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PM0223
Programming manual

Cortex®-M0+ programming manual for STM32L0, STM32G0, 
STM32WL and STM32WB Series 

Introduction

This programming manual provides information for application and system-level software 
developers. It gives a full description of the programming model, instruction set, and core 
peripherals of the Cortex®-M0+ processor used on the STM32L0, STM32G0, STM32WL 
and STM32WB Series MCUs.

Cortex®-M0+ is a high performance 32-bit processor designed for integration in 
microcontrollers. It offers significant benefits to developers, including:

• Outstanding processing performance combined with fast interrupt handling

• Enhanced system debug with extensive breakpoint options

• Efficient processor core, system and memories

• Ultra-low power consumption with integrated sleep modes

• Platform security
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1 About this document

This document provides the information required for application and system-level software 
development. It does not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who 
have no experience of Arm®(a) products. 

          

1.1 Typographical conventions

The typographical conventions used in this document are:

italic Highlights important notes, introduces special terminology, denotes 
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal 
names. Also used for terms in descriptive lists, where appropriate. 

monospace Denotes text that you can enter at the keyboard, such as commands, 
file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can 
enter the underlined text instead of the full command or option name.

monospace 
italic 

Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in 
code or code fragments. For example:  
LDRSB<cond> <Rt>, [<Rn>, #<offset>]

1.2 List of abbreviations for registers

The following abbreviations are used in register descriptions:

          

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

read/write (rw) Software can read and write to these bits.

read-only (r) Software can only read these bits. 

write-only (w) Software can only write to this bit.  
Reading the bit returns the reset value.

read/clear (rc_w) Software can read as well as clear this bit by writing any value.
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1.3 About the Cortex-M0+ processor and core peripherals

The Cortex-M0+ processor is an entry-level 32-bit Arm® Cortex processor designed for a 
broad range of embedded applications. It offers significant benefits to developers, including:

• A simple architecture that is easy to learn and program.

• Ultra-low power, energy-efficient operation.

• Excellent code density.

• Deterministic, high-performance interrupt handling.

• Upward compatibility with Cortex-M processor family.

• Platform security robustness, with optional integrated Memory Protection Unit (MPU).

Figure 1. Cortex-M0+ implementation

The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor 
core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional 

read/clear (rc_w1) Software can read as well as clear this bit by writing 1.  
Writing ‘0’ has no effect on the bit value.

read/clear (rc_w0) Software can read as well as clear this bit by writing 0.  
Writing ‘1’ has no effect on the bit value.

toggle (t) Software can only toggle this bit by writing ‘1’. Writing ‘0’ has no effect.

Reserved (Res.) Reserved bit, must be kept at reset value.
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energy efficiency through a small but powerful instruction set and extensively optimized 
design, providing high-end processing hardware including a single-cycle multiplier.

The Cortex-M0+ processor implements the ARMv6-M architecture, which is based on the 
16-bit Thumb

®
 instruction set and includes Thumb-2 technology. This provides the 

exceptional performance expected of a modern 32-bit architecture, with a higher code 
density than other 8-bit and 16-bit microcontrollers.

The Cortex-M0+ processor closely integrates a configurable Nested vectored interrupt 
controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

• Includes a Non-Maskable Interrupt (NMI).

• Provides zero jitter interrupt option.

• Provides four interrupt priority levels.

The tight integration of the processor core and NVIC provides fast execution of Interrupt 
Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved 
through the hardware stacking of registers, and the ability to abandon and restart load-
multiple and store-multiple operations. Interrupt handlers do not require any assembler 
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also 
significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a 
deep sleep function that enables the entire device to be rapidly powered down.

1.3.1 System-level interface

The Cortex-M0+ processor provides a single system-level interface using AMBA
®

 
technology to provide high speed, low latency memory accesses.

The Cortex-M0+ processor has an optional Memory Protection Unit (MPU) that provides 
fine grain memory control, enabling applications to use multiple privilege levels, separating 
and protecting code, data and stack on a task-by-task basis. Such requirements are 
becoming critical in many embedded applications such as automotive systems.

1.3.2 Integrated configurable debug

The Cortex-M0+ processor implements a complete hardware debug solution, with extensive 
hardware breakpoint and watchpoint options. This provides high system visibility of the 
processor, memory and peripherals through a <2-pin Serial Wire Debug (SWD) port> that is 
ideal for microcontrollers and other small package devices. 
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1.3.3 Cortex-M0+ processor feature summary

• Thumb instruction set with Thumb-2 Technology.

• High code density with 32-bit performance.

• User and Privileged mode execution. 

• Tools and binary upwards compatible with Cortex-M processor family.

• Integrated ultra low-power sleep modes.

• Efficient code execution enabling slower processor clock or increased sleep time.

• Single-cycle 32-bit hardware multiplier.

• Zero jitter interrupt handling.

• Memory Protection Unit (MPU) for safety-critical applications.

• Low latency, high-speed peripheral I/O port.

• A Vector Table Offset Register.

• Extensive debug capabilities.

1.3.4 Cortex-M0+ core peripherals

These are:

Nested vectored interrupt controller (NVIC)

The NVIC is an embedded interrupt controller that supports low latency interrupt 
processing.

System Control Block 

The System Control Block (SCB) is the programmers model interface to the 
processor. It provides system implementation information and system control, 
including configuration, control, and reporting of system exceptions.

System timer 

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time 
Operating System (RTOS) tick timer or as a simple counter.

Memory Protection Unit 

The Memory Protection Unit (MPU) improves system reliability by defining the 
memory attributes for different memory regions. It provides up to eight different 
regions, and an optional predefined background region.

I/O port 

The I/O port provides single-cycle loads and stores to tightly-coupled peripherals.
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2 Cortex-M0+ processor

2.1 Programmers model

This section describes the Cortex-M0+ programmers model. In addition to the individual 
core register descriptions, it contains information about the processor modes, privilege 
levels for software execution, and stacks.

2.1.1 Processor modes and privilege levels for software execution

The processor modes are:

          

The privilege levels for software execution are:

Unprivileged The software:

Unprivileged software executes at the unprivileged level.

Privileged The software can use all the instructions and has access to all 
resources.

Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or 
unprivileged, see CONTROL register on page 18. In Handler mode, software execution is 
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for 
software execution in Thread mode. Unprivileged software can use the SVC instruction to 
make a Supervisor Call to transfer control to privileged software.

2.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer indicates the last 
stacked item on the stack memory. When the processor pushes a new item onto the stack, it 
decrements the stack pointer and then writes the item to the new memory location. The 
processor implements two stacks, the main stack and the process stack, with independent 
copies of the stack pointer, see Stack Pointer on page 14.

In Thread mode, the CONTROL register controls whether the processor uses the main 
stack or the process stack, see CONTROL register on page 18. In Handler mode, the 
processor always uses the main stack. The options for processor operations are:

Thread mode Executes application software. The processor enters Thread mode 
when it comes out of reset.

Handler mode Handles exceptions. The processor returns to Thread mode when it has 
finished all exception processing.

• Has limited access to system registers using the MSR and MRS 
instructions, and cannot use the CPS instruction to mask interrupts.

• Cannot access the system timer, NVIC, or system control block.

• Might have restricted access to memory or peripherals.
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2.1.3 Core registers

The processor core register are:

Figure 2. Processor core registers

          

Table 1. Summary of processor mode, execution privilege level, and stack use 
options

Processor mode Used to execute
Privilege level for 

software execution
Stack used

Thread Applications Privileged or unprivileged(1)

1. See CONTROL register on page 18

Main stack or process stack(1)

Handler Exception handlers Always privileged Main stack

Table 2. Core register set summary 

Name Type(1) Reset value Description

R0-R12 RW Unknown General purpose registers on page 14.

MSP RW See description Stack Pointer on page 14.

PSP RW Unknown Stack Pointer on page 14

LR RW Unknown Link Register on page 14

PC RW See description Program Counter on page 14

PSR RW Unknown(2) Program Status Register on page 14
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General purpose registers

R0-R12 are 32-bit general purpose registers for data operations.

Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register 
indicates the stack pointer to use:

• 0 = Main Stack Pointer (MSP). This is the reset value.

• 1 = Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, 
function calls, and exceptions. On reset, the LR value is Unknown.

Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On 
reset, the processor loads the PC with the value of the reset vector, which is at address 
0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

Program Status Register

The Program Status Register (PSR) combines:

• Application Program Status Register (APSR).

• Interrupt Program Status Register (IPSR).

• Execution Program Status Register (EPSR).

These registers are allocated as mutually exclusive bitfields within the 32-bit PSR. The PSR 
bit assignments are:

APSR RW Unknown Application Program Status Register on page 15

IPSR RO 0x00000000 Interrupt Program Status Register on page 16

EPSR RO Unknown Execution Program Status Register on page 16

PRIMASK RW 0x00000000 Priority Mask Register on page 17

CONTROL RW 0x00000000 CONTROL register on page 18

1. Describes access type during program execution in Thread mode and Handler mode. Debug access can 
differ.

2. Bit[24] is the T-bit and is loaded from bit[0] of the reset vector.

Table 2. Core register set summary (continued)
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Figure 3. APSR, IPSR and EPSR bit assignments

Access these registers individually or as a combination of any two or all three registers, 
using the register name as an argument to the MSR or MRS instructions. For example:

• Read all of the registers using PSR with the MRS instruction.

• Write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

          

See the instruction descriptions MRS on page 74 and MSR on page 75 for more information 
about how to access the program status registers.

Application Program Status Register

The APSR contains the current state of the condition flags, from previous instruction 
executions. See the register summary in Table 2 on page 13 for its attributes. The bit 
assignments are:

          

Table 3. PSR register combinations

Register Type Combination

PSR RW(1),(2)

1. The processor ignores writes to the IPSR bits.

2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

APSR, EPSR, and IPSR.

IEPSR RO EPSR and IPSR.

IAPSR RW(1) APSR and IPSR.

EAPSR RW(2) APSR and EPSR.

Table 4. APSR bit assignment 

Bits Name Description

[31] N Negative flag.

[30] Z Zero flag.

[29] C Carry or borrow flag.
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See The condition flags on page 43 for more information about the APSR negative, zero, 
carry or borrow, and overflow flags.

Interrupt Program Status Register

The IPSR contains the exception number of the current Interrupt Service Routine (ISR). See 
the register summary in Table 2 on page 13 for its attributes. The bit assignments are:

          

Execution Program Status Register

The EPSR contains the Thumb state bit.

See the register summary in Table 2 on page 13 for the EPSR attributes. The bit 
assignments are:

[28] V Overflow flag.

[27:0] - Reserved.

Table 5. IPSR bit assignments

Bits Name Function

[31:6] - Reserved

[5:0] Exception number This is the number of the current exception:

0 = Thread mode.

1 = Reserved.

2 = NMI.

3 = HardFault.

4-10 = Reserved.

11 = SVCall.

12, 13 = Reserved.

14 = PendSV.

15 = SysTick | Reserved.

16 = IRQ0.

. 

. 

47 = IRQ31.

48-63 = Reserved.

see Exception types on page 26 for more information.

Table 4. APSR bit assignment (continued)

Bits Name Description
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Attempts by application software to read the EPSR directly using the MRS instruction always 
return zero. Attempts to write the EPSR using the MRS instruction are ignored. Fault 
handlers can examine the EPSR value in the stacked PSR to determine the cause of the 
fault. See Exception entry and return on page 30. The following can clear the T bit to 0:

• Instructions BLX, BX and POP{PC}. 

• Restoration from the stacked xPSR value on an exception return.

• Bit[0] of the vector value on an exception entry. 

Attempting to execute instructions when the T bit is 0 results in a HardFault or Lockup. See 
2.4.1: Lockup on page 33 for more information.

Interruptible-restartable instructions

The interruptible-restartable instructions are LDM and STM, PUSH, POP, and MULS. When 
an interrupt occurs during the execution of one of these instructions, the processor 
abandons execution of the instruction. After servicing the interrupt, the processor restarts 
execution of the instruction from the beginning.

Exception mask register

The exception mask register disables the handling of exceptions by the processor. Disable 
exceptions where they might impact on timing critical tasks or code sequences requiring 
atomicity. 

To disable or re-enable exceptions, use the MSR and MRS instructions, or the CPS 
instruction, to change the value of PRIMASK. 3.7.6: MRS on page 74, 3.7.7: MSR on 
page 75, and 3.7.2: CPS on page 70 for more information.

Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority. See 
the register summary in Table 2 on page 13 for its attributes. The bit assignments are:

          

Table 6. EPSR bit assignments

Bits Name Function

[31:25] - Reserved.

[24] T Thumb state bit.

[23:0] - Reserved.

Table 7. PRIMASK register bit assignments

Bits Name Function

[31:1] - Reserved. 

[0] PM Prioritizable interrupt mask:

0 = No effect.

1 = Prevents the activation of all exceptions with configurable 
priority.
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CONTROL register

The CONTROL register controls the stack used, and the privilege level for software 
execution, when the processor is in Thread mode. See the register summary in Table 2 on 
page 13 for its attributes. The bit assignments are:

Figure 4. Control bit assignment

Handler mode always uses the MSP, so the processor ignores explicit writes to the active 
stack pointer bit of the CONTROL register when in Handler mode. The exception entry and 
return mechanisms automatically update the CONTROL register.

In an OS environment, it is recommended that threads running in Thread mode use the 
process stack and the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to 
the PSP, use the MSR instruction to set the active stack pointer bit to 1, 3.7.6: MRS on 
page 74 

Note: When changing the stack pointer, software must use an ISB instruction immediately after the 
MSR instruction. This ensures that instructions after the ISB execute using the new stack 
pointer. See 3.7.5: ISB on page 73.

2.1.4 Exceptions and interrupts

The Cortex-M0+ processor supports interrupts and system exceptions. The processor and 
the Nested vectored interrupt controller (NVIC) prioritize and handle all exceptions. An 
interrupt or exception changes the normal flow of software control. The processor uses 

Table 8. Control register bit assignments

Bits Name Function

[31:2] - Reserved.

[1] SPSEL

Defines the current stack:

0 = MSP is the current stack pointer.

1 = PSP is the current stack pointer.

In Handler mode this bit reads as zero and ignores writes.

[0] nPRIV

Defines the Thread mode privilege level:

0 = Privileged.

1 = Unprivileged.
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Handler mode to handle all exceptions except for reset. See Exception entry on page 31 
and Exception return on page 32 for more information. 

The NVIC registers control interrupt handling. See 4.2: Nested vectored interrupt controller 
on page 82 for more information.

2.1.5 Data types

The processor:

• Supports the following data types:

– 32-bit words.

– 16-bit halfwords.

– 8-bit bytes.

• Manages all data memory accesses as little-endian or big-endian. Instruction memory 
and Private Peripheral Bus (PPB) accesses are always little-endian. See 2.2.1: 
Memory regions, types and attributes on page 21 for more information.

2.1.6 The Cortex Microcontroller Software Interface Standard

Arm® provides the Cortex Microcontroller Software Interface Standard (CMSIS) for 
programming Cortex-M0+ microcontrollers. The CMSIS is an integrated part of the device 
driver library. For a Cortex-M0+ microcontroller system, CMSIS defines:

• A common way to:

– Access peripheral registers.

– Define exception vectors.

• The names of:

– The registers of the core peripherals.

– The core exception vectors.

• A device-independent interface for RTOS kernels.

The CMSIS includes address definitions and data structures for the core peripherals in the 
Cortex-M0+ processor. It also includes optional interfaces for middleware components 
comprising a TCP/IP stack and a Flash file system.

The CMSIS simplifies software development by enabling the reuse of template code, and 
the combination of CMSIS-compliant software components from various middleware 
vendors. Software vendors can expand the CMSIS to include their peripheral definitions and 
access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short 
descriptions of the CMSIS functions that address the processor core and the core 
peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases these 
differ from the architectural short names that might be used in other documents.
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The following sections give more information about the CMSIS:

• 2.5.4: Power management programming hints on page 35

• 3.2: Intrinsic functions on page 39

• 4.2.1: Accessing the Cortex-M0+ NVIC registers using CMSIS on page 82

• NVIC programming hints on page 87

2.2 Memory model

This section describes the processor memory map and the behavior of memory accesses. 
The processor has a fixed memory map that provides up to 4GB of addressable memory. 
The memory map is:

Figure 5. Memory map
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The processor reserves regions of the Private Peripheral Bus (PPB) address range for core 
peripheral registers, see 1.3: About the Cortex-M0+ processor and core peripherals on 
page 9.

2.2.1 Memory regions, types and attributes

The memory map and the programming of the MPU splits into regions. Each region has a 
defined memory type, and some regions have additional memory attributes. The memory 
type and attributes determine the behavior of accesses to the region.

The memory types are:

Normal The processor can re-order transactions for efficiency, or 
perform speculative reads.

Device The processor preserves transaction order relative to other 
transactions to Device or Strongly-ordered memory.

Strongly-ordered The processor preserves transaction order relative to all other 
transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the 
memory system can buffer a write to Device memory, but must not buffer a write to Strongly-
ordered memory.

The additional memory attributes include. 

Shareable

Execute Never (XN) 

2.2.2 Memory system ordering of memory accesses

For most memory accesses caused by explicit memory access instructions, the memory 
system does not guarantee that the order in which the accesses complete matches the 
program order of the instructions, providing any re-ordering does not affect the behavior of 
the instruction sequence. Normally, if correct program execution depends on two memory 
accesses completing in program order, software must insert a memory barrier instruction 
between the memory access instructions, see 2.2.2: Memory system ordering of memory 
accesses on page 21.

However, the memory system does guarantee some ordering of accesses to Device and 
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs 
before A2 in program order, the ordering of the memory accesses caused by two 
instructions is:

For a shareable memory region, the memory system provides data 
synchronization between bus masters in a system with multiple bus 
masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, 
software must ensure data coherency between the bus masters.

<This description is required only if the device is likely to be used in 
systems where memory is shared between multiple processors.>

Means the processor prevents instruction accesses. A HardFault 
exception is generated on executing an instruction fetched from an 
XN region of memory.
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Table 9. Ordering of memory accesses(1)

1. - Means that the memory system does not guarantee the ordering of the accesses 
 
< Means that accesses are observed in program order, that is A1 is always observed before A2.

2.2.3 Behavior of memory accesses

The behavior of accesses to each region in the memory map is:

          

The Code, SRAM, and external RAM regions can hold programs.

The MPU can override the default memory access behavior described in this section. For 
more information, see 4.5: Memory Protection Unit on page 98.

Table 10. Memory access behavior(1)

1. See Memory regions, types and attributes on page 21 for more information.

Address range Memory region Memory type XN Description

0x00000000- 
0x1FFFFFFF

Code Normal -
Executable region for 
program code. You can 
also put data here.

0x20000000- 
0x3FFFFFFF

SRAM Normal -
Executable region for 
data. You can also put 
code here.

0x40000000- 
0x5FFFFFFF

Peripheral Device XN External device memory.

0x60000000- 
0x9FFFFFFF

External RAM Normal -
Executable region for 
data.

0xA0000000- 
0xDFFFFFFF

External device  Device XN External device memory.

0xE0000000- 
0xE00FFFFF

Private Peripheral 
Bus

Strongly- ordered XN

This region includes the 
NVIC, System timer, and 
System Control Block. 

Only word accesses can 
be used in this region.
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2.2.4 Additional memory access constraints for caches and shared memory

When a system includes caches or shared memory, some memory regions have additional 
access constraints, and some regions are subdivided, as Table 11 shows:

          

2.2.5 Software ordering of memory accesses

The order of instructions in the program flow does not always guarantee the order of the 
corresponding memory transactions. This is because:

• The processor can reorder some memory accesses to improve efficiency, providing this 
does not affect the behavior of the instruction sequence.

• Memory or devices in the memory map might have different wait states.

• Some memory accesses are buffered or speculative.

Memory system ordering of memory accesses on page 21 describes the cases where the 
memory system guarantees the order of memory accesses. Otherwise, if the order of 
memory accesses is critical, software must include memory barrier instructions to force that 
ordering. The processor provides the following memory barrier instructions:

Table 11. Memory region shareability and cache policies 

Address range Memory region Memory type(1)

1. See 2.2.1: Memory regions, types and attributes on page 21 for more information.

Shareability(1) Cache policy(2)

2. WT = Write through, no write allocate. WBWA = Write back, write allocate.

0x00000000- 
0x1FFFFFFF

Code Normal - WT

0x20000000- 
0x3FFFFFFF

SRAM Normal - WBWA

0x40000000- 
0x5FFFFFFF

Peripheral  Device - -

0x60000000- 
0x7FFFFFFF

External RAM Normal -

WBWA

0x80000000- 
0x9FFFFFFF

WT

0xA0000000- 
0xBFFFFFFF

External device  Device

Shareable

-
0xC0000000- 
0xDFFFFFFF

Non-shareable

0xE0000000- 
0xE00FFFFF

Private Peripheral 
Bus

Strongly- ordered Shareable -

0xE0100000- 
0xFFFFFFFF

Device Device - -
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The following are examples of using memory barrier instructions:

Vector table

Self-modifying code

Memory map switching

MPU programming

VTOR programming

Memory accesses to Strongly-ordered memory, such as the System Control Block, do not 
require the use of DMB instructions.

2.2.6 Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order 
from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second 
stored word. Little-endian format describes how words of data are stored in memory.

Little-endian format

In little-endian format, the processor stores the least significant byte (lsbyte) of a word at the 
lowest-numbered byte, and the most significant byte (msbyte) at the highest-numbered 
byte. For example:

The Data Memory Barrier (DMB) instruction ensures that outstanding memory 
transactions complete before subsequent memory transactions. See DMB on 
page 71.

The Data Synchronization Barrier (DSB) instruction ensures that outstanding 
memory transactions complete before subsequent instructions execute. See DSB 
on page 72.

The Instruction Synchronization Barrier (ISB) ensures that the effect of all 
completed memory transactions is recognizable by subsequent instructions. See 
ISB on page 73.

If the program changes an entry in the vector table, and then enables the 
corresponding exception, use a DMB instruction between the operations. 
This ensures that if the exception is taken immediately after being 
enabled the processor uses the new exception vector.

If a program contains self-modifying code, use an ISB instruction 
immediately after the code modification in the program. This ensures 
subsequent instruction execution uses the updated program.

If the system contains a memory map switching mechanism, use a DSB 
instruction after switching the memory map. This ensures subsequent 
instruction execution uses the updated memory map

Use a DSB followed by an ISB instruction or exception return to ensure 
that the new MPU configuration is used by subsequent instructions.

If the program updates the value of the VTOR, use a DMB instruction to 
ensure that the new vector table is used for subsequent exceptions.
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Figure 6. Little-endian format example
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2.3 Exception model

This section describes the exception model.

2.3.1 Exception states

Each exception is in one of the following states:

          

2.3.2 Exception types

The exception types are:

Inactive The exception is not active and not pending.

Pending The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change 
the state of the corresponding interrupt to pending.

Active An exception that is being serviced by the processor but has not 
completed.
Note: An exception handler can interrupt the execution of another exception 

handler. In this case both exceptions are in the active state.

 Active and pendingThe exception is being serviced by the processor and there is a 
pending exception from the same source.

Reset Reset is invoked on power up or a warm reset. The exception model 
treats reset as a special form of exception. When reset is asserted, 
the operation of the processor stops, potentially at any point in an 
instruction. When reset is deasserted, execution restarts from the 
address provided by the reset entry in the vector table. Execution 
restarts as privileged execution in Thread mode.

NMI A NonMaskable Interrupt (NMI) can be signalled by a peripheral or 
triggered by software. This is the highest priority exception other than 
reset. It is permanently enabled and has a fixed priority of -2. NMIs 
cannot be:

• Masked or prevented from activation by any other exception.

• Preempted by any exception other than Reset.

HardFault A HardFault is an exception that occurs because of an error during 
normal or exception processing. HardFaults have a fixed priority of -1, 
meaning they have higher priority than any exception with 
configurable priority.

SVCall A Supervisor Call (SVC) is an exception that is triggered by the SVC 
instruction. In an OS environment, applications can use SVC 
instructions to access OS kernel functions and device drivers.

PendSV PendSV is an interrupt-driven request for system-level service. In an 
OS environment, use PendSV for context switching when no other 
exception is active.
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For an asynchronous exception, other than reset, the processor can execute additional 
instructions between when the exception is triggered and when the processor enters the 
exception handler.

Privileged software can disable the exceptions that Table 12 on page 27 shows as having 
configurable priority, see 4.2.3: Interrupt Clear-enable Register on page 83.

For more information about HardFaults, see 2.4: Fault handling on page 33

SysTick A SysTick exception is an exception the system timer generates when 
it reaches zero. Software can also generate a SysTick exception. In 
an OS environment, the processor can use this exception as system 
tick.

Interrupt (IRQ) An interrupt, or IRQ, is an exception signalled by a peripheral, or 
generated by a software request. All interrupts are asynchronous to 
instruction execution. In the system, peripherals use interrupts to 
communicate with the processor.

Table 12. Properties of the different exception types

Exception 
number(1)

1. To simplify the software layer, the CMSIS only uses IRQ numbers. It uses negative values for exceptions 
other than interrupts. The IPSR returns the Exception number, see Interrupt Program Status Register on 
page 16

IRQ
number(1) Exception type Priority

Vector 
address(2)

2. See Figure 7.: Vector table on page 29 for more information.

Activation

1 - Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000C Synchronous

4-10 - Reserved - - -

11 -5 SVCall Configurable(3)

3. See 4.2.6: Interrupt Priority Registers on page 85

0x0000002C Synchronous

12-13 - Reserved - - -

14 -2 PendSV Configurable(3) 0x00000038 Asynchronous

15 -1 SysTick Configurable(3) 0x0000003C Asynchronous

15 - Reserved - - -

16 and above 0 and above Interrupt (IRQ) Configurable(3) 0x00000040 
and above(4)

4. Increasing in steps of 4.

Asynchronous
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2.3.3 Exception handlers

The processor handles exceptions using:

Interrupt Service Routines (ISRs) Interrupts IRQ0 to IRQ31 are the exceptions handled by 
ISRs

Fault handler HardFault is the only exception handled by the fault 
handler.

System handlers NMI, PendSV, SVCall SysTick, and HardFault are all 
system exceptions handled by system handlers.
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2.3.4 Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also 
called exception vectors, for all exception handlers. Figure 7 on page 29 shows the order of 
the exception vectors in the vector table. The least-significant bit of each vector must be 1, 
indicating that the exception handler is written in Thumb code. 

Figure 7. Vector table

On system reset, the vector table is fixed at address 0x00000000. Privileged software can 
write to the VTOR to relocate the vector table start address to a different memory location 
with the respect to vector table size and granularity of TBLOFF settings (see Section 4.3.4: 
Vector Table Offset Register).
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2.3.5 Exception priorities

As Table 12 on page 27 shows, all exceptions have an associated priority, with:

• A lower priority value indicating a higher priority.

• Configurable priorities for all exceptions except Reset, HardFault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority 
have a priority of 0. For information about configuring exception priorities see 

• 4.3.8: System Handler Priority Registers on page 94

• I4.2.6: Interrupt Priority Registers on page 85. 

 

Note: Configurable priority values are in the range 0-192, in steps of 64. The Reset, HardFault, 
and NMI exceptions, with fixed negative priority values, always have higher priority than any 
other exception.

 

Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that 
IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is 
processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest 
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending 
and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted 
if a higher priority exception occurs. If an exception occurs with the same priority as the 
exception being handled, the handler is not preempted, irrespective of the exception 
number. However, the status of the new interrupt changes to pending.

2.3.6 Exception entry and return

Descriptions of exception handling use the following terms:

Preemption When the processor is executing an exception handler, an exception can 
preempt the exception handler if its priority is higher than the priority of the 
exception being handled.

When one exception preempts another, the exceptions are called nested 
exceptions. See Exception entry on page 31 for more information.

Return This occurs when the exception handler is completed, and:

• There is no pending exception with sufficient priority to be serviced.

• The completed exception handler was not handling a late-arriving 
exception.

The processor pops the stack and restores the processor state to the state 
it had before the interrupt occurred. See Exception return on page 32 for 
more information.
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Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either:

• The processor is in Thread mode.

• The new exception is of higher priority than the exception being handled, in which case 
the new exception preempts the exception being handled.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has greater priority than any limit set by the mask 
register, see Exception mask register on page 17. An exception with less priority than this is 
pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-
arriving exception, the processor pushes information onto the current stack. This operation 
is referred to as stacking and the structure of eight data words is referred to as a stack 
frame. The stack frame contains the following information:

Figure 8. Stack frame

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. 
The stack frame is aligned to a double-word address.

The stack frame includes the return address. This is the address of the next instruction in 
the interrupted program. This value is restored to the PC at exception return so that the 
interrupted program resumes.

The processor performs a vector fetch that reads the exception handler start address from 
the vector table. When stacking is complete, the processor starts executing the exception 

Tail-chaining This mechanism speeds up exception servicing. On completion of an 
exception handler, if there is a pending exception that meets the 
requirements for exception entry, the stack pop is skipped and control 
transfers to the new exception handler.

Late-arriving This mechanism speeds up preemption. If a higher priority exception 
occurs during state saving for a previous exception, the processor 
switches to handle the higher priority exception and initiates the vector 
fetch for that exception. State saving is not affected by late arrival because 
the state saved would be the same for both exceptions. On return from the 
exception handler of the late-arriving exception, the normal tail-chaining 
rules apply.
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handler. At the same time, the processor writes an EXC_RETURN value to the LR. This 
indicates which stack pointer corresponds to the stack frame and what operation mode the 
processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing 
the exception handler and automatically changes the status of the corresponding pending 
interrupt to active. 

If another higher priority exception occurs during exception entry, the processor starts 
executing the exception handler for this exception and does not change the pending status 
of the earlier exception. This is the late arrival case.

Exception return

Exception return occurs when the processor is in Handler mode and execution of one of the 
following instructions attempts to set the PC to an EXC_RETURN value:

• A POP instruction that loads the PC.

• B PBX instruction using any register.

The processor saves an EXC_RETURN value to the LR on exception entry. The exception 
mechanism relies on this value to detect when the processor has completed an exception 
handler. Bits[31:4] of an EXC_RETURN value are 0xFFFFFFF. When the processor loads a 
value matching this pattern to the PC it detects that the operation is a not a normal branch 
operation and, instead, that the exception is complete. As a result, it starts the exception 
return sequence. Bits[3:0] of the EXC_RETURN value indicate the required return stack and 
processor mode, as Table 13 on page 32 shows.

Table 13. Exception return behavior

EXC_RETURN Description

0xFFFFFF1

Return to Handler mode.

Exception return gets state from the main stack.

Execution uses MSP after return.

0xFFFFFF9

Return to Thread mode.

Exception return gets state from MSP.

Execution uses MSP after return.

0xFFFFFFD

Return to Thread mode.

Exception return gets state from PSP.

Execution uses PSP after return.

All other values Reserved.
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2.4 Fault handling

Faults are a subset of exceptions, see 2.3: Exception model on page 26. All faults result in 
the HardFault exception being taken or cause Lockup if they occur in the NMI or HardFault 
handler. The faults are:

• Execution of an SVC instruction at a priority equal or higher than SVCall.

• Execution of a BKPT instruction without a debugger attached.

• A system-generated bus error on a load or store.

• Execution of an instruction from an XN memory address.

• Execution of an instruction from a location for which the system generates a bus fault.

• A system-generated bus error on a vector fetch.

• Execution of an Undefined instruction.

• Execution of an instruction when not in Thumb state as a result of the T-bit being 
previously cleared to 0.

• An attempted load or store to an unaligned address.

• An MPU fault because of a privilege violation or an attempt to access an unmanaged 
region.

 

Note: Only Reset and NMI can preempt the fixed priority HardFault handler. A HardFault can 
preempt any exception other than Reset, NMI, or another HardFault.

 

2.4.1 Lockup

The processor enters a Lockup state if a fault occurs when executing the NMI or HardFault 
handlers, or if the system generates a bus error when unstacking the PSR on an exception 
return using the MSP. When the processor is in Lockup state it does not execute any 
instructions. The processor remains in Lockup state until one of the following occurs:

• It is reset.

• A debugger halts it.

• An NMI occurs and the current Lockup is in the HardFault handler.

 

Note: If Lockup state occurs in the NMI handler a subsequent NMI does not cause the processor 
to leave Lockup state.

 

2.5 Power management

The Cortex-M0+ processor sleep modes reduce power consumption:

• A sleep mode, that stops the processor clock.

• A deep sleep mode, that enters ultra low-power modes. 

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see 4.3.6: System 
Control Register on page 92. When entering the deep sleep mode, the PDSS bit in 
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PWR_CR register will select entry in Stop or Standby mode, see the reference manual 
chapter "low-power modes" for details.

This section describes the mechanisms for entering sleep mode, and the conditions for 
waking up from sleep mode.

2.5.1 Entering sleep mode

This section describes the mechanisms software can use to put the processor into sleep 
mode.

The system can generate spurious wakeup events, for example a debug operation wakes 
up the processor. For this reason, software must be able to put the processor back into 
sleep mode after such an event. A program might have an idle loop to put the processor 
back in to sleep mode. 

Wait for interrupt

The Wait For Interrupt instruction, WFI, causes immediate entry to sleep mode. When the 
processor executes a WFI instruction it stops executing instructions and enters sleep mode. 
See 3.7.12: WFI on page 80 for more information.

Wait for event

The Wait For Event instruction, WFE, causes entry to sleep mode conditional on the value of 
a one-bit event register. When the processor executes a WFE instruction, it checks the value 
of the event register:

          

See 3.7.11: WFE on page 79 for more information.

If the event register is 1, this indicates that the processor must not enter sleep mode on 
execution of a WFE instruction. Typically, this is because of the assertion of an external 
event, or because another processor in the system has executed a SEV instruction, see 
3.7.9: SEV on page 77. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution 
of an exception handler and returns to Thread mode it immediately enters sleep mode. Use 
this mechanism in applications that only require the processor to run when an interrupt 
occurs.

2.5.2 Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that caused it to 
enter sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to 
cause exception entry.

0 The processor stops executing instructions and enters sleep mode.

1 The processor sets the register to zero and continues executing instructions without 
entering sleep mode.
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Some embedded systems might have to execute system restore tasks after the processor 
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK.PM 
bit to 1. If an interrupt arrives that is enabled and has a higher priority than current exception 
priority, the processor wakes up but does not execute the interrupt handler until the 
processor sets PRIMASK.PM to zero. For more information about PRIMASK, see Exception 
mask register on page 17.

Wakeup from WFE

The processor wakes up if:

• It detects an exception with sufficient priority to cause exception entry.

• It detects an external event signal, see 2.5.3: The external event input on page 35.

• In a multiprocessor system, another processor in the system executes a SEV 
instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers 
an event and wakes up the processor, even if the interrupt is disabled or has insufficient 
priority to cause exception entry. For more information about the SCR, see 4.3.6: System 
Control Register on page 92.

2.5.3 The external event input

The processor provides an external event input signal. This signal can be generated by 
peripherals. Tie this signal LOW if it is not used.

This signal can wakeup the processor from WFE, or set the internal WFE event register to 
one to indicate that the processor must not enter sleep mode on a later WFE instruction, see 
Wait for event on page 34.

2.5.4 Power management programming hints

ISO/IEC C cannot directly generate the WFI, WFE, and SEV instructions. The CMSIS provides 
the following intrinsic functions for these instructions:

void __WFE(void) // Wait for Event 
void __WFI(void) // Wait for Interrupt 
void __SEV(void) // Send Event
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3 Cortex-M0+ instruction set

3.1 Instruction set summary

The processor implements a version of the Thumb instruction set. Table 14 lists the 
supported instructions.

In Table 14

• Angle brackets, <>, enclose alternative forms of the operand.

• Braces, {}, enclose optional operands and mnemonic parts.

• The Operands column is not exhaustive.

For more information on the instructions and operands, see the instruction descriptions.

           

Table 14.  Cortex-M0+ instructions 

Mnemonic Operands Brief description Flags Section

ADCS {Rd,} Rn, Rm Add with Carry N,Z,C,V 3.5.1 on page 54.

ADD{S} {Rd,} Rn, <Rm|#imm> Add N,Z,C,V 3.5.1 on page 54.

ADR Rd, label
PC-relative Address to 
Register

- 3.4.1 on page 46.

ANDS {Rd,} Rn, Rm Bitwise AND N,Z 3.5.2 on page 56.

ASRS {Rd,} Rm, <Rs|#imm> Arithmetic Shift Right N,Z,C 3.5.3 on page 57.

B{cc} label Branch {conditionally} - 3.6.1 on page 66.

BICS {Rd,} Rn, Rm Bit Clear N,Z 3.5.2 on page 56.

BKPT #imm Breakpoint - 3.7.1 on page 69.

BL label Branch with Link - 3.6.1 on page 66.

BLX Rm
Branch indirect with 
Link

- 3.6.1 on page 66.

BX Rm Branch indirect - 3.6.1 on page 66.

CMN Rn, Rm Compare Negative N,Z,C,V 3.5.4 on page 59.

CMP Rn, <Rm|#imm> Compare N,Z,C,V 3.5.4 on page 59.

CPSID i
Change Processor 
State, Disable 
Interrupts

- 3.7.2 on page 70.

CPSIE i
Change Processor 
State, Enable 
Interrupts

- 3.7.2 on page 70.

DMB - Data Memory Barrier - 3.7.3 on page 71.

DSB -
Data Synchronization 
Barrier

- 3.7.4 on page 72.

EORS {Rd,} Rn, Rm Exclusive OR N,Z 3.5.2 on page 56.
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ISB -
Instruction 
Synchronization 
Barrier

- 3.7.5 on page 73.

LDM Rn{!}, reglist
Load Multiple 
registers, increment 
after

- 3.4.5 on page 50.

LDR Rt, label
Load Register from 
PC-relative address

- 3.4.2 on page 47.

LDR Rt, [Rn, <Rm|#imm>]
Load Register with 
word

- 3.4.2 on page 47.

LDRB Rt, [Rn, <Rm|#imm>]
Load Register with 
byte

- 3.4.2 on page 47.

LDRH Rt, [Rn, <Rm|#imm>]
Load Register with 
halfword

- 3.4.2 on page 47.

LDRSB Rt, [Rn, <Rm|#imm>]
Load Register with 
signed byte

- 3.4.2 on page 47.

LDRSH Rt, [Rn, <Rm|#imm>]
Load Register with 
signed halfword

- 3.4.2 on page 47.

LSLS {Rd,} Rn, <Rs|#imm> Logical Shift Left N,Z,C 3.5.3 on page 57.

LSRS {Rd,} Rn, <Rs|#imm> Logical Shift Right N,Z,C 3.5.3 on page 57.

MOV{S} Rd, Rm Move N,Z 3.5.5 on page 60.

MRS Rd, spec_reg
Move to general 
register from special 
register

- 3.7.6 on page 74.

MSR spec_reg, Rm
Move to special 
register from general 
register

N,Z,C,V 3.7.7 on page 75.

MULS Rd, Rn, Rm Multiply, 32-bit result N,Z 3.5.6 on page 61.

MVNS Rd, Rm Bitwise NOT N,Z 3.5.5 on page 60.

NOP - No Operation - 3.7.8 on page 76.

ORRS {Rd,} Rn, Rm Logical OR N,Z 3.5.2 on page 56.

POP reglist
Pop registers from 
stack

- 3.4.6 on page 52.

PUSH reglist
Push registers onto 
stack

- 3.4.6 on page 52.

REV Rd, Rm Byte-Reverse word - 3.5.7 on page 62.

REV16 Rd, Rm
Byte-Reverse packed 
halfwords

- 3.5.7 on page 62.

REVSH Rd, Rm
Byte-Reverse signed 
halfword

- 3.5.7 on page 62.

RORS {Rd,} Rn, Rs Rotate Right N,Z,C 3.5.3 on page 57.

Table 14.  Cortex-M0+ instructions (continued)

Mnemonic Operands Brief description Flags Section
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RSBS {Rd,} Rn, #0 Reverse Subtract N,Z,C,V 3.5.1 on page 54.

SBCS {Rd,} Rn, Rm Subtract with Carry N,Z,C,V 3.5.1 on page 54.

SEV - Send Event - 3.7.9 on page 77.

STM Rn!, reglist
Store Multiple 
registers, increment 
after

- 3.4.5 on page 50.

STR Rt, [Rn, <Rm|#imm>]
Store Register as 
word

- 3.4.2 on page 47.

STRB Rt, [Rn, <Rm|#imm>] Store Register as byte - 3.4.2 on page 47.

STRH Rt, [Rn, <Rm|#imm>]
Store Register as 
halfword

- 3.4.2 on page 47.

SUB{S} {Rd,} Rn, <Rm|#imm> Subtract N,Z,C,V 3.5.1 on page 54.

SVC #imm Supervisor Call -
3.7.10 on page 
78.

SXTB Rd, Rm Sign extend byte - 3.5.8 on page 63.

SXTH Rd, Rm Sign extend halfword - 3.5.8 on page 63.

TST Rn, Rm
Logical AND based 
test

N,Z 3.5.9 on page 64.

UXTB Rd, Rm Zero extend a byte - 3.5.8 on page 63.

UXTH Rd, Rm
Zero extend a 
halfword

- 3.5.8 on page 63.

WFE - Wait For Event - 3.7.11 on page 79.

WFI - Wait For Interrupt -
3.7.12 on page 
80.

Table 14.  Cortex-M0+ instructions (continued)

Mnemonic Operands Brief description Flags Section
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3.2 Intrinsic functions

ISO/IEC C code cannot directly access some Cortex-M0+ instructions. This section 
describes intrinsic functions that can generate these instructions, provided by the CMSIS 
and that might be provided by a C compiler. If a C compiler does not support an appropriate 
intrinsic function, you might have to use inline assembler to access the relevant instruction.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C 
code cannot directly access:

          

The CMSIS also provides a number of functions for accessing the special registers using 
MRS and MSR instructions

          :

Table 15. CMSIS intrinsic functions to generate some Cortex-M0+ instructions  

Instruction CMSIS intrinsic function

CPSIE i void __enable_irq(void)

CPSID i void __disable_irq(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

NOP void __NOP(void)

REV uint32_t __REV(uint32_t int value)

REV16 uint32_t __REV16(uint32_t int value)

REVSH uint32_t __REVSH(uint32_t int value)

SEV void __SEV(void)

WFE void __WFE(void)

WFI void __WFI(void)

Table 16. CMSIS intrinsic functions to access the special registers 

Special register Access CMSIS function

PRIMASK
Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

CONTROL
Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP

Read uint32_t __get_MSP (void)

Write
void __set_MSP (uint32_t 
TopOfMainStack)

PSP

Read uint32_t __get_PSP (void)

Write
void __set_PSP (uint32_t 
TopOfProcStack)
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3.3 About the instruction descriptions

The following sections give more information about using the instructions:

• Operands.

• Restrictions when using PC or SP.

• Shift operations.

• Address alignment.

• PC-relative expressions.

• Conditional execution.

3.3.1 Operands

An instruction operand can be an Arm® register, a constant, or another instruction-specific 
parameter. Instructions act on the operands and often store the result in a destination 
register. When there is a destination register in the instruction, it is usually specified before 
the other operands. 

3.3.2 Restrictions when using PC or SP

Many instructions are unable to use, or have restrictions on whether you can use, the 
Program Counter (PC) or Stack Pointer (SP) for the operands or destination register. See 
instruction descriptions for more information. 

Note: When you update the PC with a BX, BLX, or POP instruction, bit[0] of any address must be 1 
for correct execution. This is because this bit indicates the destination instruction set, and 
the Cortex-M0+ processor only supports Thumb instructions. When a BL or BLX instruction 
writes the value of bit[0] into the LR it is automatically assigned the value 1. 

3.3.3 Shift operations

Register shift operations move the bits in a register left or right by a specified number of bits, 
the shift length. Register shift can be performed directly by the instructions ASR, LSR, LSL, 
and ROR and the result is written to a destination register.

The permitted shift lengths depend on the shift type and the instruction, see the individual 
instruction description. If the shift length is 0, no shift occurs. Register shift operations 
update the carry flag except when the specified shift length is 0. The following sub-sections 
describe the various shift operations and how they affect the carry flag. In these 
descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by 
n places, into the right-hand 32-n bits of the result, and it copies the original bit[31] of the 
register into the left-hand n bits of the result. See Figure 9 on page 41.

You can use the ASR operation to divide the signed value in the register Rm by 2n, with the 
result being rounded towards negative-infinity.

When the instruction is ASRS the carry flag is updated to the last bit shifted out, bit[n-1], of 
the register Rm

Note: If n is 32 or more, then all the bits in the result are cleared to 0. 

If n is 33 or more and the carry flag is updated, it is updated to 0.
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Figure 9. ASR#3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n 
places, into the right-hand 32-n bits of the result, and it sets the left-hand n bits of the result 
to 0. See Figure 10 on page 41.

You can use the LSR operation to divide the value in the register Rm by 2n, if the value is 
regarded as an unsigned integer.

When the instruction is LSRS, the carry flag is updated to the last bit shifted out, bit[n-1], of 
the register Rm.

Note: If n is 32 or more, then all the bits in the result are cleared to 0. 

If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 10. LSR#3

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n 
places, into the left-hand 32-n bits of the result, and it sets the right-hand n bits of the result 
to 0. See Figure 11 on page 42.

You can use the LSL operation to multiply the value in the register Rm by 2n, if the value is 
regarded as an unsigned integer or a two’s complement signed integer. Overflow can occur 
without warning.

When the instruction is LSLS the carry flag is updated to the last bit shifted out, bit[32-n], 

of the register Rm. These instructions do not affect the carry flag when used with LSL#0.
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Note: If n is 32 or more, then all the bits in the result are cleared to 0. 

If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 11. LSL #3

ROR

Rotate right by n bits moves the left-hand 32-nbits of the register Rm, to the right by n places, 
into the right-hand 32-n bits of the result, and it moves the right-hand n bits of the register 
into the left-hand n bits of the result. See Figure 12 on page 42.

When the instruction is RORS the carry flag is updated to the last bit rotation, bit[n-1], of the

register Rm.

Note: If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is 
updated, it is updated to bit[31] of Rm. 

If ROR with shift length, n, greater than 32 is the same as ROR with shift length n-32

Figure 12. ROR #3

3.3.4 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, or 
multiple word access, or where a halfword-aligned address is used for a halfword access. 
Byte accesses are always aligned.

There is no support for unaligned accesses on the Cortex-M0+ processor. Any attempt to 
perform an unaligned memory access operation results in a HardFault exception.
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3.3.5 PC-relative expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or 
literal data. It is represented in the instruction as the PC value plus or minus a numeric 
offset. The assembler calculates the required offset from the label and the address of the 
current instruction. If the offset is too big, the assembler produces an error.

Note: For most instructions, the value of the PC is the address of the current instruction plus 4 
bytes. 

Your assembler might permit other syntaxes for PC-relative expressions, such as a label 
plus or minus a number, or an expression of the form [PC,#imm].

3.3.6 Conditional execution

Most data processing instructions update the condition flags in the Application Program 
Status Register (APSR) according to the result of the operation, see Application Program 
Status Register on page 15. Some instructions update all flags, and some only update a 
subset. If a flag is not updated, the original value is preserved. See the instruction 
descriptions for the flags they affect.

You can execute a conditional branch instruction, based on the condition flags set in another 
instruction, either:

• Immediately after the instruction that updated the flags.

• After any number of intervening instructions that have not updated the flags.

On the Cortex-M0+ processor, conditional execution is available by using conditional 
branches.

This section describes:

• The condition flags on page 43.

• Condition code suffixes on page 44.

The condition flags

The APSR contains the following condition flags:

          

For more information about the APSR see Program Status Register on page 14.

A carry occurs:

• If the result of an addition is greater than or equal to 232.

• If the result of a subtraction is positive or zero.

• As the result of a shift or rotate instruction.

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise

Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

V Set to 1 when the operation caused overflow, cleared to 0 otherwise.
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Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result 
had the operation been performed at infinite precision, for example:

• If adding two negative values results in a positive value.

• If adding two positive values results in a negative value.

• If subtracting a positive value from a negative value generates a positive value.

• If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that 
the result is discarded. See the instruction descriptions for more information.

Condition code suffixes

Conditional branch is shown in syntax descriptions as B{cond}. A branch instruction with a 
condition code is only taken if the condition code flags in the APSR meet the specified 
condition, otherwise the branch instruction is ignored. Table 17 shows the condition codes 
to use. 

Table 17 also shows the relationship between condition code suffixes and the N, Z, C, and V 
flags

          .

Table 17. Condition code suffixes 

Suffix Flags Meaning

EQ Z = 1 Equal, last flag setting result was zero.

NE Z = 0 Not equal, last flag setting result was non-zero.

CS or HS C = 1 Higher or same, unsigned.

CC or LO C = 0 Lower, unsigned.

MI N = 1 Negative.

PL N = 0 Positive or zero.

VS V = 1 Overflow.

VC V = 0 No overflow.

HI C = 1 and Z = 0 Higher, unsigned.

LS C = 0 or   Z = 1 Lower or same, unsigned.

GE N = V Greater than or equal, signed.

LT N != V Less than, signed.

GT Z = 0 and N = V Greater than, signed.

LE Z = 1 or N != V Less than or equal, signed.

AL Can have any value Always. This is the default when no suffix is specified.
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3.4 Memory access instructions

Table 18 shows the memory access instructions

          :

Table 18. Memory access instructions 

Mnemonic Brief description See

ADR Generate PC-relative address 3.4.1: ADR on page 46.

LDM Load Multiple registers 3.4.5: LDM and STM on page 50.

LDR{type} Load Register using immediate offset
3.4.2: LDR and STR, immediate offset on 
page 47.

LDR{type} Load Register using register offset
3.4.3: LDR and STR, register offset on 
page 48.

LDR
Load Register from PC-relative 
address

3.4.4: LDR, PC-relative on page 49.

POP Pop registers from stack 3.4.6: PUSH and POP on page 52.

PUSH Push registers onto stack 3.4.6: PUSH and POP on page 52.

STM Store Multiple registers 3.4.5: LDM and STM on page 50.

STR{type} Store Register using immediate offset
3.4.2: LDR and STR, immediate offset on 
page 47.

STR{type} Store Register using register offset
3.4.3: LDR and STR, register offset on 
page 48.
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3.4.1 ADR

Generates a PC-relative address.

Syntax

ADR Rd, label

where:

          

Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to 
the destination register.

ADR facilitates the generation of position-independent code, because the address is 
PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure 
that bit[0] of the address you generate is set to 1 for correct execution.

Restrictions

In this instruction Rd must specify R0-R7. The data-value addressed must be word aligned 
and within 1020 bytes of the current PC.

Condition flags

This instruction does not change the flags.

Examples

ADR R1, TextMessage ; Write address value of a location labelled as;

TextMessage to R1

ADR R3, [PC,#996]   ; Set R3 to value of PC + 996.

Rd Is the destination register.

label Is a PC-relative expression. See 3.3.5: PC-relative expressions on page 43.
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3.4.2 LDR and STR, immediate offset

Load and Store with immediate offset.

Syntax

LDR Rt, [<Rn | SP> {, #imm}]

LDR<B|H> Rt, [Rn {, #imm}]

STR Rt, [<Rn | SP>, {,#imm}]

STR<B|H> Rt, [Rn {,#imm}]

where:

          

Operation

LDR, LDRB and LDRH instructions load the register specified by Rt with either a word, byte 
or halfword data value from memory. Sizes less than word are zero extended to 32-bits 
before being written to the register specified by Rt.

STR, STRB and STRH instructions store the word, least-significant byte or lower halfword 
contained in the single register specified by Rt in to memory. The memory address to load 
from or store to is the sum of the value in the register specified by either Rn or SP and the 
immediate value imm.

Restrictions

In these instructions:

• Rt and Rn must only specify R0-R7. 

• imm must be between:

– 0 and 1020 and an integer multiple of four for LDR and STR using SP as the base 
register.

– 0 and 124 and an integer multiple of four for LDR and STR using R0-R7 as the 
base register.

– 0 and 62 and an integer multiple of two for LDRH and STRH.

– 0 and 31 for LDRB and STRB.

• The computed address must be divisible by the number of bytes in the transaction, see 
3.3.4: Address alignment on page 42.

Condition flags

These instructions do not change the flags.

Examples 

LDR R4, [R7 ; Loads R4 from the address in R7. 

STR R2,[R0,#const-struc] ; const-struc is an expression evaluating

     ; to a constant in the range 0-1020.

Rt Is the register to load or store.

Rn Is the register on which the memory address is based

imm Is an offset from Rn. If imm is omitted, it is assumed to be zero.
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3.4.3 LDR and STR, register offset

Load and Store with register offset.

Syntax

LDR Rt, [Rn, Rm]

LDR<B|H> Rt, [Rn, Rm]

LDR<SB|SH> Rt, [Rn, Rm]

STR Rt, [Rn, Rm]

STR<B|H> Rt, [Rn, Rm]

where:

Rt Is the register to load or store.

Rn Is the register on which the memory address is based

Rm s a register containing a value to be used as the offset

Operation

LDR, LDRB, LDRH, LDRSB and LDRSH load the register specified by Rt with either a 
word, zero extended byte, zero extended halfword, sign extended byte or sign extended 
halfword value from memory.

STR, STRB and STRH store the word, least-significant byte or lower halfword contained in 
the single register specified by Rt into memory.

The memory address to load from or store to is the sum of the values in the registers 
specified by Rn and Rm.

Restrictions

In these instructions:

• Rt, Rn, and Rm must only specify R0-R7.

• The computed memory address must be divisible by the number of bytes in the load or 
store, see 3.3.4: Address alignment on page 42.

Condition flags

These instructions do not change the flags.

Examples

STR R0, [R5, R1]           ; Store value of R0 into an address equal to 
                           ; sum of R5 and R1 
LDRSH  R1, [R2, R3]        ; Load a halfword from the memory address 
                           ; specified by (R2 + R3), sign extend to 32-bits 
                           ; and write to R1.
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3.4.4 LDR, PC-relative

Load register (literal) from memory.

Syntax

LDR Rt, label

where:

Rt Is the register to load

label Is a PC-relative expression. See 3.3.5: PC-relative expressions on page 43.

Operation

Loads the register specified by Rt from the word in memory specified by label.

Restrictions

In these instructions, label must be within 1020 bytes of the current PC and word aligned.

Condition flags

These instructions do not change the flags.

Examples

    LDR   R0, LookUpTable   ; Load R0 with a word of data from an address 
                            ; labelled as LookUpTable. 
    LDR   R3, [PC, #100]    ; Load R3 with memory word at (PC + 100).
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3.4.5 LDM and STM

Load and Store Multiple registers.

Syntax

LDM Rn{!}, reglist

STM Rn!, reglist

where:

          

LDMIA and LDMFD are synonyms for LDM. LDMIA refers to the base register being 
Incremented After each access. LDMFD refers to its use for popping data from Full 
Descending stacks.

STMIA and STMEA are synonyms for STM. STMIA refers to the base register being 
Incremented After each access. STMEA refers to its use for pushing data onto Empty 
Ascending stacks.

Operation

LDM instructions load the registers in reglist with word values from memory addresses 
based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses 
based on Rn.

The memory addresses used for the accesses are at 4-byte intervals ranging from the value 
in the register specified by Rn to the value in the register specified by Rn + 4 * (n-1), where n 
is the number of registers in reglist. The accesses happens in order of increasing 
register numbers, with the lowest numbered register using the lowest memory address and 
the highest number register using the highest memory address. If the writeback suffix is 
specified, the value in the register specified by Rn + 4 *n is written back to the register 
specified by Rn.

Restrictions

In these instructions:

• reglist and Rn are limited to R0-R7.

• The writeback suffix must always be used unless the instruction is an LDM where reglist 
also contains Rn, in which case the writeback suffix must not be used.

• The value in the register specified by Rn must be word aligned. See 3.3.4: Address 
alignment on page 42 for more information. 

• For STM, if Rn appears in reglist, then it must be the first register in the list.

Condition flags

These instructions do not change the flags.

Rn Is the register on which the memory addresses are based.

! Writeback suffix.

reglist Is a list of one or more registers to be loaded or stored, enclosed in braces. It 
can contain register ranges. It must be comma separated if it contains more 
than one register or register range, see Examples on page 51.
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Examples

    LDM     R0,{R0,R3,R4}      ; LDMIA is a synonym for LDM 
    STMIA   R1!,{R2-R4,R6}

Incorrect examples

    STM     R5!,{R4,R5,R6} ;Value stored for R5 is unpredictable  
    LDM     R2,{}          ;There must be at least one register in the list
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3.4.6 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH reglist

POP reglist

where:

reglist Is a non-empty list of registers, enclosed in braces. It can contain register 
ranges. It must be comma separated if it contains more than one register or 
register range.

Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest 
memory address and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest 
memory address and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP 
uses the value in the SP register as the lowest memory address, implementing a full-
descending stack. On completion, PUSH updates the SP register to point to the location of 
the lowest store value, POP updates the SP register to point to the location above the 
highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when 
the POP instruction has completed. Bit[0] of the value read for the PC is used to update the 
APSR T-bit. This bit must be 1 to ensure correct operation.

Restrictions

In these instructions:

• reglist must use only R0-R7. 

• The exception is LR for a PUSH and PC for a POP.

Condition flags

These instructions do not change the flags.

Examples

    PUSH    {R0,R4-R7}     ; Push R0,R4,R5,R6,R7 onto the stack 
    PUSH    {R2,LR}        ; Push R2 and the link-register onto the stack 
    POP     {R0,R6,PC}     ; Pop r0,r6 and PC from the stack, then branch to 
                           ; the new PC.
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3.5 General data processing instructions

Table 19 shows the data processing instructions:

          

Table 19. Data processing instructions 

Mnemonic Brief description See

ADCS Add with Carry
3.5.1: ADC, ADD, RSB, SBC, and SUB on 
page 54.

ADD{S} Add
3.5.1: ADC, ADD, RSB, SBC, and SUB on 
page 54.

ANDS Logical AND 3.5.2: AND, ORR, EOR, and BIC on page 56.

ASRS Arithmetic Shift Right 3.5.3: ASR, LSL, LSR, and ROR on page 57.

BICS Bit Clear 3.5.2: AND, ORR, EOR, and BIC on page 56.

CMN Compare Negative 3.5.4: CMP and CMN on page 59.

CMP Compare 3.5.4: CMP and CMN on page 59.

EORS Exclusive OR 3.5.2: AND, ORR, EOR, and BIC on page 56.

LSLS Logical Shift Left 3.5.3: ASR, LSL, LSR, and ROR on page 57.

LSRS Logical Shift Right 3.5.3: ASR, LSL, LSR, and ROR on page 57.

MOV{S} Move 3.5.5: MOV and MVN on page 60.

MULS Multiply 3.5.6: MULS on page 61.

MVNS Move NOT 3.5.5: MOV and MVN on page 60.

ORRS Logical OR 3.5.2: AND, ORR, EOR, and BIC on page 56.

REV Reverse byte order in a word 3.5.7: REV, REV16, and REVSH on page 62.

REV16 Reverse byte order in each halfword 3.5.7: REV, REV16, and REVSH on page 62.

REVSH
Reverse byte order in bottom halfword 
and sign extend

3.5.7: REV, REV16, and REVSH on page 62.

RORS Rotate Right 3.5.3: ASR, LSL, LSR, and ROR on page 57.

RSBS Reverse Subtract
3.5.1: ADC, ADD, RSB, SBC, and SUB on 
page 54.

SBCS Subtract with Carry
3.5.1: ADC, ADD, RSB, SBC, and SUB on 
page 54.

SUBS Subtract
3.5.1: ADC, ADD, RSB, SBC, and SUB on 
page 54.

SXTB Sign extend a byte 3.5.8: SXT and UXT on page 63.

SXTH Sign extend a halfword 3.5.8: SXT and UXT on page 63.

UXTB Zero extend a byte 3.5.8: SXT and UXT on page 63.

UXTH Zero extend a halfword 3.5.8: SXT and UXT on page 63.

TST Test 3.5.9: TST on page 64.
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3.5.1 ADC, ADD, RSB, SBC, and SUB

Add with carry, Add, Reverse Subtract, Subtract with carry, and Subtract.

Syntax

ADCS   {Rd,} Rn, Rm

ADD{S} {Rd,} Rn, <Rm|#imm>

RSBS   {Rd,} Rn, Rm, #0

SBCS   {Rd,} Rn, Rm

SUB{S} {Rd,} Rn, <Rm|#imm>

Where:

S Causes an ADD or SUB instruction to update flags.

Rd Specifies the result register.

reglist Specifies the first source register.

Imm Specifies a constant immediate value.

When the optional Rd register specifier is omitted, it is assumed to take the same value as 
Rn, for example ADDS R1,R2 is identical to ADDS R1,R1,R2.

Operation

The ADCS instruction adds the value in Rn to the value in Rm, adding another one if the carry 
flag is set, places the result in the register specified by Rd and updates the N, Z, C, and V 
flags.

The ADD instruction adds the value in Rn to the value in Rm or an immediate value specified 
by imm and places the result in the register specified by Rd. 

The ADDS instruction performs the same operation as ADD and also updates the N, Z, C and 
V flags.

The RSBS instruction subtracts the value in Rn from zero, producing the arithmetic negative 
of the value, and places the result in the register specified by Rd and updates the N, Z, C 
and V flags.

The SBCS instruction subtracts the value of Rm from the value in Rn, if the carry flag is clear, 
the result is reduced by one. It places the result in the register specified by Rd and updates 
the N, Z, C and V flags.

The SUB instruction subtracts the value in Rm or the immediate specified by imm. It places 
the result in the register specified by Rd.

The SUBS instruction performs the same operation as SUB and also updates the N, Z, C and 
V flags.

Use ADC and SBC to synthesize multiword arithmetic, see Examples on page 55.

See also 3.4.1: ADR on page 46.

Restrictions

Table 20 lists the legal combinations of register specifiers and immediate values that can be 
used with each instruction.
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          .

Examples

Example 1 shows two instructions that add a 64-bit integer contained in R0 and R1 to 
another 64-bit integer contained in R2 and R3, and place the result in R0 and R1.

Example 164-bit addition

    ADDS    R0, R0, R2    ; add the least significant words 
    ADCS    R1, R1, R3    ; add the most significant words with carry

Multiword values do not have to use consecutive registers. Example 2 shows instructions 
that subtract a 96-bit integer contained in R1, R2, and R3 from another contained in R4, R5, 
and R6. The example stores the result in R4, R5, and R6.

Example 296-bit subtraction

    SUBS    R4, R4, R1    ; subtract the least significant words 
    SBCS    R5, R5, R2    ; subtract the middle words with carry 
    SBCS    R6, R6, R3    ; subtract the most significant words with carry

Example 3 shows the RSBS instruction used to perform a 1's complement of a single 
register.

Example 3Arithmetic negation

    RSBS    R7, R7, #0    ; subtract R7 from zero

Table 20. ADC, ADD, RSB, SBC and SUB operand restrictions 

Instruction Rd Rn Rm imm Restrictions

ADCS R0-R7 R0-R7 R0-R7 - Rd and Rn must specify the same register.

ADD

R0-R15 R0-R15 R0-PC -
Rd and Rn must specify the same register.

Rn and Rm must not both specify PC.

R0-R7
SP or 
PC

- 0-1020
Immediate value must be an integer multiple of 
four.

SP SP - 0-508
Immediate value must be an integer multiple of 
four.

ADDS

R0-R7 R0-R7 - 0-7 -

R0-R7 R0-R7 - 0-255 Rd and Rn must specify the same register.

R0-R7 R0-R7 R0-R7 - -

RSBS R0-R7 R0-R7 - - -

SBCS R0-R7 R0-R7 R0-R7 - Rd and Rn must specify the same register.

SUB SP SP - 0-508
Immediate value must be an integer multiple of 
four.

SUBS

R0-R7 R0-R7 - 0-7 -

R0-R7 R0-R7 - 0-255 Rd and Rn must specify the same register.

R0-R7 R0-R7 R0-R7 - -
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3.5.2 AND, ORR, EOR, and BIC

Logical AND, OR, Exclusive OR, and Bit Clear. 

Syntax

ANDS {Rd,} Rn, Rm

ORRS {Rd,} Rn, Rm

EORS {Rd,} Rn, Rm

BICS {Rd,} Rn, Rm

where:

          

Operation

The AND, EOR, and ORR instructions perform bitwise AND, exclusive OR, and inclusive 
OR operations on the values in Rn and Rm.

The BIC instruction performs an AND operation on the bits in Rn with the logical negation of 
the corresponding bits in the value of Rm.

The condition code flags are updated on the result of the operation, see Condition flags on 
page 47.

Restrictions

In these instructions, Rd, Rn, and Rm must only specify R0-R7.

Condition flags

These instructions:

Update the N and Z flags according to the result.

Do not affect the C or V flag.

Examples

    ANDS    R2, R2, R1 
    ORRS    R2, R2, R5 
    ANDS    R5, R5, R8 
    EORS    R7, R7, R6 
    BICS    R0, R0, R1

Rd Is the destination register.

Rn Is the register holding the first operand and is the same as the destination 
register.

Rm Second register
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3.5.3 ASR, LSL, LSR, and ROR

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, and Rotate Right.

Syntax

ASRS {Rd,} Rm, Rs

ASRS {Rd,} Rm, #imm

LSLS {Rd,} Rm, Rs

LSLS {Rd,} Rm, #imm

LSRS {Rd,} Rm, Rs

LSRS {Rd,} Rm, #imm

RORS {Rd,} Rm, Rs

where:

          

Note: MOVS Rd, Rm is a pseudonym for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR perform an arithmetic-shift-left, logical-shift-left, logical-shift-
right or a right-rotation of the bits in the register Rm by the number of places specified by the 
immediate imm or the value in the least-significant byte of the register specified by Rs.

For details on what result is generated by the different instructions, see 3.3.3: Shift 
operations on page 40.

Restrictions

In these instructions, Rd, Rm, and Rs must only specify R0-R7. For non-immediate 
instructions, Rd and Rm must specify the same register.

Condition flags

These instructions update the N and Z flags according to the result.

The C flag is updated to the last bit shifted out, except when the shift length is 0, see 3.3.3: 
Shift operations on page 40. The V flag is left unmodified.

Rd Is the destination register. If Rd is omitted, it is assumed to take the same 
value as Rm.

Rm Is the register holding the value to be shifted.

Rs Is the register holding the shift length to apply to the value in Rm

Imm Is the shift length. The range of shift length depends on the instruction:

ASR           shift length from 1 to 32

LSL           shift length from 0 to 31

LSR           shift length from 1 to 32.
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Examples

   ASRS    R7, R5, #9  ; Arithmetic shift right by 9 bits 
   LSLS    R1, R2, #3  ; Logical shift left by 3 bits with flag update 
   LSRS    R4, R5, #6  ; Logical shift right by 6 bits 
   RORS    R4, R4, R6  ; Rotate right by the value in the bottom byte of R6.
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3.5.4 CMP and CMN

Compare and Compare Negative.

Syntax

CMN Rn, Rm

CMP Rn, #imm

CMP Rn, Rm

where:

          

Operation

These instructions compare the value in a register with either the value in another register or 
an immediate value. They update the condition flags on the result, but do not write the result 
to a register.

The CMP instruction subtracts either the value in the register specified by Rm, or the 
immediate imm from the value in Rn and updates the flags. This is the same as a SUBS 
instruction, except that the result is discarded.

The CMN instruction adds the value of Rm to the value in Rn and updates the flags. This is the 
same as an ADDS instruction, except that the result is discarded.

Restrictions

For the:

• CMN instruction Rn, and Rm must only specify R0-R7.

• CMP instruction:

– Rn and Rm can specify R0-R14.

– Immediate must be in the range 0-255.

Condition flags

These instructions update the N, Z, C and V flags according to the result.

Examples

    CMP     R2, R9 
    CMN     R0, R2

Rn Is the register holding the first operand.

Rm Is the register to compare with.

Imm Is the immediate value to compare with.
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3.5.5 MOV and MVN

Move and Move NOT.

Syntax

MOV{S} Rd, Rm

MOVS Rd, #imm

MVNS Rd, Rm

where:

          

Operation

The MOV instruction copies the value of Rm into Rd. 

The MOVS instruction performs the same operation as the MOV instruction, but also updates 
the N and Z flags.

The MVSN instruction takes the value of Rm, performs a bitwise logical negate operation on 
the value, and places the result into Rd.

Restrictions

In these instructions, Rd, and Rm must only specify R0-R7.

When Rd is the PC in a MOV instruction:

• Bit[0] of the result is discarded.

• A branch occurs to the address created by forcing bit[0] of the result to 0. The T-bit 
remains unmodified.

Note: Though it is possible to use MOV as a branch instruction, Arm® strongly recommends the 
use of a BX or BLX instruction to branch for software portability.

Condition flags

If S is specified, these instructions:

• update the N and Z flags according to the result

• do not affect the C or V flags.

Example

    MOVS  R0, #0x000B    ; Write value of 0x000B to R0, flags get updated 
    MOVS  R1, #0x0       ; Write value of zero to R1, flags are updated 
    MOV   R10, R12       ; Write value in R12 to R10, flags are not updated 
    MOVS  R3, #23        ; Write value of 23 to R3 
    MOV   R8, SP         ; Write value of stack pointer to R8 
    MVNS  R2, R0         ; Write inverse of R0 to the R2 and update flags

S Is an optional suffix. If S is specified, the condition code flags are updated on 
the result of the operation, see 3.3.6: Conditional execution on page 43.

Rd Is the destination register.

Rm Is a register.

Imm Is any value in the range 0-255.
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3.5.6 MULS

Multiply using 32-bit operands, and producing a 32-bit result.

Syntax

MULS Rd, Rn, Rm

where:

          

Operation

The MUL instruction multiplies the values in the registers specified by Rn and Rm, and places 
the least significant 32 bits of the result in Rd. The condition code flags are updated on the 
result of the operation, see 3.3.6: Conditional execution on page 43.

The results of this instruction does not depend on whether the operands are signed or 
unsigned.

Restrictions

In this instruction:

• Rd, Rn, and Rm must only specify R0-R7.

• Rd must be the same as Rm.

Condition flags

This instruction:

• Updates the N and Z flags according to the result.

• Does not affect the C or V flags.

Examples

    MULS    R0, R2, R0      ; Multiply with flag update, R0 = R0 x R2

Rd Is the destination register.

Rn, Rm Ire registers holding the values to be multiplied.
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3.5.7 REV, REV16, and REVSH

Reverse bytes.

Syntax

REV Rd, Rn

REV16 Rd, Rn

REVSH Rd, Rn

where:

          

Operation

Use these instructions to change endianness of data:

RER

REV Converts 32-bit big-endian data into little-endian data or 32-bit little-endian 
data into big-endian data.

REV16 Converts two packed 16-bit big-endian data into little-endian data or two 
packed 16-bit little-endian data into big-endian data.

REVSH Converts 16-bit signed big-endian data into 32-bit signed little-endian data or 
16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

In these instructions, Rd, and Rn must only specify R0-R7.

Condition flags

These instructions do not change the flags.

Examples

    REV    R3, R7  ; Reverse byte order of value in R7 and write it to R3 
    REV16  R0, R0  ; Reverse byte order of each 16-bit halfword in R0 
    REVSH  R0, R5  ; Reverse signed halfword

Rd Is the destination register.

Rn Is the source register.
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3.5.8 SXT and UXT

Sign extend and Zero extend.

Syntax

SXTB Rd, Rm

SXTH Rd, Rm

UXTB Rd, Rm

UXTH Rd, Rm

where:

Rd Is the destination register.

Rm Is the register holding the value to be extended.

Operation

• These instructions extract bits from the resulting value:

• SXTB extracts bits[7:0] and sign extends to 32 bits.

• UXTB extracts bits[7:0] and zero extends to 32 bits.

• SXTH extracts bits[15:0] and sign extends to 32 bits.

• UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

In these instructions, Rd and Rm must only specify R0-R7.

Condition flags

These instructions do not affect the flags.

Examples

    SXTH  R4, R6          ; Obtain the lower halfword of the 
                          ; value in R6 and then sign extend to 
                          ; 32 bits and write the result to R4. 
    UXTB  R3, R1          ; Extract lowest byte of the value in R10 and zero 
                          ; extend it, and write the result to R3
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3.5.9 TST

Test bits.

Syntax

TST Rn, Rm

where:

Rn Is the register holding the first operand.

Rm The register to test against.

Operation

This instruction tests the value in a register against another register. It updates the condition 
flags based on the result, but does not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value in 
Rm. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with a register that has that bit 
set to 1 and all other bits cleared to 0.

Restrictions

In these instructions, Rn and Rm must only specify R0-R7.

Condition flags

This instruction:

• updates the N and Z flags according to the result

• does not affect the C or V flags.

Examples

    TST   R0, R1 ; Perform bitwise AND of R0 value and R1 value,  
                 ; condition code flags are updated but result is discarded
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3.6 Branch and control instructions

Table 21 shows the branch and control instructions:

          

Table 21. Branch and control instructions 

Mnemonic Brief description See

B{cc} Branch {conditionally} 3.6.1: B, BL, BX, and BLX on page 66.

BL Branch with Link 3.6.1: B, BL, BX, and BLX on page 66.

BLX Branch indirect with Link 3.6.1: B, BL, BX, and BLX on page 66.

BX Branch indirect 3.6.1: B, BL, BX, and BLX on page 66.
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3.6.1 B, BL, BX, and BLX

Branch instructions.

Syntax

B{cond} label

BL label

BX Rm

BLX Rm

where:

Cond Is an optional condition code, see 3.3.6: Conditional execution on page 43.

label Is a PC-relative expression. See 3.3.5: PC-relative expressions on page 43.

Rm Is a register providing the address to branch to.

Operation

All these instructions cause a branch to the address indicated by label or contained in the 
register specified by Rm. In addition:

• the BL and BLX instructions write the address of the next instruction to LR, the link 
register R14.

• the BX and BLX instructions result in a HardFault exception if bit[0] of Rm is 0.

BL and BLX instructions also set bit[0] of the LR to 1. This ensures that the value is suitable 
for use by a subsequent POP {PC} or BX instruction to perform a successful return branch.

Table 22 shows the ranges for the various branch instructions

          .

Restrictions

In these instructions:

• Do not use SP or PC in the BX or BLX instruction.

• For BX and BLX, bit[0] of Rm must be 1 for correct execution. Bit[0] is used to update the 
EPSR T-bit and is discarded from the target address.

Note: Bcond is the only conditional instruction on the Cortex-M0+ processor.

Table 22. Branch ranges 

Instruction Branch range

B label −2 KB to +2 KB.

Bcond label −256 bytes to +254 bytes.

BL label −16 MB to +16 MB.

BX Rm Any value in register.

BLX Rm Any value in register.
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Condition flags

These instructions do not change the flags.

Examples

   B       loopA ; Branch to loopA 
   BL     funC   ; Branch with link (Call) to function funC, return address 
                 ; stored in LR 
   BX     LR     ; Return from function call 
   BLX    R0     ; Branch with link and exchange (Call) to a address stored 
                 ; in R0 
   BEQ    labelD ; Conditionally branch to labelD if last flag setting 
                 ; instruction set the Z flag, else do not branch.
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3.7 Miscellaneous instructions

Table 23 shows the remaining Cortex-M0+ instructions

          :

Table 23. Miscellaneous instructions 

Mnemonic Brief description See

BKPT Breakpoint 3.7.1: BKPT on page 69.

CPSID Change Processor State, Disable Interrupts 3.7.2: CPS on page 70.

CPSIE Change Processor State, Enable Interrupts 3.7.2: CPS on page 70.

DMB Data Memory Barrier 3.7.3: DMB on page 71.

DSB Data Synchronization Barrier 3.7.4: DSB on page 72.

ISB Instruction Synchronization Barrier 3.7.5: ISB on page 73.

MRS Move from special register to register 3.7.6: MRS on page 74.

MSR Move from register to special register 3.7.7: MSR on page 75.

NOP No Operation 3.7.7: MSR on page 75.

SEV Send Event 3.7.9: SEV on page 77.

SVC Supervisor Call 3.7.10: SVC on page 78.

WFE Wait For Event 3.7.11: WFE on page 79.

WFI Wait For Interrupt 3.7.12: WFI on page 80.
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3.7.1 BKPT

Breakpoint.

Syntax

BKPT #imm

where:

Imm Is an integer in the range 0-255.

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this 
to investigate system state when the instruction at a particular address is reached.

Imm is ignored by the processor. If required, a debugger can use it to store additional 
information about the breakpoint.

The processor might also produce a HardFault or go in to Lockup if a debugger is not 
attached when a BKPT instruction is executed. See 2.4.1: Lockup on page 33 for more 
information.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

    BKPT #0     ; Breakpoint with immediate value set to 0x0.
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3.7.2 CPS

Change Processor State. 

Syntax

CPSID i

CPSIE i

Operation

CPS changes the PRIMASK special register values. CPSID causes interrupts to be disabled 
by setting PRIMASK. CPSIE cause interrupts to be enabled by clearing PRIMASK. See 
Exception mask register on page 17 for more information about these registers.

Restrictions

If the current mode of execution is not privileged, then this instruction behaves as a NOP and 
does not change the current state of PRIMASK.

Condition flags

This instruction does not change the condition flags.

Examples

    CPSID i ; Disable all interrupts except NMI (set PRIMASK.PM) 
    CPSIE i ; Enable interrupts (clear PRIMASK.PM)
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3.7.3 DMB

Data Memory Barrier.

Syntax

DMB

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear 
in program order before the DMB instruction are observed before any explicit memory 
accesses that appear in program order after the DMB instruction. DMB does not affect the 
ordering of instructions that do not access memory.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

    DMB  ; Data Memory Barrier
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3.7.4 DSB

Data Synchronization Barrier.

Syntax

DSB

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the 
DSB, in program order, do not execute until the DSB instruction completes. The DSB 
instruction completes when all explicit memory accesses before it complete.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

    DSB ; Data Synchronisation Barrier
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3.7.5 ISB

Instruction Synchronization Barrier.

Syntax

ISB

Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so 
that all instructions following the ISB are fetched from cache or memory again, after the ISB 
instruction has been completed.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

    ISB  ; Instruction Synchronisation Barrier
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3.7.6 MRS

Move the contents of a special register to a general-purpose register.

Syntax

MRS Rd, spec_reg

where:

Rd Is the general purpose destination register.

spec_reg Is one of the special purpose registers: APSR, IPSR, EPSR, IEPSR, 
IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, or CONTROL.

Operation

MSR stores the contents of a special-purpose register to a general purpose register. The MSR 
instruction can be combined with the MSR instruction to produce read-modify-write 
sequences, which are suitable for modifying a specific flag in the PSR.

See 3.7.7: MSR on page 75.

Restrictions

In this instruction, Rd must not be SP or PC. 

If the current mode of execution is not privileged, then the values of all registers other than 
the APSR read as zero.

Condition flags

This instruction does not change the flags.

Examples

    MRS  R0, PRIMASK ; Read PRIMASK value and write it to R0
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3.7.7 MSR

Move the contents of a general-purpose register into the specified special register.

Syntax

MSR spec_reg, Rn

where:

Rn Is the general-purpose source register.

spec_reg Is the special-purpose destination register: APSR, IPSR, EPSR, IEPSR, 
IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, or CONTROL.

Operation

MSR updates one of the special registers with the value from the register specified by Rn.

See 3.7.6: MRS on page 74.

Restrictions

In this instruction, Rn must not be SP and must not be PC.

If the current mode of execution is not privileged, then all attempts to modify any register 
other than the APSR are ignored.

Condition flags

This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR  CONTROL, R1 ; Read R1 value and write it to the CONTROL register
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3.7.8 NOP

No Operation.

Syntax

NOP

Operation

NOP performs no operation and is not guaranteed to be time consuming. The processor 
might remove it from the pipeline before it reaches the execution stage.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

    NOP  ; No operation
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3.7.9 SEV

Send Event.

Syntax

SEV

Operation

SEV causes an event to be signaled to all processors within a multiprocessor system. It also 
sets the local event register, see2.5: Power management on page 33.

See also 3.7.11: WFE on page 79.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

    SEV ; Send Event
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3.7.10 SVC

Supervisor Call.

Syntax

SVC #imm

where:

Imm Is an integer in the range 0-255.

Operation

The SVC instruction causes the SVC exception.

Imm is ignored by the processor. If required, it can be retrieved by the exception handler to 
determine what service is being requested.

Restrictions

Executing the SVC instruction, while the current execution priority level is greater than or 
equal to that of the SVCall handler, results in a fault being generated.

Condition flags

This instruction does not change the flags.

Examples

    SVC  #0x32 ; Supervisor Call (SVC handler can extract the immediate 
value 
               ; by locating it through the stacked PC)
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3.7.11 WFE

Wait For Event.

Syntax

WFE

Operation

If the event register is 0, WFE suspends execution until one of the following events occurs:

• An exception, unless masked by the exception mask registers or the current priority 
level.

• An exception enters the Pending state, if SEVONPEND in the System Control Register is 
set.

• A Debug Entry request, if debug is enabled.

• An event signaled by a peripheral or another processor in a multiprocessor system 
using the SEV instruction.

If the event register is 1, WFE clears it to 0 and completes immediately.

For more information see 2.5: Power management on page 33.

 

Note: WFE is intended for power saving only. When writing software assume that WFE might 
behave as NOP.

 

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

    WFE  ; Wait for event
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3.7.12 WFI

Wait for Interrupt.

Syntax

WFI

Operation

WFI suspends execution until one of the following events occurs:

• An exception. 

• An interrupt becomes pending which would preempt if PRIMASK.PM was clear.

• A Debug Entry request, regardless of whether debug is enabled.

 

Note: WFI is intended for power saving only. When writing software assume that WFI might 
behave as a NOP operation.

 

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

    WFI ; Wait for interrupt
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4 Cortex-M0+ core peripherals

4.1 About the Cortex-M0+ core peripherals

The address map of the Private Peripheral Bus (PPB) is:

          

In register descriptions:

the register type is described as follows:

          

• the required privilege gives the privilege level required to access the register, as 
follows:

Privileged 

Only privileged software can access the register.

Unprivileged 

Both unprivileged and privileged software can access the register.

Table 24. Core peripheral register regions 

Address Core peripheral Description

0xE000E008-0xE000E00F System Control Block Table 29 on page 88.

0xE000E010-0xE000E01F Reserved -

0xE000E010-0xE000E01F System timer Table 32 on page 95.

0xE000E100-0xE000E4EF Nested vectored interrupt controller Table 25 on page 82.

0xE000ED00-0xE000ED3F System Control Block Table 29 on page 88.

0xE000ED90-0xE000EDB8 Memory Protection Unit(1)

1. Software can read the MPU Type Register at 0xE000ED90 to test for the presence of a Memory Protection 
Unit (MPU).

Table 34 on page 99.

0xE000EF00-0xE000EF03 Nested vectored interrupt controller Table 25 on page 82.

RW Read and write.

RO Read-only.

WO Write-only.
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4.2 Nested vectored interrupt controller

This section describes the Nested vectored interrupt controller (NVIC) and the registers it 
uses. The NVIC supports:

• 32 interrupts.

• A programmable priority level of 0-192 in steps of 64 for each interrupt. A higher level 
corresponds to a lower priority, so level 0 is the highest interrupt priority.

• Level and pulse detection of interrupt signals.

• Interrupt tail-chaining.

• An external Non-Maskable Interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on 
exception exit, with no instruction overhead. This provides low latency exception handling. 
The hardware implementation of the NVIC registers is

          :

4.2.1 Accessing the Cortex-M0+ NVIC registers using CMSIS

CMSIS functions enable software portability between different Cortex-M profile processors.

To access the NVIC registers when using CMSIS, use the following functions:

          

Table 25. NVIC register summary  

Address Name Type Reset value Description

0xE000E100 NVIC_ISER RW 0x00000000
Interrupt Set-enable Register 
on page 83.

0xE000E180 NVIC_ICER RW 0x00000000
Interrupt Clear-enable Register 
on page 83.

0xE000E200 NVIC_ISPR RW 0x00000000
Interrupt Set-pending Register 
on page 84.

0xE000E280 NVIC_ICPR RW 0x00000000
Interrupt Clear-pending 
Register on page 84.

0xE000E400-0xE000E4EF NVIC_IPR0-7 RW 0x00000000
Interrupt Priority Registers on 
page 85.

Table 26. CMSIS access NVIC functions  

CMSIS function Description

void NVIC_EnableIRQ(IRQn_Type IRQn)(1) Enables an interrupt or exception.

void NVIC_DisableIRQ(IRQn_Type IRQn)(1) Disables an interrupt or exception.

void NVIC_SetPendingIRQ(IRQn_Type IRQn)(1)
Sets the pending status of interrupt or exception to 
1.

void NVIC_ClearPendingIRQ(IRQn_Type IRQn)(1)
Clears the pending status of interrupt or exception 
to 0.

uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)(1)
Reads the pending status of interrupt or exception. 
This function returns non-zero value if the pending 
status is set to 1.



PM0223 Rev 5 83/110

PM0223 Cortex-M0+ core peripherals

108

4.2.2 Interrupt Set-enable Register

The NVIC_ISER enables interrupts, and shows which interrupts are enabled. See the 
register summary in Table 25 on page 82 for the register attributes.

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SETPENA[31:16]

rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SETPENA[15:0]

rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs

          

          

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an 
interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, 
but the NVIC never activates the interrupt, regardless of its priority.

4.2.3 Interrupt Clear-enable Register

The NVIC_ICER disables interrupts, and show which interrupts are enabled. See the 
register summary in Table 25 on page 82 for the register attributes.

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLRENA[31:16]

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLRENA[15:0]

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)(1) Sets the priority of an interrupt or exception with 
configurable priority level to 1.

uint32_t NVIC_GetPriority(IRQn_Type IRQn)(1)
Reads the priority of an interrupt or exception with 
configurable priority level. This function return the 
current priority level.

1. The input parameter IRQn is the IRQ number, see Table 12 on page 27 for more information. 

Table 26. CMSIS access NVIC functions  (continued)

CMSIS function Description

Bits 31:0 SETENA: Interrupt set-enable bits 

Write:

0: No effect
1: Enable interrupt

Read:

0: Interrupt disabled
1: Interrupt enabled
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4.2.4 Interrupt Set-pending Register

The NVIC_ISPR forces interrupts into the pending state, and shows which interrupts are 
pending. See the register summary in Table 25 on page 82 for the register attributes. 

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SETPEND[31:16]

rs rs rs rs rs rs rs rs rs rs7 rs rs rs rs rs rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SETPEND[15:0]

rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs

          

Note: Writing 1 to the NVIC_ISPR bit corresponding to:

• An interrupt that is pending has no effect.

• A disabled interrupt sets the state of that interrupt to pending. 

4.2.5 Interrupt Clear-pending Register

The NVIC_ICPR removes the pending state from interrupts, and shows which interrupts are 
pending. See the register summary in Table 25 on page 82 for the register attributes.

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLRPEND[31:16]

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLRPEND[15:0]

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:0 CLRENA: Interrupt clear-enable bits 

Write:

0: No effect
1: Disable interrupt

Read:

0: Interrupt disabled
1: Interrupt enabled

Bits 31:0 SETPEND: Interrupt set-pending bits 

Write:

0: No effect
1: Change interrupt state to pending

Read:

0: Interrupt is not pending
1: Interrupt is pending
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Note: Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding 
interrupt.

4.2.6 Interrupt Priority Registers

The NVIC_IPR0-NVIC_IPR7 registers provide an 8-bit priority field for each interrupt. These 
registers are only word-accessible. See the register summary in Table 25 on page 82 for 
their attributes. Each register holds four priority fields as shown:

[31:24] Priority, byte offset 3 Each priority field holds a priority value, 0-192. The 
lower the value, the greater the priority of the 
corresponding interrupt. The processor implements 
only bits[7:6] of each field, bits [5:0] read as zero 
and ignore writes. This means writing 255 to a 
priority register saves value 192 to the register.

[23:16] Priority, byte offset 2

[15:8] Priority, byte offset 1

[7:0] Priority, byte offset 0

See 4.2.1: Accessing the Cortex-M0+ NVIC registers using CMSIS on page 82 for more 
information about the access to the interrupt priority array, which provides the software view 
of the interrupt priorities.

Bits 31:0 CLRPEND: Interrupt clear-pending bits 

Write:

0: No effect
1: Removes pending state and interrupt.

Read:

0: Interrupt is not pending
1: Interrupt is pending

Table 27. NVIC_IPRx bit assignments 

Bits Name Function
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Find the NVIC_IPR number and byte offset for interrupt M as follows:

• The corresponding NVIC_IPR number, N, is given by N = N DIV 4.

• The byte offset of the required Priority field in this register is M MOD 4, where:

– Byte offset 0 refers to register bits[7:0].

– Byte offset 1 refers to register bits[15:8].

– Byte offset 2 refers to register bits[23:16].

– Byte offset 3 refers to register bits[31:24].

4.2.7 Level-sensitive and pulse interrupts

Cortex-M0+ interrupts are both level-sensitive and pulse-sensitive. Pulse interrupts are also 
described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. 
Typically this happens because the ISR accesses the peripheral, causing it to clear the 
interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the 
rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral 
must assert the interrupt signal for at least one clock cycle, during which the NVIC detects 
the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the 
interrupt, see Hardware and software control of interrupts on page 86. For a level-sensitive 
interrupt, if the signal is not deasserted before the processor returns from the ISR, the 
interrupt becomes pending again, and the processor must execute its ISR again. This 
means that the peripheral can hold the interrupt signal asserted until it no longer requires 
servicing.

Hardware and software control of interrupts

The Cortex-M0+ processor latches all interrupts. A peripheral interrupt becomes pending for 
one of the following reasons:

• The NVIC detects that the interrupt signal is active and the corresponding interrupt is 
not active.

• The NVIC detects a rising edge on the interrupt signal.

• Software writes to the corresponding interrupt set-pending register bit, see 4.2.4: 
Interrupt Set-pending Register on page 84.

A pending interrupt remains pending until one of the following:

• The processor enters the ISR for the interrupt. This changes the state of the interrupt 
from pending to active. Then:

– For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC 
samples the interrupt signal. If the signal is asserted, the state of the interrupt 
changes to pending, which might cause the processor to immediately re-enter the 
ISR. Otherwise, the state of the interrupt changes to inactive.

– For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this 
is pulsed the state of the interrupt changes to pending and active. In this case, 
when the processor returns from the ISR the state of the interrupt changes to 
pending, which might cause the processor to immediately re-enter the ISR. If the 
interrupt signal is not pulsed while the processor is in the ISR, when the processor 
returns from the ISR the state of the interrupt changes to inactive.

• Software writes to the corresponding interrupt clear-pending register bit.
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For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt 
does not change. Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, state of the interrupt changes to:

– Inactive, if the state was pending.

– Active, if the state was active and pending.

4.2.8 NVIC usage hints and tips

Ensure software uses correctly aligned register accesses. The processor does not support 
unaligned accesses to NVIC registers.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only 
prevents the processor from taking that interrupt.

Before programming VTOR to relocate the vector table, ensure the vector table entries of 
the new vector table are set up for fault handlers, NMI and all enabled exception like 
interrupts. For more information, see 4.3.4: Vector Table Offset Register on page 91.

NVIC programming hints

Software uses the CPSIE i and CPSIDi instructions to enable and disable interrupts. The 
CMSIS provides the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts 
void __enable_irq(void)  // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

          

The input parameter IRQn is the IRQ number, see Table 12 on page 27 for more information. 
For more information about these functions, see the CMSIS documentation.

Table 28. CMSIS functions for NVIC control 

CMSIS interrupt control function Description

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn.

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) Return true (1) if IRQn is 
pending.

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending.

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status.

void NVIC_SetPriority (IRQn_t IRQn, 
uint32_t priority)

Set priority for IRQn.

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn.

void NVIC_SystemReset (void) Reset the system.



Cortex-M0+ core peripherals PM0223

88/110 PM0223 Rev 5

4.3 System Control Block

The System Control Block (SCB) provides system implementation information, and system 
control. This includes configuration, control, and reporting of the system exceptions. The 
SCB registers are:

          

4.3.1 The CMSIS mapping of the Cortex-M0+ SCB registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the 
CMSIS, the array SHP[1] corresponds to the registers SHPR2-SHPR3.

4.3.2 CPUID Register

The CPUID register contains the processor part number, version, and implementation 
information. See the register summary in Table 29 on page 88 for its attributes. The bit 
assignments are:

          

Table 29. Summary of the SCB registers  

Address Name Type Reset value Description

0xE000ED00 CPUID RO 0x410CC601 4.3.2: CPUID Register on page 88.

0xE000ED04 ICSR RW (1)

1. See the register description for more information.

0x00000000
4.3.3: Interrupt Control and State Register (ICSR) 
on page 89.

0xE000ED08 VTOR RW 0x00000000 4.3.4: Vector Table Offset Register on page 91.

0xE000ED0C AIRCR RW (1) 0xFA050000
4.3.5: Application Interrupt and Reset Control 
Register on page 91.

0xE000ED10 SCR RW 0x00000000 4.3.6: System Control Register on page 92.

0xE000ED14 CCR RO 0x00000204
4.3.7: Configuration and Control Register on 
page 93.

0xE000ED1C
SHPR
2

RW 0x00000000 System Handler Priority Register 2 on page 94.

0xE000ED20
SHPR
3

RW 0x00000000 System Handler Priority Register 3 on page 95.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IMPLEMENTER VARIANT Architecture

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PART No REVISION

r r r r r r r r r r r r r r r r



PM0223 Rev 5 89/110

PM0223 Cortex-M0+ core peripherals

108

          

4.3.3 Interrupt Control and State Register (ICSR)

The ICSR:

• Provides:

– A set-pending bit for the Non-Maskable Interrupt (NMI) exception.

– Set-pending and clear-pending bits for the PendSV and SysTick exceptions.

• Indicates:

– The exception number of the highest priority pending exception.

See the register summary in Table 29 on page 88 for the ICSR attributes. The bit 
assignments are

          

Bits 31:24 Implementer: Implementer code

0x41: ARM

Bits 23:20 Variant: Major revision number n in the rnpm revision status:

0x0: Revision 0

Bits 19:16 Architecture: Constant that defines the architecture of the processor:

0xC: ARMv6-M architecture

Bits 15:4 PartNo: Part number of the processor

0xC60: = Cortex-M0+

Bits 3:0 Revision: Minor revision number m in the rnpm revision status:

0x1: patch 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NMIPE
NDSET Reserved

PEND
SVSET

PEND
SVCLR

PEND
STSET

PENDS
TCLR Reserved

ISRPE
NDING Reserved

VECTPENDING[6:4]

rw rw w rw w r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VECTPENDING[3:0] RETOB
ASE Reserved

VECTACTIVE[8:0]

r r r r r rw rw rw rw rw rw rw rw rw
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          :

Table 30. ICSR bit assignments 

Bits Name Type Function

[31] NMIPENDSET rw

NMI set-pending bit.

Write:

0 = No effect.

1 = Changes NMI exception state to pending.

Read:

0 = NMI exception is not pending.

1 = NMI exception is pending.

Because NMI is the highest-priority exception, normally the 
processor enters the NMI exception handler as soon as it detects 
a write of 1 to this bit. Entering the handler then clears this bit to 0. 
This means a read of this bit by the NMI exception handler returns 
1 only if the NMI signal is reasserted while the processor is 
executing that handler.

[30:29] - - Reserved.

[28] PENDSVSET rw

PendSV set-pending bit.

Write:

0 = No effect.

1 = Changes PendSV exception state to pending.

Read:

0 = PendSV exception is not pending.

1 = PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception 
state to pending.

[27] PENDSVCLR w

PendSV clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the PendSV exception.

[26] PENDSTSET rw

SysTick exception set-pending bit.

Write:

0 = No effect.

1 = Changes SysTick exception state to pending.

Read:

0 = SysTick exception is not pending.

1 = SysTick exception is pending.

[25] PENDSTCLR w

SysTick exception clear-pending bit.

Write:

0 = No effect.

1 = Removes the pending state from the SysTick exception.

This bit is WO. On a register read its value is Unknown.

[24:18] - - Reserved.
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When you write to the ICSR, the effect is Unpredictable if you:

• write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit

• write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

4.3.4 Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address 
0x00000000. See the register summary for its attributes.

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TBLOFF[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TBLOFF[15:7]

rw rw rw rw rw rw rw rw rw

          

4.3.5 Application Interrupt and Reset Control Register

The AIRCR provides endian status for data accesses and reset control of the system. To 
write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor 
ignores the write. 

The bit assignments are:

[17:12] VECTPENDING r

Indicates the exception number of the highest priority pending 
enabled exception: 

0 = No pending exceptions.

Nonzero = the exception number of the highest priority pending 
enabled exception.

 

Subtract 16 from this value to obtain the CMSIS IRQ number that 
identifies the corresponding bit in the Interrupt Clear-Enable, Set-
Enable, Clear-Pending, Set-pending, and Priority Register, see 
Table 5 on page 16.

 

[11:0] - - Reserved.

Table 30. ICSR bit assignments (continued)

Bits Name Type Function

Reserved

Bits 31:7 TBLOFF Vector table base offset field. 

It contains bits[31:7] of the offset of the table base from the bottom of the memory map.

Bits 6:0 Reserved



Bits 31:16

Bit 15

Bits 14:3

Bit 2

Bit 1

Bit 0

Cortex-M0+ core peripherals PM0223

92/110 PM0223 Rev 5

          

4.3.6 System Control Register 

The SCR controls features of entry to and exit from low power state. See the register 
summary in Table 29 on page 88 for its attributes. The bit assignments are

          

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

VECTKEYSTAT

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENDIA
NESS Reserved

SYS 
RESET 

REQ

VECT 
CLR 

ACTIVE
Reserv

ed

r w w

VECTKEY Register key

Register key:

Reads as Unknown

On writes, write 0x05FA to VECTKEY, otherwise the write is ignored.

ENDIANESS Data endianness bit

Reads as 0.

0: Little-endian

Reserved

SYSRESETREQ System reset request:

0: No effect

1: Requests a system level reset. 

This bit reads as 0.

VECTCLRACTIVE 

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to 
this bit, otherwise behavior is unpredictable.

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

SEVON
PEND Res.

SLEEP
DEEP

SLEEP 
ON 

EXIT Res.

rw rw rw
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4.3.7 Configuration and Control Register

The CCR is a read-only register and indicates some aspects of the behavior of the 
Cortex-M0+ processor. See the register summary in Table 29 on page 88 for the CCR 
attributes.

The bit assignments are

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

STK 
ALIGN

BFHF 
NMIGN

DIV_0_
TRP Res.

USER 
SET 

MPEND

NON 
BASE 
THRD 
ENA

rw rw rw rw rw rw

          

Bits 31:5 Reserved

Bit 4 SEVEONPEND Send Event on Pending bit

0 : Only enabled interrupts or events can wakeup the processor, disabled interrupts are 
excluded.
1 = Enabled events and all interrupts, including disabled interrupts, can wakeup the 
processor.

When an event or interrupt becomes pending, the event signal wakes up the processor from 
WFE. If the processor is not waiting for an event, the event is registered and affects the next 
WFE. 

The processor also wakes up on execution of an SEV instruction or an external event.

Bit 3 Reserved, must be kept cleared

Bit 2 SLEEPDEEP 
Controls whether the processor uses sleep or deep sleep as its low power mode:

0: Sleep
1: Deep sleep.

Bit 1 SLEEPONEXIT 
Indicates sleep-on-exit when returning from Handler mode to Thread mode. Setting this bit to 1 
enables an interrupt-driven application to avoid returning to an empty main application.

0: Do not sleep when returning to Thread mode.

1: Enter sleep, or deep sleep, on return from an ISR to Thread mode.

Bit 0 Reserved, must be kept cleared

Reserved

UN 
ALIGN_ 

TRP

Bits 31:10 Reserved, must be kept cleared

Bit 9 STKALIGN
Always reads as one, indicates 8-byte stack alignment on exception entry.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack 
alignment. On return from the exception it uses this stacked bit to restore the correct stack 
alignment.
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4.3.8 System Handler Priority Registers

The SHPR2-SHPR3 registers set the priority level, 0 to 192, of the system exception 
handlers that have configurable priority.

SHPR2-SHPR3 are word accessible. See the register summary in for their attributes.

To access the system exception priority level using CMSIS, use the following CMSIS 
functions:

• uint32_t NVIC_GetPriority(IRQn_Type IRQn)

• void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)

The input parameter IRQn is the IRQ number, see Table 12 on page 27 for more 
information.

The system handlers, and the priority field and register for each handler are:

          

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:6] of each field, 
and bits[5:0] read as zero and ignore writes.

System Handler Priority Register 2

The bit assignments are:

          

          

Bits 8:4 Reserved, must be kept cleared

Bit 3 UNALIGN_ TRP 
Always reads as one, indicates that all unaligned accesses generate a HardFault.

Bit 2:0 Reserved, must be kept cleared

Table 31. System fault handler priority fields 

Handler Field Register description

SVCall PRI_11 System Handler Priority Register 2 on page 94.

PendSV PRI_14
System Handler Priority Register 3 on page 95.

SysTick PRI_15

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PRI_6[7:4] PRI_6[3:0]

rw rw rw rw r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRI_5[7:4] PRI_5[3:0] PRI_4[7:4] PRI_4[7:4]

rw rw rw rw r r r r rw rw rw rw r r r r

Bits 31:24 PRI_11: Priority of system handler 11, SVCall.

Bits 23:0 Reserved, must be kept cleared
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System Handler Priority Register 3

The bit assignments are

          

          

4.3.9 SCB usage hints and tips

Ensure software uses aligned 32-bit word size transactions to access all the SCB registers.

4.4 SysTick timer (STK)

When enabled, the timer counts down from the reload value to zero, reloads (wraps to) the 
value in the SYST_RVR on the next clock cycle, then decrements on subsequent clock 
cycles. Writing a value of zero to the SYST_RVR disables the counter on the next wrap. 
When the counter transitions to zero, the COUNTFLAG status bit is set to 1. Reading 
SYST_CSR clears the COUNTFLAG bit to 0.Writing to the SYST_CVR clears the register 
and the COUNTFLAG status bit to 0. The write does not trigger the SysTick exception logic. 
Reading the register returns its value at the time it is accessed.

Note: When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

          

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PRI_15 PRI_14

rw rw rw rw r r r r rw rw rw rw r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Bits 31:24 PRI_15: Priority of system handler 15, SysTick exception(1)

Bits 23:16 PRI_14: Priority of system handler 14, PendSV

Bits 15:0 Reserved, must be kept cleared

1. This is Reserved when the SysTick timer is not implemented.

Table 32. System timer registers summary 

Address Name Type
Required 
privilege

Reset value Description

0xE000E010 STK_CSR RW Privileged 0x00000000
4.4.1: SysTick Control and Status 
Register (STK_CSR) on page 96.

0xE000E014 STK_RVR RW Privileged Unknown
4.4.2: SysTick Reload Value 
Register (STK_RVR) on page 96.

0xE000E018 STK_CVR RW Privileged Unknown
4.4.3: SysTick Current Value 
Register (STK_CVR) on page 97.

0xE000E01C STK_CALIB RO Privileged 0xC0000000(1)

1. SysTick calibration value. 

4.4.4: SysTick Calibration Value 
Register (STK_CALIB) on 
page 97.
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4.4.1 SysTick Control and Status Register (STK_CSR)

The SYST_CSR enables the SysTick features. See the register summary in Table 32 on 
page 95 for its attributes. The bit assignments are:

          

          

4.4.2 SysTick Reload Value Register (STK_RVR)

The STK_RVR specifies the start value to load into the SYST_CVR. See the register 
summary in Table 32 on page 95 for its attributes. The bit assignments are:

          

          

Calculating the RELOAD value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. You can 
program a value of 0, but this has no effect because the SysTick exception request and 
COUNTFLAG are activated when counting from 1 to 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
rc_r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
rw rw rw

Bits31:17 Reserved, must be kept cleared.

Bit 16 COUNTFLAG Returns 1 if timer counted to 0 since the last read of this register.

Bits 15:3 Reserved, must be kept cleared.

Bit 2 CLKSOURCE Selects the SysTick timer clock source:

0 = External reference clock.
1 = Processor clock.

Bit 1 TICKINT Enables SysTick exception request:

0 = Counting down to zero does not assert the SysTick exception request.
1 = Counting down to zero to asserts the SysTick exception request.

Bit 0 ENABLE Enables the counter:

0 = Counter disabled.
1 = Counter enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
RELOAD

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELOAD

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits31:24 Reserved, must be kept cleared.

Bits 23:0 RELOAD Value to load into the STK_CVR when the counter is enabled and when it reaches 0, 
see Calculating the RELOAD value on page 96.
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To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD 
value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set 
RELOAD to 99.

4.4.3 SysTick Current Value Register (STK_CVR)

The STK_CVR contains the current value of the SysTick counter. See the register summary 
in Table 32 on page 95 for its attributes. The bit assignments are:

          

          

4.4.4 SysTick Calibration Value Register (STK_CALIB)

The STK_CALIB register indicates the SysTick calibration properties. See the register 
summary in Table 32 on page 95 for its attributes. The bit assignments are:

          

          

If calibration information is not known, calculate the calibration value required from the 
frequency of the processor clock or external clock.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
CURRENT

rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CURRENT

rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w rc_w

Bits31:24 Reserved, must be kept cleared.

Bits 23:0 CURRENT Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 
0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NO 
REF SKEW

Reserved
TENMS[23:16]

r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TENMS[15:0]

r r r r r r r r r r r r r r r r

Bit 31 NOREF: Reads as zero. Indicates that separate reference clock is provided. The frequency of 
this clock is HCLK/8.

Bit 30 SKEW: Reads as one. Calibration value for the 1ms inexact timing is not known because 
TENMS is not known. This can affect the suitability of SysTick as a software real time clock.

Bits 29:24 Reserved, must be kept cleared.

Bits 23:0 TENMS[23:0]: 

Indicates the calibration value when the SysTick counter runs on HCLK max/8 as external

clock. The value is product dependent, please refer to the Product Reference Manual, SysTick

Calibration Value section. When HCLK is programmed at the maximum frequency, the SysTick 
period is 1ms.
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4.4.5 SysTick usage hints and tips

The interrupt controller clock updates the SysTick counter. If this clock signal is stopped for 
low power mode, the SysTick counter stops.

Ensure software uses word accesses to access the SysTick registers.

If the SysTick counter reload and current value are undefined at reset, the correct 
initialization sequence for the SysTick counter is: 

1. Program reload value.

2. Clear current value.

3. Program Control and Status register.

4.5 Memory Protection Unit

This section describes the Memory Protection Unit (MPU). 

The MPU can divide the memory map into a number of regions, and defines the location, 
size, access permissions, and memory attributes of each region. It supports:

• Independent attribute settings for each region.

• Overlapping regions.

• Export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The 
Cortex-M0+ MPU defines:

• Eight separate memory regions, 0-7.

• A background region.

When memory regions overlap, a memory access is affected by the attributes of the region 
with the highest number. For example, the attributes for region 7 take precedence over the 
attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory 
map, but is accessible from privileged software only. 

The Cortex-M0+ MPU memory map is unified. This means instruction accesses and data 
accesses have same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor 
generates a HardFault exception. 

In an OS environment, the kernel can update the MPU region setting dynamically based on 
the process to be executed. Typically, an embedded OS uses the MPU for memory 
protection.

Configuration of MPU regions is based on memory types, see 2.2.1: Memory regions, types 
and attributes on page 20.

Table 33 on page 99 shows the possible MPU region attributes. These include Shareability 
and cache behavior attributes that are not relevant to most microcontroller implementations. 
See MPU configuration for a microcontroller on page 107 for guidelines for programming 
such an implementation.
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Use the MPU registers to define the MPU regions and their attributes. Table 34 on page 99 
shows the MPU registers

          

4.5.1 MPU Type Register

The MPU_TYPE register indicates whether the MPU is present, and if so, how many 
regions it supports. See the register summary in Table 34 on page 99 for its attributes. The 
bit assignments are:

          

Table 33. Memory attributes summary 

Memory type Shareability Other attributes Description

Strongly- ordered - -
All accesses to Strongly-ordered memory 
occur in program order. All Strongly-ordered 
regions are assumed to be shared.

Device Shared -
Memory-mapped peripherals that several 
processors share. 

Non-shared -
Memory-mapped peripherals that only a 
single processor uses.

Normal Shared

Non-cacheable 
Write-through 
Cacheable Write-
back Cacheable

Normal memory that is shared between 
several processors.

Non-shared

Non-cacheable 
Write-through 
Cacheable Write-
back Cacheable

Normal memory that only a single processor 
uses.

Table 34. MPU registers summary 

Address Name Type
Reset 
value

Description

0xE000ED90 MPU_TYPE RO
0x00000000 or 
0x00000800(1)

1. Software can read the MPU Type Register to test for the precence of a Memory 
Protection Unit (MPU). See MPU Type Register

4.5.1: MPU Type Register on 
page 99.

0xE000ED94 MPU_CTRL RW 0x00000000
4.5.2: MPU Control Register on 
page 100.

0xE000ED98 MPU_RNR RW Unknown
4.5.3: MPU Region Number 
Register on page 101.

0xE000ED9C MPU_RBAR RW Unknown
4.5.4: MPU Region Base Address 
Register on page 102.

0xE000EDA0 MPU_RASR RW Unknown
4.5.5: MPU Region Attribute and 
Size Register on page 103.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved IREGION[7:0]

r r r r r r r r
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4.5.2 MPU Control Register

The MPU_CTRL register:

• Enables the MPU.

• Enables the default memory map background region.

• Enables use of the MPU when in the HardFault or Non-Maskable Interrupt (NMI) 
handler.

See the register summary in Table 34 on page 99 for the MPU_CTRL attributes. The bit 
assignments are:

          

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DREGION[7:0]
Reserved

SEPA 
RATE

r r r r r r r r r

Bits 31:24 Reserved.

Bits 23:16 IREGION[7:0]: Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION 
field.

Bits 15:8 DREGION[7:0]: Indicates the number of supported MPU data regions: 

0x00 = Zero regions if your device does not include the MPU.

0x08 = Eight regions if your device includes the MPU.

Bits 7:1 Reserved.

Bit 0 SEPARATE: Indicates support for unified or separate instruction and date memory maps:

0 = Unified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PRIVD
EFENA

HFNMI
ENA

EN 
ABLE

rw rw rw
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When ENABLE and PRIVDEFENA are both set to 1:

• For privileged accesses, the default memory map is as described in 2.2: Memory 
model on page 20. Any access by privileged software that does not address an 
enabled memory region behaves as defined by the default memory map.

• Any access by unprivileged software that does not address an enabled memory region 
causes a MemManage fault. 

XN and Strongly-ordered rules always apply to the System Control Space regardless of the 
value of the ENABLE bit. 

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled 
for the system to function unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is 
set to 1 and no regions are enabled, then only privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the 
same memory attributes as if the MPU is not implemented, see Table 10 on page 22. The 
default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are 
always permitted. Other areas are accessible based on regions and whether PRIVDEFENA 
is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the 
handler for an exception with priority –1 or –2. These priorities are only possible when 
handling a HardFault or NMI exception. Setting the HFNMIENA bit to 1 enables the MPU 
when operating with these two priorities.

4.5.3 MPU Region Number Register

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and 
MPU_RASR registers. See the register summary in Table 34 on page 99 for its attributes. 
The bit assignments are:

Bits 31:3 Reserved, forced by hardware to 0.

Bit 2 PRIVDEFENA: Enable privileged software access to default memory map. 

0: If the MPU is enabled, disables use of the default memory map. Any memory access to a 
location not covered by any enabled region causes a fault.
1: If the MPU is enabled, enables use of the default memory map as a background region for 
privileged software accesses.

Note: When enabled, the background region acts as if it is region number -1. Any region that 
is defined and enabled has priority over this default map. 
If the MPU is disabled, the processor ignores this bit.

Bit 1 HFNMIENA: Enables the operation of MPU during HardFault and NMI handlers. 

When the MPU is enabled:

0 = MPU is disabled during HardFault and NMI handlers, regardless of the value of the 
ENABLE bit.

1 = the MPU is enabled during HardFault and NMI handlers.

When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.

Bit 0 ENABLE: Enables the MPU

0: MPU disabled
1: MPU enabled
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Normally, you write the required region number to this register before accessing the 
MPU_RBAR or MPU_RASR. However you can change the region number by writing to the 
MPU_RBAR with the VALID bit set to 1, see MPU Region Base Address Register on 
page 102. This write updates the value of the REGION field.

4.5.4 MPU Region Base Address Register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, 
and writes to this register can update the value of the MPU_RNR. See the register summary 
in Table 34 on page 99 for its attributes.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and 
update the MPU_RNR. The bit assignments are:

          

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved REGION

Reserved, must be kept cleared.

REGION Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers. 
The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDR[31:N]...

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

....ADDR[31:N] VALID REGION[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:N ADDR[31:N]: Region base address field 

The value of N depends on the region size. 
For more information, see The ADDR field
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If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field.

The ADDR field

The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the SIZE 
field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes), 

If the region size is configured to 4GB, in the MPU_RASR, there is no valid ADDR field. In 
this case, the region occupies the complete memory map, and the base address is 
0x00000000.

The base address must be aligned to the size of the region. For example, a 64KB region 
must be aligned on a multiple of 64KB, for example, at 0x00010000 or 0x00020000.

4.5.5 MPU Region Attribute and Size Register

The MPU_RASR defines the region size and memory attributes of the MPU region specified 
by the MPU_RNR, and enables that region and any subregions. See the register summary 
in Table 33 on page 99 for its attributes.

The bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved XN Reserv
ed

AP[2:0] Reserved S C B

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SIZE EN 
ABLE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

          

Bits N-1:5 Reserved, forced by hardware to 0.

Bit 4 VALID: MPU region number valid

Write:

0: MPU_RNR register not changed, and the processor:

– Updates the base address for the region specified in the MPU_RNR

– Ignores the value of the REGION field
1: the processor:

– updates the value of the MPU_RNR to the value of the REGION field

– updates the base address for the region specified in the REGION field.

Read: 

Always read as zero.

Bits 3:0 REGION[3:0]: MPU region field

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR register.

SRD[7:0]

Bits 31:29 Reserved

Bit 28 XN: Instruction access disable bit:

0 = Instruction fetches enabled.
1 = Instruction fetches disabled.

Bit 27 Reserved, forced by hardware to 0.
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For information about access permission, see MPU access permission attributes on 
page 104.

SIZE field values

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as 
follows:

(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 256B, corresponding to a SIZE value of 7. Table 35 
gives example SIZE values, with the corresponding region size and value of N in the 
MPU_RBAR

          .

4.5.6 MPU access permission attributes

This section describes the MPU access permission attributes. The access permission bits, 
C, B, S, AP, and XN, of the MPU_RASR, control access to the corresponding memory 
region. If an access is made to an area of memory without the required permissions, then 
the MPU generates a permission fault.

Bits 26:24 AP[2:0]: Access permission field, see Table 37: AP encoding

Bits 23:19 Reserved, forced by hardware to 0.

Bit 18 S: Shareable bit see Table 36 on page 105

Bit 17 C: Cacheable bit see Table 37 on page 105

Bit 16 B: Bufferable bit, see Table 36 on page 105

Bits 15:8 SRD: Subregion disable bits.

For each bit in this field:

0 = Corresponding sub-region is enabled.
1 = Corresponding sub-region is disabled.

See Subregions on page 106 for more information.

Bits 7:6 Reserved, forced by hardware to 0.

Bits 5:1 SIZE: Size of the MPU protection region.

Specifies the size of the MPU region. The minimum permitted value is 7 (b00111). See SIZE 
field values on page 104 for more information

Bit 0 ENABLE: Region enable bit(1).

1. The region enable bit of all regions is reset to 0. This enables you to only program regions you want enabled.

Table 35. Example SIZE field values 

SIZE value Region size Value of N (1)

1. In the MPU_RBAR, see MPU Region Base Address Register on page 102.

Note

b00111 (7) 256B 8 Minimum permitted size.

b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB 32 Maximum possible size.
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Table 36 shows the encodings for the C, B, and S access permission bits

          .

Table 37 shows the AP encodings that define the access permissions for privileged and 
unprivileged software

          .

4.5.7 MPU mismatch

When an access violates the MPU permissions, the processor generates a HardFault.

4.5.8 Updating an MPU region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and 
MPU_RASR registers. 

Updating an MPU region

Simple code to configure one region:

; R1 = region number 
; R2 = size/enable 
; R3 = attributes 
; R4 = address 
LDR R0,=MPU_RNR         ; 0xE000ED98, MPU region number register 

Table 36. C, B, and S encoding 

C B S Memory type Shareability Other attributes

0 
0 - (1)

1. The MPU ignores the value of this bit.

Strongly-ordered Shareable -

1 -(1) Device Shareable -

1 

0 
0

Normal
Not shareable

Outer and inner write-through. No write allocate.
1 Shareable

1 
0

Normal
Not shareable

Outer and inner write-back. No write allocate.
1 Shareable

Table 37. AP encoding 

AP[2:0]
Privileged 

permissions

Unprivileged 

permissions
Description

000 No access No access All accesses generate a permission fault.

001 RW No access Access from privileged software only.

010 RW RO
Writes by unprivileged software generate a permission 
fault.

011 RW RW Full access.

100 Unpredictable Unpredictable Reserved.

101 RO No access Reads by privileged software only.

110 RO RO Read only, by privileged or unprivileged software.

111 RO RO Read only, by privileged or unprivileged software.
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STR R1, [R0, #0x0]      ; Region Number 
STR R4, [R0, #0x4]      ; Region Base Address 
STRH R2, [R0, #0x8]     ; Region Size and Enable 
STRH R3, [R0, #0xA]     ; Region Attribute

Software must use memory barrier instructions:

• Before MPU setup if there might be outstanding memory transfers, such as buffered 
writes, that might be affected by the change in MPU settings.

• After MPU setup if it includes memory transfers that must use the new MPU settings.

However, an instruction synchronization barrier instruction is not required if the MPU setup 
process starts by entering an exception handler, or is followed by an exception return, 
because the exception entry and exception return mechanism cause memory barrier 
behavior.

For example, if you want all of the memory access behavior to take effect immediately after 
the programming sequence, use a DSB instruction and an ISB instruction. A DSB is required 
after changing MPU settings, such as at the end of context switch. An ISB is required if the 
code that programs the MPU region or regions is entered using a branch or call. If the 
programming sequence is entered using a return from exception, or by taking an exception, 
then you do not require an ISB.

Subregions

Regions are divided into eight equal-sized subregions. Set the corresponding bit in the SRD 
field of the MPU_RASR to disable a subregion, see MPU Region Attribute and Size Register 
on page 103. The least significant bit of SRD controls the first subregion, and the most 
significant bit controls the last subregion. Disabling a subregion means another region 
overlapping the disabled range matches instead. If no other enabled region overlaps the 
disabled subregion the MPU issues a fault. 

Example of SRD use

Two regions with the same base address overlap. Region one is 128KB, and region two is 
512KB. To ensure the attributes from region one apply to the first 128KB region, set the 
SRD field for region two to b00000011 to disable the first two subregions, as the figure 
shows.

Figure 13. Example of SRD use
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4.5.9 MPU design hints and tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a 
region that the interrupt handlers might access.

When setting up the MPU, and if the MPU has previously been programmed, disable 
unused regions to prevent any previous region settings from affecting the new MPU setup.

MPU configuration for a microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a 
system, program the MPU as follows:

          

In most microcontroller implementations, the shareability and cache policy attributes do not 
affect the system behavior. However, using these settings for the MPU regions can make 
the application code more portable. The values given are for typical situations. In special 
systems, such as multiprocessor designs or designs with a separate DMA engine, the 
shareability attribute might be important. In these cases refer to the recommendations of the 
memory device manufacturer.

Table 38. Memory region attributes for a microcontroller 

Memory region C B S Memory type and attributes

Flash memory 1 0 0 Normal memory, Non-shareable, write-through.

Internal SRAM 1 0 1 Normal memory, Shareable, write-through.

External SRAM 1 1 1 Normal memory, Shareable, write-back, write-allocate.

Peripherals 0 1 1 Device memory, Shareable.
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4.6 I/O Port

Cortex-M0+ implements a dedicated I/O port for high-speed, low-latency access to 
peripherals. The I/O port is memory mapped and supports all the load and store instructions 
given in Memory access instructions on page 45. The I/O port does not support code 
execution. 

The general-purpose I/Os are accessed through the I/O port. 

The I/O port can be protected by the MPU.
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5 Revision history

          

Table 39. Document revision history

Date Revision Changes

15-Apr-2014 1 Initial release.

16-Jun-2017 2 Updated Section 2.3.4: Vector table

19-Jan-2018 3 Updated Section 3.5.1: ADC, ADD, RSB, SBC, and SUB

25-Oct-2018 4 Added STM32G0 Series.

10-Oct-2019 5 Added STM32WL and STM32WB Series.
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