SLVS019F - OCTOBER 1987 - REVISED JULY 1999

- Power-On Reset Generator
- Automatic Reset Generation After Voltage Drop
- RESET Defined When V_{CC} Exceeds 1 V
- Wide Supply-Voltage Range . . . 3.5 V to 18 V
- Precision Overvoltage and Undervoltage Sensing
- 250-mA Peak Output Current for Driving SCR Gates
- 2-mA Active-Low SCR Gate Drive for False-Trigger Protection
- Temperature-Compensated Voltage Reference
- True and Complementary Reset Outputs
- Externally Adjustable Output Pulse Duration

description

DW OR N PACKAGE (TOP VIEW) 1RESIN 16 Vcc 15 2RESIN 1CT 2 1RESET **1**3 14 🛛 2CT 13 2RESET 1RESET **1** 4 12 2RESET 1VSU 5 11 2VSU 1VSO 6 10 2VSO 1SCR DRIVE 7 9 2SCR DRIVE GND [8

The TL7770 is an integrated-circuit system supervisor designed for use as a reset controller in microcomputer and microprocessor power-supply systems. This device contains two independent supply-voltage supervisors that monitor the supplies for overvoltage and undervoltage conditions at the VSO and VSU terminals, respectively. When V_{CC} attains the minimum voltage of 1 V during power up, the RESET output becomes active (low). As V_{CC} approaches 3.5 V, the time-delay function activates, latching RESET and RESET active (high and low, respectively) for a time delay (t_d) after system voltages have achieved normal levels. Above V_{CC} = 3.5 V, taking RESIN low activates the time-delay function during normal system-voltage levels. To ensure that the microcomputer system has reset, the outputs remain active until the voltage at VSU exceeds the threshold value, V_{IT+} , for a time delay, which is determined by an external timing capacitor such that:

 $t_d \approx 20 \times 10^3 \times capacitance$

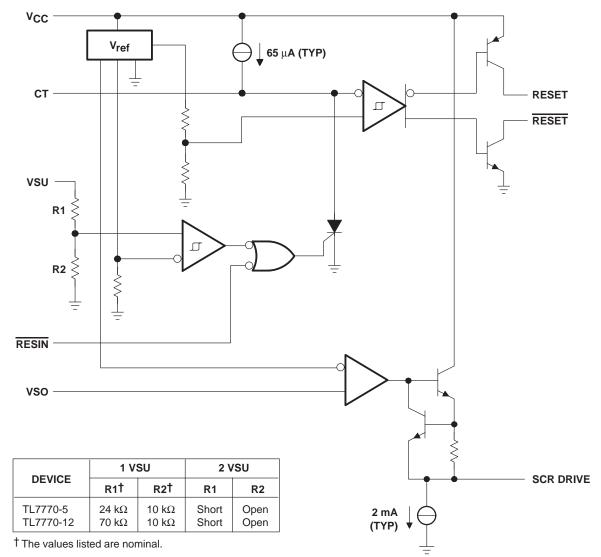
where t_d is in seconds and capacitance is in farads.

The overvoltage-detection circuit is programmable for a wide range of designs. During an overvoltage condition, an internal silicon-controlled rectifier (SCR) is triggered, providing 250-mA peak instantaneous current and 25-mA continuous current to the SCR gate drive terminal, which can drive an external high-current SCR gate or an overvoltage-warning circuit.

The TL7770C series is characterized for operation from 0°C to 70°C. The TL7770I series is characterized for operation from –40°C to 85°C.

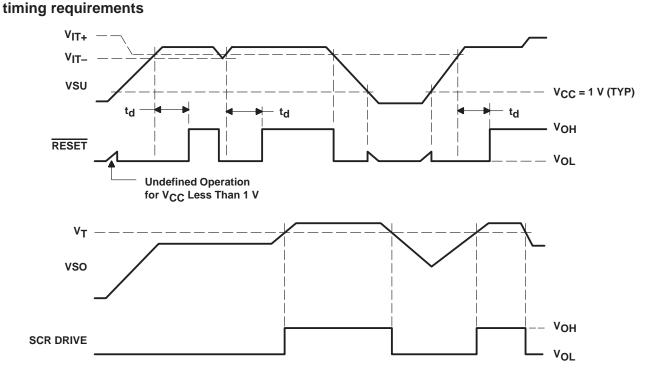
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 1999, Texas Instruments Incorporated

SLVS019F - OCTOBER 1987 - REVISED JULY 1999

AVAILABLE OPTIONS										
	PACKAGED	CHIP FORM								
TA	SMALL OUTLINE (DW)	PLASTIC DIP (N)	(Ү)							
0°C to 70°C	TL7770-5CDW TL7770-12CDW	TL7770-5CN TL7770-12CN	TL7770-5Y TL7770-12Y							
-40°C to 85°C	TL7770-5IDW	TL7770-5IN	_							


DW package is available taped and reeled. Add the suffix R to the device type (e.g., TL7770-5CDWR). Chip forms are tested at 25° C.

functional block diagram (each channel)

SLVS019F - OCTOBER 1987 - REVISED JULY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	20 V
Input voltage range, VI: 1VSU, 2VSU, 1VSO, and 2VSO (see Note 1)	
Low-level output current (1RESET and 2RESET), IOL	20 mA
High-level output current (1RESET and 2RESET), IOH	–20 mA
Package thermal impedance, θ_{JA} (see Notes 2 and 3): DW package	57°C/W
N package	88°C/W
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds: DW or N package	260°C
Storage temperature range, T _{stg}	35°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the network ground terminal.

- 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
- 3. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

SLVS019F - OCTOBER 1987 - REVISED JULY 1999

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V _{CC}		3.5	18	V
Input voltage range, VI (see Note 4)	1VSU, 2VSU, 2VSO, 1VSO	0	18	V
Output voltage, V _O (1CT, 2CT)			5	V
High-level input voltage range, V _{IH} (1RESIN, 2RESIN)		2	18	V
Low-level input voltage range, VIL (1RESIN, 2RESIN)		0	0.8	V
Output sink current, IO (1CT, 2CT)			50	μA
High-level output current, IOH (1RESET, 2RESET)			-16	mA
Low-level output current, IOL (1RESET, 2RESET)			16	mA
Continuous output current, IO (1SCR DRIVE, 2SCR DRIVE)			25	mA
Timing capacitor, CT			10	μF
Operating free air temperature T	TL7770C series	0	70	°C
Operating free-air temperature, T _A	TL7770I series	-40	85	°C

NOTE 4: The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

SLVS019F - OCTOBER 1987 - REVISED JULY 1999

electrical characteristics over recommended operating conditions (unless otherwise noted)

supply supervisor section

	PARAME	TER	TEST CONDITIONS [†]	TL TL7 TL	UNIT			
				MIN	TYP‡	MAX		
Vau	High lovel output voltage	RESET		V _{CC} -1.5			V	
Vон	High-level output voltage	SCR DRIVE	I _{OH} = -20 mA	V _{CC} -1.5			v	
VOL	Low-level output voltage	RESET	I _{OL} = 15 mA			0.4	V	
	VIT- Undervoltage input threshold VIT- at VSU (negative-going)	TL7770-5 (5-V sense, 1VSU)		4.46		4.64		
Vit		TL7770-12 (12-V sense, 1VSU)	$T_A = MIN \text{ to } MAX$	10.68		11.12	V	
v -		TL7770-5, TL7770-12 (programmable sense, 2VSU)		1.47		1.53		
		TL7770-5 (5-V sense, 1VSU)		15				
ν.	Hysteresis at VSU	TL7770-12 (12-V sense, 1VSU)		36		m∨		
V _{hys}	$(V_{IT+} - V_{IT-})$	TL7770-5, TL7770-12 (programmable sense, 2VSU)	$-T_A = MIN \text{ to MAX}$		5		mv	
VT	Overvoltage threshold at VSO	TL7770-5, TL7770-12 (VSO)	$T_A = MIN \text{ to } MAX$	2.48		2.68	V	
	land to summark	RESIN	V _I = 5.5 V or 0.4 V			-10		
1	Input current	VSO	V _I = 2.4 V		0.5	2	μA	
IOH	High-level output current	RESET	V _O = 18 V			50	μΑ	
IOL	Low-level output current	RESET	$V_{O} = 0$			-50	μA	
IOH	Peak output current	SCR DRIVE	Duration = 1 ms	250			mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified in the recommended operating conditions.

[‡]Typical values are at V_{CC} = 5 V, T_A = 25° C.

total device

	PARAMETER	TEST CONDITION	TI TL T	UNIT			
			MIN	TYP‡	MAX		
Vres§	Power-up reset voltage	V _{CC} = VSU	V _{CC} = VSU				
	Supply current	1VSU = 18 V, 2VSU = 2 V, 1RESIN and 2RESIN at V _{CC} ,	$T_A = 25^{\circ}C$			5	mA
ICC		1VSO and 2VSO at 0 V	$T_A = MIN \text{ to } MAX$			6.5	ΠA

[†] For conditions shown as MIN or MAX, use the appropriate value specified in the recommended operating conditions. [‡] Typical values are at $V_{CC} = 5 \text{ V}$, $T_{\underline{A}} = 25^{\circ}\text{C}$. [§] This is the lowest voltage at which RESET becomes active.

SLVS019F - OCTOBER 1987 - REVISED JULY 1999

electrical characteristics over recommended operating conditions (unless otherwise noted)

supply supervisor section

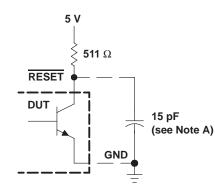
	PARAMETER	TEST	T TL	UNIT				
		-	CONDITIONS	MIN	TYP†	MAX		
	VIT- Undervoltage input threshold at VSU (negative-going)	TL7770-5 (5-V sense, 1VSU)		4.46		4.64		
Vit		TL7770-12 (12-V sense, 1VSU)	$T_{\Delta} = MIN \text{ to MAX}$	10.68		11.12	v	
×11-		TL7770-5, TL7770-12 (programmable sense, 2VSU)		1.47		1.53		
		TL7770-5 (5-V sense, 1VSU)		15			mV	
V _{hys}	Hysteresis at VSU	TL7770-12 (12-V sense, 1VSU)	$T_A = MIN \text{ to MAX}$	36				
vnys	$(V_{IT+} - V_{IT-})$	TL7770-5, TL7770-12 (programmable sense, 2VSU)			5		IIIV	
VT	Overvoltage threshold at VSO	TL7770-5, TL7770-12 (VSO)	$T_A = MIN \text{ to } MAX$	2.48		2.68	V	
Ц	Input current	VSO	V _I = 2.4 V		0.5		μA	

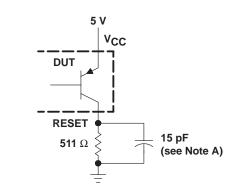
[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

total device

	PARAMETER	TEST COND	TI TL	UNIT			
				MIN	TYP†	MAX	
V _{res} ‡	Power-up reset voltage	$V_{CC} = VSU,$	$V_{OL} = 0.4 \text{ V}, I_{OL} = 1 \text{ mA}$		0.8		V
ICC	Supply current	$1 \underline{VSU}$ = 18 V, $2 \underline{VSU}$ = 2 V, $1 \overline{RESIN}$ and $2 \overline{RESIN}$ at V_{CC} , $1 \underline{VSO}$ and $2 \underline{VSO}$ at 0 V	T _A = 25°C			5	mA

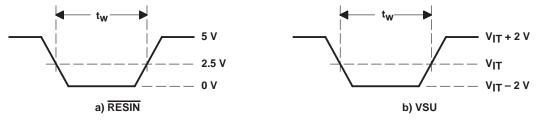
[†] Typical values are at V_{CC} = 5 V, T_{A} = 25°C. [‡] This is the lowest voltage at which RESET becomes active.


switching characteristics, V_{CC} = 5 V, C_T open, T_A = 25°C


	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT	
^t PLH	Propagation delay time, low-to-high-level output	RESIN	RESET			270	500	ns	
^t PHL	Propagation delay time, high-to-low-level output	RESIN	RESET			270	500	ns	
tr	Rise time		RESET	See Figures 1			75	ns	
t _f	Fall time		RESET	and 3		150		115	
tr	Rise time		DEOFT			75			
t _f	Fall time		RESET				50	ns	
t / · · ›	Minimum effective pulse duration	RESIN		See Figure 2a		150		ns	
^t w(min)	winimum enective pulse duration	VSU		See Figure 2b		100		115	

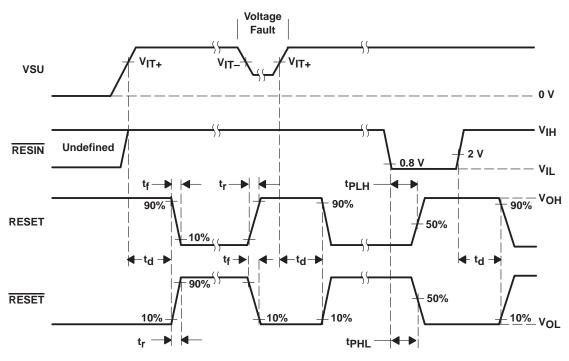
SLVS019F - OCTOBER 1987 - REVISED JULY 1999

PARAMETER MEASUREMENT INFORMATION

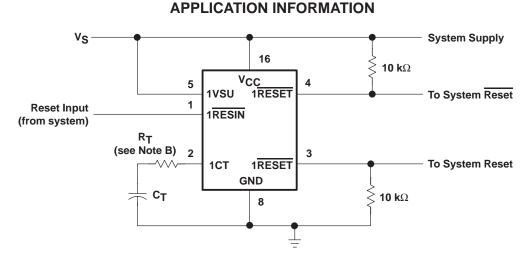


RESET OUTPUT CONFIGURATION

RESET OUTPUT CONFIGURATION


NOTE A: This includes jig and probe capacitance.

WAVEFORMS



SLVS019F - OCTOBER 1987 - REVISED JULY 1999

NOTE B: When V_{CC} and 1VSU are connected to the same point, it is recommended that series resistance (R_T) be added between the time-delay programming capacitor (C_T) and the voltage-supervisor device terminal (1CT). The suggested R_T value is given by:

$$R_{T} > \frac{V_{I} - V_{IT-}}{1 \times 10^{-3}},$$
 where $V_{I} = \left(\text{the lesser of 7.1 V or } V_{S} \right)$

When this series resistor is used, the t_d calculation is as follows:

 $t_{d} = \frac{1.3 - \left[((6.5 \text{E} - 5) \times 10^{-5}) \times \text{R}_{\text{T}} \right]}{6.5 \times 10^{-5}} \times \text{C}_{\text{T}}$

Figure 4. System Reset Controller With Undervoltage Sensing

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TL7770-12CDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	7770-12C	Samples
TL7770-5CDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL7770-5C	Samples
TL7770-5CDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	0 to 70	TL7770-5C	Samples
TL7770-5CN	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	TL7770-5CN	Samples
TL7770-5IDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL7770-5I	Samples
TL7770-5IDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL7770-5I	Samples
TL7770-5IDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL7770-5I	Samples
TL7770-5IDWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL7770-5I	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

www.ti.com

PACKAGE OPTION ADDENDUM

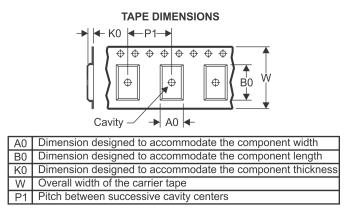
6-Feb-2020

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

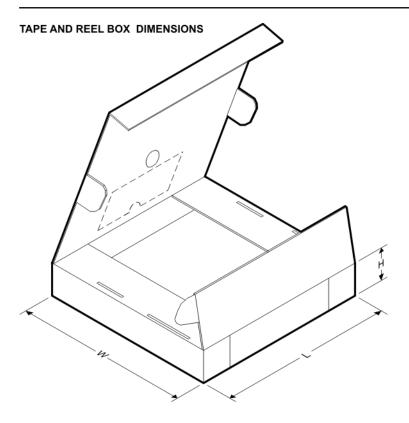

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL7770-12CDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
TL7770-5CDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
TL7770-5IDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

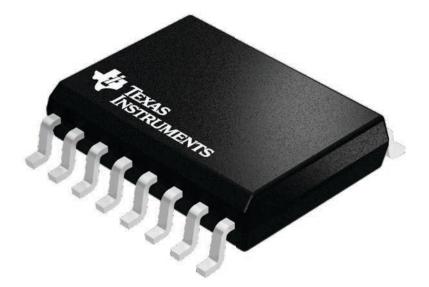
PACKAGE MATERIALS INFORMATION

20-Feb-2019

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL7770-12CDWR	SOIC	DW	16	2000	350.0	350.0	43.0
TL7770-5CDWR	SOIC	DW	16	2000	350.0	350.0	43.0
TL7770-5IDWR	SOIC	DW	16	2000	350.0	350.0	43.0

DW 16

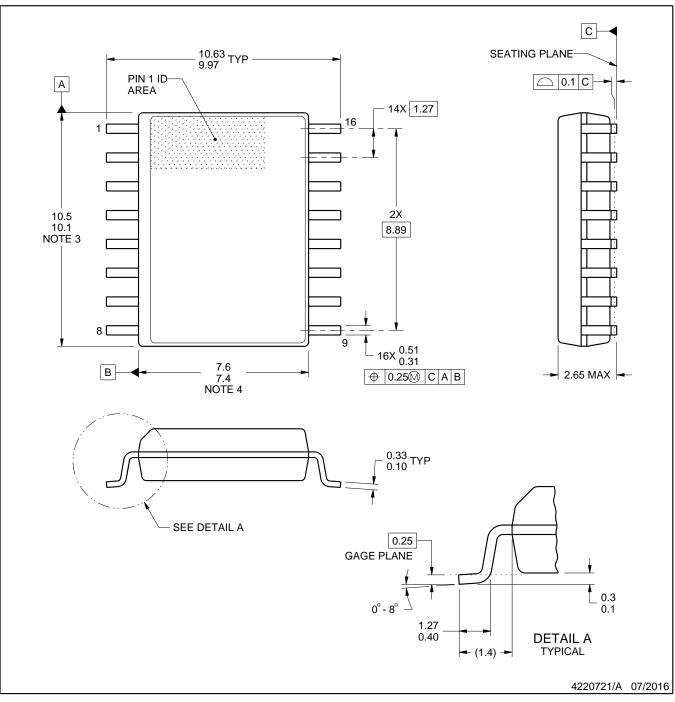

GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

7.5 x 10.3, 1.27 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DW0016A

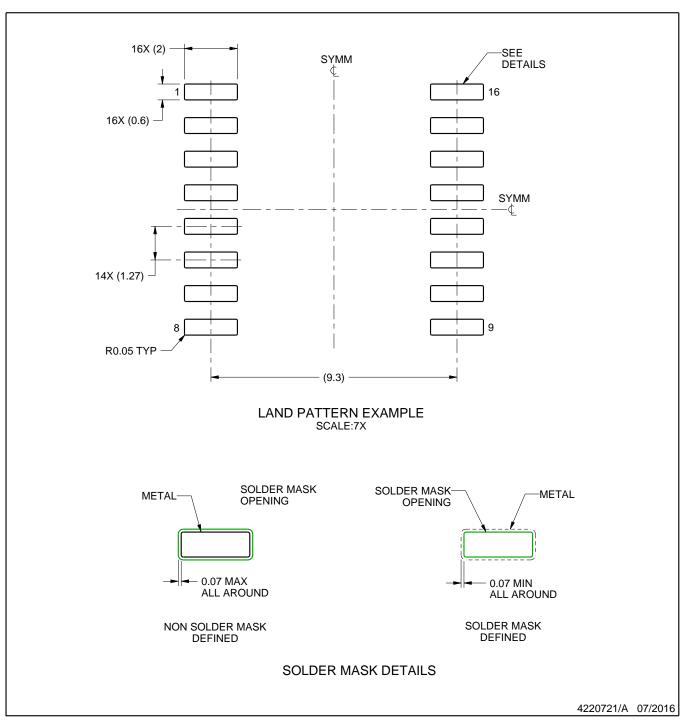
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016A

EXAMPLE BOARD LAYOUT

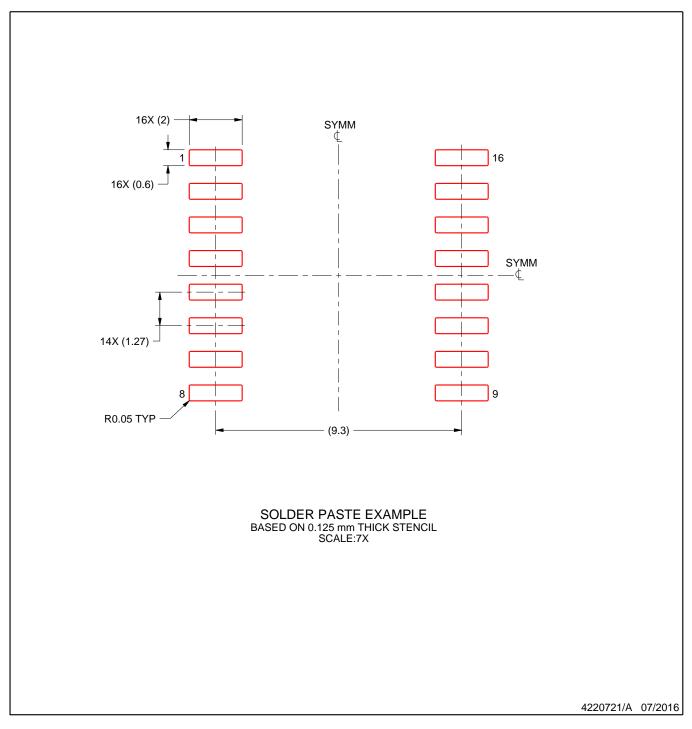
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0016A

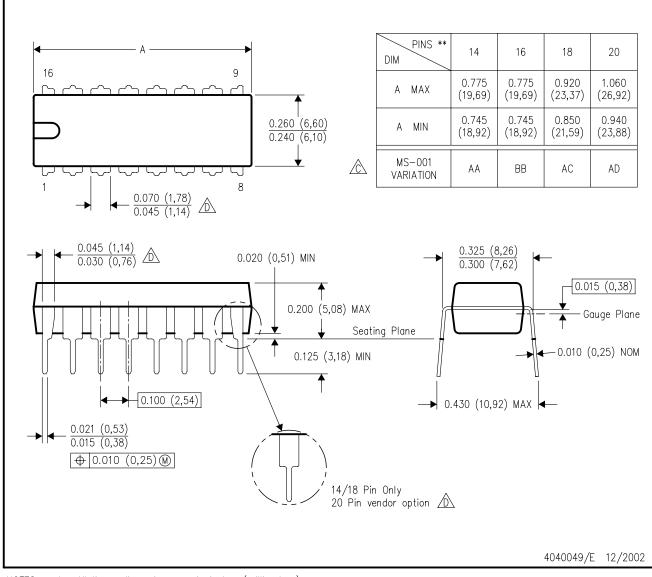
EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated