate fileb://ecdsasigner.crt --private-key fileb://
ecdsasigner.key

This command displays an ARN for your certificate. You need this ARN when you create an OTA
update job.

Note

This step is written with the assumption that you are going to use Code Signing for
AWS IoT to sign your firmware images. Although the use of Code Signing for AWS IloT is
recommended, you can sign your firmware images manually.

Creating a code-signing certificate for custom hardware

Using an appropriate toolset, create a self-signed certificate and private key for your hardware.

Use the AWS Command Line Interface to import your code-signing certificate, private key, and certificate
chain into AWS Certificate Manager. For information about installing the AWS CLI, see Installing the AWS

18

https://www.openssl.org/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

FreeRTOS User Guide
OTA update prerequisites

After you create your code-signing certificate, you can use the AWS CLI to import it into ACM:

aws acm import-certificate --certificate fileb://code-sign.crt --private-key fileb://code-
sign.key

The output from this command displays an ARN for your certificate. You need this ARN when you create
an OTA update job.

ACM requires certificates to use specific algorithms and key sizes. For more information, see Prerequisites
for Importing Certificates. For more information about ACM, see Importing Certificates into AWS
Certificate Manager.

You must copy, paste, and format the contents of your code-signing certificate into the
aws_ota_codesigner_ certificate.h file thatis part of the FreeRTOS code you download later.

Grant access to code signing for AWS loT

In production environments, you should digitally sign your firmware update to ensure the authenticity
and integrity of the update. You can sign your update manually or you can use Code Signing for AWS loT
to sign your code. To use Code Signing for FreeRTOS, you must grant your IAM user account access to
Code Signing for FreeRTOS.

To grant your IAM user account permissions for code signing for AWS loT

1. Signin to the https://console.aws.amazon.com/iam/.
2. Inthe navigation pane, choose Policies.

3. Choose Create Policy.
4

On the JSON tab, copy and paste the following JSON document into the policy editor. This policy
allows the IAM user access to all code-signing operations.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"signer:*"
1.
"Resource": "*"
b
1
}

Choose Review policy.

Enter a policy name and description, and then choose Create policy.
In the navigation pane, choose Users.

Choose your IAM user account.

On the Permissions tab, choose Add permissions.

=S Y ® N o !

0. Choose Attach existing policies directly, and then select the check box next to the code-signing
policy you just created.

11. Choose Next: Review.
12. Choose Add permissions.

19

https://docs.aws.amazon.com/acm/latest/userguide/import-certificate-prerequisites.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate-prerequisites.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://console.aws.amazon.com/iam/

FreeRTOS User Guide
OTA update prerequisites

Download FreeRTOS with the OTA library

You can download FreeRTOS from the FreeRTOS console (p. 65), or you can clone or download
FreeRTOS from GitHub. See the README.md file for instructions.

To include the OTA library in the FreeRTOS configuration that you download from the console, you can
customize a predefined configuration, or you can create a configuration for a platform that supports
OTA functionality. On the Configure FreeRTOS Software configuration properties page, under Libraries,
choose OTA Updates. Under Demo projects, you can choose to enable the OTA demo. You can also
enable the demo manually later on.

For information about setting up and running the OTA demo application, see Over-the-air updates demo
application (p. 257).

Prerequisites for OTA updates using MQTT
This section describes the general requirements for using MQTT to perform over-the-air (OTA updates).
Minimum requirements

 Device firmware must include the necessary FreeRTOS libraries (MQTT, OTA Agent, and their
dependencies).

« FreeRTOS version 1.4.0 or later is required. However, we recommend that you use the latest version
when possible.

Configurations

Beginning with version 201912.00, FreeRTOS OTA can use either the HTTP or MQTT protocol to transfer
firmware update images from AWS loT to devices. If you specify both protocols when you create an

OTA update in FreeRTOS, each device will determine the protocol used to transfer the image. See
Prerequisites for OTA updates using HTTP (p. 22) for more information.

By default, the configuration of the OTA protocols in aws_ota_agent_config.h is to use the MQTT
protocol:

/**

* @brief The protocol selected for OTA control operations.

* This configuration parameter sets the default protocol for all the OTA control
* operations like requesting OTA job, updating the job status etc.
*
*

Note - Only MQTT is supported at this time for control operations.
*/
#define configENABLED_ CONTROL_PROTOCOL (OTA_CONTROL_OVER_MQTT)
/**

*

@brief The protocol selected for OTA data operations.

* This configuration parameter sets the protocols selected for the data operations
* like requesting file blocks from the service.
*
* Note - Both MQTT and HTTP are supported for data transfer. This configuration parameter
* can be set to the following -
* Enable data over MQTT - (OTA_DATA_ OVER_MQTT)
* Enable data over HTTP - (OTA_DATA OVER_HTTP)
* Enable data over both MQTT & HTTP (OTA_DATA OVER_MQTT | OTA_DATA OVER_HTTP)
*/
#define configENABLED_DATA_PROTOCOLS (OTA_DATA_OVER_MQTT)
/**

* @brief The preferred protocol selected for OTA data operations.
*

* Primary data protocol will be the protocol used for downloading files if more than

20

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/master/README.md

FreeRTOS User Guide
OTA update prerequisites

* one protocol is selected while creating OTA job. Default primary data protocol is MQTT
* and the following update here switches to HTTP as primary.
*

* Note - use OTA_DATA_OVER_HTTP for HTTP as primary data protocol.
*/
#define configOTA_PRIMARY_ DATA_PROTOCOL (OTA_DATA_OVER_MQTT)

Device specific configurations
None.
Memory usage

When MQTT is used for data transfer, no additional memory is required for the MQTT connection
because it's shared between control and data operations.

Device policy

Each device that receives an OTA update using MQTT must be registered as a thing in AWS loT and the
thing must have an attached policy like the one listed here. You can find more information about the
items in the "Action" and "Resource" objects at AWS loT Core Policy Actions and AWS loT Core
Action Resources.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "jot:Connect",
"Resource": "arn:partition:iot:region:account:client/
${iot:Connection.Thing.ThingName}"
}l
{
"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": [

"arn:partition:iot:region:account:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/streams/*",
"arn:partition:iot:region:account:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/jobs/*"
]
}I

{
"Effect": "Allow",

"Action": [
"iot:Publish",
"iot:Receive"
]V
"Resource": [
"arn:partition:iot:region:account:topic/$aws/things/
${iot:Connection.Thing.ThingName}/streams/*",
"arn:partition:iot:region:account:topic/$aws/things/
${iot:Connection.Thing.ThingName}/jobs/*"
]
}

Notes

o The iot:Connect permissions allow your device to connect to AWS loT over MQTT.

21

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-action-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-action-resources.html

FreeRTOS User Guide
OTA update prerequisites

o The iot:Subscribe and iot:Publish permissions on the topics of AWS IoT jobs (. ../jobs/
*) allow the connected device to receive job notifications and job documents, and to publish the
completion state of a job execution.

o The iot:Subscribe and iot:Publish permissions on the topics of AWS IoT OTA streams (. ../
streams/*) allow the connected device to fetch OTA update data from AWS loT. These permissions
are required to perform firmware updates over MQTT.

o The iot:Receive permissions allow AWS loT Core to publish messages on those topics to the
connected device. This permission is checked on every delivery of an MQTT message. You can use this
permission to revoke access to clients that are currently subscribed to a topic.

Prerequisites for OTA updates using HTTP

This section describes the general requirements for using HTTP to perform over-the-air (OTA) updates.
Beginning with version 201912.00, FreeRTOS OTA can use either the HTTP or MQTT protocol to transfer
firmware update images from AWS IloT to devices.

Note

« Although the HTTP protocol might be used to transfer the firmware image, the MQTT library
is still required because other interactions with AWS IoT Core use the MQTT library, including
sending or receiving job execution notifications, job documents, and execution status updates.

« When you specify both MQTT and HTTP protocols for the OTA update job, the setup of the
OTA Agent software on each individual device determines the protocol used to transfer the
firmware image. To change the OTA Agent from the default MQTT protocol method to the
HTTP protocol, you can modify the header files used to compile the FreeRTOS source code for
the device.

Minimum requirements

« Device firmware must include the necessary FreeRTOS libraries (MQTT, HTTP, OTA Agent, and their
dependencies).

« FreeRTOS version 201912.00 or later is required to change the configuration of the OTA protocols to
enable OTA data transfer over HTTP.

Configurations

See the following configuration of the OTA protocols in the \vendors\boards\board\aws_demos
\config_files\aws_ota_agent_config.h file.

/**

* @brief The protocol selected for OTA control operations.

* This configuration parameter sets the default protocol for all the OTA control
* operations like requesting an OTA job, updating the job status, and so on.
*
*

Note - Only MQTT is supported at this time for control operations.
*/
#define configENABLED_CONTROL_PROTOCOL (OTA_CONTROL_OVER_MQTT)
/**
* @brief The protocol selected for OTA data operations.
This configuration parameter sets the protocols selected for the data operations
like requesting file blocks from the service.

Note - Both MQTT and HTTP are supported for data transfer. This configuration parameter
can be set to the following -

Enable data over MQTT - (OTA_DATA_OVER_MQTT)

Enable data over HTTP - (OTA_DATA_OVER_HTTP)

* % ok X X % %

22

FreeRTOS User Guide
OTA update prerequisites

* Enable data over both MQTT & HTTP (OTA_DATA_OVER_MQTT | OTA DATA OVER_HTTP)
*/
#define configENABLED DATA_ PROTOCOLS (OTA_DATA_OVER_MQTT)
/**
* @brief The preferred protocol selected for OTA data operations.

*
* Primary data protocol will be the protocol used for downloading files if more than
* one protocol is selected while creating OTA job. Default primary data protocol is MQTT
* and the following update here switches to HTTP as primary.
*
* Note - use OTA_DATA_OVER_HTTP for HTTP as primary data protocol.
*/
#define configOTA_PRIMARY_ DATA_PROTOCOL (OTA_DATA_OVER_MQTT)

To enable OTA data transfer over HTTP

Change configENABLED_DATA_ PROTOCOLS to OTA_DATA_OVER_HTTP.

2. When the OTA updates, you can specify both protocols so that either MQTT or HTTP protocol
can be used., You can set the primary protocol used by the device to HTTP by changing
configOTA_PRIMARY DATA_PROTOCOL to OTA DATA_OVER_HTTP.

Note
HTTP is only supported for OTA data operations. For control operations, you must use MQTT.

Device specific configurations

ESP32
Due to a limited amount of RAM, you must turn off BLE when you enable HTTP as
an OTA data protocol. In the vendors/espressif/boards/esp32/aws_demos/

config files/aws_iot_network_config.h file, change configENABLED NETWORKS to
AWSIOT NETWORK_TYPE_WIFI only.

/**

* @brief Configuration flag which is used to enable one or more network interfaces
for a board.

*

* The configuration can be changed any time to keep one or more network enabled or
disabled.

* More than one network interfaces can be enabled by using 'OR' operation with
flags for

* each network types supported. Flags for all supported network types can be found

* in "aws_iot_network.h"

*

*/

#define configENABLED_NETWORKS (AWSIOT_NETWORK_TYPE_WIFI)

Memory usage

When MQTT is used for data transfer, no additional heap memory is required for the MQTT connection
because it's shared between control and data operations. However, enabling data over HTTP requires
additional heap memory. The following is the heap memory usage data for all supported platforms,
calculated using the FreeRTOS xPortGetFreeHeapSize APl You must make sure there is enough RAM
to use the OTA library.

Texas Instruments CC3220SF-LAUNCHXL

Control operations (MQTT): 12 KB

23

FreeRTOS User Guide
OTA update prerequisites

Data operations (HTTP): 10 KB

Note
Tl uses significantly less RAM because it does SSL on hardware, so it doesn't use the mbedtls
library.

Microchip Curiosity PIC32MZEF
Control operations (MQTT): 65 KB

Data operations (HTTP): 43 KB
Espressif ESP32

Control operations (MQTT): 65 KB

Data operations (HTTP): 45 KB

Note
BLE on ESP32 takes about 87 KB RAM. There's not enough RAM to enable all of them, which
is mentioned in the device specific configurations above.

Windows simulator
Control operations (MQTT): 82 KB

Data operations (HTTP): 63 KB
Nordic nrf52840-dk

HTTP is not supported.

Device policy
This policy allows you to use either MQTT or HTTP for OTA updates.

Each device that receives an OTA update using HTTP must be registered as a thing in AWS loT and the
thing must have an attached policy like the one listed here. You can find more information about the
items in the "Action" and "Resource" objects at AWS loT Core Policy Actions and AWS loT Core
Action Resources.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iot:Connect",
"Resource": "arn:partition:iot:region:account:client/
${iot:Connection.Thing.ThingName}"
Iy
{

"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": [
"arn:partition:iot:region:account:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/jobs/*"
]
Iy
{
"Effect": "Allow",

"Action": [
"iot:Publish",
"iot:Receive"

1.

"Resource": [

24

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-action-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-action-resources.html

FreeRTOS User Guide
OTA tutorial

"arn:partition:iot:region:account:topic/$aws/things/
${iot:Connection.Thing.ThingName}/jobs/*"
]
}

Notes

o The iot:Connect permissions allow your device to connect to AWS loT over MQTT.

o The iot:Subscribe and iot:Publish permissions on the topics of AWS IoT jobs (. ../jobs/
*) allow the connected device to receive job notifications and job documents, and to publish the
completion state of a job execution.

« The iot:Receive permissions allow AWS loT Core to publish messages on those topics to the current
connected device. This permission is checked on every delivery of an MQTT message. You can use this
permission to revoke access to clients that are currently subscribed to a topic.

OTA tutorial

This section contains a tutorial for updating firmware on devices running FreeRTOS using OTA updates.
In addition to firmware images, you can use an OTA update to send any type of file to a device connected
to AWS loT.

You can use the AWS IoT console or the AWS CLI to create an OTA update. The console is the easiest way
to get started with OTA because it does a lot of the work for you. The AWS CLI is useful when you are
automating OTA update jobs, working with a large number of devices, or are using devices that have

not been qualified for FreeRTOS. For more information about qualifying devices for FreeRTOS, see the
FreeRTOS Partners website.

To create an OTA update

Deploy an initial version of your firmware to one or more devices.
Verify that the firmware is running correctly.
When a firmware update is required, make the code changes and build the new image.

PN =

If you are manually signing your firmware, sign and then upload the signed firmware image to your
Amazon S3 bucket. If you are using Code Signing for AWS loT, upload your unsigned firmware image
to an Amazon S3 bucket.

5. Create an OTA update.

When you create an OTA update, you specify the image delivery protocol (MQTT or HTTP) or specify
both to allow the device to choose. The FreeRTOS OTA agent on the device receives the updated
firmware image and verifies the digital signature, checksum, and version number of the new image. If
the firmware update is verified, the device is reset and, based on application-defined logic, commits the
update. If your devices are not running FreeRTOS, you must implement an OTA agent that runs on your
devices.

Installing the initial firmware

To update firmware, you must install an initial version of the firmware that uses the OTA Agent library
to listen for OTA update jobs. If you are not running FreeRTOS, skip this step. You must copy your OTA
Agent implementation onto your devices instead.

Topics
« Install the initial version of firmware on the Texas Instruments CC3220SF-LAUNCHXL (p. 26)

25

https://aws.amazon.com/partners/dqp/

FreeRTOS User Guide
OTA tutorial

o Install the initial version of firmware on the Microchip Curiosity PIC32MZEF (p. 28)
« Install the initial version of firmware on the Espressif ESP32 (p. 30)

« Install the initial version of firmware on the Nordic nRF52840 DK (p. 33)

« Initial firmware on the Windows simulator (p. 33)

« Install the initial version of firmware on a custom board (p. 33)

Install the initial version of firmware on the Texas Instruments CC3220SF-
LAUNCHXL

These steps are written with the assumption that you have already built the aws_demos project,
as described in Download, build, flash, and run the FreeRTOS OTA demo on the Texas Instruments
CC3220SF-LAUNCHXL (p. 260).

1. On your Texas Instruments CC3220SF-LAUNCHXL, place the SOP jumper on the middle set of pins
(position = 1) and reset the board.

2. Download and install the Tl Uniflash tool.

3. Start Uniflash. From the list of configurations, choose CC3220SF-LAUNCHXL, and then choose Start
Image Creator.

4. Choose New Project.

5. On the Start new project page, enter a name for your project. For Device Type, choose CC3220SF.
For Device Mode, choose Develop. Choose Create Project.

6. Disconnect your terminal emulator.

7. On the right side of the Uniflash application window, choose Connect.

8. Under Advanced, Files, choose User Files.

9.

In the File selector pane, choose the Add File icon IEI

10. Browse to the /Applications/Ti/simplelink cc32xx_sdk version/tools/
cc32xx_tools/certificate-playground directory, select dummy-root-ca-cert, choose
Open, and then choose Write.

11.
In the File selector pane, choose the Add File icon IEI

12. Browse to the working directory where you created the code-signing certificate and private key,
choose tisigner.crt.der, choose Open, and then choose Write.

13. From the Action drop-down list, choose Select MCU Image, and then choose Browse to choose the
firmware image to use write to your device (aws_demos.bin). This file is located in the freertos/
vendors/ti/boards/cc3220_launchpad/aws_demos/ccs/Debug directory. Choose Open.

In the file dialog box, confirm the file name is set to mcuflashimg.bin.
Select the Vendor check box.
Under File Token, type 1952007250.

Under Private Key File Name, choose Browse, and then choose tisigner.key from the
working directory where you created the code-signing certificate and private key.

o n oo

e. Under Certification File Name, choose tisigner.crt.der.
f. Choose Write.
14. In the left pane, under Files, choose Service Pack.

15. Under Service Pack File Name, choose Browse, browse to simplelink_ cc32x_sdk_version/
tools/ce32xx_tools/servicepack-cec3x20, choosesp _3.7.0.1_2.0.0.0_2.2.0.6.bin,
and then choose Open.

16. In the left pane, under Files, choose Trusted Root-Certificate Catalog.
17. Clear the Use default Trusted Root-Certificate Catalog check box.

26

http://www.ti.com/tool/UNIFLASH

FreeRTOS User Guide
OTA tutorial

18.

19.

20.

21.

22.
23.

Under Source File, choose Browse, choose simplelink_cc32xx_sdk_version/tools/cc32xx_tools/
certificate-playground/certcatalogPlayGround20160911.lst, and then choose Open.

Under Signature Source File, choose Browse, choose simplelink_cc32xx_sdk_version/tools/
cc32xx_tools/certificate-playground/certcatalogPlayGround20160911.lst.signed_3220.bin, and
then choose Open.

Choose the button to save your project.

Choose the button.
Choose Program Image (Create and Program).

After the programming process is complete, place the SOP jumper onto the first set of pins (position
= 0), reset the board, and reconnect your terminal emulator to make sure the output is the same as
when you debugged the demo with Code Composer Studio. Make a note of the application version
number in the terminal output. You use this version number later to verify that your firmware has
been updated by an OTA update.

The terminal should display output like the following.

0 0 [Tmr Svc] Simple Link task created
Device came up in Station mode

369 [Tmr Svc] Starting key provisioning...
369 [Tmr Svc] Write root certificate...
467 [Tmr Svc] Write device private key...
568 [Tmr Svc] Write device certificate...
SL Disconnect...

w W R

5 664 [Tmr Svc] Key provisioning done...
Device came up in Station mode

Device disconnected from the AP on an ERROR..!!
[WLAN EVENT] STA Connected to the AP: Guest , BSSID: 11:22:al:b2:c3:d4

[NETAPP EVENT] IP acquired by the device

Device has connected to Guest

Device IP Address is 111.222.3.44

1716 [OTA] OTA demo version 0.9.0

1717 [OTA] Creating MQTT Client...

1717 [OTA] Connecting to broker...

9 1717 [OTA] Sending command to MQTT task.

10 1717 [MQTT] Received message 10000 from queue.

11 2193 [MQTT] MQTT Connect was accepted. Connection established.
12 2193 [MQTT] Notifying task.

13 2194 [OTA] Command sent to MQTT task passed.

14 2194 [OTA] Connected to broker.

15 2196 [OTA Task] Sending command to MQTT task.

16 2196 [MQTT] Received message 20000 from queue.

17 2697 [MQTT] MQTT Subscribe was accepted. Subscribed.
18 2697 [MQTT] Notifying task.

19 2698 [OTA Task] Command sent to MQTT task passed.

0 3 o0

27

FreeRTOS User Guide
OTA tutorial

20 2698 [OTA Task] [OTA] Subscribed to topic: $aws/things/TI-LaunchPad/jobs/$next/get/
accepted

21 2699 [OTA Task] Sending command to MQTT task.

22 2699 [MQTT] Received message 30000 from queue.

23 2800 [MQTT] MQTT Subscribe was accepted. Subscribed.

24 2800 [MQTT] Notifying task.

25 2801 [OTA Task] Command sent to MQTT task passed.

26 2801 [OTA Task] [OTA] Subscribed to topic: $aws/things/TI-LaunchPad/jobs/notify-next

27 2814 [OTA Task] [OTA] Check For Update #0

28 2814 [OTA Task] Sending command to MQTT task.

29 2814 [MQTT] Received message 40000 from queue.

30 2916 [MQTT] MQTT Publish was successful.

31 2916 [MQTT] Notifying task.

32 2917 [OTA Task] Command sent to MQTT task passed.

33 2917 [OTA Task] [OTA] Set job doc parameter [clientToken: 0:TI-LaunchPad]
34 2917 [OTA Task] [OTA] Missing job parameter: execution

35 2917 [OTA Task] [OTA] Missing job parameter: jobId

36 2918 [OTA Task] [OTA] Missing job parameter: jobDocument

37 2918 [OTA Task] [OTA] Missing job parameter: ts_ota

38 2918 [OTA Task] [OTA] Missing job parameter: files

39 2918 [OTA Task] [OTA] Missing job parameter: streamname

40 2918 [OTA Task] [OTA] Missing job parameter: certfile

41 2918 [OTA Task] [OTA] Missing job parameter: filepath

42 2918 [OTA Task] [OTA] Missing job parameter: filesize

43 2919 [OTA Task] [OTA] Missing job parameter: sig-shal-rsa

44 2919 [OTA Task] [OTA] Missing job parameter: fileid

45 2919 [OTA Task] [OTA] Missing job parameter: attr

47 3919 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: O

48 4919 [OTA] [OTA] Queued: 1 Processed: 1 Dropped:
49 5919 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: O

o

Install the initial version of firmware on the Microchip Curiosity PIC32MZEF

These steps are written with the assumption that you have already built the aws_demos project,
as described in Download, build, flash, and run the FreeRTOS OTA demo on the Microchip Curiosity
PIC32MZEF (p. 262).

To burn the demo application onto your board

1.
2.

Rebuild the aws_demos project and make sure it compiles without errors.

-

After the programming process is complete, disconnect the ICD 4 debugger and reset the board.
Reconnect your terminal emulator to make sure the output is the same as when you debugged the
demo with MPLAB X IDE.

On the tool bar, choose

The terminal should display output similar to the following.

Bootloader version 00.09.00
[prvBOOT_Init] Watchdog timer initialized.
[prvBOOT_Init] Crypto initialized.

[prvValidateImage] Validating image at Bank : 0
[prvValidateImage] No application image or magic code present at: 0xbd000000
[prvBOOT_ValidateImages] Validation failed for image at 0xbd000000

[prvValidateImage] Validating image at Bank : 1
[prvValidateImage] No application image or magic code present at: 0xbd100000

28

FreeRTOS User Guide
OTA tutorial

[prvBOOT_ValidateImages] Validation failed for image at 0xbd100000

[prvBOOT_ValidateImages] Booting default image.

>0 36246 [IP-task] vDHCPProcess: offer acl40aleip
1 36297 [IP-task] vDHCPProcess: offer
acl40aleip
2 36297 [IP-task]

IP Address: 172.20.10.14

3 36297 [IP-task] Subnet Mask: 255.255.255.240

4 36297 [IP-task] Gateway Address: 172.20.10.1

5 36297 [IP-task] DNS Server Address: 172.20.10.1

36299 [OTA] OTA demo version 0.9.2

36299 [OTA] Creating MQTT Client...

36299 [OTA] Connecting to broker...

9 38673 [OTA] Connected to broker.

10 38793 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/devthingota/
jobs/$next/get/accepted

11 38863 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/devthingota/
jobs/notify-next

12 38863 [OTA Task] [OTA_CheckForUpdate] Request #0

13 38964 [OTA] [OTA_AgentInit] Ready.

14 38973 [OTA Task] [prvParseJSONbyModel] Extracted parameter [clientToken:
0:devthingota]

15 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: execution

16 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: jobId

17 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: jobDocument

18 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: streamname

19 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: files

20 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: filepath

21 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: filesize

22 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: fileid

23 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: certfile

24 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: sig-sha256-ecdsa
25 38975 [OTA Task] [prvParseJobDoc] Ignoring job without ID.

26 38975 [OTA Task] [prvOTA_Close] Context->0x8003b620

27 38975 [OTA Task] [prvPAL_Abort] Abort - OK

0 3 0

28 39964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
29 40964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
30 41964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: O
31 42964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
32 43964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: O
33 44964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: O
34 45964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
35 46964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
36 47964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0

The following procedure creates a unified hex file or factory image that consists of a reference
bootloader and an application with a cryptographic signature. The bootloader verifies the cryptographic
signature of the application on boot and supports OTA updates.

To build and flash a factory image

1. Make sure you have the SRecord tools installed from Source Forge. Verify that the directory that
contains the srec_cat and srec_info programs is in your system path.

2. Update the OTA sequence number and application version for the factory image.
3. Build the aws_demos project.
4. Runthe factory_image_generator.py script to generate the factory image.

29

http://srecord.sourceforge.net/

FreeRTOS User Guide
OTA tutorial

factory_image_generator.py -b mplab.production.bin -p MCHP-Curiosity-PIC32MZEF -k
private_key.pem -x aws_bootloader.X.production.hex

This command takes the following parameters:

e mplab.production.bin: The application binary.

e MCHP-Curiosity-PIC32MZEF: The platform name.

o private_key.pem: The code-signing private key.

e aws_bootloader.X.production.hex: The bootloader hex file.

When you build theaws__demos project, the application binary image and bootloader hex

file are built as part of the process. Each project under the vendors/microchip/boards/
curiosity pic32mzef/aws_demos/ directory contains a dist/pic32mz_ef_ curiosity/
production/ directory that contains these files. The generated unified hex file is named
mplab.production.factory.unified.hex.

5. Use the MPLab IPE tool to program the generated hex file onto the device.

6. You can check that your factory image works by watching the board's UART output as the image is
uploaded. If everything is set up correctly, you should see the image boot successfully:

[prvValidateImage] Validating image at Bank : 0
[prvValidateImage] Valid magic code at: 0xbd000000
[prvValidateImage] Valid image flags: Oxfc at: 0xbd000000
[prvValidateImage] Addresses are valid.
[prvValidateImage] Crypto signature is wvalid.

[...]

[prvBOOT_ValidateImages] Booting image with sequence number 1 at 0xbd000000

7. If your certificates are incorrectly configured or if an OTA image is not properly signed, you might
see messages like the following before the chip's bootloader erases the invalid update. Check that
your code-signing certificates are consistent and review the previous steps carefully.

[prvVvalidateImage] Validating image at Bank : 0

[prvVvalidateImage] Valid magic code at: 0xbd000000
[prvVvalidateImage] Valid image flags: Oxfc at: 0xbd000000
[prvVvalidateImage] Addresses are valid.

[prvValidateImage] Crypto signature is not valid.
[prvBOOT_ValidateImages] Validation failed for image at 0xbd000000
[BOOT_FLASH_EraseBank] Bank erased at : 0xbd000000

Install the initial version of firmware on the Espressif ESP32

This guide is written with the assumption that you have already performed the steps in Getting Started
with the Espressif ESP32-DevKitC and the ESP-WROVER-KIT and Over-the-Air Update Prerequisites.
Before you attempt an OTA update, you might want to run the MQTT demo project described in Getting
Started with FreeRTOS to ensure that your board and tool chain are set up correctly.

To flash an initial factory image to the board
1. Open freertos/vendors/vendor/boards/board/aws_demos/config files/

aws_demo_config.h, comment out #define CONFIG_MQTT DEMO_ENABLED, and define
CONFIG_OTA_UPDATE_DEMO_ENABLED.

30

https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html

FreeRTOS User Guide
OTA tutorial

Copy your SHA-256/ECDSA PEM-formatted code-signing certificate that you generated in the OTA
update prerequisites (p. 9) to demos/include/aws_ota_codesigner certificate.h.lIt
should be formatted in following way.

static const char signingcredentialSIGNING_CERTIFICATE PEM[] = "----- BEGIN
CERTIFICATE----- \n"

...base64 data...\n"

————— END CERTIFICATE-----\n"

With the OTA Update demo selected, follow the same steps outlined in Getting Started with ESP32
to build and flash the image. If you have previously built and flashed the project, you might need
to run make clean first. After you run make flash monitor, you should see something like the
following. The ordering of some messages might vary, because the demo application runs multiple
tasks at once.

0
1

(72) boot: 2 phy init RF data 01 01 00018000 00001000
(79) boot: 3 ota_0 OTA app 00 10 00020000 00100000
(87) boot: 4 ota_1l OTA app 00 11 00120000 00100000
(94) boot: 5 storage Unknown data 01 82 00220000 00010000

(102) boot: End of partition table

(106) esp_image: segment 0: paddr=0x00020020 vaddr=0x3f400020 size=0x14784 (83844)
map
I (144) esp_image: segment 1: paddr=0x000347ac vaddr=0x3ffb0000 size=0x023ec (9196)
load
I (148) esp_image: segment 2: paddr=0x00036bal0 vaddr=0x40080000 size=0x00400 (1024)
load
I (151) esp_image: segment 3: paddr=0x00036fa8 vaddr=0x40080400 size=0x09068 (36968)
load
I (175) esp_image: segment 4: paddr=0x00040018 vaddr=0x400d0018 size=0x719b8 (465336)
map
I (337) esp_image: segment 5: paddr=0x000b19d8 vaddr=0x40089468 size=0x04934 (18740)
load

(345) esp_image: segment 6: paddr=0x000b6314 vaddr=0x400c0000 size=0x00000 (0) load
(353) boot: Loaded app from partition at offset 0x20000

(353) boot: ota rollback check done

(354) boot: Disabling RNG early entropy source...

(360) cpu_start: Pro cpu up.

(363) cpu_start: Single core mode

(368) heap_init: Initializing. RAM available for dynamic allocation:

(375) heap_init: At 3FFAE6EO len 00001920 (6 KiB): DRAM

(381) heap_init: At 3FFC0748 len 0001F8B8 (126 KiB): DRAM

(387) heap_init: At 3FFE0440 len 00003BCO (14 KiB): D/IRAM

(393) heap_init: At 3FFE4350 len 0001BCBO (111 KiB): D/IRAM

(400) heap_init: At 4008DD9C len 00012264 (72 KiB): IRAM

(406) cpu_start: Pro cpu start user code

(88) cpu_start: Starting scheduler on PRO CPU.

(113) wifi: wifi firmware version: £79168c

(113) wifi: config NVS flash: enabled

(113) wifi: config nano formating: disabled

(113) system api: Base MAC address is not set, read default base MAC address from
BLKO of EFUSE
I (123) system api: Base MAC address is not set, read default base MAC address from
BLKO of EFUSE

I (28) boot: ESP-IDF v3.1l-dev-322-gf307f41-dirty 2nd stage bootloader
I (28) boot: compile time 16:32:33

I (29) boot: Enabling RNG early entropy source...

I (34) boot: SPI Speed : 40MHz

I (38) boot: SPI Mode : DIO

I (42) boot: SPI Flash Size : 4MB

I (46) boot: Partition Table:

I (50) boot: ## Label Usage Type ST Offset Length

I (57) boot: nvs WiFi data 01 02 00010000 00006000

I (64) boot: otadata OTA data 01 00 00016000 00002000
I

I

I

I

I

I

HHHHHHKHHHHHHAMKMEMKMHKHHKHH

31

https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html

FreeRTOS User Guide
OTA tutorial

(133) wifi: Init dynamic tx buffer num: 32

(143) wifi: Init data frame dynamic rx buffer num: 32

(143) wifi: Init management frame dynamic rx buffer num: 32

(143) wifi: wifi driver task: 3ffc73ec, prio:23, stack:4096

(153) wifi: Init static rx buffer num: 10

(153) wifi: Init dynamic rx buffer num: 32

(163) wifi: wifi power manager task: 0x3ffcc028 prio: 21 stack: 2560
6 [main] WiFi module initialized. Connecting to AP <Your_ WiFi_SSID>...
(233) phy: phy version: 383.0, 79a622c, Jan 30 2018, 15:38:06, 0, O
(233) wifi: mode : sta (30:ae:a4:80:0a:04)

(233) WIFI: SYSTEM EVENT_ STA START

(363) wifi: n:1 0, o:1 0, ap:255 255, sta:1 0, prof:1l

(1343) wifi: state: init -> auth (bO)

(1343) wifi: state: auth -> assoc (0)

(1353) wifi: state: assoc -> run (10)

(1373) wifi: connected with <Your_ WiFi_SSID>, channel 1

(1373) WIFI: SYSTEM_EVENT STA_CONNECTED

302 [IP-task] vDHCPProcess: offer cOa86cl3ip

(3123) event: sta ip: 192.168.108.19, mask: 255.255.224.0, gw: 192.168.96.1
(3123) WIFI: SYSTEM_EVENT STA_ GOT_IP

302 [IP-task] vDHCPProcess: offer cOa86cl3ip

303 [main] WiFi Connected to AP. Creating tasks which use network...
304 [OTA] OTA demo version 0.9.6

304 [OTA] Creating MQTT Client...

304 [OTA] Connecting to broker...

(4353) wifi: pm start, type:0

HO O™ WNHHRHHHHHHHHHOHHMKMEMKMHKHH

(8173) PKCS11: Initializing SPIFFS

(8183) PKCS11l: Partition size: total: 52961, used: O

1277 [OTA] Connected to broker.

1280 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/

<Your_Thing_Name>/jobs/$next/get/accepted

I (12963) ota_pal: prvPAL_GetPlatformImageState

I (12963) esp_ota_ops: [0] aflags/seq:0x2/0x1l, pflags/seq:0xffffffff/0x0

9 1285 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/

<Your_Thing Name>/jobs/notify-next

10 1286 [OTA Task] [OTA_CheckForUpdate] Request #0

11 1289 [OTA Task] [prvParseJSONbyModel] Extracted parameter [clientToken:
0:<Your_Thing Name>]

12 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: execution

13 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: jobId

14 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: jobDocument

15 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: afr_ota

16 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: streamname

17 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: files

18 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: filepath

19 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: filesize

20 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: fileid

21 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: certfile

22 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: sig-sha256-ecdsa
23 1289 [OTA Task] [prvParsedJobDoc] Ignoring job without ID.

24 1289 [OTA Task] [prvOTA_Close] Context->0x3ffbb4as8

25 1290 [OTA] [OTA_AgentInit] Ready.
26 1390 [OTA] State: Ready Received:
27 1490 [OTA] State: Ready Received:
28 1590 [OTA] State: Ready Received:
29 1690 [OTA] State: Ready Received:
[...]

0 N HH

Queued: 1 Processed: 1 Dropped:
Queued: 1 Processed: 1 Dropped:
Queued: 1 Processed: 1 Dropped:
Queued: 1 Processed: 1 Dropped:

o O o o

The ESP32 board is now listening for OTA updates. The ESP-IDF monitor is launched by the make
flash monitor command. You can press Ctrl+] to quit. You can also use your favorite TTY
terminal program (for example, PuTTY, Tera Term, or GNU Screen) to listen to the board's serial
output. Be aware that connecting to the board's serial port might cause it to reboot.

32

FreeRTOS User Guide
OTA tutorial

Install the initial version of firmware on the Nordic nRF52840 DK

This guide is written with the assumption that you have already performed the steps in Getting started
with the Nordic nRF52840-DK (p. 154) and Over-the-Air Update Prerequisites. Before you attempt an
OTA update, you might want to run the MQTT demo project described in Getting Started with FreeRTOS
to ensure that your board and toolchain are set up correctly.

To flash an initial factory image to the board

1. Open freertos/vendors/nordic/boards/nrf52840-dk/aws_demos/config_files/
aws_demo_config.h.

2. Replace #define CONFIG_MQTT DEMO_ENABLED with #define
democonfigOTA_UPDATE_DEMO_ENABLED.

3. With the OTA Update demo selected, follow the same steps outlined in Getting started with the
Nordic nRF52840-DK (p. 154) to build and flash the image.

You should see output similar to the following.

9 1285 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/your-thing-
name/jobs/notify-next

10 1286 [OTA Task] [OTA_CheckForUpdate] Request #0

11 1289 [OTA Task] [prvParseJSONbyModel] Extracted parameter [clientToken: 0:your-
thing-name]

12 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: execution

13 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: jobId

14 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: jobDocument

15 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: afr ota

16 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: streamname

17 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: files

18 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: filepath

19 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: filesize

20 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: fileid

21 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: certfile

22 1289 [OTA Task] [prvParseJSONbyModel] parameter not present: sig-sha256-ecdsa

23 1289 [OTA Task] [prvParseJobDoc] Ignoring job without ID.

24 1289 [OTA Task] [prvOTA_Close] Context->0x3ffbb4as8

25 1290 [OTA] [OTA_AgentInit] Ready.

26 1390 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
27 1490 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
28 1590 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
29 1690 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0

Your board is now listening for OTA updates.

Initial firmware on the Windows simulator

When you use the Windows simulator, there is no need to flash an initial version of the firmware. The
Windows simulator is part of the aws_demos application, which also includes the firmware.

Install the initial version of firmware on a custom board

Using your IDE, build the aws_demos project, making sure to include the OTA library. For more
information about the structure of the FreeRTOS source code, see FreeRTOS Demos (p. 236).

Make sure to include your code-signing certificate, private key, and certificate trust chain either in the
FreeRTOS project or on your device.

Using the appropriate tool, burn the application onto your board and make sure it is running correctly.

33

https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html

FreeRTOS User Guide
OTA tutorial

Update the version of your firmware

The OTA Agent included with FreeRTOS checks the version of any update and installs it only if it is more
recent than the existing firmware version. The following steps show you how to increment the firmware
version of the OTA demo application.

1. Open the aws_demos project in your IDE.

2. Opendemos/include/aws_application_version.h and increment the APP_VERSION_ BUILD
token value.

3. If you are using the Microchip Curiosity PIC32MZEF, increment the OTA sequence number in
vendors/microchip/boards/curiosity_pic32mzef/bootloader/bootloader/utility/
user-config/ota-descriptor.config. The OTA sequence number should be incremented for
every new OTA image generated.

4. Rebuild the project.

You must copy your firmware update into the Amazon S3 bucket that you created as described in Create

an Amazon S3 bucket to store your update (p. 9). The name of the file you need to copy to Amazon
S3 depends on the hardware platform you are using:

o Texas Instruments CC3220SF-LAUNCHXL: vendors/ti/boards/cc3220_launchpad/aws_demos/

ccs/debug/aws_demos.bin

« Microchip Curiosity PIC32MZEF: vendors/microchip/boards/curiosity_pic32mzef/

aws_demos/mplab/dist/pic32mz_ef curiosity/production/mplab.production.ota.bin

Espressif ESP32: vendors/espressif/boards/esp32/aws_demos/make/build/aws_demos.bin

Creating an OTA update (AWS IloT console)

pUwbnN =

In the navigation pane of the AWS loT console, choose Manage, and then choose Jobs.
Choose Create.
Under Create a FreeRTOS Over-the-Air (OTA) update job, choose Create OTA update job.

You can deploy an OTA update to a single device or a group of devices. Under Select devices to
update, choose Select. To update a single device, choose the Things tab. To update a group of
devices, choose the Thing Groups tab.

If you are updating a single device, select the check box next to the loT thing associated with
your device. If you are updating a group of devices, select the check box next to the thing group
associated with your devices. Choose Next.

Under Select the protocol for firmware image transfer, choose HTTP, MQTT, or choose both to
allow each device to determine the protocol to use.

Under Select and sign your firmware image, choose Sign a new firmware image for me.
Under Code signing profile, choose Create.
In Create a code signing profile, enter a name for your code-signing profile.

a. Under Device hardware platform, choose your hardware platform.

Note

Only hardware platforms that have been qualified for FreeRTOS are displayed in this
list. If you are testing a non-qualified platform, and you are using the ECDSA P-256
SHA-256 ciphersuite for signing, you can pick the Windows Simulator code signing
profile to produce a compatible signature. If you are using a non-qualified platform,
and you are using a ciphersuite other than ECDSA P-256 SHA-256 for signing, you can
use Code Signing for AWS IoT, or you can sign your firmware update yourself. For more
information, see Digitally signing your firmware update (p. 37).

34

FreeRTOS User Guide
OTA tutorial

10.

11.

12.

13.
14.
15.

16.

17.

b. Under Code signing certificate, choose Select to select a previously imported certificate or
Import to import a new certificate.

¢. Under Pathname of code signing certificate on device, enter the fully qualified path name
to the code signing certificate on your device. The certificate's location varies by platform.
It should be the location where you put the code-signing certificate when you followed the
instructions in Installing the initial firmware (p. 25).

Important

On the Texas Instruments CC3220SF-LAUNCHXL, do not include a leading forward
slash (/) in front of the file name if your code signing certificate exists in the root of the
file system. Otherwise, the OTA update fails during authentication with a file not
found error.

Under Select your firmware image in S3 or upload it, choose Select. A list of your Amazon S3
buckets is displayed. Choose the bucket that contains your firmware update, and then choose your
firmware update in the bucket.

Note

The Microchip Curiosity PIC32MZEF demo projects produce two binary images with default
names of mplab.production.bin and mplab.production.ota.bin. Use the second
file when you upload an image for OTA updating.

Under Pathname of firmware image on device, enter the fully qualified path name to the location
on your device where the OTA job will copy the firmware image. This location varies by platform.

Important
On the Texas Instruments CC3220SF-LAUNCHXL, due to security restrictions, the firmware
image path name must be /sys/mcuflashimg.bin.

Under IAM role for OTA update job, choose a role according to the instructions in Create an OTA
Update service role (p. 10).

Choose Next.
Enter an ID and description for your OTA update job.

Under Job type, choose Your job will complete after deploying to the selected devices/groups
(snapshot).

Choose any appropriate optional configurations for your job (Job executions rollout, Job abort, Job
executions timeout, and Tags).

Choose Create.

To use a previously signed firmware image

1.
2.

Under Select and sign your firmware image, choose Select a previously signed firmware image.

Under Pathname of firmware image on device, enter the fully qualified path name to the location
on your device where the OTA job will copy the firmware image. This location varies by platform.

Under Previous code signing job, choose Select, and then choose the previous code-signing job
used to sign the firmware image you are using for the OTA update.

Using a custom signed firmware image

Under Select and sign your firmware image, choose Use my custom signed firmware image.

Under Pathname of code signing certificate on device, enter the fully qualified path name to the
code signing certificate on your device. This path name might vary by platform.

Under Pathname of firmware image on device, enter the fully qualified path name to the location
on your device where the OTA job will copy the firmware image. This location varies by platform.

Under Signature, paste your PEM format signature.

35

FreeRTOS User Guide
OTA tutorial

5. Under Original hash algorithm, choose the hash algorithm that was used when you created your
file signature.

6. Under Original encryption algorithm, choose the algorithm that was used when you created your
file signature.

7. Under Select your firmware image in Amazon S3, choose the Amazon S3 bucket and the signed
firmware image in the Amazon S3 bucket.

After you have specified the code-signing information, specify the OTA update job type, service role, and
an ID for your update.

Blgtneot use any personally identifiable information in the job ID for your OTA update. Examples
of personally identifiable information include:

« Names.

« IP addresses.

« Email addresses.

 Locations.

« Bank details.

« Medical information.

1. Under Job type, choose Your job will complete after deploying to the selected devices/groups
(snapshot).

2. Under IAM role for OTA update job, choose your OTA service role.

3. Enter an alphanumeric ID for your job, and then choose Create.

The job appears in the AWS loT console with a status of IN PROGRESS.
Note

o The AWS loT console does not update the state of jobs automatically. Refresh your browser to
see updates.

« If yousee "Error: You have exceeded the limit for the number of streams
in your AWS account.", then see Stream limit exceeded for your AWS account (p. 64).

Connect your serial UART terminal to your device. You should see output that indicates the device is
downloading the updated firmware.

After the device downloads the updated firmware, it restarts and then installs the firmware. You can see
what's happening in the UART terminal.

For a tutorial that shows you how to use the console to create an OTA update, see Over-the-air updates
demo application (p. 257).

Creating an OTA update with the AWS CLI

When you use the AWS CLI to create an OTA update, you:

1. Digitally sign your firmware image.
2. Create a stream of your digitally signed firmware image.
3. Start an OTA update job.

36

FreeRTOS User Guide
OTA tutorial

Digitally signing your firmware update

When you use the AWS CLI to perform OTA updates, you can use Code Signing for AWS loT, or you

can sign your firmware update yourself. For a list of the cryptographic signing and hashing algorithms
supported by Code Signing for AWS loT, see SigningConfigurationOverrides. If you want to use a
cryptographic algorithm that is not supported by Code Signing for AWS loT, you must sign your firmware
binary before you upload it to Amazon S3.

Signing your firmware image with Code Signing for AWS loT

To sign your firmware image using Code Signing for AWS IoT, you can use one of the AWS SDKs or
command line tools. For more information about Code Signing for AWS IoT, see Code Signing for AWS
loT.

After you install and configure the code-signing tools, copy your unsigned firmware image to your
Amazon S3 bucket and start a code-signing job with the following CLI commands. The put-signing-
profile command creates a reusable code-signing profile. The start-signing-job command starts the
signing job.

aws signer put-signing-profile \

--profile-name your_ profile_name \

--signing-material certificateArn=arn:aws:acm::your-region:your-aws-account-
id:certificate/your-certificate-id \

--platform your-hardware-platform \

--signing-parameters certname=your_certificate_path_on_device

aws signer start-signing-job \

--source
's3={bucketName=your_s3_bucket,key=your_s3_object_key,version=your_s3_object_version_id}"'
\

--destination 's3={bucketName=your_destination_bucket}' \

--profile-name your_profile_name

Note
your-source-bucket-name and your-destination-bucket-name can be the same
Amazon S3 bucket.

These are the parameters for the put-signing-profile and start-signing-job commands:

source

Specifies the location of the unsigned firmware in an S3 bucket.
o bucketName: The name of your S3 bucket.
« key: The key (file name) of your firmware in your S3 bucket.

« version: The S3 version of your firmware in your S3 bucket. This is different from your firmware
version. You can find it by browsing to the Amazon S3 console, choosing your bucket, and at the
top of the page, next to Versions, choosing Show.

destination
The destination for the signed firmware in an S3 bucket. The format of this parameter is the same as
the source parameter.

signing-material
The ARN of your code-signing certificate. This ARN is generated when you import your certificate
into ACM.

signing-parameters

A map of key-value pairs for signing. These can include any information that you want to use during
signing.

37

https://docs.aws.amazon.com/signer/latest/api/API_SigningConfigurationOverrides.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html

FreeRTOS User Guide
OTA tutorial

Note
This parameter is required when you are creating a code-signing profile for signing OTA
updates with Code Signing for AWS loT.

platform
The platformId of the hardware platform to which you are distributing the OTA update.

To return a list of the available platforms and their platformid values, use the aws signer list-
signing-platforms command.

The signing job starts and writes the signed firmware image into the destination Amazon S3 bucket. The
file name for the signed firmware image is a GUID. You need this file name when you create a stream.
You can find the file name by browsing to the Amazon S3 console and choosing your bucket. If you don't
see a file with a GUID file name, refresh your browser.

The command displays a job ARN and job ID. You need these values later on. For more information about
Code Signing for AWS loT, see Code Signing for AWS loT.

Signing your firmware image manually

Digitally sign your firmware image and upload your signed firmware image into your Amazon S3 bucket.
Creating a stream of your firmware update

A stream is an abstract interface to data that can be consumed by a device. A stream can hide the
complexity of accessing data stored in different locations or different cloud-based services. The OTA
Update Manager service enables you to use multiple pieces of data, stored in various locations in
Amazon S3, to perform an OTA Update.

When you create an AWS loT OTA Update, you can also create a stream that contains your signed
firmware update. Make a JSON file (stream. json) that identifies your signed firmware image. The JSON
file should contain the following.

[
{
"fileId":"your_file_1id",
"s3Location":{
"bucket":"your bucket_name",
"key":"your_s3_object_key"
}
}
]

These are the attributes in the JSON file:
fileId

An arbitrary integer between 0-255 that identifies your firmware image.

s3Location

The bucket and key for the firmware to stream.
bucket

The Amazon S3 bucket where your unsigned firmware image is stored.
key

The file name of your signed firmware image in the Amazon S3 bucket. You can find this value in
the Amazon S3 console by looking at the contents of your bucket.

38

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html

FreeRTOS User Guide
OTA tutorial

If you are using Code Signing for AWS IoT, the file name is a GUID generated by Code Signing
for AWS loT.

Use the create-stream CLI command to create a stream.

aws iot create-stream \

--stream-id your_stream_1id \
--description your_ description \
--files file://stream.json \
--role-arn your_role_arn

These are the arguments for the create-stream CLI command:

stream-id

An arbitrary string to identify the stream.

description

An optional description of the stream.

files

One or more references to JSON files that contain data about firmware images to stream. The JSON
file must contain the following attributes:

fileld

An arbitrary file ID.

s3Location

The bucket name where the signed firmware image is stored and the key (file name) of the
signed firmware image.

bucket

The Amazon S3 bucket where the signed firmware image is stored.
key

The key (file name) of the signed firmware image.
When you use Code Signing for AWS IoT, this key is a GUID.

The following is an example stream. json file.

{
"fileId":123,
"s3Location": {
"bucket":"codesign-ota-bucket",
"key":"48c67f3c-63bb-4f92-a98a-4ee0fbc2bef6"
}
}
]
role-arn

The OTA service role (p. 10) that also grants access to the Amazon S3 bucket where the firmware
image is stored.

To find the Amazon S3 object key of your signed firmware image, use the aws signer describe-signing-
job --job-id my-job-1id command where my-job-id is the job ID displayed by the create-signing-job

39

FreeRTOS User Guide
OTA tutorial

CLI command. The output of the describe-signing-job command contains the key of the signed firmware
image.

text deleted for brevity ...
"signedObject": {
"s3": {
"bucketName": "ota-bucket",
"key": "7309da2c-9111-48ac-8ee4-5a4262af4429"
}

¥
text deleted for brevity ...

Note
If yousee "Exrror: You have exceeded the limit for the number of streams in
your AWS account.", then see Stream limit exceeded for your AWS account (p. 64).

Creating an OTA update

Use the create-ota-update CLI command to create an OTA update job.

Note
Do not use any personally identifiable information (PIl) in your OTA update job ID. Examples of
personally identifiable information include:

» Names.

« |P addresses.

« Email addresses.

« Locations.

« Bank details.

« Medical information.

aws iot create-ota-update \
--ota-update-id value \
[--description value] \
--targets value \
[--protocols value] \
[--target-selection value] \
[--aws-job-executions-rollout-config value] \
[--aws-job-presigned-url-config value] \
[--aws-job-abort-config value] \
[--aws-job-timeout-config value] \
--files value \
--role-arn value \
[--additional-parameters value] \
[--tags value] \
[--cli-input-json value] \
[--generate-cli-skeleton]

cli-input-json format

{
"otaUpdateId": "string",
"description": "string",
"targets": [
"string"

1,
"protocols": [
"string"

40

FreeRTOS User Guide

OTA tutorial
1,
"targetSelection": "string",
"awsJobExecutionsRolloutConfig": {
"maximumPerMinute": "integer",
"exponentialRate": {
"baseRatePerMinute": "integer",
"incrementFactor": "double",
"rateIncreaseCriteria": {
"numberOfNotifiedThings": "integer",
"numberOfSucceededThings": "integer"
}
}
Iy
"awsJobPresignedUrlConfig": {
"expiresInSec": "long"
Iy
"awsJobAbortConfig": {
"abortCriteriaList": [
{
"failureType": "string",
"action": "string",
"thresholdPercentage": "double",
"minNumberOfExecutedThings": "integer"
}
]
Iy
"awsJobTimeoutConfig": {
"inProgressTimeoutInMinutes": "long"
Iy
"files": [
{
"fileName": "string",
"fileVersion": "string",

"fileLocation": {
"stream": {
"streamId": "string",
"fileId": "integer"
Iy
"s3Location": {
"bucket": "string",
"key": "string",
"version": "string"
}
Iy
"codeSigning": {
"awsSignerJobId": "string",
"startSigningJobParameter": {
"signingProfileParameter": {
"certificateArn": "string",
"platform": "string",
"certificatePathOnDevice": "string"
Iy
"signingProfileName": "string",
"destination": {
"s3Destination": {
"bucket": "string",
"prefix": "string"

}
Iy
"customCodeSigning": {
"signature": {

"inlineDocument": "blob"

I

"certificateChain": {
"certificateName": "string",

41

FreeRTOS User Guide

OTA tutorial
"inlineDocument": "string"
T
"hashAlgorithm": "string",
"signatureAlgorithm": "string"
}
T
"attributes": {
"string": "string"
}
}
1,
"roleArn": "string",
"additionalParameters": {
"string": "string"
T
"tags": [
{
"Key": "string",
"Value": "string"
}
1
}
cli-input-json fields
Name Type Description
otaUpdateId string The ID of the OTA update to be
created.
(max:128 min:1)
description string The description of the OTA
update.
(max:2028)
targets list The devices targeted to receive
OTA updates.
protocols list The protocol used to transfer
the OTA update image. Valid
values are [HTTP], [MQTT],
[HTTP, MQTT]. When both HTTP
and MQTT are specified, the
target device can choose the
protocol.
targetSelection string Specifies whether the

update will continue to

run (CONTINUOUS), or will

be complete after all the
things specified as targets

have completed the update
(SNAPSHOT). If continuous, the
update may also be run on a
thing when a change is detected
in a target. For example, an
update will run on a thing
when the thing is added to a
target group, even after the
update was completed by all
things originally in the group.

42

FreeRTOS User Guide
OTA tutorial

Name Type

awsJobExecutionsRolloutConfig

maximumPerMinute integer
(max:1000 min:1)

exponentialRate

baseRatePerMinute integer

(max:1000 min:1)

rateIncreaseCriteria

numberOfNotifiedThings integer
(min:1)
numberOfSucceededThings integer
(min:1)

awsJobPresignedUrlConfig

expiresInSec long
awsJobAbortConfig
abortCriterialist list

Description

Valid values: CONTINUOUS |
SNAPSHOT.

enum: CONTINUOUS |
SNAPSHOT

Configuration for the rollout of
OTA updates.

The maximum number of OTA
update job executions started
per minute.

The rate of increase for a job
rollout. This parameter allows
you to define an exponential
rate increase for a job rollout.

The minimum number of things
that will be notified of a pending
job, per minute, at the start of
the job rollout. This is the initial
rate of the rollout.

The criteria to initiate the
increase in rate of rollout for a
job.

AWS loT supports up to one
digit after the decimal (for
example, 1.5, but not 1.55).

When this number of things
have been notified, it will initiate
an increase in the rollout rate.

When this number of things
have succeeded in their job
execution, it will initiate an
increase in the rollout rate.

Configuration information for
pre-signed URLs.

How long (in seconds) pre-
signed URLs are valid. Valid
values are 60 - 3600, the default
value is 1800 seconds. Pre-
signed URLs are generated when
a request for the job document
is received.

The criteria that determine when
and how a job abort takes place.

The list of criteria that
determine when and how to
abort the job.

43

FreeRTOS User Guide
OTA tutorial

Name

failureType

action

minNumberOfExecutedThings

awsJobTimeoutConfig

files

fileName
fileVersion

fileLocation

stream

Type

string

string

integer

(min:1)

inProgressTimeoutInMinutes long

list

string

string

Description

The type of job execution
failures that can initiate a job
abort.

enum: FAILED | REJECTED |
TIMED_OUT | ALL

The type of job action to take to
initiate the job abort.

enum: CANCEL

The minimum number of things
which must receive job execution
notifications before the job can
be aborted.

Specifies the amount of time
each device has to finish its
execution of the job. A timer is
started when the job execution
status is set to IN_PROGRESS.
If the job execution status is
not set to another terminal
state before the timer expires,
it will be automatically set to
TIMED_OUT.

Specifies the amount of time,

in minutes, this device has to
finish execution of this job.

The timeout interval can be
anywhere between 1 minute and
7 days (1 to 10080 minutes).
The in progress timer can't be
updated and will apply to all job
executions for the job. Whenever
a job execution remains in

the IN_PROGRESS status for
longer than this interval, the job
execution will fail and switch to
the terminal TIMED_OUT status.

The files to be streamed by the
OTA update.

The name of the file.
The file version.

The location of the updated
firmware.

The stream that contains the
OTA update.

44

FreeRTOS User Guide

OTA tutorial
Name Type Description
streamId string The stream ID.
(max:128 min:1)
fileld integer The ID of a file associated with a
stream.
(max:255 min:0)
s3Location The location of the updated
firmware in S3.
bucket string The S3 bucket.
(min:1)
key string The S3 key.
(min:1)
version string The S3 bucket version.
codeSigning The code signing method of the
file.
awsSignerJobId string The ID of the AWSSignerJob
which was created to sign the
file.
startSigningJobParameter Describes the code-signing job.
signingProfileParameter Describes the code-signing
profile.
certificateArn string Certificate ARN.
platform string The hardware platform of your
device.
certificatePathOnDevice string The location of the code-signing
certificate on your device.
signingProfileName string The code-signing profile name.
destination The location to write the code-
signed file.
s3Destination Describes the location in S3 of
the updated firmware.
bucket string The S3 bucket that contains the
updated firmware.
(min:1)
prefix string The S3 prefix.
customCodeSigning A custom method for code
signing a file.
signature The signature for the file.

45

FreeRTOS User Guide

OTA tutorial

Name Type Description

inlineDocument blob A base64 encoded binary
representation of the code
signing signature.

certificateChain The certificate chain.

certificateName string The name of the certificate.

inlineDocument string A base64 encoded binary
representation of the code
signing certificate chain.

hashAlgorithm string The hash algorithm used to code
sign the file.

signatureAlgorithm string The signature algorithm used to
code sign the file.

attributes map A list of name/attribute pairs.

roleArn string The IAM role that grants AWS

(max:2048 min:20)

loT access to the Amazon S3,
AWS loT jobs and AWS Code
Signing resources to create an

OTA update job.
additionalParameters map A list of additional OTA update
parameters which are name-
value pairs.
tags list Metadata which can be used to
manage updates.
Key string The tag's key.
(max:128 min:1)
Value string The tag's value.
(max:256 min:1)
Output
{
"otaUpdateId": "string",
"awsIotJobId": "string",
"otaUpdateArn": "string",
"awsIotJobArn": "string",
"otaUpdateStatus": "string"
}

CLI output fields

Name Type

otaUpdateId

string

Description

The OTA update ID.

46

FreeRTOS User Guide
OTA tutorial

Name Type
(max:128 min:1)

awsIotJobId string
otaUpdateArn string
awsIotJobArn string
otaUpdateStatus string

Description

The AWS IoT job ID associated
with the OTA update.

The OTA update ARN.

The AWS IoT job ARN associated
with the OTA update.

The OTA update status.

enum: CREATE_PENDING
| CREATE_IN_PROGRESS
| CREATE_COMPLETE |
CREATE_FAILED

The following is an example of a JSON file passed into the create-ota-update command that uses Code

Signing for AWS loT.

"fileName": "firmware.bin",
"fileLocation": {
"stream": {
"streamId": "004",
"fileId":123
}
}l

"codeSigning": {

"awsSignerJobId": "48c67f3c-63bb-4f92-a98a-4ee0fbc2bef6"

}
}
]

The following is an example of a JSON file passed into the create-ota-update CLI command that uses an

inline file to provide custom code-signing material.

"fileName": "firmware.bin",
"fileLocation": {
"stream": {
"streamId": "004",
"fileId": 123
}
Iy
"codeSigning": {
"customCodeSigning":{
"signature":{
"inlineDocument":"your_ signature"

Iy
"certificateChain": {
"certificateName": "your certificate_name",
"inlineDocument":"your_ certificate_chain"
Iy

"hashAlgorithm":"your hash_algorithm",
"signatureAlgorithm":"your_ signature_algorithm"

47

FreeRTOS User Guide
OTA tutorial

The following is an example of a JSON file passed into the create-ota-update CLI command that allows
FreeRTOS OTA to start a code-signing job and create a code-signing profile and stream.

"fileName": "your firmware_path_on_device",
"filevVersion": "1",
"fileLocation": {
"s3Location": {
"bucket": "your_bucket_name",
"key": "your_object_key",
"version": "your_S3_object_version"
}
}l
"codeSigning":{

"startSigningJobParameter":{
"signingProfileName": "myTestProfile",
"signingProfileParameter": {

"certificateArn": "your_ certificate_arn",
"platform": "your_ platform_id",
"certificatePathOnDevice": "certificate_path"
}!
"destination": {
"s3Destination": {
"bucket": "your_ destination_bucket"

The following is an example of a JSON file passed into the create-ota-update CLI command that creates
an OTA update that starts a code-signing job with an existing profile and uses the specified stream.

[
{

"fileName": "your_ firmware_path_on_device",
"fileVersion": "1",
"fileLocation": {
"s3Location": {
"bucket": "your_s3_bucket_name",
"key": "your_object_key",
"version": "your_S3_object_version"
}
Iy
"codeSigning":{
"startSigningJobParameter":{
"signingProfileName": "your_ unique_profile_name",
"destination": {
"s3Destination": {
"bucket": "your destination_bucket"

48

FreeRTOS User Guide
OTA tutorial

The following is an example of a JSON file passed into the create-ota-update CLI command that allows
FreeRTOS OTA to create a stream with an existing code-signing job ID.

[
{
"fileName": "your_ firmware_path_on_device",
"fileVersion": "1",
"codeSigning":{
"awsSignerJobId": "your_ signer_job_id"
}
}
]

The following is an example of a JSON file passed into the create-ota-update CLI command that creates
an OTA update. The update creates a stream from the specified S3 object and uses custom code signing.

{
"fileName": "your firmware_path_on_device",
"filevVersion": "1",
"fileLocation": {
"s3Location": {

"bucket": "your_bucket_name",

"key": "your_object_key",

"version": "your_S3_object_version"

}

}l

"codeSigning":{
"customCodeSigning": {

"signature":{
"inlineDocument":"your_ signature"

}!

"certificateChain": {
"inlineDocument":"your certificate_chain",
"certificateName": "your certificate_path_on_device"

}!

"hashAlgorithm":"your_ hash_algorithm",

"signatureAlgorithm":"your sig algorithm"

}
}
}
]
Note

If you see "Error: You have exceeded the limit for the number of streams in
your AWS account.", then see Stream limit exceeded for your AWS account (p. 64).

Listing OTA updates

You can use the list-ota-updates CLI command to get a list of all OTA updates.

aws iot list-ota-updates

The output from the list-ota-updates command looks like this.

{
"otaUpdates": [

{

49

FreeRTOS User Guide
OTA tutorial

"otaUpdateId": "my_ota_update2",
"otaUpdateArn": "arn:aws:iot:us-west-2:123456789012:0taupdate/my_ota_update2",
"creationDate": 1522778769.042

Iy

{
"otaUpdateId": "my_ota_updatel",
"otaUpdateArn": "arn:aws:iot:us-west-2:123456789012:0taupdate/my_ota_updatel",
"creationDate": 1522775938.956

Iy

{
"otaUpdateId": "my_ota_update",
"otaUpdateArn": "arn:aws:iot:us-west-2:123456789012:0taupdate/my_ota_update",
"creationDate": 1522775151.031

}

Getting information about an OTA update

You can use the get-ota-update CLI command to get the creation or deletion status of an OTA update.

aws iot get-ota-update --ota-update-id your-ota-update-id

The output from the get-ota-update command looks like the following.

{
"otaUpdateInfo": {
"otaUpdateId": "ota-update-001",
"otaUpdateArn": "arn:aws:iot:us-west-2:123456789012:0taupdate/ota-update-001",

"creationDate": 1575414146.286,
"lastModifiedDate": 1575414149.091,
"targets": [
"arn:aws:iot:us-west-2:123456789012:thing/myDevice"
1,
"protocols": ["HTTP"],
"awsJobExecutionsRolloutConfig": {
"maximumPerMinute": 0
Iy
"awsJobPresignedUrlConfig": {
"expiresInSec": 1800
Iy
"targetSelection": "SNAPSHOT",
"otaUpdateFiles": [
{
"fileName": "my_firmware.bin",
"fileLocation": {
"s3Location": {
"bucket": "my-bucket",

"key": "my_firmware.bin",
"version": "AvP3bfJC9gygqnwoxPHUTQM5GWENt4iii"
}
T
"codeSigning": {
"awsSignerJobId": "b7a55a54-fae5-4d3a-b589-97ed103737c2",

"startSigningJobParameter": {
"signingProfileParameter": {},
"signingProfileName": "my-profile-name",
"destination": {

"s3Destination": {
"bucket": "some-ota-bucket",
"prefix": "SignedImages/"

50

FreeRTOS User Guide
OTA tutorial

3

"customCodeSigning": {}

}
1,
"otaUpdateStatus": "CREATE_COMPLETE",
"awsIotJobId": "AFR_OTA-ota-update-001",
"awsIotJobArn": "arn:aws:iot:us-west-2:123456789012:job/AFR_OTA-ota-update-001"

The values returned for otaUpdateStatus include the following:

CREATE_PENDING

The creation of an OTA update is pending.
CREATE_IN_PROGRESS

An OTA update is being created.
CREATE_COMPLETE

An OTA update has been created.
CREATE_FAILED

The creation of an OTA update failed.
DELETE_IN_ PROGRESS

An OTA update is being deleted.
DELETE_FAILED

The deletion of an OTA update failed.
Note

To get the execution status of an OTA update after it is created, you need to use the describe-
job-execution command. For more information, see Describe Job Execution.

Deleting OTA-related data

Currently, you cannot use the AWS IoT console to delete streams or OTA updates. You can use the AWS
CLI to delete streams, OTA updates, and the AWS IoT jobs created during an OTA update.

Deleting an OTA stream
When you create an OTA update that uses MQTT, either you can use the command-line or the AWS loT

console to create a stream to break the firmware up into chunks so it can be sent over MQTT. You can
delete this stream with the delete-stream CLI command, as shown in the following example.

aws iot delete-stream --stream-id your_stream_id

Deleting an OTA update

When you create an OTA update, the following are created:

« An entry in the OTA update job database.
o An AWS IoT job to perform the update.

51

https://docs.aws.amazon.com/iot/latest/developerguide/manage-job-cli.html#describe-job-execution

FreeRTOS User Guide
OTA tutorial

« An AWS IoT job execution for each device being updated.

The delete-ota-update command deletes the entry in the OTA update job database only. You must use
the delete-job command to delete the AWS loT job.

Use the delete-ota-update command to delete an OTA update.

aws iot delete-ota-update --ota-update-id your_ota_update_id

ota-update-id

The ID of the OTA update to delete.

delete-stream

Deletes the stream associated with the OTA update.

force-delete-aws-job
Deletes the AWS loT job associated with the OTA update. If this flag is not set and the job is in the
In_Progress state, the job is not deleted.

Deleting an IoT job created for an OTA update

FreeRTOS creates an AWS IoT job when you create an OTA update. A job execution is also created for
each device that processes the job. You can use the delete-job CLI command to delete a job and its
associated job executions.

aws iot delete-job --job-id your-job-id --no-force

The no-force parameter specifies that only jobs that are in a terminal state (COMPLETED or
CANCELLED) can be deleted. You can delete a job that is in a non-terminal state by passing the force
parameter. For more information, see DeleteJob API.

Note

Deleting a job with a status of IN_PROGRESS interrupts any job executions that are
IN_PROGRESS on your devices and can result in a device being left in a nondeterministic state.
Make sure that each device executing a job that has been deleted can recover to a known state.

Depending on the number of job executions created for the job and other factors, it can take a
few minutes to delete a job. While the job is being deleted, its status is DELETION_IN_PROGRESS.
Attempting to delete or cancel a job whose status is already DELETION_IN_PROGRESS results in an error.

You can use the delete-job-execution to delete a job execution. You might want to delete a job
execution when a small number of devices are unable to process a job. This deletes the job execution for
a single device, as shown in the following example.

aws iot delete-job-execution --job-id your-job-id --thing-name
your-thing-name --execution-number your-job-execution-number --no-force

As with the delete-job CLI command, you can pass the --force parameter to the delete-job-execution
to force the deletion of a job execution. For more information , see DeleteJobExecution API.

Note

Deleting a job execution with a status of IN_PROGRESS interrupts any job executions that are
IN_PROGRESS on your devices and can result in a device being left in a nondeterministic state.
Make sure that each device executing a job that has been deleted can recover to a known state.

52

https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJob.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteJobExecution.html

FreeRTOS User Guide
OTA Update Manager service

For more information about using the OTA update demo application, see Over-the-air updates demo
application (p. 257).

OTA Update Manager service

The over-the-air (OTA) Update Manager service provides a way to:

« Create an OTA update and the resources it uses, including an AWS IoT job, an AWS loT stream, and
code signing.

« Get information about an OTA update.

« List all OTA updates associated with your AWS account.

« Delete an OTA update.

An OTA update is a data structure maintained by the OTA Update Manager service. It contains:

« An OTA update ID.
« An optional OTA update description.
« A list of devices to update (targets).

« The type of OTA update: CONTINUOUS or SNAPSHOT. See the Jobs section of the AWS loT Developer
Guide for a discussion of the type of update that you need.

« The protocol used to perform the OTA update: [MQTT], [HTTP] or [MQTT, HTTP]. When you specify
MQTT and HTTP, the device setup determines the protocol used.

« A list of files to send to the target devices.

« The IAM role that grants AWS loT access to the Amazon S3, AWS IoT jobs and AWS Code Signing
resources to create an OTA update job.

« An optional list of user-defined name-value pairs.

OTA updates were designed to update device firmware, but you can use them to send any files that you
want to one or more devices registered with AWS IoT. When you send firmware updates over the air, we
recommend that you digitally sign them so that the devices that receive them can verify they haven't
been tampered with en route.

You can send updated firmware images using the HTTP or MQTT protocol, depending on the settings
that you choose. You can sign your firmware updates with Code Signing for FreeRTOS or you can use
your own code-signing tools.

For more control over the process, you can use the CreateStream API to create a stream when sending
updates over MQTT. In some instances, you can modify the FreeRTOS Agent code to adjust the size of the
blocks that you send and receive.

When you create an OTA update, the OTA Manager service creates an AWS IoT job to notify your devices
that an update is available. The FreeRTOS OTA Agent runs on your devices and listens for update
messages. When an update is available, it requests the firmware update image over HTTP or MQTT and
stores the files locally. It checks the digital signature of the downloaded files and, if valid, installs the
firmware update. If you're not using FreeRTOS, you must implement your own OTA Agent to listen for
and download updates and perform any installation operations.

Integrating the OTA Agent into your application

The over-the-air (OTA) Agent is designed to simplify the amount of code you must write to add OTA
update functionality to your product. That integration burden consists primarily of initialization of the

53

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateStream.html
https://github.com/aws/amazon-freertos/tree/master/libraries/freertos_plus/aws/ota/src
https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html

FreeRTOS User Guide
Integrating the OTA Agent into your application

OTA Agent and, optionally, creating a custom callback function for responding to the OTA completion
event messages.

Note

Although the integration of the OTA update feature into your application is rather simple, the
OTA update system requires an understanding of more than just device code integration. To
familiarize yourself with how to configure your AWS account with AWS loT things, credentials,
code-signing certificates, provisioning devices, and OTA update jobs, see FreeRTOS Prerequisites.

Connection management

The OTA Agent uses the MQTT protocol for all control communication operations involving AWS

loT services, but it doesn't manage the MQTT connection. To ensure that the OTA Agent doesn't
interfere with the connection management policy of your application, the MQTT connection (including
disconnect and any reconnect functionality) must be handled by the main user application. The file can
be downloaded over the MQTT or HTTP protocol. You can choose which protocol when you create the
OTA job. If you choose MQTT, the OTA Agent uses the same connection for control operations and for
downloading file. If you choose HTTP, the OTA Agent handles the HTTP connections.

Simple OTA demo using MQTT

The following is an excerpt of a simple OTA demo that shows you how the Agent connects to the MQTT
broker and initializes the OTA Agent. In this example, we configure the demo to use the default OTA
completion callback and print out some statistics once per second. For brevity, we leave out some details
from this demo.

For a working example that uses the AWS loT MQTT broker, see the OTA demo code in the demos/ota
directory.

Because the OTA Agent is its own task, the intentional one-second delay in this example affects this
application only. It has no impact on the performance of the Agent.

void VvRunOTAUpdateDemo(const IotNetworkInterface_t * pNetworkInterface,
void * pNetworkCredentialInfo)
{
IotMgttConnectInfo_t xConnectInfo = IOT_MQTT_CONNECT_INFO_INITIALIZER;
OTA_State_t eState;
OTA_ConnectionContext_t xOTAConnectionCtx = { 0 };

configPRINTF(("OTA demo version %u.%u.%u\r\n",
xAppFirmwareVersion.u.x.ucMajor,
xAppFirmwareVersion.u.x.ucMinor,
xAppFirmwareVersion.u.x.usBuild));

configPRINTF(("Creating MQTT Client...\r\n"));

/* Create the MQTT Client. */

for(; ;)
{

xNetworkConnected = prxCreateNetworkConnection();

if(xNetworkConnected)

{
configPRINTF(("Connecting to broker...\r\n"));
memset(&xConnectInfo, 0, sizeof(xConnectInfo));

if(xConnection.ulNetworkType == AWSIOT NETWORK_TYPE_BLE)
{
xConnectInfo.awsIotMgttMode = false;
xConnectInfo.keepAliveSeconds = 0;

54

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-prereqs.html

FreeRTOS User Guide
Integrating the OTA Agent into your application

else

{
xConnectInfo.awsIotMgttMode = true;
xConnectInfo.keepAliveSeconds = otaDemoKEEPALIVE_SECONDS;

}

xConnectInfo.cleanSession = true;
xConnectInfo.clientIdentifierLength = (uintlé_t)

strlen(clientcredentialIOT_THING_NAME);
xConnectInfo.pClientIdentifier = clientcredentialIOT_THING_NAME;

/* Connect to the broker. */
if(IotMgtt_Connect(&(xConnection.xNetworkInfo),
&xConnectInfo,
otaDemoCONN_TIMEOUT MS, &(xConnection.xMgttConnection))
== IOT_MQTT_SUCCESS)
{
configPRINTF(("Connected to broker.\r\n"));
XOTAConnectionCtx.pvControlClient = xConnection.xMgttConnection;
XOTAConnectionCtx.pxNetworkInterface = (void *) pNetworkInterface;
XOTAConnectionCtx.pvNetworkCredentials = pNetworkCredentialInfo;

OTA_AgentInit((void *) (&xOTAConnectionCtx), (const uint8_t *)
(clientcredentialIOT_ THING_NAME), App_OTACompleteCallback, (TickType_t) ~0);

while((eState = OTA_GetAgentState()) != eOTA_AgentState_Stopped)
{
/* Wait forever for OTA traffic but allow other tasks to run and output
statistics only once per second. */
vTaskDelay(myappONE_SECOND_DELAY IN_TICKS);
configPRINTF(("State: %s Received: %u Queued: %u Processed:
Dropped: %u\r\n", pcStateStr[eState],
OTA_GetPacketsReceived(), OTA_GetPacketsQueued(),
OTA_GetPacketsProcessed(), OTA_GetPacketsDropped()));

B
=}

}
IotMgtt_Disconnect(xConnection.xMgttConnection, false);
}
else
{
configPRINTF(("ERROR: MQTT_AGENT_Connect() Failed.\r\n"));
}

vMgttDemoDeleteNetworkConnection(&xConnection);

/* After failure to connect or a disconnect, wait an arbitrary one second
before retry. */
vTaskDelay(myappONE_SECOND_DELAY IN_TICKS);
}
else
{
configPRINTF(("Failed to create MQTT client.\r\n"));

}

Here is the high-level flow of this demo application:

» Create an MQTT Agent context.

« Connect to your AWS loT endpoint.

« Initialize the OTA Agent.

» Loop allowing an OTA update job and output statistics once a second.
« If the Agent stops, wait one second and try connecting again.

55

FreeRTOS User Guide
Integrating the OTA Agent into your application

Using a custom callback for OTA completion events

The previous example used the built-in callback handler for OTA completion events by specifying NULL
for the third parameter to the OTA_AgentInit AP If you want to implement custom handling of the
completion events, you must pass the function address of your callback handler to the OTA_AgentInit
API. During the OTA process, the Agent can send one of the following event enums to the callback
handler. It is up to the application developer to decide how and when to handle these events.

@brief OTA Job callback events.

/
*
*
* After an OTA update image is received and authenticated, the Agent calls the user

* callback (set with the OTA_AgentInit API) with the value eOTA_JobEvent_Activate to

* signal that the device must be rebooted to activate the new image. When the device

* boots, if the OTA job status is in self test mode, the Agent calls the user callback
* with the value eOTA_JobEvent_StartTest, signaling that any additional self tests

* should be performed.

*

*

*

*

*

If the OTA receive fails for any reason, the Agent calls the user callback with
the value eOTA_JobEvent_Fail instead to allow the user to log the failure and take
any action deemed appropriate by the user code.

*/

typedef enum {
eOTA_JobEvent_Activate, /*! OTA receive is authenticated and ready to activate. */
eOTA_JobEvent_Fail, /*! OTA receive failed. Unable to use this update. */

eOTA_JobEvent_StartTest /*! OTA job is now in self test, perform user tests. */
} OTA_JobEvent_t;

The OTA Agent can receive an update in the background during active processing of the main
application. The purpose of delivering these events is to allow the application to decide if action can be
taken immediately or if it should be deferred until after completion of some other application-specific
processing. This prevents an unanticipated interruption of your device during active processing (for
example, vacuuming) that would be caused by a reset after a firmware update. These are the job events
received by the callback handler:

eOTA_JobEvent_Activate event

When this event is received by the callback handler, you can either reset the device immediately or
schedule a call to reset the device later. This allows you to postpone the device reset and self-test
phase, if necessary.

eOTA_JobEvent_Fail event

When this event is received by the callback handler, the update has failed. You do not need to do
anything in this case. You might want to output a log message or do something application-specific.

eOTA_JobEvent_StartTest event

The self-test phase is meant to allow newly updated firmware to execute and test itself before
determining that it is properly functioning and commit it to be the latest permanent application
image. When a new update is received and authenticated and the device has been reset, the
OTA Agent sends the eOTA_JobEvent_StartTest event to the callback function when it is
ready for testing. The developer can add any required tests to determine if the device firmware
is functioning properly after update. When the device firmware is deemed reliable by the

self tests, the code must commit the firmware as the new permanent image by calling the
OTA_SetImageState(eOTA_ImageState_ Accepted) function.

If your device has no special hardware or mechanisms that need to be tested, you can use the default
callback handler. Upon receipt of the eOTA_JobEvent_Activate event, the default handler resets the
device immediately.

56

FreeRTOS User Guide
OTA security

OTA security

The following are three aspects of over-the-air (OTA) security:
Connection security

The OTA Update Manager service relies on existing security mechanisms, such as Transport Layer
Security (TLS) mutual authentication, used by AWS loT. OTA update traffic passes through the AWS
loT device gateway and uses AWS loT security mechanisms. Each incoming and outgoing HTTP or
MQTT message through the device gateway undergoes strict authentication and authorization.

Authenticity and integrity of OTA updates

Firmware can be digitally signed before an OTA update to ensure that it is from a reliable source and
has not been tampered with.

The FreeRTOS OTA Update Manager service uses Code Signing for AWS loT to automatically sign
your firmware. For more information, see Code Signing for AWS loT.

The OTA Agent, which runs on your devices, performs integrity checks on the firmware when it
arrives on the device.

Operator security

Every API call made through the control plane API undergoes standard IAM Signature Version 4
authentication and authorization. To create a deployment, you must have permissions to invoke the
CreateDeployment, CreateJdob, and CreateStream APIs. In addition, in your Amazon S3 bucket
policy or ACL, you must give read permissions to the AWS loT service principal so that the firmware
update stored in Amazon S3 can be accessed during streaming.

Code Signing for AWS loT

The AWS IoT console uses Code Signing for AWS IoT to automatically sign your firmware image for any
device supported by AWS loT.

Code Signing for AWS loT uses a certificate and private key that you import into ACM. You can use a
self-signed certificate for testing, but we recommend that you obtain a certificate from a well-known
commercial certificate authority (CA).

Code-signing certificates use the X.509 version 3 Key Usage and Extended Key Usage extensions.
The Key Usage extension is set to Digital Signature and the Extended Key Usage extension is
set to Code Signing. For more information about signing your code image, see the Code Signing for
AWS IoT Developer Guide and the Code Signing for AWS IoT API Reference.

Note
You can download the Code Signing for AWS loT SDK from Tools for Amazon Web Services.

OTA troubleshooting

The following sections contain information to help you troubleshoot issues with OTA updates.

Topics
o Set up CloudWatch Logs for OTA updates (p. 58)
o Log AWS loT OTA API calls with AWS CloudTrail (p. 61)
« Get OTA failure codes with the AWS CLI (p. 63)
« Troubleshoot OTA updates of multiple devices (p. 64)

57

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/signer/latest/api/Welcome.html
https://aws.amazon.com/tools/

FreeRTOS User Guide
OTA troubleshooting

« Troubleshoot OTA updates with the Texas Instruments CC3220SF Launchpad (p. 64)
« Stream limit exceeded for your AWS account (p. 64)

Set up CloudWatch Logs for OTA updates

The OTA Update service supports logging with Amazon CloudWatch. You can use the AWS loT console
to enable and configure Amazon CloudWatch logging for OTA updates. For more information, see
Cloudwatch Logs.

To enable logging, you must create an IAM role and configure OTA update logging.

Note

Before you enable OTA update logging, make sure you understand the CloudWatch Logs access
permissions. Users with access to CloudWatch Logs can see your debugging information. For
information, see Authentication and Access Control for Amazon CloudWatch Logs.

Create a logging role and enable logging

Use the AWS IoT console to create a logging role and enable logging.

AW

From the navigation pane, choose Settings.

Under Logs, choose Edit.

Under Level of verbosity, choose Debug.

Under Set role, choose Create new to create an IAM role for logging.

Under Name, enter a unique name for your role. Your role will be created with all required
permissions.

Choose Update.

OTA update logs

The OTA Update service publishes logs to your account when one of the following occurs:

An OTA update is created.

An OTA update is completed.

A code-signing job is created.

A code-signing job is completed.
An AWS IoT job is created.

An AWS loT job is completed.

A stream is created.

You can view your logs in the CloudWatch console.

To view an OTA update in CloudWatch Logs

1.
2.

From the navigation pane, choose Logs.
In Log Groups, choose AWSIloTLogsV2.

OTA update logs can contain the following properties:

accountld

The AWS account ID in which the log was generated.

58

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/auth-and-access-control-cwl.html
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/cloudwatch/home

FreeRTOS User Guide
OTA troubleshooting

actionType

The action that generated the log. This can be set to one of the following values:
e CreateOTAUpdate: An OTA update was created.

o DeleteOTAUpdate: An OTA update was deleted.

» StartCodeSigning: A code-signing job was started.

« CreateAWSJob: An AWS loT job was created.

e CreateStream: A stream was created.

o GetStream: A request for a stream was sent to the AWS IoT Streaming service.

« DescribeStream: A request for information about a stream was sent to the AWS loT Streaming
service.

awsJobld

The AWS IoT job ID that generated the log.
clientld

The MQTT client ID that made the request that generated the log.
clientToken

The client token associated with the request that generated the log.
details

More information about the operation that generated the log.
logLevel

The logging level of the log. For OTA update logs, this is always set to DEBUG.
otaUpdateld

The ID of the OTA update that generated the log.
protocol

The protocol used to make the request that generated the log.
status

The status of the operation that generated the log. Valid values are:
o Success
« Failure

streamld

The AWS loT stream ID that generated the log.
timestamp

The time when the log was generated.
topicName

An MQTT topic used to make the request that generated the log.

Example logs

The following is an example log generated when a code-signing job is started:

{

59

FreeRTOS User Guide
OTA troubleshooting

"timestamp": "2018-07-23 22:59:44.955",

"logLevel": "DEBUG",

"accountId": "123456789012",

"status": "Success",

"actionType": "StartCodeSigning",

"otaUpdateId": "08957b03-eea3-448a-87fe-743e6891ca3a",

"details": "Start code signing job. The request status is SUCCESS."

The following is an example log generated when an AWS IoT job is created:

{
"timestamp": "2018-07-23 22:59:45.363",
"logLevel": "DEBUG",
"accountId": "123456789012",
"status": "Success",
"actionType": "CreateAWSJob",
"otaUpdateId": "08957b03-eea3-448a-87fe-743e6891ca3a",
"awsJobId": "08957b03-eea3-448a-87fe-743e6891ca3a",
"details": "Create AWS Job The request status is SUCCESS."
}

The following is an example log generated when an OTA update is created:

{

"timestamp": "2018-07-23 22:59:45.413",

"logLevel": "DEBUG",

"accountId": "123456789012",

"status": "Success",

"actionType": "CreateOTAUpdate",

"otaUpdateId": "08957b03-eea3-448a-87fe-743e6891ca3a",

"details": "OTAUpdate creation complete. The request status is SUCCESS."
}

The following is an example log generated when a stream is created:

{
"timestamp": "2018-07-23 23:00:26.391",
"logLevel": "DEBUG",
"accountId": "123456789012",
"status": "Success",
"actionType": "CreateStream",
"otaUpdateId": "3d3dc5f7-3d6d-47ac-9252-45821ac7cfbo",
"streamId": "6be2303d-3637-48f0-ace9-0b87b1b9a824",
"details": "Create stream. The request status is SUCCESS."
¥

The following is an example log generated when an OTA update is deleted:

{

"timestamp": "2018-07-23 23:03:09.505",

"logLevel": "DEBUG",

"accountId": "123456789012",

"status": "Success",

"actionType": "DeleteOTAUpdate",

"otaUpdateId": "9bdd78fb-£113-4001-9675-1b595982292f",

"details": "Delete OTA Update. The request status is SUCCESS."
}

60

FreeRTOS User Guide
OTA troubleshooting

The following is an example log generated when a device requests a stream from the streaming service:

{
"timestamp": "2018-07-25 22:09:02.678",
"logLevel": "DEBUG",
"accountId": "123456789012",
"status": "Success",
"actionType": "GetStream",
"protocol": "MQTT",
"clientId": "b9d2e49c-94fe-4edl1-9b07-286afed7e4c8",
"topicName": "$aws/things/b9d2e49c-94fe-4edl1-9b07-286afed7e4c8/
streams/le51e9a8-9a4c-4c50-b005-d38452a956af/get/json",
"streamId": "le5l1e9a8-9a4c-4c50-b005-d38452a956af",
"details": "The request status is SUCCESS."
}

The following is an example log generated when a device calls the DescribeStream API:

{
"timestamp": "2018-07-25 22:10:12.690",
"logLevel": "DEBUG",
"accountId": "123456789012",
"status": "Success",
"actionType": "DescribeStream",
"protocol": "MQTT",
"clientId": "581075e0-4639-48ee-8b94-2cf304168e43",
"topicName": "$aws/things/581075e0-4639-48ee-8b94-2cf304168e43/streams/71c101la8-
bcc5-4929-9fe2-af563af0c139/describe/json",
"streamId": "71cl0la8-bcc5-4929-9fe2-af563af0cl139",
"clientToken": "clientToken",
"details": "The request status is SUCCESS."
¥

Log AWS loT OTA API calls with AWS CloudTrail

FreeRTOS is integrated with CloudTrail, a service that captures AWS IoT OTA API calls and delivers the
log files to an Amazon S3 bucket that you specify. CloudTrail captures API calls from your code to the
AWS loT OTA APIs. Using the information collected by CloudTrail, you can determine the request that
was made to AWS loT OTA, the source IP address from which the request was made, who made the
request, when it was made, and so on.

For more information about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
User Guide.

FreeRTOS information in CloudTrail

When CloudTrail logging is enabled in your AWS account, API calls made to AWS loT OTA actions
are tracked in CloudTrail log files where they are written with other AWS service records. CloudTrail
determines when to create and write to a new file based on a time period and file size.

The following AWS loT OTA control plane actions are logged by CloudTrail:

o CreateStream

o DescribeStream
« ListStreams

o UpdateStream

o DeleteStream

e CreateOTAUpdate

61

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateStream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DescribeStream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListStreams.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateStream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteStream.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateOTAUpdate.html

FreeRTOS User Guide
OTA troubleshooting

« GetOTAUpdate
o ListOTAUpdates
« DeleteOTAUpdate

Note
AWS loT OTA data plane actions (device side) are not logged by CloudTrail. Use CloudWatch to
monitor these.

Every log entry contains information about who generated the request. The user identity information in
the log entry helps you determine the following:

« Whether the request was made with root or IAM user credentials.
« Whether the request was made with temporary security credentials for a role or federated user.
« Whether the request was made by another AWS service.

For more information, see the CloudTrail userldentity Element. AWS loT OTA actions are documented in
the AWS IoT OTA API Reference.

You can store your log files in your Amazon S3 bucket for as long as you want, but you can also define
Amazon S3 lifecycle rules to archive or delete log files automatically. By default, your log files are
encrypted with Amazon S3 server-side encryption (SSE).

If you want to be notified when log files are delivered, you can configure CloudTrail to publish Amazon
SNS notifications. For more information, see Configuring Amazon SNS Notifications for CloudTrail.

You can also aggregate AWS loT OTA log files from multiple AWS Regions and multiple AWS accounts
into a single Amazon S3 bucket.

For more information, see Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail
Log Files from Multiple Accounts.

Understanding FreeRTOS log file entries

CloudTrail log files can contain one or more log entries. Each entry lists multiple JSON-formatted events.
A log entry represents a single request from any source and includes information about the requested
action, the date and time of the action, request parameters, and so on. Log entries are not an ordered
stack trace of the public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the log from a call to
CreateOTAUpdate action.

{

"eventVersion": "1.05",

"userIdentity": {
"type": "IAMUser",
"principalId": "EXAMPLE",
"arn": "arn:aws:iam::your_aws_account:user/your_ user_id",
"accountId": "your_aws_account",
"accessKeyId": "your_access_key_id",
"userName": "your_ username",

"sessionContext": {
"attributes": {

"mfaAuthenticated": "false",
"creationDate": "2018-08-23T17:27:08Z"
}
I
"invokedBy": "apigateway.amazonaws.com"

62

https://docs.aws.amazon.com/iot/latest/apireference/API_GetOTAUpdate.html
https://docs.aws.amazon.com/iot/latest/apireference/API_ListOTAUpdates.html
https://docs.aws.amazon.com/iot/latest/apireference/API_DeleteOTAUpdate.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/iot/latest/apireference
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

FreeRTOS User Guide
OTA troubleshooting

"eventTime": "2018-08-23T17:27:19Z2",
"eventSource": "iot.amazonaws.com",
"eventName": "CreateOTAUpdate",

"awsRegion": "your_aws_region",
"sourceIPAddress": "apigateway.amazonaws.com",
"userAgent": "apigateway.amazonaws.com",

"requestParameters": {
"targets": [
"arn:aws:iot:your_ aws_region:your_aws_account:thing/Thing_ CMH"
1,
"roleArn": "arn:aws:iam::your_aws_account:role/Role_FreeRTOSJob",
"files": [
{
"fileName": "/sys/mcuflashimg.bin",
"fileSource": {
"fileId": O,
"streamId": "your_ stream_id"
Iy
"codeSigning": {
"awsSignerJobId": "your_ signer_job_id"
}
}
1,
"targetSelection": "SNAPSHOT",
"otaUpdateId": "FreeRTOSJob_CMH-23-1535045232806-92"
Iy
"responseElements": {
"otaUpdateArn": "arn:aws:iot:your_aws_region:your_aws_account:otaupdate/
FreeRTOSJob_CMH-23-1535045232806-92",
"otaUpdateStatus": "CREATE_PENDING",
"otaUpdateId": "FreeRTOSJob_CMH-23-1535045232806-92"
Iy
"requestID": "c9649630-a6f9-11e8-8f9c-elcf2d0c9d8e”,
"eventID": "ce9bf4d9-5770-4cee-acf4-0e5649b845¢c0",
"eventType": "AwsApiCall",
"recipientAccountId": "recipient_aws_account"

Get OTA failure codes with the AWS CLI

1. Install and configure the AWS CLI.
2. Run'"aws configure" and enter following information:

$ aws configure

AWS Access Key ID [None]: AccessID

AWS Secret Access Key [None]: AccessKey
Default region name [None]: Region
Default output format [None]: json

3. Run:

aws iot describe-job-execution --job-id JobID --thing-name ThingName

Where JobID is the complete job ID string for the job whose status we want to get and ThingName
is the AWS loT thing name that the device is registered as in AWS loT

4. The output will look like this:

{
"execution": {
"jobId": "AFR OTA-****kXxkkkkkkxkk*"
"status": "FAILED",

63

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

FreeRTOS User Guide
OTA troubleshooting

"statusDetails": {

"detailsMap": {

"reason": "OXEEEEEEEE: OXfffffffr"

}
I
"thingArn": "arn:aws:iot:Region:AccountID:thing/ThingName",
"queuedAt": 1569519049.9,
"startedAt": 1569519052.226,
"lastUpdatedAt": 1569519052.226,
"executionNumber": 1,
"versionNumber": 2

In this example output, the "reason" in the "detailsmap" has two fields: the field shown as
"OXEEEEEEEE" contains the generic error code from the OTA Agent; the field shown as "Oxffffffff"
contains the sub-code. The generic error codes are listed in https://docs.aws.amazon.com/freertos/
latest/lib-ref/html1/aws__ota__agent_8h.html. See error codes with the prefix "kOTA_Err_". The
sub-code can be a platform specific code or provide more details about the generic error.

Troubleshoot OTA updates of multiple devices

To perform OTAs on multiple devices (things) using the same firmware image, implement a function (for
example getThingName()) that retrieves clientcredentialIOT_ THING_NAME from non-volatile
memory. Make sure that this function reads the thing name from a part of non-volatile memory that is
not overwritten by the OTA, and that the thing name is provisioned before running the first job. If you
are using the JITP flow, you can read the thing name out of your device certificate's common name.

Troubleshoot OTA updates with the Texas Instruments
CC3220SF Launchpad

The CC3220SF Launchpad platform provides a software tamper-detection mechanism. It uses a security
alert counter that is incremented whenever there is an integrity violation. The device is locked when the
security alert counter reaches a predetermined threshold (the default is 15) and the host receives the
SL_ERROR_DEVICE_LOCKED_SECURITY_ ALERT asynchronous event. The locked device then has limited
accessibility. To recover the device, you can reprogram it or use the restore-to-factory process to revert
to the factory image. You should program the desired behavior by updating the asynchronous event
handler in network_if.c.

Stream limit exceeded for your AWS account

Although there is no charge to use FreeRTOS, creating a stream might incur charges to your account.
Because the OTA Cloud service accesses S3 object metadata in your AWS account on your behalf, this
might generate a cost on your bill. For more information, see Amazon S3 pricing.

If yousee "Error: You have exceeded the limit for the number of streams in your
AWS account.", you can clean up the unused streams in your account instead of requesting a limit
increase.

To clean up unused streams, use the following commands.

For a stream created by the OTA Update Manager Service:

aws iot delete-ota-update -ota-update-id value --delete-stream

For more details, see delete-ota-update.

64

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html
https://aws.amazon.com/s3/pricing
https://docs.aws.amazon.com/cli/latest/reference/iot/delete-ota-update.html

FreeRTOS User Guide
Downloading FreeRTOS source code

For a stream that you created using the AWS CLI or SDK:

aws iot delete-stream -stream-id value

For more details, see delete-stream.

Note
You can use the 1ist-ota-updates or list-streams commands to find the OTA update ID
or stream ID.

Downloading FreeRTOS source code

You can download versions of FreeRTOS that are configured for FreeRTOS-qualified platforms from the
FreeRTOS console. For a list of qualified platforms, see FreeRTOS-qualified hardware platforms (p. 68)
or the FreeRTOS Partners website.

You can also clone or download FreeRTOS from GitHub. See the README.md file for instructions.

FreeRTOS console

From the FreeRTOS console, you can configure and download a package that contains everything you
need to write an application for your microcontroller-based devices:

« The FreeRTOS kernel.

« FreeRTOS libraries.

« Platform support libraries.
» Hardware drivers.

For more information, see FreeRTOS console (p. 65).

FreeRTOS console

In the FreeRTOS console, you can download a package with a predefined configuration, or you can
create your own configuration by selecting your hardware platform and the libraries required for your
application. These configurations are saved in AWS and are available for download at any time.

Predefined FreeRTOS configurations

The predefined configurations make it possible for you to get started quickly with the supported use
cases without thinking about which libraries are required. To use a predefined configuration, browse to
the FreeRTOS console, find the configuration you want to use, and then choose Download.

You can also customize a predefined configuration if you want to change the FreeRTOS version,

hardware platform, or libraries of the configuration. Customizing a predefined configuration creates a
new custom configuration and does not overwrite the predefined configuration in the FreeRTOS console.

To create a custom configuration from a predefined configuration

1. Browse to the FreeRTOS console.

65

https://docs.aws.amazon.com/cli/latest/reference/iot/delete-stream.html
https://console.aws.amazon.com/freertos
https://aws.amazon.com/freertos/partners/
https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/master/README.md
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos

FreeRTOS User Guide
Custom FreeRTOS configurations

In the navigation pane, choose Software.
Under FreeRTOS Device Software, choose Configure download.

Choose the ellipsis (...) next to the predefined configuration that you want to customize, and then
choose Customize.

On the Configure FreeRTOS Software page, choose the FreeRTOS version, hardware platform, and
libraries, and give the new configuration a name and a description.

At the bottom of the page, choose Create and download.

Custom FreeRTOS configurations

Custom configurations allow you to specify your hardware platform, integrated development platform
(IDE), compiler, and only those RTOS libraries you require. This leaves more space on your devices for
application code.

To create a custom configuration

w

Browse to the FreeRTOS console and choose Create new.
Select the version of FreeRTOS that you want to use. The latest version is used by default.

On the New Software Configuration page, choose Select a hardware platform, and choose one of
the pre-qualified platforms.

Choose the IDE and compiler you want use.

For the FreeRTOS libraries you require, choose Add Library. If you choose a library that requires
another library, it is added for you. If you want to choose more libraries, choose Add another
library.

In the Demo Projects section, enable one of the demo projects. This enables the demo in the project
files.

In Name required, enter a name for your custom configuration.

Note

Do not use any personally identifiable information in your custom configuration name.
In Description, enter a description for your custom configuration.
At the bottom of the page, choose Create and download.

To edit a custom configuration

ARSI O

Browse to the FreeRTOS console.

In the navigation pane, choose Software.

Under FreeRTOS Device Software, choose Configure download.

Choose the ellipsis (...) next to the configuration you want to edit, and then choose Edit.

On the Configure FreeRTOS Software page, you can change your configuration's FreeRTOS version,
hardware platform, libraries, and description.

At the bottom of the page, choose Save and download.

To delete a custom configuration

PN =

Browse to the FreeRTOS console.

In the navigation pane, choose Software.

Under FreeRTOS Device Software, choose Configure download.

Choose the ellipsis (...) next to the configuration you want to delete, and then choose Delete.

66

https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos

FreeRTOS User Guide
Quick connect workflow

Quick connect workflow

The FreeRTOS console also includes the Quick Connect workflow option for all boards with predefined
configurations. The Quick Connect workflow helps you configure and run FreeRTOS demo applications
for AWS loT and AWS loT Greengrass. To get started, choose the Predefined configurations tab, find
your board, choose Quick connect, and then follow the Quick Connect workflow steps.

Tagging configurations

You can apply tags to FreeRTOS configurations when you create or edit a configuration in the console. To
apply tags to a configuration, navigate to the console. Under Tags, enter the name and value for the tag.

You can use tags to manage access permissions to configurations with 1AM policies. For information, see
Using tags with 1AM policies (p. 67).

For more information about using tags to manage AWS loT resources, see Using Tags with IAM Policies in
the AWS IoT Developer Guide.

Using tags with IAM policies

You can use the FreeRTOS console to apply tag-based, resource-level permissions in the IAM policies that
you use for operations. This gives you better control over which configurations a user can create, modify,
or use. For more information about using tagging and IAM policies for AWS loT, see Using Tags with IAM
Policies in the AWS IloT Developer Guide.

In the IAM policy definition, use the Condition element (also called the Condition block) with the
following condition context keys and values to control user access (permissions) based on a resource's
tags:

o Use aws:ResourceTag/tag-key: tag-value to allow or deny user actions on FreeRTOS
configurations with specific tags.

« Use aws:RequestTag/tag-key: tag-value to require that a specific tag be used (or not used)
when creating or modifying a configuration in the FreeRTOS console.

« Use aws:TagKeys: [tag-key, ...]torequire that a specific set of tag keys be used (or not used)
when creating or modifying a configuration in the FreeRTOS console.

For more information, see Controlling Access Using Tags in the AWS Identity and Access Management
User Guide. For detailed syntax, descriptions, and examples of the elements, variables, and evaluation
logic of JSON policies in IAM, see the IAM JSON Policy Reference.

The following example policy applies two tag-based restrictions. An IAM user restricted by this policy:

« Cannot give a resource the tag env=prod (in the example, see the line "aws : RequestTag/env"
"prodll

« Cannot modify or access a resource that has an existing tag env=prod (in the example, see the line

"aws :ResourceTag/env" : "prod").
{
"Version" : "2012-10-17",
"Statement" : [
{
"Effect" : "Deny",
"Action" : "freertos:*",
"Resource" : "*",
"Condition" : {

67

https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot-iam.html
https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot-iam.html
https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

FreeRTOS User Guide
FreeRTOS-qualified hardware platforms

"StringEquals" : {
"aws :RequestTag/env" : "prod"
}
}
Iy
{
"Effect" : "Deny",
"Action" : "freertos:*",
"Resource" : "x",
"Condition" : {
"StringEquals" : {
"aws :ResourceTag/env" : "prod"
}
}
Iy
{
"Effect": "Allow",
"Action": [
"iot:*"
1,
"Resource": "*x"
}

You can also specify multiple tag values for a given tag key by enclosing them in a list, like this:

"StringEquals" : {
"aws :ResourceTag/env" : ["dev", "test"]

}

Note

If you allow or deny users access to resources based on tags, you must consider explicitly
denying users the ability to add those tags to or remove them from the same resources.
Otherwise, it's possible for a user to circumvent your restrictions and gain access to a resource
by modifying its tags.

FreeRTOS-qualified hardware platforms

The following hardware platforms are qualified for FreeRTOS:

ATECC608A Zero Touch Provisioning Kit for AWS loT
Cypress CYW943907AEVAL1F Development Kit
Cypress CYW954907AEVAL1F Development Kit
Espressif ESP32-DevKitC

Espressif ESP-WROVER-KIT

Infineon XMC4800 IoT Connectivity Kit

Marvell MW320 AWS IoT Starter Kit

Marvell MW322 AWS IloT Starter Kit

MediaTek MT7697Hx Development Kit
Microchip Curiosity PIC32MZEF Bundle

Nordic nRF52840-DK

68

https://devices.amazonaws.com/detail/a3G0L00000AANvOUAX/ATECC608a-Zero-Touch-Provisioning-Kit-for-AWS-IoT
https://devices.amazonaws.com/detail/a3G0L00000AAPg0UAH/CYW943907AEVAL1F
https://devices.amazonaws.com/detail/a3G0L00000AAPg5UAH/CYW954907AEVAL1F
https://devices.amazonaws.com/detail/a3G0L00000AANtjUAH/ESP32-DevKitC
https://devices.amazonaws.com/detail/a3G0L00000AANtlUAH/ESP-WROVER-KIT
https://devices.amazonaws.com/detail/a3G0L00000AANsbUAH/XMC4800-IoT-Amazon-FreeRTOS-Connectivity-Kit-WiFi
https://devices.amazonaws.com/detail/a3G0h000000OaRnEAK/Marvell-MW320
https://devices.amazonaws.com/detail/a3G0h000000OblKEAS/Marvell-MW322
https://devices.amazonaws.com/detail/a3G0L00000AAOmPUAX/MT7697Hx-Development-Kit
https://devices.amazonaws.com/detail/a3G0L00000AANscUAH/Curiosity-PIC32MZ-EF-Amazon-FreeRTOS-Bundle
https://devices.amazonaws.com/detail/a3G0L00000AANtrUAH/nRF52840-Development-Kit

FreeRTOS User Guide
Development workflow

« NuMaker-1oT-M487

o NXP LPC54018 loT Module

o OPTIGA Trust X Security Solution

« Renesas RX65N RSK loT Module

o STMicroelectronicsSTM32L4 Discovery Kit 1oT Node

o Texas Instruments CC3220SF-LAUNCHXL

« Microsoft Windows 7 or later, with at least a dual core and a hard-wired Ethernet connection
« Xilinx Avnet MicroZed Industrial loT Kit

Qualified devices are also listed on the AWS Partner Device Catalog.

For information about qualifying a new device, see the FreeRTOS Qualification Guide.

Development workflow

You start development by downloading FreeRTOS. You unzip the package and import it into your IDE.
You can then develop an application on your selected hardware platform and manufacture and deploy
these devices using the development process appropriate for your device. Deployed devices can connect
to the AWS loT service or AWS loT Greengrass as part of a complete loT solution.

11111

Q
i

e iy
S g@ @{Q} N

—
Choose a supported Download 0S and
microcontroller libraries Develop app Deploy connected device
_ Selecta supported Di"""bi"d 'i!.l')e Fr'eeriTOS Develop loT applications for Deploy and maintain connected
microcontroller from Device ernel & lI "g"'esl °rl microcontroller-based microcontroller-based devices at
Qualification Program security, cloud & local | devices with convenient APIs scale. Easily connect to local
for FreeRTOS connectivity, & updateability gateways like AWS 10T Greengrass
through the FlreeRTOS Core devices or to AWS cloud
console services like AWS loT Core

AWS loT Device SDK for Embedded C

The AWS IoT Device SDK for Embedded C is a collection of C source files that can be used in embedded
applications to securely connect to the AWS IoT platform. The SDK includes transport clients, TLS
implementations, and usage examples. It also includes libraries that interact with AWS IoT services on
the AWS Cloud.

The AWS IoT Device SDK for Embedded C includes the following libraries. These libraries have the same
APIs as their corresponding FreeRTOS libraries.

o AWS loT Device Defender
« MQTT
o AWS loT Device Shadow
« Common Libraries

« Linear Containers

« Logging

69

https://devices.amazonaws.com/detail/a3G0h000000Tg9cEAC/NuMaker-IoT-M487
https://devices.amazonaws.com/detail/a3G0L00000AANtAUAX/LPC54018-IoT-Solution
https://devices.amazonaws.com/detail/a3G0h000007712QEAQ/OPTIGA%E2%84%A2-Trust-X-Security-Solution
https://devices.amazonaws.com/detail/a3G0L00000AAOkeUAH/Renesas-Starter-Kit+-for-RX65N-2MB
https://devices.amazonaws.com/detail/a3G0L00000AANsWUAX/STM32L4-Discovery-Kit-IoT-Node
https://devices.amazonaws.com/detail/a3G0L00000AANtaUAH/SimpleLink-Wi-Fi�-CC3220SF-Wireless-Microcontroller-LaunchPad-Development-Kit
https://devices.amazonaws.com/detail/a3G0L00000AANtqUAH/MicroZed-IIoT-Bundle-with-Amazon-FreeRTOS
https://devices.amazonaws.com/search?page=1&sv=freertos
https://docs.aws.amazon.com/freertos/latest/qualificationguide/

FreeRTOS User Guide
Additional resources

« Static Memory
» Task Pool

The SDK is distributed as source code that is intended to be built into customer firmware along with
application code, other libraries, and RTOS. For more information, see the AWS loT Device SDK for
Embedded C GitHub.

For instructions on porting the SDK source code to your environment, see the AWS loT Device SDK for
Embedded C Porting Guide.

For an API reference, see the AWS loT Device SDK C API Reference.

Additional resources

These resources might be helpful to you.

« For questions about FreeRTOS for the FreeRTOS engineering team, you can open an issue on the
FreeRTOS GitHub page.

« For technical questions about FreeRTOS visit the FreeRTOS Community Forums.
« For technical support for AWS, visit the AWS Support Center.

« For questions about AWS billing, account services, events, abuse, or other issues with AWS, visit the
Contact Us page.

70

https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C/blob/master/PortingGuide.md
https://github.com/aws/aws-iot-device-sdk-embedded-C/blob/master/PortingGuide.md
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/index.html
https://github.com/aws/amazon-freertos/issues
https://github.com/aws/amazon-freertos/issues
https://forums.freertos.org/
https://aws.amazon.com/support
https://aws.amazon.com/contact-us/

FreeRTOS User Guide
FreeRTOS demo application

Getting Started with FreeRTOS

This Getting Started with FreeRTOS tutorial shows you how to download and configure FreeRTOS on a
host machine, and then compile and run a simple demo application on a qualified microcontroller board.

Throughout this tutorial, we assume that you are familiar with AWS loT and the AWS IoT console. If not,
we recommend that you complete the AWS loT Getting Started tutorial before you continue.

FreeRTOS demo application

The demo application in this tutorial is the Hello World MQTT demo defined in the /demos /mqtt/
iot_demo_mgtt.c file. It uses the FreeRTOS MQTT library (p. 218) to connect to the AWS Cloud and
then periodically publish messages to an MQTT topic hosted by the AWS IoT MQTT broker.

Only a single FreeRTOS demo application can run at a time. When you build a FreeRTOS demo

project, the first demo enabled in the freertos/vendors/vendor/boards/board/aws_demos/
config files/aws_demo_config.h header file is the application that runs. For this tutorial, you do
not need to enable or disable any demos. The Hello World MQTT demo is enabled by default.

For more information about the demo applications included with FreeRTOS, see FreeRTOS
Demos (p. 236).

First steps

To get started, see First steps (p. 72).

Board-specific getting started guides

After you complete the First steps (p. 72), you can set up your platform's hardware and its software
development environment, and then compile and run the demo on your board. For board-specific
instructions, see the Board-specific getting started guides (p. 86).

Troubleshooting

For help troubleshooting any issues that you encounter while getting started, see Troubleshooting
getting started (p. 79). For board-specific troubleshooting tips, see the Getting Started guide for your
board in Board-specific getting started guides (p. 86).

Developing FreeRTOS applications

You can use an IDE to edit, debug, compile, flash, and run code on FreeRTOS-qualified devices. Each
board-specific Getting Started guide includes instructions for setting up the IDE for a particular platform.

71

https://devices.amazonaws.com/search?page=1&sv=freertos
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html

FreeRTOS User Guide
First steps

First

You can also use third-party code editors and debuggers to develop applications, and CMake to build and
run the source code. For more information about using CMake as a build tool for FreeRTOS development,
see Using CMake with FreeRTOS (p. 80).

steps

To get started using FreeRTOS with AWS loT, you need an AWS account, an IAM user with permission to
access AWS loT and FreeRTOS cloud services. You also need to download FreeRTOS and configure your
board's FreeRTOS demo project to work with AWS loT. The following sections walk you through these
requirements.

Note

If you're using the Espressif ESP32-DevKitC, ESP-WROVER-KIT, or the ESP32-WROOM-32SE, skip
these steps and go to Getting started with the Espressif ESP32-DevKitC and the ESP-WROVER-
KIT (p. 97).

If you're using the Nordic nRF52840-DK, skip these steps and go to Getting started with the
Nordic nRF52840-DK (p. 154).

1. Setting up your AWS account and permissions (p. 72)

After you complete the instructions in Setting up your AWS account and permissions (p. 72), you

can follow the Quick Connect workflow in the FreeRTOS console to quickly connect your board to the
AWS Cloud. If you follow the Quick Connect workflow, you do not need to complete the remaining
steps in this list. Note that configurations of FreeRTOS are currently not available on the FreeRTOS
console for the following boards:

« Cypress CYW943907AEVALTF Development Kit
o Cypress CYW954907AEVALTF Development Kit
2. Registering your MCU board with AWS loT (p. 73)
3. Downloading FreeRTOS (p. 75)
4. Configuring the FreeRTOS demos (p. 75)

Setting up your AWS account and permissions

To create an AWS account, see Create and Activate an AWS Account.

To add an IAM user to your AWS account, see IAM User Guide. To grant your IAM user account access to
AWS IloT and FreeRTOS, attach the following IAM policies to your IAM user account:

e AmazonFreeRTOSFullAccess

e AWSIoTFullAccess

To attach the AmazonFreeRTOSFullAccess policy to your IAM user

Browse to the IAM console, and from the navigation pane, choose Users.
Enter your user name in the search text box, and then choose it from the list.
Choose Add permissions.

Choose Attach existing policies directly.

RAREE I A

In the search box, enter AmazonFreeRTOSFullAccess, choose it from the list, and then choose
Next: Review.

6. Choose Add permissions.

72

https://console.aws.amazon.com/freertos
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://console.aws.amazon.com/iam/home

FreeRTOS User Guide
Registering your MCU board with AWS loT

To attach the AWSIoTFullAccess policy to your IAM user

Browse to the IAM console, and from the navigation pane, choose Users.

Enter your user name in the search text box, and then choose it from the list.

Choose Add permissions.

Choose Attach existing policies directly.

In the search box, enter AWSIoTFullAccess, choose it from the list, and then choose Next: Review.
Choose Add permissions.

o s UwDN=

For more information about IAM and user accounts, see IAM User Guide.
For more information about policies, see IAM Permissions and Policies.

After you set up your AWS account and permissions, you can continue to Registering your MCU board
with AWS IoT (p. 73) or to the Quick Connect workflow in the FreeRTOS console.

Registering your MCU board with AWS loT

Your board must be registered with AWS loT to communicate with the AWS Cloud. To register your board
with AWS IoT, you need the following:

An AWS loT policy

The AWS loT policy grants your device permissions to access AWS loT resources. It is stored on the
AWS Cloud.

An AWS loT thing

An AWS loT thing allows you to manage your devices in AWS loT. It is stored on the AWS Cloud.
A private key and X.509 certificate

The private key and certificate allow your device to authenticate with AWS loT.

If you use the Quick Connect workflow in the FreeRTOS console, a policy, an AWS loT thing, and a key
and certificate are created for you. If you use the Quick Connect workflow, you can ignore the following
procedures.

To register your board manually, follow the procedures below.
To create an AWS loT policy

1. To create an IAM policy, you need to know your AWS Region and AWS account number.

To find your AWS account number, open the AWS Management Console, locate and expand the
menu beneath your account name in the upper-right corner, and choose My Account. Your account
ID is displayed under Account Settings.

To find the AWS region for your AWS account, use the AWS Command Line Interface. To install the
AWS CLI, follow the instructions in the AWS Command Line Interface User Guide. After you install
the AWS CLI, open a command prompt window and enter the following command:

aws iot describe-endpoint

The output should look like this:

{

"endpointAddress": "XXXXXXXXXXXXXX.lot.us-west-2.amazonaws.com"

73

https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

FreeRTOS User Guide
Registering your MCU board with AWS loT

vk W

6.

}

In this example, the region is us-west-2.

Browse to the AWS IoT console.

In the navigation pane, choose Secure, choose Policies, and then choose Create.
Enter a name to identify your policy.

In the Add statements section, choose Advanced mode. Copy and paste the following JSON into the
policy editor window. Replace aws-region and aws-account with your AWS Region and account
ID.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iot:Connect",
"Resource":"arn:aws:iot:aws-region:aws-account-id:*"
}I
{
"Effect": "Allow",
"Action": "iot:Publish",
"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
}I
{
"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
}I
{
"Effect": "Allow",
"Action": "iot:Receive",
"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
}
]
}

This policy grants the following permissions:
iot:Connect

Grants your device the permission to connect to the AWS loT message broker with any client ID.
iot:Publish

Grants your device the permission to publish an MQTT message on any MQTT topic.

iot:Subscribe

Grants your device the permission to subscribe to any MQTT topic filter.

iot:Receive
Grants your device the permission to receive messages from the AWS loT message broker on any
MQTT topic.

Choose Create.

To create an loT thing, private key, and certificate for your device

1.
2.

Browse to the AWS IoT console.
In the navigation pane, choose Manage, and then choose Things.

74

https://console.aws.amazon.com/iotv2/
https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Downloading FreeRTOS

3. If you do not have any loT things registered in your account, the You don't have any things yet page
is displayed. If you see this page, choose Register a thing. Otherwise, choose Create.

4. On the Creating AWS loT things page, choose Create a single thing.

5. On the Add your device to the thing registry page, enter a name for your thing, and then choose
Next.

6. On the Add a certificate for your thing page, under One-click certificate creation, choose Create
certificate.

7. Download your private key and certificate by choosing the Download links for each.
8. Choose Activate to activate your certificate. Certificates must be activated prior to use.

9. Choose Attach a policy to attach a policy to your certificate that grants your device access to AWS
loT operations.

10. Choose the policy you just created and choose Register thing.

After your board is registered with AWS loT, you can continue to Downloading FreeRTOS (p. 75).

Downloading FreeRTOS

You can download FreeRTOS from the FreeRTOS console or from the FreeRTOS GitHub repository.

Note
If you're following the Quick Connect workflow in the FreeRTOS console, you can ignore the
following procedure..

To download FreeRTOS from the FreeRTOS console

Sign in to the FreeRTOS console.

2. Under Predefined configurations, find Connect to AWS loT- Platform, and then choose
Download.

3. Unzip the downloaded file to a directory, and copy the directory path.
Important

« In this topic, the path to the FreeRTOS download directory is referred to as freertos.
« Space characters in the freertos path can cause build failures. When you clone or copy
the repository, make sure the path you that create doesn't contain space characters.

o The maximum length of a file path on Microsoft Windows is 260 characters. Long
FreeRTOS download directory paths can cause build failures.

Note

If you're getting started with the Cypress CYW954907AEVALTF or CYW943907AEVAL1F
development kits, you must download FreeRTOS from GitHub. See the README.md file for
instructions. Configurations of FreeRTOS for these boards aren't currently available from the
FreeRTOS console.

After you download FreeRTOS, you can continue to Configuring the FreeRTOS demos (p. 75).

Configuring the FreeRTOS demos

You need to edit some configuration files in your FreeRTOS directory before you can compile and run any
demos on your board.

If you are following the Quick Connect workflow on the FreeRTOS console, follow the configuration
instructions in the workflow on the console, and ignore these procedures.

75

https://github.com/aws/amazon-freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://github.com/aws/amazon-freertos/blob/master/README.md
https://console.aws.amazon.com/freertos

FreeRTOS User Guide
Configuring the FreeRTOS demos

To configure your AWS loT endpoint

You need to provide FreeRTOS with your AWS loT endpoint so the application running on your board can
send requests to the correct endpoint.

1. Browse to the AWS IoT console.

2. In the navigation pane, choose Settings.

Your AWS loT endpoint is displayed in Endpoint. It should look like 1234567890123-ats.iot.us-
east-1.amazonaws.com. Make a note of this endpoint

3. Inthe navigation pane, choose Manage, and then choose Things.

Your device should have an AWS loT thing name. Make a note of this name.
Open /demos/include/aws_clientcredential.h

5. Specify values for the following constants:

e #define clientcredentialMQTT_ BROKER_ENDPOINT "Your AWS IoT endpoint";

e #define clientcredentialIOT_ THING_NAME "The AWS IoT thing name of your
board"

To configure your Wi-Fi

If your board is connecting to the internet across a Wi-Fi connection, you need to provide FreeRTOS with
Wi-Fi credentials to connect to the network. If your board does not support Wi-Fi, you can skip these
steps.

1. demos/include/aws_clientcredential.h

2. Specify values for the following #define constants:

o #define clientcredentialWIFI_SSID "The SSID for your Wi-Fi network"

e #define clientcredentialWIFI_PASSWORD "The password for your Wi-Fi
network"

¢ #define clientcredentialWIFI_SECURITY The security type of your Wi-Fi
network

Valid security types are:

e eWiFiSecurityOpen (Open, no security)
+ eWiFiSecurityWEP (WEP security)

o eWiFiSecurityWPA (WPA security)

e eWiFiSecurityWPA2 (WPA2 security)

To format your AWS loT credentials

FreeRTOS needs the AWS IoT certificate and private keys associated with your registered thing and its
permissions policies to successfully communicate with AWS IoT on behalf of your device.

Note

To configure your AWS loT credentials, you need the private key and certificate that you
downloaded from the AWS loT console when you registered your device. After you have
registered your device as an AWS IoT thing, you can retrieve device certificates from the AWS loT
console, but you cannot retrieve private keys.

FreeRTOS is a C language project, and the certificate and private key must be specially formatted to be
added to the project.

76

https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Developer-mode key provisioning

1. Ina browser window, open tools/certificate _configuration/
CertificateConfigurator.html.

2. Under Certificate PEM file, choose the ID-certificate.pem.crt that you downloaded from the
AWS loT console.

3. Under Private Key PEM file, choose the ID-private.pem.key that you downloaded from the AWS
loT console.

4. Choose Generate and save aws_clientcredential_keys.h, and then save the file in demos/include.
This overwrites the existing file in the directory.

Note
The certificate and private key are hard-coded for demonstration purposes only.
Production-level applications should store these files in a secure location.

After you configure FreeRTOS, you can continue to the Getting Started guide for your board to compile
and run the FreeRTOS demo. The demo application that is used in the Getting Started tutorial is the
Hello World MQTT demo, which is located at demos/mqtt/aws_hello_world.c.

Developer-mode key provisioning

Introduction

This section discusses two options to get a trusted X.509 client certificate onto an loT device for lab
testing. Depending on the capabilities of the device, various provisioning-related operations may or may
not be supported, including onboard ECDSA key generation, private key import, and X.509 certificate
enrollment. In addition, different use cases call for different levels of key protection, ranging from
onboard flash storage to the use of dedicated crypto hardware. This section provides logic for working
within the cryptographic capabilities of your device.

Option #1: private key import from AWS loT

For lab testing purposes, if your device allows the import of private keys, follow the instructions in
Configuring the FreeRTOS demos (p. 75).

Option #2: onboard private key generation

If your device has a secure element, or if you prefer to generate your own device key pair and certificate,
follow the instructions here.

Initial Configuration

First, perform the steps in Configuring the FreeRTOS demos (p. 75), but skip the last step (that is,
don't do To format your AWS IoT credentials). The net result should be that the demos/include/
aws_clientcredential.h file has been updated with your settings, but the demos/include/
aws_clientcredential_keys.h file has not.

Demo Project Configuration

Open the Hello World MQTT demo as described in the guide for your board in Board-specific getting
started guides (p. 86) . In the project, open the file aws_dev_mode_key_provisioning.c and
change the definition of keyprovisioningFORCE_GENERATE NEW_KEY PAIR, which is set to zero
by default, to one:

#define keyprovisioningFORCE_GENERATE_NEW_KEY_ PAIR 1

77

FreeRTOS User Guide
Option #2: onboard private key generation

Then build and run the demo project and continue to the next step.
Public Key Extraction

Since the device has not yet been provisioned with a private key and client certificate, the demo will
fail to authenticate to AWS loT. However, the Hello World MQTT demo starts by running developer-
mode key provisioning, resulting in the creation of a private key if one was not already present. You
should see something like the following near the beginning of the serial console output:

7 910 [IP-task] Device public key, 91 bytes:
3059 3013 0607 2a86 48ce 3d02 0106 082a
8648 ce3d 0301 0703 4200 04cd 6569 cebs8

1bb9 1e72 339f e8cf 60ef 0f9f b473 33ac
6£f19 1813 6999 3fa0 c293 5fae 08f1 lado
41b7 345c e746 1046 228e 5a5f d787 d571
dcb2 4e8d 75b3 2586 e2cc Oc

Copy the six lines of key bytes into a file called DevicePublicKeyAsciiHex.txt. Then use the
command-Lline tool "xxd" to parse the hex bytes into binary:

xxd -r -ps DevicePublicKeyAsciiHex.txt DevicePublicKeyDer.bin

Use "openssl" to format the binary encoded (DER) device public key as PEM:

openssl ec -inform der -in DevicePublicKeyDer.bin -pubin -pubout -outform pem -out
DevicePublicKey.pem

Don't forget to disable the temporary key generation setting you enabled above. Otherwise, the
device will create yet another key pair, and you will have to repeat the previous steps:

#define keyprovisioningFORCE_GENERATE_NEW_ KEY PAIR 0

Public Key Infrastructure Setup

Follow the instructions in Registering Your CA Certificate to create a certificate hierarchy for your
device lab certificate. Stop before executing the sequence described in the section Creating a Device
Certificate Using Your CA Certificate.

In this case, the device will not be signing the certificate request (that is, the Certificate Service
Request or CSR) because the X.509 encoding logic required for creating and signing a CSR has been
excluded from the FreeRTOS demo projects to reduce ROM size. Instead, for lab testing purposes,
create a private key on your workstation and use it to sign the CSR.

openssl genrsa -out tempCsrSigner.key 2048
openssl req -new -key tempCsrSigner.key -out deviceCert.csr

Once your Certificate Authority has been created and registered with AWS loT, use the following
command to issue a client certificate based on the device CSR that was signed in the previous step:

openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -
out deviceCert.pem -days 500 -sha256 -force_pubkey DevicePublicKey.pem

Even though the CSR was signed with a temporary private key, the issued certificate can only be
used with the actual device private key. The same mechanism can be used in production if you
store the CSR signer key in separate hardware, and configure your certificate authority so that it

78

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html#register-CA-cert

FreeRTOS User Guide
Troubleshooting

only issues certificates for requests that have been signed by that specific key. That key should also
remain under the control of a designated administrator.

Certificate Import

With the certificate issued, the next step is to import it into your device. You will also need to import
your Certificate Authority (CA) certificate, since it is required in order for first-time authentication to
AWS loT to succeed when using JITP. In the aws_clientcredential_keys.h file in your project,
set the keyCLIENT CERTIFICATE_ PEM macro to be the contents of deviceCert.pem and set the
keyJITR DEVICE_CERTIFICATE_AUTHORITY PEM macro to be the contents of rootCA.pem.

Device Authorization

Import deviceCert.peminto the AWS loT registry as described in Use Your Own Certificate. You
must create a new AWS IoT thing, attach the PENDING certificate and a policy to your thing, then
mark the certificate as ACTIVE. All of these steps can be performed manually in the AWS loT console.

Once the new client certificate is ACTIVE and associated with a thing and a policy, run the MQTT
Hello World demo again. This time, the connection to the AWS IoT MQTT broker will succeed.

Troubleshooting getting started

The following topics can help you troubleshoot issues that you encounter while getting started with
FreeRTOS:

Topics
« General getting started troubleshooting tips (p. 79)
« Installing a terminal emulator (p. 79)

For board-specific troubleshooting, see the Getting Started with FreeRTOS (p. 71) guide for your
board.

General getting started troubleshooting tips

« If no messages appear in the AWS loT console after you run the Hello World demo project, try the
following:

1. Open a terminal window to view the logging output of the sample. This can help you determine
what is going wrong.
2. Check that your network credentials are valid.

Installing a terminal emulator

A terminal emulator can help you diagnose problems or verify that your device code is running properly.
There are a variety of terminal emulators available for Windows, macOS, and Linux.

You must connect your board to your computer before you attempt to establish a serial connection to
your board with a terminal emulator.

Use the following settings to configure your terminal emulator:

Terminal Setting Value

BAUD rate 115200

79

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html#manual-cert-registration

FreeRTOS User Guide
Using CMake with FreeRTOS

Terminal Setting Value
Data 8 bit
Parity none
Stop 1 bit
Flow control none

Finding your board's serial port

If you do not know your board's serial port, you can issue one of the following commands from the
command line or terminal to return the serial ports for all devices connected to your host computer:

Windows

chgport

Linux

ls /dev/tty*

macOS

ls /dev/cu.*

Using CMake with FreeRTOS

You can use CMake to generate project build files from FreeRTOS application source code.

If you prefer working without an IDE, you can use other third-party code editing and debugging tools for
developing and debugging your code, and then use CMake to build and run the applications.

The following boards support CMake:

« Espressif ESP32-DevKitC

« Espressif ESP-WROVER-KIT

« Infineon XMC4800 loT Connectivity Kit

« Marvell MW320 AWS loT Starter Kit

« Marvell MW322 AWS loT Starter Kit

« Microchip Curiosity PIC32MZEF Bundle

» Nordic nRF52840 DK Development kit

« STMicroelectronicsSTM32L4 Discovery Kit 1oT Node
« Texas Instruments CC3220SF-LAUNCHXL

« Microsoft Windows Simulator

See the topics below for more information about using CMake with FreeRTOS.

Topics

80

FreeRTOS User Guide
Prerequisites

 Prerequisites (p. 81)
« Developing FreeRTOS applications with third-party code editors and debugging tools (p. 81)
« Building FreeRTOS with CMake (p. 82)

Prerequisites

Make sure that your host machine meets the following prerequisites before continuing:

 Your device's compilation toolchain must support the machine's operating system. CMake supports all
versions of Windows, macOS, and Linux

Windows subsystem for Linux (WSL) is not supported. Use native CMake on Windows machines.
» You must have CMake version 3.13 or higher installed.

You can download the binary distribution of CMake from CMake.org.

Note
If you download the binary distribution of CMake, make sure that you add the CMake
executable to the PATH environment variable before you using CMake from command line.

You can also download and install CMake using a package manager, like homebrew on macOS, and
scoop or chocolatey on Windows.

Note

The CMake package versions provided in the package managers for many Linux distributions
are out-of-date. If your distribution's package manager does not provide the latest version of
CMake, you can try alternative package managers, like 1inuxbrew or nix.

« You must have a compatible native build system.

CMake can target many native build systems, including GNU Make or Ninja. Both Make and Ninja

can be installed with package managers on Linux, macOS and Windows. If you are using Make on
Windows, you can install a standalone version from Equation, or you can install MinGW, which bundles
make.

Note
The Make executable in MinGW is called mingw32-make. exe, instead of make.exe.

We recommend that you use Ninja, as it is faster than Make and also provides native support to all
desktop operating systems.

Developing FreeRTOS applications with third-party
code editors and debugging tools

You can use a code editor and a debugging extension or a third-party debugging tool to develop
applications for FreeRTOS.

If, for example, you use Visual Studio Code as your code editor, you can install the Cortex-Debug VS
Code extension as a debugger. When you finish developing your application, you can invoke the CMake
command-Lline tool to build your project from within VS Code. For more information about using CMake
to build FreeRTOS applications, see Building FreeRTOS with CMake (p. 82).

For debugging, you can provide a VS Code with debug configuration similar to the following:

"configurations": [

{

81

https://cmake.org/download/
https://brew.sh/
https://scoop.sh/
https://chocolatey.org/
https://www.gnu.org/software/make/
https://github.com/ninja-build/ninja/releases
http://www.equation.com/servlet/equation.cmd?fa=make
https://sourceforge.net/projects/mingw-w64/files/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug

FreeRTOS User Guide
Building FreeRTOS with CMake

"name": "Cortex Debug",

"cwd": "${workspaceRoot}",

"executable": "./build/st/stm321475_discovery/aws_demos.elf",
"request": "launch",

"type": "cortex-debug",

"servertype": "stutil"

Building FreeRTOS with CMake

CMake targets your host operating system as the target system by default. To use it for cross compiling,
CMake requires a toolchain file, which specifies the compiler that you want to use. In FreeRTOS, we
provide default toolchain files in freertos/tools/cmake/toolchains. The way to provide this file
to CMake depends on whether you're using the CMake command line interface or GUI. For more details,
follow the Generating build files (CMake command-Lline tool) (p. 82) instructions below. For more
information about cross-compiling in CMake, see CrossCompiling in the official CMake wiki.

To build a CMake-based project
1. Run CMake to generate the build files for a native build system, like Make or Ninja.

You can use either the CMake command-Lline tool or the CMake GUI to generate the build files for
your native build system.

For information about generating FreeRTOS build files, see Generating build files (CMake command-
line tool) (p. 82) and Generating build files (CMake GUI) (p. 83).

2. Invoke the native build system to make the project into an executable.

For information about making FreeRTOS build files, see Building FreeRTOS from generated build
files (p. 85).

Generating build files (CMake command-line tool)

You can use the CMake command-line tool (cmake) to generate build files for FreeRTOS. To generate the
build files, you need to specify a target board, a compiler, and the location of the source code and build
directory.

You can use the following options for cmake:

« -DVENDOR - Specifies the target board.

« -DCOMPILER - Specifies the compiler.

« -S - Specifies the location of the source code.

« -B - Specifies the location of generated build files.

Note
The compiler must be in the system's PATH variable, or you must specify the location of the
compiler.

For example, if the vendor is Texas Instruments, and the board is the CC3220 Launchpad, and the
compiler is GCC for ARM, you can issue the following command to build the source files from the current
directory to a directory named build-directory:

cmake -DVENDOR=ti -DBOARD=cc3220_ launchpad -DCOMPILER=arm-ti -S . -B build-directory

82

https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/CrossCompiling
https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/latest/manual/cmake-gui.1.html

FreeRTOS User Guide
Building FreeRTOS with CMake

Note
If you are using Windows, you must specify the native build system because CMake uses Visual
Studio by default. For example:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-
directory -G Ninja

Or:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-
directory -G "MinGW Makefiles"

The regular expressions ${VENDOR}.* and ${BOARD} . * are used to search for a matching board, so
you don't have to use the full names of the vendor and board for the VENDOR and BOARD options. Partial
names work, provided there is a single match. For example, the following commands generate the same
build files from the same source:

cmake -DVENDOR=ti -DCOMPILER=arm-ti -S . -B build-directory
cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -S . -B build-directory
cmake -DVENDOR=t -DBOARD=cc -DCOMPILER=arm-ti -S . -B build-directory

You can use the CMAKE_TOOLCHAIN_FILE option if you want to use a toolchain file that is not located in
the default directory cmake/toolchains. For example:

cmake -DBOARD=cc3220 -DCMAKE_TOOLCHAIN FILE='/path/to/toolchain_file.cmake' -S . -B build-
directory

If the toolchain file does not use absolute paths for your compiler, and you didn't add your compiler
to the PATH environment variable, CMake might not be able to find it. To make sure that CMake finds
your toolchain file, you can use the AFR_TOOLCHAIN_ PATH option. This option searches the specified
toolchain directory path and the toolchain's subfolder under bin. For example:

cmake -DBOARD=cc3220 -DCMAKE_TOOLCHAIN FILE='/path/to/toolchain_file.cmake' -
DAFR_TOOLCHAIN_PATH='/path/to/toolchain/' -S . -B build-directory

To enable debugging, set the CMAKE_BUILD_TYPE to debug. With this option enabled, CMake adds
debug flags to the compile options, and builds FreeRTOS with debug symbols.

Build with debug symbols
cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -DCMAKE_BUILD_ TYPE=debug -S . -B build-directory

You can also set the CMAKE_BUILD_ TYPE to release to add optimization flags to the compile options.

Generating build files (CMake GUI)

You can use the CMake GUI to generate FreeRTOS build files.
To generate build files with the CMake GUI

1. From the command line, issue cmake-gui to start the GUI.

2. Choose Browse Source and specify the source input, and then choose Browse Build and specify the
build output.

83

FreeRTOS User Guide
Building FreeRTOS with CMake

File Tools Options Help

Where is the source code: [| Browse Source... }
NN |

I
1

I
Where to build the binaries: w Browse Build... A/

Search: [] Grouped [| Advanced | &k Add Entry ‘ #& Remove Entry

Choose Configure, and under Specify the build generator for this project, find and choose the
build system that you want to use to build the generated build files. if you do not see the pop up
window, you might be reusing an existing build directory. In this case, delete the CMake cache by
choosing Delete Cache from the File menu.

CMakeSetup

Specify the generator for this project

Unix Makefiles

() Use default native compilers

() specify native compilers

(®) specify toolchain file for cross-compiling

() specify options for cross-compiling

‘ Cancel |

Choose Specify toolchain file for cross-compiling, and then choose Next.
Choose the toolchain file (for example, freertos/tools/cmake/toolchains/arm-ti.cmake),
and then choose Finish.

The default configuration for FreeRTOS is the template board, which does not provide any portable
layer targets. As a result, a window appears with the message Error in configuration process.

Note
If you are seeing the following error:

CMake Error at tools/cmake/toolchains/find_compiler.cmake:23 (message):
Compiler not found, you can specify search path with AFR_TOOLCHAIN_PATH.

It means the compiler is not in your PATH environment variable. You can set the
AFR_TOOLCHAIN_PATH variable in the GUI to tell CMake where you installed your compiler. If you

84

FreeRTOS User Guide
Building FreeRTOS with CMake

do not see the AFR_TOOLCHAIN_PATH variable, choose Add Entry. In the pop up window, under
Name, type AFR_TOOLCHAIN_PATH. Under Compiler Path type the path to your compiler. for
example, C: /toolchains/arm-none-eabi-gce.

The GUI should now look like this:

CMake 3.13.0 - /tmp/amazon-freer

File Tools Options Help

Where is the source code: ftmp/amazon-freertos Browse Source...

Where to build the binaries: /tmp/amazon-freertos/build i Browse Build...

Search: [] Grouped [| Advanced | db Add Entry # Remove Entry
Name Valu

Press Configure to update and display new values in red, then press Generate to generate selected build files.

| Configure || Generate | Open Project Current Generator: Unix Makefiles —

====================Configuration for Amazon FreeRT{S====================
Version: wl.4.4
Git wersion: vl.4.4-25-gfae2e0£f3b

Target microcontroller:

vendor: Vendor

board: Board

description: Template Board for AmazonFreeRTOS
family: Family

data ram size: UNENOWN

program memory size: UNMENCWH

Hmaat nlatfarm:

Choose AFR_BOARD, choose your board, and then choose Configure again.

Choose Generate. CMake generates the build system files (for example, makefiles or ninja files), and
these files appear in the build directory you specified in the first step. Follow the instructions in the
next section to generate the binary image.

Building FreeRTOS from generated build files

Building with native build system

You can build FreeRTOS with a native build system by calling the build system command from the output
binaries directory.

85

FreeRTOS User Guide
Board-specific getting started guides

For example, if your build file output directory is <build_dir>, and you are using Make as your native
build system, run the following commands:

cd <build_dir>
make -3j4

Building with CMake

You can also use the CMake command-line tool to build FreeRTOS. CMake provides an abstraction layer
for calling native build systems. For example:

cmake --build build_dir

Here are some other common uses of the CMake command-line tool's build mode:

Take advantage of CPU cores.
cmake --build build_dir --parallel 8

Build specific targets.
cmake --build build_dir --target afr_kernel

Clean first, then build.
cmake --build build_dir --clean-first

For more information about the CMake build mode, see the CMake documentation.

Board-specific getting started guides

After you complete the First steps (p. 72), see your board's guide for board-specific instructions on
getting started with FreeRTOS:

o Getting started with the Cypress CYW943907AEVAL1F Development Kit (p. 87)
« Getting started with the Cypress CYW954907AEVAL1F Development Kit (p. 90)
» Getting started with the Infineon XMC4800 IoT Connectivity Kit (p. 117)

« Getting started with the Marvell MW320 AWS loT Starter Kit (p. 126)

» Getting started with the Marvell MW322 AWS loT Starter Kit (p. 136)

+ Getting started with the MediaTek MT7697Hx development kit (p. 147)

o Getting started with the Microchip Curiosity PIC32MZ EF (p. 151)

« Getting started with the Nuvoton NuMaker-10T-M487 (p. 158)

o Getting started with the NXP LPC54018 loT Module (p. 164)

« Getting started with the Renesas Starter Kit+ for RX65N-2MB (p. 167)

o Getting started with the STMicroelectronics STM32L4 Discovery Kit loT Node (p. 170)
« Getting started with the Texas Instruments CC3220SF-LAUNCHXL (p. 172)

o Getting started with the Windows Device Simulator (p. 176)

« Getting started with the Xilinx Avnet MicroZed Industrial 10T Kit (p. 178)

Note
You do not need to complete the First steps (p. 72) for the following self-contained Getting
Started with FreeRTOS guides:

86

https://cmake.org/cmake/help/latest/manual/cmake.1.html#build-tool-mode

FreeRTOS User Guide
Cypress CYW943907AEVALTF Development Kit

» Getting started with the Microchip ATECC608A Secure Element with Windows
simulator (p. 93)

o Getting started with the Espressif ESP32-DevKitC and the ESP-WROVER-KIT (p. 97)

» Getting started with the Espressif ESP32-WROOM-32SE (preview) (p. 112)

« Getting started with the Infineon OPTIGA Trust X and XMC4800 loT Connectivity Kit (p. 121)
« Getting started with the Nordic nRF52840-DK (p. 154)

Getting started with the Cypress
CYW943907AEVAL1TF Development Kit

This tutorial provides instructions for getting started with the Cypress CYW943907AEVAL1F
Development Kit. If you do not have the Cypress CYW943907AEVAL1F Development Kit, visit the AWS
Partner Device Catalog to purchase one from our partner.

Note
This tutorial walks you through setting up and running the MQTT Hello World demo. The
FreeRTOS port for this board currently does not support the TCP server and client demos.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your device to
the AWS Cloud. See First steps (p. 72) for instructions.

Important

« In this topic, the path to the FreeRTOS download directory is referred to as freertos.

« Space characters in the freertos path can cause build failures. When you clone or copy the
repository, make sure the path that you create doesn't contain space characters.

« The maximum length of a file path on Microsoft Windows is 260 characters. Long FreeRTOS
download directory paths can cause build failures.

« As noted in Downloading FreeRTOS (p. 75), FreeRTOS ports for Cypress are currently only
available on GitHub.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.
3. Loading the application binary image to your board, and then running the application.

4. Interacting with the application running on your board across a serial connection, for monitoring and
debugging purposes.

Setting up your development environment

Download and install the WICED Studio SDK

In this Getting Started guide, you use the Cypress WICED Studio SDK to program your board with the
FreeRTOS demo. Visit the WICED Software website to download the WICED Studio SDK from Cypress.
You must register for a free Cypress account to download the software. The WICED Studio SDK is
compatible with Windows, macOS, and Linux operating systems.

87

https://devices.amazonaws.com/detail/a3G0L00000AAPg0UAH/CYW943907AEVAL1F
https://github.com/aws/amazon-freertos
https://www.cypress.com/products/wiced-software

FreeRTOS User Guide
Cypress CYW943907AEVALTF Development Kit

Note

Some operating systems require additional installation steps. Make sure that you read and
follow all installation instructions for the operating system and version of WICED Studio that
you are installing.

Set environment variables

Before you use WICED Studio to program your board, you must create an environment variable for the
WICED Studio SDK installation directory. If WICED Studio is running while you create your variables, you
need to restart the application after you set your variables.

Note

The WICED Studio installer creates two separate folders named WICED-Studio-m.n on your
machine where m and n are the major and minor version numbers respectively. This document
assumes a folder name of WICED-Studio-6.2 but be sure to use the correct name for the
version that you install. When you define the WICED_STUDIO_SDK_ PATH environment variable,
be sure to specify the full installation path of the WICED Studio SDK, and not the installation
path of the WICED Studio IDE. In Windows and macOS, the WICED-Studio-m.n folder for the
SDK is created in the Documents folder by default.

To create the environment variable on Windows

PN~

Open Control Panel, choose System, and then choose Advanced System Settings.
On the Advanced tab, choose Environment Variables.
Under User variables, choose New.

For Variable name, enter WICED_STUDIO_SDK_PATH. For Variable value, enter the WICED Studio
SDK installation directory.

To create the environment variable on Linux or macOS

1.

Open the /etc/profile file on your machine, and add the following to the last line of the file:

export WICED_ STUDIO_SDK PATH=installation-path/WICED-Studio-6.2

Restart your machine.
Open a terminal and run the following commands:

cd freertos/vendors/cypress/WICED_SDK

perl platform _adjust_make.pl

chmod +x make

Establishing a serial connection

To establish a serial connection between your host machine and your board

1.
2.
3.

Connect the board to your host computer with a USB Standard-A to Micro-B cable.
Identify the USB serial port number for the connection to the board on your host computer.
Start a serial terminal and open a connection with the following settings:

« Baud rate: 115200

88

FreeRTOS User Guide
Cypress CYW943907AEVALTF Development Kit

« Data: 8 bit

Parity: None

« Stop bits: 1

Flow control: None

For more information about installing a terminal and setting up a serial connection, see Installing a
terminal emulator (p. 79).

Build and run the FreeRTOS demo project

After you set up a serial connection to your board, you can build the FreeRTOS demo project, flash the
demo to your board, and then run the demo.

To build and run the FreeRTOS demo project in WICED Studio

1. Launch WICED Studio.

2. From the File menu, choose Import. Expand the General folder, choose Existing Projects into
Workspace, and then choose Next.

3. In Select root directory, select Browse..., navigate to the path freertos/projects/cypress/
CYW943907AEVALLF/wicedstudio, and then select OK.

4. Under Projects, check the box for just the aws_demo project. Choose Finish to import the project.
The target project aws_demo should appear in the Make Target window.

5. Expand the WICED Platform menu and choose WICED Filters off.

In the Make Target window, expand aws_demo, right-click the demo . aws_ demo file, and then
choose Build Target to build and download the demo to your board. The demo should run
automatically after it is built and downloaded to your board.

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

« If you are using Windows, you might receive the following error when you build and run the demo
project:

: recipe for target 'download_dct' failed
make.exe[1]: *** [download_dct] Error 1

To troubleshoot this error, do the following:

1. Browse to WICED-Studio-SDK-PATH\WICED-Studio-6. 2\43xxx_Wi-Fi\tools\OpenOCD
\Win32 and double-click on openocd-all-brem-1ibftdi.exe.

89

https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Cypress CYW954907AEVALTF Development Kit

2. Browse to WICED-Studio-SDK-PATH\WICED-Studio-6.2\43xxx_Wi-Fi\tools\drivers
\CYWOWCD1EVAL1 and double-click on InstallDriver.exe.

« If you are using Linux or macOS, you might receive the following error when you build and run the
demo project:

make[1]: *** [download_dct] Error 127

To troubleshoot this error, use the following command to update the libusb-dev package:

sudo apt-get install libusb-dev

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Cypress
CYW954907AEVAL1TF Development Kit

This tutorial provides instructions for getting started with the Cypress CYW954907AEVAL1F
Development Kit. If you don't have the Cypress CYW954907AEVAL1TF Development Kit, visit the AWS
Partner Device Catalog to purchase one from our partner.

Note
This tutorial walks you through setting up and running the MQTT Hello World demo. The
FreeRTOS port for this board currently doesn't support the TCP server and client demos.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

Important

« In this topic, the path to the FreeRTOS download directory is referred to as freertos.

« Space characters in the freertos path can cause build failures. When you clone or copy the
repository, make sure the path that you create doesn't contain space characters.

« The maximum length of a file path on Microsoft Windows is 260 characters. Long FreeRTOS
download directory paths can cause build failures.

« As noted in Downloading FreeRTOS (p. 75), FreeRTOS ports for Cypress are currently only
available on GitHub.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.

3. Loading the application binary image to your board, and then running the application.

4. Interacting with the application running on your board across a serial connection, for monitoring and
debugging purposes.

90

https://devices.amazonaws.com/detail/a3G0L00000AAPg5UAH/CYW954907AEVAL1F
https://github.com/aws/amazon-freertos

FreeRTOS User Guide
Cypress CYW954907AEVALTF Development Kit

Setting up your development environment

Download and install the WICED Studio SDK

In this Getting Started guide, you use the Cypress WICED Studio SDK to program your board with the
FreeRTOS demo. Visit the WICED Software website to download the WICED Studio SDK from Cypress.
You must register for a free Cypress account to download the software. The WICED Studio SDK is
compatible with Windows, macOS, and Linux operating systems.

Note

Some operating systems require additional installation steps. Make sure that you read and
follow all installation instructions for the operating system and version of WICED Studio that
you are installing.

Set environment variables

Before you use WICED Studio to program your board, you must create an environment variable for the
WICED Studio SDK installation directory. If WICED Studio is running while you create your variables, you
need to restart the application after you set your variables.

Note

The WICED Studio installer creates two separate folders named WICED-Studio-m.n on your
machine where m and n are the major and minor version numbers respectively. This document
assumes a folder name of WICED-Studio-6.2 but be sure to use the correct name for the
version that you install. When you define the WICED_STUDIO_SDK_PATH environment variable,
be sure to specify the full installation path of the WICED Studio SDK, and not the installation
path of the WICED Studio IDE. In Windows and macOS, the WICED-Studio-m.n folder for the
SDK is created in the Documents folder by default.

To create the environment variable on Windows

1. Open Control Panel, choose System, and then choose Advanced System Settings.
2. On the Advanced tab, choose Environment Variables.

3. Under User variables, choose New.
4

For Variable name, enter WICED_STUDIO_SDK_PATH. For Variable value, enter the WICED Studio
SDK installation directory.

To create the environment variable on Linux or macOS

1. Openthe /etc/profile file on your machine, and add the following to the last line of the file:

export WICED_STUDIO_SDK PATH=installation-path/WICED-Studio-6.2

Restart your machine.

Open a terminal and run the following commands:

cd freertos/vendors/cypress/WICED_SDK

perl platform _adjust_make.pl

chmod +x make

91

https://www.cypress.com/products/wiced-software

FreeRTOS User Guide
Cypress CYW954907AEVALTF Development Kit

Establishing a serial connection

To establish a serial connection between your host machine and your board

Connect the board to your host computer with a USB Standard-A to Micro-B cable.
2. Identify the USB serial port number for the connection to the board on your host computer.
3. Start a serial terminal and open a connection with the following settings:

« Baud rate: 115200
« Data: 8 bit

« Parity: None

« Stop bits: 1

« Flow control: None

For more information about installing a terminal and setting up a serial connection, see Installing a
terminal emulator (p. 79).

Build and run the FreeRTOS demo project

After you set up a serial connection to your board, you can build the FreeRTOS demo project, flash the
demo to your board, and then run the demo.

To build and run the FreeRTOS demo project in WICED Studio

Launch WICED Studio.

2. From the File menu, choose Import. Expand the General folder, choose Existing Projects into
Workspace, and then choose Next.

3. In Select root directory, select Browse..., navigate to the path freertos/projects/cypress/
CYW954907AEVALLF/wicedstudio, and then select OK.

4. Under Projects, check the box for just the aws_demo project. Choose Finish to import the project.
The target project aws_demo should appear in the Make Target window.

5. Expand the WICED Platform menu and choose WICED Filters off.
6. Inthe Make Target window, expand aws_demo, right-click the demo . aws_ demo file, and then

choose Build Target to build and download the demo to your board. The demo should run
automatically after it is built and downloaded to your board.

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

« If you are using Windows, you might receive the following error when you build and run the demo
project:

92

https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Microchip ATECC608A Secure
Element with Windows simulator

: recipe for target 'download_dct' failed
make.exe[1]: *** [download_dct] Error 1

To troubleshoot this error, do the following:

1. &DwﬁetoWICED—StudiO—SDK—PATH\WICED—StudiO—6.2\43XXX_Wi—Fi\tOOlS\OpenOCD
\Win32 and double-click on openocd-all-brem-1ibftdi.exe.

2. Browse to WICED-Studio-SDK-PATH\WICED-Studio-6.2\43xxx Wi-Fi\tools\drivers
\CYW9WCD1EVAL1 and double-click on InstallDriver.exe.
« If you are using Linux or macOS, you might receive the following error when you build and run the
demo project:

make[1]: *** [download_dct] Error 127

To troubleshoot this error, use the following command to update the libusb-dev package:

sudo apt-get install libusb-dev

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Microchip ATECC608A
Secure Element with Windows simulator

This tutorial provides instructions for getting started with the Microchip ATECC608A Secure Element
with Windows Simulator.

You need the following hardware:

« Microchip ATECC608A secure element clickboard
« SAMD21 XPlained Pro
« mikroBUS Xplained Pro adapter

Before you begin, you must configure AWS loT and your FreeRTOS download to connect your device to
the AWS Cloud. In this tutorial, the path to the FreeRTOS download directory is referred to as freertos.

Overview

This tutorial contains the following steps:

1. Connect your board to a host machine.

2. Install software on the host machine for developing and debugging embedded applications for your
microcontroller board.

3. Cross-compile an FreeRTOS demo application to a binary image.
4. Load the application binary image to your board, and then run the application.

Set up the Microchip ATECC608A hardware

Before you can interact with your Microchip ATECC608A device, you must first program the SAMD21.

93

https://www.mikroe.com/secure-4-click
https://www.microchipdirect.com/product/ATSAMD21-XPRO?dfw_tracker=64197-ATSAMD21-XPRO&gclid=EAIaIQobChMIn5jIuM3C5QIVk_5kCh1m1Ag4EAQYASABEgLKtfD_BwE
https://www.microchip.com/Developmenttools/ProductDetails/ATMBUSADAPTER-XPRO

FreeRTOS User Guide
Microchip ATECC608A Secure
Element with Windows simulator

To set up the SAMD21 XPlained Pro board
1. Follow the CryptoAuthSSH-XSTK (DM320109) - Latest Firmware link to download a .zip file
containing instructions (PDF) and a binary which can be programmed onto the D21.

2. Download and install the Amtel Studio 7 IDP. Make sure that you select the SMART ARM MCU driver
architecture during installation.

3. Use a USB 2.0 Micro B cable to attach the "Debug USB" connector to your computer, and follow the

instructions in the PDF. (The "Debug USB" connector is the USB port closest to the POWER led and
pins.)

To connect the hardware

Unplug the micro USB cable from Debug USB.
Plug the mikroBUS XPlained Pro adapter into the SAMD21 board in the EXT1 location.

Plug the ATECC608A Secure 4 Click board into the mikroBUSX XPlained Pro adapter. Make sure that
the notched corner of the click board matches with the notched icon on the adapter board.

4. Plug the micro USB cable into Target USB.

Your setup should look like the following.

B

S—

Connected to
Notches

match

'?'1 111111 '1-"I.
IR LA
Target USB o 3444844 CRENKRRRRR

g Default jumper positions

Set up your development environment

1. If you haven't already, create an AWS account. To add an IAM user to your AWS account, see IAM
User Guide.

94

http://ww1.microchip.com/downloads/en/DeviceDoc/ATCRYPTOAUTHSSH-XSTK_v1.0.1.zip
https://www.microchip.com/mplab/avr-support/atmel-studio-7
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/

FreeRTOS User Guide
Microchip ATECC608A Secure
Element with Windows simulator

To grant your IAM user account access to AWS loT and FreeRTOS, you attach the following IAM
policies to your IAM user account in these steps:

¢ AmazonFreeRTOSFullAccess

¢ AWSIOoTFullAccess

Attach the AmazonFreeRTOSFullAccess policy to your IAM user.

Browse to the IAM console, and from the navigation pane, choose Users.

a
b. Enter your user name in the search text box, and then choose it from the list.

n

Choose Add permissions.

o

Choose Attach existing policies directly.

e. Inthe search box, enter AmazonFreeRTOSFullAccess, choose it from the list, and then
choose Next: Review.

f. Choose Add permissions.
Attach the AWSIoTFullAccess policy to your IAM user.

a. Browse to the IAM console, and from the navigation pane, choose Users.
b. Enter your user name in the search text box, and then choose it from the list.

o]

Choose Add permissions.

o

Choose Attach existing policies directly.

e. Inthe search box, enter AWSIoTFullAccess, choose it from the list, and then choose Next:
Review.

f. Choose Add permissions.

For more information about 1AM, see IAM Permissions and Policies in the IAM User Guide.
Download the FreeRTOS repo from the FreeRTOS GitHub repository.

To download FreeRTOS from GitHub:

1. Browse to the FreeRTOS GitHub repository.
2. Choose Clone or download.

3. From the command line on your computer, clone the repository to a directory on your host
machine.

git clone https://github.com/aws/amazon-freertos.git --recurse-submodules

Important
« In this topic, the path to the FreeRTOS download directory is referred to as freertos.

« Space characters in the freertos path can cause build failures. When you clone
or copy the repository, make sure the path that you create doesn't contain space
characters.

o The maximum length of a file path on Microsoft Windows is 260 characters. Long
FreeRTOS download directory paths can cause build failures.

4. From the freertos directory, check out the branch to use.

Set up your development environment.

a. Install the latest version of WinPCap.
b. Install Microsoft Visual Studio.

95

https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos
https://www.winpcap.org

FreeRTOS User Guide
Microchip ATECC608A Secure
Element with Windows simulator

Visual Studio versions 2017 and 2019 are known to work. All editions of these Visual Studio
versions are supported (Community, Professional, or Enterprise).

In addition to the IDE, install the Desktop development with C++ component. Then, under
Optional, install the latest Windows 10 SDK.

c. Make sure that you have an active hard-wired Ethernet connection.

Build and run the FreeRTOS demo project

Important

The Microchip ATECC608A device has a one time initialization that is locked onto the device
the first time a project is run (during the call to ¢_InitToken). However, the FreeRTOS demo
project and test project have different configurations. If the device is locked during the demo
project configurations, it will not be possible for all tests in the test project to succeed.

To build and run the FreeRTOS demo project with the Visual Studio IDE

1.

Load the project into Visual Studio.

From the File menu, choose Open. Choose File/Solution, navigate to the freertos\projects
\microchip\ecc608a_plus_winsim\visual_ studio\aws_demos\aws_demos.sln file, and
then choose Open.

Retarget the demo project.

The demo project depends on the Windows SDK, but it does not have a Windows SDK version
specified. By default, the IDE might attempt to build the demo with an SDK version not present on
your machine. To set the Windows SDK version, right-click aws_demos, and then choose Retarget
Projects. This opens the Review Solution Actions window. Choose a Windows SDK version that is
present on your machine (use the initial value in the drop-down list), and then choose OK.

Build and run the project.

From the Build menu, choose Build Solution, and make sure the solution builds without errors.
Choose Debug, Start Debugging to run the project. On the first run, you need to configure
your device interface and recompile. For more information, see Configure your network
interface (p. 177).

Provision the Microchip ATECC608A.

Microchip has provided several scripting tools to help with the setup of the ATECC608A
parts. Navigate to freertos\vendors\microchip\secure_elements\app
\example_trust_chain_tool, and open the README.md file.

Follow the instructions in the README . md file to provision your device. The steps include the
following:
1. Create and register a certificate authority with AWS.

2. Generate your keys on the Microchip ATECC608A and export the public key and device serial
number.

3. Generate a certificate for the device and registering that certificate with AWS.
4. Load the CA certificate and device certificate onto the device.
Build and run FreeRTOS samples.

Re-run the demo project again. This time you should connect!

96

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

Troubleshooting

For general troubleshooting information, see Troubleshooting getting started (p. 79).

Getting started with the Espressif ESP32-DevKitC and
the ESP-WROVER-KIT

This tutorial provides instructions for getting started with the Espressif ESP32-DevKitC equipped
with ESP32-WROOM-32, ESP32-SOLO-1, or ESP-WROVER modules and the ESP-WROVER-KIT-VB. To
purchase one from our partner on the AWS Partner Device catalog, use the following links: ESP32-
WROOM-32 DevKitC, ESP32-SOLO-1, or ESP32-WROVER-KIT. These versions of development boards
are supported on FreeRTOS. For more information about these boards, see ESP32-DevKitC or ESP-
WROVER-KIT on the Espressif website.

Note
Currently, the FreeRTOS port for ESP32-WROVER-KIT and ESP DevKitC does not support the
following features:

o Symmetric multiprocessing (SMP).

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.
4. Loading the application binary image to your board, and then running the application.

5. Interacting with the application running on your board across a serial connection, for monitoring and
debugging purposes.

Prerequisites

Before you get started with FreeRTOS on your Espressif board, you need to set up your AWS account and
permissions.

To create an AWS account, see Create and Activate an AWS Account.

To add an IAM user to your AWS account, see IAM User Guide. To grant your IAM user account access to
AWS loT and FreeRTOS, attach the following IAM policies to your IAM user account:

¢ AmazonFreeRTOSFullAccess
e AWSIOTFullAccess

To attach the AmazonFreeRTOSFullAccess policy to your IAM user

Browse to the IAM console, and from the navigation pane, choose Users.
Enter your user name in the search text box, and then choose it from the list.
Choose Add permissions.

PN

Choose Attach existing policies directly.

97

https://devices.amazonaws.com/detail/a3G0L00000AANtjUAH/ESP32-DevKitC
https://devices.amazonaws.com/detail/a3G0L00000AANtjUAH/ESP32-DevKitC
https://devices.amazonaws.com/detail/a3G0h0000076lSMEAY
https://devices.amazonaws.com/detail/a3G0L00000AANtlUAH/ESP-WROVER-KIT
https://docs.espressif.com/projects/esp-idf/en/latest/hw-reference/modules-and-boards.html#esp32-devkitc-v4
https://docs.espressif.com/projects/esp-idf/en/latest/hw-reference/modules-and-boards.html#esp-wrover-kit-v4-1
https://docs.espressif.com/projects/esp-idf/en/latest/hw-reference/modules-and-boards.html#esp-wrover-kit-v4-1
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://console.aws.amazon.com/iam/home

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

5. In the search box, enter AmazonFreeRTOSFullAccess, choose it from the list, and then choose
Next: Review.

6. Choose Add permissions.

To attach the AWSIoTFullAccess policy to your IAM user

Browse to the IAM console, and from the navigation pane, choose Users.

Enter your user name in the search text box, and then choose it from the list.

Choose Add permissions.

Choose Attach existing policies directly.

In the search box, enter AWSIoTFullAccess, choose it from the list, and then choose Next: Review.

o Uk UwN =

Choose Add permissions.

For more information about IAM and user accounts, see IAM User Guide.

For more information about policies, see IAM Permissions and Policies.

Set up the Espressif hardware

See the ESP32-DevKitC Getting Started Guide for information about setting up the ESP32-DevKitC
development board hardware.

See the ESP-WROVER-KIT Getting Started Guide for information about setting up the ESP-WROVER-KIT
development board hardware.

Note
Do not proceed to the Get Started section of the Espressif guides. Instead, follow the steps
below.

Set up your development environment

To communicate with your board, you need to download and install a toolchain.
Setting up the toolchain

To set up the toolchain, follow the instructions for your host machine's operating system:

» Standard Setup of Toolchain for Windows
« Standard Setup of Toolchain for macOS
« Standard Setup of Toolchain for Linux

Important
When you reach the "Get ESP-IDF" instructions under Next Steps, stop and return to the
instructions on this page.

Make sure that the IDF_PATH environment variable is cleared from your system before you continue.
This environment variable is automatically set if you followed the "Get ESP-IDF" instructions under Next
Steps.

Note

Version 3.3 of the ESP-IDF (the version that FreeRTOS uses) doesn't support the latest version of
the ESP32 compiler. You must use the compiler that is compatible with version 3.3 of the ESP-
IDF. See the previous links. To check the version of your compiler, run the following command.

98

https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/v3.3/get-started-cmake/windows-setup.html
https://docs.espressif.com/projects/esp-idf/en/v3.3/get-started-cmake/macos-setup.html
https://docs.espressif.com/projects/esp-idf/en/v3.3/get-started-cmake/linux-setup.html

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

xtensa-esp32-elf-gcc --version

Install CMake

The CMake build system is required to build the FreeRTOS demo and test applications for this device.
FreeRTOS supports versions 3.13 and later.

You can download the latest version of CMake from CMake.org. Both source and binary distributions are
available.

For more details about using CMake with FreeRTOS, see Using CMake with FreeRTOS (p. 80).

Establish a serial connection

To establish a serial connection between your host machine and the ESP32-DevKitC, you must install
CP210x USB to UART Bridge VCP drivers. You can download these drivers from Silicon Labs.

To establish a serial connection between your host machine and the ESP32-WROVER-KIT, you must
install some FTDI virtual COM port drivers. You can download these drivers from FTDI.

For more information, see Establish Serial Connection with ESP32. After you establish a serial
connection, make a note of the serial port for your board's connection. You need it when you build the
demo.

Download and configure FreeRTOS

After your environment is set up, you can download FreeRTOS from GitHub, or from the FreeRTOS
console. See the README.md file for instructions.

Configure the FreeRTOS demo applications

1. If you are running macOS or Linux, open a terminal prompt. If you are running Windows, open
mingw32.exe. (MinGW is a minimalist development environment for native Microsoft Windows
applications.)

2. To verify that you have Python 2.7.10 or later installed, run python --version. The version installed
is displayed. If you do not have Python 2.7.10 or later installed, you can install it from the Python
website.

3. You need the AWS CLI to run AWS loT commands. If you are running Windows, use the easy_install
awscli to install the AWS CLI in the mingw32 environment.

If you are running macOS or Linux, see Installing the AWS Command Line Interface.

4. Run aws configure and configure the AWS CLI with your AWS access key ID, secret access key, and
default region name. For more information, see Configuring the AWS CLI.

5. Use the following command to install the AWS SDK for Python (boto3):

« On Windows, in the mingw32 environment, run easy_install boto3.
« On macOS or Linux, run pip install tornado nose --user and then run pip install boto3 --user.

FreeRTOS includes the setupAWS . py script to make it easier to set up your Espressif board to
connect to AWS loT. To configure the script, open freertos/tools/aws_config quick_start/
configure. json and set the following attributes:

afr source_dir

The complete path to the freertos directory on your computer. Make sure that you use forward
slashes to specify this path.

99

https://cmake.org/download/
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.ftdichip.com/Drivers/VCP.htm
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/establish-serial-connection.html
https://github.com/aws/amazon-freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://github.com/aws/amazon-freertos/blob/master/README.md
https://sourceforge.net/projects/mingw-w64/files/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

thing name

The name that you want to assign to the AWS loT thing that represents your board.
wifi ssid
The SSID of your Wi-Fi network.

wifi password

The password for your Wi-Fi network.

wifi_security
The security type for your Wi-Fi network.

Valid security types are:

« eWiFiSecurityOpen (Open, no security)
+ eWiFiSecurityWEP (WEP security)

o eWiFiSecurityWPA (WPA security)

o eWiFiSecurityWPA2 (WPA2 security)

To run the configuration script
1. If you are running macOS or Linux, open a terminal prompt. If you are running Windows, open
mingw32.exe.

2. Gotothe freertos/tools/aws_config_quick_ start directory and run python SetupAWS.py
setup.

The script does the following:

« Creates an loT thing, certificate, and policy
« Attaches the loT policy to the certificate and the certificate to the AWS loT thing

« Populates the aws_clientcredential.h file with your AWS IoT endpoint, Wi-Fi SSID, and
credentials

« Formats your certificate and private key and writes them to the aws_clientcredential.h header
file
Note

The certificate is hard-coded for demonstration purposes only. Production-level applications
should store these files in a secure location.

For more information about SetupAWS . py, see the README.md in the freertos/tools/
aws_config_quick_start directory.

Build, flash, and run the FreeRTOS demo project

You can use CMake to generate the build files, Make to build the application binary, and Espressif's IDF
utility to flash your board.

Build FreeRTOS on Linux and MacOS

(If you are using Windows, please see the next section.)

Use CMake to generate the build files, and then use Make to build the application.

100

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

To generate the demo application's build files with CMake

1. Change directories to the root of your FreeRTOS download directory.
2. Use the following command to generate the build files:

cmake -DVENDOR=espressif -DBOARD=esp32_wrover_kit -DCOMPILER=xtensa-esp32 -S . -B your-
build-directory

Note

If you want to build the application for debugging, add the -DCMAKE_BUILD TYPE=Debug
flag to this command.

If you want to generate the test application build files, add the -DAFR_ENABLE_TESTS=1
flag.

The code provided by Espressif uses the lightweight IP (lwIP) stack as the default
networking stack. To use the FreeRTOS+TCP networking stack instead, add the -
DAFR_ESP_FREERTOS_TCP flag to the CMake command.

To add the lwIP dependency for non-vendor provided code, add the following lines to the
CMake dependency file, CMakeLists. txt, for your custom WiFi component.

Add a dependency on the bluetooth espressif component to the common component
set (COMPONENT_REQUIRES lwip)

To build the application with make

1. Change directories to the build directory.
2. Use the following command to build the application with Make:

make all -j4

Note
You must generate the build files with the cmake command every time you switch between
the aws_demos project and the aws_tests project.

Build FreeRTOS on Windows

On Windows, you must specify a build generator for CMake, otherwise CMake defaults to Visual Studio.
Espressif officially recommends the Ninja build system because it works on Windows, Linux and MacOS.
You must run CMake commands in a native Windows environment like cmd or PowerShell. Running
CMake commands in a virtual Linux environment, like MSYS2 or WSL, is not supported.

Use CMake to generate the build files, and then use Make to build the application.

To generate the demo application's build files with CMake

1. Change directories to the root of your FreeRTOS download directory.
2. Use the following command to generate the build files:

cmake -DVENDOR=espressif -DBOARD=esp32_wrover_kit -DCOMPILER=xtensa-esp32 -GNinja -S .
-B build-directory

Note
If you want to build the application for debugging, add the -DCMAKE_BUILD_ TYPE=Debug
flag to this command.

101

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

If you want to generate the test application build files, add the -DAFR_ENABLE_TESTS=1
flag.

The code provided by Espressif uses the lightweight IP (lwIP) stack as the default
networking stack. To use the FreeRTOS+TCP networking stack instead, add the -
DAFR_ESP_FREERTOS_TCP flag to the CMake command.

To add the lwIP dependency for non-vendor provided code, add the following lines to the
CMake dependency file, CMakeLists. txt, for your custom WiFi component.

Add a dependency on the bluetooth espressif component to the common component
set(COMPONENT_REQUIRES lwip)

To build the application

1. Change directories to the build directory.
2. Invoke Ninja to build the application:

ninja

Or, use the generic CMake interface to build the application:

cmake --build build-directory

Note
You must generate the build files with the cmake command every time you switch between
the aws_demos project and the aws_tests project.

Flash and run FreeRTOS

Use Espressif's IDF utility (freertos/vendors/espressif/esp-idf/tools/idf.py) to flash your
board, run the application, and see logs.

To erase the board's flash, go to the freertos directory and use the following command:

./vendors/espressif/esp-idf/tools/idf.py erase_flash -B build-directory

To flash the application binary to your board, use make:

make flash

You can also use the IDF script to flash your board:

./vendors/espressif/esp-idf/tools/idf.py flash -B build-directory

To monitor:

./vendors/espressif/esp-idf/tools/idf.py monitor -p /dev/ttyUSBl -B build-directory

Note
You can combine these commands. For example:

./vendors/espressif/esp-idf/tools/idf.py erase_flash flash monitor -p /dev/ttyUSB1
-B build-directory

102

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. In the navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Run the Bluetooth Low Energy demos
FreeRTOS supports Bluetooth Low Energy connectivity.

To run the FreeRTOS demo project across Bluetooth Low Energy, you need to run the FreeRTOS
Bluetooth Low Energy Mobile SDK Demo Application on an iOS or Android mobile device.

To set up the FreeRTOS Bluetooth Low Energy mobile SDK demo application

1. Follow the instructions in Mobile SDKs for FreeRTOS Bluetooth Devices to download and install the
SDK for your mobile platform on your host computer.

2. Follow the instructions in FreeRTOS Bluetooth Low Energy Mobile SDK Demo Application to set up
the demo mobile application on your mobile device.

For instructions about how to run the MQTT over Bluetooth Low Energy demo on your board, see the
MQTT over Bluetooth Low Energy Demo Application.

For instructions about how to run the Wi-Fi provisioning demo on your board, see the Wi-Fi Provisioning
Demo Application.

Using FreeRTOS in your own CMake project for ESP32

If you want to consume FreeRTOS in your own CMake project, you can set it up as a subdirectory and
build it together with your application. First, get a copy of FreeRTOS either from GitHub, or from the
FreeRTOS console. If you're using git, you can also set it up as a git submodule with the following
command so it's easier to update in the future.

git submodule add -b release https://github.com/aws/amazon-freertos.git freertos

If a newer version is released, you can update your local copy with these commands.

Pull the latest changes from the remote tracking branch.

git submodule update --remote -- amazon-freertos

Commit the submodule change because it is pointing to a different revision now.
git add amazon-freertos

git commit -m "Update FreeRTOS to a new release"

Assuming your project has the following directory structure:

- freertos (the copy that you obtained from GitHub or the AWS IoT console)
- src
- main.c (your application code)

103

https://console.aws.amazon.com/iotv2/
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ble-library.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ble-mobile.html
https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html#ble-sdk-app
https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html#ble-demo-mqtt
https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html#ble-demo-wifi
https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html#ble-demo-wifi
https://github.com/aws/amazon-freertos
https://console.aws.amazon.com/freertos

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

- CMakeLists.txt

Here's an example of the top-level cMakeLists. txt file that can be used to build your application
together with FreeRTOS.

cmake_minimum required(VERSION 3.13)
project(freertos_examples)
add_executable(my_app src/main.c)

Tell IDF build to link against this target.
set(IDF_PROJECT_ EXECUTABLE my_app)

Add FreeRTOS as a subdirectory. AFR_BOARD tells which board to target.
set (AFR_BOARD espressif.esp32_devkitc CACHE INTERNAL "")
add_subdirectory(freertos)

Link against the mgtt library so that we can use it. Dependencies are transitively
linked.
target_link_libraries(my_app PRIVATE AFR::mgtt)

To build the project, run the following CMake commands. Make sure the ESP32 compiler is in the PATH
environment variable.

cmake -S . -B build-directory -DCMAKE_TOOLCHAIN_FILE=freertos/tools/cmake/toolchains/
xtensa-esp32.cmake -GNinja
cmake --build build

To flash the application to your board, run

cmake --build build-directory --target flash

Using components from FreeRTOS

After running CMake, you can find all available components in the summary output. It should look
something like this:

Version: 201910.00
Git version: 201910.00-388-gcb3612cb7

Target microcontroller:

vendor: Espressif

board: ESP32-DevKitC

description: Development board produced by Espressif that comes in two
variants either with ESP-WROOM-32 or ESP32-WROVER module

family: ESP32

data ram size: 520KB

program memory size: 4MB

Host platform:

0S: Linux-4.15.0-66-generic
Toolchain: xtensa-esp32

Toolchain path: /opt/xtensa-esp32-elf
CMake generator: Ninja

FreeRTOS modules:
Modules to build: ble, ble_hal, ble_wifi_provisioning, common, crypto, defender,

104

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

dev_mode_key_provisioning, freertos_plus_tcp, greengrass,
https, kernel, mgtt, ota, pkcsll, pkcsll_implementation,
platform, secure_sockets, serializer, shadow, tls, wifi

Enabled by user: ble, ble_hal, ble_wifi_provisioning, defender, greengrass,
https, mgtt, ota, pkecsll, pkecsll_implementation, platform,
secure_sockets, shadow, wifi

Enabled by dependency: common, crypto, demo_base, dev_mode_key_provisioning,
freertos, freertos_plus_tcp, kernel, pkcsll_mbedtls,
secure_sockets_freertos_plus_tcp, serializer, tls, utils

3rdparty dependencies: http_parser, jsmn, mbedtls, pkcsll, tinycbor

Available demos: demo_ble, demo_ble_numeric_comparison, demo_defender,
demo_greengrass_connectivity, demo_https, demo_mgtt, demo_ota,
demo_shadow, demo_tcp, demo_wifi_provisioning

Available tests:

You can reference any components from the "Modules to build" list. To link them into your application,
put the AFR: : namespace in front of the name, for example, AFR: :mqtt, AFR: : ota, etc.

Add custom components to ESP-IDF

You can add more components to the ESP-IDF build environment. For example, assuming you want to
add a component called foo, and your project looks like this:

- freertos
- components
- foo
- include
- foo.h
- src
- foo.c
- CMakeLists.txt
- src
- main.c
- CMakeLists.txt

Here's an example of the CMakelLists.txt file for your component:

include paths of this components.
set(COMPONENT_ADD_INCLUDEDIRS include)

source files of this components.

set (COMPONENT_SRCDIRS src)

Alternatively, use COMPONENT_SRCS to specify source files explicitly
set(COMPONENT_SRCS src/foo.c)

add this components, this will define a CMake library target.
register_component()

You can also specify dependencies using the standard CMake function target_link libraries. Note
that the target name for your component is stored in the variable COMPONENT TARGET, defined by the
ESP-IDF.

add this component, this will define a CMake library target.
register_component()

standard CMake function can be used to specify dependencies. ${COMPONENT_TARGET} is
defined

from esp-idf when you call register_component, by default it's
idf_component_<folder_name>.

105

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

target_link_libraries(${COMPONENT_ TARGET} PRIVATE AFR::mgtt)

For ESP components, this is done by setting 2 variables COMPONENT REQUIRES and
COMPONENT PRIV_REQUIRES. See Build System (CMake) in the ESP-IDF Programming Guide v3.3.

If the dependencies are from ESP-IDF, use these 2 variables. Note these need to be
set before calling register_component().

set(COMPONENT REQUIRES log)

set(COMPONENT PRIV_REQUIRES lwip)

Then, in the top level cCMakeLists. txt file, you tell ESP-IDF where to find these components. Insert the
following lines anywhere before add_subdirectory(freertos):

Add some extra components. IDF_EXTRA_COMPONENT DIRS is a variable used by ESP-IDF
to collect extra components.
get_filename_component (

EXTRA_COMPONENT_DIRS

"components/foo" ABSOLUTE

)
1ist(APPEND IDF_EXTRA_COMPONENT_DIRS ${EXTRA_COMPONENT_DIRS})

This component is now automatically linked to your application code by default. You should be able to
include its header files and call the functions it defines.

Override the configurations for FreeRTOS

There's currently no well-defined approach to redefining the configs outside of the FreeRTOS source tree.
By default, CMake will look for the freertos/vendors/espressif/boards/esp32/aws_demos/
config files/ and freertos/demos/include/ directories. However, you can use a workaround to
tell the compiler to search other directories first. For example, you can add another folder for FreeRTOS
configurations:

- freertos
- freertos-configs
- aws_clientcredential.h
- aws_clientcredential_keys.h
- ilot_mgtt_agent_config.h
- iot_config.h
- components
- src
- CMakeLists.txt

The files under freertos-configs are copied from the freertos/vendors/espressif/boards/
esp32/aws_demos/config_files/ and freertos/demos/include/i directories. Then, in your top
level cMakeLists. txt file, add this line before add_subdirectory(freertos) so that the compiler
will search this directory first:

include_directories(BEFORE freertos-configs)

Providing your own sdkconfig for ESP-IDF

In case you want to provide your own sdkconfig.default, you can set the CMake variable
IDF_SDKCONFIG_DEFAULTS, from the command line:

cmake -S . -B build-directory -DIDF_SDKCONFIG_DEFAULTS=path_to_your_sdkconfig_defaults -
DCMAKE_TOOLCHAIN_ FILE=freertos/tools/cmake/toolchains/xtensa-esp32.cmake -GNinja

106

https://docs.espressif.com/projects/esp-idf/en/v3.3/api-guides/build-system-cmake.html

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

If you don't specify a location for your own sdkconfig.default file, FreeRTOS will use the default file
located at freertos/vendors/espressif/boards/esp32/aws_demos/sdkconfig.defaults.

Summary

If you have a project with a component called foo, and you want to override some configurations, here's
a complete example of the top level CMakeLists. txt file.

cmake_minimum required(VERSION 3.13)
project(freertos_examples)
add_executable(my_app src/main.c)

Tell IDF build to link against this target.
set(IDF_PROJECT_ EXECUTABLE my_app)

Add some extra components. IDF_EXTRA_COMPONENT DIRS is a variable used by ESP-IDF
to collect extra components.
get_filename_component (

EXTRA_COMPONENT_DIRS

"components/foo" ABSOLUTE

)
1ist(APPEND IDF_EXTRA_COMPONENT_DIRS ${EXTRA_COMPONENT_DIRS})

Override the configurations for FreeRTOS.
include_directories(BEFORE freertos-configs)

Add FreeRTOS as a subdirectory. AFR_BOARD tells which board to target.
set (AFR_BOARD espressif.esp32_devkitc CACHE INTERNAL "")
add_subdirectory(freertos)

Link against the mgtt library so that we can use it. Dependencies are transitively
linked.
target_link_libraries(my_app PRIVATE AFR::mgtt)

Troubleshooting

« If you are running macOS and the operating system does not recognize your ESP-WROVER-KIT, make
sure you do not have the D2XX drivers installed. To uninstall them, follow the instructions in the FTDI
Drivers Installation Guide for macOS X.

« The monitor utility provided by ESP-IDF (and invoked using make monitor) helps you decode
addresses. For this reason, it can help you get some meaningful backtraces in the event the application
crashes. For more information, see Automatically Decoding Addresses on the Espressif website.

« Itis also possible to enable GDBstub for communication with gdb without requiring any special JTAG
hardware. For more information, see Launch GDB for GDBStub on the Espressif website.

« For information about setting up an OpenOCD-based environment if JTAG hardware-based debugging
is required, see the document JTAG Debugging for ESP32 available on the Espressif website.

« If pyserial cannot be installed using pip on macOS, download it from the pyserial website.

« If the board resets continuously, try erasing the flash by entering the following command on the
terminal:

make erase_flash

« If you see errors when you run idf_monitor.py, use Python 2.7.

» Required libraries from ESP-IDF are included in FreeRTOS, so there is no need to download them
externally. If the IDF_PATH environment variable is set, we recommend that you clear it before you
build FreeRTOS.

107

http://www.ftdichip.com/Support/Documents/AppNotes/AN_134_FTDI_Drivers_Installation_Guide_for_MAC_OSX.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_134_FTDI_Drivers_Installation_Guide_for_MAC_OSX.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/idf-monitor.html#automatically-decoding-addresses
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/idf-monitor.html#launch-gdb-for-gdbstub
https://www.espressif.com/en/support/download/documents?keys=jtag
https://pypi.org/simple/pyserial

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

« On Windows, it can take 3-4 minutes for the project to build. You can use the -j4 switch on the make
command to reduce the build time:

make flash monitor -3j4

« If your device has trouble connecting to AWS IloT, open the aws_clientcredential.h
file, and verify that the configuration variables are properly defined in the file.
clientcredentialMQTT BROKER_ENDPOINTI] should look like 1234567890123-ats.iot.us-
east-1.amazonaws.com.

« If you're following the steps in Using FreeRTOS in your own CMake project for ESP32 (p. 103)
and you see undefined reference errors from the linker, it's usually because of missing dependent
libraries or demos. To add them, update the CMakeLists.txt file (under the root directory) using the
standard CMake function target_link libraries.

For troubleshooting information, see Troubleshooting getting started (p. 79).

Debugging code on Espressif ESP32-DevKitC and ESP-WROVER-KIT

You need a JTAG to USB cable. We use a USB to MPSSE cable (for example, the FTDI C232HM-DDHSL-0).
ESP-DevKitC JTAG setup

For the FTDI C232HM-DDHSL-0 cable, these are the connections to the ESP32 DevkitC:

C232HM-DDHSL-0 Wire Color ESP32 GPIO Pin JTAG Signal Name
Brown (pin 5) 1014 TMS

Yellow (pin 3) 1012 TDI

Black (pin 10) GND GND

Orange (pin 2) 1013 TCK

Green (pin 4) 1015 TDO

ESP-WROVER-KIT JTAG setup

For the FTDI C232HM-DDHSL-0 cable, these are the connections to the ESP32-WROVER-KIT:

C232HM-DDHSL-0 Wire Color ESP32 GPIO Pin JTAG Signal Name
Brown (pin 5) 1014 TMS

Yellow (pin 3) 1012 TDI

Orange (pin 2) 1013 TCK

Green (pin 4) 1015 TDO

These tables were developed from the FTDI C232HM-DDHSL-0 datasheet. For more information, see
C232HM MPSSE Cable Connection and Mechanical Details in the datasheet.

To enable JTAG on the ESP-WROVER-KIT, place jumpers on the TMS, TDO, TDI, TCK, and S_TDI pins as
shown here:

108

http://www.ftdichip.com/Products/Cables/USBMPSSE.htm
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_C232HM_MPSSE_CABLE.PDF

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

Debugging on Windows

To set up for debugging on Windows

1.

bl

Connect the USB side of the FTDI C232HM-DDHSL-0 to your computer and the other side as
described in Debugging code on Espressif ESP32-DevKitC and ESP-WROVER-KIT (p. 108). The FTDI
C232HM-DDHSL-0 device should appear in Device Manager under Universal Serial Bus Controllers.
Under the list of universal serial bus devices, right-click the C232HM-DDHSL-0 device, and choose
Properties.

Note
The device might be listed as USB Serial Port.

In the properties window, choose the Details tab to see the properties of the device. If the device is
not listed, install the Windows driver for FTDI C232HM-DDHSL-0.

On the Details tab, choose Property, and then choose Hardware IDs. You should see something like
this in the Value field:

FTDIBUS\COMPORT&VID_0403&PID_6014

In this example, the vendor ID is 0403 and the product ID is 6014.

Verify these IDs match the IDs in projects/espressif/esp32/make/aws_demos/
esp32_devkitj_vl.cfg. The IDs are specified in a line that begins with £tdi_vid_pid followed
by a vendor ID and a product ID:

ftdi_vid pid 0x0403 0x6014

Download OpenOCD for Windows.
Unzip the file to C:\ and add C:\openocd-esp32\bin to your system path.
OpenOCD requires libusb, which is not installed by default on Windows.

To install libusb

a. Download zadig.exe.
b. Run zadig.exe. From the Options menu, choose List All Devices.
c¢. From the drop-down menu, choose C232HM-DDHSL-0.

109

http://www.ftdichip.com/Drivers/D2XX.htm
https://github.com/espressif/openocd-esp32/releases
https://zadig.akeo.ie

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

d. Inthe target driver field, to the right of the green arrow, choose WinUSB.

e. From the drop-down box under the target driver field, choose the arrow, and then choose
Install Driver. Choose Replace Driver.

7. Open a command prompt, navigate to projects/espressif/esp32/make/aws_demos and run:

For ESP32-WROOM-32 and ESP32-WROVER:

openocd.exe -f esp32_devkitj_vl.cfg -f esp-wroom-32.cfg

For ESP32-SOLO-1:

openocd.exe -f esp32_devkitj_vl.cfg -f esp-solo-1l.cfg

Leave this command prompt open.

8. Open a new command prompt, navigate to your msys32 directory, and run mingw32.exe. In the
mingw32 terminal, navigate to projects/espressif/esp32/make/aws_demos and run make
flash monitor.

9. Open another mingw32 terminal, navigate to projects/espressif/esp32/make/aws_demos
and wait until the demo starts running on your board. When it does, run xtensa-esp32-elf-gdb
-x gdbinit build/aws_demos.elf. The program should stop in the main function.

Note
The ESP32 supports a maximum of two break points.

Debugging on macOS

Download the FTDI driver for macOS.
Download OpenOCD.

Extract the downloaded .tar file and set the path in .bash_profile to OCD_INSTALL DIR/
openocd-esp32/bin.

4. Use the following command to install 1ibusb on macOS:

brew install libusb

5. Use the following command to unload the serial port driver:

sudo kextunload -b com.FTDI.driver.FTDIUSBSerialDriver

6. If you are running a macOS version later than 10.9, use the following command to unload the Apple
FTDI driver:

sudo kextunload -b com.apple.driver.AppleUSBFTDI

7. Use the following command to get the product ID and vendor ID of the FTDI cable. It lists the
attached USB devices:

system_profiler SPUSBDataType

The output from system_profiler should look like this:

DEVICE:

110

http://www.ftdichip.com/Drivers/VCP.htm
https://github.com/espressif/openocd-esp32/releases

FreeRTOS User Guide
Espressif ESP32-DevKitC and the ESP-WROVER-KIT

Product ID: product-ID
Vendor ID: vendor-ID (Future Technology Devices International Limited)

8. Openprojects/espressif/esp32/make/aws_demos/esp32_devkitj_vl.cfg. The vendor

ID and product ID for your device are specified in a line that begins with £tdi_vid_pid. Change the

IDs to match the IDs from the system_profiler output in the previous step.

9. Open a terminal window, navigate to projects/espressif/esp32/make/aws_demos, and use
the following command to run OpenOCD.

For ESP32-WROOM-32 and ESP32-WROVER:

openocd -f esp32_devkitj_vl.cfg -f esp-wroom-32.cfg

For ESP32-SOLO-1:

openocd -f esp32_devkitj_vl.cfg -f esp-solo-1l.cfg

10. Open a new terminal, and use the following command to load the FTDI serial port driver:

sudo kextload -b com.FTDI.driver.FTDIUSBSerialDriver

11. Navigate to projects/espressif/esp32/make/aws_demos, and run the following command:

make flash monitor

12. Open another new terminal, navigate to projects/espressif/esp32/make/aws_demos, and
run the following command:

xtensa-esp32-elf-gdb -x gdbinit build/aws_demos.elf

The program should stop at main().

Debugging on Linux

1. Download OpenOCD. Extract the tarball and follow the installation instructions in the readme file.
2. Use the following command to install libusb on Linux:

sudo apt-get install libusb-1.0

3. Openaterminal and enter 1s -1 /dev/ttyUSB* to list all USB devices connected to your
computer. This helps you check if the board’s USB ports are recognized by the operating system. You
should see output like this:

$1ls -1 /dev/ttyUSB¥*
Crw-rw--—--— 1 root dialout 188, 0 Jul 10 19:04 /dev/ttyUSBO
Crw-rw--—--— 1 root dialout 188, 1 Jul 10 19:04 /dev/ttyUSB1

4. Sign off and then sign in and cycle the power to the board to make the changes take effect. In a
terminal prompt, list the USB devices. Make sure the group owner has changed from dialout to
plugdev:

$1ls -1 /dev/ttyUSB¥*
Crw-rw-—--— 1 root plugdev 188, 0 Jul 10 19:04 /dev/ttyUSBO
CYW-rw---- 1 root plugdev 188, 1 Jul 10 19:04 /dev/ttyUSB1

111

https://github.com/espressif/openocd-esp32/releases

FreeRTOS User Guide
Espressif ESP32-WROOM-32SE (Preview)

The /dev/ttyUSBn interface with the lower number is used for JTAG communication. The other
interface is routed to the ESP32's serial port (UART) and is used for uploading code to the ESP32’s
flash memory.

5. Inaterminal window, navigate to projects/espressif/esp32/make/aws_demos, and use the
following command to run OpenOCD.

For ESP32-WROOM-32 and ESP32-WROVER:

openocd -f esp32_devkitj_vl.cfg -f esp-wroom-32.cfg

For ESP32-SOLO-1:

openocd -f esp32_devkitj_vl.cfg -f esp-solo-1l.cfg

6. Open another terminal, navigate to projects/espressif/esp32/make/aws_demos, and run the
following command:

make flash monitor

7. Open another terminal, navigate to projects/espressif/esp32/make/aws_demos, and run the
following command:

xtensa-esp32-elf-gdb -x gdbinit build/aws_demos.elf

The program should stop inmain().

Getting started with the Espressif ESP32-
WROOM-32SE (preview)

Follow this tutorial to get started with the Espressif ESP32-WROOM-32SE. Support for the ESP32-
WROOM-32SE (with Microchip ATECC608A secure element) is in preview only and isn't part of the official
FreeRTOS release. The ESP32-WROOM-32SE currently has limited availability for purchase. Contact
sales@espressif.com to obtain a board.

Note

FreeRTOS port for ESP32-WROOM-32SE doesn't support the following features:
« Symmetric multiprocessing (SMP)

+ Online Configuration Wizard (OCW)

Overview

This tutorial guides you through the following steps:

1. Connect your board to a host machine.

2. Install software on your host machine to develop and debug embedded applications for your
microcontroller board.

3. Cross-compile a FreeRTOS demo application to a binary image.
4. Load the application binary image to your board, and then run the application.
5. Monitor and debug the running application using a serial connection.

112

mailto:sales@espressif.com

FreeRTOS User Guide
Espressif ESP32-WROOM-32SE (Preview)

Prerequisites

Before you get started with FreeRTOS on your Espressif board, you need to set up your AWS account and
permissions.

To create an AWS account, see Create and Activate an AWS Account.

To add an IAM user to your AWS account, see the Adding a User in the IAM User Guide. To grant your IAM
user permission to AWS loT and FreeRTOS, attach the following IAM managed policies to your IAM users:

¢ AmazonFreeRTOSFullAccess

Allows full access to all of your IAM user's FreeRTOS resources (freertos: *).
e AWSIoTFullAccess

Allows full access to all of your IAM user's l10T resources (iot: *).

To attach the AmazonFreeRTOSFullAccess policy to your IAM user

Navigate to the IAM console.

In the navigation pane, choose Users

Enter your user name in the search text box, and then choose it from the list.
Choose Add permissions.

Choose Attach existing policies directly.

oA WwWDN =

In the search box, enter AmazonFreeRTOSFullAccess, choose it from the list, and then choose
Next: Review.

7. Choose Add permissions.

To attach the AWSIoTFullAccess policy to your IAM user

Navigate to the IAM console.

In the navigation pane, choose Users.

Enter your user name in the search text box, and then choose it from the list.

Choose Add permissions.

Choose Attach existing policies directly.

In the search box, enter AWSIoTFullAccess, choose it from the list, and then choose Next: Review.
Choose Add permissions.

Nouhkuwun=

For more information about IAM, see the IAM User Guide.
For more information about policies, see IAM Permissions and Policies.
Set up the Espressif hardware

For information about setting up the ESP32-WROOM-32SE development board hardware, see the
ESP32-DevKitC Getting Started Guide.

Note
Don't follow the Get Started section of the Espressif guides. Instead, follow the steps below.

Set up your development environment

To communicate with your board, you need to download and install a toolchain.

113

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/IAM/latest/UserGuide
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-devkitc.html

FreeRTOS User Guide
Espressif ESP32-WROOM-32SE (Preview)

Set up the toolchain
To set up the toolchain, follow the instructions for your host machine's operating system:

« Standard Setup of Toolchain for Windows
« Standard Setup of Toolchain for macOS
« Standard Setup of Toolchain for Linux

Important
When you reach the "Get ESP-IDF" instructions under Next Steps, stop and return to the
instructions on this page.

Make sure that the IDF_PATH environment variable is cleared from your system before you continue.
This environment variable is automatically set if you followed the "Get ESP-IDF" instructions under Next
Steps.

Note

Version 3.3 of the ESP-IDF (the version that FreeRTOS uses) doesn't support the latest version of
the ESP32 compiler. You must use the compiler that is compatible with version 3.3 of the ESP-
IDF. See the previous links. To check the version of your compiler, run the following command.

xtensa-esp32-elf-gcc --version

Install CMake

The CMake build system is required to build the FreeRTOS demo and test applications for this device.
FreeRTOS supports versions 3.13 and later.

You can download the latest version of CMake from CMake.org. Source and binary distributions are
available.

For more details about using CMake with FreeRTOS, see Using CMake with FreeRTOS (p. 80).

Establish a serial connection

1. To establish a serial connection between your host machine and the ESP32-WROOM-32SE, install
the CP210x USB to UART Bridge VCP drivers. You can download these drivers from Silicon Labs.

2. Follow the steps to Establish a Serial Connection with ESP32.

3. After you establish a serial connection, make a note of the serial port for your board's connection.
You need it when you build the demo.

Download and configure FreeRTOS

After you set up your environment, you can download FreeRTOS from GitHub. See the README.md file
for instructions. The code for ESP32-WROOM32-SE is only available on GitHub on the development
branch feature/esp32-wroom-32se.

Important

The ATECC608A device has a one time initialization that is locked onto the device the first
time a project is run (during the call to ¢_InitToken). However, the FreeRTOS demo project
and test project have different configurations. If the device is locked during the demo project
configurations, not all tests in the test project will succeed.

1. Configure the FreeRTOS Demo Project by following the steps in Configuring the FreeRTOS
demos (p. 75). Skip the last step To format your AWS loT credentials and follow the steps below
instead.

114

https://docs.espressif.com/projects/esp-idf/en/v3.3/get-started-cmake/windows-setup.html
https://docs.espressif.com/projects/esp-idf/en/v3.3/get-started-cmake/macos-setup.html
https://docs.espressif.com/projects/esp-idf/en/v3.3/get-started-cmake/linux-setup.html
https://cmake.org/download/
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/establish-serial-connection.html
https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/master/README.md
https://github.com/aws/amazon-freertos/tree/feature/esp32-wroom-32se

FreeRTOS User Guide
Espressif ESP32-WROOM-32SE (Preview)

2. Microchip has provided several scripting tools to help with the setup of the ATECC608A
parts. Navigate to the freertos/vendors/microchip/secure_elements/app/
example_trust_chain tool directory, and open the README .md file.

Follow the instructions in the README . md file to provision your device. The steps include:

1. Create and register a certificate authority with AWS.
2. Generate your keys on the ATECC608A and export the public key and device serial number.
3. Generate a certificate for the device and register that certificate with AWS.

3. Load the CA certificate and device certificate onto the device by following the instructions for
Developer-mode key provisioning (p. 77).

Build, flash, and run the FreeRTOS demo project

You can use CMake to generate the build files, Make to build the application binary, and Espressif's IDF
utility to flash your board.

Build FreeRTOS on Linux or MacOS

If you're using Windows, you can skip to Build FreeRTOS on Windows (p. 116).
Use CMake to generate the build files, and then use Make to build the application.
To generate the demo application's build files with CMake

1. Navigate to the root of your FreeRTOS download directory.
2. Inacommand line window, enter the following command to generate the build files.

cmake -DVENDOR=espressif -DBOARD=esp32_plus_ecc608a_devkitc -DCOMPILER=xtensa-esp32 -
S . -B your-build-directory

Note

To build the application for debugging, add the -DCMAKE_BUILD TYPE=Debug flag.

To generate the test application build files, add the -DAFR_ENABLE_TESTS=1 flag.

The code provided by Espressif uses the lightweight IP (lwIP) stack as the default
networking stack. To use the FreeRTOS+TCP networking stack instead, add the -
DAFR_ESP_FREERTOS_TCP flag to the CMake command.

To add the lwIP dependency for non-vendor provided code, add the following lines to the
CMake dependency file, CMakeLists. txt, for your custom WiFi component.

Add a dependency on the bluetooth espressif component to the common component
set(COMPONENT REQUIRES lwip)

To build the application with Make

Navigate to the build directory.
2. Inacommand line window, enter the following command to build the application with Make.

make all -j4

Note
You must generate the build files with the cmake command every time you switch between
the aws_demos project and the aws_tests project.

115

FreeRTOS User Guide
Espressif ESP32-WROOM-32SE (Preview)

Build FreeRTOS on Windows

On Windows, you must specify a build generator for CMake. Otherwise, CMake defaults to Visual Studio.
Espressif officially recommends the Ninja build system because it works on Windows, Linux, and MacOS.
You must run CMake commands in a native Windows environment like cmd or PowerShell. Running
CMake commands in a virtual Linux environment, such as MSYS2 or WSL, isn't supported.

Use CMake to generate the build files, and then use Make to build the application.

To generate the demo application's build files with CMake

1. Navigate to the root of your FreeRTOS download directory.
2. Inacommand line window, enter the following command to generate the build files.

cmake -DVENDOR=espressif -DBOARD=esp32_plus_ecc608a_devkitc -DCOMPILER=xtensa-esp32 -
GNinja -S . -B your-build-directory

Note

To build the application for debugging, add the -DCMAKE_BUILD_TYPE=Debug flag.

To generate the test application build files, add the -DAFR_ENABLE_TESTS=1 flag.

The code provided by Espressif uses the lightweight IP (lwIP) stack as the default
networking stack. To use the FreeRTOS+TCP networking stack instead, add the -
DAFR_ESP_FREERTOS_TCP flag to the CMake command.

To add the lwIP dependency for non-vendor provided code, add the following lines to the
CMake dependency file, CMakeLists. txt, for your custom WiFi component.

Add a dependency on the bluetooth espressif component to the common component
set(COMPONENT_REQUIRES lwip)

To build the application

1. Navigate to the build directory.
2. In a command line window, enter the following command to invoke Ninja to build the application.

ninja

Or, use the generic CMake interface to build the application.

cmake --build your-build-directory

Note
You must generate the build files with the cmake command every time you switch between
the aws_demos project and the aws_tests project.

Flash and run FreeRTOS

Use Espressif's IDF utility (freertos/vendors/espressif/esp-idf/tools/idf.py) to flash your
board, run the application, and see logs.

To erase the board's flash, navigate to the freertos directory and enter the following command.

./vendors/espressif/esp-idf/tools/idf.py erase_flash -B build-directory

116

FreeRTOS User Guide
Infineon XMC4800 IoT Connectivity Kit

To flash the application binary to your board, use make.

make flash

You can also use the IDF script to flash your board.

./vendors/espressif/esp-idf/tools/idf.py flash -B build-directory

To monitor:

./vendors/espressif/esp-idf/tools/idf.py monitor -p /dev/ttyUSB1l -B build-directory

Tip
You can also combine these commands.

./vendors/espressif/esp-idf/tools/idf.py erase_flash flash monitor -p /dev/ttyUSB1
-B build-directory

Monitoring MQTT messages on the AWS Cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Getting started with the Infineon XMC4800 loT
Connectivity Kit

This tutorial provides instructions for getting started with the Infineon XMC4800 IoT Connectivity Kit.
If you do not have the Infineon XMC4800 loT Connectivity Kit, visit the AWS Partner Device Catalog to
purchase one from our partner.

If you want to open a serial connection with the board to view logging and debugging information, you
need a 3.3V USB/Serial converter, in addition to the XMC4800 loT Connectivity Kit. The CP2104 is a
common USB/Serial converter that is widely available in boards such as Adafruit's CP2104 Friend.

Before you begin, you must configure AWS loT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.

117

https://console.aws.amazon.com/iotv2/
https://devices.amazonaws.com/detail/a3G0L00000AANsbUAH/XMC4800-IoT-Amazon-FreeRTOS-Connectivity-Kit-WiFi
https://www.adafruit.com/product/3309

FreeRTOS User Guide
Infineon XMC4800 IoT Connectivity Kit

3. Loading the application binary image to your board, and then running the application.

4. Interacting with the application running on your board across a serial connection, for monitoring and
debugging purposes.

Set up your development environment

FreeRTOS uses Infineon's DAVE development environment to program the XMC4800. Before you begin,
you need to download and install DAVE and some J-Link drivers to communicate with the on-board
debugger.

Install DAVE

Go to Infineon's DAVE software download page.

2. Choose the DAVE package for your operating system and submit your registration information. After
registering with Infineon, you should receive a confirmation email with a link to download a .zip file.

3. Download the DAVE package .zip file (DAVE_version_os_date.zip), and unzip it to the location
where you want to install DAVE (for example, C: \DAVE4).

Note
Some Windows users have reported problems using Windows Explorer to unzip the file. We
recommend that you use a third-party program such as 7-Zip.

4. To launch DAVE, run the executable file found in the unzipped DAVE_version_os_date.zip
folder.

For more information, see the DAVE Quick Start Guide.
Install Segger J-Link drivers

To communicate with the XMC4800 Relax EtherCAT board's on-board debugging probe, you need the
drivers included in the J-Link Software and Documentation pack. You can download the J-Link Software
and Documentation pack from Segger's J-Link software download page.

Establish a serial connection

Setting up a serial connection is optional, but recommended. A serial connection allows your board to
send logging and debugging information in a form that you can view on your development machine.

The XMC4800 demo application uses a UART serial connection on pins P0.0 and PO0.1, which are labeled
on the XMC4800 Relax EtherCAT board's silkscreen. To set up a serial connection:

Connect the pin labeled “RX<P0.0" to your USB/Serial converter's “TX" pin.
2. Connect the pin labeled “TX>P0.1" to your USB/Serial converter's “RX" pin.

Connect your serial converter's Ground pin to one of the pins labeled “GND" on your board. The
devices must share a common ground.

Power is supplied from the USB debugging port, so do not connect your serial adapter's positive voltage
pin to the board.

Note
Some serial cables use a 5V signaling level. The XMC4800 board and the Wi-Fi Click module
require a 3.3V. Do not use the board's IOREF jumper to change the board's signals to 5V.

With the cable connected, you can open a serial connection on a terminal emulator such as GNU Screen.
The baud rate is set to 115200 by default with 8 data bits, no parity, and 1 stop bit.

118

https://infineoncommunity.com/dave-download_ID645
https://www.infineon.com/dgdl/Infineon-DAVE_Quick_Start-GS-v02_00-EN.pdf?fileId=5546d4624cb7f111014d059f7b8c712d
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://www.gnu.org/software/screen/

FreeRTOS User Guide
Infineon XMC4800 IoT Connectivity Kit

Build and run the FreeRTOS demo project

Import the FreeRTOS demo into DAVE

Start DAVE.

In DAVE, choose File, Import. In the Import window, expand the Infineon folder, choose DAVE
Project, and then choose Next.

In the Import DAVE Projects window, choose Select Root Directory, choose Browse, and then
choose the XMC4800 demo project.

In the directory where you unzipped your FreeRTOS download, the demo project is located in
projects/infineon/xmc4800_iotkit/dave4/aws_demos.

Make sure that Copy Projects Into Workspace is unchecked.
Choose Finish.

The aws_demos project should be imported into your workspace and activated.
From the Project menu, choose Build Active Project.

Make sure that the project builds without errors.

Run the FreeRTOS demo project

1.

Use a USB cable to connect your XMC4800 IoT Connectivity Kit to your computer. The board has two
microUSB connectors. Use the one labeled “X101"”, where Debug appears next to it on the board's
silkscreen.

From the Project menu, choose Rebuild Active Project to rebuild aws_demos and ensure that your
configuration changes are picked up.

From Project Explorer, right-click aws_demos, choose Debug As, and then choose DAVE C/C++
Application.

Double-click GDB SEGGER J-Link Debugging to create a debug confirmation. Choose Debug.
When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

In the AWS IoT console, the MQTT client from steps 4-5 should display the MQTT messages sent by your
device. If you use the serial connection, you see something like this on the UART output:

0 0 [Tmr Svc] Starting key provisioning...

1 1 [Tmr Svc] Write root certificate...

2 4 [Tmr Svc] Write device private key...

3 82 [Tmr Svc] Write device certificate...

4 86 [Tmr Svc] Key provisioning done...

5 291 [Tmr Svc] Wi-Fi module initialized. Connecting to AP...

.6 8046 [Tmr Svc] Wi-Fi Connected to AP. Creating tasks which use network...
7 8058 [Tmr Svc] IP Address acquired [IP Address]

8 8058 [Tmr Svc] Creating MQTT Echo Task...

9 8059 [MQTTEcho] MQTT echo attempting to connect to [MQTT Broker].
...10 23010 [MQTTEcho] MQTT echo connected.

11 23010 [MQTTEcho] MQTT echo test echoing task created.

.12 26011 [MQTTEcho] MQTT Echo demo subscribed to iotdemo/#

13 29012 [MQTTEcho] Echo successfully published 'Hello World 0'

.14 32096 [Echoing] Message returned with ACK: 'Hello World 0 ACK'
.15 37013 [MQTTEcho] Echo successfully published 'Hello World 1°'

16 40080 [Echoing] Message returned with ACK: 'Hello World 1 ACK'
.17 45014 [MQTTEcho] Echo successfully published 'Hello World 2'
.18 48091 [Echoing] Message returned with ACK: 'Hello World 2 ACK'
.19 53015 [MQTTEcho] Echo successfully published 'Hello World 3'

119

FreeRTOS User Guide
Infineon XMC4800 IoT Connectivity Kit

.20 56087 [Echoing] Message returned with ACK: 'Hello World 3 ACK'
.21 61016 [MQTTEcho] Echo successfully published 'Hello World 4'

22 64083 [Echoing] Message returned with ACK: 'Hello World 4 ACK'
.23 69017 [MQTTEcho] Echo successfully published 'Hello World 5'
.24 72091 [Echoing] Message returned with ACK: 'Hello World 5 ACK'
.25 77018 [MQTTEcho] Echo successfully published 'Hello World 6'

26 80085 [Echoing] Message returned with ACK: 'Hello World 6 ACK'
.27 85019 [MQTTEcho] Echo successfully published 'Hello World 7'
.28 88086 [Echoing] Message returned with ACK: 'Hello World 7 ACK'
.29 93020 [MQTTEcho] Echo successfully published 'Hello World 8'
.30 96088 [Echoing] Message returned with ACK: 'Hello World 8 ACK'
.31 101021 [MQTTEcho] Echo successfully published 'Hello World 9'
32 104102 [Echoing] Message returned with ACK: 'Hello World 9 ACK'
.33 109022 [MQTTEcho] Echo successfully published 'Hello World 10'
.34 112047 [Echoing] Message returned with ACK: 'Hello World 10 ACK'
.35 117023 [MQTTEcho] Echo successfully published 'Hello World 11°'
36 120089 [Echoing] Message returned with ACK: 'Hello World 11 ACK'
.37 122068 [MQTTEcho] MQTT echo demo finished.

38 122068 [MQTTEcho] ----Demo finished----

Build the FreeRTOS demo with CMake

If you prefer not to use an IDE for FreeRTOS development, you can alternatively use CMake to build and
run the demo applications or applications that you have developed using third-party code editors and
debugging tools.

Note

This section covers using CMake on Windows with MingW as the native build system. For
more information about using CMake with other operating systems and options, see Using
CMake with FreeRTOS (p. 80). (MinGW is a minimalist development environment for native
Microsoft Windows applications.)

To build the FreeRTOS demo with CMake
1. Set up the GNU Arm Embedded Toolchain.

a. Download a Windows version of the toolchain from the Arm Embedded Toolchain download
page.
Note

We recommend that you download a version other than "8-2018-q4-major", due to a
bug reported with the “objcopy” utility in that version.
b. Open the downloaded toolchain installer, and follow the installation wizard's instructions to
install the toolchain.

Important
On the final page of the installation wizard, select Add path to environment variable
to add the toolchain path to the system path environment variable.

2. Install CMake and MingW.

For instructions, see CMake Prerequisites (p. 81).
3. Create a folder to contain the generated build files (bui1d-folder).

4. Change directories to your FreeRTOS download directory (freertos), and use the following
command to generate the build files:

cmake -DVENDOR=infineon -DBOARD=xmc4800_iotkit -DCOMPILER=arm-gcc -S . -B build-folder
-G "MinGW Makefiles" -DAFR_ENABLE_TESTS=0

5. Change directories to the build directory (build-folder), and use the following command to build
the binary:

120

https://sourceforge.net/projects/mingw-w64/files/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://bugs.launchpad.net/gcc-arm-embedded/+bug/1810274
https://bugs.launchpad.net/gcc-arm-embedded/+bug/1810274

FreeRTOS User Guide
Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit

cmake --build . --parallel 8

This command builds the output binary aws_demos . hex to the build directory.
6. Flash and run the image with JLINK (p. 118).

a. From the build directory (bui1d-folder), use the following commands to create a flash script:

echo loadfile aws_demos.hex > flash.jlink

echo r >> flash.jlink

echo g >> flash.jlink

echo g >> flash.jlink

b. Flash the image using the JLNIK executable.

JLINK_PATH\JLink.exe -device XMC4800-2048 -if SWD -speed auto -CommanderScript
flash.jlink

The application logs should be visible through the serial connection (p. 118) that you
established with the board.

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

If you haven't already, be sure to configure AWS loT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions.

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Infineon OPTIGA Trust X and
XMC4800 loT Connectivity Kit

This tutorial provides instructions for getting started with the Infineon OPTIGA Trust X Secure Element
and XMC4800 loT Connectivity Kit. In comparison to the Getting started with the Infineon XMC4800
loT Connectivity Kit (p. 117) tutorial, this guide shows you how to provide secure credentials using an
Infineon OPTIGA Trust X Secure Element.

121

https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit

You need the following hardware:

1. Host MCU - Infineon XMC4800 IoT Connectivity Kit, visit the AWS Partner Device Catalog to purchase
one from our partner.

2. Security Extension Pack:
« Secure Element - Infineon OPTIGA Trust X.

Visit the AWS Partner Device Catalog to purchase them from our partner.
 Personalization Board - Infineon OPTIGA Personalisation Board.
« Adapter Board - Infineon MyloT Adapter.

To follow the steps here, you must open a serial connection with the board to view logging and
debugging information. (One of the steps requires you to copy a public key from the serial debugging
output from the board and paste it to a file.) To do this, you need a 3.3V USB/Serial converter in addition
to the XMC4800 loT Connectivity Kit. The JBtek EL-PN-47310126 USB/Serial converter is known to
work for this demo. You also need three male-to-male jumper wires (for receive (RX), transmit (TX), and
ground (GND)) to connect the serial cable to the Infineon MyloT Adapter board.

Before you begin, you must configure AWS loT and your FreeRTOS download to connect your device to
the AWS Cloud. For instructions, see Option #2: onboard private key generation (p. 77). In this tutorial,
the path to the FreeRTOS download directory is referred to as freertos.

Overview

This tutorial contains the following steps:

1. Install software on the host machine to develop and debug embedded applications for your
microcontroller board.

2. Cross-compile a FreeRTOS demo application to a binary image.
3. Load the application binary image to your board, and then run the application.

4. For monitoring and debugging purposes, interact with the application running on your board across a
serial connection.

Set up your development environment

FreeRTOS uses Infineon's DAVE development environment to program the XMC4800. Before you begin,
download and install DAVE and some J-Link drivers to communicate with the on-board debugger.

Install DAVE

Go to Infineon's DAVE software download page.

2. Choose the DAVE package for your operating system and submit your registration information. After
you register, you should receive a confirmation email with a link to download a .zip file.

3. Download the DAVE package .zip file (DAVE_version_os_date.zip), and unzip it to the location
where you want to install DAVE (for example, C: \DAVE4).

Note
Some Windows users have reported problems using Windows Explorer to unzip the file. We
recommend that you use a third-party program such as 7-Zip.

4. To launch DAVE, run the executable file found in the unzipped DAVE_version_os_date.zip
folder.

For more information, see the DAVE Quick Start Guide.

122

https://devices.amazonaws.com/detail/a3G0L00000AANsbUAH/XMC4800-IoT-Amazon-FreeRTOS-Connectivity-Kit-WiFi
https://devices.amazonaws.com/detail/a3G0h000000TePnEAK/OPTIGA%E2%84%A2-Trust-X-Security-Solution
https://www.amazon.com/gp/product/B00QT7LQ88
https://www.amazon.com/gp/product/B077N6HFCX/
https://infineoncommunity.com/dave-download_ID645
https://www.infineon.com/dgdl/Infineon-DAVE_Quick_Start-GS-v02_00-EN.pdf?fileId=5546d4624cb7f111014d059f7b8c712d

FreeRTOS User Guide
Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit

Install Segger J-Link drivers

To communicate with the XMC4800 IoT Connectivity kit's on-board debugging probe, you need the
drivers included in the J-Link Software and Documentation pack. You can download the J-Link Software
and Documentation pack from Segger's J-Link software download page.

Establish a serial connection

Connect the USB/Serial converter cable to the Infineon Shield2Go Adapter. This allows your board to
send logging and debugging information in a form that you can view on your development machine. To
set up a serial connection:

Connect the RX pin to your USB/Serial converter's TX pin.
2. Connect the TX pin to your USB/Serial converter's RX pin.

Connect your serial converter's ground pin to one of the GND pins on your board. The devices must
share a common ground.

Power is supplied from the USB debugging port, so do not connect your serial adapter's positive voltage
pin to the board.

Note
Some serial cables use a 5V signaling level. The XMC4800 board and the Wi-Fi Click module
require a 3.3V. Do not use the board's IOREF jumper to change the board's signals to 5V.

With the cable connected, you can open a serial connection on a terminal emulator such as GNU Screen.
The baud rate is set to 115200 by default with 8 data bits, no parity, and 1 stop bit.

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud. You might want to set this up before the device runs the demo project.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Build and run the FreeRTOS demo project

Import the FreeRTOS demo into DAVE

Start DAVE.

2. In DAVE, choose File, and then choose Import. Expand the Infineon folder, choose DAVE Project,
and then choose Next.

3. Inthe Import DAVE Projects window, choose Select Root Directory, choose Browse, and then
choose the XMC4800 demo project.

In the directory where you unzipped your FreeRTOS download, the demo project is located in
projects/infineon/xmc4800_plus_optiga_trust_x/dave4/aws_demos/dave4.

Make sure that Copy Projects Into Workspace is cleared.
4. Choose Finish.

123

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://www.gnu.org/software/screen/
https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit

The aws_demos project should be imported into your workspace and activated.
5. From the Project menu, choose Build Active Project.

Make sure that the project builds without errors.

Run the FreeRTOS demo project

1. From the Project menu, choose Rebuild Active Project to rebuild aws_demos and confirm that your
configuration changes are picked up.

2. From Project Explorer, right-click aws_demos, choose Debug As, and then choose DAVE C/C++
Application.

3. Double-click GDB SEGGER J-Link Debugging to create a debug confirmation. Choose Debug.
When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

At this point, continue with the public key extraction step in Option #2: onboard private key
generation (p. 77). After all steps are complete, go to the AWS loT console. The MQTT client you

set up previously should display the MQTT messages sent by your device. Through the device's serial
connection, you should see something like this on the UART output:

0 0 [Tmr Svc] Starting key provisioning...

1 1 [Tmr Svc] Write root certificate...

2 4 [Tmr Svc] Write device private key...

3 82 [Tmr Svc] Write device certificate...

4 86 [Tmr Svc] Key provisioning done...

5 291 [Tmr Svc] Wi-Fi module initialized. Connecting to AP...

.6 8046 [Tmr Svc] Wi-Fi Connected to AP. Creating tasks which use network...
7 8058 [Tmr Svc] IP Address acquired [IP Address]

8 8058 [Tmr Svc] Creating MQTT Echo Task...

9 8059 [MQTTEcho] MQTT echo attempting to connect to [MQTT Broker].
...10 23010 [MQTTEcho] MQTT echo connected.

11 23010 [MQTTEcho] MQTT echo test echoing task created.

.12 26011 [MQTTEcho] MQTT Echo demo subscribed to iotdemo/#

13 29012 [MQTTEcho] Echo successfully published 'Hello World O0'

.14 32096 [Echoing] Message returned with ACK: 'Hello World O ACK'
.15 37013 [MQTTEcho] Echo successfully published 'Hello World 1'

16 40080 [Echoing] Message returned with ACK: 'Hello World 1 ACK'
.17 45014 [MQTTEcho] Echo successfully published 'Hello World 2'
.18 48091 [Echoing] Message returned with ACK: 'Hello World 2 ACK'
.19 53015 [MQTTEcho] Echo successfully published 'Hello World 3'
.20 56087 [Echoing] Message returned with ACK: 'Hello World 3 ACK'
.21 61016 [MQTTEcho] Echo successfully published 'Hello World 4'

22 64083 [Echoing] Message returned with ACK: 'Hello World 4 ACK'
.23 69017 [MQTTEcho] Echo successfully published 'Hello World 5'
.24 72091 [Echoing] Message returned with ACK: 'Hello World 5 ACK'
.25 77018 [MQTTEcho] Echo successfully published 'Hello World 6'

26 80085 [Echoing] Message returned with ACK: 'Hello World 6 ACK'
.27 85019 [MQTTEcho] Echo successfully published 'Hello World 7'
.28 88086 [Echoing] Message returned with ACK: 'Hello World 7 ACK'
.29 93020 [MQTTEcho] Echo successfully published 'Hello World 8'
.30 96088 [Echoing] Message returned with ACK: 'Hello World 8 ACK'
.31 101021 [MQTTEcho] Echo successfully published 'Hello World 9'
32 104102 [Echoing] Message returned with ACK: 'Hello World 9 ACK'
.33 109022 [MQTTEcho] Echo successfully published 'Hello World 10'
.34 112047 [Echoing] Message returned with ACK: 'Hello World 10 ACK'
.35 117023 [MQTTEcho] Echo successfully published 'Hello World 11'
36 120089 [Echoing] Message returned with ACK: 'Hello World 11 ACK'
.37 122068 [MQTTEcho] MQTT echo demo finished.

38 122068 [MQTTEcho] ----Demo finished----

124

FreeRTOS User Guide
Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit

Build the FreeRTOS demo with CMake

This section covers using CMake on Windows with MingW as the native build system. For more
information about using CMake with other operating systems and options, see Using CMake with
FreeRTOS (p. 80). (MinGW is a minimalist development environment for native Microsoft Windows
applications.)

If you prefer not to use an IDE for FreeRTOS development, you can use CMake to build and run the demo
applications or applications that you have developed using third-party code editors and debugging tools.

To build the FreeRTOS demo with CMake
1. Set up the GNU Arm Embedded Toolchain.

a. Download a Windows version of the toolchain from the Arm Embedded Toolchain download
page.
Note
Due to a bug reported in the objcopy utility, we recommend that you download a
version other than "8-2018-g4-major."

b. Open the downloaded toolchain installer, and follow the instructions in the wizard.

¢. On the final page of the installation wizard, select Add path to environment variable to add
the toolchain path to the system path environment variable.

2. Install CMake and MingW.

For instructions, see CMake Prerequisites (p. 81).
3. Create a folder to contain the generated build files (build-folder).

4. Change directories to your FreeRTOS download directory (freertos), and use the following
command to generate the build files:

cmake -DVENDOR=infineon -DBOARD=xmc4800_plus_optiga_ trust_x -DCOMPILER=arm-gcc -S . -
B build-folder -G "MinGW Makefiles" -DAFR_ENABLE_TESTS=0

5. Change directories to the build directory (build-folder), and use the following command to build
the binary:

cmake --build . --parallel 8

This command builds the output binary aws_demos . hex to the build directory.
6. Flash and run the image with JLINK (p. 118).

a. From the build directory (bui1d-folder), use the following commands to create a flash script:

echo loadfile aws_demos.hex > flash.jlink
echo r >> flash.jlink
echo g >> flash.jlink
echo q >> flash.jlink

b. Flash the image using the JLNIK executable.

JLINK_PATH\JLink.exe -device XMC4800-2048 -if SWD -speed auto -CommanderScript
flash.jlink

The application logs should be visible through the serial connection (p. 118) that you
established with the board. Continue to the public key extraction step in Option #2: onboard
private key generation (p. 77). After all the steps are complete, go to the AWS IoT console.
The MQTT client you set up previously should display the MQTT messages sent by your device.

125

https://sourceforge.net/projects/mingw-w64/files/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://bugs.launchpad.net/gcc-arm-embedded/+bug/1810274

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

Troubleshooting

For general troubleshooting information, see Troubleshooting getting started (p. 79).

Getting started with the Marvell MW320 AWS loT
Starter Kit

This tutorial provides instructions for getting started with the Marvell MW320 AWS IoT Starter Kit.

The Marvell MW320 AWS loT Starter Kit includes the Marvell MW320, a Cortex M4 microcontroller
development board that integrates 802.11b/g/n Wi-Fi on a single microcontroller chip. The kit is FCC-
certified and available for sale. The MW320 module is also FCC-certified and available for customization
and volume sale.

If you do not have the Marvell MW320 AWS loT Starter Kit, visit the AWS Partner Device Catalog to
purchase one from our partner.

Note
In this tutorial, we use Ubuntu 16.04 for developing and debugging applications for the Marvell
MW320. Other operating systems might work, but are not officially supported.

Before you begin, you must configure AWS loT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.
4. Loading the application binary image to your board, and then running the application.

5. Interacting with the application running on your board across a serial connection, for monitoring and
debugging purposes.

Set up your development environment

FreeRTOS includes some scripts for installing required third-party libraries, and for building and flashing
applications to the board. These scripts are in the vendors/marvell /WMSDK/mw320/sdk directory.

The AWS loT Starter Kit also includes pre-flashed wireless microcontroller demo project firmware.

In addition to the software that is bundled with the M320 AWS loT Starter Kit and its FreeRTOS port, you
must have the following software components installed on your host machine:
« The GCC toolchain, to cross compile your application. Versions 4_9_2015qg3 and later are supported.

« OpenOCD, to access various JTAG functions for programming the board's flash memory, and for
downloading and running firmware images in memory.

« The CMake build system. Versions 3.13 and later are supported.
« (Optional) A supported IDE, for application development and debugging.

126

https://devices.amazonaws.com/detail/a3G0h000000OaRnEAK/Marvell-MW320

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

Install required third-party libraries with installpkgs.sh

The vendors/marvell /WMSDK/mw320/sdk/tools/bin/installpkgs.sh script attempts to
autodetect the machine type and install some required libraries, which include:

« Clibraries

« A USB library
o An FTDI library
« ncurses

o Python

» LaTeX

Note

The installpkgs. sh script includes instructions for installing packages using apt-get for
32-bit and 64-bit Ubuntu environments and yum for 32-bit and 64-bit Fedora environments. If
you have problems running the script on your distribution, open the script file, find the list of
required packages, and install them manually.

With root privileges, issue the following command from the root directory of your FreeRTOS download:

./vendors/marvell /WMSDK/mw320/sdk/tools/bin/installpkgs.sh

You can configure the permissions on your Linux host machine to allow flashprog and ramload
operations without sudo. To do this, issue the following command:

./vendors/marvell /WMSDK/mw320/sdk/tools/bin/perm fix.sh

Note
If you are using the Eclipse IDE, you must configure these permissions.

Set up the toolchain

The FreeRTOS port for the this board is configured to use the GNU toolchain by default. For the
Makefiles to invoke the correct compiler toolchain, the GNU compiler toolchain binaries must be included
in the user's PATH variable. The GNU toolchain binaries must also be prefixed with arm-none-eabi-.

The GCC toolchain can be used with the GNU Debugger (GDB) for debugging with the OpenOCD
software that interfaces with JTAG.

To set up the GCC toolchain on a Linux machine

1. Download the toolchain tarball from launchpad. The file name is gcc-arm-none-
eabi-4 9-201593-20150921-1linux.tar.bz2.

2. Copy the file to a directory of your choice. Make sure that there are no spaces in the directory path.
3. Untar the file with the following command:

tar -vxf file-name

4. Add the toolchain binaries to your system PATH.

For example, open the .profile file in your $HOME directory, and append the following line to the
end of the file:

PATH="$PATH:path/gcc-arm-none-eabit-4_9_2015_g3/bin"

127

https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q3-update

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

Where path is the full directory path to the gcc-arm-none-eabit-4_9_2015_qg3 folder.

Note

Some distributions of Ubuntu include a Debian version of the GCC cross compiler. If your
distribution includes a native cross compiler, remove it, and follow the steps to set up the GCC
compiler toolchain.

Set up OpenOCD

OpenOCD version 0.9 is required. If an earlier version is installed on your host machine, remove it using
your distribution's uninstall process.

You can install OpenOCD with standard Linux package managers. For example:

apt-get install openocd

The default version of OpenOCD installed on your machine depends on the version of your Linux kernel.
If you cannot use a package manager to install OpenOCD version 0.9, follow these steps:

Download the OpenOCD version 0.9 source code from OpenOCD.org.
2. Extract the openocd download, and then change directories to the extracted folder.
3. Enable FTDI and JLink:

./configure --enable-ftdi --enable-jlink

4. Make openocd:

make install

Install CMake

The CMake build system is required to build the FreeRTOS demo and test applications for this device.
FreeRTOS supports versions 3.13 and later.

You can download the latest version of CMake from CMake.org. Both source and binary distributions are
available.

For more details about using CMake with FreeRTOS, see Using CMake with FreeRTOS (p. 80).
Establish a serial connection

To establish a serial connection between your host machine and your board
1. Attach one end of a USB cable to your host machine, and the other end to your board.

Your host machine should detect the board. You can issue the dmesg command from the command
line, or you can open the /var/log/messages file to verify that the board has been detected. A
message similar to the following shows a successful connection:

Jan 6 20:00:51 localhost kernel: usb 4-2: new full speed USB device using
uhci_hcd and address 127

Jan 6 20:00:51 localhost kernel: usb 4-2: configuration #1 chosen from 1
choice

128

http://openocd.org/
https://cmake.org/download/

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

Jan 6 20:00:51 localhost kernel: ftdi_sio 4-2:1.0: FTDI USB Serial Device
converter detected

Jan 6 20:00:51 localhost kernel: ftdi_sio: Detected FT2232C

Jan 6 20:00:51 localhost kernel: usb 4-2: FTDI USB Serial Device converter
now attached to ttyUSBO

Jan 6 20:00:51 localhost kernel: ftdi_sio 4-2:1.1: FTDI USB Serial Device
converter detected

Jan 6 20:00:51 localhost kernel: ftdi_sio: Detected FT2232C

Jan 6 20:00:51 localhost kernel: usb 4-2: FTDI USB Serial Device converter
now attached to ttyUSB1

Note

Marvell development boards have an FTDI chip that exposes two USB interfaces to the
host. The first interface (t tyUsBo) is to the MCU's JTAG functionality. The second interface
(ttyUusB1) is to the MCU's physical UARTx port.

2. Open a serial connection to the ttyUsB1 interface with the following settings:

Terminal Setting Value
BAUD rate 115200
Data 8 bit
Parity none
Stop 1 bit
Flow control none

For example, if you are using minicom, do the following:

a. Start minicom in setup mode:

minicom -s

b. Go to Serial Port Setup.
¢. Configure the following settings:

- Serial Device : /dev/ttyUSB1
- Lockfile Location : /var/lock
- Callin Program :

Callout Program :

- Bps/Par/Bits : 115200 8N1

- Hardware Flow Control : No

- Software Flow Control : No

QHMEQ-OQmE P
|

Go to Exit to start showing messages from the serial console.

For more information about installing a terminal emulator to set up a serial connection, see
Installing a terminal emulator (p. 79).

Build, flash, and run the FreeRTOS demo project

You can use CMake and the utility scripts included with the M320 port of FreeRTOS to build, flash, and
run the FreeRTOS demo project from the command line. Or you can use an IDE to build your project.

129

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

Generate the demo build files with CMake

Issue the following command from the root of the FreeRTOS download to generate the demo build files
with CMake:

cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S
DAFR_ENABLE_TESTS=0

-B build-directory -

or

cmake -DVENDOR=marvell -DBOARD=mw322 -DCOMPILER=arm-gcc -S
DAFR_ENABLE_TESTS=0

-B build-directory -

You should see output similar to the following:

===Configuration for Amazon FreeRTOS:
1.4.7
vl.4.7-128-gc28d@a266

Version:
Git version:

Target microcontroller:

vendor:

board:

description:

family:

data ram size:
program memory size:

Host platform:

0S:

Toolchain:
Toolchain path:
(Make generator:

Amazon FreeRTOS modules:

Modules to build:

Enabled by user:

Enabled by dependency:

3rdparty dependencies:

Available demos:

Available tests:

Marvell

mw300_rd

Marvell Board for AmazonFreeRTOS
Wireless Microcontroller

512KB

2MB

Darwin-17.7.0Q
arm-gcc
/usr/local
Unix Makefiles

bufferpool, crypto, freertos_plus_tcp, greengrass, kernel,
mgtt, pkcsll, secure_sockets, shadow, tls, wifi
greengrass, mgtt, pkcsll, secure_sockets, shadow, wifi
bufferpool, common, crypto, demo_base, freertos,
freertos_plus_tcp, kernel, pkcsll_mbedtls, tls, utils

jsmn, mbedtls, pkcsll

demo_greengrass, demo_key_provisioning, demo_logging,
demo_mgtt_hello_world, demo_mqgtt_pubsub, demo_shadow, demo_tcp

Build the demo with make

Issue the following commands to build the demo:

cd build-directory

make all -j4

You should see output similar to the following:

130

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

You can use a similar set of commands to build a test project:

cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S . -B build-directory -
DAFR_ENABLE_TESTS=1

or

cmake -DVENDOR=marvell -DBOARD=mw322 -DCOMPILER=arm-gcc -S . -B build-directory -
DAFR_ENABLE_TESTS=1

cd build-directory

make all -j4

Note
You must generate the build files with the cmake command every time you switch between the
aws_demos project and the aws_tests project.

Flash the application

The flashprog.py script is used to program your board's flash memory. The script is written in Python
2.7.

Before you can flash the demo application image to the board, prepare the board's flash memory with a
layout file and the Boot2 bootloader.

To load the layout file and boot2 bootloader

1. Change directories to the root of the FreeRTOS download.
2. Runthe flashprog.py Python script with the -1 and --boot2 options:

./vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py -1 ./vendors/marvell/
WMSDK/mw320/sdk/tools/OpenOCD/mw300/layout.txt --boot2 ./vendors/marvell/WMSDK/mw320/
boot2/bin/boot2.bin

The flashprog script writes a layout to the flash, according to the default layout configuration
defined in vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/mw300/layout.txt. The
layout holds partitioned information about the flash.

131

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

The script also writes a bootloader to the flash. The bootloader is located at vendors/marvell/
WMSDK/mw320/sdk/boot2/bin/boot2.bin. The bootloader loads the microcontroller's firmware
image after it is flashed to the board.

imilar to the following:

alted

After you flash the layout file and bootloader to the board, flash some firmware to the board. The Wi-Fi
chipset requires that its own firmware is present in flash memory.

To flash the Wi-Fi firmware

Change directories to the root of the FreeRTOS download.
2. Runthe flashprog.py Python script with the --wififw option:

./vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --wififw ./vendors/
marvell /WMSDK/mw320/wifi-firmware/mw30x/mw30x_ uapsta_W14.88.36.p135.bin

The flashprog script flashes the firmware to the board.

You should see output similar to the following:

With the layout, bootloader, and Wi-Fi firmware flashed to the board, you can flash the demo application
to the board and run it.

To flash and run the demo

1. Change directories to the root of the FreeRTOS download.
2. Runthe flashprog.py Python script with the --mcufw and -r options:

132

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

./vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --mcufw ./build/marvell/
mw320/aws_demos.bin -r

The flashprog script flashes the demo to the board. Running the script with the -r option resets
the board.

Reset the board.

You should see logs for the demo application. The output should be similar to the following:
d

00477 (mfg:

Note

To flash the aws_tests application, use the same command, but specify the
aws_tests.bin file instead of aws_demos.bin.

If you are only changing the application, you don't need to reload the layout, bootloader,
and Wi-Fi firmware. If you change the layout, you might need to reload all of the
components.

When you build, flash, and run the demo, you should see output similar to the following:

133

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

etwOrk connection successtul.

ich use network...

mazonaws . com

returne
sful publishe

hoing]
MQTTEcho] Echo
age returne
ul ed 'Hello World
1
World

i 11
arld 11 ACK'

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

Connecting to the GNU Debugger

To connect to the GNU Debugger (GDB)

1. Change directories:

cd freertos/vendors/marvell/WMSDK/mw320

2. Connect to GDB with the arm-none-eabi-gdb command:

arm-none-eabi-gdb -x ./sdk/tools/OpenOCD/gdbinit ../../../../build/vendors/marvell/
boards/mw300_rd/aws_demos.axf

If you are debugging a FreeRTOS test application, target aws_tests.axf instead.

Loading the application to SRAM

You can load the demo to your device's static random-access memory (SRAM) and then execute the
application on your device with the ramload. py script. Using ramload. py to load and execute the

134

https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Marvell MW320 AWS loT Starter Kit

application is a faster operation than loading to flash memory with the £1lashprog. py script, making it
a more efficient approach to iterative development.

Note
The ramload.py script is written in Python 2.7.

To load to SRAM

1. Change directories to the root of the FreeRTOS download.

2. Runthe ramload.py Python script on the aws_demos . axf file:

./vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/ramload.py ./build/vendors/marvell/
boards/mw300_rd/aws_demos.axf

You should see logs for the demo application. The output should be similar to the following:

Note
Images loaded to SRAM are erased on reboot.

Enabling other logs

You might need to enable other logging messages to troubleshoot problems that you encounter while
getting started with this board.

To enable board-specific logs

1. Openthemain.c file of the project that you are working in (for example, aws_tests or
aws_demos).

2. Enable the call to wmstdio_init(UARTO_ID, 0) inthe function prvMiscInitialization.

To enable Wi-Fi logs

1. Open vendors/marvell /WMSDK/mw320/sdk/src/incl/autoconf.h.
2. Enable the macro CONFIG_WLCMGR_DEBUG.

135

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

Using an IDE for development and debugging

Set up an IDE
You can use an IDE for developing and debugging applications, and for visualizing your projects.

If you are using the Eclipse IDE, for example, use the perm fix.sh script to configure some permissions:

./vendors/marvell /WMSDK/mw320/tools/bin/perm fix.sh

To set up Eclipse
1. Install Java Run Time Environment (JRE) from Oracle.

JRE is required to run Eclipse. The JRE version (32-bit or 64-bit) must match the version of Eclipse
(32-bit or 64-bit) that you install.

2. Download Eclipse IDE for C/C++ Developers from Eclipse.org. Eclipse versions 4.9.0 and later are
supported.

3. Extract the downloaded archive folder, and then run the platform-specific Eclipse executable to start
the IDE.

Build the demo with an IDE

You can open and build the demo project's build files in your IDE instead of building the demo directly
from the command line with make. Opening the files in an IDE can help you visualize the project before
you build it.

Note
You must generate the build files with the cmake command every time you switch between the
aws_demos project and the aws_tests project.

To build the project with Eclipse

Open Eclipse.
Choose your workspace to create a project.
On the Select a wizard page, expand C/C++, and choose Makefile Project with Existing Code.

A wnN =

On the Import existing code page, browse to the location of the aws_demos source code, choose
aws_demos, and then choose Finish.

5. From the Project Explorer, right-click aws_demos, and then build the project.

A successful build generates the aws_demos.bin executable.

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Marvell MW322 AWS loT
Starter Kit

This tutorial provides instructions for getting started with the Marvell MW322 AWS loT Starter Kit.

The Marvell MW322 AWS loT Starter Kit includes the Marvell MW322, a Cortex M4 microcontroller
development board that integrates 802.11b/g/n Wi-Fi on a single microcontroller chip. The kit is FCC-

136

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.eclipse.org

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

certified and available for sale. The MW322 module is also FCC-certified and available for customization
and volume sale.

If you do not have the Marvell MW322 AWS loT Starter Kit, visit the AWS Partner Device Catalog to
purchase one from our partner.

Note
In this tutorial, we use Ubuntu 16.04 for developing and debugging applications for the Marvell
MW322. Other operating systems might work, but are not officially supported.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.
4. Loading the application binary image to your board, and then running the application.

5. Interacting with the application running on your board across a serial connection, for monitoring and
debugging purposes.

Set up your development environment

FreeRTOS includes some scripts for installing required third-party libraries, and for building and flashing
applications to the board. These scripts are in the vendors/marvell /WMSDK/mw320/sdk directory.

The AWS loT Starter Kit also includes pre-flashed wireless microcontroller demo project firmware.

In addition to the software that is bundled with the M320 AWS IoT Starter Kit and its FreeRTOS port, you
must have the following software components installed on your host machine:

« The GCC toolchain, to cross compile your application. Versions 4_9_2015qg3 and later are supported.

« OpenOCD, to access various JTAG functions for programming the board's flash memory, and for
downloading and running firmware images in memory.

« The CMake build system. Versions 3.13 and later are supported.
« (Optional) A supported IDE, for application development and debugging.

Install required third-party libraries with installpkgs.sh

The vendors/marvell /WMSDK/mw320/sdk/tools/bin/installpkgs. sh script attempts to
autodetect the machine type and install some required libraries, which include:

« Clibraries

o A USB library
o An FTDI library
e ncurses

« Python

o LaTeX

137

https://devices.amazonaws.com/detail/a3G0h000000OblKEAS/Marvell-MW322

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

Note

The installpkgs.sh script includes instructions for installing packages using apt-get for
32-bit and 64-bit Ubuntu environments and yum for 32-bit and 64-bit Fedora environments. If
you have problems running the script on your distribution, open the script file, find the list of
required packages, and install them manually.

With root privileges, issue the following command from the root directory of your FreeRTOS download:

./vendors/marvell /WMSDK/mw320/sdk/tools/bin/installpkgs.sh

You can configure the permissions on your Linux host machine to allow flashprog and ramload
operations without sudo. To do this, issue the following command:

./vendors/marvell /WMSDK/mw320/sdk/tools/bin/perm fix.sh

Note
If you are using the Eclipse IDE, you must configure these permissions.

Set up the toolchain

The FreeRTOS port for the this board is configured to use the GNU toolchain by default. For the
Makefiles to invoke the correct compiler toolchain, the GNU compiler toolchain binaries must be included
in the user's PATH variable. The GNU toolchain binaries must also be prefixed with arm-none-eabi-.

The GCC toolchain can be used with the GNU Debugger (GDB) for debugging with the OpenOCD
software that interfaces with JTAG.

To set up the GCC toolchain on a Linux machine

1. Download the toolchain tarball from launchpad. The file name is gcc-arm-none-
eabi-4_9-201593-20150921-1linux.tar.bz2.

2. Copy the file to a directory of your choice. Make sure that there are no spaces in the directory path.
3. Untar the file with the following command:

tar -vxf file-name

4. Add the toolchain binaries to your system PATH.

For example, open the .profile file in your $HOME directory, and append the following line to the
end of the file:

PATH="$PATH:path/gcc-arm-none-eabit-4_9_2015_qg3/bin"

Where path is the full directory path to the gcc-arm-none-eabit-4_9_2015_g3 folder.

Note

Some distributions of Ubuntu include a Debian version of the GCC cross compiler. If your
distribution includes a native cross compiler, remove it, and follow the steps to set up the GCC
compiler toolchain.

Set up OpenOCD

OpenOCD version 0.9 is required. If an earlier version is installed on your host machine, remove it using
your distribution's uninstall process.

You can install OpenOCD with standard Linux package managers. For example:

138

https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q3-update

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

apt-get install openocd

The default version of OpenOCD installed on your machine depends on the version of your Linux kernel.
If you cannot use a package manager to install OpenOCD version 0.9, follow these steps:

Download the OpenOCD version 0.9 source code from OpenOCD.org.
2. Extract the openocd download, and then change directories to the extracted folder.
3. Enable FTDI and JLink:

./configure --enable-ftdi --enable-jlink

4. Make openocd:

make install

Install CMake

The CMake build system is required to build the FreeRTOS demo and test applications for this device.
FreeRTOS supports versions 3.13 and later.

You can download the latest version of CMake from CMake.org. Both source and binary distributions are
available.

For more details about using CMake with FreeRTOS, see Using CMake with FreeRTOS (p. 80).
Establish a serial connection

To establish a serial connection between your host machine and your board
1. Attach one end of a USB cable to your host machine, and the other end to your board.

Your host machine should detect the board. You can issue the dmesg command from the command
line, or you can open the /var/log/messages file to verify that the board has been detected. A
message similar to the following shows a successful connection:

Jan 6 20:00:51 localhost kernel: usb 4-2: new full speed USB device using
uhci_hcd and address 127

Jan 6 20:00:51 localhost kernel: usb 4-2: configuration #1 chosen from 1
choice

Jan 6 20:00:51 localhost kernel: ftdi_sio 4-2:1.0: FTDI USB Serial Device
converter detected

Jan 6 20:00:51 localhost kernel: ftdi_sio: Detected FT2232C

Jan 6 20:00:51 localhost kernel: usb 4-2: FTDI USB Serial Device converter
now attached to ttyUSBO

Jan 6 20:00:51 localhost kernel: ftdi_sio 4-2:1.1: FTDI USB Serial Device
converter detected

Jan 6 20:00:51 localhost kernel: ftdi_sio: Detected FT2232C

Jan 6 20:00:51 localhost kernel: usb 4-2: FTDI USB Serial Device converter
now attached to ttyUSB1

Note

Marvell development boards have an FTDI chip that exposes two USB interfaces to the
host. The first interface (ttyUsBO0) is to the MCU's JTAG functionality. The second interface
(ttyusB1) is to the MCU's physical UARTx port.

2. Open a serial connection to the ttyUsB1 interface with the following settings:

139

http://openocd.org/
https://cmake.org/download/

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

Terminal Setting Value
BAUD rate 115200
Data 8 bit
Parity none
Stop 1 bit
Flow control none

For example, if you are using minicom, do the following:

a. Start minicom in setup mode:

minicom -s

b. Go to Serial Port Setup.
Configure the following settings:

- Serial Device : /dev/ttyUSB1
- Lockfile Location : /var/lock
- Callin Program :

Callout Program :

- Bps/Par/Bits : 115200 8N1

- Hardware Flow Control : No

- Software Flow Control : No

QHMEO-OQmE P
|

Go to Exit to start showing messages from the serial console.

For more information about installing a terminal emulator to set up a serial connection, see
Installing a terminal emulator (p. 79).

Build, flash, and run the FreeRTOS demo project

You can use CMake and the utility scripts included with the M320 port of FreeRTOS to build, flash, and
run the FreeRTOS demo project from the command line. Or you can use an IDE to build your project.

Generate the demo build files with CMake

Issue the following command from the root of the FreeRTOS download to generate the demo build files
with CMake:

cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S . -B build-directory -
DAFR_ENABLE_TESTS=0

or

cmake -DVENDOR=marvell -DBOARD=mw322 -DCOMPILER=arm-gcc -S . -B build-directory -
DAFR_ENABLE_TESTS=0

You should see output similar to the following:

140

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

===Configuration for Amazon FreeRTOS:
Version: 1.4.7
Git version: vl.4.7-128-gc28d@a266

Target microcontroller:
vendor: Marvell
board: mw300_rd
description: Marvell Board for AmazonFreeRTOS
family: Wireless Microcontroller
data ram size: 512KB
program memory size: ZMB

Host platform:
0S: Darwin-17.7.0
Toolchain: arm-gcc
Toolchain path: /usr/local
(Make generator: Unix Makefiles

Amazon FreeRTOS modules:

Modules to build: bufferpool, crypto, freertos_plus_tcp, greengrass, kernel,
matt, pkcsll, secure_sockets, shadow, tls, wifi

Enabled by user: greengrass, mqtt, pkcsll, secure_sockets, shadow, wifi

Enabled by dependency: bufferpool, common, crypto, demo_base, freertos,
freertos_plus_tcp, kernel, pkcsll _mbedtls, tls, utils

3rdparty dependencies: jsmn, mbedtls, pkcsll

Available demos: demo_greengrass, demo_key_provisioning, demo_logging,
demo_mgtt_hello_world, demo_mgtt_pubsub, demo_shadow, demo_tcp

Available tests:

Build the demo with make

Issue the following commands to build the demo:

cd build-directory

make all -j4

You should see output similar to the following:

You can use a similar set of commands to build a test project:

cmake -DVENDOR=marvell -DBOARD=mw320 -DCOMPILER=arm-gcc -S . -B build-directory -
DAFR_ENABLE_TESTS=1

or

141

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

cmake -DVENDOR=marvell -DBOARD=mw322 -DCOMPILER=arm-gcc -S . -B build-directory -
DAFR_ENABLE_TESTS=1

cd build-directory

make all -j4

Note
You must generate the build files with the cmake command every time you switch between the
aws_demos project and the aws_tests project.

Flash the application

The flashprog.py script is used to program your board's flash memory. The script is written in Python
2.7.

Before you can flash the demo application image to the board, prepare the board's flash memory with a
layout file and the Boot2 bootloader.

To load the layout file and boot2 bootloader

1. Change directories to the root of the FreeRTOS download.
2. Runthe flashprog.py Python script with the -1 and --boot2 options:

./vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py -1 ./vendors/marvell/
WMSDK/mw320/sdk/tools/OpenOCD/mw300/layout.txt --boot2 ./vendors/marvell/WMSDK/mw320/
boot2/bin/boot2.bin

The flashprog script writes a layout to the flash, according to the default layout configuration
defined in vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/mw300/layout.txt. The
layout holds partitioned information about the flash.

The script also writes a bootloader to the flash. The bootloader is located at vendors/marvell/
WMSDK/mw320/sdk/boot2/bin/boot2.bin. The bootloader loads the microcontroller’'s firmware
image after it is flashed to the board.

You should see output similar to the following:

After you flash the layout file and bootloader to the board, flash some firmware to the board. The Wi-Fi
chipset requires that its own firmware is present in flash memory.

142

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

To flash the Wi-Fi firmware

1. Change directories to the root of the FreeRTOS download.
2. Runthe flashprog.py Python script with the --wififw option:

./vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --wififw ./vendors/
marvell /WMSDK/mw320/wifi-firmware/mw30x/mw30x_uapsta_W14.88.36.p135.bin

The flashprog script flashes the firmware to the board.

You should see output similar to the following:

t d

With the layout, bootloader, and Wi-Fi firmware flashed to the board, you can flash the demo application
to the board and run it.

To flash and run the demo

1. Change directories to the root of the FreeRTOS download.
2. Runthe flashprog.py Python script with the --mcufw and -r options:

./vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/flashprog.py --mcufw ./build//marvell/
mw320/aws_demos.bin -r

The flashprog script flashes the demo to the board. Running the script with the -r option resets
the board.

Reset the board.

You should see logs for the demo application. The output should be similar to the following:

143

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

Note

To flash the aws_tests application, use the same command, but specify the
aws_tests.bin file instead of aws_demos.bin.

If you are only changing the application, you don't need to reload the layout, bootloader,
and Wi-Fi firmware. If you change the layout, you might need to reload all of the
components.

When you build, flash, and run the demo, you should see output similar to the following:

144

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

etwOrk connection successtul.

ich use network...

mazonaws . com

returne
sful publishe

hoing]
MQTTEcho] Echo
age returne
ul ed 'Hello World
1
World

i 11
arld 11 ACK'

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

Connecting to the GNU Debugger

To connect to the GNU Debugger (GDB)

1. Change directories:

cd freertos/vendors/marvell/WMSDK/mw320

2. Connect to GDB with the arm-none-eabi-gdb command:

arm-none-eabi-gdb -x ./sdk/tools/OpenOCD/gdbinit ../../../../build/vendors/marvell/
boards/mw300_rd/aws_demos.axf

If you are debugging a FreeRTOS test application, target aws_tests.axf instead.

Loading the application to SRAM

You can load the demo to your device's static random-access memory (SRAM) and then execute the
application on your device with the ramload. py script. Using ramload. py to load and execute the

145

https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Marvell MW322 AWS loT Starter Kit

application is a faster operation than loading to flash memory with the £1lashprog. py script, making it
a more efficient approach to iterative development.

Note
The ramload.py script is written in Python 2.7.

To load to SRAM

1. Change directories to the root of the FreeRTOS download.

2. Runthe ramload.py Python script on the aws_demos . axf file:

./vendors/marvell /WMSDK/mw320/sdk/tools/OpenOCD/ramload.py ./build/vendors/marvell/
boards/mw300_rd/aws_demos.axf

You should see logs for the demo application. The output should be similar to the following:

Note
Images loaded to SRAM are erased on reboot.

Enabling other logs

You might need to enable other logging messages to troubleshoot problems that you encounter while
getting started with this board.

To enable board-specific logs

1. Openthemain.c file of the project that you are working in (for example, aws_tests or
aws_demos).

2. Enable the call to wmstdio_init(UARTO_ID, 0) inthe function prvMiscInitialization.

To enable Wi-Fi logs

1. Open vendors/marvell /WMSDK/mw320/sdk/src/incl/autoconf.h.
2. Enable the macro CONFIG_WLCMGR_DEBUG.

146

FreeRTOS User Guide
MediaTek MT7697Hx development kit

Using an IDE for development and debugging
Set up an IDE
You can use an IDE for developing and debugging applications, and for visualizing your projects.

If you are using the Eclipse IDE, for example, use the perm fix.sh script to configure some permissions:

./vendors/marvell /WMSDK/mw320/tools/bin/perm fix.sh

To set up Eclipse
1. Install Java Run Time Environment (JRE) from Oracle.

JRE is required to run Eclipse. The JRE version (32-bit or 64-bit) must match the version of Eclipse
(32-bit or 64-bit) that you install.

2. Download Eclipse IDE for C/C++ Developers from Eclipse.org. Eclipse versions 4.9.0 and later are
supported.

3. Extract the downloaded archive folder, and then run the platform-specific Eclipse executable to start
the IDE.

Build the demo with an IDE

You can open and build the demo project's build files in your IDE instead of building the demo directly
from the command line with make. Opening the files in an IDE can help you visualize the project before
you build it.

Note
You must generate the build files with the cmake command every time you switch between the
aws_demos project and the aws_tests project.

To build the project with Eclipse

1. Open Eclipse.

2. Choose your workspace to create a project.

3. Onthe Select a wizard page, expand C/C++, and choose Makefile Project with Existing Code.
4

On the Import existing code page, browse to the location of the aws_demos source code, choose
aws_demos, and then choose Finish.

5. From the Project Explorer, right-click aws_demos, and then build the project.

A successful build generates the aws_demos .bin executable.

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the MediaTek MT7697HXx
development kit

This tutorial provides instructions for getting started with the MediaTek MT7697Hx Development Kit.
If you do not have the MediaTek MT7697Hx Development Kit, visit the AWS Partner Device Catalog to
purchase one from our partner.

147

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.eclipse.org
https://devices.amazonaws.com/detail/a3G0L00000AAOmPUAX/MT7697Hx-Development-Kit

FreeRTOS User Guide
MediaTek MT7697Hx development kit

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.
3. Loading the application binary image to your board, and then running the application.

4. Interacting with the application running on your board across a serial connection, for monitoring and
debugging purposes.

Set up your development environment

Before you set up your environment, connect your computer to the USB port on the MediaTek
MT7697Hx Development Kit.

Download and install Keil MDK

You can use the GUI-based Keil Microcontroller Development Kit (MDK) to configure, build, and run
FreeRTOS projects on your board. Keil MDK includes the pVision IDE and the pVision Debugger.

Note
Keil MDK is supported on Windows 7, Windows 8, and Windows 10 64-bit machines only.

To download and install Keil MDK

Go to the Keil MDK Getting Started page, and choose Download MDK-Core.
Enter and submit your information to register with Keil.
Right-click the MDK executable and save the Keil MDK installer to your computer.

Open the Keil MDK installer and follow the steps to completion. Make sure that you install the
MediaTek device pack (MT76x7 Series).

AUwnN =

Establish a serial connection

To establish a serial connection with the MediaTek MT7697Hx Development Kit, you must install
the Arm Mbed Windows serial port driver. You can download the driver from Mbed. Follow the steps
on the Windows serial driver page to download and install the driver for the MediaTek MT7697Hx
Development Kit.

After you install the driver, a COM port appears in the Windows Device Manager. For debugging, you can
open a session to the port with a terminal utility tool such as HyperTerminal or TeraTerm.

Note
If you are having trouble connecting to your board after you install the driver, you might need to
reboot your machine.

Build and run the FreeRTOS demo project with Keil MDK

To build the FreeRTOS demo project in Keil pVision

1. From the Start menu, open Keil pVision 5.

148

http://www2.keil.com/mdk5/install/
https://os.mbed.com/docs/latest/tutorials/windows-serial-driver.html

FreeRTOS User Guide
MediaTek MT7697Hx development kit

2. Openthe projects/mediatek/mt7697hx-dev-kit/uvision/aws_demos/
aws_demos .uvprojx project file.

3. From the menu, choose Project, and then choose Build target.

After the code is built, you see the demo executable file at projects/mediatek/mt7697hx-dev-
kit/uvision/aws_demos/out/Objects/aws_demo.axf.

To run the FreeRTOS demo project

1. Set the MediaTek MT7697Hx Development Kit to PROGRAM mode.
To set the kit to PROGRAM mode, press and hold the PROG button. With the PROG button still
pressed, press and release the RESET button, and then release the PROG button.

2. From the menu, choose Flash, and then choose Configure Flash Tools.

3. In Options for Target 'aws_demo', choose the Debug tab. Select Use, set the debugger to CMSIS-
DAP Debugger, and then choose OK.

4. From the menu, choose Flash, and then choose Download.

pVision notifies you when the download is complete.

5. Use a terminal utility to open the serial console window. Set the serial port to 115200 bps, none-
parity, 8-bits, and 1 stop-bit.

6. Choose the RESET button on your MediaTek MT7697Hx Development Kit.

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

Debugging FreeRTOS projects in Keil pVision

Currently, you must edit the MediaTek package that is included with Keil pVision before you can debug
the FreeRTOS demo project for MediaTek with Keil pVision.

To edit the MediaTek package for debugging FreeRTOS projects

1. Find and open the Keil_v5\ARM\PACK)\.Web\MediaTek.MTx.pdsc file in your Keil MDK
installation folder.

2. Replace all instances of flag = Read32(0x20000000); with flag = Read32(0x0010FBFC);.

3. Replace all instances of Write32(0x20000000, 0x76877697); withWrite32(0x0010FBFC,
0x76877697);.

To start debugging the project

1. From the menu, choose Flash, and then choose Configure Flash Tools.

149

https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
MediaTek MT7697Hx development kit

2. Choose the Target tab, and then choose Read/Write Memory Areas. Confirm that IRAM1 and IRAM2
are both selected.

3. Choose the Debug tab, and then choose CMSIS-DAP Debugger.

Open vendors/mediatek/boards/mt7697hx-dev-kit/aws_demos/application_code/
main.c, and set the macro MTK_DEBUGGER to 1.

Rebuild the demo project in pVision.
Set the MediaTek MT7697Hx Development Kit to PROGRAM mode.

To set the kit to PROGRAM mode, press and hold the PROG button. With the PROG button still
pressed, press and release the RESET button, and then release the PROG button.

7. From the menu, choose Flash, and then choose Download.

WVision notifies you when the download is complete.
Press the RESET button on your MediaTek MT7697Hx Development Kit.

From the pVision menu, choose Debug, and then choose Start/Stop Debug Session. The Call Stack
+ Locals window opens when you start the debug session.

10. From the menu, choose Debug, and then choose Stop to pause the code execution. The program
counter stops at the following line:

{ volatile int wait_ice = 1 ; while (wait_ice) ; }

11. In the Call Stack + Locals window, change the value for wait_ice to 0.
12. Set breakpoints in your project's source code, and run the code.

Troubleshooting the IDE debugger settings
If you are having trouble debugging an application, your debugger settings might be incorrect.

To verify that your debugger settings are correct

1. Open Keil pVision.

2. Right-click the aws_demos project, choose Options, and under the Utilities tab, choose Settings,
next to “-- Use Debug Driver --".

3. Verify that the settings under the Debug tab appear as follows:

CMSIS-DAP Cortex-M Target Driver Setup x

Debug]Trace | Flash Download | Pack

CMSIS-DAP - JTAG/SW Adapter SW Device
[Any - IDCODE Device Name
SWDIO | & (x2BAD1477 ARM CoreSight SW-DP |
Serial No:
Firmware Version: |1.0 |
~ Pot:|SW ~| o
Max Clock: | 10MHz - | | | | ’_
Debug
Connect & Reset Options Cache Options Download Options
Connect: [Noma! v | Reset:|[SYSRESETREQ v| | | ¥ Cache Code [Verfy Code Download
I T [¥ Cache Memory I~ Download to Flash
7 Log Debug Accesses [Stop after Reset

ok | [Cancel |

150

FreeRTOS User Guide
Microchip Curiosity PIC32MZ EF

4. Verify that the settings under the Flash Download tab appear as follows:

CMSIS-DAP Cortex-M Target Driver Setup b o

Debug] Trace Flash Download l Pack]

Download Function RAM for Algorithm
Lopp ¢ EaseFulChip [V Program
(¢ Erase Sectors [V Verfy Start: | (20000000 Size: |(x00001000

(" DonotErase [~ Resetand Run

Programming Algorithm

Description Device Size Device Type Address Range

7687 32Mbits SIP Flash 4M On-chip Hash 10000000H - 103FFFFFH

Start: |Dx1DDDDDDD Size: | (00400000

Add | Remove |

oK | Cancel | Help I

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Microchip Curiosity PIC32MZ
EF

This tutorial provides instructions for getting started with the Microchip Curiosity PIC32MZ EF. If you do
not have the Microchip Curiosity PIC32MZ EF bundle, visit the AWS Partner Device Catalog to purchase
one from our partner.

The bundle includes the following items:

« Curiosity PIC32MZ EF Development Board
o MikroElectronika USB UART click Board

« MikroElectronika WiFi 7 click Board

PIC32 LAN8720 PHY daughter board

You also need the following items for debugging:

« MPLAB Snap In-Circuit Debugger
« (Optional) PICkit 3 Programming Cable Kit

Before you begin, you must configure AWS loT and your FreeRTOS download to connect your device to
the AWS Cloud. See First steps (p. 72) for instructions.

Important

« In this topic, the path to the FreeRTOS download directory is referred to as freertos.

» Space characters in the freertos path can cause build failures. When you clone or copy the
repository, make sure the path that you create doesn't contain space characters.

o The maximum length of a file path on Microsoft Windows is 260 characters. Long FreeRTOS
download directory paths can cause build failures.

151

https://devices.amazonaws.com/detail/a3G0L00000AANscUAH/Curiosity-PIC32MZ-EF-Amazon-FreeRTOS-Bundle
https://www.microchip.com/Developmenttools/ProductDetails/DM320104
https://www.mikroe.com/usb-uart-click
https://www.mikroe.com/wifi-7-click
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac320004-3
https://www.microchip.com/Developmenttools/ProductDetails/PG164100
https://www.microchip.com/TPROG001

FreeRTOS User Guide
Microchip Curiosity PIC32MZ EF

Overview

This tutorial contains instructions for the following getting started steps:

1.
2.

Connecting your board to a host machine.

Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

. Cross compiling a FreeRTOS demo application to a binary image.

4. Loading the application binary image to your board, and then running the application.

. Interacting with the application running on your board across a serial connection, for monitoring and

debugging purposes.

Set up the Microchip Curiosity PIC32MZ EF hardware

1.

Connect the MikroElectronika USB UART click Board to the microBUS 1 connector on the Microchip
Curiosity PIC32MZ EF.

Connect the PIC32 LAN8720 PHY daughter board to the J18 header on the Microchip Curiosity
PIC32MZ EF.

Connect the MikroElectronika USB UART click Board to your computer using a USB A to USB mini-B
cable.

To connect your board to the internet, use one of the following options:

¢ To use Wi-Fi, connect the MikroElectronika Wi-Fi 7 click Board to the microBUS 2 connector on the
Microchip Curiosity PIC32MZ EF. See Configuring the FreeRTOS demos (p. 75).

« To use Ethernet to connect the Microchip Curiosity PIC32MZ EF Board to the internet, connect the
PIC32 LAN8720 PHY daughter board to the J18 header on the Microchip Curiosity PIC32MZ EF.
Connect one end of an Ethernet cable to the LAN8720 PHY daughter board. Connect the other
end to your router or other internet port.

If not done already, solder the angle connector to the ICSP header on the Microchip Curiosity
PIC32MZ EF.

Connect one end of the ICSP cable from the PICkit 3 Programming Cable Kit to the Microchip
Curiosity PIC32MZ EF.

If you don't have the PICkit 3 Programming Cable Kit, you can use M-F Dupont wire jumpers to wire
the connection instead. Note that the white circle signifies the position of Pin 1.

Connect the other end of the ICSP cable (or jumpers) to the MPLAB Snap Debugger. Pin 1 of the 8-
pin SIL Programming Connector is marked by the black triangle on the bottom right of the board.

Make sure that any cabling to Pin 1 on the Microchip Curiosity PIC32MZ EF, signified by the white
circle, aligns with Pin 1 on the MPLAB Snap Debugger.

For more information about the MPLAB Snap Debugger, see the MPLAB Snap In-Circuit Debugger
Information Sheet.

Set up the Microchip Curiosity PIC32MZ EF hardware using
PICkit On Board (PKOB)

We recommend that you follow the setup procedure in the previous section. However, you can
evaluate and run FreeRTOS demos with basic debugging using the integrated PICkit On Board (PKOB)
programmer/debugger by following these steps.

152

http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB%20Snap%20In-Circuit%20Debugger%20IS%20DS50002787A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB%20Snap%20In-Circuit%20Debugger%20IS%20DS50002787A.pdf

FreeRTOS User Guide
Microchip Curiosity PIC32MZ EF

Connect the MikroElectronika USB UART click Board to the microBUS 1 connector on the Microchip
Curiosity PIC32MZ EF.

To connect your board to the internet, do one of the following:

« To use Wi-Fi, connect the MikroElectronika Wi-Fi 7 click Board to the microBUS 2 connector on
the Microchip Curiosity PIC32MZ EF. (Follow the steps "To configure your Wi-Fi" in Configuring the
FreeRTOS demos (p. 75).

« To use Ethernet to connect the Microchip Curiosity PIC32MZ EF Board to the internet, connect the
PIC32 LAN8720 PHY daughter board to the J18 header on the Microchip Curiosity PIC32MZ EF.
Connect one end of an Ethernet cable to the LAN8720 PHY daughter board. Connect the other
end to your router or other internet port.

Connect the USB micro-B port named "USB DEBUG" on the Microchip Curiosity PIC32MZ EF Board to
your computer using a USB type A to USB micro-B cable.

Connect the MikroElectronika USB UART click Board to your computer using a USB A to USB mini-B
cable.

Set up your development environment

Note

The FreeRTOS project for this device is based on MPLAB Harmony v2. To build the project, you
need to use versions of the MPLAB tools that are compatible with Harmony v2, like v2.10 of the
MPLAB XC32 Compiler and versions 2.X.X of the MPLAB Harmony Configurator (MHC).

Install Python version 3.x or later.
Install the MPLAB X IDE:

« MPLAB X Integrated Development Environment for Windows
« MPLAB X Integrated Development Environment for macOS

« MPLAB X Integrated Development Environment for Linux
Install the MPLAB XC32 Compiler:

« MPLAB XC32/32++ Compiler for Windows

e« MPLAB XC32/32++ Compiler for macOS

« MPLAB XC32/32++ Compiler for Linux

Start up a UART terminal emulator and open a connection with the following settings:

« Baud rate: 115200
« Data: 8 bit

« Parity: None

« Stop bits: 1

« Flow control: None

Build and run the FreeRTOS demo project

Open the FreeRTOS demo in the MPLAB IDE

1.

Open MPLAB IDE. If you have more than one version of the compiler installed, you need to select the
compiler that you want to use from within the IDE.

From the File menu, choose Open Project.
Browse to and open projects/microchip/curiosity_pic32mzef/mplab/aws_demos.
Choose Open project.

153

https://www.python.org/downloads/
http://www.microchip.com/mplabx-ide-windows-installer
http://www.microchip.com/mplabx-ide-osx-installer
http://www.microchip.com/mplabx-ide-linux-installer
http://www.microchip.com/mplabxc32windows
http://www.microchip.com/mplabxc32osx
http://www.microchip.com/mplabxc32linux

FreeRTOS User Guide
Nordic nRF52840-DK

Note

When you open the project for the first time, you might get an error message about the
compiler. In the IDE, navigate to Tools, Options, Embedded, and then select the compiler that
you are using for your project.

Run the FreeRTOS demo project

1. Rebuild your project.
2. On the Projects tab, right-click the aws_demos top-level folder, and then choose Debug.
3. When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

Build the FreeRTOS demo with CMake

If you prefer not to use an IDE for FreeRTOS development, you can alternatively use CMake to build and
run the demo applications or applications that you have developed using third-party code editors and
debugging tools.

To build the FreeRTOS demo with CMake

Create a folder to contain the generated build files (build-folder).
2. Use the following command to generate build files from source code:

cmake -DVENDOR=microchip -DBOARD=curiosity_pic32mzef -DCOMPILER=xc32 -
DMCHP_HEXMATE_PATH=path/microchip/mplabx/version/mplab_platform/bin -
DAFR_TOOLCHAIN_PATH=path/microchip/xc32/version/bin -S freertos -B build-folder

Note

You must specify the correct paths to the Hexmate and toolchain binaries. (For example: C:
\Program Files (x86)\Microchip\MPLABX\v5.35\mplab_platform\binandC:
\Program Files\Microchip\xc32\v2.40\bin respectively.)

3. Change directories to the build directory (bui1d-folder), and run make from that directory.
For more information, see Using CMake with FreeRTOS (p. 80).

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. In the navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

For troubleshooting information, see Troubleshooting getting started (p. 79).

Getting started with the Nordic nRF52840-DK

This tutorial provides instructions for getting started with the Nordic nRF52840-DK. If you do not have
the Nordic nRF52840-DK, visit the AWS Partner Device Catalog to purchase one from our partner.

154

https://console.aws.amazon.com/iotv2/
https://devices.amazonaws.com/detail/a3G0L00000AANtrUAH/nRF52840-Development-Kit

FreeRTOS User Guide
Nordic nRF52840-DK

Before you begin, you need to Set up AWS loT and Amazon Cognito for FreeRTOS Bluetooth Low
Energy (p. 237).

To run the FreeRTOS Bluetooth Low Energy demo, you also need an iOS or Android mobile device with
Bluetooth and Wi-Fi capabilities.

Note
If you are using an iOS device, you need Xcode to build the demo mobile application. If you are
using an Android device, you can use Android Studio to build the demo mobile application.

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.
4. Loading the application binary image to your board, and then running the application.

5. Interacting with the application running on your board across a serial connection, for monitoring and
debugging purposes.

Set up the Nordic hardware

Connect your host computer to the USB port labeled J2, located directly above the coin cell battery
holder on your Nordic nRF52840 board.

For more information about setting up the Nordic nRF52840-DK, see the nRF52840 Development Kit
User Guide.

Set up your development environment

Download and install Segger Embedded Studio

FreeRTOS supports Segger Embedded Studio as a development environment for the Nordic nRF52840-
DK.

To set up your environment, you need to download and install Segger Embedded Studio on your host
computer.

To download and install Segger Embedded Studio

1. Go to the Segger Embedded Studio Downloads page, and choose the Embedded Studio for ARM
option for your operating system.

2. Run the installer and follow the prompts to completion.

Set up the FreeRTOS Bluetooth Low Energy Mobile SDK demo application

To run the FreeRTOS demo project across Bluetooth Low Energy, you need to run the FreeRTOS
Bluetooth Low Energy Mobile SDK demo application on your mobile device.

To set up the the FreeRTOS Bluetooth Low Energy Mobile SDK Demo application

1. Follow the instructions in Mobile SDKs for FreeRTOS Bluetooth devices (p. 208) to download and
install the SDK for your mobile platform on your host computer.

155

http://infocenter.nordicsemi.com/pdf/nRF52840_DK_User_Guide_v1.2.pdf
http://infocenter.nordicsemi.com/pdf/nRF52840_DK_User_Guide_v1.2.pdf
https://www.segger.com/downloads/embedded-studio/

FreeRTOS User Guide
Nordic nRF52840-DK

2. Follow the instructions in FreeRTOS Bluetooth Low Energy Mobile SDK demo application (p. 239)
to set up the demo mobile application on your mobile device.

Establish a serial connection

Segger Embedded Studio includes a terminal emulator that you can use to receive log messages across a
serial connection to your board.

To establish a serial connection with Segger Embedded Studio

Open Segger Embedded Studio.
2. From the top menu, choose Target, Connect J-Link.

3. From the top menu, choose Tools, Terminal Emulator, Properties, and set the properties as
instructed in Installing a terminal emulator (p. 79).

4. From the top menu, choose Tools, Terminal Emulator, Connect port (115200,N,8,1).

Note

The Segger embedded studio terminal emulator does not support an input capability.

For this, use a terminal emulator like PuTTy, Tera Term, or GNU Screen. Configure the
terminal to connect to your board by a serial connection as instructed in Installing a terminal
emulator (p. 79).

Download and configure FreeRTOS
After you set up your hardware and environment, you can download FreeRTOS.

Download FreeRTOS

To download FreeRTOS for the Nordic nRF52840-DK, go to the FreeRTOS GitHub page and clone the
repository. See the README.md file for instructions.

Important

« In this topic, the path to the FreeRTOS download directory is referred to as freertos.

« Space characters in the freertos path can cause build failures. When cloning or copying the
repository, make sure the path you create does not contain space characters.

« The maximum length of a file path on Microsoft Windows is 260 characters. Long FreeRTOS
download directory paths can cause build failures.

Configure your project

To run the demo, you need to configure your project to work with AWS loT. To configure your project to
work with AWS loT, your device must be registered as an AWS IoT thing. You should have registered your
device when you Set up AWS loT and Amazon Cognito for FreeRTOS Bluetooth Low Energy (p. 237).

To configure your AWS loT endpoint

Sign in to the AWS IoT console.
2. Inthe navigation pane, choose Settings.

Your AWS IoT endpoint appears in the Endpoint text box. It should look like 1234567890123-
ats.iot.us-east-1.amazonaws.com. Make a note of this endpoint.

3. Inthe navigation pane, choose Manage, and then choose Things. Make a note of the AWS IoT thing
name for your device.

156

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/master/README.md
https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Nordic nRF52840-DK

4. With your AWS loT endpoint and your AWS IoT thing name on hand, open freertos/demos/
include/aws_clientcredential.h in your IDE, and specify values for the following #define
constants:

e clientcredentialMQTT BROKER_ENDPOINT Your AWS IoT endpoint
e clientcredentialIOT THING_NAME Your board's AWS IoT thing name

To enable the demo

1. Check that the Bluetooth Low Energy GATT Demo is enabled. Go to vendors/nordic/
boards/nrf52840-dk/aws_demos/config files/iot_ble config.h, and add #define
IOT_BLE_ADD_CUSTOM_SERVICES (1) to the list of define statements.

2. Openvendors/nordic/boards/nrf52840-dk/aws_demos/config files/
aws_demos_config.h, and define CONFIG_MQTT_ DEMO_ENABLED.

3. Since the Nordic chip comes with very little RAM (250KB), the BLE configuration might need to be
changed to allow for larger GATT table entries compared to the size of each attribute. In this way
you can adjust the amount of memory the application gets. To do this, override the definitions
of the following attributes in the file freertos/vendors/nordic/boards/nr£52840-dk/
aws_demos/config files/sdk_config.h:

« NRF_SDH_BLE_VS_UUID_COUNT

The number of vendor-specific UUIDs.
 NRF_SDH_BLE_GATTS_ATTR_TAB_SIZE

Attribute Table size in bytes. The size must be a multiple of 4.

(For tests, the location of the file is freertos/vendors/nordic/boards/nrf52840-dk/
aws_tests/config files/sdk_config.h.)

Build and run the FreeRTOS demo project

After you download FreeRTOS and configure your demo project, you are ready to build and run the demo
project on your board.

Important

If this is the first time that you are running the demo on this board, you need to flash a
bootloader to the board before the demo can run.

To build and flash the bootloader, follow the steps below, but instead of using the
projects/nordic/nrf52840-dk/ses/aws_demos/aws_demos.emProject
project file, use projects/nordic/nrf52840-dk/ses/aws_demos/bootloader/
bootloader.emProject.

To build and run the FreeRTOS Bluetooth Low Energy demo from Segger Embedded Studio

1. Open Segger Embedded Studio. From the top menu, choose File, choose Open Solution,
and then navigate to the project file projects/nordic/nrf£52840-dk/ses/aws_demos/
aws_demos.emProject

2. If you are using the Segger Embedded Studio terminal emulator, choose Tools from the top menu,
and then choose Terminal Emulator, Terminal Emulator to display information from your serial
connection.

If you are using another terminal tool, you can monitor that tool for output from your serial
connection.

3. Right-click the aws_demos demo project in the Project Explorer, and choose Build.

157

FreeRTOS User Guide
Nuvoton NuMaker-loT-M487

Note

If this is your first time using Segger Embedded Studio, you might see you a warning "No
license for commercial use". Segger Embedded Studio can be used free of charge for Nordic
Semiconductor devices. Choose Activate Your Free License, and follow the instructions.

4. Choose Debug, and then choose Go.

After the demo starts, it waits to pair with a mobile device across Bluetooth Low Energy.

5. Follow the instructions for the MQTT over Bluetooth Low Energy Demo Application to complete the
demo with the FreeRTOS Bluetooth Low Energy Mobile SDK demo application as the mobile MQTT

proxy.

Troubleshooting

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Nuvoton NuMaker-1oT-M487

This tutorial provides instructions for getting started with the Nuvoton NuMaker-l1oT-M487 development
board. The Nuvoton NuMaker-loT-M487 development board is embedded with the NuMicro M487 series
microcontroller, and includes built-in RJ45 Ethernet and Wi-Fi modules. If you don't have the Nuvoton
NuMaker-10T-M487, visit the AWS Partner Device Catalog to purchase one from our partner.

Before you begin, you must configure AWS loT and your FreeRTOS software to connect your
development board to the AWS Cloud. For instructions, see First steps (p. 72). In this tutorial, the path
to the FreeRTOS download directory is referred to as freertos.

Overview

This tutorial guides you through the following steps:

1. Install software on your host machine for developing and debugging embedded applications for your
microcontroller board.

2. Cross-compile a FreeRTOS demo application to a binary image.
3. Load the application binary image to your board, and then run the application.

Set up your development environment

The Keil MDK Nuvoton edition is designed for developing and debugging applications for Nuvoton M487
boards. The Keil MDK v5 Essential, Plus, or Pro version should also work for the Nuvoton M487 (Cortex-
M4 core) MCU. You can download the Keil MDK Nuvoton edition with a price discount for the Nuvoton
Cortex-M4 series MCUs. The Keil MDK is only supported on Windows.

To install the development tool for the NuMaker-loT-M487

Download the Keil MDK Nuvoton Edition from the Keil MDK website.

2. Install the Keil MDK on your host machine using your license. The Keil MDK includes the Keil pVision
IDE, a C/C++ compilation toolchain, and the pVision debugger.

If you experience issues during installation, contact Nuvoton for assistance.

3. Install the Nu-Link_Keil_Driver_V3.00.6951 (or latest version), which is on the Nuvoton
Development Tool page.

158

https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html#ble-demo-mqtt
https://devices.amazonaws.com/detail/a3G0h000000Tg9cEAC/NuMaker-IoT-M487
https://store.developer.arm.com/store/embedded-iot-software-tools/keil-mdk-nuvoton-edition?edition=1164
https://www.nuvoton.com/contact-us
https://www.nuvoton.com/tool-and-software/software-development-tool/driver/
https://www.nuvoton.com/tool-and-software/software-development-tool/driver/

FreeRTOS User Guide
Nuvoton NuMaker-loT-M487

Build and run the FreeRTOS demo project

To build the FreeRTOS demo project

Open the Keil pVision IDE.

2. On the File menu, choose Open. In the Open file dialog box, make sure the file type selector is set
to Project Files.

3. Choose either the Wi-Fi or Ethernet demo project to build.
« To open the Wi-Fi demo project, choose the target project aws_demos.uvproj in the
freertos\projects\nuvoton\numaker iot_m487_wifi\uvision\aws_demos directory.

« To open the Ethernet demo project, choose the target project aws_demos_eth.uvproj in the
freertos\projects\nuvoton\numaker iot_m487 wifi\uvision\aws_demos_eth
directory.

4. To make sure your settings are correct to flash the board, right-click the aws_demo project in the
IDE, and then choose Options. (See Troubleshooting (p. 161) for more details.)

5. On the Utilities tab, verify that Use Target Driver for Flash Programming is selected, and that
Nuvoton Nu-Link Debugger is set as the target driver.

On the Debug tab, next to Nuvoton Nu-Link Debugger, choose Settings.
7. Verify that the Chip Type is set to M480.

8. In the Keil pVision IDE Project navigation pane, choose the aws_demos project. On the Project
menu, choose Build Target.

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

To run the FreeRTOS demo project

Connect your Numaker-loT-M487 board to your host machine (computer).
Rebuild the project.

In the Keil pVision IDE, on the Flash menu, choose Download.

On the Debug menu, choose Start/Stop Debug Session.

A N =

When the debugger stops at the breakpoint in main(), open the Run menu, and then choose Run
(F5).

You should see MQTT messages sent by your device in the MQTT client in the AWS loT console.

Using CMake with FreeRTOS

You can also use CMake to build and run the FreeRTOS demo applications or applications you have
developed using third-party code editors and debugging tools.

Make sure you have installed the CMake build system. Follow the instructions in Using CMake with
FreeRTOS (p. 80), and then follow the steps in this section.

159

https://console.aws.amazon.com/iotv2

FreeRTOS User Guide
Nuvoton NuMaker-loT-M487

Note
Be sure the path to the location of the compiler (Keil) is in your Path system variable, for
example, C:\Keil v5\ARM\ARMCC\bin.

You can also use the MQTT client in the AWS loT console to monitor the messages that your device sends
to the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

To generate build files from source files and run the demo project

1. On your host machine, open the command prompt and navigate to the freertos folder.
Create a folder to contain the generated build file. We will refer to this folder as the BUILD FOLDER.
Generate the build files for either the Wi-Fi or Ethernet demo.

e For Wi-Fi:

Navigate to the directory that contains the source files for the FreeRTOS demo project. Then,
generate the build files by running the following command.

cmake -DVENDOR=nuvoton -DBOARD=numaker_iot_m487_wifi -DCOMPILER=arm-keil -S . -
B BUILD_FOLDER -G Ninja

« For Ethernet:

Navigate to the directory that contains the source files for the FreeRTOS demo project. Then,
generate the build files by running the following command.

cmake -DVENDOR=nuvoton -DBOARD=numaker_iot_m487_wifi -DCOMPILER=arm-keil -
DAFR_ENABLE_ETH=1 -S . -B BUILD_FOLDER -G Ninja

4. Generate the binary to flash onto the M487 by running the following command.

cmake --build BUILD_FOLDER

At this point, the binary file aws_demos .bin should be in the BUILD FOLDER/vendors/
Nuvoton/boards/numaker iot m487_ wifi folder.

5. To configure the board for flashing mode, make sure the MSG switch (No.4 of ISW1 on ICE)
is switched ON. When you plug in the board, a window (and drive) will be assigned. (See
Troubleshooting (p. 161).)

6. Open a terminal emulator to view the messages over UART. Follow the instructions at Installing a
terminal emulator (p. 79).

7. Run the demo project by copying the generated binary onto the device.

If you subscribed to the MQTT topic with the AWS loT MQTT client, you should see MQTT messages
sent by your device in the AWS loT console.

160

https://console.aws.amazon.com/iotv2

FreeRTOS User Guide
Nuvoton NuMaker-loT-M487

Troubleshooting

« If your windows can't recognize the device vcoy, install the NuMaker windows serial port driver from
the link Nu-Link USB Driver v1.6.

« If you connect your device to the Keil MDK (IDE) through Nu-Link, make sure the MSG switch (No.4 of
ISW1 on ICE) is OFF, as shown.

E '»ct’ SL1LE

-- “SpCard

2 158
ammummuL

-__
-
-

!

T
HLTEEEEL

-
a—
—
——
———
——
—-—
—
-
-_—
-
—
e
-
e
-

ICE

o0
=
C

ﬁmo
(7]

paus 0
o

32

If you experience issues setting up your development environment or connecting to your board, contact
Nuvoton.

Debugging FreeRTOS projects in Keil pVision

To start a debug session in Keil pVision

1. Open Keil pVision.

2. Follow the steps to build the FreeRTOS demo project in Build and run the FreeRTOS demo
project (p. 159).

3. On the Debug menu, choose Start/Stop Debug Session.

The Call Stack + Locals window appears when you start a debug session. pVision flashes the demo
to the board, runs the demo, and stops at the beginning of the main() function.

161

https://www.nuvoton.com/export/resource-files/Nu-Link_USB_Driver_V1.6.zip
http://www.nuvoton.com/hq/contact-us/

FreeRTOS User Guide
Nuvoton NuMaker-loT-M487

4. Set breakpoints in your project's source code, and then run the code. The project should look
something like the following.

% C:\AWS\amazon-freertos\demos\nuvoton\numaker_iot_m487_wifi\keil\aws_demos_wifi .uvproj - puVision

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NSd@ » &9 - Pmn N EEE | ® VR @
FEO BTG v BB ELR O -8 2 W %
Project o E1 Disassembly
23 Project: aws_demos_wifi 4| 192: vTaskStartScheduler();
= &3 aws_demos 193:
P 0x00000810 FOOZFE6Q0 BL.W vIaskStartScheduler (0x000034D4)
&3 CMSIS 194: rerurn 0=
= &5 User <
-1 entropy_hardwa _] — _] startup_M480.5
?J main.c 175 int main(void)
[FreeRTOS 176 E¢{
#-Ld NVT-Library 177 = /* Perform any hardware initialization that does not regq
#d demos 178 * rumning. */
i 179 prvMiscInitialization():
‘i“_{ w : 180 configPRINIF(("FreeRTOS_IPInit\n"));
14 lib-bufferpool 181 xTaskCreate(vCheckTask, "Check", mainCHECK TASK_STACK S
@ [lib-crypto 182
@3 lib-mqtt 183 1 /* A simple example to demonstrate key and certificate p
553 lib-pkesll 184 * microcontroller flash using PECS#11 interface. Thi=s s
HI% I “pke 185 | * by production ready key provisioning mechanism. */
(L lib-secure_sockets 186 vDevModeKeyProvisioning () :
#-+d lib-shadow 187
@ lib-tls 188 [/* Start the scheduler. Initialization that requires th
lib-util e 189 * in ding the WiFi imnitialization, is performed in th
‘1“47 : __'s 190 | * startup hook. */
&4 3rd-jsmn 191 configPRINTF(("vTaskStartScheduler\n"™)):
A 3 3rd-mbedtls [192 || vTaskStartScheduler():
(K] T 2~ 193
=] Project | = Registers <

Troubleshooting pVision debug settings

If you encounter problems while debugging an application, check that your debug settings are set
correctly in Keil pVision.

To verify that the pVision debug settings are correct

1. Open Keil pVision.
Right-click the aws_demo project in the IDE, and then choose Options.

On the Utilities tab, verify that Use Target Driver for Flash Programming is selected, and that
Nuvoton Nu-Link Debugger is set as the target driver.

162

FreeRTOS User Guide
Nuvoton NuMaker-loT-M487

W. Options for Target 'aws_demos' X

Device | Target | Output | Listing | User | C/C++| Asm | Linker | Debug Utiliies |
— Configure Flash Menu Command

(+ {Use Target Driver for Flash ngamming§ [Use Debug Driver
|Nuvoton Nu-Link Debugger LI Settings I [V Update Target before Debuaging

it Fle: | | Ea |

" Use Bxtemal Tool for Flash Programming

Command:l _,

Nguments:l
[T Runlndependent
Configure Image File Processing (FCARM):
QOutput File: Add Output File to Group:
[cmsis |
Image Files Root Folder: I " Generate Listing

oK | Cancel] Defautts Help |

4. On the Debug tab, next to Nuvoton Nu-Link Debugger, choose Settings.

163

FreeRTOS User Guide
NXP LPC54018 loT Module

B Options for Targetaws_
Device | Target | Output | Listing | User | C/CH-I Asm I Linker Debug I Ltilities I

" Use Simulator with restrictions Settings | « Use: INuvoton Nu-Link Debugger LI Settings |

Nu-Link Driver Setup

Debug ITrace I
Nu-Link Chip Select Swpoiing Fonem
Driver Version: 6905 Chip Type: |M480 vI EN: hitp:/forum nuvoton.com/

SC: http://www nuvoton-mcu.com/

ICE Version: 6825 Reset Options

Device Family: Cortex-M| Connect: |Nomal vI
Device ID: (<2BAD1477 Reset: Autodetect vl

Port: sw h Download Options

Max Clock: 1MHz 'l ™ Verif

OK I Cancel

5. Verify that the Chip Type is set to M480.

Getting started with the NXP LPC54018 loT Module

This tutorial provides instructions for getting started with the NXP LPC54018 IoT Module. If you do not
have an NXP LPC54018 IoT Module, visit the AWS Partner Device Catalog to purchase one from our
partner. Use a USB cable to connect your NXP LPC54018 loT Module to your computer.

Before you begin, you must configure AWS loT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.
4. Loading the application binary image to your board, and then running the application.

164

https://devices.amazonaws.com/detail/a3G0L00000AANtAUAX/LPC54018-IoT-Solution

FreeRTOS User Guide
NXP LPC54018 loT Module

Set up the NXP hardware

To set up the NXP LPC54018

o Connect your computer to the USB port on the NXP LPC54018.

To set up the JTAG debugger

You need a JTAG debugger to launch and debug your code running on the NXP LPC54018 board.
FreeRTOS was tested using an OM40006 IoT Module. For more information about supported debuggers,
see the User Manual for NXP LPC54018 loT Module that is available from the OM40007 LPC54018 IoT
Module product page.

1. If you're using an OM40006 IoT Module debugger, use a converter cable to connect the 20-pin
connector from the debugger to the 10-pin connector on the NXP loT module.

2. Connect the NXP LPC54018 and the OM40006 loT Module Debugger to the USB ports on your
computer using mini-USB to USB cables.

Set up your development environment

FreeRTOS supports two IDEs for the NXP LPC54018 loT Module: IAR Embedded Workbench and
MCUXpresso.

Before you begin, install one of these IDEs.

To install IAR Embedded Workbench for ARM

1. Browse to Software for NXP Kits and choose Download Software.
Note
IAR Embedded Workbench for ARM requires Microsoft Windows.
2. Unzip and run the installer. Follow the prompts.
3. Inthe License Wizard, choose Register with IAR Systems to get an evaluation license.
4. Put the bootloader on the device before attempting to run any demos.

To install MCUXpresso from NXP

1. Download and run the MCUXpresso installer from NXP.
Note
Versions 10.3.x and later are supported.
2. Browse to MCUXpresso SDK and choose Build your SDK.
Note
Versions 2.5 and later are supported.
Choose Select Development Board.
Under Select Development Board, in Search by Name, enter LPC54018-I0oT-Module.
Under Boards, choose LPC54018-loT-Module.
Verify the hardware details, and then choose Build MCUXepresso SDK.

The SDK for Windows using the MCUXpresso IDE is already built. Choose Download SDK. If you are
using another operating system, under Host OS, choose your operating system, and then choose
Download SDK.

8. Start the MCUXpresso IDE, and choose the Installed SDKs tab.

N o v b~ W

165

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007
https://www.iar.com/iar-embedded-workbench/partners/nxp/downloads-for-nxp-kits
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

FreeRTOS User Guide
NXP LPC54018 loT Module

9. Drag and drop the downloaded SDK archive file into the Installed SDKs window.

If you experience issues during installation, see NXP Support or NXP Developer Resources.

Build and run the FreeRTOS Demo project

Import the FreeRTOS demo into your IDE

To import the FreeRTOS sample code into the IAR Embedded Workbench IDE

Open IAR Embedded Workbench, and from the File menu, choose Open Workspace.

2. In the search-directory text box, enter projects/nxp/lpc54018iotmodule/iar/aws_demos,
and choose aws_demos.eww.

3. From the Project menu, choose Rebuild All

To import the FreeRTOS sample code into the MCUXpresso IDE

1. Open MCUXpresso, and from the File menu, choose Open Projects From File System.

2. Inthe Directory text box, enter projects/nxp/lpc54018iotmodule/mcuxpresso/aws_demos,
and choose Finish

3. From the Project menu, choose Build All.

Run the FreeRTOS demo project

To run the FreeRTOS demo project with the IAR Embedded Workbench IDE

In your IDE, from the Project menu, choose Make.
From the Project menu, choose Download and Debug.
From the Debug menu, choose Start Debugging.

PN =

When the debugger stops at the breakpoint in main, from the Debug menu, choose Go.

Note

If a J-Link Device Selection dialog box opens, choose OK to continue. In the Target Device
Settings dialog box, choose Unspecified, choose Cortex-M4, and then choose OK. You only
need to be do this once.

To run the FreeRTOS demo project with the MCUxpresso IDE

In your IDE, from the Project menu, choose Build.

2. If this is your first time debugging, choose the aws_demos project and from the Debug toolbar,
choose the blue debug button.

3. Any detected debug probes are displayed. Choose the probe you want to use, and then choose OK
to start debugging.

Note
When the debugger stops at the breakpoint in main(), press the debug restart button

=

g
once to reset the debugging session. (This is required due to a bug with MCUXpresso
debugger for NXP54018-1oT-Module).

4. When the debugger stops at the breakpoint in main(), from the Debug menu, choose Go.

166

https://www.nxp.com/support/support:SUPPORTHOME?tid=sbmenu
https://www.nxp.com/support/developer-resources:DEVELOPER_HOME

FreeRTOS User Guide
Renesas Starter Kit+ for RX65N-2MB

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Renesas Starter Kit+ for
RX65N-2MB

This tutorial provides instructions for getting started with the Renesas Starter Kit+ for RX65N-2MB. If
you do not have the Renesas RSK+ for RX65N-2MB, visit the AWS Partner Device Catalog, and purchase
one from our partners.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.
4. Loading the application binary image to your board, and then running the application.

Set up the Renesas hardware

To set up the RSK+ for RX65N-2MB

Connect the positive +5V power adapter to the PWR connector on the RSK+ for RX65N-2MB.
Connect your computer to the USB2.0 FS port on the RSK+ for RX65N-2MB.
Connect your computer to the USB-to-serial port on the RSK+ for RX65N-2MB.

Connect a router or internet-connected Ethernet port to the Ethernet port on the RSK+ for
RX65N-2MB.

PUunN=

To set up the E2 Lite Debugger module

1. Use the 14-pin ribbon cable to connect the E2 Lite Debugger module to the ‘E1/E2 Lite' port on the
RSK+ for RX65N-2MB.

167

https://console.aws.amazon.com/iotv2/
https://devices.amazonaws.com/detail/a3G0L00000AAOkeUAH/Renesas-Starter-Kit+-for-RX65N-2MB

FreeRTOS User Guide
Renesas Starter Kit+ for RX65N-2MB

2. Use a USB cable to connect the E2 Lite debugger module to your host machine. When the E2 Lite
debugger is connected to both the board and your computer, a green '‘ACT' LED on the debugger
flashes.

3. After the debugger is connected to your host machine and RSK+ for RX65N-2MB, the E2 Lite
debugger drivers begin installing.

Note that administrator privileges are required to install the drivers.

Set up your development environment

To set up FreeRTOS configurations for the RSK+ for RX65N-2MB, use the Renesas e’studio IDE and CC-RX
compiler.

Note
The Renesas e’studio IDE and CC-RX compiler are only supported on Windows 7, 8, and 10
operating systems.

To download and install e?studio

Go to the Renesas e’studio installer download page, and download the offline installer.
2. You are directed to a Renesas Login page.

If you have an account with Renesas, enter your user name and password and then choose Login.
If you do not have an account, choose Register now, and follow the first registration steps. You

should receive an email with a link to activate your Renesas account. Follow this link to complete
your registration with Renesas, and then log in to Renesas.

3. After you log in, download the e’studio installer to your computer.
4. Open the installer and follow the steps to completion.

For more information, see the e’studio on the Renesas website.

To download and install the RX Family C/C++ Compiler Package

1. Go to the RX Family C/C++ Compiler Package download page, and download the V3.00.00 package.
2. Open the executable and install the compiler.

For more information, see the C/C++ Compiler Package for RX Family on the Renesas website.

168

https://www.renesas.com/us/en/software/D4000894.html
https://www.renesas.com/us/en/products/software-tools/tools/ide/e2studio.html#productInfo
https://www.renesas.com/us/en/software/D4000890.html
https://www.renesas.com/us/en/products/software-tools/tools/compiler-assembler/compiler-package-for-rx-family.html#productInfo

FreeRTOS User Guide
Renesas Starter Kit+ for RX65N-2MB

Note
The compiler is available free for evaluation version only and valid for 60 days. On the 61st day,
you need to get a License Key. For more information, see Evaluation Software Tools.

Build and run FreeRTOS samples

Now that you have configured the demo project, you are ready to build and run the project on your
board.

Build the FreeRTOS Demo in e’studio

To import and build the demo in e’studio

Launch e?studio from the Start menu.

2. On the Select a directory as a workspace window, browse to the folder that you want to work in,
and choose Launch.

3. The first time you open ezstudio, the Toolchain Registry window opens. Choose Renesas
Toolchains, and confirm that cc-RX v3.00.00 is selected. Choose Register, and then choose OK.

4. If you are opening e’studio for the first time, the Code Generator Registration window appears.
Choose OK.

5. The Code Generator COM component register window appears. Under Please restart e?studio to
use Code Generator, choose OK.

The Restart e’studio window appears. Choose OK.

e?studio restarts. On the Select a directory as a workspace window, choose Launch.

On the e%studio welcome screen, choose the Go to the e?studio workbench arrow icon.
Right-click the Project Explorer window, and choose Import.

In the import wizard, choose General, Existing Projects into Workspace, and then choose Next.

23PN

= O

Choose Browse, locate the directory projects/renesas/rx65n-rsk/e2studio/aws_demos,
and then choose Finish.

12. From Project menu, choose Project, Build All.

The build console issues a warning message that the License Manager is not installed. You can ignore
this message unless you have a license key for the CC-RX compiler. To install the License Manager,
see the License Manager download page.

Run the FreeRTOS project

To run the project in e’studio

Confirm that you have connected the E2 Lite Debugger module to your RSK+ for RX65N-2MB
From the top menu, choose Run, Debug Configuration.
Expand Renesas GDB Hardware Debugging, and choose aws_demos HardwareDebug.

pAUwunN =

Choose the Debugger tab, and then choose the Connection Settings tab. Confirm that your
connection settings are correct.

5. Choose Debug to download the code to your board and begin debugging.

You might be prompted by a firewall warning for e2-server-gdb. exe. Check Private networks,
such as my home or work network, and then choose Allow access.

6. e’studio might ask to change to Renesas Debug Perspective. Choose Yes.

The green 'ACT' LED on the E2 Lite Debugger illuminates.

169

https://www.renesas.com/us/en/products/software-tools/evaluation-software-tools.html
https://www.renesas.com/us/en/software/D4000398.html

FreeRTOS User Guide
STMicroelectronics STM32L4 Discovery Kit loT Node

7. After the code is downloaded to the board, choose Resume to run the code up to the first line of the
main function. Choose Resume again to run the rest of the code.

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

For the latest projects released by Renesas, see the renesas-rx fork of the amazon-freertos
repository on GitHub.

Troubleshooting

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the STMicroelectronics STM32L4
Discovery Kit IoT Node

This tutorial provides instructions for getting started with the STMicroelectronics STM32L4 Discovery Kit
lIoT Node. If you do not already have the STMicroelectronics STM32L4 Discovery Kit IoT Node, visit the
AWS Partner Device Catalog to purchase one from our partner.

Make sure you have installed the latest Wi-Fi firmware. To download the latest Wi-Fi firmware, see
STM32L4 Discovery kit 1oT node, low-power wireless, Bluetooth Low Energy, NFC, SubGHz, Wi-Fi. Under
Binary Resources, choose Inventek ISM 43362 Wi-Fi module firmware update (read the readme file
for instructions) .

Before you begin, you must configure AWS loT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.
3. Loading the application binary image to your board, and then running the application.

Set up your development environment

Install System Workbench for STM32

1. Browse to OpenSTM32.org.

170

https://console.aws.amazon.com/iotv2/
https://github.com/renesas-rx/amazon-freertos
https://devices.amazonaws.com/detail/a3G0L00000AANsWUAX/STM32L4-Discovery-Kit-IoT-Node
https://www.st.com/resource/en/utilities/inventek_fw_updater.zip
http://www.openstm32.org/HomePage

FreeRTOS User Guide
STMicroelectronics STM32L4 Discovery Kit loT Node

2. Register on the OpenSTM32 webpage. You need to sign in to download System Workbench.
3. Browse to the System Workbench for STM32 installer to download and install System Workbench.

If you experience issues during installation, see the FAQs on the System Workbench website.
Build and run the FreeRTOS demo project

Import the FreeRTOS demo into the STM32 System Workbench

—_

Open the STM32 System Workbench and enter a name for a new workspace.

n

From the File menu, choose Import. Expand General, choose Existing Projects into Workspace, and
then choose Next.

In Select Root Directory, enter projects/st/stm321475_discovery/acé6/aws_demos.
The project aws_demos should be selected by default.

Choose Finish to import the project into STM32 System Workbench.

From the Project menu, choose Build All. Confirm the project compiles without any errors.

o AW

Run the FreeRTOS demo project

1. Use a USB cable to connect your STMicroelectronics STM32L4 Discovery Kit loT Node to your
computer.

2. From Project Explorer, right-click aws_demos, choose Debug As, and then choose Ac6é STM32 C/C+
+ Application.

If a debug error occurs the first time a debug session is launched, follow these steps:

. In STM32 System Workbench, from the Run menu, choose Debug Configurations.
. Choose aws_demos Debug. (You might need to expand Ac6 STM32 Debugging.)

. Choose the Debugger tab.

. In Configuration Script, choose Show Generator Options.

Ul A W N =

. In Mode Setup, set Reset Mode to Software System Reset. Choose Apply, and then choose
Debug.

3. When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

Using CMake with FreeRTOS

If you prefer not to use an IDE for FreeRTOS development, you can alternatively use CMake to build and
run the demo applications or applications that you have developed using third-party code editors and
debugging tools.

First create a folder to contain the generated build files (build-folder).

Use the following command to generate build files:

cmake -DVENDOR=st -DBOARD=stm321475_discovery -DCOMPILER=arm-gcc -S freertos -B build-
folder

If arm-none-eabi-gcc is not in your shell path, you also need to set the AFR_TOOLCHAIN_PATH
CMake variable. For example:

-D AFR_TOOLCHAIN_PATH=/home/user/opt/gcc-arm-none-eabi/bin

171

http://www.openstm32.org/System%2BWorkbench%2Bfor%2BSTM32
http://www.openstm32.org/HomePage

FreeRTOS User Guide
Texas Instruments CC3220SF-LAUNCHXL

For more information about using CMake with FreeRTOS, see Using CMake with FreeRTOS (p. 80).

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

If you see the following in the UART output from the demo application, you need to update the Wi-Fi
module's firmware:

[Tmr Svc] WiFi firmware version is: XXXXXXXXXXXXX
[Tmr Svc] [WARN] WiFi firmware needs to be updated.

To download the latest Wi-Fi firmware, see STM32L4 Discovery kit IoT node, low-power wireless,
Bluetooth Low Energy, NFC, SubGHz, Wi-Fi. In Binary Resources, choose the download link for Inventek
ISM 43362 Wi-Fi module firmware update.

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Texas Instruments
CC3220SF-LAUNCHXL

This tutorial provides instructions for getting started with the Texas Instruments CC3220SF-LAUNCHXL.
If you do not have the Texas Instruments (TI) CC3220SF-LAUNCHXL Development Kit, visit the AWS
Partner Device Catalog to purchase one from our partner.

Before you begin, you must configure AWS loT and your FreeRTOS download to connect your device

to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

Overview

This tutorial contains instructions for the following getting started steps:

1. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

2. Cross compiling a FreeRTOS demo application to a binary image.
3. Loading the application binary image to your board, and then running the application.

Set up your development environment

Follow the steps below to set up your development environment to get started with FreeRTOS.

172

https://console.aws.amazon.com/iotv2/
https://www.st.com/resource/en/utilities/inventek_fw_updater.zip
https://www.st.com/resource/en/utilities/inventek_fw_updater.zip
https://devices.amazonaws.com/detail/a3G0L00000AANtaUAH/SimpleLink-Wi-Fi�-CC3220SF-Wireless-Microcontroller-LaunchPad-Development-Kit

FreeRTOS User Guide
Texas Instruments CC3220SF-LAUNCHXL

Note that FreeRTOS supports two IDEs for the TI CC3220SF-LAUNCHXL Development Kit: Code
Composer Studio and IAR Embedded Workbench version 8.32. You can use either IDE to get started.

Install Code Composer Studio

Browse to Tl Code Composer Studio.

2. Download the offline installer for the platform of your host machine (Windows, macOS, or Linux 64-
bit).

3. Unzip and run the offline installer. Follow the prompts.
For Product Families to Install, choose SimpleLink Wi-Fi CC32xx Wireless MCUs.
5. Onthe next page, accept the default settings for debugging probes, and then choose Finish.

If you experience issues when you are installing Code Composer Studio, see Tl Development Tools
Support, Code Composer Studio FAQs, and Troubleshooting CCS.

Install IAR Embedded Workbench

1. Download and run the Windows installer for version 8.32 of the IAR Embedded Workbench for ARM.
In Debug probe drivers, make sure that Tl XDS is selected.

2. Complete the installation and launch the program. On the License Wizard page, choose Register
with IAR Systems to get an evaluation license, or use your own IAR license.

Install the SimpleLink CC3220 SDK

Install the SimpleLink CC3220 SDK. The SimpleLink Wi-Fi CC3220 SDK contains drivers for the CC3220SF
programmable MCU, more than 40 sample applications, and documentation required to use the samples.

Install Uniflash

Install Uniflash. CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs.
Uniflash has a GUI, command line, and scripting interface.

Install the latest service pack

1. Onyour TI CC3220SF-LAUNCHXL, place the SOP jumper on the middle set of pins (position = 1) and
reset the board.

2. Start Uniflash. If your CC3220SF LaunchPad board appears under Detected Devices, choose Start.
If your board is not detected, choose CC3220SF-LAUNCHXL from the list of boards under New
Configuration, and then choose Start Image Creator.

3. Choose New Project.

4. On the Start new project page, enter a name for your project. For Device Type, choose CC3220SF.
For Device Mode, choose Develop, and then choose Create Project.

5. On the right side of the Uniflash application window, choose Connect.
6. From the left column, choose Advanced, Files, and then Service Pack.

7. Choose Browse, and then navigate to where you installed the CC3220SF SimpleLink SDK. The
service pack is located at ti/simplelink cc32xx_sdk_VERSION/tools/cc32xx_tools/
servicepack-cc3x20/sp_VERSION.bin.

Choose the Burn () button, and then choose Program Image (Create & Program) to install
the service pack. Remember to switch the SOP jumper back to position 0 and reset the board.

173

http://processors.wiki.ti.com/index.php/Download_CCS
http://software-dl.ti.com/ccs/esd/documents/ccs_support.html
http://software-dl.ti.com/ccs/esd/documents/ccs_support.html
http://processors.wiki.ti.com/index.php/FAQ_-_CCS
http://processors.wiki.ti.com/index.php/Troubleshooting_CCSv7
http://netstorage.iar.com/SuppDB/Protected/PRODUPD/013570/EWARM-CD-8322-19423.exe
http://www.ti.com/tool/SIMPLELINK-CC3220-SDK
http://www.ti.com/tool/UNIFLASH

FreeRTOS User Guide
Texas Instruments CC3220SF-LAUNCHXL

Configure Wi-Fi provisioning
To configure the Wi-Fi settings for your board, do one of the following:

« Configure the FreeRTOS demo application described in Configuring the FreeRTOS demos (p. 75).
« Use SmartConfig from Texas Instruments.

Build and run the FreeRTOS demo project

Build and run the FreeRTOS demo project in TI Code Composer

To import the FreeRTOS demo into Tl Code Composer

Open Tl Code Composer, and choose OK to accept the default workspace name.
2. On the Getting Started page, choose Import Project.

In Select search-directory, enter projects/ti/cc3220_launchpad/ccs/aws_demos. The
project aws_demos should be selected by default. To import the project into TI Code Composer,
choose Finish.

In Project Explorer, double-click aws_demos to make the project active.
5. From Project, choose Build Project to make sure the project compiles without errors or warnings.

To run the FreeRTOS demo in TI Code Composer

1. Make sure the Sense On Power (SOP) jumper on your Texas Instruments CC3220SF-LAUNCHXL is
in position 0. For more information, see UniFlash CC3x20, CC3x35 SimpleLink Wi-Fi and Internet of
Things Programmer's Guide.

2. Use a USB cable to connect your Texas Instruments CC3220SF-LAUNCHXL to your computer.

In the project explorer, make sure the CC3220SF.ccxml is selected as the active target
configuration. To make it active, right-click the file and choose Set as active target configuration.

In TI Code Composer, from Run, choose Debug.
5. When the debugger stops at the breakpoint in main(), go to the Run menu, and choose Resume.

Build and run FreeRTOS demo project in IAR Embedded Workbench

To import the FreeRTOS demo into IAR Embedded Workbench

Open IAR Embedded Workbench, choose File, and then choose Open Workspace.

2. Navigate to projects/ti/cc3220_launchpad/iar/aws_demos, choose aws_demos.eww, and
then choose OK.

3. Right-click the project name (aws_demos), and then choose Make.

To run the FreeRTOS demo in IAR Embedded Workbench

1. Make sure the Sense On Power (SOP) jumper on your Texas Instruments CC3220SF-LAUNCHXL is
in position 0. For more information, see UniFlash CC3x20, CC3x35 SimpleLink Wi-Fi and Internet of
Things Programmer's Guide.

2. Use a USB cable to connect your Texas Instruments CC3220SF-LAUNCHXL to your computer.
Rebuild your project.

To rebuild the project, from the Project menu, choose Make.

174

http://dev.ti.com/tirex/#/?link=Software%2FSimpleLink%20CC32xx%20SDK%2FSimpleLink%20Academy%2FWi-Fi%2FWi-Fi%20Provisioning
http://www.ti.com/lit/ug/swru455j/swru455j.pdf
http://www.ti.com/lit/ug/swru455j/swru455j.pdf
http://www.ti.com/lit/ug/swru455j/swru455j.pdf
http://www.ti.com/lit/ug/swru455j/swru455j.pdf

FreeRTOS User Guide
Texas Instruments CC3220SF-LAUNCHXL

4. From the Project menu, choose Download and Debug. You can ignore "Warning: Failed to initialize
EnergyTrace," if it's displayed. For more information about EnergyTrace, see MSP EnergyTrace
Technology.

5. When the debugger stops at the breakpoint in main(), go to the Debug menu, and choose Go.

Using CMake with FreeRTOS

If you prefer not to use an IDE for FreeRTOS development, you can alternatively use CMake to build and
run the demo applications or applications that you have developed using third-party code editors and
debugging tools.

To build the FreeRTOS demo with CMake

Create a folder to contain the generated build files (bui1d-folder).

2. Make sure your search path ($PATH environment variable) contains the folder where the Tl CGT
compiler binary is located (for example C:\ti\ccs910\ccs\tools\compiler\ti-cgt-
arm_18.12.2.LTS\bin).

If you are using the TI ARM compiler with your Tl board, use the following command to generate
build files from source code:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S freertos -B build-
folder

For more information, see Using CMake with FreeRTOS (p. 80).

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. In the navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

If you don't see messages in the MQTT client of the AWS loT console, you might need to configure debug
settings for the board.

To configure debug settings for Tl boards

In Code Composer, on Project Explorer, choose aws_demos.

From the Run menu, choose Debug Configurations.

In the navigation pane, choose aws_demos.

On the Target tab, under Connection Options, choose Reset the target on a connect.
Choose Apply, and then choose Close.

A w2

If these steps don't work, look at the program's output in the serial terminal. You should see some text
that indicates the source of the problem.

175

http://www.ti.com/tool/energytrace?jktype=recommendedresults
http://www.ti.com/tool/energytrace?jktype=recommendedresults
https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Windows Device Simulator

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Windows Device Simulator

This tutorial provides instructions for getting started with the FreeRTOS Windows Device Simulator.

Before you begin, you must configure AWS loT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

FreeRTOS is released as a zip file that contains the FreeRTOS libraries and sample applications for the
platform you specify. To run the samples on a Windows machine, download the libraries and samples
ported to run on Windows. This set of files is referred to as the FreeRTOS simulator for Windows.

Note
This tutorial cannot be successfully run on Amazon EC2 Windows instances.

Set up your development environment

1. Install the latest version of WinPCap.
2. Install Microsoft Visual Studio.

Visual Studio versions 2017 and 2019 are known to work. All editions of these Visual Studio versions

are supported (Community, Professional, or Enterprise).
In addition to the IDE, install the Desktop development with C++ component.

Install the latest Windows 10 SDK. You can choose this under the Optional section of the Desktop
development with C++ component.

3. Make sure that you have an active hard-wired Ethernet connection.

4. (Optional) If you would like to use the CMake-based build system to build your FreeRTOS projects,
install the latest version of CMake. FreeRTOS requires CMake version 3.13 or later.

Build and run the FreeRTOS demo project

You can use Visual Studio or CMake to build FreeRTOS projects.
Building and running the FreeRTOS demo project with the Visual Studio IDE

1. Load the project into Visual Studio.

In Visual Studio, from the File menu, choose Open. Choose File/Solution, navigate to the
projects/pc/windows/visual_studio/aws_demos/aws_demos.sln file, and then choose
Open.

2. Retarget the Demo Project.
The provided demo project depends on the Windows SDK, but it does not have a Windows SDK

version specified. By default, the IDE might attempt to build the demo with an SDK version not
present on your machine. To set the Windows SDK version, right-click on aws_demos and then

choose Retarget Projects. This opens the Review Solution Actions window. Choose a Windows SDK
Version that is present on your machine (the initial value in the dropdown is fine), then choose OK.

Build and run the project.
From the Build menu, choose Build Solution, and make sure the solution builds without errors or

warnings. Choose Debug, Start Debugging to run the project. On the first run, you will need to
select a network interface (p. 177).

176

https://www.winpcap.org/
https://www.visualstudio.com/downloads
https://cmake.org/download/

FreeRTOS User Guide
Windows Device Simulator

Building and running the FreeRTOS demo project with CMake

We recommend that you use the CMake GUI instead of the CMake command-line tool to build the demo
project for the Windows Simulator.

After you install CMake, open the CMake GUI. On Windows, you can find this from the Start menu under
CMake, CMake (cmake-gui).

1.

Set the FreeRTOS source code directory.
In the GUI, set the FreeRTOS source code directory (freertos) for Where is the source code.

Set freertos/build for Where to build the binaries.
Configure the CMake Project.

In the CMake GUI, choose Add Entry, and on the Add Cache Entry window, set the following values:

Name

AFR_BOARD
Type

STRING
Value

pc.windows
Description

(Optional)
Choose Configure. If CMake prompts you to create the build directory, choose Yes, and then select
a generator under Specify the generator for this project. We recommend using Visual Studio as
the generator, but Ninja is also supported. (Note that when using Visual Studio 2019, the platform
should be set to Win32 instead of its default setting.) Leave the other generator options unchanged
and choose Finish.

Generate and Open the CMake Project.

After you have configured the project, the CMake GUI shows all options available for the generated
project. For the purposes of this tutorial, you can leave the options as their default values.

Choose Generate to create a Visual Studio solution, and then choose Open Project to open the
project in Visual Studio.

In Visual Studio, right-click the aws_demos project and choose Set as StartUp Project. This
enables you to build and run the project. On the first run, you will need to select a network
interface (p. 177).

For more information about using CMake with FreeRTOS, see Using CMake with FreeRTOS (p. 80).

Configure your network interface

On the first run of the demo project, you must select the network interface to use. The program
enumerates your network interfaces. Find the number for your hard-wired Ethernet interface. The output
should look like this:

0 0 [None] FreeRTOS_IPInit
1 0 [None] vTaskStartScheduler

1.

rpcap://\Device\NPF_{AD01B877-A0C1-4F33-8256-EE1F4480B70D}

(Network adapter 'Intel(R) Ethernet Connection (4) I219-LM' on local host)

177

FreeRTOS User Guide
Xilinx Avnet MicroZed Industrial loT Kit

2. rpcap://\Device\NPF_{337F7AF9-2520-4667-8EFF-2B575A98B580}
(Network adapter 'Microsoft' on local host)

The interface that will be opened is set by "configNETWORK_INTERFACE_TO_USE", which
should be defined in FreeRTOSConfig.h

ERROR: configNETWORK_INTERFACE_TO_USE is set to 0, which is an invalid value.

Please set configNETWORK_INTERFACE_TO _USE to one of the interface numbers listed above,
then re-compile and re-start the application. Only Ethernet (as opposed to Wi-Fi)
interfaces are supported.

After you have identified the number for your hard-wired Ethernet interface, close the application
window. In the example above, the number to use is 1.

Open FreeRTOSConfig.h and set configNETWORK_INTERFACE_TO_USE to the number that
corresponds to your hard-wired network interface.

Important
Only Ethernet interfaces are supported. Wi-Fi isn't supported. For more information, see the
WinPcap FAQ entry Q-16: Which network adapters are supported by WinPcap? .

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

Troubleshooting common problems on Windows

You might run into the following error when trying to build the demo project with Visual Studio:

Error "The Windows SDK version X.Y was not found" when building the provided Visual Studio
solution.

The project must be targeted to a Windows SDK version present on your computer.

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

Getting started with the Xilinx Avnet MicroZed
Industrial loT Kit

This tutorial provides instructions for getting started with the Xilinx Avnet MicroZed Industrial loT Kit.
If you do not have the Xilinx Avnet MicroZed Industrial 10T Kit, visit the AWS Partner Device Catalog to
purchase one from our partner.

Before you begin, you must configure AWS IoT and your FreeRTOS download to connect your device
to the AWS Cloud. See First steps (p. 72) for instructions. In this tutorial, the path to the FreeRTOS
download directory is referred to as freertos.

178

https://www.winpcap.org/misc/faq.htm#Q-16
https://console.aws.amazon.com/iotv2/
https://devices.amazonaws.com/detail/a3G0L00000AANtqUAH/MicroZed-IIoT-Bundle-with-Amazon-FreeRTOS

FreeRTOS User Guide
Xilinx Avnet MicroZed Industrial loT Kit

Overview
This tutorial contains instructions for the following getting started steps:

1. Connecting your board to a host machine.

2. Installing software on the host machine for developing and debugging embedded applications for
your microcontroller board.

3. Cross compiling a FreeRTOS demo application to a binary image.
4. Loading the application binary image to your board, and then running the application.

Set up the MicroZed hardware

The following diagram might be helpful when you set up the MicroZed hardware:

User LED and
Power Good LED Push Button JTAG Access

Digilent Pmod™
Compatible Header
10/100/1000
Ethernet and

USB-Host

microSD Card
(On Back)

13
b

+3

3

&

T % B . : i N USB-UART
it 1 L

g g. ‘Ii:_“ > b
o+ FAN 8 27MB-720%0-ASY~
RST Button
MicroHeaders with Boot MODE Jumpers
108 User 10 DONE LED (JP1 and JP2 in top
(On Back) position for QSPI Boot)

To set up the MicroZed board

1. Connect your computer to the USB-UART port on your MicroZed board.
2. Connect your computer to the JTAG Access port on your MicroZed board.

3. Connect a router or internet-connected Ethernet port to the Ethernet and USB-Host port on your
MicroZed board.

Set up your development environment

To set up FreeRTOS configurations for the MicroZed kit, you must use the Xilinx Software Development
Kit (XSDK). XSDK is supported on Windows and Linux.

Download and install XSDK
To install Xilinx software, you need a free Xilinx account.
To download the XSDK

1. Go to the Software Development Kit Standalone Weblnstall Client download page.

179

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2019-1.html

FreeRTOS User Guide
Xilinx Avnet MicroZed Industrial loT Kit

2. Choose the option appropriate for your operating system.
3. You are directed to a Xilinx sign-in page.

If you have an account with Xilinx, enter your user name and password and then choose Sign in.

If you do not have an account, choose Create your account. After you register, you should receive an
email with a link to activate your Xilinx account.

4. Onthe Name and Address Verification page, enter your information and then choose Next. The
download should be ready to start.

5. SavetheXilinx SDK_version_os file.

To install the XSDK

Open the Xilinx_SDK version_os file.
2. In Select Edition to Install, choose Xilinx Software Development Kit (XSDK) and then choose Next.

3. On the following page of the installation wizard, under Installation Options, select Install Cable
Drivers and then choose Next.

If your computer does not detect the MicroZed's USB-UART connection, install the CP210x USB-to-UART
Bridge VCP drivers manually. For instructions, see the Silicon Labs CP210x USB-to-UART Installation
Guide.

For more information about XSDK, see the Getting Started with Xilinx SDK on the Xilink website.
Build and run the FreeRTOS demo project

Open the FreeRTOS demo in the XSDK IDE

1. Launch the XSDK IDE with the workspace directory set to freertos/projects/xilinx/
microzed/xsdk.

2. Close the welcome page. From the menu, choose Project, and then clear Build Automatically.
3. From the menu, choose File, and then choose Import.

4. On the Select page, expand General, choose Existing Projects into Workspace, and then choose
Next.

5. On the Import Projects page, choose Select root directory, and then enter the root directory of
your demo project: freertos/projects/xilinx/microzed/xsdk/aws_demos. To browse for
the directory, choose Browse.

After you specify a root directory, the projects in that directory appear on the Import Projects page.
All available projects are selected by default.

Note
If you see a warning at the top of the Import Projects page ("Some projects cannot be
imported because they already exist in the workspace.") you can ignore it.

6. With all of the projects selected, choose Finish.

7. If you don't see the aws_bsp, £sbl, and MicroZed_hw_platform_ 0 projects in the projects pane,
repeat the previous steps starting from #3 but with the root directory set to freertos/vendors/
xilinx, and import aws_bsp, £sbl, and MicroZed_hw_platform 0.

8. From the menu, choose Window, and then choose Preferences.
9. In the navigation pane, expand Run/Debug, choose String Substitution, and then choose New.

10. In New String Substitution Variable, for Name, enter AFR_ROOT. For Value, enter the root path of
the freertos/projects/xilinx/microzed/xsdk/aws_demos. Choose OK, and then choose
OK to save the variable and close Preferences.

180

https://www.xilinx.com/support/documentation/boards_and_kits/install/ug1033-cp210x-usb-uart-install.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/install/ug1033-cp210x-usb-uart-install.pdf
https://www.xilinx.com/html_docs/xilinx2018_2/SDK_Doc/index.html

FreeRTOS User Guide
Xilinx Avnet MicroZed Industrial loT Kit

Build the FreeRTOS demo project

1. In the XSDK IDE, from the menu, choose Project, and then choose Clean.
2. In Clean, leave the options at their default values, and then choose OK. XSDK cleans and builds all of
the projects, and then generates . elf files.

Note

To build all projects without cleaning them, choose Project, and then choose Build All.
To build individual projects, select the project you want to build, choose Project, and then
choose Build Project.

Generate the boot image for the FreeRTOS demo project

In the XSDK IDE, right-click aws_demos, and then choose Create Boot Image.
In Create Boot Image, choose Create new BIF file.

Next to Output BIF file path, choose Browse, and then choose aws_demos .bif located at
<freertos>/vendors/xilinx/microzed/aws_demos/aws_demos.bif.

4., Choose Add.

5. On Add new boot image partition, next to File path, choose Browse, and then choose £sbl.elf,
located at vendors/xilinx/fsbl/Debug/fsbl.elf.

For the Partition type, choose bootloader, and then choose OK.

On Create Boot Image, choose Create Image. On Override Files, choose OK to overwrite the
existing aws_demos .bif and generate the BOOT.bin file at projects/xilinx/microzed/
xsdk/aws_demos/BOOT.bin.

JTAG debugging

1. Set your MicroZed board's boot mode jumpers to the JTAG boot mode.

Y = GlU -

2. Insert your MicroSD card into the MicroSD card slot located directly under the USB-UART port.

Note
Before you debug, be sure to back up any content that you have on the MicroSD card.

Your board should look similar to the following:

181

FreeRTOS User Guide
Xilinx Avnet MicroZed Industrial loT Kit

3. Inthe XSDK IDE, right-click aws_demos, choose Debug As, and then choose 1 Launch on System
Hardware (System Debugger).

4. When the debugger stops at the breakpoint in main(), from the menu, choose Run, and then
choose Resume.

Note

The first time you run the application, a new certificate-key pair is imported

into non-volatile memory. For subsequent runs, you can comment out
vDevModeKeyProvisioning() in themain. c file before you rebuild the images and the
BOOT .bin file. This prevents the copying of the certificates and key to storage on every run.

You can opt to boot your MicroZed board from a MicroSD card or from QSPI flash to run the FreeRTOS
demo project. For instructions, see Generate the boot image for the FreeRTOS demo project (p. 181)
and Run the FreeRTOS demo project (p. 182).

Run the FreeRTOS demo project

To run the FreeRTOS demo project, you can boot your MicroZed board from a MicroSD card or from QSPI
flash.

As you set up your MicroZed board for running the FreeRTOS demo project, refer to the diagram in Set
up the MicroZed hardware (p. 179). Make sure that you have connected your MicroZed board to your
computer.

Boot the FreeRTOS project from a MicroSD card
Format the MicroSD card that is provided with the Xilinx MicroZed Industrial loT Kit.

1. Copy the BOOT.bin file to the MicroSD card.
2. Insert the card into the MicroSD card slot directly under the USB-UART port.
3. Set the MicroZed boot mode jumpers to SD boot mode.

182

FreeRTOS User Guide
Xilinx Avnet MicroZed Industrial loT Kit

SD Card

4. Press the RST button to reset the device and start booting the application. You can also unplug the
USB-UART cable from the USB-UART port, and then reinsert the cable.

Boot the FreeRTOS demo project from QSPI flash

1. Set your MicroZed board's boot mode jumpers to the JTAG boot mode.

Y = GlU -

2. Verify that your computer is connected to the USB-UART and JTAG Access ports. The green Power
Good LED light should be illuminated.

3. Inthe XSDK IDE, from the menu, choose Xilinx, and then choose Program Flash.

4. In Program Flash Memory, the hardware platform should be filled in automatically. For Connection,
choose your MicroZed hardware server to connect your board with your host computer.

Note
If you are using the Xilinx Smart Lync JTAG cable, you must create a hardware server in
XSDK IDE. Choose New, and then define your server.

5. InImage File, enter the directory path to your BOOT.bin image file. Choose Browse to browse for
the file instead.

6. In Offset, enter 0x0.

7. In FSBL File, enter the directory path to your £sbl.elf file. Choose Browse to browse for the file
instead.

8. Choose Program to program your board.

9. After the QSPI programming is complete, remove the USB-UART cable to power off the board.
10. Set your MicroZed board's boot mode jumpers to the QSPI boot mode.

11. Insert your card into the MicroSD card slot located directly under the USB-UART port.

Note
Be sure to back up any content that you have on the MicroSD card.

12. Press the RST button to reset the device and start booting the application. You can also unplug the
USB-UART cable from the USB-UART port, and then reinsert the cable.

Monitoring MQTT messages on the cloud

You can use the MQTT client in the AWS loT console to monitor the messages that your device sends to
the AWS Cloud.

To subscribe to the MQTT topic with the AWS loT MQTT client

1. Signin to the AWS IoT console.

183

https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Xilinx Avnet MicroZed Industrial loT Kit

2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

Troubleshooting

If you encounter build errors that are related to incorrect paths, try to clean and rebuild the project, as
described in Build the FreeRTOS demo project (p. 181).

If you are using Windows, make sure that you use forward slashes when you set the string substitution
variables in the Windows XSDK IDE.

For general troubleshooting information about Getting Started with FreeRTOS, see Troubleshooting
getting started (p. 79).

184

FreeRTOS User Guide
FreeRTOS porting libraries

FreeRTOS Libraries

FreeRTOS libraries provide additional functionality to the FreeRTOS kernel and its internal libraries. You
can use FreeRTOS libraries for networking and security in embedded applications. FreeRTOS libraries also
enable your applications to interact with AWS loT services.

The 1libraries directory contains the source code of the FreeRTOS libraries. There are helper functions

that assist in implementing the library functionality. We do not recommend that you change these
helper functions.

FreeRTOS porting libraries

The following porting libraries are included in configurations of FreeRTOS that are available for
download on the FreeRTOS console. These libraries are platform-dependent. Their contents change

according to your hardware platform. For information about porting these libraries to a device, see the
FreeRTOS Porting Guide.

FreeRTOS porting libraries

BRsaription
Reference
Rlsirtmpoth
Itubmey
Hwesiii OS
Bblietooth
Refwrence
Energy
library,
your
microcontroller
can
communicate
with

the

AWS

loT

MQTT
broker
through

a

gateway
device.

For

more
information,
see
Bluetooth
Low

Energy
library (p. 199).

Orindr -
thmeeRTOS

185

https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/lib-ref/ble/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/ble/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/ble/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/ble/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/ble/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html

FreeRTOS User Guide
FreeRTOS porting libraries

BRsaription
Reference
AWVS
Bptiatesce
Over-
the-

Air

(OTA)
Agent
library
connects
your
FreeRTOS
device

to

the

AWS

loT

OTA
Agent.

For

more
information,
see

OTA

Agent

library (p. 222).

FeeRTOS
dBOSIX
ABe
Rh&erence
FreeRTOS
+POSIX
library

to

port
POSIX-
compliant
applications
to

the
FreeRTOS
ecosystem.

For

more
information,
see
FreeRTOS
+POSIX.

186

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html
https://freertos.org/Documentation/api-ref/POSIX/index.html
https://freertos.org/Documentation/api-ref/POSIX/index.html
https://freertos.org/Documentation/api-ref/POSIX/index.html
https://freertos.org/Documentation/api-ref/POSIX/index.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_POSIX/index.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_POSIX/index.html

FreeRTOS User Guide
FreeRTOS porting libraries

BRsaription
Reference

S@aure
Sadkets
Aiflormation,
Reéerence
Secure
Sockets

library (p. 226).

neeef RIS
+Ka@P

AP
Reference
scalable,
open
source
and
thread
safe

TCP/

IP

stack

for
FreeRTOS.

For

more
information,
see
FreeRTOS
+TCP.

187

https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/FreeRTOS_TCP_API_Functions.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/FreeRTOS_TCP_API_Functions.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/FreeRTOS_TCP_API_Functions.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/FreeRTOS_TCP_API_Functions.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html

FreeRTOS User Guide
FreeRTOS porting libraries

BRsaription
Reference

Whe
FireeRTOS
AVi-
Féeference
library
enables
you

to
interface
with

your

microcontroller's

lower-
level
wireless
stack.

For

more
information,
see

Wi-

Fi

library (p. 230).

188

https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html

FreeRTOS User Guide
FreeRTOS porting libraries

BRsaription
Reference

PIK(ES
#1ra@eRTOS
PKCS
#11
library
is
a
reference
implementation
of
the
Public
Key
Cryptography
Standard
#11,
to
support
provisioning
and
TLS
client
authentication.

For

more
information,
see

Public

Key
Cryptography
Standard
(PKCS)

#11

library (p. 224).

&

more
information,

see

Transport

Layer

Security (p. 230).

Gommon
Ifhore
@formation,
AP
Referere

I/

O (p. 234).

189

FreeRTOS User Guide
FreeRTOS application libraries

FreeRTOS application libraries

You can optionally include the following standalone application libraries in your FreeRTOS configuration
to interact with AWS loT services on the cloud.

Note
Some of the application libraries have the same APIs as libraries in the AWS loT Device SDK
for Embedded C. For these libraries, see the AWS loT Device SDK C API Reference. For more

information about the the AWS loT Device SDK for Embedded C, see AWS loT Device SDK for
Embedded C (p. 69).

FreeRTOS application libraries

BRsaription
Reference

M&ce
IBdEeRTOS
DeNVise
Béfender
Bevice
Befendee
library
connects
your
FreeRTOS
device
to
AWS
loT
Device
Defender.

For

more
information,
see

AWS

loT

Device
Defender
library (p. 210).

Al&ngrass
IBéeRTOS
@MISwgrass
loT
Greengrass
library
connects
your
FreeRTOS
device

to

AWS

loT
Greengrass.

190

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__greengrass__discovery_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__greengrass__discovery_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__greengrass__discovery_8h.html

FreeRTOS User Guide
FreeRTOS application libraries

BRsaription
Reference
For

more
information,
see

AWS

loT
Greengrass
Discovery
library (p. 214).

191

FreeRTOS User Guide
FreeRTOS application libraries

BRsaription
Reference

MiQE T
(Fre€RTOS
M@y
AiBrary
proviclese

a

Afeht
(fol)
Aoant
fPéeRTOS
Rifdeence

to
E&Eﬁ%h

4P0)
gu bscribe
1K

MOTT
Repicsnce
MQTT

is

the
protocol
that
devices
use

to
interact
with
AWS
loT.

For

more
information
about
the
FreeRTOS
MQTT
library
version
1.0.0,

see

MQTT
library,
version

1.0.0 (p. 218).

For

more
information
about

the
FreeRTOS
MQTT

192

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__lib_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__lib_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__lib_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__lib_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__lib_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html

FreeRTOS User Guide
FreeRTOS common libraries

BRsaription
Reference
library
version

2.0.0,

see

MQTT

library,
version

2.0.0 (p. 216).

Mi&ce
BWSow
DeVice
ezl osv
Shadow
Ribiamnce
enables
your
FreeRTOS
device

to
interact
with

AWS

loT
device
shadows.

For

more
information,
see

AWS

loT

Device

Shadow

library (p. 212).

FreeRTOS common libraries

The following common libraries extend the kernel functionality with additional data structures and

functions for embedded application development. These libraries are often dependencies of the
FreeRTOS porting and application libraries.

Note
The AWS IoT Device SDK for Embedded C includes common libraries with APIs and functionality
identical to these libraries. For an API reference, see the AWS IoT Device SDK C API Reference.

FreeRTOS common libraries
BRsaription
Reference

Mammiic
Operations

193

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__shadow_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__shadow_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__shadow_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__shadow_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__shadow_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__shadow_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/platform/iot__atomic__generic_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/platform/iot__atomic__generic_8h.html

FreeRTOS User Guide
Configuring the FreeRTOS libraries

BRsaription
Reference
information,

SB&

ARbmic

Refereticas (p. 195).

linear
Cootainers
information,
SB&

ARiear
Refetaimars
library (p. 195).

Ifmyging

@ore
SmfidAmation,
Regerence
Logging

library (p. 196).

Fartic
Vieonery
@nformation,
SB&

ARatic

Rééenenyge
library (p. 196).

Tk

Fooke
information,
SB&

ABbk

Refelence
library (p. 196).

Configuring the FreeRTOS libraries

Configuration settings for FreeRTOS and the AWS IoT Device SDK for Embedded C are defined as C
preprocessor constants. You can set configuration settings with a global configuration file, or by using a
compiler option such as -D in gcc. Because configuration settings are defined as compile-time constants,
a library must be rebuilt if a configuration setting is changed.

If you want to use a global configuration file to set configuration options, create and save the file with
the name iot_config.h, and place it in your include path. Within the file, use #define directives to
configure the FreeRTOS libraries, demos, and tests.

For more information about the supported global configuration options, see the Global Configuration
File Reference.

194

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/platform/iot__atomic__generic_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/platform/iot__atomic__generic_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/platform/iot__atomic__generic_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/platform/iot__atomic__generic_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/linear_containers/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/linear_containers/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/linear_containers/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/linear_containers/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/linear_containers/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/linear_containers/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/logging/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/logging/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/logging/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/logging/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/static_memory/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/static_memory/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/static_memory/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/static_memory/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/static_memory/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/static_memory/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/taskpool/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/taskpool/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/taskpool/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/taskpool/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/taskpool/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/taskpool/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/global_library_config.html#IOT_CONFIG_FILE
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/global_library_config.html#IOT_CONFIG_FILE

FreeRTOS User Guide
Common libraries

Common libraries

FreeRTOS includes some common libraries that extend the kernel functionality with additional data
structures and functions for embedded application development. These libraries are often dependencies
of other FreeRTOS libraries.
Topics

« Atomic operations (p. 195)

« Linear Containers library (p. 195)

» Logging library (p. 196)

« Static Memory library (p. 196)

» Task Pool library (p. 196)

Atomic operations

Overview

Atomic operations ensure non-blocking synchronization in concurrent programming. You can use atomic
operations to solve performance issues that are caused by asynchronous operations that act on shared
memory. FreeRTOS supports atomic operations, as implemented in the iot_atomic.h header file.

The iot_atomic.h header file includes two implementations for atomic operations:
« Disabling interrupt globally.

This implementation is available to all FreeRTOS platforms.
« ISA native atomic support.

This implementation is only available to platforms that compile with GCC, version 4.7.0 and higher,
and have ISA atomic support. For information about GCC built-in functions, see Built-in Functions for
Memory Model Aware Atomic Operations.

Initialization

Before you use FreeRTOS Atomic Operations, you need to choose which implementation of atomic
operations that you want to use.

1. Open FreeRTOSConfig.h (p. 8) configuration file for edit.

2. For the ISA native atomic support implementation, define and set the
configUSE_ATOMIC_INSTRUCTION variable to 1.

For the disabling global interrupt implementation, undefine or clear
configUSE_ATOMIC_INSTRUCTION.

API reference

For a full API reference, see Atomic Operations C SDK API Reference.

Linear Containers library

The FreeRTOS Linear Containers library defines linear data structures, including lists and queues, for you
to use when developing embedded applications.

195

https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/platform/iot__atomic__generic_8h.html

FreeRTOS User Guide
Logging

API reference

For a full API reference, see Linear Containers C SDK API Reference.

Logging library
The FreeRTOS logging library enables FreeRTOS libraries to print messages to the log for debugging.

API reference

For a full API reference, see Logging C SDKAPI Reference.

Static Memory library

The FreeRTOS Static Memory library defines some functions for managing static buffers. With this
library, you can use a Static Memory component to provide statically-allocated buffers instead of using
dynamic memory allocation.

API reference

For a full API reference, see Static Memory C SDK API Reference.

Task Pool library

Overview

FreeRTOS supports task management with the FreeRTOS Task Pool library. The Task Pool library enables
you to schedule background tasks, and allows safe, asynchronous task scheduling and cancellation.
Using the Task Pool APIs, you can configure your application's tasks to optimize the trade-off between
performance and memory footprint.

The Task Pool library is built on two main data structures: the Task Pool and Task Pool jobs.
Task Pool (IotTaskPool t)

The Task Pool contains a dispatch queue that manages the job queue for execution, and manages the
worker threads that execute jobs.

Task Pool jobs (IotTaskPoolJob_t)

Task Pool jobs can be executed as background jobs, or timed background jobs. Background jobs are
started in First-In-First-Out order and have no time constraints. Timed jobs are scheduled for background
execution according to a timer.

Note
Task Pool can only guarantee that a timed job will be executed after a timeout elapses, and not
within a specific window of time.

Dependencies and requirements
The Task Pool library has the following dependencies:

« The Linear Containers (list/queue) library for maintaining the data structures for scheduled and in-
progress task pool operations.

« The logging library (if I0T_LOG_LEVEL_TASKPOOL configuration setting is not IOT LOG_NONE).

196

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/linear_containers/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/logging/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/static_memory/index.html

FreeRTOS User Guide
Task Pool

« A platform layer that provides an interface to the operating system for thread management, timers,
clock functions, etc.

|
. “if logging enahled yIf static memory only

Iif static memary only _
——————— otatic memaory

List/Clueue Logging

Features
Using the Task Pool library APlIs, you can do the following:

« Schedule immediate and deferred jobs with the library's non-blocking API functions.

« Create statically and dynamically allocated jobs.

« Configure library settings to scale performance and footprint, based on your system's resources.
« Customize caching for low memory overhead when creating jobs dynamically.

Troubleshooting

The Task Pool library functions return error codes as IotTaskPoolError_t enumerated values. For
more information about each error code, see the reference documentation for IotTaskPoolError_t
enumerated data type in Task Pool C SDK API Reference.

Usage restrictions

The Task Pool pool library cannot be used from an interrupt service routine (ISR).

We strongly discourage task pool user callbacks that perform blocking operations, especially indefinite
blocking operations. Long-standing blocking operations effectively steal a task pool thread, and create a
potential for deadlock or starvation.

Initialization

An application needs to call IotTaskPool_ CreateSystemTaskPool to initialize an instance of a
system task pool, prior to using the task pool. The application needs to make sure that system-level task

197

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/taskpool/index.html

FreeRTOS User Guide
Task Pool

pool is initialized early enough in the boot sequence, before any library uses the task pool, and before
any application code posts a job to the task pool. Shortly after boot, the system initializes the single,
system-level task pool for all libraries to share. After initialization, the task pool handle can be retrieved
for use with the IOT_SYSTEM_TASKPOOL API.

Note

Calling IotTaskPool_CreateSystemTaskPool does not allocate memory to hold the task
pool data structures and state, but it might allocate memory to hold the dependent entities and
data structures, like the threads of the task pool.

API reference

For a full API reference, see Task Pool C SDK API Reference.

Example usage

Suppose that you need to schedule a recurring collection of AWS IoT Device Defender metrics, and you
decide to use a timer to schedule the collection with calls to the MQTT connect, subscribe, and publish
APIs. The following code defines a callback function for accepting AWS loT Device Defender metrics
across MQTT, with a disconnect callback that disconnects from the MQTT connection.

/* An example of a user context to pass to a callback through a task pool thread. */
typedef struct JobUserContext
{
uint32_t counter;
} JobUserContext_t;

/* An example of a user callback to invoke through a task pool thread. */
static void ExecutionCb(IotTaskPool_t * pTaskPool, IotTaskPoolJob_t * pJdob, void *
context)

{
(void)pTaskPool;
(void)pJob;
JobUserContext_t * pUserContext = (JobUserContext_t *)context;
pUserContext->counter++;
}

void TaskPoolExample()

{
JobUserContext_t userContext = { 0 };
IotTaskPoolJdob_t job;
IotTaskPool_t * pTaskPool;
IotTaskPoolError_t errorSchedule;

/* Configure the task pool to hold at least two threads and three at the maximum. */

/* Provide proper stack size and priority per the application needs. */

const IotTaskPoolInfo_t tpInfo = { .minThreads = 2, .maxThreads = 3, .stackSize =
512, .priority = 0 };

/* Create a task pool. */
IotTaskPool_Create(&tpInfo, &pTaskPool);

/* Statically allocate one job, then schedule it. */
IotTaskPool_CreateJob(&ExecutionCb, &userContext, &job);
errorSchedule = IotTaskPool_Schedule(pTaskPool, &job, 0);

switch (errorSchedule)
{
case IOT_TASKPOOL_SUCCESS:
break;
case IOT_TASKPOOL_BAD_PARAMETER: // Invalid parameters, such as a NULL handle,
can trigger this error.

198

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/taskpool/index.html

FreeRTOS User Guide
Bluetooth Low Energy

case IOT_TASKPOOL_ILLEGAL_OPERATION: // Scheduling a job that was previously
scheduled or destroyed could trigger this error.
case IOT_TASKPOOL_NO_MEMORY: // Scheduling a with flag
#I0OT_TASKPOOL_JOB_HIGH_PRIORITY could trigger this error.
case IOT_TASKPOOL_SHUTDOWN_IN_PROGRESS: // Scheduling a job after trying to destroy
the task pool could trigger this error.
// ASSERT
break;
default:
// ASSERT*/
}
TN */
/* Perform other operations */
e i i e i i e e */

IotTaskPool_Destroy(pTaskPool);

Bluetooth Low Energy library

Overview

FreeRTOS supports publishing and subscribing to MQTT topics over Bluetooth Low Energy through
a proxy device, such as a mobile phone. With the FreeRTOS Bluetooth Low Energy library, your
microcontroller can securely communicate with the AWS loT MQTT broker.

‘%A AWS IoT Core
MQTT/HTTP/Websocket (
-

* - (/-(C

W

Cond
y&7 T :

((@)) ((%))

AWS Cognito

Using the Mobile SDKs for FreeRTOS Bluetooth Devices, you can write native mobile applications that
communicate with the embedded applications on your microcontroller over Bluetooth Low Energy. For
more information about the mobile SDKs, see Mobile SDKs for FreeRTOS Bluetooth devices (p. 208).

The FreeRTOS Bluetooth Low Energy library includes services for configuring Wi-Fi networks,
transferring large amounts of data, and providing network abstractions over Bluetooth Low Energy. The
FreeRTOS Bluetooth Low Energy library also includes middleware and lower-level APIs for more direct
control over your Bluetooth Low Energy stack.

Architecture

Three layers make up the FreeRTOS Bluetooth Low Energy library: services, middleware, and low-level
wrappers.

Services

The FreeRTOS Bluetooth Low Energy services layer consists of four Generic Attributes (GATT) services
that leverage the middleware APIs: Device Information, Wi-Fi Provisioning, Network Abstraction, and
Large Object Transfer.

199

FreeRTOS User Guide
Architecture

Device information

The Device Information service gathers information about your microcontroller, including:

« The version of FreeRTOS that your device is using.
o The AWS loT endpoint of the account for which the device is registered.
« Bluetooth Low Energy Maximum Transmission Unit (MTU).

Wi-Fi provisioning
The Wi-Fi provisioning service enables microcontrollers with Wi-Fi capabilities to do the following:

« List networks in range.

« Save networks and network credentials to flash memory.

« Set network priority.

» Delete networks and network credentials from flash memory.

Network abstraction

The network abstraction service abstracts the network connection type for applications. A common
APl interacts with your device's Wi-Fi, Ethernet, and Bluetooth Low Energy hardware stack, enabling an
application to be compatible with multiple connection types.

Large Object Transfer

The Large Object Transfer service sends data to and receives data from a client. Other services, like Wi-
Fi Provisioning and Network Abstraction, use the Large Object Transfer service to send and receive data.
You can also use the Large Object Transfer API to interact with the service directly.

Middleware

FreeRTOS Bluetooth Low Energy middleware is an abstraction from the lower-level APIs. The middleware
APIs make up a more user-friendly interface to the Bluetooth Low Energy stack.

Using middleware APIs, you can register several callbacks, across multiple layers, to a single event.
Initializing the Bluetooth Low Energy middleware also initializes services and starts advertising.

Flexible callback subscription

Suppose your Bluetooth Low Energy hardware disconnects, and the MQTT over Bluetooth Low Energy
service needs to detect the disconnection. An application that you wrote might also need to detect the
same disconnection event. The Bluetooth Low Energy middleware can route the event to different parts
of the code where you have registered callbacks, without making the higher layers compete for lower-
level resources.

Low-level wrappers

The low-level FreeRTOS Bluetooth Low Energy wrappers are an abstraction from the manufacturer's
Bluetooth Low Energy stack. Low-level wrappers offer a common set of APIs for direct control over the
hardware. The low-level APIs optimize RAM usage, but are limited in functionality.

Use the Bluetooth Low Energy service APIs to interact with the Bluetooth Low Energy services. The
service APIs demand more resources than the low-level APIs.

200

FreeRTOS User Guide
Dependencies and requirements

Dependencies and requirements

The Bluetooth Low Energy library has the following direct dependencies:

« Linear Containers library (p. 195)

« A platform layer that interfaces with the operating system for thread management, timers, clock
functions, and network access.

List/Jueue

Only the Wi-Fi Provisioning service has FreeRTOS library dependencies:

GATT Service Dependency

Wi-Fi Provisioning Wi-Fi library (p. 230)

To communicate with the AWS loT MQTT broker, you must have an AWS account and you must register
your devices as AWS loT things. For more information about setting up, see the AWS loT Developer
Guide.

FreeRTOS Bluetooth Low Energy uses Amazon Cognito for user authentication on your mobile device.
To use MQTT proxy services, you must create an Amazon Cognito identity and user pools. Each Amazon
Cognito Identity must have the appropriate policy attached to it. For more information, see the Amazon
Cognito Developer Guide.

Library configuration file

Applications that use the FreeRTOS MQTT over Bluetooth Low Energy service must provide an
iot_ble_config.h header file, in which configuration parameters are defined. Undefined
configuration parameters take the default values specified in iot_ble_config defaults.h.

Some important configuration parameters include:

201

https://docs.aws.amazon.com/iot/latest/developerguide/
https://docs.aws.amazon.com/iot/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/

FreeRTOS User Guide
Optimization

IOT_BLE_ADD_ CUSTOM_SERVICES

Allows users to create their own services.
IOT_BLE_SET_CUSTOM_ADVERTISEMENT MSG

Allows users to customize the advertisement and scan response messages.

For more information, see Bluetooth Low Energy API Reference.
Optimization

When optimizing your board's performance, consider the following:

« Low-level APIs use less RAM, but offer limited functionality.

» You can set the bleconfigMAX NETWORK parameter in the iot_ble_config.h header file to a
lower value to reduce the amount of stack consumed.

« You can increase the MTU size to its maximum value to limit message buffering, and make code run
faster and consume less RAM.

Usage restrictions

By default, the FreeRTOS Bluetooth Low Energy library sets the eBTpropertySecureConnectionOnly
property to TRUE, which places the device in a Secure Connections Only mode. As specified by the
Bluetooth Core Specification v5.0, Vol 3, Part C, 10.2.4, when a device is in a Secure Connections Only
mode, the highest LE security mode 1 level, level 4, is required for access to any attribute that has
permissions higher than the lowest LE security mode 1 level, level 1. At the LE security mode 1 level 4, a
device must have input and output capabilities for numeric comparison.

Here are the supported modes, and their associated properties:

Mode 1, Level 1 (No security)

/* Disable numeric comparison */

#define IOT_BLE_ENABLE_NUMERIC_COMPARISON (
#define IOT_BLE_ENABLE_SECURE_CONNECTION (
#define IOT_BLE_INPUT OUTPUT (

IONone)
#define IOT_BLE_ENCRYPTION_REQUIRED ()

Mode 1, Level 2 (Unauthenticated pairing with encryption)

#define IOT BLE_ENABLE_NUMERIC_COMPARISON (
#define IOT BLE_ENABLE_ SECURE_CONNECTION (
(

#define IOT_ BLE_INPUT_OUTPUT IONone)

Mode 1, Level 3 (Authenticated pairing with encryption)

This mode is not supported.
Mode 1, Level 4 (Authenticated LE Secure Connections pairing with encryption)

This mode is supported by default.

For information about LE security modes, see the Bluetooth Core Specification v5.0, Vol 3, Part C, 10.2.1.

202

https://docs.aws.amazon.com/freertos/latest/lib-ref/ble/index.html
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

FreeRTOS User Guide
Initialization

Initialization

If your application interacts with the Bluetooth Low Energy stack through middleware, you only need to
initialize the middleware. Middleware takes care of initializing the lower layers of the stack.

Middleware

To initialize the middleware

1. Initialize any Bluetooth Low Energy hardware drivers before you call the Bluetooth Low Energy
middleware API.

Enable Bluetooth Low Energy.

Initialize the middleware with TotBLE_Init().

Note
This initialization step is not required if you are running the AWS demos. Demo initialization
is handled by the Network Manager, located at freertos/demos/network manager.

Low-level APIs

If you don't want to use the FreeRTOS Bluetooth Low Energy GATT services, you can bypass the
middleware and interact directly with the low-level APIs to save resources.

To initialize the low-level APIs

1.
Initialize any Bluetooth Low Energy hardware drivers before you call the APIs. Driver initialization is
not part of the Bluetooth Low Energy low-level APIs.
2.
The Bluetooth Low Energy low-level API provides an enable/disable call to the Bluetooth Low
Energy stack for optimizing power and resources. Before calling the APIs, you must enable Bluetooth
Low Energy.
const BTInterface t * pxIface = BTGetBluetoothInterface();
xStatus = pxIface->pxEnable(0);
3.
The Bluetooth manager contains APIs that are common to both Bluetooth Low Energy and
Bluetooth classic. The callbacks for the common manager must be initialized second.
xStatus = xBTInterface.pxBTInterface->pxBtManagerInit(&xBTManagerCb);
4.
The Bluetooth Low Energy adapter fits on top of the common API. You must initialize its callbacks
like you initialized the common API.
xBTInterface.pxBTLeAdapterInterface = (BTBleAdapter_t *) xBTInterface.pxBTInterface-
>pxGetLeAdapter();
xStatus = xBTInterface.pxBTLeAdapterInterface->pxBleAdapterInit(&xBTBleAdapterCb);
5.

Register your new user application.

xBTInterface.pxBTLeAdapterInterface->pxRegisterBleApp(pxAppUuid);

203

FreeRTOS User Guide
API reference

Initialize the callbacks to the GATT servers.

xBTInterface.pxGattServerInterface = (BTGattServerInterface_t *)
xBTInterface.pxBTLeAdapterInterface->ppvGetGattServerInterface();
xBTInterface.pxGattServerInterface->pxGattServerInit(&xBTGattServerCb);

After you initialize the Bluetooth Low Energy adapter, you can add a GATT server. You can register
only one GATT server at a time.

xStatus = xBTInterface.pxGattServerInterface->pxRegisterServer(pxAppUuid);

Set application properties like secure connection only and MTU size.

xStatus = xBTInterface.pxBTInterface->pxSetDeviceProperty(&pxProperty[usIndex]);

API reference

For a full API reference, see Bluetooth Low Energy API Reference.

Example usage

The examples below demonstrate how to use the Bluetooth Low Energy library for advertising and
creating new services. For full FreeRTOS Bluetooth Low Energy demo applications, see Bluetooth Low
Energy Demo Applications.

Advertising

1. Inyour application, set the advertising UUID:

static const BTUuid_t _advUUID =

{
.uu.uul2s IOT_BLE_ADVERTISING_UUID,
.ucType = eBTuuidTypel28

}i

2. Then define the TotBle_SetCustomAdvCb callback function:

void IotBle_SetCustomAdvCb(IotBleAdvertisementParams_t * pAdvParams,
IotBleAdvertisementParams_t * pScanParams)
{
memset(pAdvParams, 0, sizeof(IotBleAdvertisementParams_t));
memset(pScanParams, 0, sizeof(IotBleAdvertisementParams_t));

/* Set advertisement message */
pAdvParams->pUUID1 = &_ advUUID;
pAdvParams->nameType = BTGattAdvNameNone;

/* This is the scan response, set it back to true. */
pScanParams—->setScanRsp = true;
pScanParams->nameType = BTGattAdvNameComplete;

This callback sends the UUID in the advertisement message and the full name in the scan response.

204

https://docs.aws.amazon.com/freertos/latest/lib-ref/ble/index.html
https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html
https://docs.aws.amazon.com/freertos/latest/userguide/ble-demo.html

FreeRTOS User Guide
Example usage

3. Openvendors/vendor/boards/board/aws_demos/config files/iot_ble_config.h,
and set IOT BLE_SET CUSTOM ADVERTISEMENT_MSG to 1. This triggers the
IotBle_SetCustomAdvCb callback.

Adding a new service

For full examples of services, see freertos/.../ble/services.

1. Create UUIDs for the service's characteristic and descriptors:

#define xServiceUUID_TYPE \

A\
.uu.uul28 = gattDemoSVC_UUID, \
.ucType = eBTuuidTypel28 \

}

#define xCharCounterUUID_TYPE \

A\
.uu.uul28 = gattDemoCHAR_COUNTER_UUID, \
.ucType = eBTuuidTypel28\

}

#define xCharControlUUID_TYPE \

A\
.uu.uul28 = gattDemoCHAR_CONTROL_UUID, \
.ucType = eBTuuidTypel28\

}

#define xClientCharCfgUUID_TYPE \

A\
.uu.uulé = gattDemoCLIENT CHAR_CFG_UUID, \
.ucType = eBTuuidTypelé6)\

}

2. Create a buffer to register the handles of the characteristic and descriptors:
static uintl6_t usHandlesBuffer[egattDemoNbAttributes];

3. Create the attribute table. To save some RAM, define the table as a const.

Important
Always create the attributes in order, with the service as the first attribute.
static const BTAttribute_t pxAttributeTable[] = {
{
.XServiceUUID = xServiceUUID_TYPE
T
{
.XAttributeType = eBTDbCharacteristic,
.XCharacteristic =
{
.xUuid = xCharCounterUUID_TYPE,
.xPermissions = (IOT_BLE_CHAR_READ_PERM),
.xProperties = (eBTPropRead | eBTPropNotify)
}
T
{
.XAttributeType = eBTDbDescriptor,
.XCharacteristicDescr =
{
.xUuid = xClientCharCfgUUID_TYPE,
.xPermissions = (IOT_BLE_CHAR_READ_PERM | IOT_BLE_CHAR WRITE_PERM)
}
T
{

205

FreeRTOS User Guide
Porting

.XAttributeType = eBTDbCharacteristic,

.XCharacteristic =

{
.xUuid = xCharControlUUID_TYPE,
.xPermissions = (IOT_BLE_CHAR_READ PERM | IOT BLE_CHAR WRITE_PERM),
.xProperties = (eBTPropRead | eBTPropWrite)

}i

4. Create an array of callbacks. This array of callbacks must follow the same order as the table array
defined above.

For example, if vReadCounter gets triggered when xCharCounterUUID_TYPE is accessed, and
vWriteCommand gets triggered when xCharControlUUID_TYPE is accessed, define the array as
follows:

static const IotBleAttributeEventCallback t pxCallBackArray[egattDemoNbAttributes] =
{
NULL,
vReadCounter,
vEnableNotification,
vWriteCommand

}i

5. Create the service:

static const BTService_ t xGattDemoService =

{
.xNumberOfAttributes = egattDemoNbAttributes,
.ucInstId = O,
.xType = eBTServiceTypePrimary,
.pusHandlesBuffer = usHandlesBuffer,
.pxBLEAttributes = (BTAttribute_t *)pxAttributeTable
Y

6. Callthe APl IotBle_CreateService with the structure that you created in the previous step. The
middleware synchronizes the creation of all services, so any new services need to already be defined
when the IotBle_AddCustomServicesCb callback is triggered.

a. Set IOT_BLE_ADD CUSTOM_SERVICES to 1 in vendors/vendor/boards/board/
aws_demos/config files/iot_ble_config.h.

b. Create lotBle_AddCustomServicesCb in your application:

void IotBle_AddCustomServicesCb(void)
{
BTStatus_t xStatus;
/* Select the handle buffer. */
xStatus = IotBle_CreateService((BTService_t *)&xGattDemoService,
(IotBleAttributeEventCallback_t *)pxCallBackArray);

}

Porting

User input and output peripheral

A secure connection requires both input and output for numeric comparison. The
eBLENumericComparisonCallback event can be registered using the event manager:

206

FreeRTOS User Guide
Porting

xEventCb.pxNumericComparisonCb = &prvNumericComparisonCb;
xStatus = BLE_RegisterEventCb(eBLENumericComparisonCallback, xEventCb);

The peripheral must display the numeric passkey and take the result of the comparison as an input.

Porting APl implementations

To port FreeRTOS to a new target, you must implement some APIs for the Wi-Fi Provisioning service and
Bluetooth Low Energy functionality.

Bluetooth Low Energy APlIs
To use the FreeRTOS Bluetooth Low Energy middleware, you must implement some APlIs.

APIs common between GAP for Bluetooth Classic and GAP for Bluetooth Low Energy

* pxBtManagerInit
 pxEnable

» pxDisable

e pxGetDeviceProperty

« pxSetDeviceProperty (All options are mandatory expect eBTpropertyRemoteRssi and
eBTpropertyRemoteVersionInfo)

e pxPair

» pxRemoveBond

* pxGetConnectionState
 pxPinReply

* pxSspReply

¢ pxGetTxpower

e pxGetLeAdapter

* pxDeviceStateChangedCb
» pxAdapterPropertiesCb
*+ pxSspRequestCb

» pxPairingStateChangedCb
» pxTxPowerCb

APIs specific to GAP for Bluetooth Low Energy

» pxRegisterBleApp

» pxUnregisterBleApp

*» pxBleAdapterInit

e pxStartAdv

* pxStopAdv

e pxSetAdvData

e pxConnParameterUpdateRequest
*» pxRegisterBleAdapterCb

* pxAdvStartCb

* pxSetAdvDataCb

207

FreeRTOS User Guide
Mobile SDKs for FreeRTOS Bluetooth devices

« pxConnParameterUpdateRequestCb

» pxCongestionCb

GATT server

» pxRegisterServer

* pxUnregisterServer

e pxGattServerInit

e pxAddService

* pxAddIncludedService
e pxAddCharacteristic
e pxSetVal

e pxAddDescriptor

* pxStartService

e pxStopService
 pxDeleteService

* pxSendIndication

* pxSendResponse

« pxMtuChangedCb

e pxCongestionCb

¢ pxIndicationSentCb

* pxRequestExecWriteCb
 pxRequestWriteCb

¢ pxRequestReadCb

* pxServiceDeletedCb

e pxServiceStoppedCb

e pxServiceStartedCb

» pxDescriptorAddedCb
e pxSetValCallbackCb

e pxCharacteristicAddedCb
e pxIncludedServiceAddedCb
* pxServiceAddedCb

» pxConnectionCb

e pxUnregisterServerCb

« pxRegisterServerCb

For more information about porting the FreeRTOS Bluetooth Low Energy library to your platform, see
Porting the Bluetooth Low Energy Library in the FreeRTOS Porting Guide.

Mobile SDKs for FreeRTOS Bluetooth devices

You can use the Mobile SDKs for FreeRTOS Bluetooth Devices to create mobile applications that interact
with your microcontroller over Bluetooth Low Energy. The Mobile SDKs can also communicate with AWS
services, using Amazon Cognito for user authentication.

208

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ble.html

FreeRTOS User Guide
Mobile SDKs for FreeRTOS Bluetooth devices

Android SDK for FreeRTOS Bluetooth devices

Use the Android SDK for FreeRTOS Bluetooth Devices to build Android mobile applications that interact
with your microcontroller over Bluetooth Low Energy. The SDK is available on GitHub.

To install the Android SDK for FreeRTOS Bluetooth devices

Download the SDK from GitHub.

2. Open Android Studio, and import the amazon-freertos-ble-android-sdk/
amazonfreertossdk/ directory into your app project. The Android Studio User Guide has more
information on using Android Studio.

3. Inyour app project's gradle file, add the following dependencies:

dependencies {
implementation project(":amazonfreertossdk")

}

4. Inyour project's settings.gradle file, add ' :amazonfreertossdk':

include ':app', ':amazonfreertossdk'

5. Inyour app project's AndroidManifest.xml file, add the following permissions:

<uses-permission android:name="android.permission.BLUETOOTH"/>

<!-- initiate device discovery and manipulate bluetooth settings -->
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>
<!-- allow scan Bluetooth Low Energy -->

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

<!-- AWS Mobile SDK -->
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

For information about setting up and running the demo mobile application that is included with
the SDK, see Prerequisites (p. 237) and FreeRTOS Bluetooth Low Energy Mobile SDK demo
application (p. 239).

iOS SDK for FreeRTOS Bluetooth devices

Use the iOS SDK for FreeRTOS Bluetooth Devices to build iOS mobile applications that interact with your
microcontroller over Bluetooth Low Energy. The SDK is available on GitHub.

To install the i0OS SDK

1. Install CocoaPods:

$ gem install cocoapods
$ pod setup

Note
You might need to use sudo to install CocoaPods.

2. Install the SDK with CocoaPods (add this to your podfile):

$ pod 'FreeRTOS', :git => 'https://github.com/aws/amazon-freertos-ble-ios-sdk.git'

209

https://github.com/aws/amazon-freertos-ble-android-sdk/
https://github.com/aws/amazon-freertos-ble-android-sdk/
https://developer.android.com/studio/intro
https://github.com/aws/amazon-freertos-ble-ios-sdk/
http://cocoapods.org/

FreeRTOS User Guide
AWS loT Device Defender

AWS

For information about setting up and running the demo mobile application that is included with
the SDK, see Prerequisites (p. 237) and FreeRTOS Bluetooth Low Energy Mobile SDK demo
application (p. 239).

loT Device Defender library

Overview

AWS loT Device Defender is an AWS IoT service that enables you to monitor connected devices to detect
abnormal behavior and to mitigate security risks. With AWS loT Device Defender, you can enforce
consistent loT configurations across your AWS loT device fleet and respond quickly when devices are
compromised.

FreeRTOS provides a library that allows your FreeRTOS-based devices to work with AWS IoT Device
Defender. You can download FreeRTOS with the Device Defender library from the FreeRTOS Console
by adding the Device Defender library to your software configuration. You can also clone the FreeRTOS
GitHub repository, which includes all FreeRTOS libraries. See the README.md file for instructions.

Note

The FreeRTOS AWS IoT Device Defender library only supports a subset of the device-side AWS
loT Device Defender metrics related to connection metrics. For more information, see Usage
restrictions (p. 211).

Dependencies and requirements

The Device Defender library has the following dependencies:

« Linear Containers library (p. 195).

« Logging library (p. 196) (if the configuration parameter AWS_IOT LOG_LEVEL_DEFENDER is not set
to IOT_LOG_NONE).

« Static Memory library (p. 196) (if Static Memory only).

« A platform layer that provides an interface to the operating system for thread management, timers,
clock functions, etc.

« Task Pool library (p. 196).
« MQTT library, version 2.0.0 (p. 216).

—_— = =
---.-l-

_— e

___._-"" -
— -

-
- -
-

-~
, Tif logging enabled # if static mermory only
/

&
| 4 | 4
Logging static memaory List/Clueue Taskpoal il

210

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://console.aws.amazon.com/freertos
https://github.com/aws/amazon-freertos/blob/master/README.md
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html#DetectMetricsMessages
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html#DetectMetricsMessages

FreeRTOS User Guide
Troubleshooting

Troubleshooting

FreeRTOS Device Defender error codes

The Device Defender library returns error codes as positive values. For more information about each error
code, see AwsIotDefenderError_t in the Device Defender C SDK APl Reference.

FreeRTOS Device Defender events

The Device Defender library includes the AwsIotDefenderCallback_t callback function, which
returns positive, enumerated values known as "events" that indicate success or failure. For more
information about event types, see AwsIotDefenderEventType_t in the Device Defender C SDK API
Reference.

Debugging FreeRTOS Device Defender

To enable the debugging for the Device Defender library, set the log level for Device Defender to debug
mode in the global configuration file (p. 194):

#define AWS_IOT_LOG_LEVEL_DEFENDER IOT_LOG_DEBUG

For more information, see the Global Configuration File Reference.

Developer support

The Device Defender library includes the AwsIotDefender_strerror helper function, which returns a
string that describes the error that you provide to the function:

const char * AwsIotDefender_strerror(AwsIotDefenderError_t error);

Usage restrictions

Although the AWS loT Device Defender service supports both JSON and CBOR formats for data
serialization, the FreeRTOS Device Defender library currently only supports CBOR, which is controlled by
the configuration option AWS_IOT_DEFENDER_FORMAT.

Additionally, the FreeRTOS AWS IoT Device Defender library only supports a subset of device-side AWS
loT Device Defender metrics:

Long Name Short Name Parent Element Description

remote_addr rad connections Lists the remote
address of a TCP
connection.

total t established_connect/ibists the number

of established TCP
connections.

For example:

{

211

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/global_library_config.html#IOT_CONFIG_FILE
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html#DetectMetricsMessages
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html#DetectMetricsMessages

FreeRTOS User Guide
Initialization

AWS

"tcp_connections": {
"established_connections": {
"connections": [

{
"remote_addr": "192.168.0.1:8000"
Iy
{
"remote_addr": "192.168.0.2:8000"
}
1,
"total": 2

This JSON document is for example purposes only, as FreeRTOS Device Defender library does not
support JSON-formatted metrics.

Initialization

The macro AWS_IOT SECURE_SOCKETS_ METRICS_ENABLED must be defined to enable the secure
sockets metrics. Leaving this macro undefined could result in unpredictable behavior.

FreeRTOS Device Defender API

For a full API reference, see the Device Defender C SDK API Reference.

Example usage

For a full example of the Device Defender library in use, see AWS loT Device Defender demo (p. 253).

loT Device Shadow library

Overview

The FreeRTOS Device Shadow APIs define functions to create, update, and delete AWS IoT Device
Shadows. For more information about AWS loT Device Shadows, see Device Shadow Service for AWS loT.
The Device Shadow service is accessed using the MQTT protocol. The FreeRTOS Device Shadow APl works
with the MQTT API to handle the details of working with the MQTT protocol.

Dependencies and requirements

To use AWS loT Device Shadows with FreeRTOS, you need to register your device as an AWS loT thing.
Your thing must have a certificate with a policy that permits accessing the device's shadow. For more
information, see AWS loT Getting Started. For an example policy for FreeRTOS, see the AWS IoT Device
Shadow demo application (p. 267).

An example client credentials header file is located at freertos/demos/include/
aws_clientcredential.h. Make sure that you set values for the following constants in that header
file:

clientcredentialMQTT_ BROKER_ENDPOINT

Your AWS loT endpoint.

212

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/defender/index.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

FreeRTOS User Guide
API reference

clientcredentialIOT_THING_NAME

The name of your loT thing.
clientcredentialWIFI_SSID

The SSID of your Wi-Fi network.
clientcredentialWIFI_PASSWORD

Your Wi-Fi password.
clientcredentialWIFI_SECURITY

The type of Wi-Fi security used by your network.
keyCLIENT CERTIFICATE_PEM

The certificate PEM associated with your loT thing.
keyCLIENT PRIVATE_KEY_ PEM

The private key PEM associated with your loT thing.

This file is included in aws_shadow_1lightbulb_on_off.c (the Device Shadow demo
application (p. 267)).

If you are developing your own application, you need to include the aws_client_credentials.h
header file in the application, and then pass the credentials as MOTTAgentConnectParams to
SHADOW_ClientConnect to connect to AWS IoT over MQTT. Make sure that you specify your device's
registered AWS IoT thing name for the pucClient1d field of MOTTAgentConnectParams, or the
Device Shadow client will not connect.

Before running the application, make sure the FreeRTOS MQTT library is installed on your device. For
more information, see MQTT library (p. 216).

Also make sure that the MQTT buffers are large enough to contain the shadow JSON files. The maximum
size for a device shadow document is 8 KB. All default settings for the device shadow API can be set in
the aws_shadow_config defaults.h file. You can modify any of these settings in the freertos/
vendors/vendor/boards/board/aws_demos/config files/aws_shadow_config.h file.

Important

The JSON format that you define for your Device Shadow tasks must include a

clientToken field. The clientToken can take any unique value. For example, the
aws_shadow_lightbulb_on_off.c demo application uses token-%d, where %d is the RTOS
tick count at the time the JSON document is generated.

If the JSON format does not include a clientToken field, calls to SHADOW_Delete(),
SHADOW_Get(), and SHADOW_Update() will timeout.

API reference

For a full API reference, see Device Shadow C SDK API Reference.

Example usage

1. Use the SHADOW_ClientCreate API to create a shadow client. For most applications, the only field
to fill is xCreateParams .xMQTTClientType = eDedicatedMQTTClient.

2. Establish an MQTT connection by calling the SHADOW_ClientConnect API, passing the client handle
returned by SHADOW_ClientCreate.

3. Call the SHADOW_RegisterCallbacks API to configure callbacks for shadow update, get, and delete.

213

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__shadow_8h.html

FreeRTOS User Guide
AWS loT Greengrass

AWS

After a connection is established, you can use the following APIs to work with the device shadow:
SHADOW_Delete

Delete the device shadow.
SHADOW_Get

Get the current device shadow.
SHADOW_Update

Update the device shadow.

Note
When you are done working with the device shadow, call SHADOW_ClientDisconnect to
disconnect the shadow client and free system resources.

loT Greengrass Discovery library

Overview

The AWS IoT Greengrass Discovery library is used by your microcontroller devices to discover a
Greengrass core on your network. Using the AWS loT Greengrass Discovery APIs, your device can send
messages to a Greengrass core after it finds the core's endpoint.

Dependencies and requirements

To use the Greengrass Discovery library, you must create a thing in AWS loT, including a certificate and
policy. For more information, see AWS loT Getting Started.

You must set values for the following constants in the freertos/demos/include/
aws_clientcredential.h file:

clientcredentialMQTT_ BROKER_ENDPOINT

Your AWS IoT endpoint.
clientcredentialIOT_THING_NAME

The name of your loT thing.
clientcredentialWIFI_SSID

The SSID for your Wi-Fi network.
clientcredentialWIFI_PASSWORD

Your Wi-Fi password.
clientcredentialWIFI_SECURITY

The type of security used by your Wi-Fi network.
You must also set values for the following constants in the freertos/demos/include/
aws_clientcredential_keys.h file:
keyCLIENT_ CERTIFICATE_PEM

The certificate PEM associated with your thing.

214

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

FreeRTOS User Guide
API reference

keyCLIENT PRIVATE_KEY PEM

The private key PEM associated with your thing.

You must have a Greengrass group and core device set up in the console. For more information, see
Getting Started with AWS loT Greengrass.

Although the MQTT library is not required for Greengrass connectivity, we strongly recommend you
install it. The library can be used to communicate with the Greengrass core after it has been discovered.

API reference

For a full API reference, see Greengrass APl Reference.

Example usage

Greengrass workflow

The MCU device initiates the discovery process by requesting from AWS loT a JSON file that contains
the Greengrass core connectivity parameters. There are two methods for retrieving the Greengrass core
connectivity parameters from the JSON file:

« Automatic selection iterates through all of the Greengrass cores listed in the JSON file and connects to
the first one available.

« Manual selection uses the information in aws_ggd_config.h to connect to the specified Greengrass
core.

How to use the Greengrass API

All default configuration options for the Greengrass API are defined in aws_ggd_config_defaults.h.

If only one Greengrass core is present, call GGD_GetGGCIPandCertificate to request the JSON file
with Greengrass core connectivity information. When GGD_GetGGCIPandCertificate is returned, the
pcBuffer parameter contains the text of the JSON file. The pxHostAddressData parameter contains
the IP address and port of the Greengrass core to which you can connect.

For more customization options, like dynamically allocating certificates, you must call the following APIs:

GGD_JSONRequestStart

Makes an HTTP GET request to AWS loT to initiate the discovery request to discover a Greengrass
core. GD_SecureConnect_Send is used to send the request to AWS loT.

GGD_JSONRequestGetSize

Gets the size of the JSON file from the HTTP response.
GGD_JSONRequestGetFile

Gets the JSON object string. GGD_JSONRequestGetSize and GGD_JSONRequestGetFile use
GGD_SecureConnect_Read to get the JSON data from the socket. GGD_JSONRequestStart,
GGD_SecureConnect_Send, GGD_JSONRequestGetSize must be called to receive the JSON data
from AWS IoT.

GGD_GetIPandCertificateFromJSON
Extracts the IP address and the Greengrass core certificate from the JSON data. You can turn on

automatic selection by setting the xAutoSelectFlag to True. Automatic selection finds the
first core device your FreeRTOS device can connect to. To connect to a Greengrass core, call the

215

https://docs.aws.amazon.com/greengrass/latest/developerguide/
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__greengrass__discovery_8h.html

FreeRTOS User Guide
MQTT (v2.0.0)

GGD_SecureConnect_Connect function, passing in the IP address, port, and certificate of the core
device. To use manual selection, set the following fields of the HostParameters_t parameter:

pcGroupName

The ID of the Greengrass group to which the core belongs. You can use the aws greengrass
list-groups CLI command to find the ID of your Greengrass groups.

pcCoreAddress

The ARN of the Greengrass core to which you are connecting.

MQTT library, version 2.0.0

Overview

You can use the FreeRTOS MQTT library to create applications that publish and subscribe to MQTT
topics, as MQTT clients on a network. The FreeRTOS MQTT library implements the MQTT 3.1.1 standard
for compatibility with the AWS loT MQTT server. The library is also compatible with other MQTT servers.

The source files for the FreeRTOS MQTT library are located in freertos/.../mgtt. These files
implement version 2.0.0 of the FreeRTOS MQTT library. FreeRTOS also includes a backward-compatibility
layer for version 1.0.0 of the FreeRTOS MQTT library. For information about FreeRTOS MQTT version
1.0.0, see MQTT library, version 1.0.0 (p. 218).

Dependencies and requirements

The FreeRTOS MQTT library has the following dependencies:

« Linear Containers library (p. 195).

« Logging library (p. 196) (if the configuration parameter AWS_IOT_MQTT LOG_LEVEL is not set to
AWS_IOT_LOG_NONE).

« Static Memory library (p. 196) (if Static Memory only).
 Task Pool library (p. 196).

« The platform layer that provides an interface to the operating system for thread management, clock
functions, networking, and other platform-level functionality

o Cstandard library headers

The diagram below illustrates these dependencies.

- ~
_.,’if logging enabled o if static memory only
Y
y
: : if static memory only :
List/Queue Logging - = = = = = = = Static memory
Clock Thread management MNetwork

216

https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html#mqtt

FreeRTOS User Guide
Features

Features

The FreeRTOS MQTT library has the following features:

« By default, the library has a fully asynchronous MQTT API. You can opt to use the library
synchronously with the AwsIotMgtt_Wait function.

o The library is thread-aware and parallelizable for high throughput.

« The library features scalable performance and footprint. Use the configuration setting to tailor the
library to a system's resources.

API reference

FreeRTOS and the AWS loT Device SDK for Embedded C have the same MQTT v2.0.0 library APIs. For a
full API reference, see MQTT (v2.0.0) C SDK API Reference.

Example usage

For example usage of the FreeRTOS MQTT library, see MQTT demo application defined in
iot_demo_mgtt.c.

The MQTT demo demonstrates the subscribe-publish workflow of MQTT. After subscribing to multiple
topic filters, the application publishes bursts of data to various topic names. As each message arrives, the
demo publishes an acknowledgement message back to the MQTT server.

To use the MQTT demo, you must create a thing in AWS loT, including a certificate and policy. For more
information, see AWS loT Getting Started.

Global demo configuration parameters

You must set values for the following constants in the freertos/demos/include/
aws_clientcredential.h file:

clientcredentialMQTT_ BROKER_ENDPOINT

Your AWS loT endpoint.
clientcredentialIOT_THING_NAME

The name of your loT thing.
clientcredentialWIFI_SSID

The SSID for your Wi-Fi network.
clientcredentialWIFI_PASSWORD

Your Wi-Fi password.
clientcredentialWIFI_SECURITY

The type of security used by your Wi-Fi network.
You must also set values for the following constants in the freertos/demos/include/
aws_clientcredential_keys.h file:
keyCLIENT CERTIFICATE_PEM

The certificate PEM associated with your thing.

217

https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

FreeRTOS User Guide
MQTT (v1.0.0)

keyCLIENT PRIVATE_KEY PEM

The private key PEM associated with your thing.

MQTT demo configuration parameters
These configuration parameters apply to the MQTT demo.
AWS_IOT_DEMO_MQTT PUBLISH BURST SIZE

The number of messages to publish in each burst.
AWS_IOT_DEMO_MQTT PUBLISH BURST COUNT

The number of publish bursts in this demo.

MQTT library, version 1.0.0

Overview

FreeRTOS includes an open source MQTT client library that you can use to create applications that
publish and subscribe to MQTT topics, as MQTT clients on a network.

Version 2.0.0 of the MQTT Library is available for FreeRTOS versions 201960.00 and later. This newer
library is compatible with all transport types, meaning you can use it with Bluetooth Low Energy and
TCP/IP. For more information, see MQTT library, version 2.0.0 (p. 216).

The FreeRTOS MQTT Agent

FreeRTOS also includes an open source daemon, called the FreeRTOS MQTT Agent, that manages the
MQTT library for you. The MQTT Agent provides a simple interface to connect, publish, and subscribe to
MQTT topics with the underlying MQTT library.

The MQTT Agent runs in a separate FreeRTOS task and automatically sends regular keep-alive messages,
as documented by the MQTT protocol specification. All the MQTT APIs are blocking and take a timeout
parameter, which is the maximum amount of time the API waits for the corresponding operation to
complete. If the operation does not complete in the provided time, the API returns timeout error code.

Dependencies and requirements

The FreeRTOS MQTT library uses the Secure Sockets library (p. 226) and the FreeRTOS Buffer Pool
library. If the MQTT Agent connects to a secure MQTT broker, the library also uses the Transport Layer
Security (p. 230).

Features
Callback

You can specify an optional callback that is invoked whenever the MQTT Agent is disconnected
from the broker or whenever a publish message is received from the broker. The received publish
message is stored in a buffer taken from the central buffer pool. This message is passed to the
callback. This callback runs in the context of the MQTT task and therefore must be quick. If you

218

FreeRTOS User Guide
Major configurations

need to do longer processing, you must take the ownership of the buffer by returning pdTRUE from
the callback. You must then return the buffer back to the pool whenever you are done by calling
FreeRTOS_Agent_ReturnBuffer.

Subscription management

Subscription management enables you to register a callback per subscription filter. You supply this
callback while subscribing. It is invoked whenever a publish message received on a topic matches the
subscribed topic filter. The buffer ownership works the same way as described in the case of generic
callback.

MQTT task wakeup

MQTT task wakeup wakes up whenever the user calls an API to perform any operation or whenever

a publish message is received from the broker. This asynchronous wakeup upon receipt of a publish
message is possible on platforms that are capable of informing the host MCU about the data received
on a connected socket. Platforms that do not have this capability require the MQTT task to continuously
poll for the received data on the connected socket. To ensure the delay between receiving a publish
message and invoking the callback is minimal, the mgttconfigMQTT TASK MAX_BLOCK_TICKS

macro controls the maximum time an MQTT task can remain blocked. This value must be short for the
platforms that lack the capability to inform the host MCU about received data on a connected socket.

Major configurations

These flags can be specified during the MQTT connection request:

o mgttconfigKEEP ALIVE_ACTUAL_ INTERVAL_TICKS: The frequency of the keep-alive messages
sent.

o mgttconfigENABLE_ SUBSCRIPTION_MANAGEMENT: Enable subscription management.

o mgttconfigMAX_ BROKERS: Maximum number of simultaneous MQTT clients.

e mgttconfigMQTT TASK_STACK_DEPTH: The task stack depth.

e mgttconfigMQTT TASK PRIORITY: The priority of the MQTT task.

o mgttconfigRX_BUFFER_SIZE: Length of the buffer used to receive data.

o mgttagentURL_IS_IP_ADDRESS: Set this bit in xFlags if the provided URL is an IP address.
« mgttagentREQUIRE_TLS: Set this bit in xFlags to use TLS.

o mgttagentUSE_AWS_IOT_ALPN_443: Set this bit in xFlags to use AWS loT support for MQTT over
TLS port 443.

For more information about ALPN, see the AWS IoT Protocols in the AWS loT Developer Guide and the
MQTT with TLS Client Authentication on Port 443: Why It Is Useful and How It Works blog post on the
Internet of Things on AWS blog.

Optimization

Processing received packets without delay

The task that implements the MQTT Agent spends most of its time in the Blocked state (so not using any
CPU cycles) waiting for events to process. MQTT throughput is maximized by unblocking the Agent task
as soon as an MQTT packet is received from the network. If that is done the received packet is processed
at the earliest opportunity. If that is not done the received packet will not be processed until the MQTT
Agent leaves the Blocked state for another reason.

219

https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
http://aws.amazon.com/blogs/iot/mqtt-with-tls-client-authentication-on-port-443-why-it-is-useful-and-how-it-works

FreeRTOS User Guide
Developer support

The MQTT Agent is removed from the Blocked state by the execution of a callback that is installed

by the MQTT Agent calling SOCKETS_SetSockOpt() with the lOptionName parameter set to
SOCKETS_SO_WAKEUP_CALLBACK. Links to the secure sockets documentation are needed here. If
you are using the FreeRTOS+TCP TCP/IP stack the callback is executed at the correct time provided
ipconfigSOCKET_HAS_USER_WAKE_CALLBACK is set to 1 in FreeRTOSIPConfig.h (which is the TCP/IP
stack's configuration file). If you are not using the FreeRTOS+TCP TCP/IP stack then the secure sockets
ensure this functionality is included in your implementation of the secure sockets abstraction layer for
the stack in use.

If the TCP/IP stack cannot unblock the MQTT Agent as soon as data is received then the
maximum time between a packet being received and the packet being processed is set by the
mqttconfigMQTT_TASK_MAX_BLOCK_TICKS constant.

Minimizing RAM consumption

The following configuration constants directly affect the amount of RAM required by the MQTT Agent:

« mqttconfigMQTT_TASK_STACK_DEPTH
« mqttconfigMQTT_TASK_STACK_DEPTH
« mqttconfigMAX_BROKERS

« mqttconfigMAX_PARALLEL_OPS

« mqttconfigRX_BUFFER_SIZE

You should set these constants to the minimum values possible.

Requirements and usage restrictions

The MQTT Agent task is created using the xTaskCreateStatic() API function - so the task's stack and
control block are statically allocated at compile time. That ensures the MQTT Agent can be used in
applications that do not allow dynamic memory allocation, but does mean there is a dependency on
configSUPPORT_STATIC_ALLOCATION being set to 1 in FreeRTOSConfig.h (p. 8).

he MQTT Agent uses the FreeRTOS direct to task notification feature. Calling an MQTT Agent API
function may change the calling task's notification value and state.

MQTT packets are stored in buffers provided by the Buffer Pool modaule. It is highly recommended to

ensure the number of buffers in the pool is at least double the number of MQTT transactions that will be
in progress at any one time.

Developer support

mgttconfigASSERT

mqttconfigASSERT() is equivalent to, and used in exactly the same way as, the FreeRTOS configASSERT()
macro. If you want assert statements in the MQTT Agent then define mqttconfigASSERT(). If you do

not want assert statements in the MQTT Agent then leave mqttconfigASSERT() undefined. If you define
mqttconfigASSERT() to call the FreeRTOS configASSERT(), as shown below, then the MQTT Agent will
only include assert statements if the FreeRTOS configASSERT() is defined.

#define mgttconfigASSERT(x) configASSERT(x)

mgttconfigENABLE DEBUG_LOGS

Set mgttconfigENABLE_DEBUG_LOGS to 1 to print debug logs via calls to vLoggingPrintf().

220

FreeRTOS User Guide
Initialization

Initialization

Both the MQTT Agent and its dependent libraries must be initialized, as shown below, before attempting
MQTT communication. Initialize the libraries after a network connection is established.

BaseType_t SYSTEM_Init() { BaseType_t xResult = pdPASS; /* The bufferpool libraries
provides the buffers use to store MQTT packets.*/
xResult = BUFFERPOOL_Init();
if(xResult == pdPASS) { /* Create the MQTT Agent task. */
xResult = MQTT AGENT Init(); }
if(xResult == pdPASS) { /* Initialize the secure sockets
abstraction layer.*/
xResult = SOCKETS_Init(); }
return xResult; }

API reference

For a full API reference, see MQTT (v1.0.0) Library APl Reference and MQTT (v1) Agent API Reference.

Porting

The Secure Sockets abstraction layer that the MQTT Agent calls must be ported to specific architectures.
For more information, see Porting the Secure Sockets Library in the FreeRTOS Porting Guide.

HTTPS client library

Overview

You can use the FreeRTOS HTTPS Client library to create applications that interact with an HTTP server
to send HTTP requests and receive HTTP responses over TLS. The FreeRTOS HTTPS Client library
implements the HTTP/1.1 standard over TLS.

The source files for the FreeRTOS HTTPS Client library are located in freertos/libraries/csdk/
standard/https.

Dependencies and requirements

The FreeRTOS HTTPS Client library has the following dependencies:

« Linear Containers library (p. 195).

« Logging library (p. 196) (if the configuration parameter AWS_IOT HTTPS_LOG_LEVEL is not set to
AWS_IOT_LOG_NONE).

« Static Memory library (p. 196) (if Static Memory only).
 Task Pool library (p. 196).

« The platform layer that provides an interface to the operating system for thread management, clock
functions, networking, and other platform-level functionality.

« Cstandard library headers.

The diagram below illustrates these dependencies.

221

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__lib_8h.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__mqtt__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ss.html

FreeRTOS User Guide
Features

1
yif logging enabled

4

List/Queue Logaing

Features

The FreeRTOS HTTPS Client library has the following features:

« Both fully asynchronous and synchronous (blocking) API functions.
« Application managed memory for internal context and HTTP formatted headers.
» Thread-aware and parallelized connections.

API reference

For a full API reference, see the HTTPS Client API Reference.

OTA Agent library

Overview

The Over-The-Air (OTA) Agent enables you to manage the notification, download, and verification of
firmware updates for FreeRTOS devices using HTTP or MQTT as the protocol. By using the OTA Agent
library, you can logically separate firmware updates and the application running on your devices. The
OTA Agent can share a network connection with the application. By sharing a network connection, you
can potentially save a significant amount of RAM. In addition, the OTA Agent library lets you define
application-specific logic for testing, committing, or rolling back a firmware update.

For more information about setting up OTA updates with FreeRTOS, see FreeRTOS Over-the-Air
Updates (p. 8).

Features

Here is the complete OTA Agent interface:
OTA_AgentInit

Initializes the OTA Agent. The caller provides messaging protocol context, an optional callback, and a
timeout.

222

https://docs.aws.amazon.com/freertos/latest/lib-ref/https/index.html

FreeRTOS User Guide
API reference

OTA_AgentShutdown

Cleans up resources after using the OTA Agent.
OTA_GetAgentState

Gets the current state of the OTA Agent.
OTA_ActivateNewImage

Activates the newest microcontroller firmware image received through OTA. (The detailed job status
should now be self-test.)

OTA_SetImageState

Sets the validation state of the currently running microcontroller firmware image (testing, accepted
or rejected).

OTA_GetImageState

Gets the state of the currently running microcontroller firmware image (testing, accepted or
rejected).

OTA_CheckForUpdate

Requests the next available OTA update from the OTA Update service.

APl reference

For more information, see the OTA Agent API Reference.

Example usage

A typical OTA-capable device application using the MQTT protocol drives the OTA Agent by using the
following sequence of API calls.

1. Connect to the AWS IoT MQTT broker. For more information, see MQTT library, version
1.0.0 (p. 218).

2. Initialize the OTA Agent by calling OTA_AgentInit. Your application may define a custom OTA
callback function or use the default callback by specifying a NULL callback function pointer. You
must also supply an initialization timeout.

The callback implements application-specific logic that executes after completing an OTA update
job. The timeout defines how long to wait for the initialization to complete.

3. If oTA_AgentInit timed out before the Agent was ready, you can call OTA_GetAgentState to
confirm that the Agent is initialized and operating as expected.

4. When the OTA update is complete, FreeRTOS calls the job completion callback with one of the
following events: accepted, rejected, or self test

5. If the new firmware image has been rejected (for example, due to a validation error), the application
can typically ignore the notification and wait for the next update.

6. If the update is valid and has been marked as accepted, call OTA_ActivateNewImage to reset the
device and boot the new firmware image.

Porting

For information about porting OTA functionality to your platform, see Porting the OTA Library in the
FreeRTOS Porting Guide.

223

https://docs.aws.amazon.com/freertos/latest/lib-ref/html1/aws__ota__agent_8h.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ota.html

FreeRTOS User Guide
Public Key Cryptography Standard (PKCS) #11

Public Key Cryptography Standard (PKCS) #11
library

Overview

Public Key Cryptography Standard #11 (PKCS#11) is a cryptographic API that abstracts key storage, get/
set properties for cryptographic objects, and session semantics. See pkcs11.h (obtained from OASIS,
the standard body) in the FreeRTOS source code repository. In the FreeRTOS reference implementation,
PKCS#11 API calls are made by the TLS helper interface in order to perform TLS client authentication
during SOCKETS_Connect. PKCS#11 API calls are also made by our one-time developer provisioning
workflow to import a TLS client certificate and private key for authentication to the AWS IoT MQTT
broker. Those two use cases, provisioning and TLS client authentication, require implementation of only
a small subset of the PKCS#11 interface standard.

Features

The following subset of PKCS#11 is used. This list is in roughly the order in which the routines are called
in support of provisioning, TLS client authentication, and cleanup. For detailed descriptions of the
functions, see the PKCS#11 documentation provided by the standard committee.

General setup and tear down API

e C_Initialize

e C_Finalize

e C_GetFunctionList
e C_GetSlotList

e C_GetTokenInfo

e C_OpenSession

e C_CloseSession

e C_Login

Provisioning API

« C_CreateObject CKO_PRIVATE_KEY (for device private key)
o C_CreateObject CKO_CERTIFICATE (for device certificate and code verification certificate)
* C_GenerateKeyPair

 C_DestroyObject

Client authentication

e C_GetAttributeValue
e C_FindObjectsInit

e C_FindObjects

e C_FindObjectsFinal
e C_GenerateRandom

e C_SignInit

224

FreeRTOS User Guide
Asymmetric cryptosystem support

e C_Sign

e C_VerifyInit

e C_Verify

e C_DigestInit

e C_DigestUpdate
e C_DigestFinal

Asymmetric cryptosystem support

The FreeRTOS PKCS#11 reference implementation supports 2048-bit RSA (signing only) and ECDSA with
the NIST P-256 curve. The following instructions describe how to create an AWS loT thing based on a
P-256 client certificate.

Make sure you are using the following (or more recent) versions of the AWS CLI and OpenSSL:

aws --version
aws-cli/1.11.176 Python/2.7.9 Windows/8 botocore/1.7.34

openssl version
OpenSSL 1.0.2g 1 Mar 2016

The following steps are written with the assumption that you have used the aws configure command to
configure the AWS CLI.

Creating an AWS loT thing based on a P-256 client certificate

1. Create an AWS loT thing.

aws iot create-thing --thing-name thing-name

2. Use OpenSSL to create a P-256 key.

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt
ec_param_enc:named_curve -outform PEM -out thing-name.key

3. Create a certificate enrollment request signed by the key created in step 2.

openssl req -new -nodes -days 365 -key thing-name.key -out thing-name.req

4. Submit the certificate enrollment request to AWS loT.

aws iot create-certificate-from-csr \
--certificate-signing-request file://thing-name.req --set-as-active \
--certificate-pem-outfile thing-name.crt

5. Attach the certificate (referenced by the ARN output by the previous command) to the thing.

aws iot attach-thing-principal --thing-name thing-name \
--principal "arn:aws:iot:us-

east-1:123456789012:cert/

86e41339a6d1bbc67abf31faf455092cdebf8f21ffbc67c4d238d1326c7de729"

6. Create a policy. (This policy is too permissive. It should be used for development purposes only.)

aws iot create-policy --policy-name FullControl --policy-document file://policy.json

225

FreeRTOS User Guide
Porting

The following is a listing of the policy.json file specified in the create-policy command. You
can omit the greengrass: * action if you don't want to run the FreeRTOS demo for Greengrass
connectivity and discovery.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iot:*",
"Resource": "*"
}V
{
"Effect": "Allow",
"Action": "greengrass:*",
"Resource": "*"
}
]
}
7. Attach the principal (certificate) and policy to the thing.
aws iot attach-principal-policy --policy-name FullControl \
--principal "arn:aws:iot:us-
east-1:123456789012:cert/
86e41339a6d1bbc67abf31faf455092cdebf8f21ffbc67c4d238d1326c7de729"

Now, follow the steps in the AWS IoT Getting Started section of this guide. Don't forget to copy the
certificate and private key you created into your aws_clientcredential_keys.h file. Copy your thing
name into aws_clientcredential.h.

Note
The certificate and private key are hard-coded for demonstration purposes only. Production-
level applications should store these files in a secure location.

Porting

For information about porting the PKCS #11 library to your platform, see Porting the PKCS #11 Library
in the FreeRTOS Porting Guide.

Secure Sockets library

Overview

You can use the FreeRTOS Secure Sockets library to create embedded applications that communicate
securely. The library is designed to make onboarding easy for software developers from various network
programming backgrounds.

The FreeRTOS Secure Sockets library is based on the Berkeley sockets interface, with an additional secure
communication option by TLS protocol. For information about the differences between the FreeRTOS
Secure Sockets library and the Berkeley sockets interface, see SOCKETS_SetSockOpt in the Secure
Sockets API Reference.

Note
Currently, only client APIs are supported for FreeRTOS Secure Sockets.

226

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html

FreeRTOS User Guide
Dependencies and requirements

Dependencies and requirements

The FreeRTOS Secure Sockets library depends on a TCP/IP stack and on a TLS implementation. Ports for
FreeRTOS meet these dependencies in one of three ways:

« A custom implementation of both TCP/IP and TLS
« A custom implementation of TCP/IP, and the FreeRTOS TLS layer with mbedTLS
o FreeRTOS+TCP and the FreeRTOS TLS layer with mbedTLS

The dependency diagram below shows the the reference implementation included with the FreeRTOS
Secure Sockets library. This reference implementation supports TLS and TCP/IP over Ethernet and Wi-Fi
with FreeRTOS+TCP and mbedTLS as dependencies. For more information about the FreeRTOS TLS layer,

see Transport Layer Security (p. 230).

Secure Sockets Library

Features

FreeRTOS Secure Sockets library features include:

« A standard, Berkeley Sockets-based interface
« Thread-safe APIs for sending and receiving data

« Easy-to-enable TLS

Troubleshooting

Error codes

The error codes that the FreeRTOS Secure Sockets library returns are negative values. For more
information about each error code, see Secure Sockets Error Codes in the Secure Sockets API Reference.

227

https://en.wikipedia.org/wiki/Mbed_TLS
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://en.wikipedia.org/wiki/Mbed_TLS
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html

FreeRTOS User Guide
Developer support

Note

If the FreeRTOS Secure Sockets API returns an error code, the MQTT library, version

1.0.0 (p. 218), which depends on the FreeRTOS Secure Sockets library, returns the error code
AWS_IOT_MQTT_ SEND_ERROR.

Developer support

The FreeRTOS Secure Sockets library includes two helper macros for handling IP addresses:
SOCKETS_inet_addr_quick

This macro converts an IP address that is expressed as four separate numeric octets into an IP
address that is expressed as a 32-bit number in network-byte order.

SOCKETS_inet_ntoa

This macro converts an IP address that is expressed as a 32-bit number in network byte order to a
string in decimal-dot notation.

Usage restrictions

Only TCP sockets are supported by the FreeRTOS Secure Sockets library. UDP sockets are not supported.

Only client APIs are supported by the FreeRTOS Secure Sockets library. Server APIs, including Bind,
Accept, and Listen, are not supported.

Initialization

To use the FreeRTOS Secure Sockets library, you need to initialize the library and its dependencies. To
initialize the Secure Sockets library, use the following code in your application:

BaseType_t xResult = pdPASS;
xResult = SOCKETS_Init();

Dependent libraries must be initialized separately. For example, if FreeRTOS+TCP is a dependency, you
need to invoke FreeRTOS_IPInit in your application as well.

API reference

For a full API reference, see Secure Sockets AP| Reference.

Example usage

The following code connects a client to a server.

#include "aws_secure_sockets.h"

#define configSERVER_ADDRO 127
#define configSERVER_ADDR1 0
#define configSERVER_ADDR2 0
#define configSERVER_ADDR3 1
#define configCLIENT_PORT 443

/* Rx and Tx timeouts are used to ensure the sockets do not wait too long for
* missing data. */

static const TickType_t xReceiveTimeOut = pdMS_TO_TICKS(2000);

static const TickType_t xSendTimeOut = pdMS_TO_TICKS(2000);

228

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/API/FreeRTOS_IPInit.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/secure_sockets/index.html

FreeRTOS User Guide
Example usage

/* PEM-encoded server certificate */

/* The certificate used below is one of the Amazon Root CAs.\
Change this to the certificate of your choice. */

static const char cT1lsECHO_SERVER_CERTIFICATE_PEM[] =

"MIIBtjCCAVugAwIBAgITBmyf1XSXNmY/Owua2eiedgPySjAKBggghkjOPQODAjA5\n"
"MOswCQYDVQQOGEwWJVUZEPMAOGA1UEChMGOW1hem9uMRkwFwYDVQODEXBBbWF6b24g\n"
"Um9vdCBDQSAzZMB4XDTE1MDUyN jAWMDAWMFoXDTQwWMDUyN jAWMDAWMF owOTELMAKG\n"
"A1UEBhMCVVMxDzANBgNVBAOTBKFtYXpvbjEZMBCcGA1UEAXMOOWlhem9uIFJvb3Qg\n"
"QOEgMzBZMBMGByqGSM49AgEGCCQGSM49AWEHAOIABCMXp8ZBf8ANMm+gBG1bG81K1\n"
"ui2yEujSLtf6ycXYqmOfc4E705hrOXwzpcVOho6AF2hiRVA9RFgdszflzZwjrzt6j\n"
"QOjBAMA8GA1UJEWEB/wWQFMAMBAf8wDgYDVROPAQH/BAQDAgGGMBOGA1UdDgOQWBBSr\n"
"ttvXBp43rDCGB5Fwx52EGbF4wDAKBggghk jOPQODAgNJADBGALEA4IWSoxe3jfkr\n"
"BQWTrBgYaGFy+uGhOPsceGCmQ5nFuUMQCIQCcAuU/x1Jyzlvnrxir4tiz+OpAUFteM\n"
"YyRIHN8wfdVoOw==\n"

static const uint32_t ulT1sECHO_SERVER CERTIFICATE_LENGTH =
sizeof(cT1lsECHO_SERVER _CERTIFICATE PEM);

void vConnectToServerWithSecureSocket(void)

{
Socket_t xSocket;
SocketsSockaddr_t xEchoServerAddress;
BaseType_t xTransmitted, 1lStringLength;

xEchoServerAddress.usPort = SOCKETS_htons(configCLIENT_PORT);

xEchoServerAddress.ulAddress = SOCKETS_inet_addr_quick(configSERVER_ADDRO,
configSERVER_ADDRI1,
configSERVER_ADDR2,
configSERVER_ADDR3);

/* Create a TCP socket. */

xSocket = SOCKETS_Socket(SOCKETS_AF_INET, SOCKETS_SOCK_STREAM, SOCKETS_IPPROTO_TCP);

configASSERT(xSocket != SOCKETS_INVALID_ SOCKET);

/* Set a timeout so a missing reply does not cause the task to block indefinitely. */
SOCKETS_SetSockOpt(xSocket, 0, SOCKETS_SO_RCVTIMEO, &xReceiveTimeOut,

sizeof(xReceiveTimeOut));
SOCKETS_SetSockOpt(xSocket, 0, SOCKETS_SO_SNDTIMEO, &xSendTimeOut,
sizeof(xSendTimeOut));

/* Set the socket to use TLS. */

SOCKETS_SetSockOpt(xSocket, 0, SOCKETS_SO_REQUIRE_ TLS, NULL, (size_

t) o)

SOCKETS_SetSockOpt(xSocket, 0, SOCKETS_SO_TRUSTED_SERVER_CERTIFICATE,

cT1lsECHO_SERVER_CERTIFICATE_PEM, ulTlsECHO_SERVER_CERTIFICATE_LENGTH);

if(SOCKETS_Connect(xSocket, &xEchoServerAddress, sizeof(xEchoServerAddress)) ==

0)
{
/* Send the string to the socket. */
xTransmitted = SOCKETS_Send(xSocket, /*
receiving. */

(void *)"some message", /*
sent. */
12, /*
data being sent. */
0); /*
if(xTransmitted < 0)
{
/* Error while sending data */
return;
}

The socket
The data being
The length of the

No flags. */

229

FreeRTOS User Guide
Porting

SOCKETS_Shutdown(xSocket, SOCKETS_SHUT RDWR);
}

else

{

//failed to connect to server

}

SOCKETS_Close(xSocket);

For a full example, see the Secure Sockets echo client demo (p. 269).

Porting

FreeRTOS Secure Sockets depends on a TCP/IP stack and on a TLS implementation. Depending on your
stack, to port the Secure Sockets library, you might need to port some of the following:

o The FreeRTOS+TCP TCP/IP stack
« The Public Key Cryptography Standard (PKCS) #11 library (p. 224)
« The Transport Layer Security (p. 230)

For more information about porting, see Porting the Secure Sockets Library in the FreeRTOS Porting
Guide.

Transport Layer Security

The FreeRTOS Transport Layer Security (TLS) interface is a thin, optional wrapper used to abstract
cryptographic implementation details away from the Secure Sockets Layer (SSL) interface above it in the
protocol stack. The purpose of the TLS interface is to make the current software crypto library, mbed
TLS, easy to replace with an alternative implementation for TLS protocol negotiation and cryptographic
primitives. The TLS interface can be swapped out without any changes required to the SSL interface. See
iot_tls.h in the FreeRTOS source code repository.

The TLS interface is optional because you can choose to interface directly from SSL into a crypto library.
The interface is not used for MCU solutions that include a full-stack offload implementation of TLS and
network transport.

For more information about porting the TLS interface, see Porting the TLS Library in the FreeRTOS
Porting Guide.

Wi-Fi library

Overview
The FreeRTOS Wi-Fi library abstracts port-specific Wi-Fi implementations into a common API that
simplifies application development and porting for all FreeRTOS-qualified boards with Wi-Fi capabilities.

Using this common API, applications can communicate with their lower-level wireless stack through a
common interface.

Dependencies and requirements

The FreeRTOS Wi-Fi library requires the FreeRTOS+TCP core.

230

https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ss.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-tls.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html

FreeRTOS User Guide
Features

Features

The Wi-Fi library includes the following features:

« Support for WEP, WPA, and WPA2 authentication
« Access Point Scanning

« Power management

« Network profiling

For more information about the features of the Wi-Fi library, see below.
Wi-Fi modes

Wi-Fi devices can be in one of three modes: Station, Access Point, or P2P. You can get the current mode
of a Wi-Fi device by calling WIFI_GetMode. You can set a device's wi-fi mode by calling WIFI_SetMode.
Switching modes by calling WIFI_SetMode disconnects the device, if it is already connected to a
network.

Station mode

Set your device to Station mode to connect the board to an existing access point.
Access Point (AP) mode

Set your device to AP mode to make the device an access point for other devices to connect to.
When your device is in AP mode, you can connect another device to your FreeRTOS device and
configure the new Wi-Fi credentials. To configure AP mode, call WIFI_ConfigureAP. To put your
device into AP mode, call WIFI_StartAP. To turn off AP mode, call WIFI_StopAP.

Note

FreeRTOS libraries do not provide Wi-Fi provisioning in AP mode. You must supply the
additional functionality, including DHCP and HTTP server capabilities, to achieve full
support of AP mode.

P2P mode

Set your device to P2P mode to allow multiple devices to connect to each other directly, without an
access point.

Security

The Wi-Fi API supports WEP, WPA, and WPA2 security types. When a device is in Station mode, you must
specify the network security type when calling the WIFI_ConnectAP function. When a device is in AP
mode, the device can be configured to use any of the supported security types:

e eWiFiSecurityOpen
e eWiFiSecurityWEP
e eWiFiSecurityWPA
e eWiFiSecurityWPA2

Scanning and connecting

To scan for nearby access points, set your device to Station mode, and call the WIFI_Scan function. If
you find a desired network in the scan, you can connect to the network by calling WIFI_ConnectAP
and providing the network credentials. You can disconnect a Wi-Fi device from the network by calling

231

FreeRTOS User Guide
Configuration

WIFI_Disconnect. For more information about scanning and connecting, see Example usage (p. 233)
and API reference (p. 233).

Power management

Different Wi-Fi devices have different power requirements, depending on the application and available
power sources. A device might always be powered on to reduce latency or it might be intermittently
connected and switch into a low power mode when Wi-Fi is not required. The interface API supports
various power management modes like always on, low power, and normal mode. You set the power
mode for a device using the WIFI_SetPMMode function. You can get the current power mode of a device
by calling the WIFI_GetPMMode function.

Network profiles

The Wi-Fi library enables you to save network profiles in the non-volatile memory of your devices.
This allows you to save network settings so they can be retrieved when a device reconnects to a
Wi-Fi network, removing the need to provision devices again after they have been connected to a
network. WIFI_NetworkAdd adds a network profile. WIFI_NetworkGet retrieves a network profile.
WIFI_NetworkDel deletes a network profile. The number of profiles you can save depends on the
platform.

Configuration

To use the Wi-Fi library, you need to define several identifiers in a configuration file. For information
about these identifiers, see the API reference (p. 233).

Note
The library does not include the required configuration file. You must create one. When creating

your configuration file, be sure to include any board-specific configuration identifiers that your
board requires.

Initialization

Before you use the Wi-Fi library, you need to initialize some board-specific components, in addition
to the FreeRTOS components. Using the vendors/vendor/boards/board/aws_demos/
application_code/main.c file as a template for initialization, do the following:

1. Remove the sample Wi-Fi connection logic inmain. ¢ if your application handles Wi-Fi connections.
Replace the following DEMO_RUNNER_RunDemos () function call:

if(SYSTEM Init() == pdPASS)
{

DEMO_RUNNER_RunDemos () ;

}

With a call to your own application:

if(SYSTEM_Init() == pdPASS)
{

// This function should create any tasks

// that your application requires to run.
YOUR_APP_FUNCTION();

}

232

FreeRTOS User Guide
API reference

2. CallWwIFI_on() to initialize and power on your Wi-Fi chip.

Note
Some boards might require additional hardware initialization.

3. Passa configured WIFINetworkParams_t structure to WIFI_ConnectAP() to connect your board
to an available Wi-Fi network. For more information about the WIFINetworkParams_t structure,
see Example usage (p. 233) and API reference (p. 233).

API reference

For a full API reference, see Wi-Fi API Reference.

Example usage

Connecting to a known AP

#define clientcredentialWIFI_SSID "MyNetwork"
#define clientcredentialWIFI_PASSWORD "hunter2"

WIFINetworkParams_t xNetworkParams;
WIFIReturnCode_t xWifiStatus;

xWifiStatus = WIFI_On(); // Turn on Wi-Fi module

// Check that Wi-Fi initialization was successful

if(xWifiStatus == eWiFiSuccess)

{
configPRINT(("WiFi library initialized.\n"));

¥

else

{
configPRINT(("WiFi library failed to initialize.\n"));
// Handle module init failure

¥

/* Setup parameters. */

xNetworkParams.pcSSID = clientcredentialWIFI_SSID;
xNetworkParams.ucSSIDLength = sizeof(clientcredentialWIFI_SSID);
xNetworkParams.pcPassword = clientcredentialWIFI_PASSWORD;
xNetworkParams.ucPasswordLength = sizeof(clientcredentialWIFI_PASSWORD);
xNetworkParams.xSecurity = eWiFiSecurityWPA2;

// Connect!
xWifiStatus = WIFI_ConnectAP(&(xNetworkParams));

if(xWifiStatus == eWiFiSuccess)
{
configPRINT(("WiFi Connected to AP.\n"));
// IP Stack will receive a network-up event on success

}

else

{
configPRINT(("WiFi failed to connect to AP.\n"));
// Handle connection failure

}

Scanning for nearby APs

‘WIFINetworkParams_t xNetworkParams;

233

https://docs.aws.amazon.com/freertos/latest/lib-ref/html2/wifi/index.html

FreeRTOS User Guide
Porting

WIFIReturnCode_t xWifiStatus;

configPRINT(("Turning on wifi...\n"));
xWifiStatus = WIFI_On();

configPRINT(("Checking status...\n"));

if(xWifiStatus == eWiFiSuccess)

{
configPRINT(("WiFi module initialized.\n"));

}

else

{
configPRINTF(("WiFi module failed to initialize.\n"));
// Handle module init failure

}

WIFI_SetMode(eWiFiModeStation);
/* Some boards might require additional initialization steps to use the Wi-Fi library. */

while (1)
{
configPRINT(("Starting scan\n"));
const uint8_t ucNumNetworks = 12; //Get 12 scan results
WIFIScanResult_t xScanResults[ucNumNetworks];
xWifiStatus = WIFI_Scan(xScanResults, ucNumNetworks); // Initiate scan

configPRINT(("Scan started\n"));

// For each scan result, print out the SSID and RSSI
if (xwifiStatus == eWiFiSuccess)
{

configPRINT(("Scan success\n"));

for (uint8_t i=0; i<ucNumNetworks; i++)

{ configPRINTF(("%s : %d \n", xScanResults[i].cSSID, xScanResults[i].cRSSI));
}

} else {
configPRINTF(("Scan failed, status code: %d\n", (int)xWifiStatus));

}

vTaskDelay(200);

Porting

The iot_wifi.c implementation needs to implement the functions defined in iot_wifi.h. At
the very least, the implementation needs to return eWwiFiNotSupported for any non-essential or
unsupported functions.

For more information about porting the Wi-Fi library, see Porting the Wi-Fi Library in the FreeRTOS
Porting Guide.

Common I/O

Overview

In general, device drivers are independent of the underlying operating system and are specific to a given
hardware configuration. A hardware abstraction layer (HAL) provides a common interface between
drivers and higher-level application code. The HAL abstracts away the details of how a specific driver

234

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-wifi.html

FreeRTOS User Guide
Common I/O

works and provides a uniform API to control such devices. You can use the same APIs to access various
device drivers across multiple microcontroller (MCU) based reference boards.

FreeRTOS common 1/0 acts as this hardware abstraction layer. It provides a set of standard APIs for
accessing common serial devices on supported reference boards. These common APIls communicate and
interact with these peripherals and enable your code to function across platforms. Without common 1/0,
writing code to work with low level devices is silicon-vendor specific.

Supported peripherals

» UART
« SPI
e 12C

Supported features

« Synchronous read/write — The function doesn't return until the requested amount of data is
transferred.

« Asynchronous read/write — The function returns immediately and the data transfer happens
asynchronously. When the action completes, a registered user callback is invoked.
Peripheral specific

« 12C - Combine multiple operations into one transaction. Used to do write then read actions in one
transaction.

« SPI - Transfer data between primary and secondary, which means the write and read happen
simultaneously.

Porting

For more information, see the FreeRTOS Porting Guide.

235

https://docs.aws.amazon.com/freertos/latest/portingguide/

FreeRTOS User Guide
Running the FreeRTOS demos

FreeRTOS Demos

FreeRTOS includes some demo applications in the demos folder, under the main FreeRTOS directory. All
of the examples that can be executed by FreeRTOS appear in the common folder, under demos. There

is also a folder for each FreeRTOS-qualified platform under the demos folder. If you use the FreeRTOS
console, only the target platform you choose has a subdirectory under demos.

Before you try the demo applications, we recommend that you complete the tutorial in Getting Started
with FreeRTOS (p. 71). It shows you how to set up and run the Hello World MQTT demo.

Running the FreeRTOS demos

The following topics show you how to set up and run the FreeRTOS demos:

 Bluetooth Low Energy demo applications (p. 236)

» Demo bootloader for the Microchip Curiosity PIC32MZEF (p. 248)
o AWS loT Device Defender demo (p. 253)

o AWS loT Greengrass discovery demo application (p. 254)

« Over-the-air updates demo application (p. 257)

« Secure Sockets echo client demo (p. 269)

« AWS IoT Device Shadow demo application (p. 267)

The DEMO_RUNNER_RunDemos () function, located in freertos/demos/demo_runner/
iot_demo_runner.c, initializes a detached thread on which a single demo application runs. By
default, DEMO_RUNNER_RunDemos () only calls the starts the Hello World MQTT demo. Depending
on the configuration you selected when you downloaded FreeRTOS, and depending on where you
downloaded FreeRTOS, the other example runner functions might start by default. To enable a demo
application, open freertos/vendors/vendor/boards/board/aws_demos/config_files/
aws_demo_config.h, and define the demo that you want to run.

Note

Be aware that not all combinations of examples work together. Depending on the combination,
the software might fail to execute on the selected target due to memory constraints. We
recommend that you run one demo at a time.

Configuring the demos

The demos have been configured to get you started quickly. You might want to change some of the
configurations for your project to create a version that runs on your platform. You can find configuration
files at vendors/vendor /boards/board/aws_demos/config_files.

Bluetooth Low Energy demo applications

Overview

FreeRTOS Bluetooth Low Energy includes three demo applications:

236

https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos

FreeRTOS User Guide
Prerequisites

MQTT over Bluetooth Low Energy (p. 243) demo

This application demonstrates how to use the MQTT over Bluetooth Low Energy service.
Wi-Fi provisioning (p. 245) demo
This application demonstrates how to use the Bluetooth Low Energy Wi-Fi Provisioning service.

Generic Attributes Server (p. 247) demo

This application demonstrates how to use the FreeRTOS Bluetooth Low Energy middleware APIs to
create a simple GATT server.

Prerequisites

To follow along with these demos, you need a microcontroller with Bluetooth Low Energy capabilities.
You also need the iOS SDK for FreeRTOS Bluetooth devices (p. 209) or the Android SDK for FreeRTOS
Bluetooth devices (p. 209).

Set up AWS loT and Amazon Cognito for FreeRTOS Bluetooth
Low Energy

To connect your devices to AWS loT across MQTT, you need to set up AWS loT and Amazon Cognito.
To set up AWS loT

Set up an AWS account on https://aws.amazon.com/.
Open the AWS loT console, and from the navigation pane, choose Manage, and then choose Things.
Choose Create, and then choose Create a single thing.
Enter a name for your device, and then choose Next.

If you are connecting your microcontroller to the cloud through a mobile device, choose Create
thing without certificate. Because the Mobile SDKs use Amazon Cognito for device authentication,
you do not need to create a device certificate for demos that use Bluetooth Low Energy.

uhuwN =

If you are connecting your microcontroller to the cloud directly over Wi-Fi, choose Create certificate,
choose Activate, and then download the thing's certificate, public key, and private key.

6. Choose the thing that you just created from the list of registered things, and then choose Interact
from your thing's page. Make a note of the AWS IoT REST API endpoint.

For more information about setting up, see the Getting Started with AWS loT.
To create an Amazon Cognito user pool

Open the Amazon Cognito console, and choose Manage User Pools.

Choose Create a user pool.

Give the user pool a name, and then choose Review defaults.

From the navigation pane, choose App clients, and then choose Add an app client.
Enter a name for the app client, and then choose Create app client.

From the navigation pane, choose Review, and then choose Create pool.

oA WDN =

Make a note of the pool ID that appears on the General Settings page of your user pool.

7. From the navigation pane, choose App clients, and then choose Show details. Make a note of the
app client ID and app client secret.

237

https://aws.amazon.com/
https://console.aws.amazon.com/iot/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

FreeRTOS User Guide
Prerequisites

To create an Amazon Cognito identity pool

1. Open the Amazon Cognito console, and choose Manage Identity Pools.
Enter a name for your identity pool.

3. Expand Authentication providers, choose the Cognito tab, and then enter your user pool ID and
app client ID.

Choose Create Pool.

5. Expand View Details, and make a note of the two IAM role names. Choose Allow to create the IAM
roles for authenticated and unauthenticated identities to access Amazon Cognito.

6. Choose Edit identity pool. Make a note of the identity pool ID. It should be of the form us-
west-2:12345678-1234-1234-1234-123456789012.

For more information about setting up Amazon Cognito, see the Getting Started with Amazon Cognito.

To create and attach an IAM policy to the authenticated identity

1. Open the IAM console, and from the navigation pane, choose Roles.

2. Find and choose your authenticated identity's role, choose Attach policies, and then choose Add
inline policy.

3. Choose the JSON tab, and paste the following JSON:

"Version":"2012-10-17",
"Statement":[
{
"Effect":"Allow",
"Action":[
"iot:AttachPolicy",
"iot:AttachPrincipalPolicy",
"iot:Connect",
"iot:Publish",
"iot:Subscribe",
"iot:Receive",
"iot:GetThingShadow",
"iot:UpdateThingShadow",
"iot:DeleteThingShadow"
1,
"Resource": [
e

]

}

4. Choose Review policy, enter a name for the policy, and then choose Create policy.

Keep your AWS loT and Amazon Cognito information on hand. You need the endpoint and IDs to
authenticate your mobile application with the AWS Cloud.

Set up your FreeRTOS environment for Bluetooth Low Energy

To set up your environment, you need to download FreeRTOS with the Bluetooth Low Energy
library (p. 199) on your microcontroller, and download and configure the Mobile SDK for FreeRTOS
Bluetooth Devices on your mobile device.

238

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-getting-started.html

FreeRTOS User Guide
Common components

To set up your microcontroller's environment with FreeRTOS Bluetooth Low Energy

1. Download or clone FreeRTOS from GitHub. See the README.md file for instructions.
2. Set up FreeRTOS on your microcontroller.

For information about getting started with FreeRTOS on a FreeRTOS-qualified microcontroller, see
the guide for your board in Getting Started with FreeRTOS.

Note

You can run the demos on any Bluetooth Low Energy-enabled microcontroller with
FreeRTOS and ported FreeRTOS Bluetooth Low Energy libraries. Currently, the FreeRTOS
MQTT over Bluetooth Low Energy (p. 243) demo project is fully ported to the following
Bluetooth Low Energy-enabled devices:

« Espressif ESP32-DevKitC and the ESP-WROVER-KIT
« Nordic nRF52840-DK

Common components

The FreeRTOS demo applications have two common components:

« Network Manager

« Bluetooth Low Energy Mobile SDK demo application

Network Manager

Network Manager manages your microcontroller's network connection. It is located in your FreeRTOS
directory at demos/network manager/aws_iot_network manager.c. If the Network Manager

is enabled for both Wi-Fi and Bluetooth Low Energy, the demos start with Bluetooth Low Energy by
default. If the Bluetooth Low Energy connection is disrupted, and your board is Wi-Fi-enabled, the
Network Manager switches to an available Wi-Fi connection to prevent you from disconnecting from the
network.

To enable a network connection type with the Network Manager, add the network connection type

to the configENABLED_NETWORKS parameter in vendors/vendor /boards/board/aws_demos/
config files/aws_iot_network_config.h (where the vendor is the name of the vendor and the
board is the name of the board that you are using to run the demos).

For example, if you have both Bluetooth Low Energy and Wi-Fi enabled, the line that starts with
#define configENABLED NETWORKS in aws_iot_network_config.h reads as follows:

#define configENABLED_NETWORKS (AWSIOT_ NETWORK_TYPE_BLE | AWSIOT NETWORK_TYPE_WIFI)

To get a list of currently supported network connection types, see the lines that begin with #define
AWSIOT NETWORK_TYPE in aws_iot_network.h.

FreeRTOS Bluetooth Low Energy Mobile SDK demo application

The FreeRTOS Bluetooth Low Energy Mobile SDK demo application is located in the Android SDK
for FreeRTOS Bluetooth Devices under amazon-freertos-ble-android-sdk/app and the

iOS SDK for FreeRTOS Bluetooth Devices under amazon-freertos-ble-ios-sdk/Example/
AmazonFreeRTOSDemo. In this example, we use screenshots of the iOS version of the demo mobile
application.

239

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/master/README.md
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_nordic.html
https://github.com/aws/amazon-freertos-ble-android-sdk
https://github.com/aws/amazon-freertos-ble-android-sdk
https://github.com/aws/amazon-freertos-ble-ios-sdk

FreeRTOS User Guide
Common components

Note
If you are using an iOS device, you need Xcode to build the demo mobile application. If you are
using an Android device, you can use Android Studio to build the demo mobile application.

To configure the iOS SDK demo application

When you define configuration variables, use the format of the placeholder values provided in the
configuration files.
Confirm that you the iOS SDK for FreeRTOS Bluetooth devices (p. 209) is installed.

2. Issue the following command from amazon-freertos-ble-ios-sdk/Example/
AmazonFreeRTOSDemo/:

$ pod install

3. Openthe amazon-freertos-ble-ios-sdk/Example/AmazonFreeRTOSDemo/
AmazonFreeRTOSDemo . xcworkspace project with Xcode, and change the signing developer
account to your account.

4. Create an AWS IoT policy in your region (if you haven't already).

Note
This policy is different from the IAM policy created for the cognito authenticated identity.

a. Openthe AWS loT console.

In the navigation pane, choose Secure, choose Policies, and then choose Create. Enter a name
to identify your policy. In the Add statements section, choose Advanced mode. Copy and paste
the following JSON into the policy editor window. Replace aws-region and aws-account
with your AWS Region and account ID.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iot:Connect",
"Resource":"arn:aws:iot:aws-region:aws-account-id:*"
T
{
"Effect": "Allow",
"Action": "iot:Publish",
"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
T
{
"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
T
{
"Effect": "Allow",
"Action": "iot:Receive",
"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
}
]
}

c. Choose Create.

5. Open amazon-freertos-ble-ios-sdk/Example/AmazonFreeRTOSDemo/
AmazonFreeRTOSDemo/Amazon/AmazonConstants.swift, and redefine the following variables:

« region: Your AWS Region.

240

https://console.aws.amazon.com/iot/

FreeRTOS User Guide
Common components

e iotPolicyName: Your AWS loT policy name.
e mgttCustomTopic: The MQTT topic that you want to publish to.

6. Open amazon-freertos-ble-ios-sdk/Example/AmazonFreeRTOSDemo/
AmazonFreeRTOSDemo/Support/awsconfiguration. json.

Under CognitoIdentity, redefine the following variables:

e PoolId: Your Amazon Cognito identity pool ID.
« Region: Your AWS Region.

Under CognitoUserPool, redefine the following variables:

e PoolId: Your Amazon Cognito user pool ID.
e AppClientId: Your app client ID.

e AppClientSecret: Your app client secret.
« Region: Your AWS Region.

To configure the Android SDK demo application

When you define configuration variables, use the format of the placeholder values provided in the
configuration files.

1. Confirm that the Android SDK for FreeRTOS Bluetooth devices (p. 209) is installed.
2. Create an AWS loT policy in your region (if you haven't already).

Note
This policy is different from the IAM policy created for the cognito authenticated identity.

a. Openthe AWS loT console.

In the navigation pane, choose Secure, choose Policies, and then choose Create. Enter a name
to identify your policy. In the Add statements section, choose Advanced mode. Copy and paste
the following JSON into the policy editor window. Replace aws-region and aws-account
with your AWS Region and account ID.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iot:Connect",
"Resource":"arn:aws:iot:aws-region:aws-account-id:*"
T
{
"Effect": "Allow",
"Action": "iot:Publish",
"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
T
{
"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
T
{
"Effect": "Allow",
"Action": "iot:Receive",
"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
}
]

241

https://console.aws.amazon.com/iot/

FreeRTOS User Guide
Common components

}

c. Choose Create.

Open https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/java/
software/amazon/freertos/demo/DemoConstants.java and redefine the following variables:

e AWS_IOT POLICY_ NAME: Your AWS loT policy name.

e AWS_IOT_REGION: Your AWS Region.

Open https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/res/
raw/awsconfiguration.json.

Under CognitoIdentity, redefine the following variables:

« PoolId: Your Amazon Cognito identity pool ID.
« Region: Your AWS Region.

Under CognitoUserPool, redefine the following variables:

e PoolId: Your Amazon Cognito user pool ID.
e AppClientId: Your app client ID.
e AppClientSecret: Your app client secret.

* Region: Your AWS Region.

To discover and establish secure connections with your microcontroller over Bluetooth Low
Energy

1.

5.

In order to pair your microcontroller and mobile device securely (step 6), you need a serial terminal
emulator with both input and output capabilities (such as TeraTerm). Configure the terminal to
connect to your board by a serial connection as instructed in Installing a terminal emulator (p. 79).

Run the Bluetooth Low Energy demo project on your microcontroller.
Run the Bluetooth Low Energy Mobile SDK demo application on your mobile device.

To start the demo application in the Android SDK from the command line, run the following
command:

$./gradlew installDebug

Confirm that your microcontroller appears under Devices on the Bluetooth Low Energy Mobile SDK
demo app.

11:20 AM Thu Nov 8 = 3% e)

Devices Logout

ESP32
2796386F-3940-BEBA-7730-3C51DA88922F

Note
All devices with FreeRTOS and the device information service (freertos/.../
device_information) that are in range appear in the list.

Choose your microcontroller from the list of devices. The application establishes a connection with
the board, and a green line appears next to the connected device.

242

https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/java/software/amazon/freertos/demo/DemoConstants.java
https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/java/software/amazon/freertos/demo/DemoConstants.java
https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/res/raw/awsconfiguration.json
https://github.com/aws/amazon-freertos-ble-android-sdk/blob/master/app/src/main/res/raw/awsconfiguration.json

FreeRTOS User Guide
MQTT over Bluetooth Low Energy

2:24PM Tue Nov 13 = Not Charging @)

Devices Logout

ESP32
8F8FDIDF-D7B2-44F3-5AD9-75C57939B2BE

You can disconnect from your microntroller by dragging the line to the left.

2:26 PM Tue Nov 13 = Not Charging @)

Devices Logout

ESP32
FBESE891-27C8-49F1-4CBD-727B6D70A57F

Disconnect
-D7B2-44F3-5AD9-75C57939B2BE

6. If prompted, pair your microcontroller and mobile device.

[uTask] N comparison:46552
2 [uTask] Pr y' to confirm

Bluetooth Pairing Request
“ESP32" would like to pair with your
iPad. Confirm that the code "465520"
is shown on “ESP32""

Cancel Pair

If the code for numeric comparison is the same on both devices, pair the devices.

Note

The Bluetooth Low Energy Mobile SDK demo application uses Amazon Cognito for user
authentication. Make sure that you have set up a Amazon Cognito user and identity pools, and
that you have attached IAM policies to authenticated identities.

MQTT over Bluetooth Low Energy

In the MQTT over Bluetooth Low Energy demo, your microcontroller publishes messages to the AWS
Cloud through an MQTT proxy.

To subscribe to a demo MQTT topic

1. Signin to the AWS loT console.
2. Inthe navigation pane, choose Test to open the MQTT client.
3. In Subscription topic, enter iotdemo/#, and then choose Subscribe to topic.

243

FreeRTOS User Guide
MQTT over Bluetooth Low Energy

Publish
Publish to a topic Specify a topic and a message to publish with a QoS of 0.

M

b freertos/demos/echo/topic Nov 13,2018 3:13:32 PM 0800 Export Hide

fe cannot display the message as JSON, and are instead displaying it a5 UTF-8 String.

Helloworld 50

freertos/demos/echo Nov 13, 2018 3:13:31 PM -0800 Export Hide

fe cannot display the message as JSON, and are instead displaying it a5 UTF-8 String.

Helloworld 33

freertos/demos/echo/topic Nov 13,2018 3:13:31 PM-0800 Export Hide

e cannot display the message as JSON, and are instead displaying it as UTF-8 String.

Helloworld 49 Ack

You can run the MQTT demo over a Bluetooth Low Energy or Wi-Fi connection. The configuration of the
Network Manager (p. 239) determines which connection type is used.

If you use Bluetooth Low Energy to pair the microcontroller with your mobile device, the MQTT messages
are routed through the Bluetooth Low Energy Mobile SDK demo application on your mobile device.

If you use Wi-Fi, the demo is the same as the MQTT Hello World demo project located at demos /mgtt/
aws_hello_world.c. That demo is used in most of the Getting Started with FreeRTOS demo projects.

To enable the demo over Bluetooth Low Energy or Wi-Fi

Open vendors/vendor/boards/board/aws_demos/config_files/aws_demo_config.h, and
define CONFIG_MQTT DEMO_ENABLED.

o« Open freertos/aws_demos/config_files/aws_demo_config.h, and configure your network
type.

Configurations include:

#define democonfigNETWORK_TYPES (AWSIOT_ NETWORK_TYPE_BLE)

Run when Bluetooth Low Energy gets a connection.
#define democonfigNETWORK_TYPES (AWSIOT_ NETWORK_TYPE_WIFI)

Run when WIFI connects to AP.

#define democonfigNETWORK_TYPES (AWSIOT NETWORK_TYPE WIFI |
AWSIOT_NETWORK_TYPE_BLE)

Connects to the first available network type. If both types are available, Wi-Fi is used.

To run the demo

If the Network Manager is configured for Wi-Fi only, simply build and run the demo project on your
board.

If the Network Manager is configured for Bluetooth Low Energy, do the following:

1. Build and run the demo project on your microcontroller.

2. Make sure that you have paired your board and your mobile device using the FreeRTOS Bluetooth
Low Energy Mobile SDK demo application (p. 239).

244

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html

FreeRTOS User Guide
Wi-Fi provisioning

3. From the Devices list in the demo mobile app, choose your microcontroller, and then choose MQTT
Proxy to open the MQTT proxy settings.

= Not Charging @)

Devices Logout

ESP32

AT0F4665-0BAC-06FB-CBOE-DIBB135BFI80

ESP32

FBESEB91-27C8-49F1-4CBD-727B6D70A57F

ESP32

8F8FDIDF-D7B2-44F3-5AD9-75C57939B2BE

MQTT Proxy
Network Config

Custom GATT MQTT

4. After you enable the MQTT proxy, MQTT messages appear on the iotdemo/# topic, and data is
printed to the UART terminal.

Wi-Fi provisioning

Wi-Fi Provisioning is a FreeRTOS Bluetooth Low Energy service that allows you to securely send Wi-Fi
network credentials from a mobile device to a microcontroller over Bluetooth Low Energy. The source
code for the Wi-Fi Provisioning service can be found at freertos/.../wifi_provisioning.

Note
The Wi-Fi Provisioning demo is currently supported on the Espressif ESP32-DevKitC.

To enable the demo

1. Enable the Wi-Fi Provisioning service. Open vendors/vendor/boards/board/aws_demos/
config files/iot_ble_config.h, and set #define IOT_BLE_ENABLE_WIFI_PROVISIONING
to 1 (where the vendor is the name of the vendor and the board is the name of the board that you
are using to run the demos).

Note
The Wi-Fi Provisioning service is disabled by default.

2. Configure the Network Manager (p. 239) to enable both Bluetooth Low Energy and Wi-Fi.

To run the demo

1. Build and run the demo project on your microcontroller.

2. Make sure that you have paired your microntroller and your mobile device using the FreeRTOS
Bluetooth Low Energy Mobile SDK demo application (p. 239).

3. From the Devices list in the demo mobile app, choose your microcontroller, and then choose
Network Config to open the network configuration settings.

245

FreeRTOS User Guide
Wi-Fi provisioning

3:01PM Tue Nov 13 = Not Charging ®

Devices Logout

ESP32
A10F4665-0BAC-06FB-CBOE-DIBB135BF980

ESP32

FBESE891-27C8-49F1-4CBD-727B6D70A57F

ESP32
8F8FDIDF-D7B2-44F3-5AD9-75C57939B2BE

MQTT Proxy
Network Config

Custom GATT MQTT

After you choose Network Config for your board, the microcontroller sends a list of the networks in
the vicinity to the mobile device. Available Wi-Fi networks appear in a list under Scanned Networks.

3:46 PM Tue Nov 13 % Not Charging ®

<« ESP32 E: 3
Editing Mode
I Saved Networks

No saved networks

| scanned Networks

Security: RSSI:
wpa2 -29
Security: RSSI:
open -50

From the Scanned Networks list, choose your network, and then enter the SSID and password, if
required.

3:50 PM Tue Nov 13 = Not Charging (@

Wi-Fi Password
Please enter the password for
this network.

[Passwors]

Cancel

The micrcontroller connects to and saves the network. The network appears under Saved Networks.

246

FreeRTOS User Guide
Generic Attributes Server

= Not Charging @).

&

Editing Mode

Saved Networks

Security: RSS:
wpa2 34

Scanned Networks

Security: RSSI:
open 53

You can save several networks in the demo mobile app. When you restart the application and demo,
the microcontroller connects to the first available saved network, starting from the top of the Saved

Networks list.

To change the network priority order or delete networks, on the Network Configuration page, choose
Editing Mode. To change the network priority order, choose the right side of the network that you want
to reprioritize, and drag the network up or down. To delete a network, choose the red button on the left
side of the network that you want to delete.

4:08 PM Tue Nov 13 = Not Charging @)

Editing Mode
| saved Networks
memory
/ Change netwarks priority
T

Security: RSS:
open -70

Security: RSSI:
wpa2 -35

I Scanned Networks

Security: RSS:
open -48

Generic Attributes Server

In this example, a demo Generic Attributes (GATT) Server application on your microcontroller sends a
simple counter value to the FreeRTOS Bluetooth Low Energy Mobile SDK demo application (p. 239).

Using the Bluetooth Low Energy Mobile SDKs, you can create your own GATT client for a mobile device
that connects to the GATT server on your microcontroller and runs in parallel with the demo mobile
application.

To enable the demo

1. Enable the Bluetooth Low Energy GATT demo. In vendors/vendor/boards/board/aws_demos/
config files/iot_ble_ config.h (where the vendor is the name of the vendor and
the board is the name of the board that you are using to run the demos), add #define
IOT_BLE_ADD_CUSTOM_SERVICES (1) to the list of define statements.

Note
The Bluetooth Low Energy GATT demo is disabled by default.

247

FreeRTOS User Guide
Bootloader for the Microchip Curiosity PIC32MZEF

2. Open freertos/vendors/vendor/boards/board/aws_demos/config_files/
aws_demo_config.h, comment out #define CONFIG_MQTT DEMO_ENABLED, and define
CONFIG_BLE_GATT_ SERVER_DEMO_ENABLED.

To run the demo

1. Build and run the demo project on your microcontroller.
2. Make sure that you have paired your board and your mobile device using the FreeRTOS Bluetooth
Low Energy Mobile SDK demo application (p. 239).

3. From the Devices list in the app, choose your board, and then choose MQTT Proxy to open the
MQTT proxy options.

= Not Charging @)

Devices Logout

ESP32

AT0F4665-0BAC-06FB-CBOE-DIBB135BFI80

ESP32

FBESEB91-27C8-49F1-4CBD-727B6D70A57F

ESP32

8F8FDIDF-D7B2-44F3-5AD9-75C57939B2BE

MQTT Proxy
Network Config

Custom GATT MQTT

4. Return to the Devices list, choose your board, and then choose Custom GATT MQTT to open the
custom GATT service options.

5. Choose Start Counter to start publishing data to the iotdemo/# MQTT topic.

After you enable the MQTT proxy, Hello World and incrementing counter messages appear on the
iotdemo/# topic.

Demo bootloader for the Microchip Curiosity
PIC32MZEF

This demo bootloader implements firmware version checking, cryptographic signature verification, and
application self-testing. These capabilities support over-the-air (OTA) firmware updates for FreeRTOS.

The firmware verification includes verifying the authenticity and integrity of the new firmware received
over the air. The bootloader verifies the cryptographic signature of the application before booting. The
demo uses elliptic-curve digital signature algorithm (ECDSA) over SHA-256. The utilities provided can be
used to generate a signed application that can be flashed on the device.

The bootloader supports the following features required for OTA:

« Maintains application images on the device and switches between them.
« Allows self-test execution of a received OTA image and rollback on failure.
« Checks signature and version of the OTA update image.

Bootloader states

The bootloader process is shown in the following state machine.

248

FreeRTOS User Guide
Flash device

Start Bootloader Application
State Mchine Launch

Initialization Verification Execution

The following table describes the bootloader states.

Bootloader State Description

Initialization Bootloader is in the initialization state.

Verification Bootloader is verifying the images present on the
device.

Execute Image Bootloader is launching the selected image.

Execute Default Bootloader is launching the default image.

Error Bootloader is in the error state.

In the preceding diagram, both Execute Image and Execute Default are shown as the Execution
state.

Bootloader Execution State

The bootloader is in the Execution state and is ready to launch the selected verified image. If the
image to be launched is in the upper bank, the banks are swapped before executing the image,
because the application is always built for the lower bank.

Bootloader Default Execution State
If the configuration option to launch the default image is enabled, the bootloader launches the
application from a default execution address. This option must be disabled except while debugging.
Bootloader Error State
The bootloader is in an error state and no valid images are present on the device. The bootloader

must notify the user. The default implementation sends a log message to the console and fast-blinks
the LED on the board indefinitely.

Flash device

The Microchip Curiosity PIC32MZEF platform contains an internal program flash of two megabytes (MB)
divided into two banks. It supports memory map swapping between these two banks and live updates.
The demo bootloader is programmed in a separate lower boot flash region.

249

FreeRTOS User Guide
Application image structure

< 2MB >

< ms ————

Lower Boot Flash Lower Program Flash Upper Program Flash

|]

Application Bank 1

Bootloader Application Bank 0

Application image structure

N
& S @
& & & &cg’ FL L & g¥
O S EEIFS & & @ @
¥ ¢ & v §F S NSNS
) @@03 NSNS q}b & & &
~ e FE & & & P
Header ‘ Descriptor Application blnary ' Trailer
' OTA Image :
e (Signed by o
- signer ”
service)

The diagram shows the primary components of the application image stored on each bank of the device.

Component Size (in bytes)
Image header 8 bytes

Image descriptor 24 bytes
Application binary <1MB-(324)
Trailer 292 bytes

Image header

The application images on the device must start with a header that consists of a magic code and image
flags.

Header Field Size (in bytes)
Magic code 7 bytes
Image flags 1 byte

Magic code

The image on the flash device must start with a magic code. The default magic code is @AFRTOS. The
bootloader checks if a valid magic code is present before booting the image. This is the first step of

verification.

250

FreeRTOS User Guide
Image descriptor

Image flags

The image flags are used to store the status of the application images. The flags are used in the OTA
process. The image flags of both banks determine the state of the device. If the executing image is
marked as commit pending, it means the device is in the OTA self-test phase. Even if images on the
devices are marked valid, they go through the same verification steps on every boot. If an image is
marked as new, the bootloader marks it as commit pending and launches it for self-test after verification.
The bootloader also initializes and starts the watchdog timer so that if the new OTA image fails self-test,
the device reboots and bootloader rejects the image by erasing it and executes the previous valid image.

The device can have only one valid image. The other image can be a new OTA image or a commit
pending (self-test). After a successful OTA update, the old image is erased from the device.

Status Value Description

New image OxFF Application image is new and
never executed.

Commit pending OxFE Application image is marked for
test execution.

Valid OxFC Application image is marked
valid and committed.

Invalid OxF8 Application image is marked
invalid.

Image descriptor

The application image on the flash device must contain the image descriptor following the image
header. The image descriptor is generated by a post-build utility that uses configuration files (ota-
descriptor.config) to generate the appropriate descriptor and prepends it to the application binary.
The output of this post-build step is the binary image that can be used for OTA.

Descriptor Field Size (in bytes)
Sequence Number 4 bytes
Start Address 4 bytes
End Address 4 bytes
Execution Address 4 bytes
Hardware ID 4 bytes
Reserved 4 bytes

Sequence Number

The sequence number must be incremented before building a new OTA image. See the ota-
descriptor.config file. The bootloader uses this number to determine the image to boot. Valid
values are from 1 to 4294967295.

251

FreeRTOS User Guide
Image trailer

Start Address

The starting address of the application image on the device. As the image descriptor is prepended to
the application binary, this address is the start of the image descriptor.

End Address

The ending address of the application image on the device, excluding the image trailer.
Execution Address

The execution address of the image.
Hardware ID

A unique hardware ID used by the bootloader to verity the OTA image is built for the correct
platform.

Reserved

This is reserved for future use.

Image trailer

The image trailer is appended to the application binary. It contains the signature type string, signature
size, and signature of the image.

Trailer Field Size (in bytes)

Signature Type 32 bytes

Signature Size 4 bytes

Signature 256 bytes
Signature Type

The signature type is a string that represents the cryptographic algorithm being used and serves
as a marker for the trailer. The bootloader supports the elliptic-curve digital signature algorithm
(ECDSA). The default is sig-sha256-ecdsa.

Signature Size

The size of the cryptographic signature, in bytes.
Signature

The cryptographic signature of the application binary prepended with the image descriptor.

Bootloader configuration

The basic bootloader configuration options are provided in freertos/vendors/microchip/boards/
curiosity_pic32mzef/bootloader/config files/aws_boot_config.h. Some options are
provided for debugging purposes only.

Enable Default Start

Enables the execution of the application from the default address and must be enabled for
debugging only. The image is executed from the default address without any verification.

252

FreeRTOS User Guide
Building the bootloader

Enable Crypto Signature Verification

Enables cryptographic signature verification on boot. Failed images are erased from the device. This
option is provided for debugging purposes only and must remain enabled in production.

Erase Invalid Image

Enables a full bank erase if image verification on that bank fails. The option is provided for
debugging and must remain enabled in production.

Enable Hardware ID Verification

Enables verification of the hardware ID in the descriptor of the OTA image and the hardware ID
programmed in the bootloader. This is optional and can be disabled if hardware ID verification is not
required.

Enable Address Verification

Enables verification of the start, end, and execution addresses in the descriptor of OTA image. We
recommend that you keep this option enabled.

Building the bootloader

The demo bootloader is included as a loadable project in the aws_demos project located in freertos/
vendors/microchip/boards/curiosity_pic32mzef/aws_demos/mplab/ in the FreeRTOS source
code repository. When the aws_demos project is built, it builds the bootloader first, followed by the
application. The final output is a unified hex image including the bootloader and the application. The
factory_image_generator.py utility is provided to generate a unified hex image with cryptographic
signature. The bootloader utility scripts are located in freertos/demos/ota/bootloader/utility/.

Bootloader pre-build step

This pre-build step executes a utility script called codesigner_cert_utility.py that extracts the
public key from the code-signing certificate and generates a C header file that contains the public key
in Abstract Syntax Notation One (ASN.1) encoded format. This header is compiled into the bootloader
project. The generated header contains two constants: an array of the public key and the length of the
key. The bootloader project can also be built without aws_demos and can be debugged as a normal
application.

AWS loT Device Defender demo

FreeRTOS includes a single-threaded demo application that collects some AWS loT Device Defender
metrics for a device and publishes them to an MQTT topic. This demo is defined in freertos/demos/
defender/aws_iot_defender_ demo.c

Before you can run the Device Defender demo, you must complete the getting started First steps (p. 72)
to set up AWS loT and FreeRTOS so your device can communicate with the AWS Cloud.

Open freertos/vendors/vendor /boards/board/aws_demos/config files/
aws_demo_config.h, comment out #define CONFIG_MQTT_ DEMO_ENABLED, and define
CONFIG_DEFENDER_DEMO_ENABLED.

When you build, flash, and run FreeRTOS on your device with the Device Defender demo enabled, the
following output should appear:

12 343 [iot_thread] [INFO][DEMO][343] ----Device Defender Demo Start----

13 343 [iot_thread] [INFO][MQTT][343] MQTT library successfully initialized.

14 343 [iot_thread] [INFO][Defender][343] Metrics are successfully updated.

15 343 [iot_thread] [INFO][Defender][343] Period has been set to 300 seconds successfully.

253

FreeRTOS User Guide
AWS loT Greengrass

16 343 [iot_thread] [INFO][DEMO][343] Defender Thing Name is Thing-1 (length 7).

17 711 [iot_thread] [INFO][MQTT][711] Establishing new MQTT connection.

18 711 [iot_thread] [INFO][MQTT][711] Anonymous metrics (SDK language, SDK version) will
be provided to AWS IoT. Recompile with AWS_IOT MQTT_ENABLE_METRICS set to 0 to disable.
19 711 [iot_thread] [INFO][MQTT][711] (MQTT connection 00530B30, CONNECT operation
00530CCO0) Waiting for operation completion.

20 771 [iot_thread] [INFO][MQTT][771] (MQTT connection 00530B30, CONNECT operation
00530CCO0) Wait complete with result SUCCESS.

21 771 [iot_thread] [INFO][MQTT][771] New MQTT connection 0203FAOC established.

22 771 [iot_thread] [INFO][MQTT][771] (MQTT connection 00530B30) SUBSCRIBE operation
scheduled.

23 771 [iot_thread] [INFO][MQTT][771] (MQTT connection 00530B30, SUBSCRIBE operation
00530E30) Waiting for operation completion.

24 811 [iot_thread] [INFO][MQTT][811] (MQTT connection 00530B30, SUBSCRIBE operation
00530E30) Wait complete with result SUCCESS.

25 811 [iot_thread] [INFO][Defender][811] Defender agent has successfully started.

26 812 [iot_thread] [INFO][MQTT][812] (MQTT connection 00530B30) MQTT PUBLISH operation
queued.

27 932 [iot_thread] [INFO][Defender][932] Metrics report was accepted by defender service.
28 932 [iot_thread] [INFO][DEMO][932] User's callback is invoked on event: Defender
Metrics accepted.

29 932 [iot_thread] [INFO][DEMO][932] Published metrics report.

30 932 [iot_thread] [INFO][DEMO][932] Received MQTT message.

31 8811 [iot_thread] [INFO][Defender][8811] Unsubscribing from MQTT topics

32 8811 [iot_thread] [INFO][MQTT][8811] (MQTT connection 00530B30) UNSUBSCRIBE operation
scheduled.

33 8811 [iot_thread] [INFO][MQTT][8811] (MQTT connection 00530B30, UNSUBSCRIBE operation
00530F40) Waiting for operation completion.

34 8891 [iot_thread] [INFO][MQTT][8891] (MQTT connection 00530B30, UNSUBSCRIBE operation
00530F40) Wait complete with result SUCCESS.

35 8891 [iot_thread] [INFO][Defender][8891] Defender agent has stopped.

35 8891 [iot_thread] [INFO][MQTT][8891] (MQTT connection 00530B30) Disconnecting
connection.

37 8892 [iot_thread] [INFO][MQTT][8892] (MQTT connection 00530B30, DISCONNECT operation
00530CEO) Waiting for operation completion.

38 8892 [iot_thread] [INFO][MQTT][8892] (MQTT connection 00530B30, DISCONNECT operation
00530CEO) Wait complete with result SUCCESS.

39 8892 [iot_thread] [INFO][MQTT][8892] (MQTT connection 00530B30) Connection

disconnected.
40 8893 [iot_thread] [INFO][MQTT][8893] (MQTT connection 00530B30) Network connection
closed.
41 8931 [iot_thread] [INFO][MQTT][8931] (MQTT connection 00530B30) Network connection
destroyed.
42 8931 [iot_thread] [INFO][MQTT][8931] MQTT library cleanup done.
43 8931 [iot_thread] [INFO][DEMO][8931] ----Device Defender Demo End. Status:
SUCCESS—----.

AWS loT Greengrass discovery demo application

Before you run the AWS IoT Greengrass Discovery demo for FreeRTOS, you need to set up AWS, AWS loT
Greengrass, and AWS loT. To set up AWS, follow the instructions at Setting up your AWS account and
permissions (p. 72). To set up AWS loT Greengrass, you need to create a Greengrass group and then add
a Greengrass core. For more information about setting up AWS IoT Greengrass, see Getting Started with
AWS loT Greengrass.

After you set up AWS and AWS IoT Greengrass, you need to configure some additional permissions for
AWS loT Greengrass.

To set up AWS loT Greengrass permissions

1. Browse to the IAM console.

254

https://docs.aws.amazon.com/greengrass/latest/developerguide/gg-gs.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/gg-gs.html
https://console.aws.amazon.com/iam/home

FreeRTOS User Guide
AWS loT Greengrass

2. From the navigation pane, choose Roles, and then find and choose Greengrass_ServiceRole.

3. Choose Attach policies, select AmazonS3FullAccess and AWSIoTFullAccess, and then choose
Attach policy.

4. Browse to the AWS loT console.

5. In the navigation pane, choose Greengrass, choose Groups, and then choose the Greengrass group
that you previously created.

6. Choose Settings, and then choose Add role.
7. Choose Greengrass_ServiceRole, and then choose Save.

You can use the Quick Connect workflow in the FreeRTOS console to quickly connect your board to AWS
loT and run the demo. FreeRTOS configurations are currently not available for the following boards:

» Cypress CYW943907AEVALTF Development Kit
o Cypress CYW954907AEVAL1TF Development Kit
« Espressif ESP-WROVER-KIT

« Espressif ESP32-DevKitC

« Nordic nRF52840-DK

You can also connect your board to AWS IoT and configure your FreeRTOS demo manually.
1. Registering your MCU board with AWS IoT (p. 73)

After you register your board, you need to create and attach a new Greengrass policy to the device's
certificate.

To create a new AWS loT Greengrass policy

Browse to the AWS loT console.
In the navigation pane, choose Secure, choose Policies, and then choose Create.
Enter a name to identify your policy.

In the Add statements section, choose Advanced mode. Copy and paste the following JSON into
the policy editor window:

AwnN =

{
"Effect": "Allow",
"Action": [
"greengrass:*"
1,
"Resource": "*"
}

This policy grants AWS loT Greengrass permissions to all resources.
5. Choose Create.

To attach the AWS loT Greengrass policy to your device's certificate

1. Browse to the AWS loT console.

2. In the navigation pane, choose Manage, choose Things, and then choose the thing that you
previously created.

3. Choose Security, and then choose the certificate attached to your device.
Choose Policies, choose Actions, and then choose Attach Policy.
5. Find and choose the Greengrass policy that you created earlier, and then choose Attach.

255

https://console.aws.amazon.com/iotv2/
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/iotv2/
https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Amazon EC2

2. Downloading FreeRTOS (p. 75)

Note
If you are downloading FreeRTOS from the FreeRTOS console, choose Connect to AWS loT
Greengrass- Platform instead of Connect to AWS loT- Platform.

3. Configuring the FreeRTOS demos (p. 75).

Open freertos/vendors/vendor/boards/board/aws_demos/config_files/
aws_demo_config.h, comment out #define CONFIG_MQTT DEMO_ENABLED, and define
CONFIG_GREENGRASS_DISCOVERY_DEMO_ENABLED.

After you set up AWS loT and AWS loT Greengrass, and after you download and configure FreeRTOS,
you can build, flash, and run the Greengrass demo on your device. To set up your board's hardware
and software development environment, follow the instructions in the Board-specific getting started
guides (p. 86).

The Greengrass demo publishes a series of messages to the Greengrass core, and to the AWS loT MQTT
client. To view the messages in the AWS loT MQTT client, open the AWS loT console, choose Test, and
then add a subscription to freertos/demos/ggd.

In the MQTT client, you should see the following strings:

Message from Thing to Greengrass Core: Hello world msg #1!

Message from Thing to Greengrass Core: Hello world msg #0!

Message from Thing to Greengrass Core: Address of Greengrass Core found! 123456789012.us-
west-2.compute.amazonaws.com

Using an Amazon EC2 instance

If you are working with an Amazon EC2 instance

1. Find the Public DNS (IPv4) associated with your Amazon EC2 instance— go to the Amazon EC2
console, and in the left navigation panel, choose Instances. Choose your Amazon EC2 instance, and
then choose the Description panel. Look for the entry for the Public DNS (IPv4) and make a note of
it.

2. Find the entry for Security groups and choose the security group attached to your Amazon EC2
instance.

3. Choose the Inbound rules tab then choose Edit inbound rules and add the following rules.

Inbound rules

Type Protocol Port range Source Description -
optional

HTTP TCP 80 0.0.0.0/0 -

HTTP TCP 80 /0 -

SSH TCP 22 0.0.0.0/0 -

Custom TCP TCP 8883 0.0.0.0/0 MQTT

communications

Custom TCP TCP 8883 /0 MQTT
communications

HTTPS TCP 443 0.0.0.0/0 -

256

https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide
Over-the-air updates

Type Protocol Port range Source Description -
optional

HTTPS TCP 443 :0/0 -

AlLICMP - IPv4 ICMP All 0.0.0.0/0 -

ALLICMP - IPv4 ICMP All :0/0 -

In the AWS IoT console choose Greengrass, then Groups, and choose the Greengrass group that you
previously created. Choose Settings. Change the Local connection detection to Manually manage
connection information.

In the navigation pane, choose Cores then select your group core.

Choose Connectivity and make sure you have only one core endpoint (delete all of the rest) and
that it is not an IP address (because it is subject to change). The best option is to use the Public DNS
(IPv4) that you noted in the first step.

Add the FreeRTOS IoT thing you created to the GG group.

a. Choose the back arrow to return to the AWS loT Greengrass group page. In the navigation pane,
choose Devices then choose Add Device.

b. Choose Select an loT Thing. Choose your device then choose Finish.

Add the necessary subscriptions— in the Greengrass Group page, choose Subscriptions then choose
Add Subscription and enter information as shown here.

Subscriptions
Source Target Topic

TIGG1 loT Cloud freertos/demos/ggd

Start a deployment of your AWS loT Greengrass group and make sure that the deployment is
successful. You should now be able to successfully run the AWS loT Greengrass discovery demo.

FreeRTOS includes a demo application that demonstrates the functionality of the over-
the-air (OTA) library. The OTA demo application is located in the freertos/demos/ota/
aws_iot_ota_update_demo. c file.

The OTA demo application does the following:

U A NN =

. Initializes the FreeRTOS network stack and MQTT buffer pool.

. Creates a task to exercise the OTA library (vVRunOTAUpdateDemo()).

. Creates an MQTT client (prxCreateNetworkConnection()).

. Connects to the AWS loT MQTT broker (IotMgtt_Connect()).

. Calls oTA_AgentInit() to create the OTA task and registers a callback to be used when the OTA task

is complete.

. Reuses the MQTT connection (xOTAConnectionCtx.pvControlClient =

xConnection.xMgttConnection;).

Before you can use OTA updates, complete all prerequisites in the FreeRTOS Over-the-Air Updates (p. 8)

After you complete the setup for OTA updates, download, build, flash, and run the FreeRTOS OTA demo
on a platform that supports OTA functionality. Device-specific demo instructions are available for the
following FreeRTOS-qualified devices:

257

FreeRTOS User Guide
Over-the-air updates

o Texas Instruments CC3220SF-LAUNCHXL (p. 260)
» Microchip Curiosity PIC32MZEF (p. 262)
o Espressif ESP32 (p. 266)

After you build, flash, and run the OTA demo application on your device, you can use the AWS loT
console or the AWS CLI to create an OTA update job. After you have created an OTA update job, connect
a terminal emulator to see the progress of the OTA update. Make a note of any errors generated during
the process.

A successful OTA update job displays output like the following. Some lines in this example have been
removed from the listing for brevity.

313 267848 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0
314 268733 [OTA Task] [OTA] Set job doc parameter [jobId:
fel8c7ec_8c31_4438_b0b9_ad55acd95610]

315 268734 [OTA Task] [OTA] Set job doc parameter [streamname: 327]

316 268734 [OTA Task] [OTA] Set job doc parameter [filepath: /sys/mcuflashimg.bin]
317 268734 [OTA Task] [OTA] Set job doc parameter [filesize: 130388]

318 268735 [OTA Task] [OTA] Set job doc parameter [fileid: 126]

319 268735 [OTA Task] [OTA] Set job doc parameter [attr: 0]

320 268735 [OTA Task] [OTA] Set job doc parameter [certfile: tisigner.crt.der]

321 268737 [OTA Task] [OTA] Set job doc parameter [sig-shal-rsa:
056gxHRg3LxVv6KkorvilVs4AyGJbWsJd]

322 268737 [OTA Task] [OTA] Job was accepted. Attempting to start transfer.

323 268737 [OTA Task] Sending command to MQTT task.

324 268737 [MQTT] Received message 50000 from queue.

325 268848 [OTA] [OTA] Queued: 2 Processed: 1 Dropped: O

326 269039 [MQTT] MQTT Subscribe was accepted. Subscribed.

327 269039 [MQTT] Notifying task.

328 269040 [OTA Task] Command sent to MQTT task passed.

329 269041 [OTA Task] [OTA] Subscribed to topic: $aws/things/TI-LaunchPad/streams/327

330 269848 [OTA] [OTA] Queued: 2 Processed: 1 Dropped: 0
... // Output removed for brevity
346 284909 [OTA Task] [OTA] file token: 74594452
// Output removed for brevity
363 301327 [OTA Task] [OTA] file ready for access.
364 301327 [OTA Task] [OTA] Returned buffer to MQTT Client.
365 301328 [OTA Task] Sending command to MQTT task.
366 301328 [MQTT] Received message 60000 from queue.
367 301328 [MQTT] Notifying task.
368 301329 [OTA Task] Command sent to MQTT task passed.
369 301329 [OTA Task] [OTA] Published file request to $aws/bin/things/TI-LaunchPad/
streams/327/get
370 301632 [OTA Task] [OTA] Received file block 0, size 1024
371 301647 [OTA Task] [OTA] Remaining: 127
... // Output removed for brevity
508 304622 [OTA Task] Sending command to MQTT task.
509 304622 [MQTT] Received message 70000 from queue.
510 304622 [MQTT] Notifying task.
511 304623 [OTA Task] Command sent to MQTT task passed.
512 304623 [OTA Task] [OTA] Published file request to $aws/bin/things/TI-LaunchPad/
streams/327/get
513 304860 [OTA] [OTA] Queued: 47 Processed: 47 Dropped: 83
514 304926 [OTA Task] [OTA] Received file block 4, size 1024
515 304941 [OTA Task] [OTA] Remaining: 82
... // Output removed for brevity
797 315047 [MQTT] MQTT Publish was successful.
798 315048 [MQTT] Notifying task.
799 315048 [OTA Task] Command sent to MQTT task passed.
800 315049 [OTA Task] [OTA] Published 'IN_PROGRESS' status to $aws/things/TI-LaunchPad/
jobs/fel8c7ec_8c31_4438_b0b9_ad55acd9561801 315049 [OTA Task] Sending command to MQTT task.

258

FreeRTOS User Guide
Over-the-air updates

802 315049 [MQTT] Received message d0000 from queue.
803 315150 [MQTT] MQTT Unsubscribe was successful.

804 315150 [MQTT] Notifying task.

805 315151 [OTA Task] Command sent to MQTT task passed.

806 315152 [OTA Task] [OTA] Un-subscribed from topic: $aws/things/TI-LaunchPad/streams/327

807 315172 [OTA Task] Sending command to MQTT task.

808 315172 [MQTT] Received message e0000 from queue.
809 315273 [MQTT] MQTT Unsubscribe was successful.

810 315273 [MQTT] Notifying task.

811 315274 [OTA Task] Command sent to MQTT task passed.

812 315274 [OTA Task] [OTA] Un-subscribed from topic: $aws/things/TI-LaunchPad/streams/327

813 315275 [OTA Task] [OTA] Resetting MCU to activate new image.
0 0 [Tmr Svc] Starting Wi-Fi Module
1 0 [Tmr Svc] Simple Link task created

Device came up in Station mode

137 [Tmr Svc] Wi-Fi module initialized.

137 [Tmr Svc] Starting key provisioning...
137 [Tmr Svc] Write root certificate...

243 [Tmr Svc] Write device private key...

339 [Tmr Svc] Write device certificate...

436 [Tmr Svc] Key provisioning done...

Device disconnected from the AP on an ERROR..!!

No0 W

[WLAN EVENT] STA Connected to the AP: Guest , BSSID: 44:48:cl:ba:b2:c3

[NETAPP EVENT] IP acquired by the device

Device has connected to Guest

Device IP Address is 192.168.3.72

8 1443 [Tmr Svc] Wi-Fi connected to AP Guest.

9 1444 [Tmr Svc] IP Address acquired 192.168.3.72

10 1444 [OTA] OTA demo version 0.9.1

11 1445 [OTA] Creating MQTT Client...

12 1445 [OTA] Connecting to broker...

13 1445 [OTA] Sending command to MQTT task.

14 1445 [MQTT] Received message 10000 from queue.

15 2910 [MQTT] MQTT Connect was accepted. Connection established.
16 2910 [MQTT] Notifying task.

17 2911 [OTA] Command sent to MQTT task passed.

18 2912 [OTA] Connected to broker.

19 2913 [OTA Task] Sending command to MQTT task.

20 2913 [MQTT] Received message 20000 from queue.

21 3014 [MQTT] MQTT Subscribe was accepted. Subscribed.
22 3014 [MQTT] Notifying task.

23 3015 [OTA Task] Command sent to MQTT task passed.

24 3015 [OTA Task] [OTA] Subscribed to topic: $aws/things/TI-LaunchPad/jobs/$next/get/

accepted

25 3028 [OTA Task] Sending command to MQTT task.

26 3028 [MQTT] Received message 30000 from queue.

27 3129 [MQTT] MQTT Subscribe was accepted. Subscribed.
28 3129 [MQTT] Notifying task.

29 3130 [OTA Task] Command sent to MQTT task passed.

30 3138 [OTA Task] [OTA] Subscribed to topic: $aws/things/TI-LaunchPad/jobs/notify-next

31 3138 [OTA Task] [OTA] Check For Update #0
32 3138 [OTA Task] Sending command to MQTT task.
33 3138 [MQTT] Received message 40000 from queue.

259

FreeRTOS User Guide
Texas Instruments CC3220SF-LAUNCHXL

34 3241 [MQTT] MQTT Publish was successful.

35 3241 [MQTT] Notifying task.

36 3243 [OTA Task] Command sent to MQTT task passed.

37 3245 [OTA Task] [OTA] Set job doc parameter [clientToken: 0:TI-LaunchPad]

38 3245 [OTA Task] [OTA] Set job doc parameter [jobId:
fel8c7ec_8c31_4438_b0b9_ad55acd95610]

39 3245 [OTA Task] [OTA] Identified job doc parameter [self_ test]

40 3246 [OTA Task] [OTA] Set job doc parameter [updatedBy: 589827]

41 3246 [OTA Task] [OTA] Set job doc parameter [streamname: 327]

42 3246 [OTA Task] [OTA] Set job doc parameter [filepath: /sys/mcuflashimg.bin]

43 3247 [OTA Task] [OTA] Set job doc parameter [filesize: 130388]

44 3247 [OTA Task] [OTA] Set job doc parameter [fileid: 126]

45 3247 [OTA Task] [OTA] Set job doc parameter [attr: 0]

46 3247 [OTA Task] [OTA] Set job doc parameter [certfile: tisigner.crt.der]

47 3249 [OTA Task] [OTA] Set job doc parameter [sig-shal-rsa:
056gxHRg3LxVv6KkorvilVs4AyGJbWsJd]

48 3249 [OTA Task] [OTA] Job is ready for self test.

49 3250 [OTA Task] Sending command to MQTT task.

51 3351 [MQTT] MQTT Publish was successful.

52 3352 [MQTT] Notifying task.

53 3352 [OTA Task] Command sent to MQTT task passed.

54 3353 [OTA Task] [OTA] Published 'IN_PROGRESS' status to $aws/things/TI-LaunchPad/jobs/
fel8c7ec_8c31_4438_b0Ob9_ad55acd95610/u55 3353 [OTA Task] Sending command to MQTT task.

56 3353 [MQTT] Received message 60000 from queue.

57 3455 [MQTT] MQTT Unsubscribe was successful.

58 3455 [MQTT] Notifying task.

59 3456 [OTA Task] Command sent to MQTT task passed.

60 3456 [OTA Task] [OTA] Un-subscribed from topic: $aws/things/TI-LaunchPad/streams/327

61 3456 [OTA Task] [OTA] Accepted final image. Commit.

62 3578 [OTA Task] Sending command to MQTT task.

63 3578 [MQTT] Received message 70000 from queue.

64 3779 [MQTT] MQTT Publish was successful.

65 3780 [MQTT] Notifying task.

66 3780 [OTA Task] Command sent to MQTT task passed.

67 3781 [OTA Task] [OTA] Published 'SUCCEEDED' status to $aws/things/TI-LaunchPad/jobs/
fel8c7ec_8c31_4438_b0b9_ad55acd95610/updé68 3781 [OTA Task] [OTA] Returned buffer to MQTT
Client.

69 4251 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0

70 4381 [OTA Task] [OTA] Missing job parameter: execution

71 4382 [OTA Task] [OTA] Missing job parameter: jobId

72 4382 [OTA Task] [OTA] Missing job parameter: jobDocument
73 4382 [OTA Task] [OTA] Missing job parameter: ts_ota

74 4382 [OTA Task] [OTA] Missing job parameter: files

75 4382 [OTA Task] [OTA] Missing job parameter: streamname
76 4382 [OTA Task] [OTA] Missing job parameter: certfile

77 4382 [OTA Task] [OTA] Missing job parameter: filepath

78 4383 [OTA Task] [OTA] Missing job parameter: filesize

79 4383 [OTA Task] [OTA] Missing job parameter: sig-shal-rsa
80 4383 [OTA Task] [OTA] Missing job parameter: fileid

81 4383 [OTA Task] [OTA] Missing job parameter: attr

82 4383 [OTA Task] [OTA] Returned buffer to MQTT Client.

83 5251 [OTA] [OTA] Queued: 2 Processed: 2 Dropped: 0

Download, build, flash, and run the FreeRTOS
OTA demo on the Texas Instruments CC3220SF-
LAUNCHXL

To download FreeRTOS and the OTA demo code

1. Browse to the AWS loT console and from the navigation pane, choose Software.

260

FreeRTOS User Guide
Texas Instruments CC3220SF-LAUNCHXL

Under FreeRTOS Device Software, choose Configure download.

From the list of software configurations, choose Connect to AWS loT - Tl. Choose the configuration
name, not the Download link.

Under Libraries, choose Add another library, and then choose OTA Updates.
5. Under Demo Projects, choose OTA Updates.
Under Name required, enter Connect-to-IoT-0TA-TI, and then choose Create and download.

Save the zip file that contains FreeRTOS and the OTA demo code to your computer.

To build the demo application

Extract the .zip file.

2. Follow the instructions in Getting Started with FreeRTOS (p. 71) to import the aws_demos project
into Code Composer Studio, configure your AWS loT endpoint, your Wi-Fi SSID and password, and a
private key and certificate for your board.

3. Open freertos/vendors/vendor/boards/board/aws_demos/config_files/
aws_demo_config.h, comment out #define CONFIG_MQTT_DEMO_ENABLED, and define
CONFIG_OTA_UPDATE_DEMO_ENABLED.

Build the solution and make sure it builds without errors.

5. Start a terminal emulator and use the following settings to connect to your board:

« Baud rate: 115200
Data bits: 8

« Parity: None

Stop bits: 1

6. Run the project on your board to confirm it can connect to Wi-Fi and the AWS loT MQTT message
broker.

When run, the terminal emulator should display text like the following:

0 0 [Tmr Svc] Starting Wi-Fi Module ...

1 0 [Tmr Svc] Simple Link task created
Device came up in Station mode

142 [Tmr Svc] Wi-Fi module initialized.
142 [Tmr Svc] Starting key provisioning...
142 [Tmr Svc] Write root certificate...
243 [Tmr Svc] Write device private key...
340 [Tmr Svc] Write device certificate...
7 433 [Tmr Svc] Key provisioning done...
[WLAN EVENT] STA Connected to the AP: Mobile , BSSID: 24:de:c6:5d:32:a4
[NETAPP EVENT] IP acquired by the device

o Ul W

Device has connected to Mobile
Device IP Address is 192.168.111.12

8 2666 [Tmr Svc] Wi-Fi connected to AP Mobile.

9 2666 [Tmr Svc] IP Address acquired 192.168.111.12

10 2667 [OTA] OTA demo version 0.9.2

11 2667 [OTA] Creating MQTT Client...

12 2667 [OTA] Connecting to broker...

13 3512 [OTA] Connected to broker.

14 3715 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/OtaGA/jobs/$next/
get/accepted

15 4018 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/OtaGA/jobs/notify-
next

261

FreeRTOS User Guide
Microchip Curiosity PIC32MZEF

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

4027 [OTA Task] [prvPAL_GetPlatformImageState] xFileInfo.Flags = 0250
4027 [OTA Task] [prvPAL_GetPlatformImageState] eOTA_PAL_ImageState_Valid
4034 [OTA Task] [OTA_CheckForUpdate] Request #0

4248 [OTA] [OTA_AgentInit] Ready.

4249 [OTA Task] [prvParseJSONbyModel] Extracted parameter [clientToken: 0:0taGA]
4249 [OTA Task] [prvParseJSONbyModel] parameter not present: execution
4249 [OTA Task] [prvParseJSONbyModel] parameter not present: jobId

4249 [OTA Task] [prvParseJSONbyModel] parameter not present: jobDocument
4249 [OTA Task] [prvParseJSONbyModel] parameter not present: afr_ota

4250 [OTA Task] [prvParseJSONbyModel] parameter not present: streamname
4250 [OTA Task] [prvParseJSONbyModel] parameter not present: files

4250 [OTA Task] [prvParseJSONbyModel] parameter not present: filepath
4250 [OTA Task] [prvParseJSONbyModel] parameter not present: filesize
4250 [OTA Task] [prvParseJSONbyModel] parameter not present: fileid

4250 [OTA Task] [prvParseJSONbyModel] parameter not present: certfile
4251 [OTA Task] [prvParseJSONbyModel] parameter not present: sig-shal-rsa
4251 [OTA Task] [prvParsedJobDoc] Ignoring job without ID.

4251 [OTA Task] [prvOTA_Close] Context->0x2001b2c4

5248 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
6248 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
7248 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
8248 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
9248 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0

Download, build, flash, and run the FreeRTOS OTA
demo on the Microchip Curiosity PIC32MZEF

To download the FreeRTOS OTA demo code

won

N o u s

Browse to the AWS IoT console and from the navigation pane, choose Software.
Under FreeRTOS Device Software, choose Configure download.

From the list of software configurations, choose Connect to AWS loT - Microchip. Choose the
configuration name, not the Download link.

Under Libraries, choose Add another library, and then choose OTA Updates.
Under Demo projects, choose OTA Update.
Under Name required, enter a name for your custom FreeRTOS software configuration.

Choose Create and download.

To build the OTA update demo application

Extract the .zip file you just downloaded.

Follow the instructions in Getting Started with FreeRTOS (p. 71) to import the aws_demos project
into the MPLAB X IDE, configure your AWS IoT endpoint, your Wi-Fi SSID and password, and a
private key and certificate for your board.

Open demos/include/aws_ota_codesigner_certificate.h.

Paste the contents of your code-signing certificate into the static const char
signingcredentialSIGNING_CERTIFICATE_ PEM variable. Following the same format as
aws_clientcredential_keys.h, each line must end with the new line character ("\n') and be
enclosed in quotation marks.

For example, your certificate should look similar to the following:

"MIIBXTCCAQOgAWIBAgIJAM4DeybZcTwKMAOGCCgGSM49BAMCMCEXHZAdBgNVBAMM\n"

262

FreeRTOS User Guide
Microchip Curiosity PIC32MZEF

11.

"FnR1c3R£621nbmVyQGFtYXpvbi5jb20wHhcNMTcXMTAZMTkXODM1WhcNMTgxXMTAZ\n"
"MTkxODM2WJjAhMR8WHQYDVOBBZZZ0ZXNOX3NpZ251ckBhbWF6b24uY29tMFkwEwWYH\n"
"KoZIzjOCAQYIKoZIzjODAQcDQgAERAVZfvwL1X+E4dIF7dbkVMUn4IrJ1CAsFkec8\n"
"gZxPzn683H40XMK1tDZPEwrong78w9+QYQg7ygnr2stz8yhh06MkMCIWCWYDVROP\n"
"BAQDAgeAMBMGA1UdJQOMMAOGCCsGAQUFBWMDMAOGCCQGSM49BAMCAOgAMEUCIFOR\n"
"r5cb7rEUNtWOVGA05MacrgOABESoVYVBOK9fP63WAgt5h3BasS123coKSGg84twlg\n"
"TkO/pV/XEmyZmZdV+HXV/OM=\n"

Install Python 3 or later.
Install pyOpenSSL by running pip install pyopenssl.

Copy your code-signing certificate in .pem format in the path demos/ota/
bootloader/utility/codesigner_cert_utility/. Rename the certificate file
aws_ota_codesigner certificate.pem.

Open freertos/vendors/vendor/boards/board/aws_demos/config files/
aws_demo_config.h, comment out #define CONFIG_MQTT_ DEMO_ENABLED, and define
CONFIG_OTA_UPDATE_DEMO_ENABLED.

Build the solution and make sure it builds without errors.

. Start a terminal emulator and use the following settings to connect to your board:

« Baud rate: 115200
« Data bits: 8

« Parity: None

« Stop bits: 1

Unplug the debugger from your board and run the project on your board to confirm it can connect
to Wi-Fi and the AWS loT MQTT message broker.

When you run the project, the MPLAB X IDE should open an output window. Make sure the ICD4 tab is
selected. You should see the following output.

Bootloader version 00.09.00
[prvBOOT_Init] Watchdog timer initialized.
[prvBOOT_Init] Crypto initialized.

[prvValidateImage] Validating image at Bank : 0
[prvValidateImage] No application image or magic code present at: 0xbd000000
[prvBOOT_ValidateImages] Validation failed for image at 0xbd000000

[prvValidateImage] Validating image at Bank : 1
[prvValidateImage] No application image or magic code present at: 0xbd100000
[prvBOOT_ValidateImages] Validation failed for image at 0xbd100000

[prvBOOT_ValidateImages] Booting default image.

>0 36246 [IP-task] vDHCPProcess: offer acl40aOeip

1 36297 [IP-task] vDHCPProcess: offer

acl40aleip

2 36297 [IP-task]

IP Address: 172.20.10.14

3 36297 [IP-task] Subnet Mask: 255.255.255.240

4 36297 [IP-task] Gateway Address: 172.20.10.1

5 36297 [IP-task] DNS Server Address: 172.20.10.1

6 36299 [OTA] OTA demo version 0.9.2
7 36299 [OTA] Creating MQTT Client...
8 36299 [OTA] Connecting to broker...

263

https://www.python.org/downloads/

FreeRTOS User Guide
Microchip Curiosity PIC32MZEF

9 38673 [OTA] Connected to broker.

10 38793 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/devthingota/jobs/
$next/get/accepted

11 38863 [OTA Task] [prvSubscribeToJobNotificationTopics] OK: $aws/things/devthingota/jobs/

notify-next

12 38863 [OTA Task] [OTA_CheckForUpdate] Request #0

13 38964 [OTA] [OTA_AgentInit] Ready.

14 38973 [OTA Task] [prvParseJSONbyModel] Extracted parameter [clientToken:
0:devthingota]

15 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: execution

16 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: jobId

17 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: jobDocument

18 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: streamname

19 38973 [OTA Task] [prvParseJSONbyModel] parameter not present: files

20 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: filepath

21 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: filesize

22 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: fileid

23 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: certfile

24 38975 [OTA Task] [prvParseJSONbyModel] parameter not present: sig-sha256-ecdsa
25 38975 [OTA Task] [prvParseJobDoc] Ignoring job without ID.

26 38975 [OTA Task] [prvOTA_Close] Context->0x8003b620

27 38975 [OTA Task] [prvPAL_Abort] Abort - OK

28 39964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
29 40964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
30 41964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
31 42964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
32 43964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
33 44964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
34 45964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
35 46964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0
36 47964 [OTA] State: Ready Received: 1 Queued: 1 Processed: 1 Dropped: 0

The terminal emulator should display text like the following:

AWS Validate: no valid signature in descr: 0xbd000000
AWS Validate: no valid signature in descr: 0xbd100000

>AWS Launch: No Map performed. Running directly from address: 0x9d000020?
AWS Launch: wait for app at: 0x9d000020

WILC1000: Initializing...

00

>[None] Seed for randomizer: 1172751941

1 0 [None] Random numbers: 00004272 00003B34 00000602 00002DE3

Chip ID 1503a0

[spi_cmd_rsp][356][nmi spi]: Failed cmd response read, bus error...
[spi_read_reg][1086][nmi spi]: Failed cmd response, read reg (0000108c)...
[spi_read_reg][ll116]Reset and retry 10 108c

Firmware ver. : 4.2.1

Min driver ver : 4.2.1

Curr driver ver: 4.2.1

WILC1000: Initialization successful!

Start Wi-Fi Connection...

Wi-Fi Connected

2 7219 [IP-task] VvDHCPProcess: offer cO0a804beip
3 7230 [IP-task] VvDHCPProcess: offer cO0a804beip

264

FreeRTOS User Guide
Microchip Curiosity PIC32MZEF

4 7230 [IP-task]

IP Address: 192.168.4.190

5 7230 [IP-task] Subnet Mask: 255.255.240.0

6 7230 [IP-task] Gateway Address: 192.168.0.1

7 7230 [IP-task] DNS Server Address: 208.67.222.222

8 7232 [OTA] OTA demo version 0.9.0

9 7232 [OTA] Creating MQTT Client...

10 7232 [OTA] Connecting to broker...

11 7232 [OTA] Sending command to MQTT task.

12 7232 [MQTT] Received message 10000 from queue.

13 8501 [IP-task] Socket sending wakeup to MQTT task.

14 10207 [MQTT] Received message 0 from queue.

15 10256 [IP-task] Socket sending wakeup to MQTT task.
16 10256 [MQTT] Received message 0 from queue.

17 10256 [MQTT] MQTT Connect was accepted. Connection established.
18 10256 [MQTT] Notifying task.

19 10257 [OTA] Command sent to MQTT task passed.

20 10257 [OTA] Connected to broker.

21 10258 [OTA Task] Sending command to MQTT task.

22 10258 [MQTT] Received message 20000 from queue.

23 10306 [IP-task] Socket sending wakeup to MQTT task.
24 10306 [MQTT] Received message 0 from queue.

25 10306 [MQTT] MQTT Subscribe was accepted. Subscribed.
26 10306 [MQTT] Notifying task.

27 10307 [OTA Task] Command sent to MQTT task passed.

28 10307 [OTA Task] [OTA] Subscribed to topic: $aws/things/Microchip/jobs/$next/get/
accepted

29 10307 [OTA Task] Sending command to MQTT task.

30 10307 [MQTT] Received message 30000 from queue.

31 10336 [IP-task] Socket sending wakeup to MQTT task.
32 10336 [MQTT] Received message 0 from queue.

33 10336 [MQTT] MQTT Subscribe was accepted. Subscribed.
34 10336 [MQTT] Notifying task.

35 10336 [OTA Task] Command sent to MQTT task passed.

36 10336 [OTA Task] [OTA] Subscribed to topic: $aws/things/Microchip/jobs/notify-next

37 10336 [OTA Task] [OTA] Check For Update #0

38 10336 [OTA Task] Sending command to MQTT task.

39 10336 [MQTT] Received message 40000 from queue.

40 10366 [IP-task] Socket sending wakeup to MQTT task.

41 10366 [MQTT] Received message 0 from queue.

42 10366 [MQTT] MQTT Publish was successful.

43 10366 [MQTT] Notifying task.

44 10366 [OTA Task] Command sent to MQTT task passed.

45 10376 [IP-task] Socket sending wakeup to MQTT task.

46 10376 [MQTT] Received message 0 from queue.

47 10376 [OTA Task] [OTA] Set job doc parameter [clientToken: 0O:Microchip]
48 10376 [OTA Task] [OTA] Missing job parameter: execution
49 10376 [OTA Task] [OTA] Missing job parameter: jobId

50 10376 [OTA Task] [OTA] Missing job parameter: jobDocument
51 10378 [OTA Task] [OTA] Missing job parameter: ts_ota

52 10378 [OTA Task] [OTA] Missing job parameter: files

53 10378 [OTA Task] [OTA] Missing job parameter: streamname
54 10378 [OTA Task] [OTA] Missing job parameter: certfile

55 10378 [OTA Task] [OTA] Missing job parameter: filepath

56 10378 [OTA Task] [OTA] Missing job parameter: filesize

57 10378 [OTA Task] [OTA] Missing job parameter: sig-sha256-ecdsa
58 10378 [OTA Task] [OTA] Missing job parameter: fileid

59 10378 [OTA Task] [OTA] Missing job parameter: attr

60 10378 [OTA Task] [OTA] Returned buffer to MQTT Client.

61 11367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0
62 12367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0

265

FreeRTOS User Guide

Espressif ESP32
63 13367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0
64 14367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0
65 15367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: O
66 16367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0

This output shows the Microchip Curiosity PIC32MZEF can connect to AWS loT and subscribe to the
MQTT topics required for OTA updates. The Missing job parameter messages are expected because
there are no OTA update jobs pending.

Download, build, flash, and run the FreeRTOS OTA
demo on the Espressif ESP32

1. Download the FreeRTOS source from GitHub. See the README.md file for instructions. Create a
project in your IDE that includes all required sources and libraries.

Follow the instructions in Getting Started with Espressif to set up the required GCC-based toolchain.

Open freertos/vendors/vendor/boards/board/aws_demos/config files/
aws_demo_config.h, comment out #define CONFIG_MQTT DEMO_ENABLED, and define
CONFIG_OTA_UPDATE_DEMO_ENABLED.

4. Build the demo project by running make in the vendors/espressif/boards/esp32/aws_demos
directory. You can flash the demo program and verify its output by running make flash monitor,
as described in Getting Started with Espressif.

5. Before running the OTA Update demo:
e Open freertos/vendors/vendor/boards/board/aws_demos/config files/

aws_demo_config.h, comment out #define CONFIG_MQTT_DEMO_ENABLED, and define
CONFIG_OTA UPDATE_DEMO_ ENABLED.

« Make sure that your SHA-256/ECDSA code-signing certificate is copied into the demos/include/
aws_ota_codesigner certificate.h.

HTTPS demo applications

Overview

For examples using the FreeRTOS HTTPS Client library, see the HTTPS Client demo applications defined
in iot_demo_https_s3_download_async.c and iot_demo_https_s3_download_sync.c.

The HTTPS Client demos show how to download a file from Amazon S3 using a pre-signed URL. The file
is downloaded incrementally using HTTP Partial Content headers. The byte ranges for the size of the
response body buffer are specified in each incremental request. The HTTPS Client library is a generic
library that can be used to download files from other webservers as well. Please note that not all HTTP
servers support a Partial Content download with a byte range.

To use the HTTPS Client demos, you must also set values for the following constants in the freertos/
demos/include/aws_clientcredential keys.h file:

keyCLIENT_ CERTIFICATE_PEM

The certificate PEM needed for a TLS connection.
keyCLIENT PRIVATE_KEY PEM

The private key PEM needed for a TLS connection.

266

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/master/README.md
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html

FreeRTOS User Guide
Usage instructions

Configuration parameters
These configuration parameters apply to the HTTPS Client demo and need to be defined.
IOT_DEMO_HTTPS_PRESIGNED_GET_URL

The pre-signed URL for a GET request to Amazon S3 for a specific object. This must be of the form:

https://awsexamplebucketl.§3.amazonaws.com/object-key.txt?
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Expires=1560555644&Signature=SomeHash12345Ur1ABcdEFgfIjK
%3D

Please see freertos/demos/https/README.md for instructions on generating a pre-signed URL
using the Python script in the same folder.

These configuration parameters apply to the HTTPS Client demo and do not need to be defined, they are
for more customization options.

IOT_DEMO_HTTPS_PORT

The HTTPS server TCP port to connect to. The default is 443.
IOT_DEMO_HTTPS_TRUSTED_ ROOT

The trusted ROOT CA to connect to the HTTPS server. The HTTPS server is defined by the host
name in the IOT_DEMO_HTTPS_PRESIGNED_GET_ URL. The default is the Baltimore Cybertrust root
certificate authority.

See HTTPS Client API Reference Demo Configuration for other configurations.

Usage instructions

Please see the HTTPS Client APl Reference Demo Usage Instructions for more information and output
examples.

AWS loT Device Shadow demo application

FreeRTOS includes a demo application that demonstrates how to programmatically update and respond
to changes in an AWS loT Device Shadow. This demo application is defined in FreeRTOS/demos/
shadow/aws_iot_demo_shadow.c. The device in this scenario is a light bulb whose color can be set to
red or green.

The demo application creates three tasks:

« A main demo task that calls prvShadowMainTask.
« A device update task that calls prvUpdateTask.
o A number of shadow update tasks that call prvShadowUpdateTasks.

prvShadowMainTask initializes the Device Shadow client and initiates an MQTT connection to AWS loT
with the client credentials specified in demos/include/aws_clientcredential.h. The information
specified in aws_clientcredential.h, including your your device's AWS loT thing name and the
MQTT broker endpoint and port, must be correct for the application to successfully connect to the AWS
Cloud.

267

https://docs.aws.amazon.com/freertos/latest/lib-ref/https/https_demo_config.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/https/https_demo_usage.html

FreeRTOS User Guide
AWS loT Device Shadow

After the MQTT connection is established, the application creates the device update task. Finally,
it creates shadow update tasks and then terminates. The democonfigSHADOW_DEMO_NUM_TASKS
constant defined in aws_iot_demo_shadow.c controls the number of shadow update tasks created.

prvShadowUpdateTasks generates an initial thing shadow document and updates the shadow with the
document. It then goes into an infinite loop that periodically updates the thing shadow's desired state,
requesting that the light bulb change its color (from red to green to red).

prvUpdateTask responds to changes in the shadow's desired state. When the desired state changes,
this task updates the reported state of the shadow to reflect the new desired state.

Before you can run the Device Shadow demo, you must complete the getting started First steps (p. 72) to
set up AWS loT and FreeRTOS so your device can communicate with the AWS Cloud.

After you set up AWS loT and FreeRTOS, do the following:

1. Add the following policy to your device certificate:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iot:Connect",
"Resource": "arn:aws:iot:us-west-2:123456789012:client/yourClientId"
}V
{
"Effect": "Allow",
"Action": "iot:Subscribe",
"Resource": "arn:aws:iot:us-west-2:123456789012:topicfilter/$aws/things/
thingName/shadow/*"
}V
{
"Effect": "Allow",
"Action": "iot:Receive",
"Resource":
"arn:aws:iot:us-west-2:123456789012:topic/$aws/things/thingName/shadow/*"
}V
{
"Effect": "Allow",
"Action": "iot:Publish",
"Resource":
"arn:aws:iot:us-west-2:123456789012:topic/$aws/things/thingName/shadow/*"
b
]
}

2. Open freertos/vendors/vendor/boards/board/aws_demos/config files/
aws_demo_config.h, comment out #define CONFIG_MQTT DEMO_ENABLED, and define
CONFIG_SHADOW_DEMO_ENABLED.

3. Build, flash, and run FreeRTOS to your device.
You can use the AWS IoT console to view your device's shadow and confirm that its desired and reported
states change periodically.

1. In the AWS loT console, from the left navigation pane, choose Manage.
2. Under Manage, choose Things, and then choose the thing whose shadow you want to view.
3. On the thing detail page, from the left navigation pane, choose Shadow to display the thing shadow.

For more information about how devices and shadows interact, see Device Shadow Service Data Flow.

268

https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-data-flow.html

FreeRTOS User Guide
Secure Sockets

Secure Sockets echo client demo

The following example uses a single RTOS task. The source code for this example can be found at
demos/tcp/aws_tcp_echo_client_single_task.c.

Before you begin, verify that you have downloaded FreeRTOS to your microcontroller and built and run
the FreeRTOS demo projects. You can clone or download FreeRTOS from GitHub. See the README.md
file for instructions. For more information about setting up a FreeRTOS-qualified board, see Getting
Started with FreeRTOS.

To run the demo

Note
The TCP server and client demos are currently not supported on the Cypress
CYW943907AEVALTF and CYW954907AEVAL1F Development Kits.

1. Follow the instructions in Setting Up the TLS Echo Server in the FreeRTOS Porting Guide.
A TLS echo server should be running and listening on the port 9000.
During the setup, you should have generated four files:

e client.pem (client certificate)
e client.key (client private key)
« server.pem (server certificate)
o server.key (server private key)

2. Usethetool tools/certificate_configuration/CertificateConfigurator.html
to copy the client certificate (client.pem) and client private key (c1lient.key) to
aws_clientcredential_keys.h.

3. Openthe FreeRTOSConfig.h file.

4, Setthe configECHO_SERVER ADDRO, configECHO_ SERVER_ADDRI,
configECHO_SERVER_ADDRZ2, and configECHO_SERVER_ADDR3 variables to the four integers that
make up the IP address where the TLS Echo Server is running.

5. Setthe configTCP_ECHO_ CLIENT_PORT variable to 9000, the port where the TLS Echo Server is
listening.

6. Setthe configTCP_ECHO_TASKS_SINGLE_TASK_ TLS_ENABLED variable to 1.

7. Usethetool tools/certificate_configuration/PEMfileToCString.html to copy
the server certificate (server.pem) to cT1sECHO_SERVER_CERTIFICATE_ PEM in the file
aws_tcp_echo_client_single_task.c.

8. Open freertos/vendors/vendor/boards/board/aws_demos/config_files/
aws_demo_config.h, comment out #define CONFIG_MQTT_ DEMO_ENABLED, and define
CONFIG_TCP_ECHO_CLIENT_DEMO_ENABLED.

The microcontroller and the TLS Echo Server should be on the same network. When the demo starts
(main.c), you should see a log message that reads Received correct string from echo server.

269

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/master/README.md
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html
https://docs.aws.amazon.com/freertos/latest/portingguide/tls-echo-server.html

FreeRTOS User Guide

Using AWS loT Device Tester for
FreeRTOS

You can use AWS IoT Device Tester (IDT) for FreeRTOS to verify that the FreeRTOS operating system
works locally on your device and can communicate with the AWS loT Cloud. Specifically, it verifies that
the porting layer interfaces for the FreeRTOS libraries are implemented correctly. It also performs end-
to-end tests with AWS IoT Core. For example, it verifies your board can send and receive MQTT messages
and process them correctly. The tests run by IDT for FreeRTOS are defined in the FreeRTOS GitHub
repository.

The tests run as embedded applications that are flashed onto your board. The application binary images
include FreeRTOS, the semiconductor vendor’s ported FreeRTOS interfaces, and board device drivers. The
purpose of the tests is to verify the ported FreeRTOS interfaces function correctly on top of the device
drivers.

IDT for FreeRTOS generates test reports that you can submit to AWS IoT to add your hardware to the
AWS Partner Device Catalog. For more information, see AWS Device Qualification Program.

IDT for FreeRTOS runs on a host computer (Windows, macOS, or Linux) that is connected to the board
to be tested. IDT executes test cases and aggregates results. It also provides a command line interface to
manage test execution.

In addition to testing devices, IDT for FreeRTOS creates resources (for example, AWS loT things,
FreeRTOS groups, Lambda functions, and so on) to facilitate the qualification process.

To create these resources, IDT for FreeRTOS uses the AWS credentials configured in the config. json to
make API calls on your behalf. These resources are provisioned at various times during a test.

When you run IDT for FreeRTOS on your host computer, it performs the following steps:
1. Loads and validates your device and credentials configuration.
2. Performs selected tests with the required local and cloud resources.

3. Cleans up local and cloud resources.
4. Generates tests reports that indicate if your board passed the tests required for qualification.

The following diagram shows the test infrastructure setup.

—
C £ ‘
((
Jf
AWS loT Core
! Computer connects using USB
Your computer Microcontroller board
(Win/Linux/Mac) running being tested

AWS loT Device Tester
for Amazon FreeRTOS

To run IDT for FreeRTOS, you can use the test resources. There are two types of resources:

270

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos
https://aws.amazon.com/partners/dqp/

FreeRTOS User Guide
Supported versions of IDT for FreeRTOS

« Atest suite is the set of test groups used to verify that a device works with particular versions of
FreeRTOS.

« A test group is the set of individual tests related to a particular feature, such as BLE and MQTT
messaging.

For more information, see AWS IoT Device Tester for FreeRTOS test suite versions (p. 292).

Supported versions of AWS loT Device Tester for
FreeRTOS

This topic lists supported versions of IDT for FreeRTOS. As a best practice, we recommend that you use
the latest version of IDT for FreeRTOS that supports your target version of FreeRTOS. Each version of
IDT for FreeRTOS has one or more corresponding versions of FreeRTOS. New releases of FreeRTOS might
require you to download a new version of IDT for FreeRTOS.

By downloading the software, you agree to the IDT for FreeRTOS License Agreement.

Latest version of AWS loT Device Tester for FreeRTOS

Use the following links to download the latest version of IDT for FreeRTOS.
IDT v3.0.0 for FreeRTOS 202002.00

 IDT for FreeRTOS: Linux
« IDT for FreeRTOS: macOS
« IDT for FreeRTOS: Windows
Note
We don't recommend that multiple users run IDT from a shared location, such as an NFS

directory or a Windows network shared folder. This may result in crashes or data corruption.
We recommend that you extract the IDT package to a local drive.

Release notes

« Supports FreeRTOS 202002.00. For more information about what's included in the FreeRTOS
202002.00 release, see the CHANGELOG.md file in GitHub.

« Adds automatic update of test suites within IDT. IDT can now download the latest test suites that are
available for your FreeRTOS version. With this feature, you can:

« Download the latest test suites using the upgrade-test-suite command.
» Download the latest test suites by setting a flag when you start IDT.

Use the —u flag option where flag can be'y' to always download or 'n' to use the existing version.

When there are multiple test suite versions available, the latest version is used unless you specify a
test suite ID when starting IDT.

e Use the new 1ist-supported-versions option to list the FreeRTOS and test suite versions that
are supported by the installed version of IDT.

o List test cases in a group and run individual tests.

Test suites are versioned using a major.minor.patch format starting from 1.0.0.

o Addsthe list-supported-products command — Lists the FreeRTOS and test suite versions that are
supported by the installed version of IDT.

271

https://d232ctwt5kahio.cloudfront.net/freertos/devicetester_freertos_linux_3.0.0.zip
https://d232ctwt5kahio.cloudfront.net/freertos/devicetester_freertos_mac_3.0.0.zip
https://d232ctwt5kahio.cloudfront.net/freertos/devicetester_freertos_win_3.0.0.zip
https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md

FreeRTOS User Guide
Earlier IDT versions

o Adds list-test-cases command - Lists the test cases that are available in a test group.

o Adds the test-id option for the run-suite command - Use this option to run individual test cases
in a test group.

Test suite versions

« FRQ_1.0.0

Earlier IDT versions for FreeRTOS

The following earlier versions of IDT for FreeRTOS are also supported.

IDT v1.7.0 for FreeRTOS 202002.00

« IDT for FreeRTOS: Linux
 IDT for FreeRTOS: macOS
« IDT for FreeRTOS: Windows

Release notes

o Supports FreeRTOS 202002.00. For more information about what's included in the FreeRTOS
202002.00 release, see the CHANGELOG.md file in GitHub.

« Supports the custom code signing method for over-the-air (OTA) end-to-end test cases so that you can
use your own code signing commands and scripts to sign OTA payloads.

« Adds a precheck for serial ports before the start of tests. Tests will fail quickly with improved error
messaging if the serial port is misconfigured in the device. json file.

o Added an AWS Managed Policy AWSIoTDeviceTesterForFreeRTOSFullAccess with permissions
required to run AWS loT Device Tester. If new releases require additional permissions, we add them to
this managed policy so that you don't have to manually update your IAM permissions.

o The file named AFQ_Report.xml in the results directory is now FRQ_Report.xml.

IDT v1.6.1 for FreeRTOS 201912.00

« IDT for FreeRTOS: Linux
« IDT for FreeRTOS: macOS
« IDT for FreeRTOS: Windows

Release notes

» Supports FreeRTOS 201912.00.

« Supports optional tests for OTA over HTTPS to qualify your FreeRTOS development boards.
« Supports AWS loT ATS endpoint in testing.

« Supports capability to inform users on latest IDT version before start of test suite.

IDT v1.5.2 for FreeRTOS 201910.00

 IDT for Amazon FreeRTOS: Linux
« IDT for Amazon FreeRTOS: macOS
« IDT for Amazon FreeRTOS: Windows

272

https://d232ctwt5kahio.cloudfront.net/freertos/devicetester_freertos_linux_1.7.0.zip
https://d232ctwt5kahio.cloudfront.net/freertos/devicetester_freertos_mac_1.7.0.zip
https://d232ctwt5kahio.cloudfront.net/freertos/devicetester_freertos_win_1.7.0.zip
https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_linux_1.6.1.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_mac_1.6.1.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_win_1.6.1.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_linux_1.5.2.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_mac_1.5.2.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_win_1.5.2.zip

FreeRTOS User Guide
Unsupported IDT versions

Release notes

« Supports qualification of FreeRTOS devices with secure element (onboard key).
« Supports configurable echo server ports for Secure Sockets and Wi-Fi test groups.

« Supports timeout multiplier flag to increase timeouts which comes in handy when you troubleshoot
for timeout related errors.

« Added bug fix for log parsing.
« Supports iot ats endpoint in testing.

IDT v1.4.1 for FreeRTOS 201908.00

« IDT for Amazon FreeRTOS: Linux
« IDT for Amazon FreeRTOS: macOS
« IDT for Amazon FreeRTOS: Windows

Release notes

« Added support for new PKCS11 library and test case updates.
« Introduced actionable error codes. For more information, see IDT error codes (p. 296)
« Updated IAM policy used to run IDT.

For more information, see Support policy for AWS IoT Device Tester for FreeRTOS (p. 301).

Unsupported IDT versions for FreeRTOS

This section lists unsupported versions of IDT for FreeRTOS. Unsupported versions do not receive
bug fixes or updates. For more information, see Support policy for AWS loT Device Tester for
FreeRTOS (p. 301).

The following versions of IDT-FreeRTOS are no longer supported.
IDT v1.3.2 for FreeRTOS 201906.00 Major

« IDT for FreeRTOS: Linux
 IDT for FreeRTOS: macOS
 IDT for FreeRTOS: Windows

Release notes

« Added support for testing Bluetooth Low Energy (BLE).
« Improved user experience for IDT command line interface (CLI) commands.
« Updated IAM policy used to run IDT.

o IDT-FreeRTOS v1.2
o FreeRTOS Versions:
e FreeRTOS v1.4.9
o FreeRTOS v1.4.8
« Release Notes:
« Added support for FreeRTOS v1.4.8 and v1.4.9.

273

https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_linux_1.4.1.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_mac_1.4.1.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_win_1.4.1.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_linux_1.3.2.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_mac_1.3.2.zip
https://d232ctwt5kahio.cloudfront.net/afr/devicetester_afreertos_win_1.3.2.zip

FreeRTOS User Guide
Prerequisites

« Added support for testing FreeRTOS devices with the CMAKE build system.
o IDT-FreeRTOS v1.1
« FreeRTOS Versions:
e FreeRTOS v1.4.7
o IDT-FreeRTOS v1.0
» FreeRTOS Versions:
o FreeRTOS v1.4.6
e FreeRTOS v1.4.5
o FreeRTOSv1.4.4
e FreeRTOS v1.4.3
e FreeRTOS v1.4.2

Prerequisites

This section describes the prerequisites for testing microcontrollers with AWS loT Device Tester.

Download FreeRTOS

You can download the version of FreeRTOS that you want to test from GitHub. Windows has a path
length limitation of 260 characters. The path structure of FreeRTOS is many levels deep, so if you are
using Windows, keep your file paths under the 260-character limit. For example, clone FreeRTOS to C:
\FreeRTOS rather than C:\Users\username\programs\projects\myproj\FreeRTOS\.

Download IDT for FreeRTOS

Every version of FreeRTOS has a corresponding version of IDT for FreeRTOS to perform qualification
tests. Download the appropriate version of IDT for FreeRTOS from Supported versions of AWS loT Device
Tester for FreeRTOS (p. 271).

Extract IDT for FreeRTOS to a location on the file system where you have read and write permissions.
Because Microsoft Windows has a character limit for the path length, extract IDT for FreeRTOS into a
root directory suchas C:\ orD:\.

Note

We don't recommend that multiple users run IDT from a shared location, such as an NFS
directory or a Windows network shared folder. This may result in crashes or data corruption. We
recommend that you extract the IDT package to a local drive.

Create and configure an AWS account

Follow these steps to create and configure an AWS account, an IAM user, and an IAM policy that grants
IDT for FreeRTOS permission to access resources on your behalf while running tests.

If you already have an AWS account, skip to the next step. Create an AWS account.

2. Create an IAM policy that grants IDT for FreeRTOS the IAM permissions to create service roles with
specific permissions.

Sign in to the IAM console.

In the navigation pane, choose Policies.

In the content pane, choose Create policy.

Choose the JSON tab and copy the following permissions in to the JSON text box.

o n T o

274

https://github.com/aws/amazon-freertos
http://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://console.aws.amazon.com/iam

FreeRTOS User Guide
Create and configure an AWS account

Important

The following policy template grants IDT permission to create roles, create policies, and
attach policies to roles. IDT for FreeRTOS uses these permissions for tests that create
roles. Although the policy template doesn't provide administrator privileges to the user,
the permissions could potentially be used to gain administrator access to your AWS
account.

Most Regions

"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"iam:CreatePolicy",
"iam:DetachRolePolicy",
"iam:DeleteRolePolicy",
"iam:DeletePolicy",
"iam:CreateRole",
"iam:DeleteRole",
"iam:AttachRolePolicy"

]l

"Resource": [
"arn:aws:iam::*:policy/idt*",
"arn:aws:iam::*:role/idt*"

Beijing and Ningxia Regions

The following policy template can be used in the Beijing and Ningxia Regions.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"iam:CreatePolicy",
"iam:DetachRolePolicy",
"iam:DeleteRolePolicy",
"iam:DeletePolicy",
"iam:CreateRole",
"iam:DeleteRole",
"iam:AttachRolePolicy"
]l
"Resource": [
"arn:aws-cn:iam::*:policy/idt*",
"arn:aws-cn:iam::*:role/idt*"

}

When you're finished, choose Review policy.

On the Review page, enter IDTFreeRTOSIAMPermissions for the policy name. Review the
policy Summary to verify the permissions granted by your policy.

Choose Create policy.

275

FreeRTOS User Guide
AWS |oT Device Tester managed policy

3. Create an IAM user with the necessary permissions to run AWS IoT Device Tester.

a. Follow steps 1 through 5 in Creating IAM Users (Console).
b. To attach the necessary permissions to your IAM user:

i. Onthe Set permissions page, choose Attach existing policies to user directly.

ii. Search for the IDTFreeRTOSIAMPermissions policy that you created in step 2. Select the
check box.

iii. Search for the AWSloTDeviceTesterForFreeRTOSFullAccess policy. Select the check box.
Choose Next: Tags.
Choose Next: Review to view a summary of your choices.

Choose Create user.

o a n

To view the users' access keys (access key IDs and secret access keys), choose Show next to each
password and access key and then choose Download.csv. Save the file to a safe location.

AWS |loT Device Tester managed policy

The AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy contains the following
permissions to enable device tester to execute and to collect metrics:

e iot-device-tester:SupportedVersion

Grants permission to get the list of FreeRTOS versions and test suite versions supported by IDT, so that
they are available from the AWS CLI.

e jot-device-tester:LatestIdt

Grants permission to get the latest AWS loT Device Tester version that is available for download.

e jot-device-tester:CheckVersion

Grants permission to check that a combination of product, test suite, and AWS IoT Device Tester
versions are compatible.

e jot-device-tester:DownloadTestSuite

Grants permission to AWS loT Device Tester to download test suites.

e jot-device-tester:SendMetrics

Grants permission to publish AWS IoT Device Tester usage metrics data.

(Optional) Install the AWS Command Line Interface

You might prefer to use the AWS CLI to perform some operations. If you don't have the AWS CLI
installed, follow the instructions in Install the AWS CLI.

Configure the CLI for the AWS Region you want to use by running aws configure from a command
line. For information about the AWS Regions that support IDT for FreeRTOS, see AWS Regions and
Endpoints.

276

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control

FreeRTOS User Guide
Preparing to test your microcontroller
board for the first time

Preparing to test your microcontroller board for
the first time

You can use IDT for FreeRTOS to test as you port the FreeRTOS interfaces. After you have ported
the FreeRTOS interfaces for your board's device drivers, you use AWS loT Device Tester to run the
qualification tests on your microcontroller board.

Add library porting layers

To port FreeRTOS for your device, follow the instructions in the FreeRTOS Porting Guide.

Configure your AWS credentials

You need to configure your AWS credentials for Device Tester to communicate with the AWS Cloud. For
more information, see Set up AWS Credentials and Region for Development. Valid AWS credentials must
be specified in the devicetester extract_location/devicetester_afreertos_[win|[mac|
linux]/configs/config. json configuration file.

Create a device pool in IDT for FreeRTOS

Devices to be tested are organized in device pools. Each device pool consists of one or more identical
devices. You can configure IDT for FreeRTOS to test a single device in a pool or multiple devices in a pool.
To accelerate the qualification process, IDT for FreeRTOS can test devices with the same specifications in
parallel. It uses a round-robin method to execute a different test group on each device in a device pool.

You can add one or more devices to a device pool by editing the devices section of the device. json
template in the configs folder.

Note
All devices in the same pool must be of same technical specification and SKU.

To enable parallel builds of the source code for different test groups, IDT for FreeRTOS copies the source
code to a results folder inside the IDT for FreeRTOS extracted folder. The source code path in your build
or flash command must be referenced using the testdata.sourcePath variable. IDT for FreeRTOS
replaces this variable with a temporary path of the copied source code. For more information see, IDT for
FreeRTOS variables (p. 285).

The following is an example device. json file used to create a device pool with multiple devices.

[{
"id": "pool-id",
"sku": "sku",
"features": [
{
"name": "WIFI",
"value": "Yes | No"
Iy
{
"name": "OTA",
"value": "Yes | No",
"configs": [
{
"name": "OTADataPlaneProtocol",
"value": "HTTP | MQTT | Both"
}
]
Iy

277

https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

FreeRTOS User Guide
Create a device pool in IDT for FreeRTOS

{
"name": "TCP/IP",
"value": "On-chip | Offloaded | No"
Iy
{
"name": "TLS",
"value": "Yes | No"
Iy
{
"name": "PKCS11",
"value": "RSA | ECC | Both | No"
Iy
{
"name": "KeyProvisioning",
"value": "Import | Onboard | No"
Iy
{
"name": "BLE",
"value": "Yes | No"
}
1,
"devices": [{
"id": "device-id1",
"connectivity": {
"protocol": "uart",
"serialPort": "computer_ serial_port_1"
Iy
"secureElementConfig": {
"publicKeyAsciiHexFilePath":"absolute-path-to-public-key",
"secureElementSerialNumber": "optional: serialnumber-of-secure-element"
Iy
"identifiers": [{
"name": "serialNo",
"value": "serialNo-value"
]
o
{
"id": "device-id2",
"connectivity": {
"protocol": "uart",
"serialPort": "computer_ serial_port_2"
Iy
"secureElementConfig": {
"publicKeyAsciiHexFilePath": "absolute-path-to-public-key",
"secureElementSerialNumber": "optional: serialnumber-of-secure-element"
Iy
"identifiers": [{
"name": "serialNo",
"value": "serialNo-value"
]
]
3]

The following attributes are used in the device. json file:
id

A user-defined alphanumeric ID that uniquely identifies a pool of devices. Devices that belong to
a pool must be of the same type. When a suite of tests is running, devices in the pool are used to
parallelize the workload.

sku

An alphanumeric value that uniquely identifies the board you are testing. The SKU is used to track
qualified boards.

278

FreeRTOS User Guide
Create a device pool in IDT for FreeRTOS

Note
If you want to list your board in AWS Partner Device Catalog, the SKU you specify here must
match the SKU that you use in the listing process.

features

An array that contains the device's supported features. The Device Tester uses this information to
select the qualification tests to run.

Supported values are:
TCP/IP

Indicates if your board supports a TCP/IP stack and whether it is supported on-chip (MCU) or
offloaded to another module. TCP/IP is required for qualification.

WIFI

TLS

Indicates if your board has Wi-Fi capabilities.

Indicates if your board supports TLS. TLS is required for qualification.

PKCS11

Indicates the public key cryptography algorithm that the board supports. PKCS11 is required for
qualification. Supported values are ECC, RSA, Both and No. Both indicates the board supports
both the Ecc and RsA algorithms. Currently, no board supports RSA only, so the choice RSA is
invalid.

KeyProvisioning

OTA

BLE

Indicates the method of writing a trusted X.509 client certificate onto your board. Valid values
are Import, Onboard and No. Key provisioning is required for qualification.

« Use Import if your board allows the import of private keys. IDT will create a private key and
build this to the FreeRTOS source code.

« Use Onboard if your board supports on-board private key generation (for example,
if your device has a secure element, or if you prefer to generate your own device
key pair and certificate). Make sure you add a secureElementConfig element in
each of the device sections and put the absolute path to the public key file in the
publicKeyAsciiHexFilePath field.

« Use No if your board does not support key provisioning.

Indicates if your board supports over-the-air (OTA) update functionality. The
OtaDataPlaneProtocol attribute indicates which OTA dataplane protocol the device
supports. The attribute is ignored if the OTA feature is not supported by the device. When
"Both" is selected, the OTA test execution time is prolonged due to running both MQTT, HTTP,
and mixed tests.

Indicates if your board supports Bluetooth Low Energy (BLE).

devices.id

A user-defined unique identifier for the device being tested.

devices.connectivity.protocol

The

communication protocol used to communicate with this device. Supported value: uart.

devices.connectivity.serialPort

The

serial port of the host computer used to connect to the devices being tested.

279

FreeRTOS User Guide
Configure build, flash, and test settings

devices.secureElementConfig.PublicKeyAsciiHexFilePath

The absolute path to the file that contains the hex bytes public key extracted from onboard private
key.

devices.secureElementConfig.SecureElementSerialNumber

(Optional) The serial number of the secure element. Provide this field when the serial number is
printed out along with the device public key when you run the FreeRTOS demo/test project.

identifiers

(Optional) An array of arbitrary name-value pairs. You can use these values in the build and flash
commands described in the next section.

Configure build, flash, and test settings

For IDT for FreeRTOS to build and flash tests on to your board automatically, you must configure IDT
to run the build and flash commands for your hardware. The build and flash command settings are
configured in the userdata. json template file located in the config folder.

Configure settings for testing devices

Build, flash, and test settings are made in the configs/userdata. json file. The following JSON
example shows how you can configure IDT for FreeRTOS for testing multiple devices:

{
"sourcePath": "/absolute-path-to/freertos",
"vendorPath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-name",
"buildTool": {
"name": "your-build-tool-name",
"version": "your-build-tool-version",

"command": [
"/absolute-path-to/build-parallel.sh {{testData.sourcePath}} {{enableTests}}"
]

Iy

"flashTool": {
"name": "your-flash-tool-name",
"version": "your-flash-tool-version",

"command": [
"/absolute-path-to/flash-parallel.sh {{testData.sourcePath}}
{{device.connectivity.serialPort}} {{buildImageName}}"

1,

"buildImageInfo" : {
"testsImageName": "tests-image-name",
"demosImageName": "demos-image-name"
}
Iy
"clientWifiConfig": {
"wifiSSID": "ssid",
"wifiPassword": "password",
"wifiSecurityType": "eWiFiSecurityOpen | eWiFiSecurityWEP | eWiFiSecurityWPA |
eWiFiSecurityWPA2"
Iy
"testWifiConfig": {
"wifiSSID": "ssid",
"wifiPassword": "password",
"wifiSecurityType": "eWiFiSecurityOpen | eWiFiSecurityWEP | eWiFiSecurityWPA |
eWiFiSecurityWPA2"
Iy

"echoServerConfiguration": {

280

FreeRTOS User Guide
Configure build, flash, and test settings

"securePortForSecureSocket": 33333, // Secure tcp port used by SecureSocket test.
Default value is 33333. Ensure that the port configured isn't blocked by the firewall or
your corporate network

"insecurePortForSecureSocket": 33334, // Insecure tcp port used by SecureSocket test.
Default value is 33334. Ensure that the port configured isn't blocked by the firewall or
your corporate network

"insecurePortForWiFi": 33335 // Insecure tcp port used by Wi-Fi test. Default value is
33335. Ensure that the port configured isn't blocked by the firewall or your corporate
network

Iy
"otaConfiguration": {
"otaFirmwareFilePath": "{{testData.sourcePath}}/relative-path-to/ota-image-generated-
in-build-process",
"deviceFirmwareFileName": "ota-image-name-on-device",
"otaDemoConfigFilePath": "{{testData.sourcePath}}/relative-path-to/ota-demo-config-

header-file",
"codeSigningConfiguration": {
"signingMethod": "AWS | Custom",
"signerHashingAlgorithm": "SHAl1 | SHA256",
"signerSigningAlgorithm": "RSA | ECDSA",
"signerCertificate": "arn:partition:service:region:account-id:resource:qualifier | /
absolute-path-to/signer-certificate-file",
"signerCertificateFileName": "signerCertificate-file-name",
"compileSignerCertificate": boolean,
[/ ***xkxkxkx*Use signerPlatform if you choose aws for signingMethod***xkxkxkkkkkkk
"signerPlatform": "AmazonFreeRTOS-Default | AmazonFreeRTOS-TI-CC3220SF",
"untrustedSignerCertificate": "arn:partition:service:region:account-
id:resourcetype:resource:qualifier",
[/ ***xkxkxkx*Use signCommand if you choose custom for signingMethod**kxkxkkkkkkkkk
"signCommand": [
"/absolute-path-to/sign.sh {{inputImageFilePath}} {{outputSignatureFilePath}}"
]
}
Iy
[/ ***xxxkxkx*Remove the section below if you're not configuring CMake***xkxkxkkkkkkk
"cmakeConfiguration": {
"boardName": "board-name",
"vendorName": "vendor-name",
"compilerName": "compiler-name",
"frToolchainPath": "/path/to/freertos/toolchain",
"cmakeToolchainPath": "/path/to/cmake/toolchain"

The following lists the attributes used in userdata. json:
sourcePath

The path to the root of the ported FreeRTOS source code.

vendorPath

The path to the vendor specific FreeRTOS code. For serial testing, the vendorPath can be set as an
absolute path. For example:

"vendorPath":"C:/path-to-freertos/vendors/espressif/boards/esp32"

For parallel testing, the vendorPath can be set using the {{testData.sourcePath}} place
holder. For example:

{

281

FreeRTOS User Guide
Configure build, flash, and test settings

"vendorPath":"{{testData.sourcePath}}/vendors/espressif/boards/esp32"

Note

When running tests in parallel, the { {testData.sourcePath}} placeholder must be used
in the vendorPath, buildTool, flashTool fields. When running test with a single device,
absolute paths must be used in the vendorPath, buildTool, flashTool fields.

buildTool

The full path to your build script (.bat or .sh) that contains the commands to build your source code.
All references to the source code path in the build command must be replaced by the AWS loT
Device Tester variable {{testdata.sourcePath}}.

e« buildImageInfo

« testsImageName: The name of the file produced by the build command when building tests
from the freertos-source/tests folder.

o demosImageName: The name of the file produced by the build command when building tests
from the freertos-source/demos folder.

buildTool.buildImageInfo.testsImageName

The name of the file output by the build command when building tests from the freertos-
source-code/tests folder.

buildTool.buildImageInfo.demosImageName

The name of the file output by the build command when building demos from the freertos-
source-code/demos folder.

flashTool

Full path to your flash script (.sh or .bat) that contains the flash commands for your device. All
references to the source code path in the flash command must be replaced by the IDT for FreeRTOS
variable {{testdata.sourcePath}}.

clientWifiConfig

The client Wi-Fi configuration. The Wi-Fi library tests require an MCU board to connect to two access
points. (The two access points can be the same.) This attribute configures the Wi-Fi settings for the
first access point. Some of the Wi-Fi test cases expect the access point to have some security and not
to be open.

e wifi_ ssid

The Wi-Fi SSID.

e wifi_ password

The Wi-Fi password.
» wifiSecurityType

The type of Wi-Fi security used. One of the values:
e eWiFiSecurityOpen
e eWiFiSecurityWEP
e eWiFiSecurityWPA
e eWiFiSecurityWPA2
Note

If your board does not support Wi-Fi, you must still include the clientwifiConfig
section in your device. json file, but you can omit values for these attributes.

282

FreeRTOS User Guide
Configure build, flash, and test settings

testWifiConfig

The test Wi-Fi configuration. The Wi-Fi library tests require an MCU board to connect to two access
points. (The two access points can be the same.) This attribute configures the Wi-Fi setting for the
second access point. Some of the Wi-Fi test cases expect the access point to have some security and
not to be open.

e wifiSSID

The Wi-Fi SSID.

e wifiPassword

The Wi-Fi password.
» wifiSecurityType

The type of Wi-Fi security used. One of the values:
e eWiFiSecurityOpen
e eWiFiSecurityWEP
e eWiFiSecurityWPA
e eWiFiSecurityWPA2
Note

If your board does not support Wi-Fi, you must still include the testwWwifiConfig section in
your device. json file, but you can omit values for these attributes.

echoServerConfiguration

The configurable echo server ports for WiFi and secure sockets tests. This field is optional

securePortForSecureSocket

The port which is used to setup an echo server with TLS for the secure sockets test. The default
value is 33333. Ensure the port configured is not blocked by a firewall or your corporate
network.

insecurePortForSecureSocket

The port which is used to setup echo server without TLS for the secure sockets test. The default
value used in the test is 33334. Ensure the port configured is not blocked by a firewall or your
corporate network.

insecurePortForWiFi

The port which is used to setup echo server without TLS for WiFi test. The default value used
in the test is 33335. Ensure the port configured is not blocked by a firewall or your corporate
network.

otaConfiguration

The OTA configuration. [Optional]

otaFirmwareFilePath

The full path to the OTA image created after the build. For example,
{{testData.sourcePath}}/relative-path/to/ota/image/from/source/root.

deviceFirmwareFileName

The full file path on the MCU device where the OTA firmware is located. Some devices do not
use this field, but you still must provide a value.

otaDemoConfigFilePath
The full path to aws_demo_config.h, found in afr-source/vendors/vendor/boards/

board/aws_demos/config files/. These files are included in the porting code template
that FreeRTOS provides.

283

FreeRTOS User Guide
Configure build, flash, and test settings

codeSigningConfiguration

The code signing configuration.
signingMethod

The code signing method. Possible values are AWS or Custom.

Note
For the Beijing and Ningxia Regions, use Custom. AWS code signing isn't supported in
these Regions.

signerHashingAlgorithm

The hashing algorithm supported on the device. Possible values are SHA1 or SHA256.
signerSigningAlgorithm

The signing algorithm supported on the device. Possible values are RSA or ECDSA.
signerCertificate

The trusted certificate used for OTA.

For AWS code signing method, use the Amazon Resource Name (ARN) for the trusted certificate
uploaded to the AWS Certificate Manager.

For Custom code signing method, use the absolute path to the signer certificate file.

For more information about creating a trusted certificate, see Create a code-signing
certificate (p. 13).

signerCertificateFileName

The location of the code signing certificate on the device.

compileSignerCertificate

Set to true if the code signer signature verification certificate isn't provisioned or flashed, so
it must be compiled into the project. AWS loT Device Tester fetches the trusted certificate and
compiles it into aws_codesigner_certifiate.h.

untrustedSignerCertificateArn

The ARN for the code-signing certificate uploaded to ACM.
signerPlatform

The signing and hashing algorithm that AWS Code Signer uses while creating the OTA update
job. Currently, the possible values for this field are AmazonFreeRTOS-TI-CC3220SF and
AmazonFreeRTOS-Default

e Choose AmazonFreeRTOS-TI-CC3220SF if SHA1 and RSA.
o Choose AmazonFreeRTOS-Default if SHA256 and ECDSA.

If you need sHA256 | RSA or SHA1 | ECDSA for your configuration, contact us for further
support.

Configure signCommand if you chose Custom for signingMethod.
signCommand

The command used to perform custom code signing. You can find the template in the /
configs/script_templates directory.

Two placeholders { {inputImageFilePath}} and {{outputSignatureFilePath}} are
required in the command. { {inputImageFilePath}} is the file path of the image built by IDT
to be signed. { {outputSignatureFilePath}} is the file path of the signature which will be
generated by the script.

284

FreeRTOS User Guide
Configure build, flash, and test settings

otaDemoConfigFilePath

The full path to aws_demo_config.h, found within afr-source/vendors/vendor/
boards/board/ aws_demos/config files/. These files are included in the porting code
template provided by FreeRTOS.

cmakeConfiguration

CMake configuration [Optional]

boardName

The name of the board under test. The board name should be the same as the folder name
under path/to/afr/source/code/vendors/vendor/boards/board

vendorName

The vendor name for the board under test. The vendor should be the same as the folder name
under path/to/afr/source/code/vendors/vendor

compilerName

The compiler name.
frToolchainPath

The fully-qualified path to the compiler toolchain

cmakeToolchainPath

The fully-qualified path to the CMake toolchain. This field is optional

Note

To execute CMake test cases, you must provide the board name, vendor name, and either the
afrToolchainPath or compilerName. You may also provide cmakeToolchainPath if you
have a custom path to the CMake toolchain.

IDT for FreeRTOS variables

The commands to build your code and flash the device might require connectivity or other information
about your devices to run successfully. AWS IoT Device Tester allows you to reference device information
in flash and build commands using JsonPath. By using simple JsonPath expressions, you can fetch the
required information specified in your device. json file.

Path variables

IDT for FreeRTOS defines the following path variables that can be used in command lines and
configuration files:

{{testData.sourcePath}}

Expands to the source code path. If you use this variable, it must be used in both the flash and build
commands.

{{device.connectivity.serialPort}}

Expands to the serial port.

{{device.identifiers[?(@.name == 'serialNo')].value}}

Expands to the serial number of your device.
{{enableTests}}

Integer value indicating whether the build is for tests (value 1) or demos (value 0).

285

http://goessner.net/articles/JsonPath/

FreeRTOS User Guide
Running Bluetooth Low Energy tests

{{buildImageName}}

The file name of the image built by the build command.

Running Bluetooth Low Energy tests

This section describes how to set up and run the Bluetooth tests using AWS loT Device Tester for
FreeRTOS. Bluetooth tests are not required for core qualification. If you do not want to test your device
with FreeRTOS Bluetooth support you may skip this setup, be sure to leave the BLE feature in device.json
set to No.

Prerequisites

« Follow the instructions in Preparing to test your microcontroller board for the first time (p. 277).
« A Raspberry Pi 3B+. (Required to run the Raspberry Pi BLE companion application)
« A micro SD card and SD card adapter for the Raspberry Pi software.

Raspberry Pi setup

To test the BLE capabilities of the device under test (DUT), you must have a Raspberry Pi Model 3B+.

To set up your Raspberry Pi to run BLE tests

1. Download the custom Yocto image that contains the software required to perform the tests.
2. Flash the yocto image onto the SD card for Raspberry Pi.

e Using an SD card-writing tool such as Etcher, flash the downloaded image-name.rpi-sdimg
file onto the SD card. Because the operating system image is large, this step might take some
time. Then eject your SD card from your computer and insert the microSD card into your
Raspberry Pi.

3. Configure your Raspberry Pi.

a. For the first boot, we recommend that you connect the Raspberry Pi to a monitor, keyboard, and
mouse.

b. Connect your Raspberry Pi to a micro USB power source.
¢. Sign in using the default credentials. For user ID, enter root. For password, enter idtafr.
Using an Ethernet or Wi-Fi connection, connect the Raspberry Pi to your network.

i. To connect your Raspberry Pi over Wi-Fi, open /etc/wpa_supplicant.conf on the
Raspberry Pi and add your Wi-Fi credentials to the Network configuration.

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1

network={
scan_ssid=1
ssid="your-wifi-ssid"
psk="your-wifi-password"

}

286

https://d232ctwt5kahio.cloudfront.net/afr/IDT_AFR_BLE_RaspberryPi_1.0.0.rpi-sdimg
https://www.balena.io/etcher

FreeRTOS User Guide
Raspberry Pi setup

Run ifup wlanO to start the Wi-Fi connection. It might take a minute to connect to your
Wi-Fi network.

For an Ethernet connection, run ifconfig etho. For a Wi-Fi connection, run ifconfig
wlan0. Make a note of the IP address, which appears as inet addr in the command output.
You need the IP address later in this procedure.

(Optional) The tests execute commands on the Raspberry Pi over SSH using the default
credentials for the yocto image. For additional security, we recommend that you set up public
key authentication for SSH and disable password-based SSH.

Vi.

Vii.

Create an SSH key using the OpenSSL ssh-keygen command. If you already have an SSK
key pair on your host computer, it is a best practice to create a new one to allow AWS IoT
Device Tester for FreeRTOS to sign in to your Raspberry Pi.

Note
Windows does not come with an installed SSH client. For information about how to
install an SSH client on Windows, see Download SSH Software.

The ssh-keygen command prompts you for a name and path to store the key pair. By
default, the key pair files are named id_rsa (private key) and id_rsa.pub (public key). On
macOS and Linux, the default location of these files is ~/.ssh/. On Windows, the default
location is C: \Users\user-name.

When you are prompted for a key phrase, just press ENTER to continue.

To add your SSH key onto your Raspberry Pi so AWS loT Device Tester for FreeRTOS can
sign into the device, use the ssh-copy-id command from your host computer. This
command adds your public key into the ~/.ssh/authorized_keys file on your Raspberry
Pi.

ssh-copy-id roote@raspberry-pi-ip-address

When prompted for a password, enter idtafr. This is the default password for the yocto
image.

Note

The ssh-copy-id command assumes the public key is named id_rsa.pub. On
macOS and Linux, the default location is ~/.ssh/. On Windows, the default
location is C: \Users\user-name\ .ssh. If you gave the public key a different
name or stored it in a different location, you must specify the fully qualified path
to your SSH public key using the -i option to ssh-copy-id (for example, ssh-
copy-id -i ~/my/path/myKey.pub). For more information about creating SSH
keys and copying public keys, see SSH-COPY-ID.

To test that the public key authentication is working, run ssh -i /my/path/myKey
root@raspberry-pi-device-ip.

If you are not prompted for a password, your public key authentication is working.
Verify that you can sign in to your Raspberry Pi using a public key, and then disable
password-based SSH.

A. On the Raspberry Pi, edit the /etc/ssh/sshd_config file.

B. Setthe PasswordAuthentication attribute to no.

C. Save and close the sshd_config file.

D. Reload the SSH server by running /etc/init.d/sshd reload.

Create a resource. json file.

In the directory in which you extracted AWS loT Device Tester, create a file named
resource. json.

Add the following information about your Raspberry Pi to the file, replacing rasp-pi-ip-
address with the IP address of your Raspberry Pi.

287

hhttps://www.ssh.com/ssh/#sec-Download-client-software
https://www.ssh.com/ssh/copy-id

FreeRTOS User Guide
FreeRTOS device setup

{
"id": "ble-test-raspberry-pi",
"features": [
{"name":"ble", "version":"4.2"}
1,
"devices": [
{
"id": "ble-test-raspberry-pi-1",
"connectivity": {
"protocol": "ssh",
"ip": "rasp-pi-id-address"
}
}
]
}

]

iii. (Optional) If you chose to use public key authentication for SSH, add the following to the
connectivity section of the resource. json file.

"connectivity": {

"protocol": "ssh",
"ip": urasp—pi_—id—address",
"auth": {

"method": "pki",
"credentials": {
"user": "root",
"privKeyPath": "location-of-private-key"

FreeRTOS device setup

In your device. json file, set the BLE feature to Yes. If you are starting with a device. json file from
before Bluetooth tests were available, you need to add the feature for BLE to the features array:

{
"features": [
{
"name": "BLE",
"value": "Yes"
Iy
}

Running the BLE tests

After you have enabled the BLE feature in device. json, the BLE tests run when you run
devicetester [linux | mac | win_x86-64] run-suite without specifying a group-id

If you want to run the BLE tests separately, you can specify the group ID for BLE:
devicetester_[linux | mac | win_x86-64] run-suite --userdata path-to-userdata/
userdata.json --group-id FullBLE.

For the most reliable performance, place your Raspberry Pi close to the device under test (DUT).

288

FreeRTOS User Guide
Troubleshooting BLE tests

Troubleshooting BLE tests

Make sure you have followed the steps in Preparing to test your microcontroller board for the first
time (p. 277). If tests other than BLE are failing, then the problem is most likely not due to the
Bluetooth configuration.

Running the FreeRTOS qualification suite

You use the AWS loT Device Tester for FreeRTOS executable to interact with IDT for FreeRTOS. The
following command line examples show you how to run the qualification tests for a device pool (a set of
identical devices).

IDT v3.0.0 and later

devicetester_[linux | mac | win] run-suite \
--suite-id suite-id \
--group-id group-id \
--pool-id your-device-pool \
--test-id test-id \
--upgrade-test-suite y[n \
--userdata userdata.json

Runs a suite of tests on a pool of devices. The userdata. json file must be located in the
devicetester extract_location/devicetester_afreertos_[win[mac|linux]/
configs/ directory.

Note
If you're running IDT for FreeRTOS on Windows, use forward slashes (/) to specify the path
to the userdata. json file.

Use the following command to run a specific test group:

devicetester_[linux | mac | win] run-suite \
--suite-id FRQ 1.0.0 \
-—-group-id group-id \
--pool-id pool-id \
--userdata userdata. json

The suite-id and pool-id parameters are optional if you're running a single test suite on a single
device pool (that is, you have only one device pool defined in your device. json file).

Use the following command to run a specific test case in a test group:

devicetester_[linux | mac | win_x86-64] run-suite \
--group-id group-id \
--test-id test-1id

You can use the 1list-test-cases command to list the test cases in a test group.
IDT for FreeRTOS command line options
group-id

(Optional) The test groups to run, as a comma-separated list. If not specified, IDT runs all test
groups in the test suite.

289

FreeRTOS User Guide
Running the FreeRTOS qualification suite

pool-id
(Optional) The device pool to test. This is required if you define multiple device pools in
device. json. If you only have one device pool, you can omit this option.

suite-id
(Optional) The test suite version to run. If not specified, IDT uses the latest version in the tests
directory on your system.

Note
Starting in IDT v3.0.0, IDT checks online for newer test suites. For more information, see
Test suite versions (p. 292).

test-id

(Optional) The tests to run, as a comma-separated list. If specified, group-id must specify a
single group.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id mgtt --test-id
mgtt_test

upgrade-test-suite

(Optional) If not used, and a newer test suite version is available, you're prompted to download
it. To hide the prompt, specify y to always download the latest test suite, or n to use the test
suite specified or the latest version on your system.

Example

To always download and use the latest test suite, use the following command.

devicetester_[linux | mac | win_x86-64] run-suite --userdata userdata file --group-
id group ID --upgrade-test-suite y

To use the latest test suite on your system, use the following command.

devicetester_[linux | mac | win_x86-64] run-suite --userdata userdata file --group-
id group ID --upgrade-test-suite n

Use the help option to learn more about run-suite options.

Example

devicetester_[linux | mac | win_x86-64] run-suite -h

IDT v1.7.0 and earlier

devicetester_[linux | mac | win] run-suite \
--suite-id suite-id \
--pool-id your-device-pool \
--userdata userdata. json

The userdata. json file should be located in the devicetester extract_location/
devicetester_afreertos_[win[mac|linux]/configs/ directory.

290

FreeRTOS User Guide
IDT for FreeRTOS commands

Note
If you are running IDT for FreeRTOS on Windows, use forward slashes (/) to specify the path
to the userdata. json file.

Use the following command to run a specific test group.

devicetester [linux | mac | win] run-suite \
--suite-id FRQ_1 --group-id group-id \
--pool-id pool-id \
--userdata userdata. json

suite-id and pool-id are optional if you are running a single test suite on a single device pool
(that is, you have only one device pool defined in your device. json file).

IDT for FreeRTOS command line options
group-id

(Optional) Specifies the test group.
pool-id

Specifies the device pool to test. If you only have one device pool, you can omit this option.
suite-id

(Optional) Specifies the test suite to run.

IDT for FreeRTOS commands

The IDT for FreeRTOS command supports the following operations:
IDT v3.0.0 and later
help

Lists information about the specified command.

list-groups

Lists the groups in a given suite.
list-suites

Lists the available suites.
list-supported-products

Lists the supported products and test suite versions.

list-supported-versions

Lists the FreeRTOS and test suite versions supported by the current IDT version.
list-test-cases

Lists the test cases in a specified group.

run-suite
Runs a suite of tests on a pool of devices.

Use the --suite-id option to specify a test suite version, or omit it to use the latest version on
your system.

291

FreeRTOS User Guide
Test for re-qualification

Use the —--test-id to run an individual test case.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id mgtt --test-id
mgtt_test

For a complete list of options see Running the FreeRTOS qualification suite (p. 289).
Note

Starting in IDT v3.0.0, IDT checks online for newer test suites. For more information, see
Test suite versions (p. 292).
IDT v1.7.0 and earlier

help

Lists information about the specified command.
list-groups
Lists the groups in a given suite.

list-suites

Lists the available suites.

run-suite

Runs a suite of tests on a pool of devices.

Test for re-qualification

As new versions of IDT for FreeRTOS qualification tests are released, or as you update your board-
specific packages or device drivers, you can use IDT for FreeRTOS to test your microcontroller boards. For
subsequent qualifications, make sure that you have the latest versions of FreeRTOS and IDT for FreeRTOS
and run the qualification tests again.

AWS loT Device Tester for FreeRTOS test suite
versions

IDT for FreeRTOS organizes tests into test suites and test groups.

« Atest suite is the set of test groups used to verify that a device works with particular versions of
FreeRTOS.

«+ A test group is the set of individual tests related to a particular feature, such as TBD and MQTT
messaging.

Starting in IDT v3.0.0, test suites are versioned using a major.minor.patch format starting from 1.0.0.
When you download IDT, the package includes the latest test suite version.

When you start IDT in the command line interface, IDT checks whether a newer test suite version is
available. If so, it prompts you to update to the new version. You can choose to update or continue with
your current tests.

292

FreeRTOS User Guide
Understanding results and logs

Note
IDT supports the three latest test suite versions for qualification. For more information, see
Support policy for AWS loT Device Tester for FreeRTOS (p. 301).

You can download test suites by using the upgrade-test-suite command. Or, you can use the
optional parameter ~upgrade-test-suite flag when you start IDT where flag can be'y' to always
download the latest version, or 'n' to use the existing version.

You can also run the 1ist-supported-versions command to list the FreeRTOS and test suite
versions that are supported by the current version of IDT.

New tests might introduce new IDT configuration settings. If the settings are optional, IDT notifies you
and continues running the tests. If the settings are required, IDT notifies you and stops running. After
you configure the settings, you can continue to run the tests.

Understanding results and logs

This section describes how to view and interpret IDT result reports and logs.

Viewing results

While running, IDT writes errors to the console, log files, and test reports. After IDT completes the
qualification test suite, it writes a test run summary to the console and generates two test reports. These
reports can be found in devicetester-extract-location/results/execution-id/. Both reports
capture the results from the qualification test suite execution.

The awsiotdevicetester_report.xml is the qualification test report that you submit to AWS to list
your device in the AWS Partner Device Catalog. The report contains the following elements:

o The IDT for FreeRTOS version.

« The FreeRTOS version that was tested.

« The features of FreeRTOS that are supported by the device based on the tests passed.
« The SKU and the device name specified in the device. json file.

« The features of the device specified in the device. json file.

« The aggregate summary of test case results.

« A breakdown of test case results by libraries that were tested based on the device features (for
example, FullWiFi, FullMQTT, and so on).

The FRQ_Report.xml is a report in standard JUnit XML format. You can integrate it into CI/CD
platforms like Jenkins, Bamboo, and so on. The report contains the following elements:

« An aggregate summary of test case results.
« A breakdown of test case results by libraries that were tested based on the device features.

Interpreting IDT for FreeRTOS results

The report section in awsiotdevicetester_report.xml or FRQ_Report.xml lists the results of the
tests that are executed.

The first XML tag <testsuites> contains the overall summary of the test execution. For example:

<testsuites name="FRQ results" time="5633" tests="184" failures="0" errors="0"
disabled="0">

293

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo

FreeRTOS User Guide
Viewing results

Attributes used in the <testsuites> tag
name

The name of the test suite.

time

The time, in seconds, it took to run the qualification suite.

tests

The number of test cases executed.

failures

The number of test cases that were run, but did not pass.

errors

The number of test cases that IDT for FreeRTOS couldn't execute.
disabled

This attribute is not used and can be ignored.
If there are no test case failures or errors, your device meets the technical requirements to run FreeRTOS

and can interoperate with AWS loT services. If you choose to list your device in the AWS Partner Device
Catalog, you can use this report as qualification evidence.

In the event of test case failures or errors, you can identify the test case that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag shows the test
case result summary for a test group.

<testsuite name="FullMQTT" package="" tests="16" failures="0" time="76"
disabled="0" errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with an attribute called skipped that is not used
and can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each of the test
cases that were executed for a test group. For example:

<testcase classname="mcu.Full MQTT" name="AFQP MQTT Connect_HappyCase"
attempts="1"></testcase>

Attributes used in the <testcase> tag
name

The name of the test case.
attempts

The number of times IDT for FreeRTOS executed the test case.
When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase> tag with
information for troubleshooting. For example:
<testcase classname="mcu.Full MQTT" name="AFQP_ MQTT Connect_HappyCase">
<failure type="Failure">Reason for the test case failure</failure>

<error>Reason for the test case execution error</error> </testcase>

For more information, see Troubleshooting (p. 295).

294

FreeRTOS User Guide
Troubleshooting

Viewing logs

You can find logs that IDT for FreeRTOS generates from test execution in devicetester-extract-
location/results/execution-id/logs. Two sets of logs are generated:

test_manager.log

Contains logs generated from IDT for FreeRTOS (for example, logs related configuration and report
generation).

test_group_1id__test_case_id.log (for example, FullMQTT Full MQTT.log)

The log file for a test case, including output from the device under test. The log file is named
according to the test group and test case that was run.

Troubleshooting

Each test suite execution has a unique execution ID that is used to create a folder named
results/execution-idin the results directory. Individual test group logs are under the
results/execution-id/logs directory. Use the IDT for FreeRTOS console output to find the
execution id, test case id, and test group id of the test case that failed and then open the log file for
that test case named results/execution-id/logs/test_group_id__test case_id.log. The
information in this file includes:

« Full build and flash command output.
« Test execution output.
« More verbose IDT for FreeRTOS console output.

We recommend the following workflow for troubleshooting:

1. If you see the error "user/role is not authorized to access this resource", make sure that you
configure permissions as specified in Create and configure an AWS account (p. 274).

2. Read the console output to find information, such as execution UUID and currently executing tasks.

Look in the FRQ_Report.xml file for error statements from each test. This directory contains
execution logs of each test group.

4. Lookin the logs files under /results/execution-id/logs.
5. Investigate one of the following problem areas:

« Device configuration, such as JSON configuration files in the /configs/ folder.

« Device interface. Check the logs to determine which interface is failing.

« Device tooling. Make sure that the toolchains for building and flashing the device are installed and
configured correctly.

« Make sure that you have a clean, cloned version of the FreeRTOS source code. FreeRTOS releases
are tagged according to FreeRTOS version. To clone a specific version of the code, use git clone
--branch version-number https://github.com/aws/amazon-freertos.git.

Troubleshooting device configuration

When you use IDT for FreeRTOS, you must get the correct configuration files in place before you execute
the binary. If you're getting parsing and configuration errors, your first step should be to locate and

use a configuration template appropriate for your environment. These templates are located in the

IDT ROOT/configs directory.

295

FreeRTOS User Guide
Troubleshooting device configuration

If you are still having issues, see the following debugging process.

Where do | look?

Start by reading the console output to find information, such as the execution UUID, which is referenced
as execution-id in this documentation.

Next, look in the FRQ_Report.xml file in the /results/execution-1id directory. This file contains all
of the test cases that were run and error snippets for each failure. To get all of the execution logs, look
for the file /results/execution-id/logs/test_group id__test_case_id.log for each test

case.

IDT error codes

The following table explains the error codes generated by IDT for FreeRTOS:

Error Code

201

202

Error Code Name

InvalidinputError

ValidationError

Possible Root Cause

Fields in device. json,
config. json, or
userdata. json are
either missing or in an
incorrect format.

Fields in device. json,
config. json, or
userdata. json
contain invalid values.

Troubleshooting

Make sure required
fields are not missing
and are in required
format in listed files.
For more information,
see Preparing to test
your microcontroller
board for the first
time (p. 277).

Check the error
message on the right
hand side of the error
code in the report:

« Invalid AWS Region
- Specify a valid
AWS region in your
config. json file.
For more information
about AWS regions,
see Regions and
Endpoints.

« Invalid AWS
credentials - Set
valid AWS credentials
on your test
machine (through
environment
variables or the
credentials file).
Verify that the
authentication
field is configured
correctly. For
more information,
see Create and
configure an AWS
account (p. 274).

296

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

FreeRTOS User Guide
Troubleshooting device configuration

Error Code

203

204

205

206

Error Code Name

CopySourceCodeError

BuildSourceError

FlashOrRunTestError

StartEchoServerError

Possible Root Cause

Unable to copy
FreeRTOS source code
to specified directory.

Unable to compile the
FreeRTOS source code.

IDT FreeRTOS is
unable to flash or run
FreeRTOS on your DUT.

IDT FreeRTOS is unable
to start echo server
for the WiFi or secure
sockets tests.

Troubleshooting

Verify the following
items:

e Check a valid
sourcePath is
specified in your
userdata. json file.

o Delete the build
folder under
FreeRTOS source
code directory, if
it exists. For more
information, see
Configure build,
flash, and test
settings (p. 280).

Verify the following
items:

¢ Check that the
information under
buildTool in your
userdata. json file
is correct.

« If you are using
cmake as a build
tool, make sure the
{{enableTests}}
is specified in
the buildTool
command. For more
information, see
Configure build,
flash, and test
settings (p. 280).

Verify the information
under flashTool in
your userdata. json
file is correct. For
more information,

see Configure build,
flash, and test
settings (p. 280).

Verify the ports

configured under
echoServerConfiguration
in your

userdata. json

file are not in use or

blocked by firewall or
network settings.

297

FreeRTOS User Guide
Troubleshooting device configuration

Debugging parsing errors

Occasionally, a typo in a JSON configuration can lead to parsing errors. Most of the time, the issue is a
result of omitting a bracket, comma, or quote from your JSON file. IDT for FreeRTOS performs JSON
validation and prints debugging information. It prints the line where the error occurred, the line number,
and the column number of the syntax error. This information should be enough to help you fix the error,
but if you are still having issues locating the error, you can perform validation manually in your IDE, a
text editor such as Atom or Sublime, or through an online tool like JSONLint.

Debugging a "required parameter missing" error

Because new features are being added to IDT for FreeRTOS, changes to the configuration files might

be introduced. Using an old configuration file might break your configuration. If this happens, the
test_group_1id__test_case_id.log file under the results/execution-id/logs directory
explicitly lists all missing parameters. IDT for FreeRTOS validates your JSON configuration file schemas to
ensure that the latest supported version has been used.

Debugging a "could not start test" error

You might see errors that point to failures during test start. Because there are several possible causes,
check the following areas for correctness:

« Make sure that the pool name you've included in your execution command actually exists. This is
referenced directly from your device. json file.

« Make sure that the device or devices in your pool have correct configuration parameters.

Debugging a "not authorized to access resource" error

You might see the error "user/role is not authorized to access this resource" in the terminal output or
in the test_manager. log file under /results/execution-1id/logs. To resolve this issue, attach
the AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy to your test user. For more
information, see Create and configure an AWS account (p. 274).

Debugging network test errors

For network-based tests, IDT starts an echo server that binds to a non-reserved port on the host
machine. If you are running into errors due to timeouts or unavailable connections in the WiFi or secure
sockets tests, make sure that your network is configured to allow traffic to configured ports in the 1024 -
49151 range.

The secure sockets test uses ports 33333 and 33334 by default. The WiFi tests uses port 33335

by default. If these three ports are in use or blocked by firewall or network, you can choose to use
different ports in userdata.json for testing. For more information, see Configure build, flash, and test
settings (p. 280). You can use the following commands to check whether a specific port is in use:

o Windows: netsh advfirewall firewall show rule name=all | grep port
e Linux: sudo netstat -pan | grep port
« macOS: netstat -nat | grep port

OTA Update failures due to same version payload

If OTA test cases are failing due to the same version being on the device after an OTA was performed,
it may be due to your build system (e.g. cmake) not noticing IDT's changes to the FreeRTOS source code

298

FreeRTOS User Guide
Troubleshooting device configuration

and not building an updated binary. This causes OTA to be performed with the same binary that is
currently on the device, and the test to fail. To troubleshoot OTA update failures, start by making sure
that you are using the latest supported version of your build system.

OTA test failure on PresignedUrlExpired test case

One prerequisite of this test is that the OTA update time should be more than 60 seconds, otherwise the
test would fail. If this occurs, the following error message is found in the log: "Test takes less than 60
seconds (url expired time) to finish. Please reach out to us."

Debugging device interface and port errors

This section contains information about the device interfaces IDT uses to connect to your devices.

Supported platforms

IDT supports Linux, macOS, and Windows. All three platforms have different naming schemes for serial
devices that are attached to them:

e Linux: /dev/tty*

e macOS: /dev/tty.* or /dev/cu.*

« Windows: COM*

To check your device port:

o For Linux/macQS, open a terminal and run 1s /dev/tty*.
o For macOS, open a terminal and run 1s /dev/tty.* or 1ls /dev/cu.*.

« For Windows, open Device Manager and expand the serial devices group.

To verify which device is connected to a port:

« For Linux, make sure that the udev package is installed, and then run udevadm info -name=PORT.
This utility prints the device driver information that helps you verify you are using the correct port.
« For macOS, open Launchpad and search for System Information.

« For Windows, open Device Manager and expand the serial devices group.

Device interfaces

Each embedded device is different, which means that they can have one or more serial ports. It is
common for devices to have two ports when connected to a machine:

« A data port for flashing the device.
« Aread port to read output.

You must set the correct read port in your device. json file. Otherwise, reading output from the
device might fail.

In the case of multiple ports, make sure to use the read port of the device in your device. json file.
For example, if you plug in an Espressif WRover device and the two ports assigned to it are /dev/
ttyUSBO and /dev/ttyUSB1, use /dev/ttyUSB1 in your device. json file.

For Windows, follow the same logic.

299

FreeRTOS User Guide
Troubleshooting device configuration

Reading device data

IDT for FreeRTOS uses individual device build and flash tooling to specify port configuration. If you are
testing your device and don't get output, try the following default settings:

« Baud rate: 115200

« Data bits: 8

« Parity: None

« Stop bits: 1

» Flow control: None

These settings are handled by IDT for FreeRTOS. You do not have to set them. However, you can use
the same method to manually read device output. On Linux or macOS, you can do this with the screen
command. On Windows, you can use a program such as TeraTerm.

Screen: screen /dev/cu.usbserial 115200

TeraTerm: Use the above-provided settings to set the fields explicitly in the
GUI.

Development toolchain problems

This section discusses problems that can occur with your toolchain.

Code Composer Studio on Ubuntu

Newer versions of Ubuntu (17.10 and 18.04) have a version of the glibc package that is not compatible
with Code Composer Studio 7.x versions. We recommended that you install Code Composer Studio
version 8.2 or later.

Symptoms of incompatibility might include:

« FreeRTOS failing to build or flash to your device.

« The Code Composer Studio installer might freeze.

« No log output is displayed in the console during the build or flash process.
 Build command attempts to launch in GUI mode even when invoked as headless.

Logging

IDT for FreeRTOS logs are placed in a single location. From the root IDT directory, these files are available
under results/execution-id/:

e FRQ_Report.xml

*» awsiotdevicetester_report.xml

e logs/test_group_1id__test_case_1id.log

FRQ_Report.xml and logs/test_group_id__test_case_tid.log are the most important logs
to examine. FRQ_Report.xml contains information about which test cases failed with a specific error
message. You can then use logs/test_group_id__test_case_id.log to dig further into the
problem to get better context.

300

FreeRTOS User Guide
Troubleshooting timeout errors

Console errors

When AWS loT Device Tester is run, failures are reported to the console with brief messages. Look in
results/execution-id/logs/test_group_1id__test_case_id.log to learn more about the
error.

Log errors

Each test suite execution has a unique execution ID that is used to create a folder named
results/execution-1id. Individual test case logs are under the results/execution-id/logs
directory. Use the output of the IDT for FreeRTOS console to find the execution id, test case id, and test
group id of the test case that failed. Then use this information to find and open the log file for that test
case named results/execution-id/logs/test_group_id__test_case_id.log The information
in this file includes the full build and flash command output, test execution output, and more verbose
AWS loT Device Tester console output.

Troubleshooting timeout errors

If you see timeout errors while running a test suite, increase the timeout by specifying a timeout
multiplier factor. This factor is applied to the default timeout value. Any value configured for this
flag must be greater than or equal to 1.0. To use the timeout multiplier, use the flag --timeout-
multiplier when running the test suite.

Example

IDT v3.0.0 and later

./devicetester_ linux run-suite --suite-id FRQ 1.0.0 --pool-id DevicePooll --timeout-
multiplier 2.5

IDT v1.7.0 and earlier

./devicetester_linux run-suite --suite-id FRQ 1 --pool-id DevicePooll --timeout-
multiplier 2.5

Support policy for AWS loT Device Tester for
FreeRTOS

AWS loT Device Tester for FreeRTOS is a test automation tool to validate and qualify your FreeRTOS
devices for inclusion in the AWS Partner Device Catalog. We recommend that you use the most recent
version of FreeRTOS and AWS loT Device Tester to test or qualify your devices. We support AWS loT
Device Tester for the most recent version of FreeRTOS and for FreeRTOS versions released within the
previous six months. The latest version of FreeRTOS is available on GitHub. For supported versions of
AWS loT Device Tester, see Supported versions of AWS loT Device Tester for FreeRTOS (p. 271).

For each version of the IDT framework, three versions of the test suite will be supported for qualification
of devices.

You can also use any of the supported versions of AWS loT Device Tester with the corresponding version
of FreeRTOS to test or qualify your devices. Although you can continue to use Unsupported IDT versions
for FreeRTOS (p. 273), these will not receive bug fixes or updates.

If you have questions about the support policy, contact AWS Customer Support.

301

https://aws.amazon.com/partners/dqp/
https://devices.amazonaws.com
https://github.com/aws/amazon-freertos
https://aws.amazon.com/contact-us/

FreeRTOS User Guide
Identity and Access Management

Security in AWS

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and
network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

« Security of the cloud — AWS is responsible for protecting the infrastructure that runs AWS services
in the AWS Cloud. AWS also provides you with services that you can use securely. The effectiveness
of our security is regularly tested and verified by third-party auditors as part of the AWS compliance
programs. To learn about the compliance programs that apply to an AWS service, see AWS Services in
Scope by Compliance Program.

« Security in the cloud - Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your organization's requirements,
and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when

using AWS. The following topics show you how to configure AWS to meet your security and compliance
objectives. You'll also learn how to use AWS services that can help you to monitor and secure your AWS
resources.

For more in-depth information about AWS loT security see Security and Identity for AWS loT.

Topics
« ldentity and Access Management for AWS resources (p. 302)
« Compliance validation (p. 313)
« Resilience in AWS (p. 313)
o Infrastructure security in FreeRTOS (p. 313)

|dentity and Access Management for AWS
resources

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in) and
authorized (have permissions) to use AWS resources. IAM is an AWS service that you can use with no
additional charge.
Topics

 Audience (p. 303)

o Authenticating with identities (p. 303)

« Managing access using policies (p. 305)

o Learn more (p. 306)

« How AWS services work with IAM (p. 306)

« ldentity-based policy examples (p. 309)

« Troubleshooting identity and access (p. 311)

302

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html

FreeRTOS User Guide
Audience

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work you do in AWS.

Service user — If you use AWS services to do your job, then your administrator provides you with
the credentials and permissions that you need. As you use more features to do your work, you
might need additional permissions. Understanding how access is managed can help you request
the right permissions from your administrator. If you cannot access a feature in an AWS service, see
Troubleshooting identity and access (p. 311).

Service administrator - If you're in charge of AWS resources at your company, you probably have full
access to the services you use. It's your job to determine which features and resources your employees
should access. You must then submit requests to your IAM administrator to change the permissions of
your service users. Review the information on this page to understand the basic concepts of IAM. To learn
more about how your company can use IAM with AWS, see How AWS services work with IAM (p. 306).

IAM administrator - If you're an IAM administrator, you might want to learn details about how you can
write policies to manage access to AWS. For more information about AWS identity-based policies that
you can use in IAM, see Policies and Permissions in the AWS Identity and Access Management User Guide.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. For more information about
signing in using the AWS Management Console, see The IAM Console and Sign-in Page in the IAM User
Guide.

You must be authenticated (signed in to AWS) as the AWS account root user, an IAM user, or by assuming
an IAM role. You can also use your company's single sign-on authentication, or even sign in using Google
or Facebook. In these cases, your administrator previously set up identity federation using IAM roles.
When you access AWS using credentials from another company, you are assuming a role indirectly.

To sign in directly to the AWS Management Console, use your password with your root user email or your
IAM user name. You can access AWS programmatically using your root user or IAM user access keys. AWS
provides SDK and command line tools to cryptographically sign your request using your credentials. If
you don't use AWS tools, you must sign the request yourself. Do this using Signature Version 4, a protocol
for authenticating inbound API requests. For more information about authenticating requests, see
Signature Version 4 Signing Process in the AWS General Reference.

Regardless of the authentication method that you use, you might also be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication (MFA) to
increase the security of your account. To learn more, see Using Multi-Factor Authentication (MFA) in AWS
in the IAM User Guide.

AWS Account Root User

When you first create an AWS account, you begin with a single sign-in identity that has complete access
to all AWS services and resources in the account. This identity is called the AWS account root user and

is accessed by signing in with the email address and password that you used to create the account. We
strongly recommend that you do not use the root user for your everyday tasks, even the administrative
ones. Instead, adhere to the best practice of using the root user only to create your first IAM user. Then
securely lock away the root user credentials and use them to perform only a few account and service
management tasks.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person or
application. An 1AM user can have long-term credentials such as a user name and password or a set of
access keys. To learn how to generate access keys, see Managing Access Keys for IAM Users in the IAM

303

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://console.aws.amazon.com/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

FreeRTOS User Guide
Authenticating with identities

User Guide. When you generate access keys for an IAM user, make sure you view and securely save the key
pair. You cannot recover the secret access key in the future. Instead, you must generate a new access key
pair.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier to
manage for large sets of users. For example, you could have a group named IAMAdmins and give that
group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role

is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but
roles provide temporary credentials. To learn more, see When to Create an IAM User (Instead of a Role) in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an

IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in the
AWS Management Console by switching roles. You can assume a role by calling a AWS CLI or AWS API
operation or by using a custom URL. For more information about methods for using roles, see Using IAM
Roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

« Temporary IAM user permissions — An |IAM user can assume an |AM role to temporarily take on
different permissions for a specific task.

« Federated user access — Instead of creating an IAM user, you can use existing identities from AWS
Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated Users and Roles in the IAM User
Guide.

« Cross-account access — You can use an IAM role to allow someone (a trusted principal) in a different
account to access resources in your account. Roles are the primary way to grant cross-account access.
However, with some AWS services, you can attach a policy directly to a resource (instead of using a role
as a proxy). To learn the difference between roles and resource-based policies for cross-account access,
see How IAM Roles Differ from Resource-based Policies in the IAM User Guide.

« AWS service access — A service role is an IAM role that a service assumes to perform actions in your
account on your behalf. When you set up some AWS service environments, you must define a role
for the service to assume. This service role must include all the permissions that are required for the
service to access the AWS resources that it needs. Service roles vary from service to service, but many
allow you to choose your permissions as long as you meet the documented requirements for that
service. Service roles provide access only within your account and cannot be used to grant access
to services in other accounts. You can create, modify, and delete a service role from within IAM. For
example, you can create a role that allows Amazon Redshift to access an Amazon S3 bucket on your
behalf and then load data from that bucket into an Amazon Redshift cluster. For more information, see
Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

« Applications running on Amazon EC2 - You can use an IAM role to manage temporary credentials
for applications that are running on an EC2 instance and making AWS CLI or AWS API requests.
This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2
instance and make it available to all of its applications, you create an instance profile that is attached
to the instance. An instance profile contains the role and enables programs that are running on the
EC2 instance to get temporary credentials. For more information, see Using an IAM Role to Grant
Permissions to Applications Running on Amazon EC2 Instances in the IAM User Guide.

To learn whether to use IAM roles, see When to Create an IAM Role (Instead of a User) in the IAM User
Guide.

304

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

FreeRTOS User Guide
Managing access using policies

Managing access using policies

You control access in AWS by creating policies and attaching them to IAM identities or AWS resources. A
policy is an object in AWS that, when associated with an identity or resource, defines their permissions.
AWS evaluates these policies when an entity (root user, IAM user, or IAM role) makes a request.
Permissions in the policies determine whether the request is allowed or denied. Most policies are stored
in AWS as JSON documents. For more information about the structure and contents of JSON policy
documents, see Overview of JSON Policies in the IAM User Guide.

An IAM administrator can use policies to specify who has access to AWS resources, and what actions
they can perform on those resources. Every IAM entity (user or role) starts with no permissions. In other
words, by default, users can do nothing, not even change their own password. To give a user permission
to do something, an administrator must attach a permissions policy to a user. Or the administrator can
add the user to a group that has the intended permissions. When an administrator gives permissions to a
group, all users in that group are granted those permissions.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A user with
that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such
as an IAM user, role, or group. These policies control what actions that identity can perform, on which
resources, and under what conditions. To learn how to create an identity-based policy, see Creating IAM
Policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies
are embedded directly into a single user, group, or role. Managed policies are standalone policies that
you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS
managed policies and customer managed policies. To learn how to choose between a managed policy or
an inline policy, see Choosing Between Managed Policies and Inline Policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource such as an Amazon S3

bucket. Service administrators can use these policies to define what actions a specified principal (account
member, user, or role) can perform on that resource and under what conditions. Resource-based policies

are inline policies. There are no managed resource-based policies.

Access Control Lists (ACLs)

Access control policies (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they are the only
policy type that does not use the JSON policy document format. Amazon S3, AWS WAF, and Amazon
VPC are examples of services that support ACLs. To learn more about ACLs, see Access Control List (ACL)
Overview in the Amazon Simple Storage Service Developer Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

« Permissions boundaries — A permissions boundary is an advanced feature in which you set the
maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role).

305

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

FreeRTOS User Guide
Learn more

You can set a permissions boundary for an entity. The resulting permissions are the intersection of
entity's identity-based policies and its permissions boundaries. Resource-based policies that specify
the user or role in the Principal field are not limited by the permissions boundary. An explicit deny
in any of these policies overrides the allow. For more information about permissions boundaries, see
Permissions Boundaries for IAM Entities in the IAM User Guide.

« Service control policies (SCPs) — SCPs are JSON policies that specify the maximum permissions for
an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for
grouping and centrally managing multiple AWS accounts that your business owns. If you enable all
features in an organization, then you can apply service control policies (SCPs) to any or all of your
accounts. The SCP limits permissions for entities in member accounts, including each AWS account
root user. For more information about Organizations and SCPs, see How SCPs Work in the AWS
Organizations User Guide.

« Session policies — Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session policies.
Permissions can also come from a resource-based policy. An explicit deny in any of these policies
overrides the allow. For more information, see Session Policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated to
understand. To learn how AWS determines whether to allow a request when multiple policy types are
involved, see Policy Evaluation Logic in the IAM User Guide.

Learn more

For more information about identity and access management for AWS resources, continue to the
following pages:

« How AWS services work with IAM (p. 306)

« ldentity-based policy examples (p. 309)

o Troubleshooting identity and access (p. 311)

How AWS services work with 1AM

Before you use IAM to manage access to AWS services, you should understand what IAM features are
available to use. To get a high-level view of how AWS services work with IAM, see AWS Services That
Work with IAM in the IAM User Guide.
Topics

« ldentity-based policies (p. 306)

o AWS resource-based policies (p. 308)

 Authorization based on tags (p. 308)

« IAM roles (p. 308)

Identity-based policies

With 1AM identity-based policies, you can specify allowed or denied actions and resources as well as the
conditions under which actions are allowed or denied. To learn about all of the elements that you use in
a JSON policy, see IAM JSON Policy Elements Reference in the IAM User Guide.

306

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

FreeRTOS User Guide
How AWS services work with IAM

Actions

The Action element of an IAM identity-based policy describes the specific action or actions that will be
allowed or denied by the policy. Policy actions usually have the same name as the associated AWS API
operation. The action is used in a policy to grant permissions to perform the associated operation.

Policy actions use a prefix before the action. Policy statements must include either an Action or
NotAction element. Each service defines its own set of actions that describe tasks that you can perform
with the service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
"service-prefix:actionl",
"service-prefix:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with
the word Describe, include the following action:

"Action": "service-prefix:Describex*"

To see a list of AWS actions, see Actions, Resources, and Condition Keys for AWS Services in the IAM User
Guide.

Resources
The Resource element specifies the object or objects to which the action applies. Statements must

include either a Resource or a NotResource element. You specify a resource using an ARN or using the
wildcard (*) to indicate that the statement applies to all resources.

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS Service
Namespaces.

To specify all instances that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:service-prefix:us-east-1:123456789012:resource-type/*"

Some actions, such as those for creating resources, cannot be performed on a specific resource. In those
cases, you must use the wildcard (*).

"Resource": "*"

Some API actions involve multiple resources, so an IAM user must have permissions to use all the
resources. To specify multiple resources in a single statement, separate the ARNs with commas.

"Resource": [
"resourcel",
"resource2"

To learn with which actions you can specify the ARN of each resource, see Actions, Resources, and
Condition Keys for AWS Services.

307

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html

FreeRTOS User Guide
How AWS services work with IAM

Condition keys

The Condition element (or Condition block) lets you specify conditions in which a statement is in
effect. The Condition element is optional. You can build conditional expressions that use condition
operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition
element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single
condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be
met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM
user permission to access a resource only if it is tagged with their IAM user name. For more information,
see |AM Policy Elements: Variables and Tags in the IAM User Guide.

To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User Guide."

AWS resource-based policies

Resource-based policies are JSON policy documents that specify what actions a specified principal
can perform on a resource and under what conditions. Resource-based policies let you grant usage
permission to other accounts on a per-resource basis.

To enable cross-account access, you can specify an entire account or IAM entities in another account as
the principal in a resource-based policy. Adding a cross-account principal to a resource-based policy is
only half of establishing the trust relationship. When the principal and the resource are in different AWS
accounts, you must also grant the principal entity permission to access the resource. Grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access to a
principal in the same account, no additional identity-based policy is required. For more information, see
How IAM Roles Differ from Resource-based Policies in the IAM User Guide.

To view an example of a detailed resource-based policy page, see https://docs.aws.amazon.com/
lambda/latest/dg/access-control-resource-based.html.

Authorization based on tags

You can attach tags to resources or pass tags in a request. To control access based on tags, you provide
tag information in the condition element of a policy using the prefix:ResourceTag/key-name,
aws :RequestTag/key-name, or aws : TagKeys condition keys.

To view an example identity-based policy for limiting access to a resource based on the tags on that
resource, see Viewing resources based on tags (p. 310).

IAM roles

An IAM role is an entity within your AWS account that has specific permissions.

Using temporary credentials

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a cross-
account role. You obtain temporary security credentials by calling AWS Security Token Service (AWS STS)
API operations such as AssumeRole or GetFederationToken.

Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action on
your behalf. Service-linked roles appear in your IAM account and are owned by the service. An IAM
administrator can view but not edit the permissions for service-linked roles.

308

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

FreeRTOS User Guide
Identity-based policy examples

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

|ldentity-based policy examples

By default, IAM users and roles don't have permission to create or modify AWS resources. They also
can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM administrator
must create IAM policies that grant users and roles permission to perform specific APl operations on
the specified resources they need. The administrator must then attach those policies to the IAM users or
groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, see
Creating Policies on the JSON Tab in the IAM User Guide.

Topics
« Policy best practices (p. 309)
« Using the AWS console (p. 309)
o Allow users to view their own permissions (p. 310)
« Viewing resources based on tags (p. 310)

Policy best practices

Identity-based policies are very powerful. They determine whether someone can create, access, or delete
resources in your account. These actions can incur costs for your AWS account. When you create or edit
identity-based policies, follow these guidelines and recommendations:

« Get Started Using AWS Managed Policies — To start using AWS services quickly, use AWS managed
policies to give your employees the permissions they need. These policies are already available in
your account and are maintained and updated by AWS. For more information, see Get Started Using
Permissions With AWS Managed Policies in the IAM User Guide.

« Grant Least Privilege — When you create custom policies, grant only the permissions required
to perform a task. Start with a minimum set of permissions and grant additional permissions as
necessary. Doing so is more secure than starting with permissions that are too lenient and then trying
to tighten them later. For more information, see Grant Least Privilege in the IAM User Guide.

« Enable MFA for Sensitive Operations — For extra security, require IAM users to use multi-factor
authentication (MFA) to access sensitive resources or APl operations. For more information, see Using
Multi-Factor Authentication (MFA) in AWS in the IAM User Guide.

« Use Policy Conditions for Extra Security — To the extent that it's practical, define the conditions under
which your identity-based policies allow access to a resource. For example, you can write conditions to
specify a range of allowable IP addresses that a request must come from. You can also write conditions
to allow requests only within a specified date or time range, or to require the use of SSL or MFA. For
more information, see IAM JSON Policy Elements: Condition in the IAM User Guide.

Using the AWS console

To access an AWS service console, you must have a minimum set of permissions. These permissions must
allow you to list and view details about the resources in your AWS account. If you create an identity-
based policy that is more restrictive than the minimum required permissions, the console won't function
as intended for entities (IAM users or roles) with that policy.

309

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

FreeRTOS User Guide
Identity-based policy examples

To ensure that those entities can still use the console, also attach an AWS managed policy to the entities.

For more information, see Adding Permissions to a User in the IAM User Guide.

You don't need to allow minimum console permissions for users that are making calls only to the AWS
CLI or the AWS API. Instead, allow access to only the actions that match the API operation that you're

trying to perform.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and managed
policies that are attached to their user identity. This policy includes permissions to complete this action

on the console or programmatically using the AWS CLI or AWS API.

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "ViewOwnUserInfo",
"Effect": "Allow",
"Action": [

"iam:GetUserPolicy",
"jam:ListGroupsForUser",
"iam:ListAttachedUserPolicies",
"iam:ListUserPolicies",
"iam:GetUser"

]V

"Resource": [
"arn:aws:iam::*:user/${aws:username}"

]

"Sid": "NavigateInConsole",

"Effect": "Allow",

"Action": [
"iam:GetGroupPolicy",
"iam:GetPolicyVersion",
"iam:GetPolicy",
"jam:ListAttachedGroupPolicies",
"jam:ListGroupPolicies",
"iam:ListPolicyVersions",
"iam:ListPolicies",
"iam:ListUsers"

]V

"Resource": "*x"

Viewing resources based on tags

You can use conditions in your identity-based policy to control access to resources based on tags. This
example shows how you might create a policy that allows viewing a resource. However, permission is
granted only if the resource tag owner has the value of that user's user name. This policy also grants the

permissions necessary to complete this action on the console.

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "ListInputsInConsole",

"Effect": "Allow",

310

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

FreeRTOS User Guide
Troubleshooting

"Action": "prefix:ListInputs",

"Resource": "*x"
Iy
{
"Sid": "ViewResourceIfOwner",
"Effect": "Allow",
"Action": "prefix:ListInputs",
"Resource": "arn:aws:prefix:*:*:resource-name/*",
"Condition": {
"StringEquals": {"prefix:ResourceTag/Owner": "${aws:username}"}
}
}

You can attach this policy to the IAM users in your account. If a user named richard-roe attempts

to view a resource-name, the resource-name must be tagged Owner=richard-roe or
owner=richard-roe. Otherwise he is denied access. The condition tag key owner matches both Owner
and owner because condition key names are not case-sensitive. For more information, see IAM JSON
Policy Elements: Condition in the IAM User Guide.

Troubleshooting identity and access

Use the following information to help you diagnose and fix common issues that you might encounter
when working with IAM.

Topics
o | am not authorized to perform an action (p. 311)
« | am not authorized to perform iam:PassRole (p. 311)
« | want to view my access keys (p. 312)
« I'm an administrator and want to allow others to access AWS resources (p. 312)
« | want to allow people outside of my AWS account to access my resources (p. 312)

| am not authorized to perform an action

If the AWS Management Console tells you that you're not authorized to perform an action, then you
must contact your administrator for assistance. Your administrator is the person that provided you with
your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console to view
details about a my-example-resource but does not have prefix:Action permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to
perform: prefix:Action on resource: my-example-resource

In this case, Mateo asks his administrator to update his policies to allow him to access the my-example-
resource using the prefix:Action.

| am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, then you must
contact your administrator for assistance. Your administrator is the person that provided you with your
user name and password. Ask that person to update your policies to allow you to pass a role to a service.

Some AWS services allow you to pass an existing role to that service, instead of creating a new service
role or service-linked role. To do this, you must have permissions to pass the role to the service.

311

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

FreeRTOS User Guide
Troubleshooting

The following example error occurs when an IAM user named marymajor tries to use the console to
perform an action in a service. However, the action requires the service to have permissions granted by a
service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

In this case, Mary asks her administrator to update her policies to allow her to perform the
iam:PassRole action.

| want to view my access keys

After you create your IAM user access keys, you can view your access key ID at any time. However, you
can't view your secret access key again. If you lose your secret key, you must create a new access key pair.

Access keys consist of two parts: an access key ID (for example, AKIATOSFODNN7EXAMPLE) and a secret
access key (for example, wJalrXUtnFEMI /K7MDENG/bPxRfiCYEXAMPLEKEY). Like a user name and
password, you must use both the access key ID and secret access key together to authenticate your
requests. Manage your access keys as securely as you do your user name and password.

Important
Do not provide your access keys to a third party, even to help find your canonical user ID. By
doing this, you might give someone permanent access to your account.

When you create an access key pair, you are prompted to save the access key ID and secret access key in
a secure location. The secret access key is available only at the time you create it. If you lose your secret
access key, you must add new access keys to your IAM user. You can have a maximum of two access keys.
If you already have two, you must delete one key pair before creating a new one. To view instructions,
see Managing Access Keys in the IAM User Guide.

I'm an administrator and want to allow others to access AWS
resources

To allow others to access a service, you must create an IAM entity (user or role) for the person or
application that needs access. They will use the credentials for that entity to access AWS. You must then
attach a policy to the entity that grants them the correct permissions in AWS.

To get started right away, see Creating Your First IAM Delegated User and Group in the IAM User Guide.

| want to allow people outside of my AWS account to access my
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people access to
your resources.

To learn more, consult the following:

« To learn whether a service supports these features, see How AWS services work with IAM (p. 306).

« To learn how to provide access to your resources across AWS accounts that you own, see Providing
Access to an IAM User in Another AWS Account That You Own in the IAM User Guide.

« To learn how to provide access to your resources to third-party AWS accounts, see Providing Access to
AWS Accounts Owned by Third Parties in the IAM User Guide.

« To learn how to provide access through identity federation, see Providing Access to Externally
Authenticated Users (Identity Federation) in the IAM User Guide.

312

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html

FreeRTOS User Guide
Compliance validation

« To learn the difference between using roles and resource-based policies for cross-account access, see
How IAM Roles Differ from Resource-based Policies in the IAM User Guide.

Compliance validation

FreeRTOS is not in scope of any AWS compliance programs. For a list of AWS services in scope of specific
compliance programs, see AWS Services in Scope by Compliance Program. For general information, see
AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading
Reports in AWS Artifact.

Your compliance responsibility when using FreeRTOS is determined by the sensitivity of your data, your
company's compliance objectives, and applicable laws and regulations. AWS provides the following
resources to help with compliance:

« Security and Compliance Quick Start Guides — These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

o Architecting for HIPAA Security and Compliance Whitepaper - This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

o AWS Compliance Resources — This collection of workbooks and guides might apply to your industry
and location.

« AWS Config — This AWS service assesses how well your resource configurations comply with internal
practices, industry guidelines, and regulations.

« AWS Security Hub - This AWS service provides a comprehensive view of your security state within AWS
that helps you check your compliance with security industry standards and best practices.

Resilience in AWS

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide
multiple physically separated and isolated Availability Zones, which are connected with low-latency,
high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between Availability Zones without interruption.
Availability Zones are more highly available, fault tolerant, and scalable than traditional single or
multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in FreeRTOS

AWS managed services are protected by the AWS global network security procedures that are described
in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access AWS services through the network. Clients must support
Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also support
cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated
with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary
security credentials to sign requests.

313

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
http://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

	FreeRTOS
	Table of Contents
	What Is FreeRTOS?
	FreeRTOS architecture
	FreeRTOS kernel
	FreeRTOS kernel fundamentals
	FreeRTOS kernel scheduler
	Memory management
	Kernel memory allocation
	Application memory management

	Intertask coordination
	Queues
	Semaphores and mutexes
	Direct-to-task notifications
	Stream buffers
	Sending data
	Receiving data

	Message buffers
	Sending data
	Receiving data

	Software timers
	Low power support
	Kernel configuration

	FreeRTOS libraries
	FreeRTOS Over-the-Air Updates
	Tagging OTA resources
	OTA update prerequisites
	Create an Amazon S3 bucket to store your update
	Create an OTA Update service role
	Create an OTA user policy
	Create a code-signing certificate
	Creating a code-signing certificate for the Texas Instruments CC3220SF-LAUNCHXL
	Creating a code-signing certificate for the Microchip Curiosity PIC32MZEF
	Creating a code-signing certificate for the Espressif ESP32
	Creating a code-signing certificate for the Nordic nrf52840-dk
	Creating a code-signing certificate for the FreeRTOS Windows simulator
	Creating a code-signing certificate for custom hardware

	Grant access to code signing for AWS IoT
	Download FreeRTOS with the OTA library
	Prerequisites for OTA updates using MQTT
	Minimum requirements
	Configurations
	Device specific configurations
	Memory usage
	Device policy

	Prerequisites for OTA updates using HTTP
	Minimum requirements
	Configurations
	Device specific configurations
	Memory usage
	Device policy

	OTA tutorial
	Installing the initial firmware
	Install the initial version of firmware on the Texas Instruments CC3220SF-LAUNCHXL
	Install the initial version of firmware on the Microchip Curiosity PIC32MZEF
	Install the initial version of firmware on the Espressif ESP32
	Install the initial version of firmware on the Nordic nRF52840 DK
	Initial firmware on the Windows simulator
	Install the initial version of firmware on a custom board

	Update the version of your firmware
	Creating an OTA update (AWS IoT console)
	Creating an OTA update with the AWS CLI
	Digitally signing your firmware update
	Signing your firmware image with Code Signing for AWS IoT
	Signing your firmware image manually

	Creating a stream of your firmware update
	Creating an OTA update
	Listing OTA updates
	Getting information about an OTA update
	Deleting OTA-related data
	Deleting an OTA stream
	Deleting an OTA update
	Deleting an IoT job created for an OTA update

	OTA Update Manager service
	Integrating the OTA Agent into your application
	Connection management
	Simple OTA demo using MQTT
	Using a custom callback for OTA completion events

	OTA security
	Code Signing for AWS IoT

	OTA troubleshooting
	Set up CloudWatch Logs for OTA updates
	Create a logging role and enable logging
	OTA update logs
	Example logs

	Log AWS IoT OTA API calls with AWS CloudTrail
	FreeRTOS information in CloudTrail
	Understanding FreeRTOS log file entries

	Get OTA failure codes with the AWS CLI
	Troubleshoot OTA updates of multiple devices
	Troubleshoot OTA updates with the Texas Instruments CC3220SF Launchpad
	Stream limit exceeded for your AWS account

	Downloading FreeRTOS source code
	FreeRTOS console
	FreeRTOS console
	Predefined FreeRTOS configurations
	Custom FreeRTOS configurations
	Quick connect workflow
	Tagging configurations
	Using tags with IAM policies

	FreeRTOS-qualified hardware platforms
	Development workflow
	AWS IoT Device SDK for Embedded C
	Additional resources

	Getting Started with FreeRTOS
	FreeRTOS demo application
	First steps
	Board-specific getting started guides
	Troubleshooting
	Developing FreeRTOS applications
	First steps
	Setting up your AWS account and permissions
	Registering your MCU board with AWS IoT
	Downloading FreeRTOS
	Configuring the FreeRTOS demos

	Developer-mode key provisioning
	Introduction
	Option #1: private key import from AWS IoT
	Option #2: onboard private key generation

	Troubleshooting getting started
	General getting started troubleshooting tips
	Installing a terminal emulator
	Finding your board's serial port

	Using CMake with FreeRTOS
	Prerequisites
	Developing FreeRTOS applications with third-party code editors and debugging tools
	Building FreeRTOS with CMake
	Generating build files (CMake command-line tool)
	Generating build files (CMake GUI)
	Building FreeRTOS from generated build files
	Building with native build system
	Building with CMake

	Board-specific getting started guides
	Getting started with the Cypress CYW943907AEVAL1F Development Kit
	Overview
	Setting up your development environment
	Download and install the WICED Studio SDK
	Set environment variables

	Establishing a serial connection
	Build and run the FreeRTOS demo project
	Monitoring MQTT messages on the cloud

	Troubleshooting

	Getting started with the Cypress CYW954907AEVAL1F Development Kit
	Overview
	Setting up your development environment
	Download and install the WICED Studio SDK
	Set environment variables

	Establishing a serial connection
	Build and run the FreeRTOS demo project
	Monitoring MQTT messages on the cloud

	Troubleshooting

	Getting started with the Microchip ATECC608A Secure Element with Windows simulator
	Overview
	Set up the Microchip ATECC608A hardware
	Set up your development environment
	Build and run the FreeRTOS demo project
	Troubleshooting

	Getting started with the Espressif ESP32-DevKitC and the ESP-WROVER-KIT
	Overview
	Prerequisites
	Set up the Espressif hardware
	Set up your development environment
	Setting up the toolchain
	Install CMake

	Establish a serial connection
	Download and configure FreeRTOS
	Configure the FreeRTOS demo applications

	Build, flash, and run the FreeRTOS demo project
	Build FreeRTOS on Linux and MacOS
	Build FreeRTOS on Windows
	Flash and run FreeRTOS
	Monitoring MQTT messages on the cloud
	Run the Bluetooth Low Energy demos

	Using FreeRTOS in your own CMake project for ESP32
	Using components from FreeRTOS
	Add custom components to ESP-IDF
	Override the configurations for FreeRTOS
	Providing your own sdkconfig for ESP-IDF
	Summary

	Troubleshooting
	Debugging code on Espressif ESP32-DevKitC and ESP-WROVER-KIT
	ESP-DevKitC JTAG setup
	ESP-WROVER-KIT JTAG setup
	Debugging on Windows
	Debugging on macOS
	Debugging on Linux

	Getting started with the Espressif ESP32-WROOM-32SE (preview)
	Overview
	Prerequisites
	Set up the Espressif hardware
	Set up your development environment
	Set up the toolchain
	Install CMake

	Establish a serial connection
	Download and configure FreeRTOS
	Build, flash, and run the FreeRTOS demo project
	Build FreeRTOS on Linux or MacOS
	Build FreeRTOS on Windows
	Flash and run FreeRTOS
	Monitoring MQTT messages on the AWS Cloud

	Getting started with the Infineon XMC4800 IoT Connectivity Kit
	Overview
	Set up your development environment
	Install DAVE
	Install Segger J-Link drivers

	Establish a serial connection
	Build and run the FreeRTOS demo project
	Import the FreeRTOS demo into DAVE
	Run the FreeRTOS demo project
	Build the FreeRTOS demo with CMake
	Monitoring MQTT messages on the cloud

	Troubleshooting

	Getting started with the Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit
	Overview
	Set up your development environment
	Install DAVE
	Install Segger J-Link drivers

	Establish a serial connection
	Monitoring MQTT messages on the cloud
	Build and run the FreeRTOS demo project
	Import the FreeRTOS demo into DAVE
	Run the FreeRTOS demo project
	Build the FreeRTOS demo with CMake

	Troubleshooting

	Getting started with the Marvell MW320 AWS IoT Starter Kit
	Overview
	Set up your development environment
	Install required third-party libraries with installpkgs.sh
	Set up the toolchain
	Set up OpenOCD
	Install CMake

	Establish a serial connection
	Build, flash, and run the FreeRTOS demo project
	Generate the demo build files with CMake
	Build the demo with make
	Flash the application
	Monitoring MQTT messages on the cloud

	Troubleshooting
	Connecting to the GNU Debugger
	Loading the application to SRAM
	Enabling other logs
	Using an IDE for development and debugging
	Set up an IDE
	Build the demo with an IDE

	Getting started with the Marvell MW322 AWS IoT Starter Kit
	Overview
	Set up your development environment
	Install required third-party libraries with installpkgs.sh
	Set up the toolchain
	Set up OpenOCD
	Install CMake

	Establish a serial connection
	Build, flash, and run the FreeRTOS demo project
	Generate the demo build files with CMake
	Build the demo with make
	Flash the application
	Monitoring MQTT messages on the cloud

	Troubleshooting
	Connecting to the GNU Debugger
	Loading the application to SRAM
	Enabling other logs
	Using an IDE for development and debugging
	Set up an IDE
	Build the demo with an IDE

	Getting started with the MediaTek MT7697Hx development kit
	Overview
	Set up your development environment
	Download and install Keil MDK

	Establish a serial connection
	Build and run the FreeRTOS demo project with Keil MDK
	Monitoring MQTT messages on the cloud

	Troubleshooting
	Debugging FreeRTOS projects in Keil μVision
	Troubleshooting the IDE debugger settings

	Getting started with the Microchip Curiosity PIC32MZ EF
	Overview
	Set up the Microchip Curiosity PIC32MZ EF hardware
	Set up the Microchip Curiosity PIC32MZ EF hardware using PICkit On Board (PKOB)
	Set up your development environment
	Build and run the FreeRTOS demo project
	Open the FreeRTOS demo in the MPLAB IDE
	Run the FreeRTOS demo project
	Build the FreeRTOS demo with CMake
	Monitoring MQTT messages on the cloud

	Troubleshooting

	Getting started with the Nordic nRF52840-DK
	Overview
	Set up the Nordic hardware
	Set up your development environment
	Download and install Segger Embedded Studio
	Set up the FreeRTOS Bluetooth Low Energy Mobile SDK demo application

	Establish a serial connection
	Download and configure FreeRTOS
	Download FreeRTOS
	Configure your project

	Build and run the FreeRTOS demo project
	Troubleshooting

	Getting started with the Nuvoton NuMaker-IoT-M487
	Overview
	Set up your development environment
	Build and run the FreeRTOS demo project
	Using CMake with FreeRTOS
	Troubleshooting
	Debugging FreeRTOS projects in Keil μVision
	Troubleshooting μVision debug settings

	Getting started with the NXP LPC54018 IoT Module
	Overview
	Set up the NXP hardware
	Set up your development environment
	Build and run the FreeRTOS Demo project
	Import the FreeRTOS demo into your IDE
	Run the FreeRTOS demo project
	Monitoring MQTT messages on the cloud

	Troubleshooting

	Getting started with the Renesas Starter Kit+ for RX65N-2MB
	Overview
	Set up the Renesas hardware
	Set up your development environment
	Build and run FreeRTOS samples
	Build the FreeRTOS Demo in e2studio
	Run the FreeRTOS project
	Monitoring MQTT messages on the cloud

	Troubleshooting

	Getting started with the STMicroelectronics STM32L4 Discovery Kit IoT Node
	Overview
	Set up your development environment
	Install System Workbench for STM32

	Build and run the FreeRTOS demo project
	Import the FreeRTOS demo into the STM32 System Workbench
	Run the FreeRTOS demo project
	Using CMake with FreeRTOS
	Monitoring MQTT messages on the cloud

	Troubleshooting

	Getting started with the Texas Instruments CC3220SF-LAUNCHXL
	Overview
	Set up your development environment
	Install Code Composer Studio
	Install IAR Embedded Workbench
	Install the SimpleLink CC3220 SDK
	Install Uniflash
	Install the latest service pack
	Configure Wi-Fi provisioning

	Build and run the FreeRTOS demo project
	Build and run the FreeRTOS demo project in TI Code Composer
	Build and run FreeRTOS demo project in IAR Embedded Workbench
	Using CMake with FreeRTOS
	Monitoring MQTT messages on the cloud

	Troubleshooting

	Getting started with the Windows Device Simulator
	Set up your development environment
	Build and run the FreeRTOS demo project
	Building and running the FreeRTOS demo project with the Visual Studio IDE
	Building and running the FreeRTOS demo project with CMake
	Configure your network interface
	Monitoring MQTT messages on the cloud

	Troubleshooting
	Troubleshooting common problems on Windows

	Getting started with the Xilinx Avnet MicroZed Industrial IoT Kit
	Overview
	Set up the MicroZed hardware
	Set up your development environment
	Download and install XSDK

	Build and run the FreeRTOS demo project
	Open the FreeRTOS demo in the XSDK IDE
	Build the FreeRTOS demo project
	Generate the boot image for the FreeRTOS demo project
	JTAG debugging
	Run the FreeRTOS demo project
	Boot the FreeRTOS project from a MicroSD card
	Boot the FreeRTOS demo project from QSPI flash

	Monitoring MQTT messages on the cloud

	Troubleshooting

	FreeRTOS Libraries
	FreeRTOS porting libraries
	FreeRTOS application libraries
	FreeRTOS common libraries
	Configuring the FreeRTOS libraries
	Common libraries
	Atomic operations
	Overview
	Initialization
	API reference

	Linear Containers library
	API reference

	Logging library
	API reference

	Static Memory library
	API reference

	Task Pool library
	Overview
	Task Pool (IotTaskPool_t)
	Task Pool jobs (IotTaskPoolJob_t)

	Dependencies and requirements
	Features
	Troubleshooting
	Usage restrictions
	Initialization
	API reference
	Example usage

	Bluetooth Low Energy library
	Overview
	Architecture
	Services
	Device information
	Wi-Fi provisioning
	Network abstraction
	Large Object Transfer

	Middleware
	Flexible callback subscription

	Low-level wrappers

	Dependencies and requirements
	Library configuration file
	Optimization
	Usage restrictions
	Initialization
	Middleware
	Low-level APIs

	API reference
	Example usage
	Advertising
	Adding a new service

	Porting
	User input and output peripheral
	Porting API implementations
	Bluetooth Low Energy APIs
	APIs common between GAP for Bluetooth Classic and GAP for Bluetooth Low Energy
	APIs specific to GAP for Bluetooth Low Energy
	GATT server

	Mobile SDKs for FreeRTOS Bluetooth devices
	Android SDK for FreeRTOS Bluetooth devices
	iOS SDK for FreeRTOS Bluetooth devices

	AWS IoT Device Defender library
	Overview
	Dependencies and requirements
	Troubleshooting
	FreeRTOS Device Defender error codes
	FreeRTOS Device Defender events
	Debugging FreeRTOS Device Defender

	Developer support
	Usage restrictions
	Initialization
	FreeRTOS Device Defender API
	Example usage

	AWS IoT Device Shadow library
	Overview
	Dependencies and requirements
	API reference
	Example usage

	AWS IoT Greengrass Discovery library
	Overview
	Dependencies and requirements
	API reference
	Example usage
	Greengrass workflow
	How to use the Greengrass API

	MQTT library, version 2.0.0
	Overview
	Dependencies and requirements
	Features
	API reference
	Example usage

	MQTT library, version 1.0.0
	Overview
	The FreeRTOS MQTT Agent

	Dependencies and requirements
	Features
	Callback
	Subscription management
	MQTT task wakeup

	Major configurations
	Optimization
	Processing received packets without delay
	Minimizing RAM consumption
	Requirements and usage restrictions
	
	
	

	Developer support
	mqttconfigASSERT
	mqttconfigENABLE_DEBUG_LOGS
	

	Initialization
	API reference
	Porting

	HTTPS client library
	Overview
	Dependencies and requirements
	Features
	API reference

	OTA Agent library
	Overview
	Features
	API reference
	Example usage
	Porting

	Public Key Cryptography Standard (PKCS) #11 library
	Overview
	Features
	General setup and tear down API
	Provisioning API
	Client authentication

	Asymmetric cryptosystem support
	Porting

	Secure Sockets library
	Overview
	Dependencies and requirements
	Features
	Troubleshooting
	Error codes

	Developer support
	Usage restrictions
	Initialization
	API reference
	Example usage
	Porting

	Transport Layer Security
	Wi-Fi library
	Overview
	Dependencies and requirements
	Features
	Wi-Fi modes
	Security
	Scanning and connecting
	Power management
	Network profiles

	Configuration
	Initialization
	API reference
	Example usage
	Connecting to a known AP
	Scanning for nearby APs

	Porting

	Common I/O

	FreeRTOS Demos
	Running the FreeRTOS demos
	Configuring the demos
	Bluetooth Low Energy demo applications
	Overview
	MQTT over Bluetooth Low Energy demo
	Wi-Fi provisioning demo
	Generic Attributes Server demo

	Prerequisites
	Set up AWS IoT and Amazon Cognito for FreeRTOS Bluetooth Low Energy
	Set up your FreeRTOS environment for Bluetooth Low Energy

	Common components
	Network Manager
	FreeRTOS Bluetooth Low Energy Mobile SDK demo application

	MQTT over Bluetooth Low Energy
	Wi-Fi provisioning
	Generic Attributes Server

	Demo bootloader for the Microchip Curiosity PIC32MZEF
	Bootloader states
	Flash device
	Application image structure
	Image header
	Magic code
	Image flags

	Image descriptor
	Image trailer
	Bootloader configuration
	Building the bootloader
	Bootloader pre-build step

	AWS IoT Device Defender demo
	AWS IoT Greengrass discovery demo application
	Using an Amazon EC2 instance

	Over-the-air updates demo application
	Download, build, flash, and run the FreeRTOS OTA demo on the Texas Instruments CC3220SF-LAUNCHXL
	Download, build, flash, and run the FreeRTOS OTA demo on the Microchip Curiosity PIC32MZEF
	Download, build, flash, and run the FreeRTOS OTA demo on the Espressif ESP32

	HTTPS demo applications
	Overview
	Usage instructions

	AWS IoT Device Shadow demo application
	Secure Sockets echo client demo

	Using AWS IoT Device Tester for FreeRTOS
	Supported versions of AWS IoT Device Tester for FreeRTOS
	Latest version of AWS IoT Device Tester for FreeRTOS
	Earlier IDT versions for FreeRTOS

	Unsupported IDT versions for FreeRTOS
	Prerequisites
	Download FreeRTOS
	Download IDT for FreeRTOS
	Create and configure an AWS account
	AWS IoT Device Tester managed policy
	(Optional) Install the AWS Command Line Interface

	Preparing to test your microcontroller board for the first time
	Add library porting layers
	Configure your AWS credentials
	Create a device pool in IDT for FreeRTOS
	Configure build, flash, and test settings
	Configure settings for testing devices
	IDT for FreeRTOS variables
	Path variables

	Running Bluetooth Low Energy tests
	Prerequisites
	Raspberry Pi setup
	FreeRTOS device setup
	Running the BLE tests
	Troubleshooting BLE tests

	Running the FreeRTOS qualification suite
	IDT for FreeRTOS commands
	Test for re-qualification

	AWS IoT Device Tester for FreeRTOS test suite versions
	Understanding results and logs
	Viewing results
	Interpreting IDT for FreeRTOS results
	Viewing logs

	Troubleshooting
	Troubleshooting device configuration
	Where do I look?
	IDT error codes
	Debugging parsing errors
	Debugging a "required parameter missing" error
	Debugging a "could not start test" error
	Debugging a "not authorized to access resource" error
	Debugging network test errors
	OTA Update failures due to same version payload
	OTA test failure on PresignedUrlExpired test case
	Debugging device interface and port errors
	Supported platforms
	Device interfaces
	Reading device data

	Development toolchain problems
	Code Composer Studio on Ubuntu

	Logging
	Console errors
	Log errors

	Troubleshooting timeout errors

	Support policy for AWS IoT Device Tester for FreeRTOS

	Security in AWS
	Identity and Access Management for AWS resources
	Audience
	Authenticating with identities
	AWS Account Root User
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access Control Lists (ACLs)
	Other policy types
	Multiple policy types

	Learn more
	How AWS services work with IAM
	Identity-based policies
	Actions
	Resources
	Condition keys

	AWS resource-based policies
	Authorization based on tags
	IAM roles
	Using temporary credentials
	Service-linked roles
	Service roles

	Identity-based policy examples
	Policy best practices
	Using the AWS console
	Allow users to view their own permissions
	Viewing resources based on tags

	Troubleshooting identity and access
	I am not authorized to perform an action
	I am not authorized to perform iam:PassRole
	I want to view my access keys
	I'm an administrator and want to allow others to access AWS resources
	I want to allow people outside of my AWS account to access my resources

	Compliance validation
	Resilience in AWS
	Infrastructure security in FreeRTOS

