

Order

Now

TLV9001, TLV9002, TLV9004

SBOS8330-OCTOBER 2017-REVISED APRIL 2020

TLV900x Low-Power, RRIO, 1-MHz Operational Amplifier for Cost-Sensitive Systems

Technical

Documents

🤊 Tools &

Software

Features 1

- Scalable CMOS amplifier for low-cost applications
- Rail-to-rail input and output
- Low input offset voltage: ±0.4 mV
- Unity-gain bandwidth: 1 MHz
- Low broadband noise: 27 nV/VHz
- Low input bias current: 5 pA
- Low quiescent current: 60 µA/Ch
- Unity-gain stable
- Internal RFI and EMI filter
- Operational at supply voltages as low as 1.8 V
- Easier to stabilize with higher capacitive load due to resistive open-loop output impedance
- Extended temperature range: -40°C to 125°C

2 Applications

- Smoke detectors
- Motion detectors
- Wearable devices
- Large and small appliances
- EPOS
- Barcode scanners
- Sensor signal conditioning
- Power modules
- Personal electronics
- Active filters
- HVAC: heating, ventilating, and air conditioning
- Motor control: AC induction
- Low-side current sensing

3 Description

The TLV900x family includes single (TLV9001), dual (TLV9002), and guad-channel (TLV9004) low-voltage (1.8 V to 5.5 V) operational amplifiers (op amps) with rail-to-rail input and output swing capabilities. These op amps provide a cost-effective solution for spaceconstrained applications such as smoke detectors, wearable electronics, and small appliances where low-voltage operation and high capacitive-load drive are required. The capacitive-load drive of the TLV900x family is 500 pF, and the resistive openloop output impedance makes stabilization easier with much higher capacitive loads. These op amps are designed specifically for low-voltage operation (1.8 V to 5.5 V) with performance specifications similar to the TLV600x devices.

The robust design of the TLV900x family simplifies circuit design. The op amps feature unity-gain stability, an integrated RFI and EMI rejection filter, and no-phase reversal in overdrive conditions.

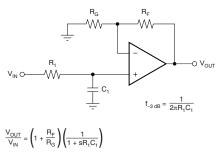
Support &

Community

20

The TLV900x devices include a shutdown mode (TLV9001S, TLV9002S and TLV9004S) that allow the amplifiers to switch off into standby mode with typical current consumption less than 1 µA.

Micro-size packages, such as SOT-553 and WSON, are offered for all channel variants (single, dual, and quad), along with industry-standard packages such as SOIC, MSOP, SOT-23, and TSSOP packages.


PART NUMBER	PACKAGE	BODY SIZE (NOM)				
	SOT-23 (5)	1.60 mm × 2.90 mm				
TLV9001	SC70 (5)	1.25 mm × 2.00 mm				
1209001	SOT-553 (5) ⁽²⁾	1.65 mm × 1.20 mm				
	X2SON (5)	0.80 mm × 0.80 mm				
TI V00018	SOT-23 (6)	1.60 mm × 2.90 mm				
TLV9001S	SC70 (6)	1.25 mm × 2.00 mm				
	SOIC (8)	3.91 mm × 4.90 mm				
	WSON (8)	2.00 mm × 2.00 mm				
TLV9002	VSSOP (8)	3.00 mm × 3.00 mm				
	SOT-23 (8)	1.60 mm × 2.90 mm				
	TSSOP (8)	3.00 mm × 4.40 mm				
TLV9002S	VSSOP (10)	3.00 mm × 3.00 mm				
12/90023	X2QFN (10)	1.50 mm × 2.00 mm				
	SOIC (14)	8.65 mm × 3.91 mm				
TLV9004	TSSOP (14)	4.40 mm × 5.00 mm				
1 L V 9004	WQFN (16)	3.00 mm × 3.00 mm				
	X2QFN (14)	2.00 mm × 2.00 mm				
TLV9004S	WQFN (16)	3.00 mm × 3.00 mm				

Device Information⁽¹⁾

(1) For all available packages, see the orderable addendum at the end of the data sheet.

(2) Package is for preview only.

Single-Pole, Low-Pass Filter

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

2

Table of Contents

1	Feat	ures 1								
2	Applications 1									
3	Description 1									
4	Revi	ision History 2								
5	Devi	ice Comparison Table6								
6	Pin	Configuration and Functions 7								
7	Spe	cifications14								
	7.1	Absolute Maximum Ratings 14								
	7.2	ESD Ratings 14								
	7.3	Recommended Operating Conditions 14								
	7.4	Thermal Information: TLV9001 15								
	7.5	Thermal Information: TLV9001S15								
	7.6	Thermal Information: TLV9002 15								
	7.7	Thermal Information: TLV9002S 15								
	7.8	Thermal Information: TLV9004 16								
	7.9	Thermal Information: TLV9004S 16								
	7.10									
	7.11	Typical Characteristics 19								
8	Deta	niled Description								
	8.1	Overview 25								

	8.2	Functional Block Diagram	25
	8.3	Feature Description	26
	8.4	Device Functional Modes	27
9	App	lication and Implementation	28
	9.1	Application Information	28
	9.2	Typical Application	28
10	Pow	ver Supply Recommendations	33
		Input and ESD Protection	
11	Lay	out	34
	11.1		
	11.2	Layout Example	34
12	Dev	ice and Documentation Support	35
	12.1	Documentation Support	
	12.2	Related Links	35
	12.3	Receiving Notification of Documentation Updates	35
	12.4	Support Resources	35
	12.5	Trademarks	35
	12.6	Electrostatic Discharge Caution	35
	12.7	Glossary	35
13	Mec	hanical, Packaging, and Orderable	
		mation	35

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision N (January 2020) to Revision O Page • Deleted PREVIEW designation on TLV9001S 1 • Deleted TLV9001SIDCK (6-pin SC70) package preview note 8 • Added DCK (SC70) data to the Thermal Information: TLV9001S table 15

Changes from Revision M (September 2019) to Revision N

•	Added 6-pin SC70 package to Device Information table	1
•	Added 6-pin SC70 package to Device Comparison Table	6
•	Added TLV9001SIDCK (6-Pin SC70) package pinout	8
•	Added TLV9001S 6-pin SC70 package to Pin Configuration and Functions section	8
•	Added 6-pin SC70 pinout to Pin Functions: TLV9001S	8
•	Added TLV9001S 6-pin SC70 package to Thermal Information: TLV9001S table	15

INSTRUMENTS

www.ti.com

Page

Changes from Revision K (March 2019) to Revision L Page Changes from Revision J (January 2019) to Revision K Page Changes from Revision I (November 2018) to Revision J Page Changed TLV9004 WQFN(14) package designator to X2QFN(14) package designator 1 Changes from Revision H (October 2018) to Revision I Page Changes from Revision G (September 2018) to Revision H Page Changed From: TLV9001 DCK Package To: TLV9001T DCK Package7 Changes from Revision F (August 2018) to Revision G Page Changed pin names and I/O designation on some TLV9001 pins7 Changes from Revision E (July 2018) to Revision F Page Deleted PREVIEW designation on TLV9002 and TLV9004 devices with the TSSOP package. 1

Page

ISTRUMENTS

EXAS

Changes from Revision D (June 2018) to Revision E

-		
•	Corrected typo in Description section	1
•	Added TLV9001 5-pin X2SON package to Device Information table	1
•	Added TLV9001S 6-pin SOT-23 package to Device Information table	1
•	Added TLV9004 14-pin and 16-pin WQFN packages to Device Information table	1
•	Added TLV9001 DPW (X2SON) pinout drawing to Pin Configuration and Functions section	7
•	Added TLV9001S 6-pin SOT-23 package to Pin Configuration and Functions section	8
•	Added TLV9004 RTE pinout information to Pin Configuration and Functions section	11
•	Added DPW (X2SON) and DRL (SOT-553) packages to Thermal Information: TLV9001 table	15
•	Added Thermal Information: TLV9001S table to Specifications section	15
•	Added RUG (X2QFN) package to Thermal Information: TLV9002 table	15
•	Added RTE (WQFN) and RUC (WQFN) packages to Thermal Information: TLV9004 table	16

Changes from Revision C (May 2018) to Revision D

Page

Page

•	Added shutdown text to Description section	1
•	Added TLV9002S and TLV9004S devices to Device Information table	1
•	Added TLV9002S 10-pin X2QFN package to Device Information table	1
•	Added TLV9002S DGS package pinout information to Pin Configurations and Functions section	9
•	Added Thermal Information: TLV9001 table to Specifications section	15
•	Added Thermal Information: TLV9004 table to Specifications section	16
•	Added shutdown section to <i>Electrical Characteristics:</i> V_S (<i>Total Supply Voltage</i>) = (V+) - (V-) = 1.8 V to 5.5 V table	. 17
•	Added Shutdown section	27

Changes from Revision B (March 2018) to Revision C

•	Added TLV9002 16-pin TSSOP package to Device Information table	1
•	Added TLV9002 10-pin X2QFN package to Device Information table	1
•	Added TLV9002S DGS package pinout drawing in Pin Configurations and Functions section	10
•	Added TLV9004 pinout diagram and pin configuration table to Pin Configuration and Functions section	11
•	Added TLV9004S pinout diagram and pin configuration table to Pin Configuration and Functions section	13
•	Changed TLV9002 D (SOIC) junction-to-ambient thermal resistance value from 147.4°C/W to 207.9°C/W	15
•	Changed TLV9002 D (SOIC) junction-to-case (top) thermal resistance from 94.3°C/W to 92.8°C/W	15
•	Changed TLV9002 D (SOIC) junction-to-board thermal resistance from 89.5°C/W to 129.7°C/W	15
•	Changed TLV9002 D (SOIC) junction-to-top characterization parameter from 47.3°C/W to 26°C/W	15
•	Changed TLV9002 D (SOIC) junction-to-board characterization parameter from 89°C/W to 127.9°C/W	15
•	Added DGK (VSSOP) thermal information to Thermal Information: TLV9002 table	15
•	Added TLV9002 PW (TSSOP) thermal information to Thermal Information: TLV9002 table	15
•	Added PW (TSSOP) thermal information to Thermal Information: TLV9002 table	16

Changes from Revision A (December 2017) to Revision B

Page

•	Added package preview notes to TLV9001 packages, TLV9004 packages, and TLV9002 8-pin VSSOP package in Device Information table
•	Added package preview notes to TLV9001, TLV9004 and TLV9002 VSSOP package pinout drawings in <i>Pin</i> <i>Configuration and Functions</i> section
•	Deleted package preview note from TLV9002 DSG (WSON) pinout drawing in Pin Configurations and Functions section. 9

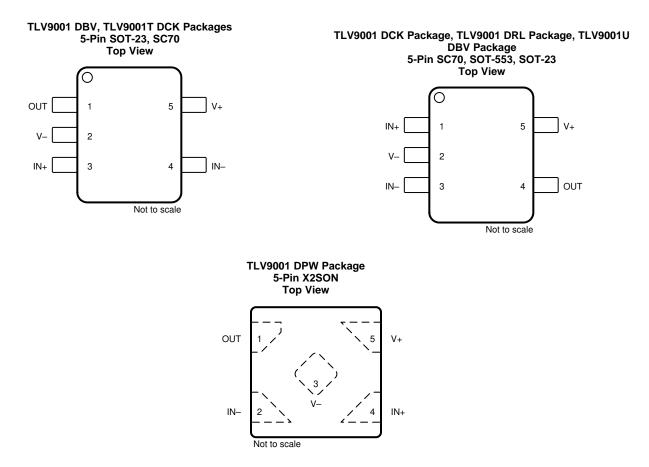
•	Deleted package preview note from TLV9002 RUG (X2QFN) pinout drawing in <i>Pin Configurations and Functions</i> section	10
•	Added DSG (WSON) package thermal information to the Thermal Information: TLV9002 table	15
•	Deleted package preview note from DSG (WSON) package in Thermal Information: TLV9002 table	15
•	Added D (SOIC) package thermal information to the Thermal Information: TLV9004 table	16

Changes from Original (October 2017) to Revision A

Page

TEXAS INSTRUMENTS

www.ti.com

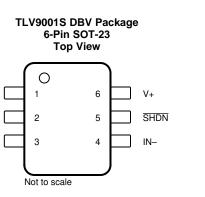

5 Device Comparison Table

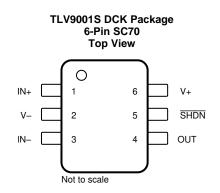
	NO. OF CH.													
DEVICE		SC70 DCK	SOIC D	SOT-23 DBV	SOT-553 DRL	TSSOP PW	VSSOP DGK	SOT-23 DDF	WQFN RTE	WSON DSG	X2QFN RUC	X2SON DPW	X2QFN RUG	VSSOP DGS
TLV9001	4	5		5	5		—	_	_	—	_	5	—	_
TLV9001S	1	6		6	_		—	—	—	—	—		—	_
TLV9002	0		8	—	—	8	8	8	_	8	_	-	—	_
TLV9002S	2			_	_		_	_	_	_	_		10	10
TLV9004	4		14	_	_	14	_	_	16	_	14		—	_
TLV9004S		-	Ι	_	—		—	—	16	_	—		—	_

6

6 Pin Configuration and Functions

Pin Functions: TLV9001

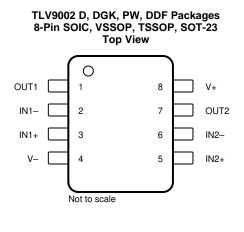

	Р	IN					
NAME	SOT-23, SC70(T)	SC70, SOT-23(U), SOT-553	X2SON	I/O	DESCRIPTION		
IN-	4	3	2	I	Inverting input		
IN+	3	1	4	I	Noninverting input		
OUT	1	4	1	0	Output		
V–	2	2	3	I or —	Negative (low) supply or ground (for single-supply operation)		
V+	5	5	5	I	Positive (high) supply		

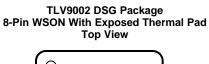


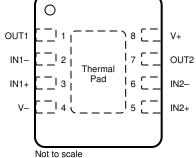
OUT

V–

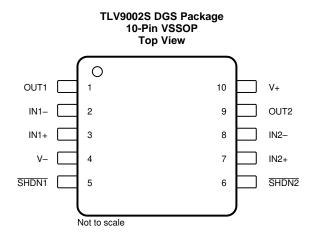
IN+

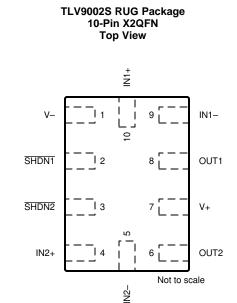



Pin Functions: TLV9001S


PIN		1/0	DESCRIPTION			
NAME	SOT-23	SC70	- I/O	DESCRIPTION		
IN-	4	3	I	Inverting input		
IN+	3	1	I	Noninverting input		
OUT	1	4	0	Output		
SHDN	5	5	I	Shutdown: low = amp disabled, high = amp enabled. See <i>Shutdown</i> section for more information.		
V–	2	2	l or —	Negative (low) supply or ground (for single-supply operation)		
V+	6	6	I	Positive (high) supply		

8

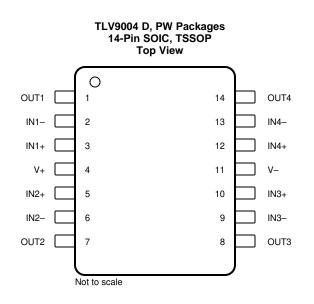


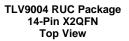


(1) Connect thermal pad to V-.

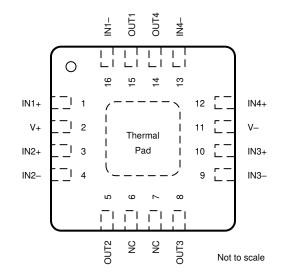
Pin Functions: TLV9002

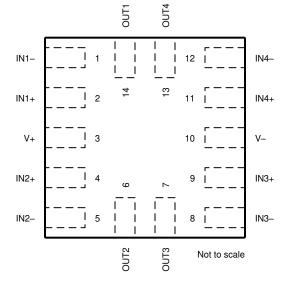
F	PIN I/O		DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
IN1–	2	I	Inverting input, channel 1
IN1+	3	I	Noninverting input, channel 1
IN2-	6	I	Inverting input, channel 2
IN2+	5	I	Noninverting input, channel 2
OUT1	1	0	Output, channel 1
OUT2	7	0	Output, channel 2
V–	4	I or —	Negative (low) supply or ground (for single-supply operation)
V+	8	Ι	Positive (high) supply





Pin Functions: TLV9002S


	PIN		1/0	DESCRIPTION
NAME	VSSOP	X2QFN	I/O	DESCRIPTION
IN1-	2	9	I	Inverting input, channel 1
IN1+	3	10	I	Noninverting input, channel 1
IN2-	8	5	I	Inverting input, channel 2
IN2+	7	4	I	Noninverting input, channel 2
OUT1	1	8	0	Output, channel 1
OUT2	9	6	0	Output, channel 2
SHDN1	5	2	I	Shutdown: low = amp disabled, high = amp enabled, channel 1. See <i>Shutdown</i> section for more information.
SHDN2	6	3	I	Shutdown: low = amp disabled, high = amp enabled, channel 1. See <i>Shutdown</i> section for more information.
V–	4	1	l or —	Negative (low) supply or ground (for single-supply operation)
V+	10	7	Ι	Positive (high) supply



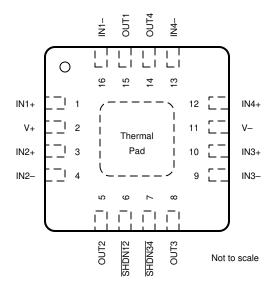
(1) Connect thermal pad to V-.

Pin Functions: TLV9004

	Р	IN						
NAME	SOIC, TSSOP	WQFN	X2QFN	I/O	DESCRIPTION			
IN1-	2	16	1	I	Inverting input, channel 1			
IN1+	3	1	2	I	Noninverting input, channel 1			
IN2-	6	4	5	I	Inverting input, channel 2			
IN2+	5	3	4	I	Noninverting input, channel 2			
IN3–	9	9	8	I	Inverting input, channel 3			
IN3+	10	10	9	I	Noninverting input, channel 3			
IN4–	13	13	12	I	Inverting input, channel 4			
IN4+	12	12	11	I	Noninverting input, channel 4			

Copyright © 2017-2020, Texas Instruments Incorporated

Texas


NSTRUMENTS

	Р	IN					
NAME	SOIC, TSSOP	WQFN	X2QFN	I/O	DESCRIPTION		
NC	—	6, 7	_	_	No internal connection		
OUT1	1	15	14	0	Output, channel 1		
OUT2	7	5	6	0	Output, channel 2		
OUT3	8	8	7	0	Output, channel 3		
OUT4	14	14	13	0	Output, channel 4		
V–	11	11	10	I or —	Negative (low) supply or ground (for single-supply operation)		
V+	4	2	3	I	Positive (high) supply		

Pin Functions: TLV9004 (continued)

TLV9004S RTE Package 16-Pin WQFN With Exposed Thermal Pad Top View

(1) Connect thermal pad to V-.

Pin Functions: TLV9004S

PIN		1/0	DESCRIPTION		
NAME	NO.	- I/O	DESCRIPTION		
IN1+	1	I	Noninverting input		
IN1–	16	I	Inverting input		
IN2+	3	I	Noninverting input		
IN2-	4	I	Inverting input		
IN3+	10	I	Noninverting input		
IN3–	9	I	Inverting input		
IN4+	12	I	Noninverting input		
IN4–	13	I	Inverting input		
SHDN12	6	I	Shutdown: low = amp disabled, high = amp enabled, channel 1 & 2. See <i>Shutdown</i> section for more information.		
SHDN34	7	I	Shutdown: low = amp disabled, high = amp enabled, channel 3 & 4. See <i>Shutdown</i> section for more information.		
OUT1	15	0	Output		
OUT2	5	0	Output		
OUT3	8	0	Output		
OUT4	14	0	Output		
V–	11	l or —	Negative (low) supply or ground (for single-supply operation)		
V+	2	I	Positive (high) supply		

7 Specifications

7.1 Absolute Maximum Ratings

over operating temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
Supply voltage (V+) -	(V–)			6	V
	Voltage ⁽²⁾	Common-mode	(V–) – 0.5	(V+) + 0.5	V
Signal input pins	vollage ->	Differential		(V+) - (V-) + 0.2	V
	Current ⁽²⁾		-10	10	mA
Output short-circuit ⁽³⁾			(Continuous	
Operating, T _A	Operating, T _A		-55	150	°C
Junction, T _J				150	°C
Storage, T _{stg}	Storage, T _{stg}			150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be current limited to 10 mA or less.

(3) Short-circuit to ground, one amplifier per package.

7.2 ESD Ratings

TLV9002	TLV9002S PACKAGE					
V	Electrostatio discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1500	V		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	V		
ALL OT	HER PACKAGES					
N/	Electrostatio discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	N/		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V		

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Vs	Supply voltage	1.8	5.5	V
T _A	Specified temperature	-40	125	°C

7.4 Thermal Information: TLV9001

		TLV9001					
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DCK (SC70)	DPW (X2SON)	DRL (SOT-553) ⁽²⁾	UNIT	
		5 PINS	5 PINS	5 PINS	5 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	232.9	239.6	470.0	TBD	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	153.8	148.5	211.9	TBD	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	100.9	82.3	334.8	TBD	°C/W	
ΨJT	Junction-to-top characterization parameter	77.2	54.5	29.8	TBD	°C/W	
ΨJB	Junction-to-board characterization parameter	100.4	81.8	333.2	TBD	°C/W	

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

(2) This package option for TLV9001 is preview only.

7.5 Thermal Information: TLV9001S

		TLV9		
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DCK (SC70)	UNIT
		6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	232.9	215.6	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	153.8	146.4	°C/W
R_{\thetaJB}	Junction-to-board thermal resistance	100.9	72.0	°C/W
ΨJT	Junction-to-top characterization parameter	77.2	55.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	100.4	71.7	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

7.6 Thermal Information: TLV9002

		TLV9002						
т	THERMAL METRIC ⁽¹⁾		DGK (VSSOP)	DGS (VSSOP)	DSG (WSON)	PW (TSSOP)	DDF (SOT-23)	UNIT
		8 PINS	8 PINS	10 PINS	8 PINS	8 PINS	8 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	207.9	201.2	169.5	103.2	200.7	183.7	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	92.8	85.7	84.1	120.1	95.4	112.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	129.7	122.9	113	68.8	128.6	98.2	°C/W
ΨJT	Junction-to-top characterization parameter	26	21.2	15.8	14.7	27.2	18.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	127.9	121.4	111.6	68.5	127.2	97.6	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

7.7 Thermal Information: TLV9002S

		TLV		
	THERMAL METRIC ⁽¹⁾	DGS (VSSOP)	RUG (X2QFN)	UNIT
		10 PINS	10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	169.5	194.2	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	84.1	90.3	°C/W
R_{\thetaJB}	Junction-to-board thermal resistance	113	122.2	°C/W
ΨJT	Junction-to-top characterization parameter	15.8	3.5	°C/W
Ψјв	Junction-to-board characterization parameter	111.6	118.8	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

7.8 Thermal Information: TLV9004

		TLV9004					
	THERMAL METRIC ⁽¹⁾	D (SOIC)	PW (TSSOP)	RTE (WQFN)	RUC (X2QFN)	UNIT	
		14 PINS	14 PINS	16 PINS	14 PINS		
$R_{ hetaJA}$	Junction-to-ambient thermal resistance	102.1	148.3	66.4	205.5	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	56.8	68.1	69.3	72.5	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	58.5	92.7	41.7	150.2	°C/W	
ΨJT	Junction-to-top characterization parameter	20.5	16.9	5.7	3.0	°C/W	
Ψјв	Junction-to-board characterization parameter	58.1	91.8	41.5	149.6	°C/W	

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

7.9 Thermal Information: TLV9004S

		TLV9004S	
	THERMAL METRIC ⁽¹⁾	RTE (WQFN)	UNIT
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	66.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	69.3	°C/W
R_{\thetaJB}	Junction-to-board thermal resistance	41.7	°C/W
ΨJT	Junction-to-top characterization parameter	5.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	41.5	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

7.10 Electrical Characteristics

For $V_S = (V+) - (V-) = 1.8$ V to 5.5 V (±0.9 V to ±2.75 V), $T_A = 25^{\circ}$ C, $R_L = 10$ k Ω connected to V_S / 2, and $V_{CM} = V_{OUT} = V_S$ / 2 (unless otherwise noted)

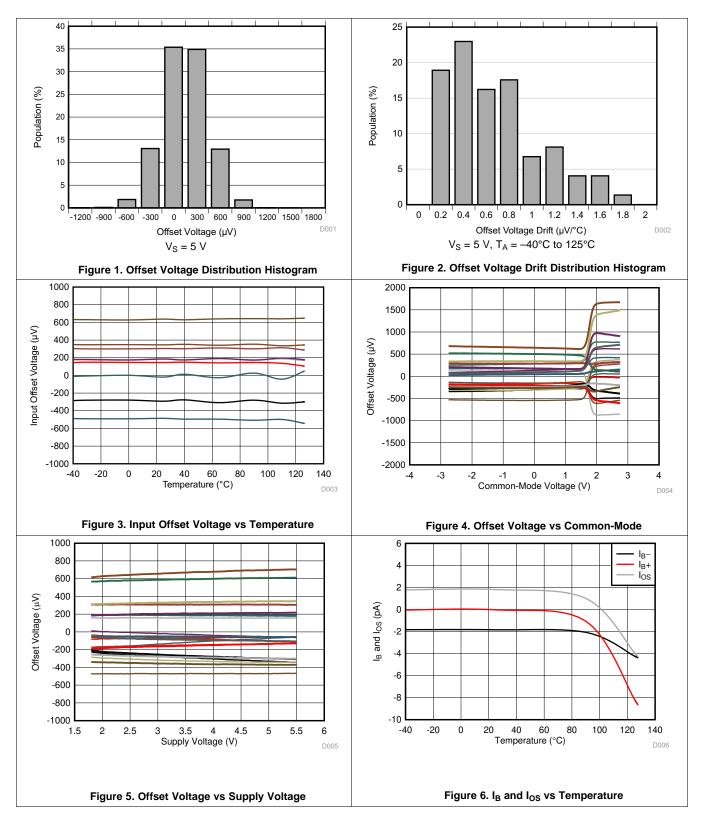
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFFSET	VOLTAGE							
Vos	Input offset voltage	V _S = 5 V		±0.4	±1.6	mV		
03		$V_{S} = 5 V, T_{A} = -40^{\circ}C \text{ to } 125^{\circ}C$			±2			
dV _{OS} /dT	V _{OS} vs temperature	$T_A = -40^{\circ}C$ to $125^{\circ}C$		±0.6		µV/°C		
PSRR	Power-supply rejection ratio	$V_{S} = 1.8 \text{ to } 5.5 \text{ V}, V_{CM} = (V-)$	80	105		dB		
	OLTAGE RANGE							
V _{CM}	Common-mode voltage range	No phase reversal, rail-to-rail input	(V–) – 0.1		(V+) + 0.1	V		
				86				
CMRR	O	$ \begin{array}{l} V_{\rm S} = 5.5 \; V, (V-) - 0.1 \; V < V_{\rm CM} < (V+) - 1.4 \; V, \\ T_{\rm A} = -40^{\circ} {\rm C} \; to \; 125^{\circ} {\rm C} \end{array} $		dB				
CINIKK	Common-mode rejection ratio	$ \begin{array}{l} V_{S} = 5.5 \; V, (V-) - 0.1 \; V < V_{CM} < (V+) + 0.1 \; V, \\ T_{A} = -40^{\circ} C \; to \; 125^{\circ} C \end{array} $	$V_{s} = 5.5 \text{ V}. (V_{-}) - 0.1 \text{ V} < V_{CM} < (V_{+}) + 0.1 \text{ V}.$					
		$ \begin{array}{l} V_{S} = 1.8 \ V, \ (V-) - 0.1 \ V < V_{CM} < (V+) + 0.1 \ V, \\ T_{A} = -40^{\circ} C \ to \ 125^{\circ} C \end{array} $		68		1		
INPUT B	IAS CURRENT	1						
I _B	Input bias current	V _S = 5 V		±5		pА		
l _{os}	Input offset current			±2		pA		
NOISE								
	Input voltage noise (peak-to-							
En	peak)	f = 0.1 Hz to 10 Hz, V _S = 5 V		4.7		μV _{PP}		
_	lanut valtana anina danaitu	$f = 1 \text{ kHz}, \text{ V}_{\text{S}} = 5 \text{ V}$		30		nV/√Hz		
e _n	Input voltage noise density $f = 10 \text{ kHz}, \text{ V}_{\text{S}} = 5 \text{ V}$ 27		nv/vH					
i _n	Input current noise density	$f = 1 \text{ kHz}, \text{ V}_{\text{S}} = 5 \text{ V}$		23				
INPUT C	APACITANCE	1						
C _{ID}	Differential			1.5		pF		
CIC	Common-mode			5		pF		
OPEN-LO	DOP GAIN							
	Open-loop voltage gain	$ \begin{array}{l} V_{\rm S} = 5.5 \ V, \ (V-) + 0.05 \ V < V_{\rm O} < (V+) - 0.05 \ V, \\ R_{\rm L} = 10 \ k\Omega \end{array} $	104	117				
		$\label{eq:V_S} \begin{array}{l} V_{\rm S} = 1.8 \ V, (V-) + 0.04 \ V < V_{\rm O} < (V+) - 0.04 \ V, \\ R_{\rm L} = 10 \ k\Omega \end{array}$		100				
A _{OL}		$V_{\rm S} = 1.8 \text{ V}, (V-) + 0.1 \text{ V} < V_{\rm O} < (V+) - 0.1 \text{ V},$ $R_{\rm L} = 2 \text{ k}\Omega$				dB		
		$ \begin{array}{l} V_{\rm S} = 5.5 \; V, (V-) + 0.15 \; V < V_{\rm O} < (V+) - 0.15 \; V, \\ R_{\rm L} = 2 \; k\Omega \end{array} $		130				
FREQUE	NCY RESPONSE							
GBW	Gain-bandwidth product	V _S = 5 V		1		MHz		
φm	Phase margin	V _S = 5.5 V, G = 1		78		٥		
SR	Slew rate	$V_{\rm S} = 5 \rm V$		2		V/µs		
		To 0.1%, V _S = 5 V, 2-V step, G = +1, C _L = 100 pF		2.5				
t _S	Settling time	To 0.01%, $V_S = 5 V$, 2-V step, G = +1, $C_L = 100 \text{ pF}$				μs		
t _{OR}	Overload recovery time	$V_{\rm S} = 5 \text{ V}, V_{\rm IN} \times \text{gain} > V_{\rm S}$		0.85		μs		
THD+N	Total harmonic distortion + noise	$V_{S} = 5.5 \text{ V}, V_{CM} = 2.5 \text{ V}, V_{O} = 1 \text{ V}_{RMS}, G = +1, f = 1 \text{ kHz}, 80\text{-kHz}$ measurement BW		0.004%		•		
		1						
OUTPUT		$V_{e} = 5.5 \text{ V}, \text{ R}_{i} = 10 \text{ k}\Omega$ 10						
		$V_{\rm S} = 5.5 \text{ V}, \text{ R}_{\rm I} = 10 \text{ k}\Omega$		10	20			
<mark>оитрит</mark> V _o	Voltage output swing from supply rails	$V_{\rm S} = 5.5$ V, R _L = 10 kΩ V _S = 5.5 V, R _L = 2 kΩ			20 55	mV		
	Voltage output swing from	$\label{eq:V_S} \begin{array}{ c c c } V_{S} = 5.5 \ V, \ R_{L} = 10 \ k\Omega \\ \hline V_{S} = 5.5 \ V, \ R_{L} = 2 \ k\Omega \\ \hline V_{S} = 5.5 \ V \end{array}$		10 35 ±40	20 55	mV mA		

Electrical Characteristics (continued)

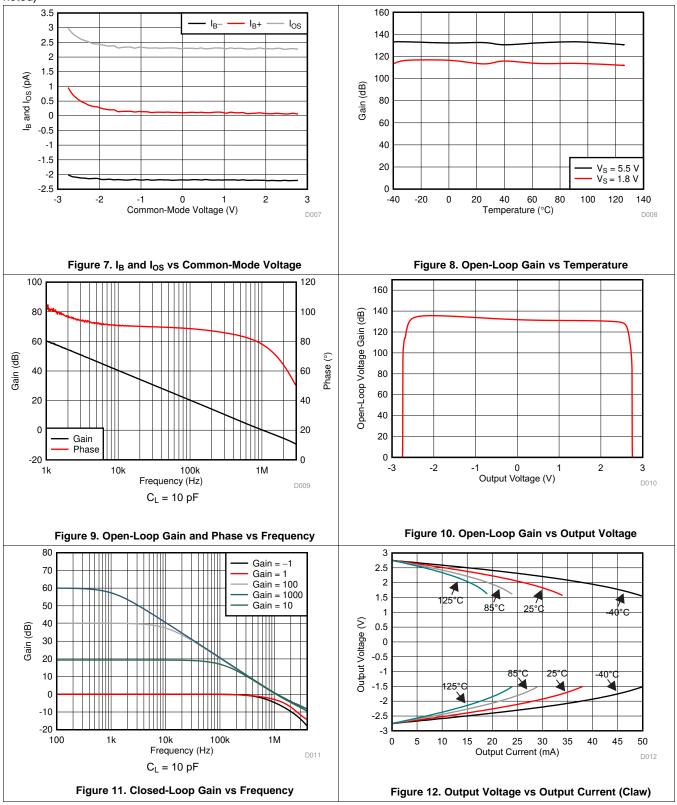
For $V_{S} = (V+) - (V-) = 1.8 V$ to 5.5 V (±0.9 V to ±2.75 V), $T_{A} = 25^{\circ}$ C, $R_{L} = 10 \text{ k}\Omega$ connected to $V_{S} / 2$, and $V_{CM} = V_{OUT} = 10 \text{ k}\Omega$ V_S / 2 (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
POWER	R SUPPLY					I	
Vs	Specified voltage range			1.8 (±0.9)		5.5 (±2.75)	V
		TLV9002, TLV9002S TLV9004, TLV9004S	I _O = 0 mA, V _S = 5.5 V		60	75	
lq	Quiescent current per amplifier	TLV9001, TLV9001S	$I_0 = 0 \text{ mA}, V_S = 5.5 \text{ V}$		60	77	μA
		$I_0 = 0 \text{ mA}, V_S = 5.5 \text{ V}, T_A = -40^\circ$	°C to 125°C				
SHUTD	OWN ⁽¹⁾						
I _{QSD}	Quiescent current per amplifier	V_{S} = 1.8 V to 5.5 V, all amplifiers	s disabled, $\overline{\text{SHDN}} = V_{S}$ -		0.5	1.5	μA
Z _{SHDN}	Output impedance during shutdown	V_{S} = 1.8 V to 5.5 V, amplifier dis	abled		10 2		$G\Omega \ pF$
	High level voltage shutdown threshold (amplifier enabled)	V _S = 1.8 V to 5.5 V			(V–) + 0.9	(V–) + 1.1	V
	Low level voltage shutdown threshold (amplifier disabled)	V _S = 1.8 V to 5.5 V		(V–) + 0.2 V	(V–) + 0.7 V		V
	Amplifier enable time (full shutdown) ⁽²⁾⁽³⁾	V_{S} = 1.8 V to 5.5 V, full shutdow V_{OUT} = 0.9 × V _S / 2, R _L connected			70		
t _{ON}	Amplifier enable time (partial shutdown) ⁽²⁾⁽³⁾	V_{S} = 1.8 V to 5.5 V, partial shute V _{OUT} = 0.9 × V _S / 2, R _L connected		50			μs
t _{OFF}	Amplifier disable time ⁽²⁾ $V_S = 1.8 V \text{ to } 5.5 V, G = 1, V_{OUT} = 0.1 \times V_S / 2, R_L \text{ connected to V-}$				4		μs
	SHDN pin input bias current	$V_{S} = 1.8 \text{ V to } 5.5 \text{ V}, \text{ V+} \ge \overline{\text{SHDN}}$		40		-	
	(per pin)	$V_{S} = 1.8 \text{ V to } 5.5 \text{ V}, \text{ V-} \leq \overline{\text{SHDN}}$	≤ V– + 0.8 V		150		nA

(1) Specified by design and characterization; not production tested.


Disable time (t_{OFF}) and enable time (t_{ON}) are defined as the time interval between the 50% point of the signal applied to the SHDN pin (2)

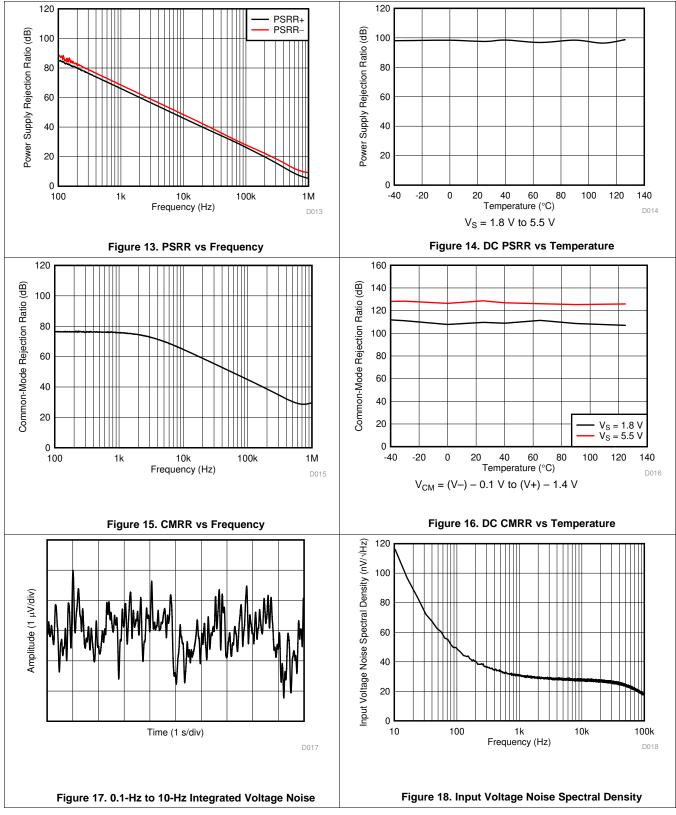
and the point at which the output voltage reaches the 10% (disable) or 90% (enable) level. Full shutdown refers to the dual TLV9002S having both channels 1 and 2 disabled (SHDN1 = SHDN2 = V–) and the quad TLV9004S having all channels 1 to 4 disabled (SHDN12 = SHDN34 = V–). For partial shutdown, only one SHDN pin is exercised; in this mode, the (3) internal biasing circuitry remains operational and the enable time is shorter.


7.11 Typical Characteristics

at T_A = 25°C, V+ = 2.75 V, V- = -2.75 V, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

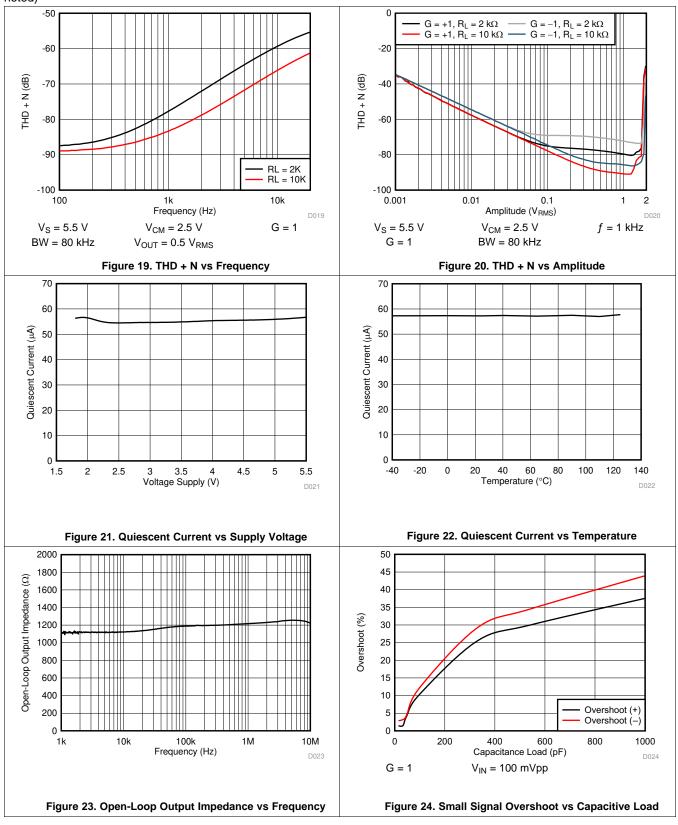
Typical Characteristics (continued)

at $T_A = 25^{\circ}$ C, V+ = 2.75 V, V- = -2.75 V, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)



Copyright © 2017-2020, Texas Instruments Incorporated

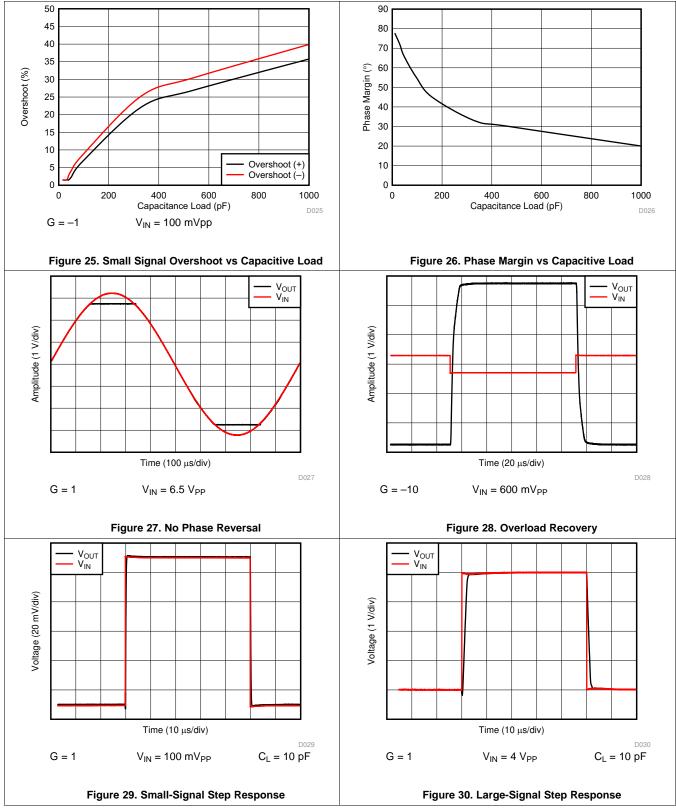
Typical Characteristics (continued)


at $T_A = 25^{\circ}$ C, V+ = 2.75 V, V- = -2.75 V, $R_L = 10 \text{ k}\Omega$ connected to $V_S / 2$, $V_{CM} = V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

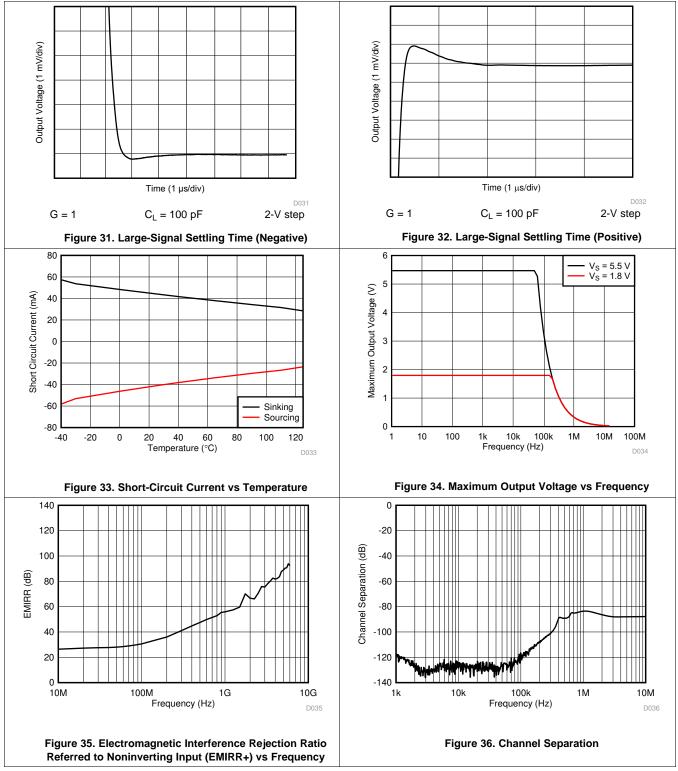
Copyright © 2017–2020, Texas Instruments Incorporated

Typical Characteristics (continued)

at $T_A = 25^{\circ}$ C, V+ = 2.75 V, V- = -2.75 V, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)



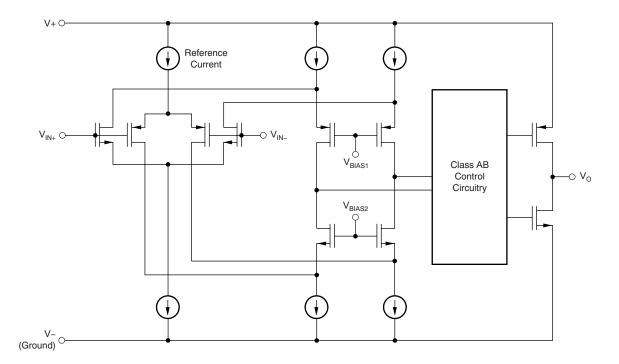
Copyright © 2017-2020, Texas Instruments Incorporated


Typical Characteristics (continued)

at $T_A = 25^{\circ}$ C, V+ = 2.75 V, V- = -2.75 V, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

Typical Characteristics (continued)

at T_A = 25°C, V+ = 2.75 V, V- = -2.75 V, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)



8 Detailed Description

8.1 Overview

The TLV900x is a family of low-power, rail-to-rail input and output op amps. These devices operate from 1.8 V to 5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose applications. The input common-mode voltage range includes both rails and allows the TLV900x family to be used in virtually any single-supply application. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications, and makes them suitable for driving sampling analog-to-digital converters (ADCs).

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Operating Voltage

The TLV900x family of op amps are for operation from 1.8 V to 5.5 V. In addition, many specifications such as input offset voltage, quiescent current, offset current, and short circuit current apply from -40°C to 125°C. Parameters that vary significantly with operating voltages or temperature are shown in the *Typical Characteristics* section.

8.3.2 Rail-to-Rail Input

The input common-mode voltage range of the TLV900x family extends 100 mV beyond the supply rails for the full supply voltage range of 1.8 V to 5.5 V. This performance is achieved with a complementary input stage: an N-channel input differential pair in parallel with a P-channel differential pair, as shown in the *Functional Block Diagram*. The N-channel pair is active for input voltages close to the positive rail, typically (V+) - 1.4 V to 100 mV above the positive supply, whereas the P-channel pair is active for inputs from 100 mV below the negative supply to approximately (V+) - 1.4 V. There is a small transition region, typically (V+) - 1.2 V to (V+) - 1 V, in which both pairs are on. This 100-mV transition region can vary up to 100 mV with process variation. Thus, the transition region (with both stages on) can range from (V+) - 1.4 V to (V+) - 1.2 V on the low end, and up to (V+) - 1 V to (V+) - 0.8 V on the high end. Within this transition region, PSRR, CMRR, offset voltage, offset drift, and THD can degrade compared to device operation outside this region.

8.3.3 Rail-to-Rail Output

Designed as a low-power, low-voltage operational amplifier, the TLV900x family delivers a robust output drive capability. A class-AB output stage with common-source transistors achieves full rail-to-rail output swing capability. For resistive loads of 10 k Ω , the output swings to within 20 mV of either supply rail, regardless of the applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the rails.

8.3.4 EMI Rejection

The TLV900x uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from sources such as wireless communications and densely-populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the TLV900x benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Figure 37 shows the results of this testing on the TLV900x. Table 1 shows the EMIRR IN+ values for the TLV900x at particular frequencies commonly encountered in real-world applications. The *EMI Rejection Ratio of Operational Amplifiers* application report contains detailed information on the topic of EMIRR performance as it relates to op amps and is available for download from www.ti.com.

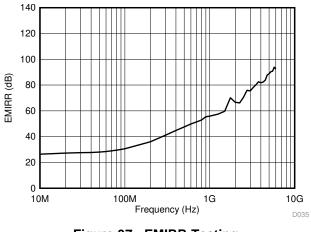


Figure 37. EMIRR Testing

Feature Description (continued)

	•	
FREQUENCY	APPLICATION OR ALLOCATION	EMIRR IN+
400 MHz	Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications	59.5 dB
900 MHz	Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications	68.9 dB
1.8 GHz	GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)	77.8 dB
2.4 GHz	802.11b, 802.11g, 802.11n, Bluetooth [®] , mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)	78.0 dB
3.6 GHz	Radiolocation, aero communication and navigation, satellite, mobile, S-band	88.8 dB

Table 1. TLV900x EMIRR IN+ For Frequencies of Interest

8.3.5 Overload Recovery

Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated state to a linear state. The output devices of the operational amplifier enter a saturation region when the output voltage exceeds the rated operating voltage, because of the high input voltage or the high gain. After the device enters the saturation region, the charge carriers in the output devices require time to return to the linear state. After the charge carriers return to the linear state, the device begins to slew at the specified slew rate. Therefore, the propagation delay (in case of an overload condition) is the sum of the overload recovery time and the slew time. The overload recovery time for the TLV900x family is approximately 850 ns.

8.3.6 Shutdown

The TLV9001S, TLV9002S and TLV9004S devices feature SHDN pins that disable the op amp, <u>placing</u> it into a low-power standby mode. In this mode, the op amp typically consumes less than 1 μ A. The SHDN pins are active low, meaning that shutdown mode is enabled when the input to the SHDN pin is a valid logic low.

The SHDN pins are referenced to the negative supply voltage of the op amp. The threshold of the shutdown feature lies around 620 mV (typical) and does not change with respect to the supply voltage. Hysteresis has been included in the switching threshold to ensure smooth switching characteristics. To ensure optimal shutdown behavior, the SHDN pins should be driven with valid logic signals. A valid logic low is defined as a voltage between V– and V– + 0.2 V. A valid logic high is defined as a voltage between V– + 1.2 V and V+. The shutdown pin circuitry includes a pull-up resistor, which will inherently pull the voltage of the pin to the positive supply rail if not driven. Thus, to enable the amplifier, the SHDN pins should either be left floating or driven to a valid logic high. To disable the amplifier, the SHDN pins must be driven to a valid logic low. While we highly recommend that the shutdown pin be connected to a valid high or a low voltage or driven, we have included a pull-up resistor connected to VCC. The maximum voltage allowed at the SHDN pins is (V+) + 0.5 V. Exceeding this voltage level will damage the device.

The SHDN pins are high-impedance CMOS inputs. Dual op amp versions are independently controlled and quad op amp versions are controlled in pairs with logic inputs. For battery-operated applications, this feature may be used to greatly reduce the average current and extend battery life. The enable time is 70 µs for full shutdown of all channels; disable time is 4 µs. When disabled, the output assumes a high-impedance state. This architecture allows the TLV9002S and TLV9004S to operate as a gated amplifier (or to have the device output multiplexed onto a common analog output bus). Shutdown time (t_{OFF}) depends on loading conditions and increases as load resistance increases. To ensure shutdown (disable) within a specific shutdown time, the specified 10-k Ω load to midsupply (V_S / 2) is required. If using the TLV9001S, TLV9002S or TLV9004S without a load, the resulting turnoff time significantly increases.

8.4 Device Functional Modes

The TLV900x family has a single functional mode. The devices are powered on as long as the power-supply voltage is between 1.8 V (\pm 0.9 V) and 5.5 V (\pm 2.75 V).

TEXAS INSTRUMENTS

www.ti.com

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TLV900x family of low-power, rail-to-rail input and output operational amplifiers is specifically designed for portable applications. The devices operate from 1.8 V to 5.5 V, are unity-gain stable, and are suitable for a wide range of general-purpose applications. The class AB output stage is capable of driving less than or equal to $10-k\Omega$ loads connected to any point between V+ and V–. The input common-mode voltage range includes both rails, and allows the TLV900x devices to be used in any single-supply application.

9.2 Typical Application

9.2.1 TLV900x Low-Side, Current Sensing Application

Figure 38 shows the TLV900x configured in a low-side current sensing application.

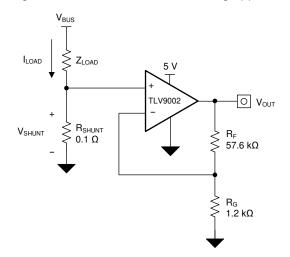


Figure 38. TLV900x in a Low-Side, Current-Sensing Application

Typical Application (continued)

9.2.1.1 Design Requirements

The design requirements for this design are:

- Load current: 0 A to 1 A
- Output voltage: 4.9 V
- Maximum shunt voltage: 100 mV

9.2.1.2 Detailed Design Procedure

The transfer function of the circuit in Figure 38 is given in Equation 1.

$$V_{OUT} = I_{LOAD} \times R_{SHUNT} \times Gain$$

SBOS8330 - OCTOBER 2017 - REVISED APRIL 2020

TLV9001, TLV9002, TLV9004

(1)

The load current (I_{LOAD}) produces a voltage drop across the shunt resistor (R_{SHUNT}). The load current is set from 0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is shown using Equation 2.

$$R_{SHUNT} = \frac{V_{SHUNT}MAX}{I_{LOAD}MAX} = \frac{100mV}{1A} = 100m\Omega$$
⁽²⁾

Using Equation 2, R_{SHUNT} is calculated to be 100 m Ω . The voltage drop produced by I_{LOAD} and R_{SHUNT} is amplified by the TLV900x to produce an output voltage of approximately 0 V to 4.9 V. The gain needed by the TLV900x to produce the necessary output voltage is calculated using Equation 3.

$$Gain = \frac{\left(V_{OUT_MAX} - V_{OUT_MIN}\right)}{\left(V_{IN_MAX} - V_{IN_MIN}\right)}$$
(3)

Using Equation 3, the required gain is calculated to be 49 V/V, which is set with resistors R_F and R_G . Equation 4 sizes the resistors R_F and R_G , to set the gain of the TLV900x to 49 V/V.

$$Gain = 1 + \frac{(R_F)}{(R_G)}$$
(4)

Selecting R_F as 57.6 k Ω and R_G as 1.2 k Ω provides a combination that equals 49 V/V. Figure 39 shows the measured transfer function of the circuit shown in Figure 38. Notice that the gain is only a function of the feedback and gain resistors. This gain is adjusted by varying the ratio of the resistors and the actual resistors values are determined by the impedance levels that the designer wants to establish. The impedance level determines the current drain, the effect that stray capacitance has, and a few other behaviors. There is no optimal impedance selection that works for every system, you must choose an impedance that is ideal for your system parameters.

9.2.1.3 Application Curve

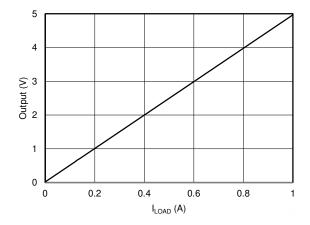


Figure 39. Low-Side, Current-Sense Transfer Function

Typical Application (continued)

9.2.2 Single-Supply Photodiode Amplifier

Photodiodes are used in many applications to convert light signals to electrical signals. The current through the photodiode is proportional to the photon energy absorbed, and is commonly in the range of a few hundred picoamps to a few tens of microamps. An amplifier in a transimpedance configuration is typically used to convert the low-level photodiode current to a voltage signal for processing in an MCU. The circuit shown in Figure 40 is an example of a single-supply photodiode amplifier circuit using the TLV9002.

+3.3V R₁ C_{F} 11.5 kΩ 10 pF VREF O R_2 R_{F} 357 Ω 309 kΩ -~~~ 3.3 V TLV9002 VREF O C_{PD} R_L 47 pF 0-10 µA 10 kΩ

Figure 40. Single-Supply Photodiode Amplifier Circuit

Typical Application (continued)

9.2.2.1 Design Requirements

The design requirements for this design are:

- Supply voltage: 3.3 V
- Input: 0 μA to 10 μA
- Output: 0.1 V to 3.2 V
- Bandwidth: 50 kHz

9.2.2.2 Detailed Design Procedure

The transfer function between the output voltage (V_{OUT}), the input current, (I_{IN}) and the reference voltage (V_{REF}) is defined in Equation 5.

$$V_{OUT} = I_{IN} \times R_F + V_{REF}$$

Where:

$$V_{\mathsf{REF}} = V_{+} \times \left(\frac{\mathsf{R}_{1} \times \mathsf{R}_{2}}{\mathsf{R}_{1} + \mathsf{R}_{2}}\right) \tag{6}$$

Set V_{REF} to 100 mV to meet the minimum output voltage level by setting R1 and R2 to meet the required ratio calculated in Equation 7.

$$\frac{V_{\text{REF}}}{V_{+}} = \frac{0.1 \,\text{V}}{3.3 \,\text{V}} = 0.0303 \tag{7}$$

The closest resistor ratio to meet this ratio sets R1 to 11.5 k Ω and R2 to 357 Ω .

The required feedback resistance can be calculated based on the input current and desired output voltage.

$$R_{F} = \frac{V_{OUT} - V_{REF}}{I_{IN}} = \frac{3.2 \ V - 0.1 \ V}{10 \ \mu A} = 310 \frac{kV}{A} \approx 309 \ k\Omega$$
(8)

Calculate the value for the feedback capacitor based on R_F and the desired –3-dB bandwidth, (f_{-3dB}) using Equation 9.

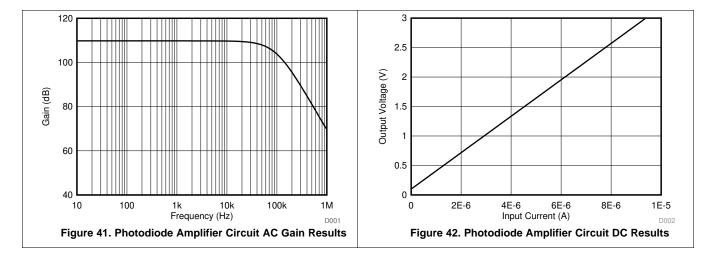
$$C_{\mathsf{F}} = \frac{1}{2 \times \pi \times \mathsf{R}_{\mathsf{F}} \times \mathsf{f}_{-3\mathsf{dB}}} = \frac{1}{2 \times \pi \times 309 \text{ k}\Omega \times 50 \text{ kHz}} = 10.3 \text{ pF} \approx 10 \text{ pF}$$
(9)

The minimum op amp bandwidth required for this application is based on the value of R_F , C_F , and the capacitance on the INx– pin of the TLV9002 which is equal to the sum of the photodiode shunt capacitance, (CPD) the common-mode input capacitance, (CCM) and the differential input capacitance (CD) as Equation 10 shows.

$$C_{IN} = C_{PD} + C_{CM} + C_{D} = 47 \text{ pF} + 5 \text{ pF} + 1 \text{ pF} = 53 \text{ pF}$$
(10)

The minimum op amp bandwidth is calculated in Equation 11.

$$f_{=BGW} \ge \frac{C_{IN} + C_F}{2 \times \pi \times R_F \times C_F^2} \ge 324 \text{ kHz}$$
(11)


The 1-MHz bandwidth of the TLV900x meets the minimum bandwidth requirement and remains stable in this application configuration.

(5)

Typical Application (continued)

9.2.2.3 Application Curves

The measured current-to-voltage transfer function for the photodiode amplifier circuit is shown in Figure 41. The measured performance of the photodiode amplifier circuit is shown in Figure 42.

STRUMENTS

EXAS

10 Power Supply Recommendations

The TLV900x family is specified for operation from 1.8 V to 5.5 V (\pm 0.9 V to \pm 2.75 V); many specifications apply from -40° C to 125°C. The *Typical Characteristics* section presents parameters that may exhibit significant variance with regard to operating voltage or temperature.

CAUTION

Supply voltages larger than 6 V may permanently damage the device; see the *Absolute Maximum Ratings* table.

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce coupling errors from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement, see the *Layout Guidelines* section.

10.1 Input and ESD Protection

The TLV900x family incorporates internal ESD protection circuits on all pins. For input and output pins, this protection primarily consists of current-steering diodes connected between the input and power-supply pins. These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to 10 mA. Figure 43 shows how a series input resistor can be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the value must be kept to a minimum in noise-sensitive applications.

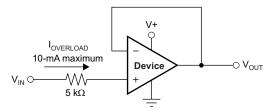


Figure 43. Input Current Protection

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

- Noise can propagate into analog circuitry through the power connections of the board and propagate to the power pins of the op amp itself. Bypass capacitors are used to reduce the coupled noise by providing a low-impedance path to ground.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is adequate for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Take care to physically separate digital and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace at a 90 degree angle is much better as opposed to running the traces in parallel with the noisy trace.
- Place the external components as close to the device as possible, as shown in Figure 45. Keeping R_F and R_G close to the inverting input minimizes parasitic capacitance.
- Keep the length of input traces as short as possible. Remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring may significantly reduce leakage currents from nearby traces that are at different potentials.
- Cleaning the PCB following board assembly is recommended for best performance.
- Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to remove moisture introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.

11.2 Layout Example

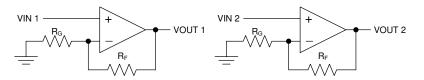
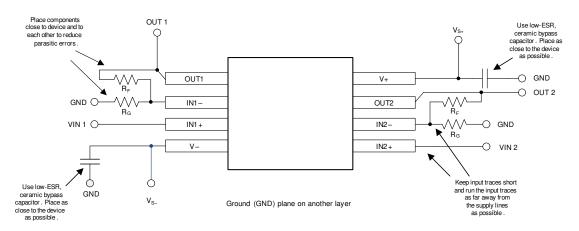



Figure 44. Schematic Representation for Figure 45

Figure 45. Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

• Texas Instruments, EMI Rejection Ratio of Operational Amplifiers

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TLV9001	Click here	Click here	Click here	Click here	Click here
TLV9002	Click here	Click here	Click here	Click here	Click here
TLV9004	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

Bluetooth is a registered trademark of Bluetooth SIG, Inc.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

Copyright © 2017–2020, Texas Instruments Incorporated

26-May-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TLV9001IDBVR	(1) ACTIVE	SOT-23	DBV	5	3000	(2) Green (RoHS & no Sb/Br)	(6) NIPDAU	(3) Level-1-260C-UNLIM	-40 to 125	(4/5) 10GF	Samples
TLV9001IDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	SN	Level-2-260C-1 YEAR	-40 to 125	1BZ	Samples
TLV9001IDPWR	ACTIVE	X2SON	DPW	5	3000	Green (RoHS & no Sb/Br)	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	DF	Samples
TLV9001SIDBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	10JF	Samples
TLV9001SIDCKR	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	SN	Level-2-260C-1 YEAR	-40 to 125	1F8	Samples
TLV9001TIDCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	SN	Level-2-260C-1 YEAR	-40 to 125	1D6	Samples
TLV9001UIDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	10DF	Samples
TLV9002IDDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	T902	Samples
TLV9002IDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	1GNX	Samples
TLV9002IDGKT	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	1GNX	Samples
TLV9002IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	SN	Level-2-260C-1 YEAR	-40 to 125	TL9002	Samples
TLV9002IDSGR	ACTIVE	WSON	DSG	8	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	1GMH	Samples
TLV9002IDSGT	ACTIVE	WSON	DSG	8	250	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	1GMH	Samples
TLV9002IPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	SN	Level-2-260C-1 YEAR	-40 to 125	9002	Samples
TLV9002SIDGSR	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	1GDX	Samples
TLV9002SIRUGR	ACTIVE	X2QFN	RUG	10	3000	Green (RoHS & no Sb/Br)	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	ENF	Samples
TLV9004IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TLV9004	Samples

26-May-2020

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLV9004IPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	SN	Level-2-260C-1 YEAR	-40 to 125	TLV9004	Samples
TLV9004IRTER	ACTIVE	WQFN	RTE	16	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	T9004	Samples
TLV9004IRUCR	ACTIVE	QFN	RUC	14	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	1DC	Samples
TLV9004SIRTER	ACTIVE	WQFN	RTE	16	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	T9004S	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

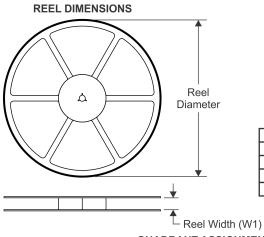
26-May-2020

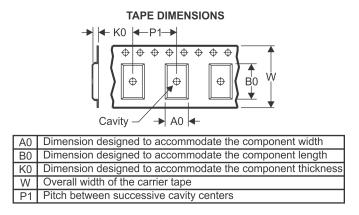
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV9002 :

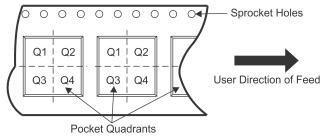
• Automotive: TLV9002-Q1

NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


PACKAGE MATERIALS INFORMATION

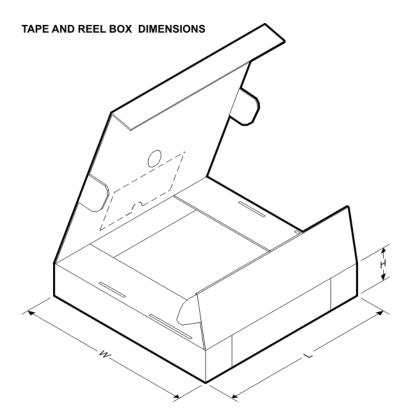
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV9001IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV9001IDCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV9001IDPWR	X2SON	DPW	5	3000	178.0	8.4	0.91	0.91	0.5	2.0	8.0	Q2
TLV9001SIDBVR	SOT-23	DBV	6	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV9001SIDCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV9001TIDCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TLV9001UIDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV9002IDDFR	SOT- 23-THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV9002IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV9002IDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV9002IDR	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV9002IDSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TLV9002IDSGT	WSON	DSG	8	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TLV9002IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLV9002SIDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV9002SIRUGR	X2QFN	RUG	10	3000	178.0	8.4	1.75	2.25	0.56	4.0	8.0	Q1
TLV9004IDR	SOIC	D	14	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1


PACKAGE MATERIALS INFORMATION

www.ti.com

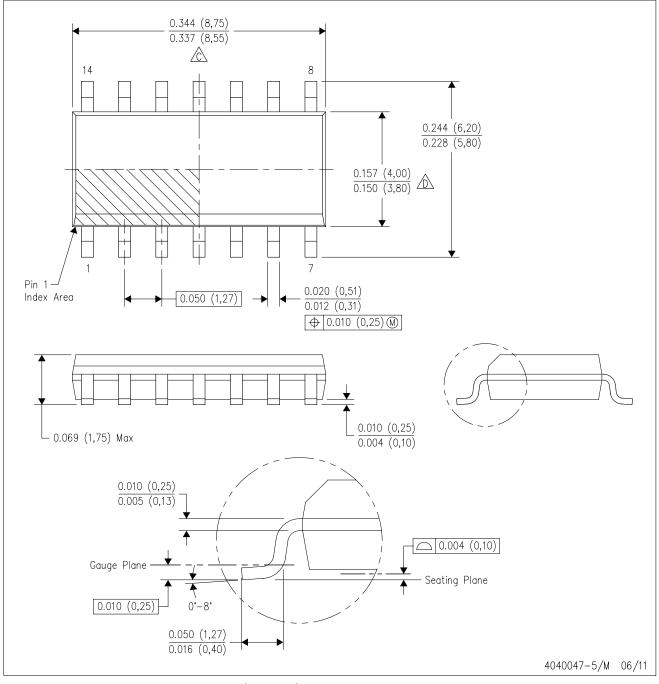
8-May-2020

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV9004IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLV9004IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLV9004IRTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TLV9004IRUCR	QFN	RUC	14	3000	180.0	9.5	2.16	2.16	0.5	4.0	8.0	Q2
TLV9004SIRTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV9001IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV9001IDCKR	SC70	DCK	5	3000	190.0	190.0	30.0
TLV9001IDPWR	X2SON	DPW	5	3000	205.0	200.0	33.0
TLV9001SIDBVR	SOT-23	DBV	6	3000	210.0	185.0	35.0
TLV9001SIDCKR	SC70	DCK	6	3000	180.0	180.0	18.0
TLV9001TIDCKR	SC70	DCK	5	3000	190.0	190.0	30.0
TLV9001UIDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
TLV9002IDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
TLV9002IDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
TLV9002IDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0
TLV9002IDR	SOIC	D	8	2500	336.6	336.6	41.3
TLV9002IDSGR	WSON	DSG	8	3000	210.0	185.0	35.0

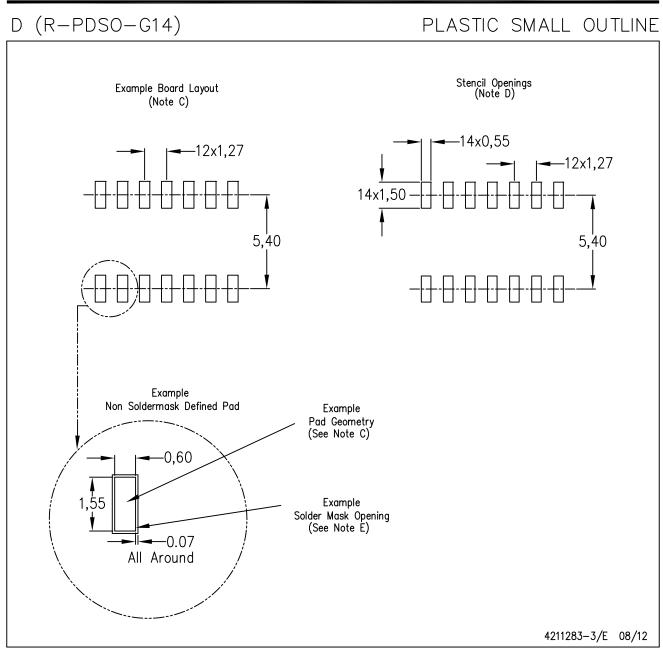
PACKAGE MATERIALS INFORMATION


www.ti.com

8-May-2020

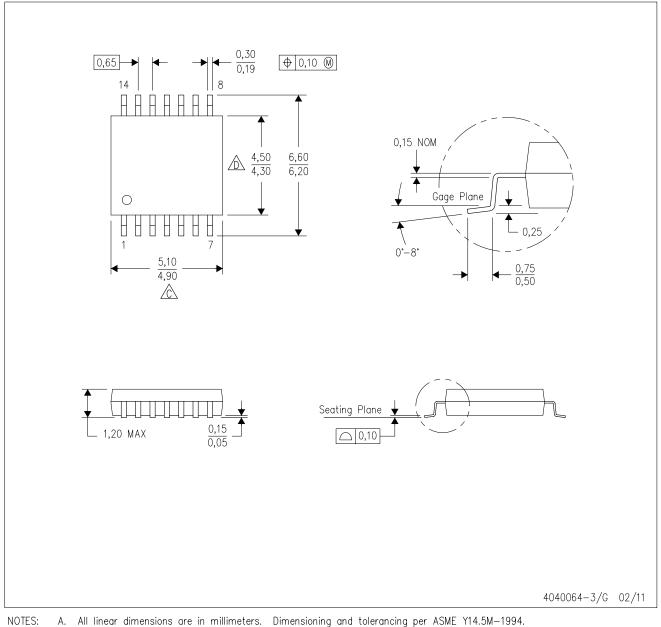
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV9002IDSGT	WSON	DSG	8	250	210.0	185.0	35.0
TLV9002IPWR	TSSOP	PW	8	2000	366.0	364.0	50.0
TLV9002SIDGSR	VSSOP	DGS	10	2500	366.0	364.0	50.0
TLV9002SIRUGR	X2QFN	RUG	10	3000	205.0	200.0	33.0
TLV9004IDR	SOIC	D	14	2500	336.6	336.6	41.3
TLV9004IDR	SOIC	D	14	2500	367.0	367.0	38.0
TLV9004IPWR	TSSOP	PW	14	2000	366.0	364.0	50.0
TLV9004IRTER	WQFN	RTE	16	3000	367.0	367.0	35.0
TLV9004IRUCR	QFN	RUC	14	3000	205.0	200.0	30.0
TLV9004SIRTER	WQFN	RTE	16	3000	367.0	367.0	35.0

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

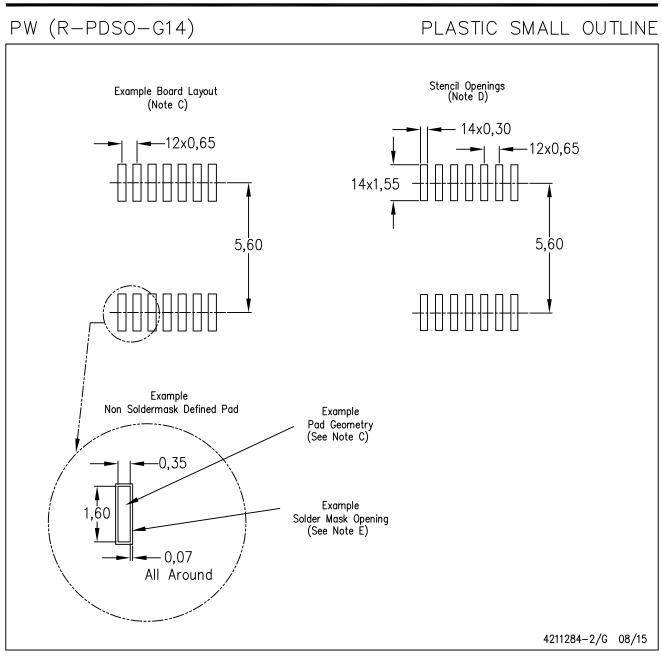
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

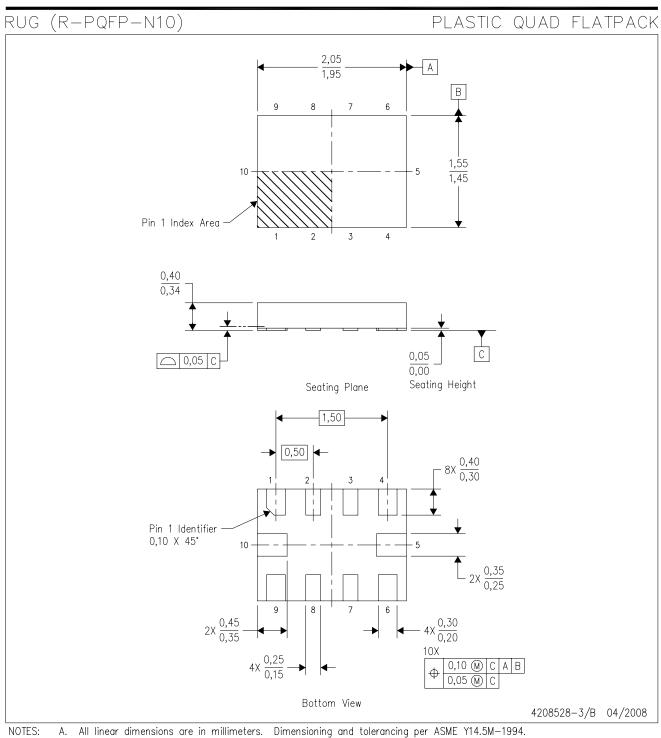
PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

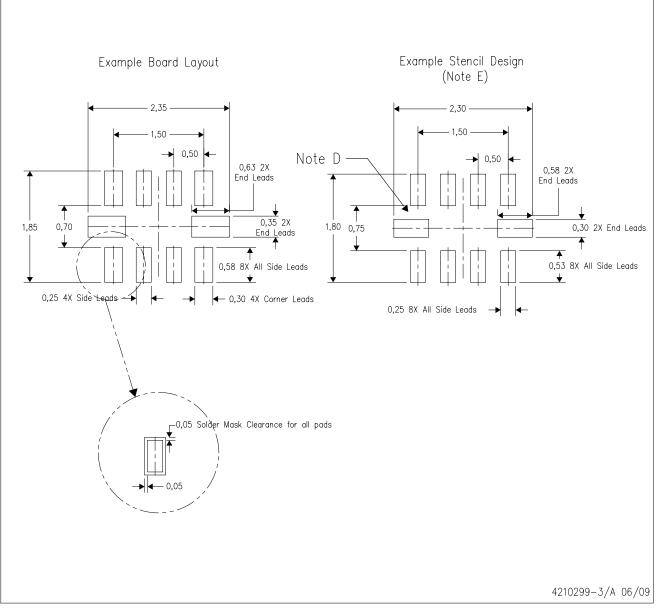
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

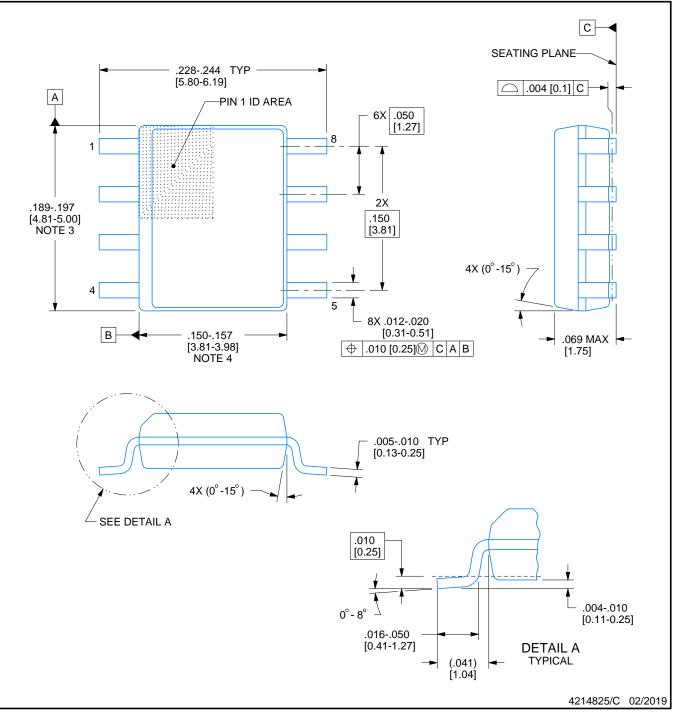

MECHANICAL DATA

B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) package configuration.
D. This package complies to JEDEC MO-288 variation X2EFD.

RUG (R-PQFP-N10)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.


D0008A

PACKAGE OUTLINE

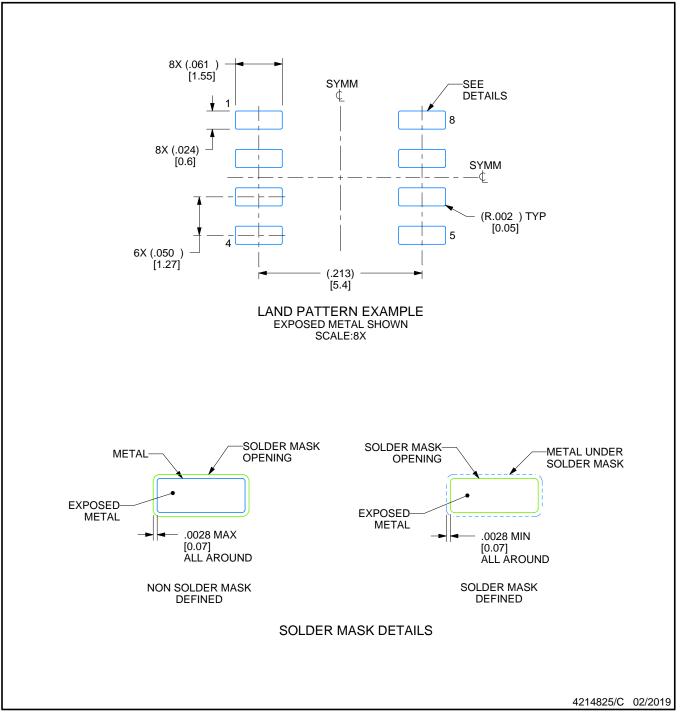
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



D0008A

EXAMPLE BOARD LAYOUT

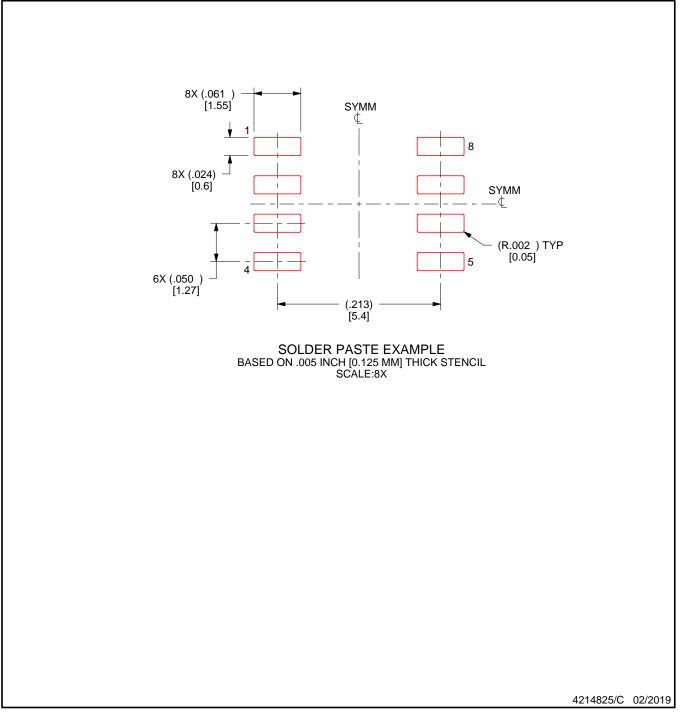
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



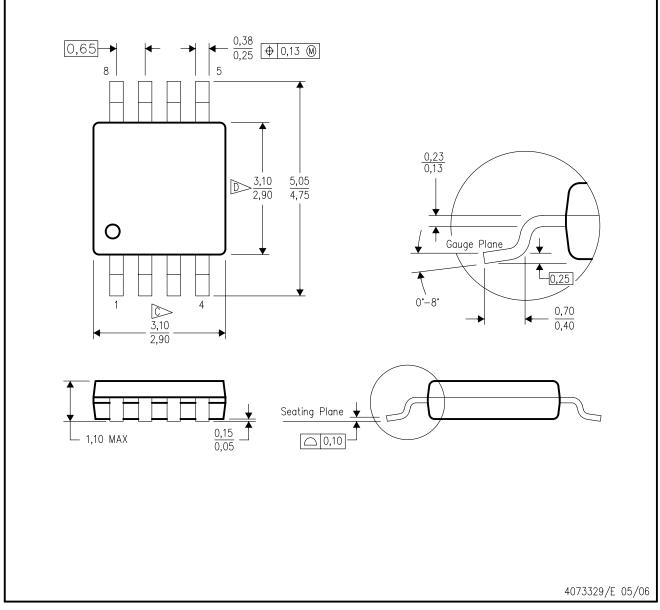
D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)


8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

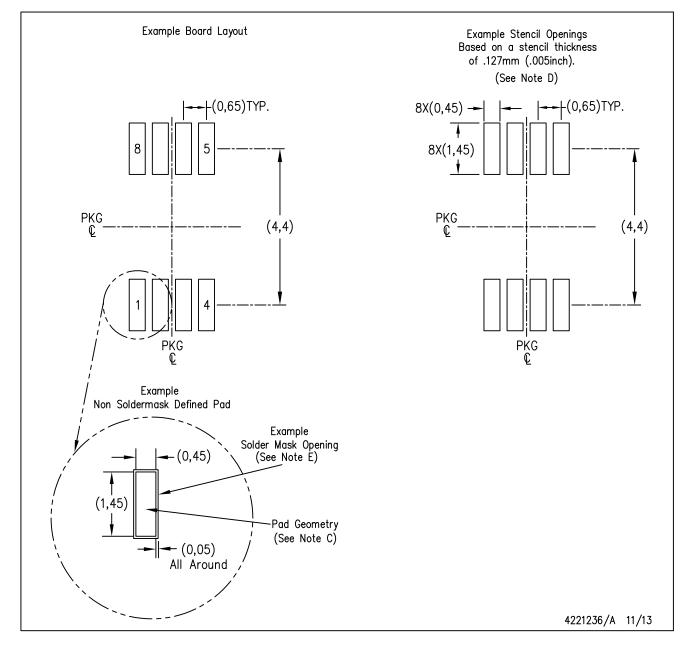
9. Board assembly site may have different recommendations for stencil design.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

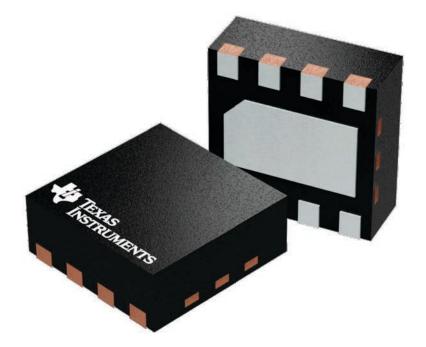
DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DSG 8

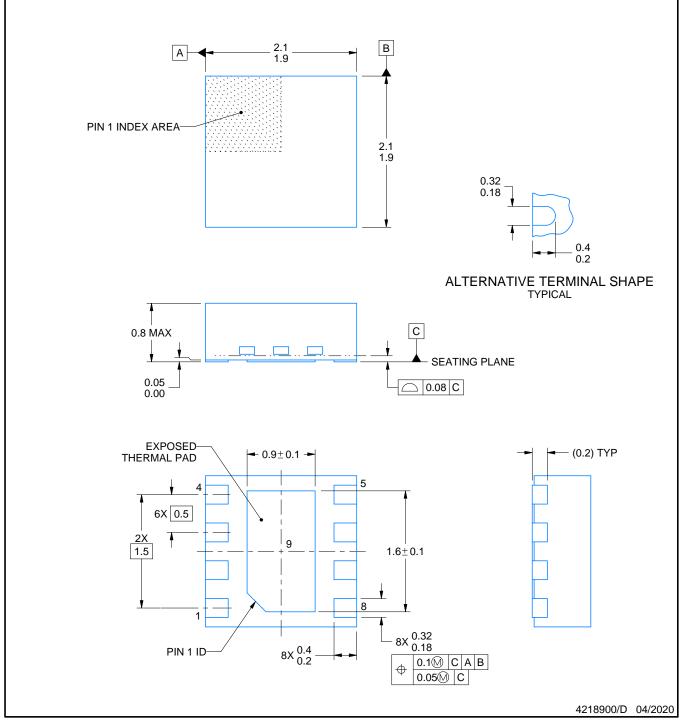

2 x 2, 0.5 mm pitch

GENERIC PACKAGE VIEW

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DSG0008A

PACKAGE OUTLINE

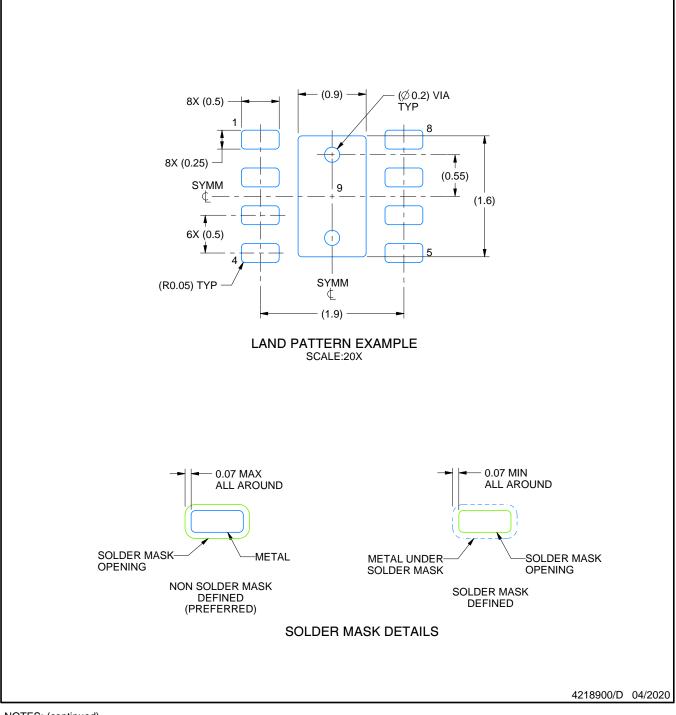
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



DSG0008A

EXAMPLE BOARD LAYOUT

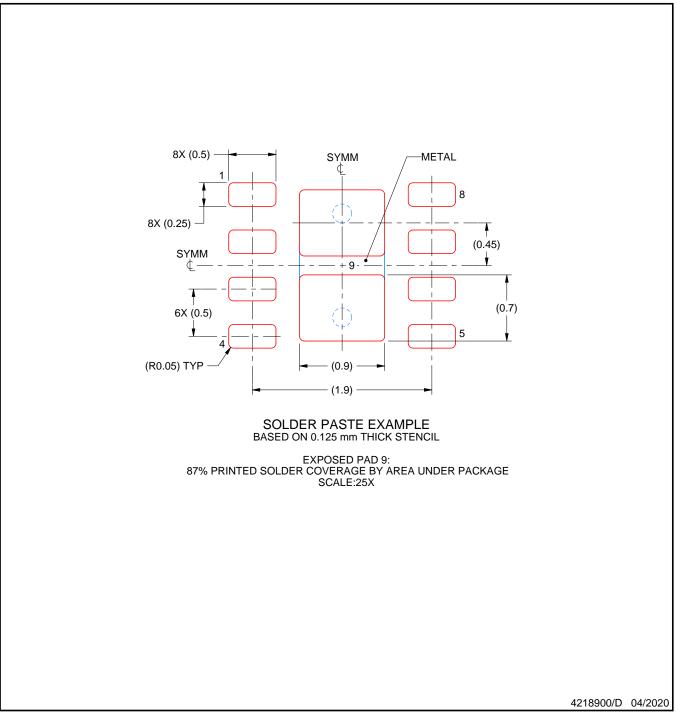
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



DSG0008A

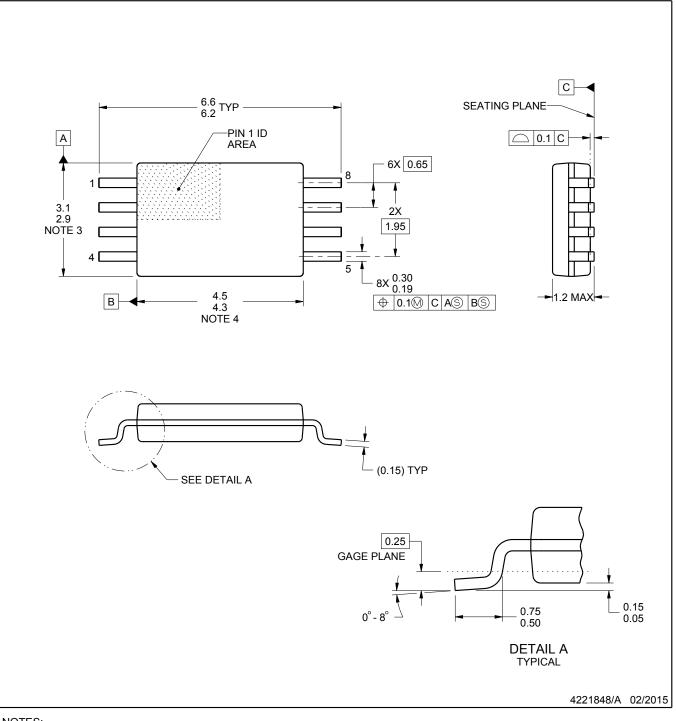
EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


PW0008A

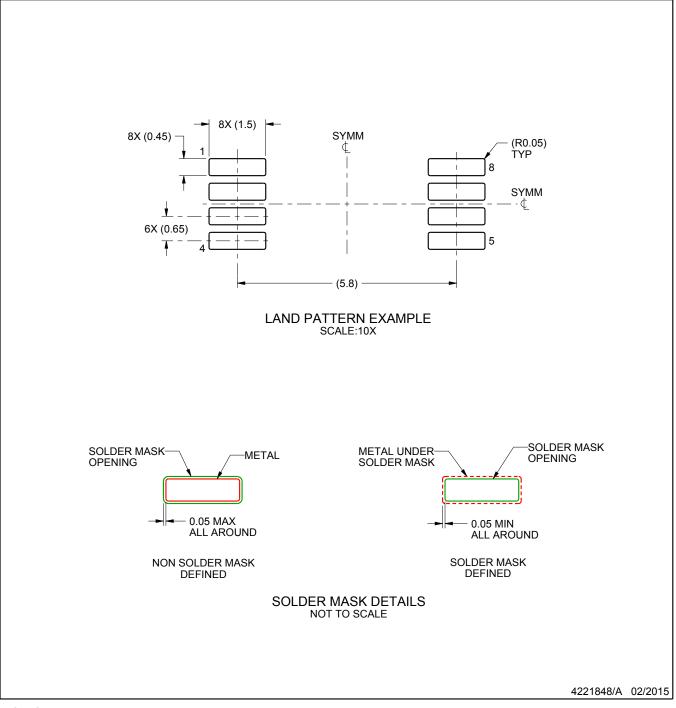
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



PW0008A

EXAMPLE BOARD LAYOUT

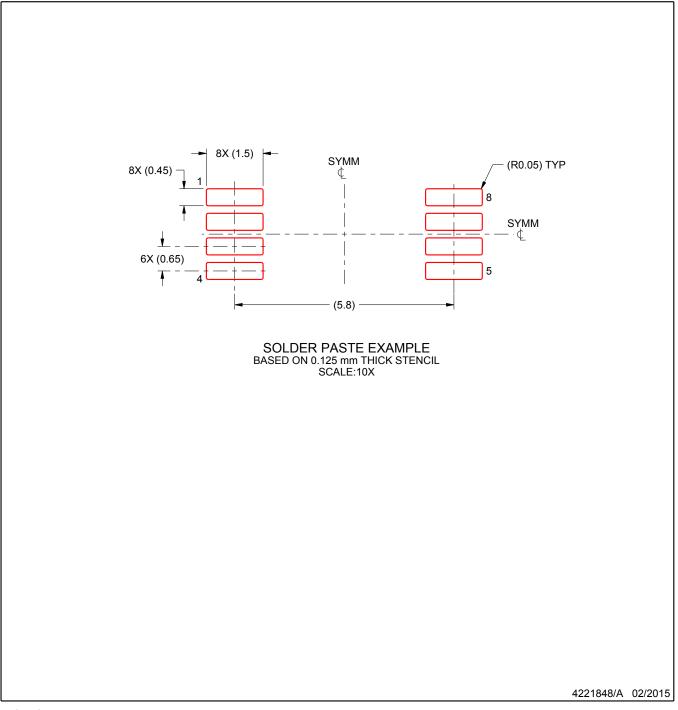
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0008A

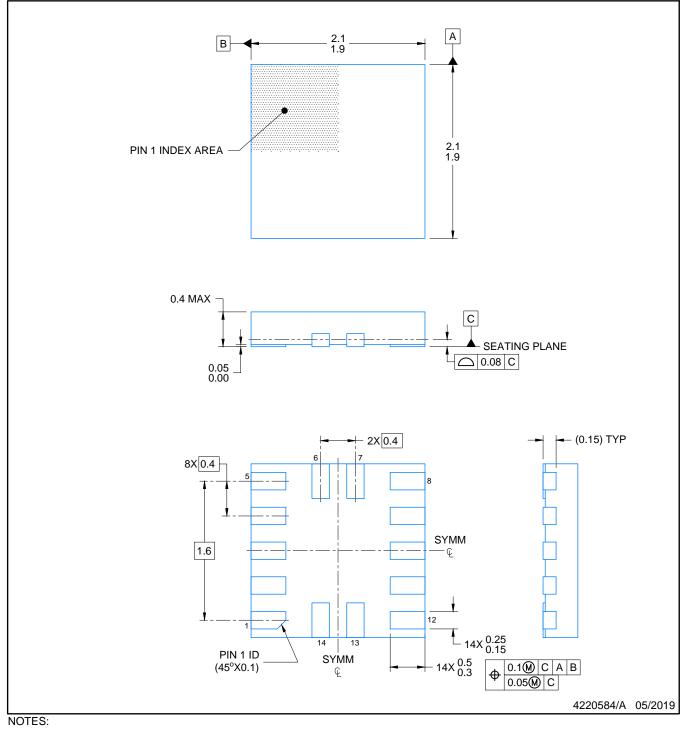
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.


^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

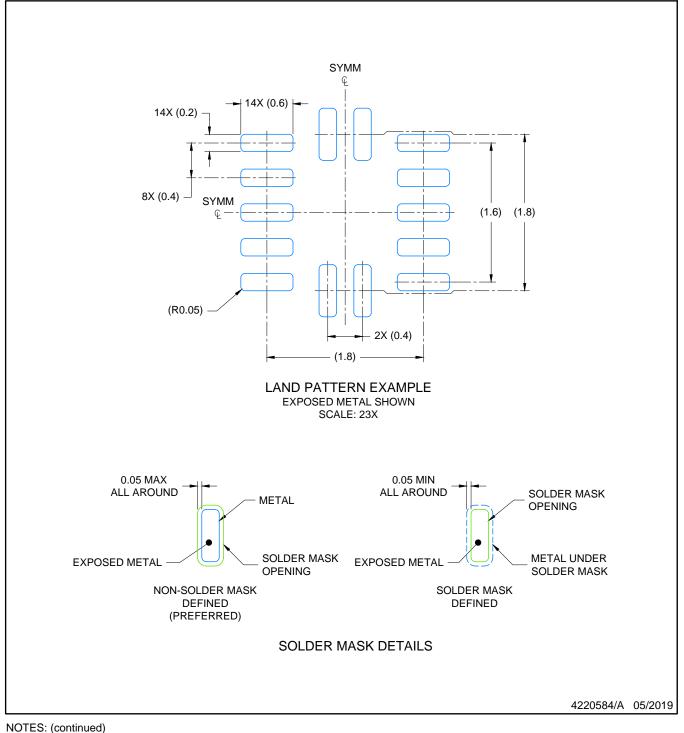
RUC0014A

PACKAGE OUTLINE

X2QFN - 0.4 mm max height

PLASTIC QUAD FLAT PACK- NO LEAD

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



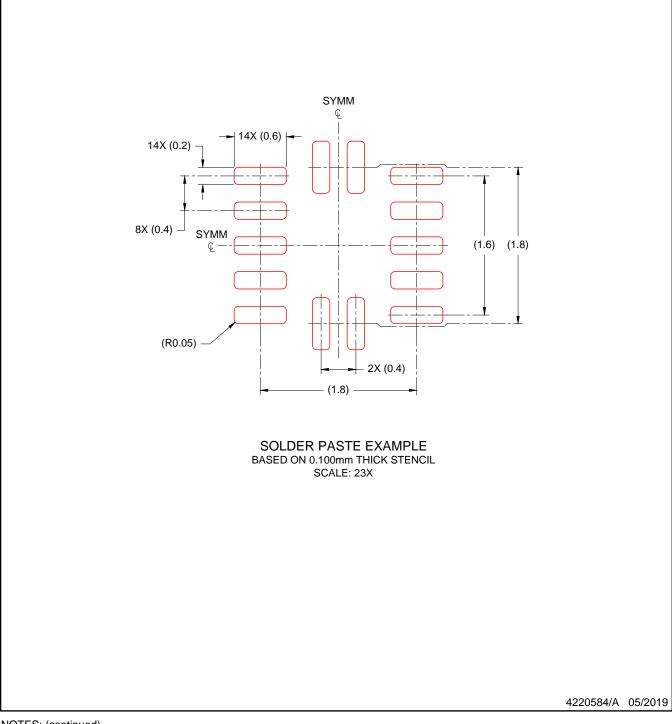
RUC0014A

EXAMPLE BOARD LAYOUT

X2QFN - 0.4 mm max height

PLASTIC QUAD FLAT PACK- NO LEAD

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

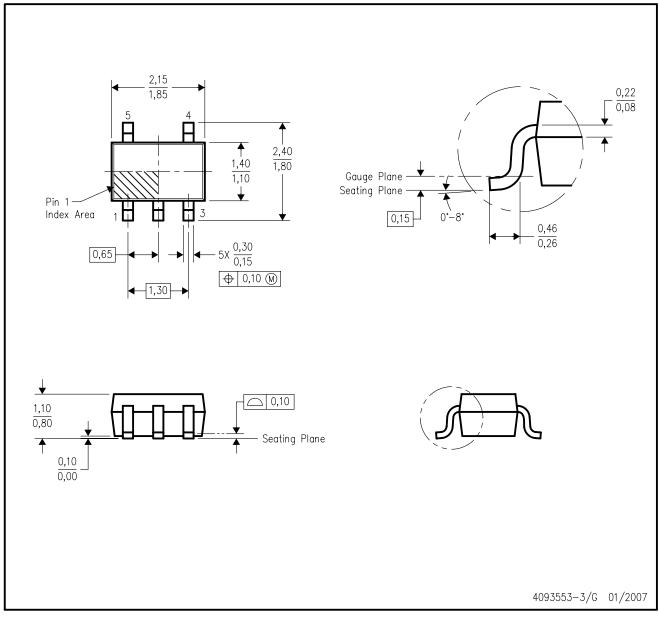


RUC0014A

EXAMPLE STENCIL DESIGN

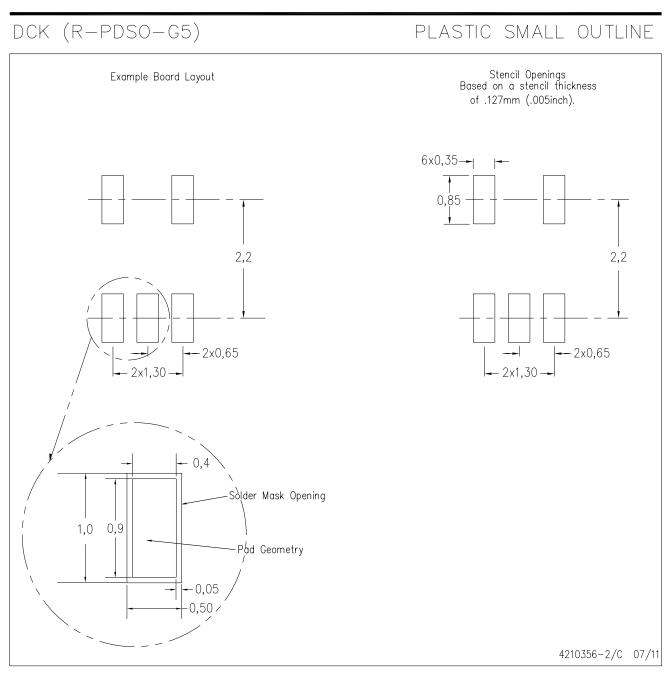
X2QFN - 0.4 mm max height

PLASTIC QUAD FLAT PACK- NO LEAD


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DCK (R-PDSO-G5)

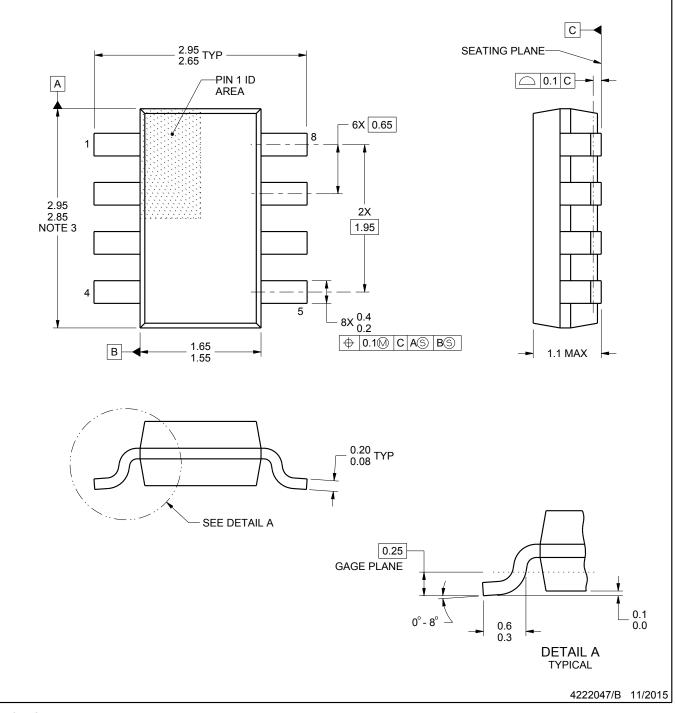

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AA.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.


DDF0008A

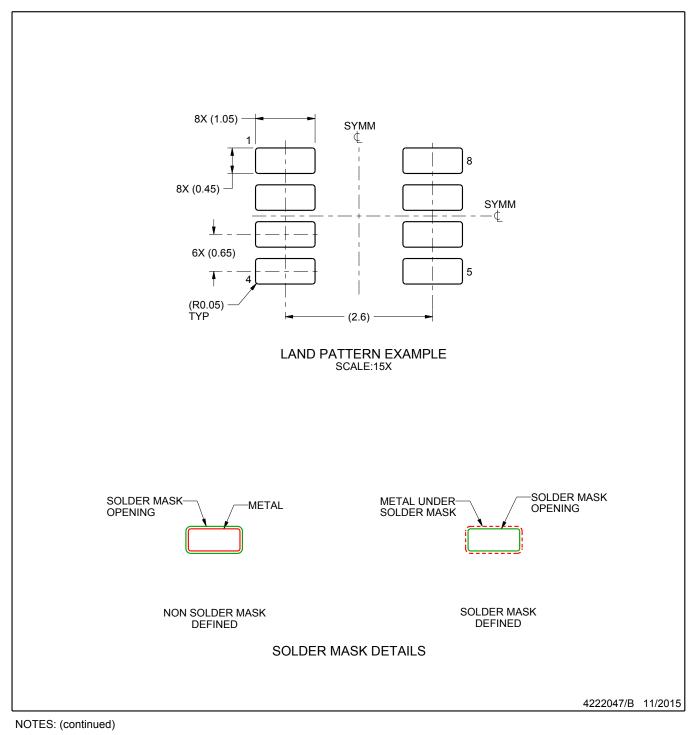
PACKAGE OUTLINE

SOT-23 - 1.1 mm max height

PLASTIC SMALL OUTLINE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.



DDF0008A

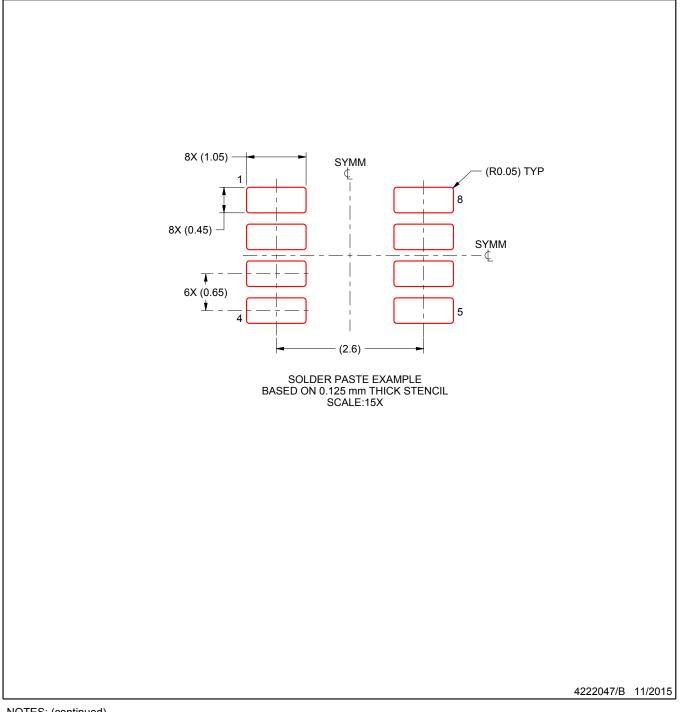
EXAMPLE BOARD LAYOUT

SOT-23 - 1.1 mm max height

PLASTIC SMALL OUTLINE

4. Publication IPC-7351 may have alternate designs.

5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

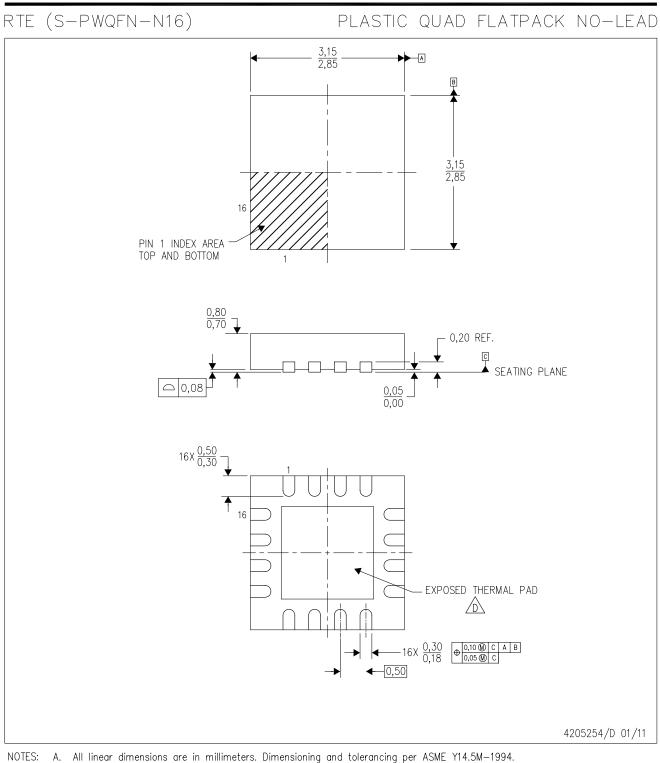


DDF0008A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.1 mm max height

PLASTIC SMALL OUTLINE



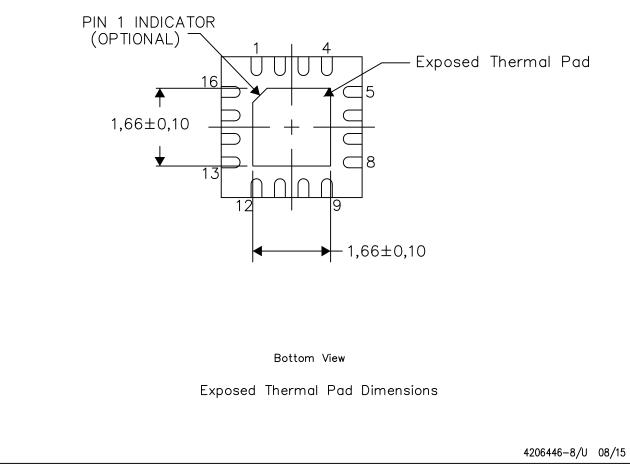
NOTES: (continued)

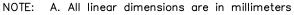
- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

- A. All linear almensions are in millimeters. Dimensioning and tolerancing per A B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 - E. Falls within JEDEC MO-220.

RTE (S-PWQFN-N16)

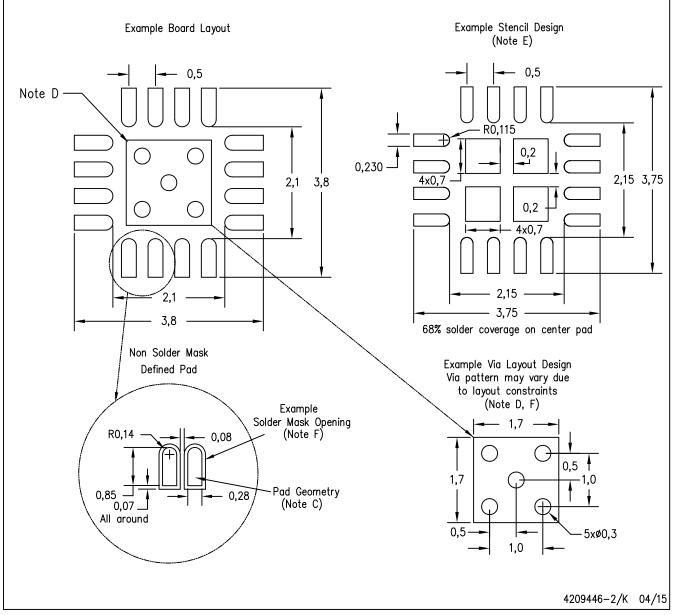

PLASTIC QUAD FLATPACK NO-LEAD


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

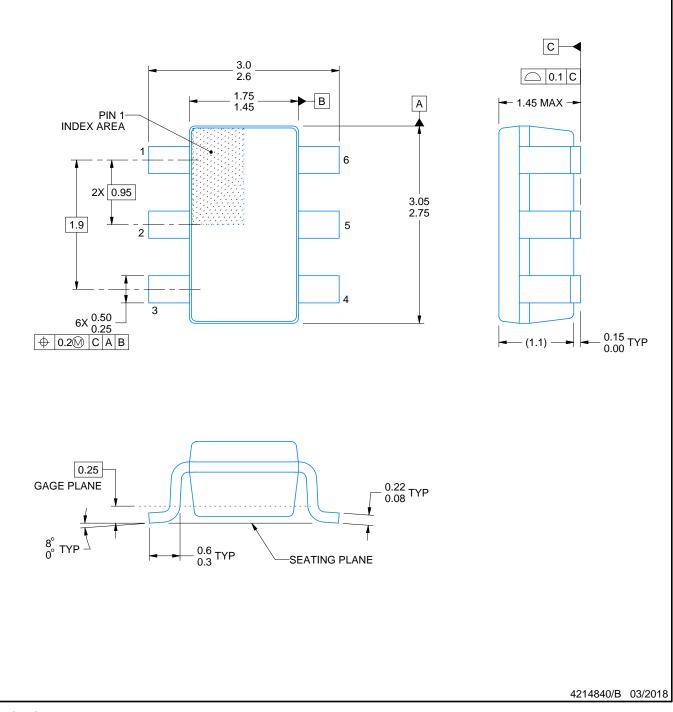


RTE (S-PWQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.


DBV0006A

PACKAGE OUTLINE

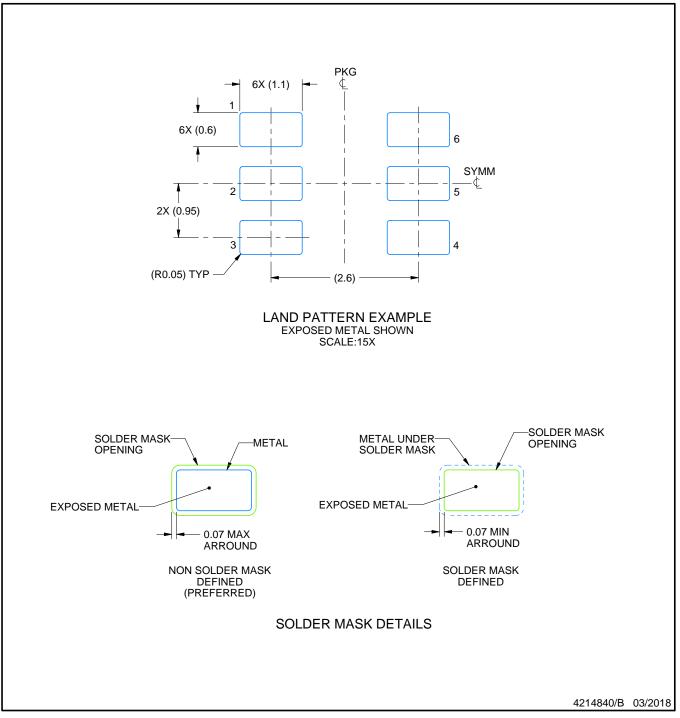
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.



DBV0006A

EXAMPLE BOARD LAYOUT

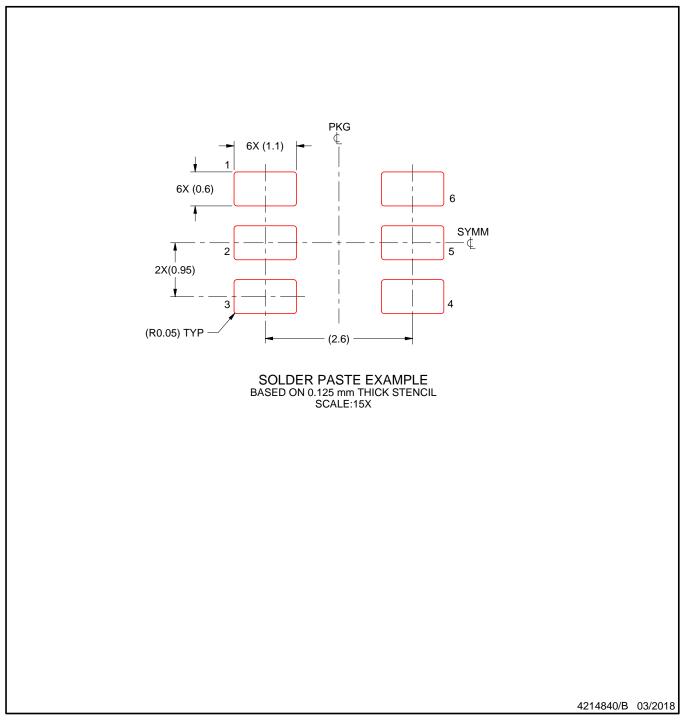
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0006A

EXAMPLE STENCIL DESIGN

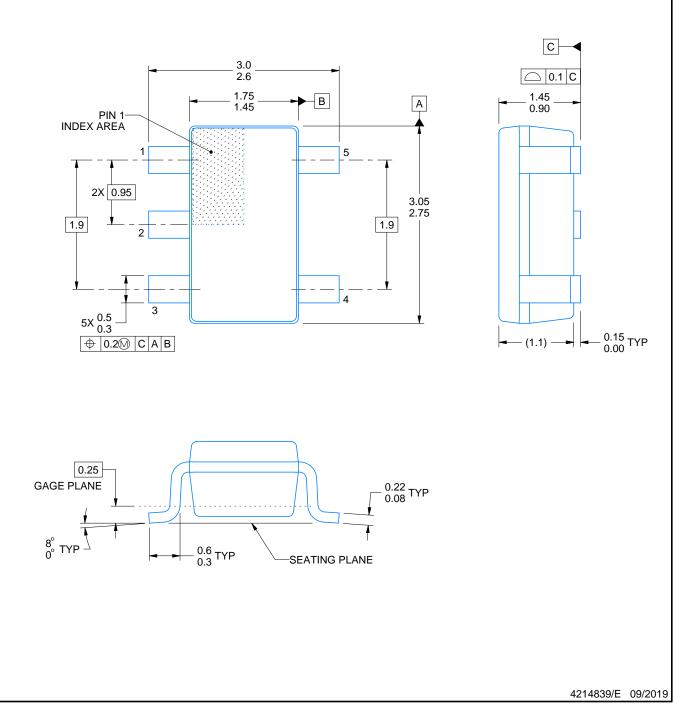
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.


DBV0005A

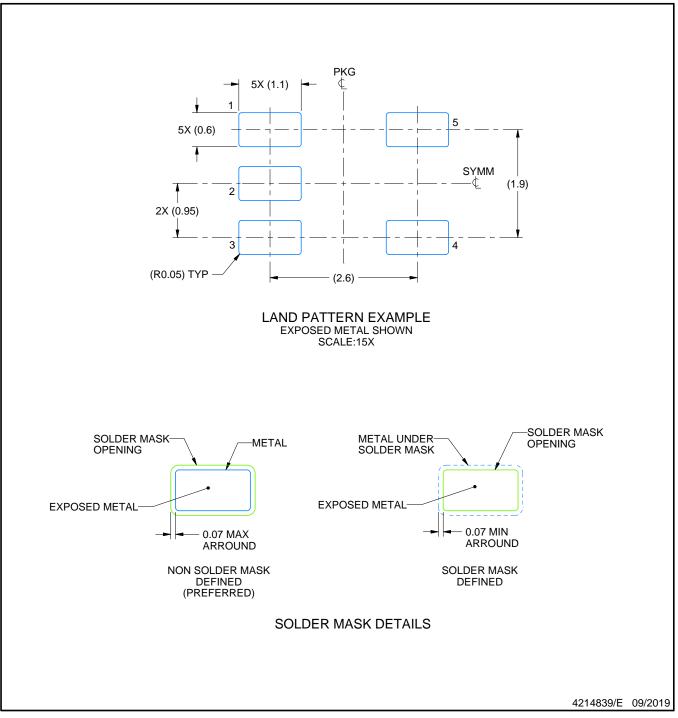
PACKAGE OUTLINE

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Refernce JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.



DBV0005A

EXAMPLE BOARD LAYOUT

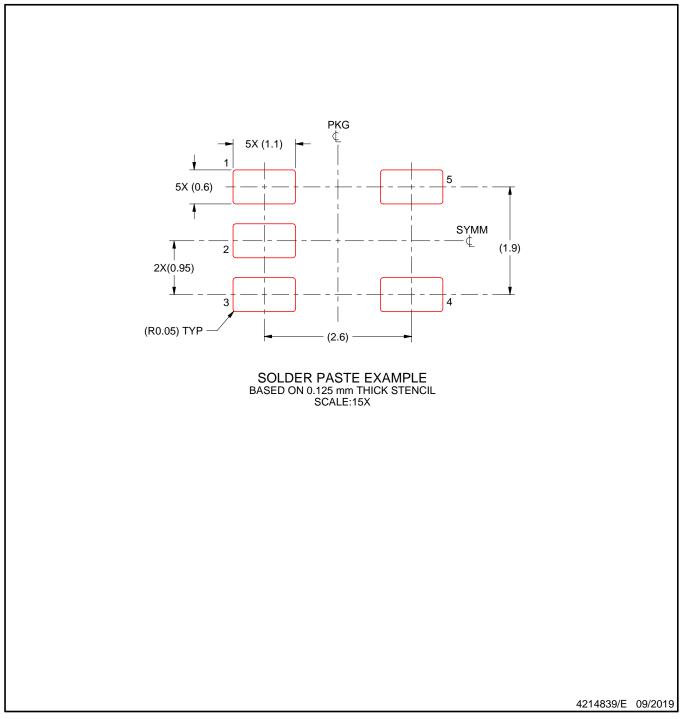
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0005A

EXAMPLE STENCIL DESIGN

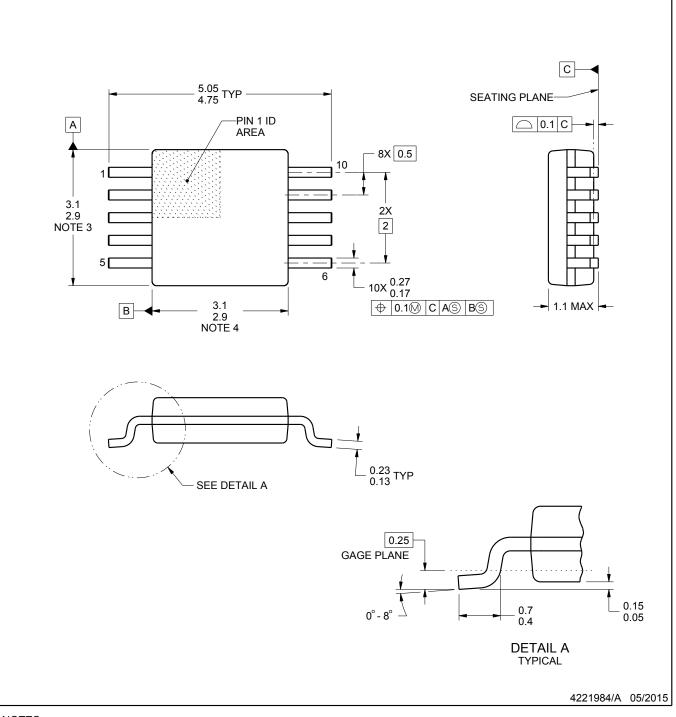
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

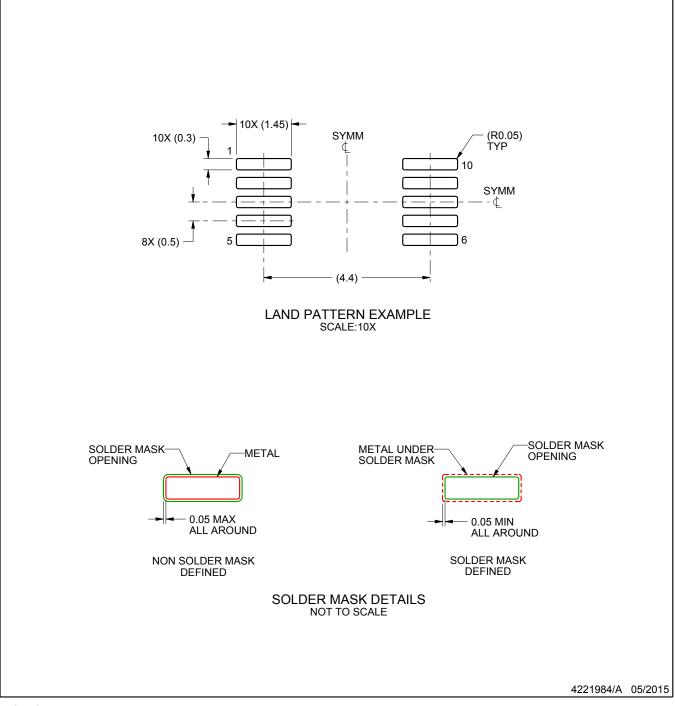

DGS0010A

PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.



DGS0010A

EXAMPLE BOARD LAYOUT

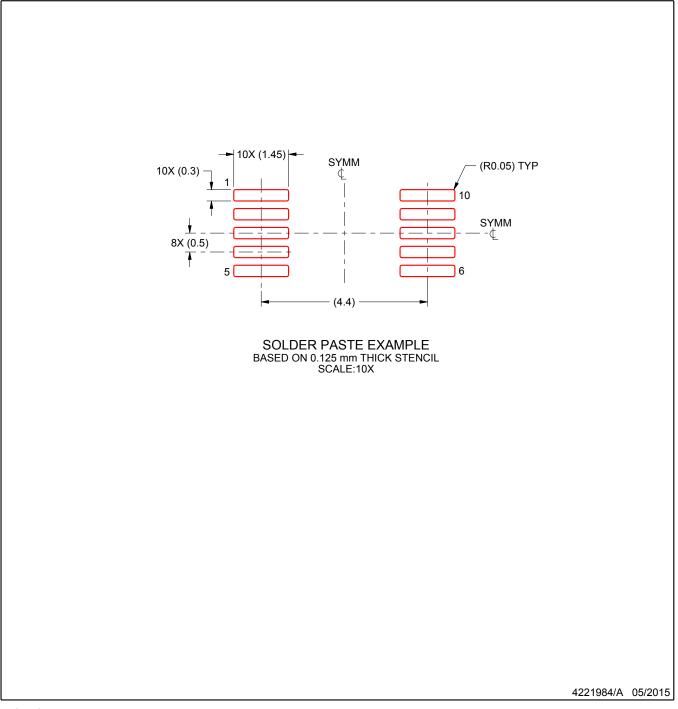
VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



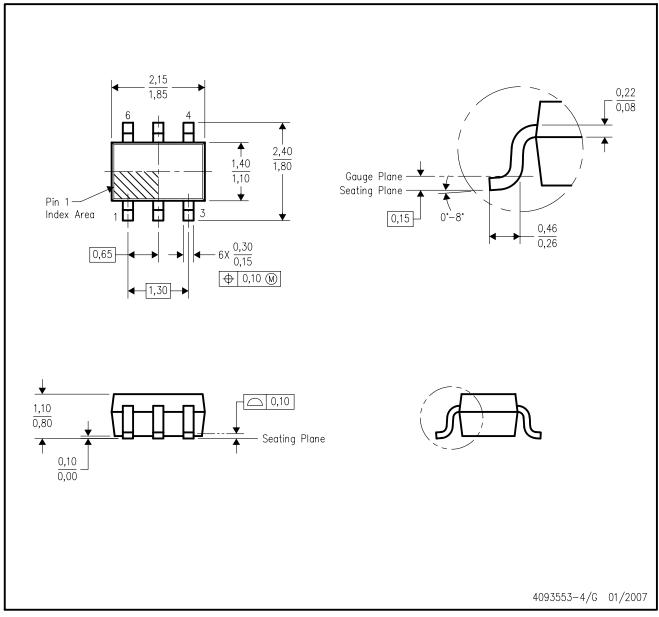
DGS0010A

EXAMPLE STENCIL DESIGN

VSSOP - 1.1 mm max height

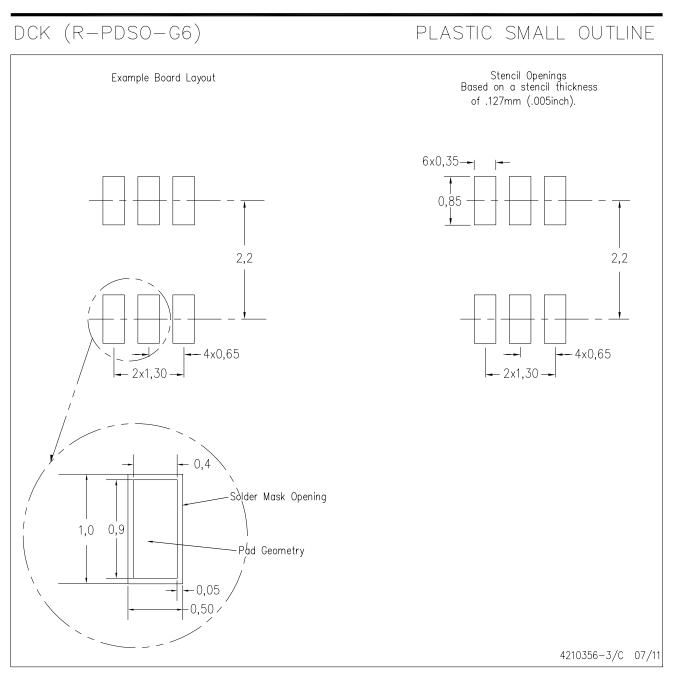
SMALL OUTLINE PACKAGE

NOTES: (continued)


9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DCK (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA

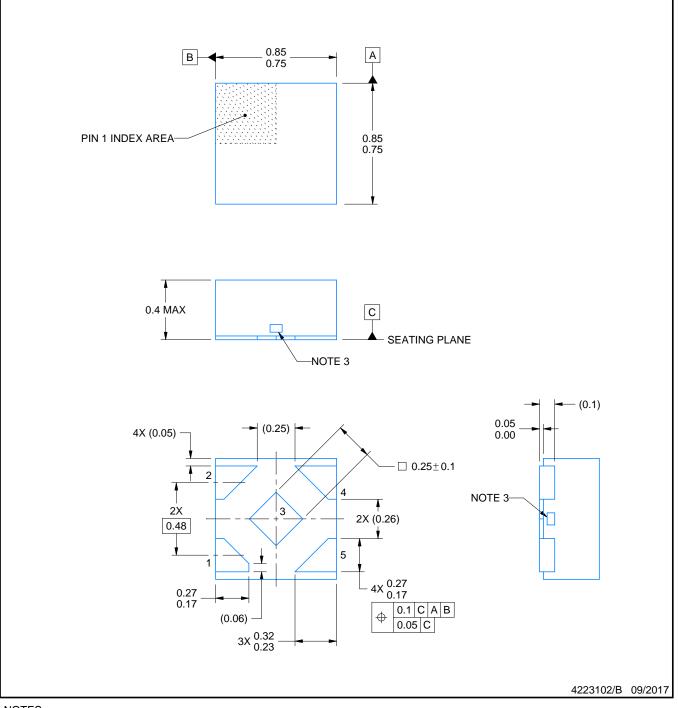
- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

GENERIC PACKAGE VIEW

X2SON - 0.4 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4211218-3/D

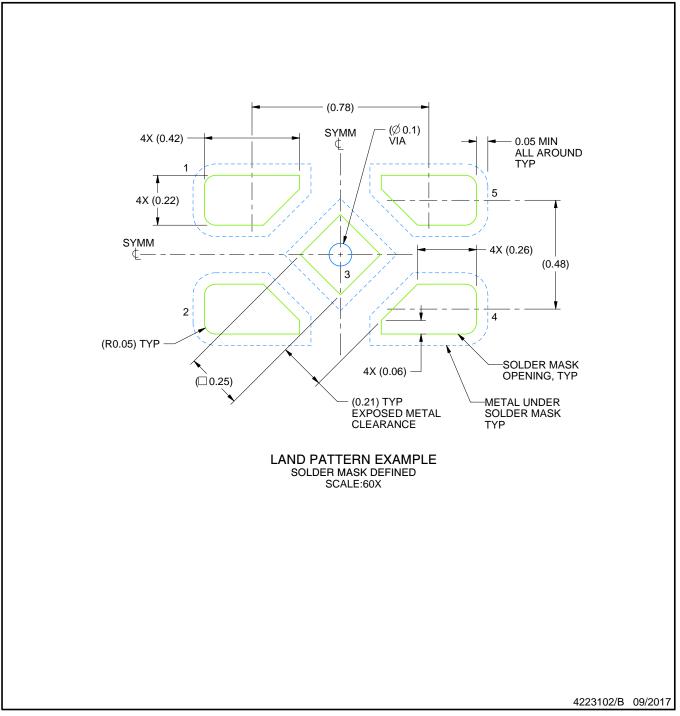

DPW0005A

PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.
- 3. The size and shape of this feature may vary.



DPW0005A

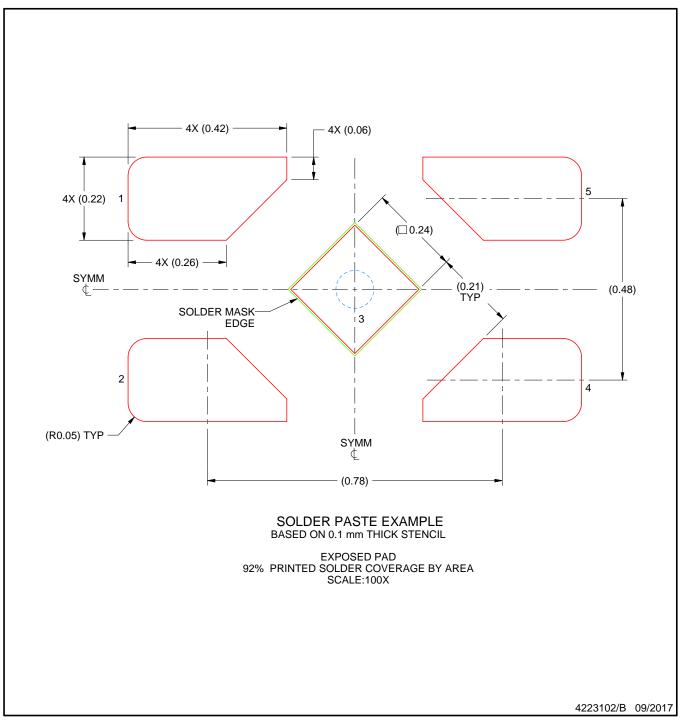
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).



DPW0005A

EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated