

16-Bit eXtreme Low-Power Microcontrollers with LCD Controller and USB

High-Performance CPU

- Modified Harvard Architecture
- · 512 Kbytes Flash Memory
- 32 Kbytes RAM
- Up to 16 MIPS Operation @ 32 MHz
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/Integer Multiplier
- · 32-Bit by 16-Bit Hardware Divider
- 16-Bit x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

LCD Display Controller

- 64 Segments and 8 Commons Supporting up to 480 Pixels
- LCD Charge Pump with 5 µA Low Power
- · Core-Independent LCD Animation
- Operation in Sleep Mode

Analog Features

- Up to 24-Channel, Software Selectable 10/12-Bit Analog-to-Digital Converter:
 - 12-bit, 350K samples/second conversion rate (single Sample-and-Hold)
 - 10-bit, 400K samples/second conversion rate (single Sample-and-Hold)
 - Sleep mode operation
 - Low-voltage boost for input
 - Band gap reference input feature
 - Core-independent windowed threshold compare feature
 - Auto-scan feature
- Three Analog Comparators with Input Multiplexing:
 - Programmable reference voltage for comparators
- · 10-Bit, 1 Msps DAC with Buffered Output

eXtreme Low-Power Features

- Sleep and Idle modes Selectively Shut Down:
 - Peripherals and/or core for substantial power reduction and fast wake-up
- · Doze mode Allows CPU to Run at a Lower Clock Speed than Peripherals
- · Alternate Clock modes Allow On-the-Fly:
 - Switching to a lower clock speed for selective power reduction
- Retention Sleep with On-Chip Ultra Low-Power Retention Regulator

Functional Safety and Security Peripherals

- Fail-Safe Clock Monitor Operation:
 - Detects clock failure and switches to on-chip, low-power RC Oscillator
- Power-on Reset (POR), Brown-out Reset (BOR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- · Programmable High or Low-Voltage Detect (HLVD)
- Flexible Watchdog Timer (WDT) with RC Oscillator for Reliable Operation
- · Deadman Timer (DMT) for Safety-Critical Applications
- Programmable 32-Bit Cyclic Redundancy Check (CRC) Generator
- Flash Configurable as OTP by ICSP[™] Write Inhibit
- CodeGuard[™] Security
- · ECC Flash Memory with Fault Injection:
 - Single Error Correction (SEC)
 - Double-Error Detection (DED)
- · Customer OTP Memory
- Unique Device Identifier (UDID), 120-Bit Unique ID

Special Microcontroller Features

- Supply Voltage Range of 2.0V to 3.6V
- Operating Ambient Temperature Range of -40°C to +125°C
- On-Chip Voltage Regulators (1.8V) for Low-Power Operation
- Large, Dual Partition Flash Program Array:
 - The device's Flash memory can be configured into two physical sections or a single physical section
 - Capable of holding two independent software applications, including bootloader
 - Permits simultaneous programming of one partition while executing application code from the other
 - Allows run-time switching between Active Partitions
- Flash Memory:
 - 10,000 erase/write cycle endurance, typical
 - Data retention: 20 years minimum
 - Self-programmable under software control
 - Flash OTP emulation
- 8 MHz Fast RC Internal Oscillator:
 - Multiple clock divide options
 - Fast start-up
- 96 MHz PLL Option
- · Programmable Reference Clock Output
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Emulation (ICE) via Two Pins

· JTAG Boundary Scan Support

Peripheral Features

- · Independent, Low-Power 32 kHz Timer Oscillator
- Six-Channel DMA Controller:
 - Minimizes CPU overhead and increases data throughput
- Timer1: 16-Bit Timer/Counter with External Crystal Oscillator; Timer1 can Provide an A/D Trigger
- Timer2,3,4,5: 16-Bit Timer/Counter, can Create 32-Bit Timer; Timer3 and Timer5 can Provide an A/D Trigger
- Eight MCCP modules, Each with a Dedicated 16/32-Bit Timer:
 - Three 6-output MCCP modules
 - Five 2-output MCCP modules
- Four Variable Widths, Serial Peripheral Interface (SPI) Ports on All Devices; Three Operation modes:
 - Three-wire SPI (supports all four SPI modes)
 - Up to 32-byte deep FIFO buffer
 - I²S mode
 - Speed up to 24 MHz
- Three I²C Master and Slave w/Address Masking, PMBus[™] and IPMI Support
- · Six UART modules:
 - LIN/J2602 bus support (auto-wake-up, Auto-Baud Detect, Break character support)
 - RS-232 and RS-485 support
 - IrDA[®] mode (hardware encoder/decoder functions)
- · Five External Interrupt Pins
- Hardware Real-Time Clock and Calendar (RTCC)
- Peripheral Pin Select (PPS) allows Independent I/O Mapping of Many Peripherals
- · Configurable Interrupt-on-Change on All I/O Pins:
 - Each pin is independently configurable for rising edge or falling edge change detection
- · Reference Clock Output with Programmable Divider
- · Four Configurable Logic Cell (CLC) Blocks:
 - Two inputs and one output, all mappable to peripherals or I/O pins
 - AND/OR/XOR logic and D/JK flip-flop functions

PIC24FJ512GU410 Product Families

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

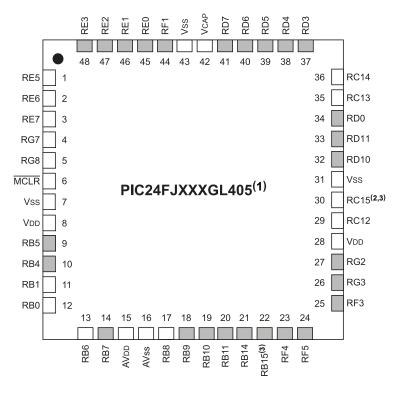

Datasheet

Table 1. PIC24FJ512GU410 Family

Device	Program Memory (Bytes)	Data Memory (Bytes)	Total Pins	I/O	PPS	DMA	Comparators	DAC	CRC	МССР	Timers	I ² C	SPI	UART	LCD	CLC	RTCC	ADC	USB
PIC24FJ512GU410	512k	32k	100	85	37	6	3	Yes	Yes	8	5	3	4	6	(58x8)	4	Yes	24	Yes
PIC24FJ512GU408	512k	32k	80	69	36	6	3	Yes	Yes	8	5	3	4	6	(45x8)	4	Yes	17	Yes
PIC24FJ512GU406	512k	32k	64	53	33	6	3	Yes	Yes	8	5	3	4	6	(29x8)	4	Yes	16	Yes
PIC24FJ512GU405	512k	32k	48	38	24	6	3	No	Yes	7	5	3	4	4	(15x8)	4	Yes	12	Yes
PIC24FJ256GU410	256k	32k	100	85	37	6	3	Yes	Yes	8	5	3	4	6	(58x8)	4	Yes	24	Yes
PIC24FJ256GU408	256k	32k	80	69	36	6	3	Yes	Yes	8	5	3	4	6	(45x8)	4	Yes	17	Yes
PIC24FJ256GU406	256k	32k	64	53	33	6	3	Yes	Yes	8	5	3	4	6	(29x8)	4	Yes	16	Yes
PIC24FJ256GU405	256k	32k	48	38	24	6	3	No	Yes	7	5	3	4	4	(15x8)	4	Yes	12	Yes
PIC24FJ128GU410	128k	32k	100	85	37	6	3	Yes	Yes	8	5	3	4	6	(58x8)	4	Yes	24	Yes
PIC24FJ128GU408	128k	32k	80	69	36	6	3	Yes	Yes	8	5	3	4	6	(45x8)	4	Yes	17	Yes
PIC24FJ128GU406	128k	32k	64	53	33	6	3	Yes	Yes	8	5	3	4	6	(29x8)	4	Yes	16	Yes
PIC24FJ128GU405	128k	32k	48	38	24	6	3	No	Yes	7	5	3	4	4	(15x8)	4	Yes	12	Yes
PIC24FJ512GL410	512k	32k	100	86	37	6	3	Yes	Yes	8	5	3	4	6	(60x8)	4	Yes	24	No
PIC24FJ512GL408	512k	32k	80	70	36	6	3	Yes	Yes	8	5	3	4	6	(47x8)	4	Yes	17	No
PIC24FJ512GL406	512k	32k	64	54	34	6	3	Yes	Yes	8	5	3	4	6	(32x8)	4	Yes	16	No
PIC24FJ512GL405	512k	32k	48	39	26	6	3	No	Yes	7	5	3	4	4	(19x8)	4	Yes	12	No
PIC24FJ256GL410	256k	32k	100	86	37	6	3	Yes	Yes	8	5	3	4	6	(60x8)	4	Yes	24	No
PIC24FJ256GL408	256k	32k	80	70	36	6	3	Yes	Yes	8	5	3	4	6	(47x8)	4	Yes	17	No
PIC24FJ256GL406	256k	32k	64	54	34	6	3	Yes	Yes	8	5	3	4	6	(32x8)	4	Yes	16	No
PIC24FJ256GL405	256k	32k	48	39	26	6	3	No	Yes	7	5	3	4	4	(19x8)	4	Yes	12	No
PIC24FJ128GL410	128k	32k	100	86	37	6	3	Yes	Yes	8	5	3	4	6	(60x8)	4	Yes	24	No
PIC24FJ128GL408	128k	32k	80	70	36	6	3	Yes	Yes	8	5	3	4	6	(47x8)	4	Yes	17	No
PIC24FJ128GL406	128k	32k	64	54	34	6	3	Yes	Yes	8	5	3	4	6	(32x8)	4	Yes	16	No
PIC24FJ128GL405	128k	32k	48	39	26	6	3	No	Yes	7	5	3	4	4	(19x8)	4	Yes	12	No

Pin Diagrams (PIC24FJXXXGL405 Devices)

48-Pin TQFP/UQFN

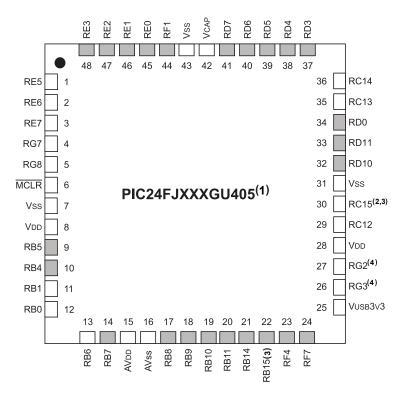
Notes:

- 1. **Shaded** pins are up to 5.5 V_{DC} tolerant.
- 2. This pin may be toggled during programming.
- 3. This pin has an increased current drive strength.

Table 2. PIC24FJXXXGL405 Devices

Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾
1	LCDBIAS2/RP34/RE5	25	SEG12/ RP16 /RF3
2	LCDBIAS1/RP35/SCL3/RE6	26	SEG47/SDA1/OCM1F/INT0/RG3
3	LCDBIAS0/RP36/SDA3/RE7	27	SEG28/SCL1/RG2
4	V _{LCAP1} /C1INC/AC2INC/AC3INC/ RP26 /RG7	28	V_{DD}
5	V _{LCAP2} /C2IND/ RP19 /OCM2A/RG8	29	OSC1/CLKI/RC12
6	MCLR	30	OSC2/CLKO/RC15 ^(2,3)
7	V _{SS}	31	V_{SS}
8	V_{DD}	32	SEG15/C3IND/RP3/RD10
9	PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/RB5	33	SEG16/C3INC/ RP12 /RD11
10	PGED3/SEG3/AN4/C1INB/RP28/ASDA1/RB4	34	SEG17/ RP11 /RD0
11	PGEC1/SEG6/CV _{REF} -/AN1/ RP1 /RB1	35	SOSCI/RC13
12	PGED1/SEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/ RP0 /RB0	36	SOSCO/SCLKI/RPI37/RC14
13	PGEC2/LCDBIAS3/AN6/ RP6 /RB6	37	SEG22/RP22/SCK3/RD3

	continued						
Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾				
14	PGED2/AN7/ RP7 /T1CK/RB7	38	SEG23/ RP25 /SDI3/RD4				
15	AV_{DD}	39	SEG24/ RP20 /SDO3/RD5				
16	AV _{SS}	40	SEG25/C3INB/ RP32 /SS3/FSYNC3/RD6				
17	COM7/SEG31/AN8/ RP8 /RB8	41	SEG26/C3INA/ RP33 /RD7				
18	COM6/SEG30/AN9/RP9/RB9	42	V _{CAP}				
19	TMS/COM5/SEG29/CV _{REF} /AN10/ RPI44 /RB10	43	V_{SS}				
20	TDO/AN11/RB11	44	COM4/SEG48/RPI45/OCM1E/RF1				
21	TCK/SEG8/AN14/ RP14 /OCM1C/RB14	45	COM3/RE0				
22	TDI/SEG9/AN15/RP29/OCM1D/RB15 ⁽³⁾	46	COM2/RE1				
23	SEG10/ RP10 /SDA2/RF4	47	COM1/RE2				
24	SEG11/ RP17 /SCL2/RF5	48	COM0/LVDIN/RE3				


Notes:

- 1. **RPn** and **RPln** represent remappable pins for Peripheral Pin Select (PPS) functions.
- 2. This pin may be toggled during programming.
- 3. These pins have an increased current drive strength.

Datasheet

Pin Diagrams (PIC24FJXXXGU405 Devices) (Continued)

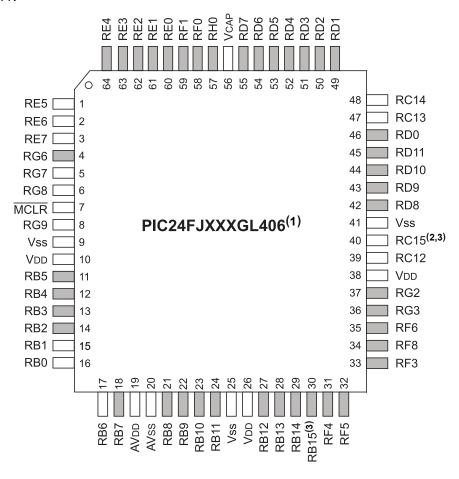
48-Pin TQFP/UQFN

Notes:

- 1. **Shaded** pins are up to 5.5 V_{DC} tolerant.
- 2. This pin may be toggled during programming.
- 3. This pin has an increased current drive strength.
- 4. Open-drain configuration does not apply to this pin.

Table 3. PIC24FJXXXGU405 Devices

Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾
1	LCDBIAS2/RP34/RE5	25	V _{USB3V3}
2	LCDBIAS1/RP35/SCL3/RE6	26	D-/OCM1F/RG3 ⁽⁴⁾
3	LCDBIAS0/RP36/SDA3/RE7	27	D+/RG2 ⁽⁴⁾
4	V _{LCAP1} /C1INC/AC2INC/AC3INC/ RP26 /RG7	28	V_{DD}
5	V _{LCAP2} /C2IND/ RP19 /OCM2A/RG8	29	OSC1/CLKI/RC12
6	MCLR	30	OSC2/CLKO/RC15 ^(2,3)
7	V_{SS}	31	V _{SS}
8	V_{DD}	32	SEG15/C3IND/RP3/RD10
9	PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/RB5	33	SEG16/C3INC/RP12/RD11
10	PGED3/SEG3/AN4/C1INB/ RP28 /ASDA1/ USBOEN /RB4	34	SEG17/ RP11 /RD0
11	PGEC1/SEG6/CV _{REF} -/AN1/ RP1 /RB1	35	SOSCI/RC13
12	$PGED1/SEG7/V_{REF} + /CV_{REF} + /DV_{REF} + /AN0/RP0/RB0$	36	SOSCO/SCLKI/RPI37/RC14


	continued						
Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾				
13	PGEC2/LCDBIAS3/AN6/ RP6 /RB6	37	SEG22/ RP22 /SCK3/RD3				
14	PGED2/AN7/ RP7 /T1CK/RB7	38	SEG23/ RP25 /SDI3/RD4				
15	AV_{DD}	39	SEG24/ RP20 /SDO3/RD5				
16	AV _{SS}	40	SEG25/C3INB/RP32/SS3/FSYNC3/RD6				
17	COM7/SEG31/AN8/ RP8 /RB8	41	SEG26/C3INA/RP33/RD7				
18	COM6/SEG30/AN9/ RP9 /RB9	42	V _{CAP}				
19	TMS/COM5/SEG29/CV _{REF} /AN10/ RPI44 /RB10	43	V _{SS}				
20	TDO/AN11/RB11	44	COM4/SEG48/RPI45/OCM1E/RF1				
21	TCK/SEG8/AN14/ RP14 /OCM1C/RB14	45	COM3/RE0				
22	TDI/SEG9/AN15/ RP29 /OCM1D/RB15 ⁽³⁾	46	COM2/RE1				
23	SEG10/RP10/SDA2/USBID/RF4	47	COM1/RE2				
24	V _{BUS} /SCL2/RF7	48	COM0/LVDIN/RE3				

Notes:

- 1. **RPn** and **RPln** represent remappable pins for Peripheral Pin Select (PPS) functions.
- 2. This pin may be toggled during programming.
- 3. These pins have an increased current drive strength.
- 4. Open-drain configuration does not apply to this pin.

Pin Diagrams (PIC24FJXXXGL406 Devices) (Continued)

64-Pin TQFP/QFN

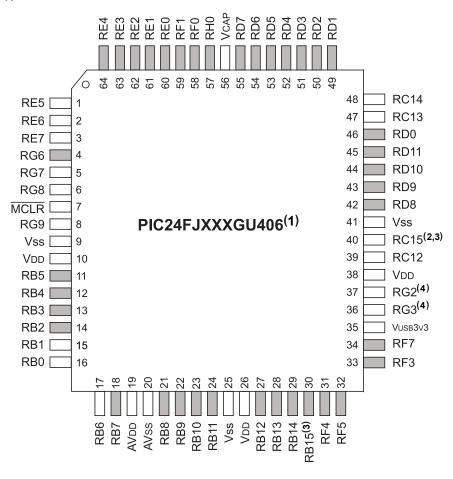
Notes:

- 1. **Shaded** pins are up to 5.5 V_{DC} tolerant.
- 2. This pin may be toggled during programming.
- 3. This pin has an increased current drive strength.

Pinouts are subject to change.

Table 4. PIC24FJXXXGL406 Devices

Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾
1	LCDBIAS2/RP34/RE5	33	SEG12/ RP16 /RF3
2	LCDBIAS1/RP35/SCL3/RE6	34	SEG41/ RP15 /RF8
3	LCDBIAS0/RP36/SDA3/RE7	35	INT0/RF6
4	SEG0/C1IND/RP21/OCM1A/RG6	36	SEG47/SDA1/OCM1F/RG3
5	V _{LCAP1} /C1INC/AC2INC/AC3INC/ RP26 /OCM1B/RG7	37	SEG28/SCL1/RG2
6	V _{LCAP2} /C2IND/ RP19 /OCM2A/RG8	38	V_{DD}
7	MCLR	39	OSC1/CLKI/RC12
8	SEG1/C2INC/RP27/DACOUT/OCM2B/RG9	40	OSC2/CLKO/RC15 ^(2,3)


	continued							
Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾					
9	V _{SS}	41	Vss					
10	V _{DD}	42	SEG13/RP2/U6RTS/U6BCLK/RD8					
11	PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/OCM3A/RB5	43	SEG14/ RP4 /RD9					
12	PGED3/SEG3/AN4/C1INB/RP28/ASDA1/OCM3B/RB4	44	SEG15/C3IND/RP3/RD10					
13	SEG4/AN3/C2INA/RB3	45	SEG16/C3INC/ RP12 /RD11					
14	SEG5/AN2/C2INB/RP13/RB2	46	SEG17/RP11/U6CTS/RD0					
15	PGEC1/SEG6/CV _{REF} -/AN1/ RP1 /RB1	47	SOSCI/RC13					
16	PGED1/SEG7/VREF+/CVREF+/DVREF+/AN0/RP0/RB0	48	SOSCO/SCLKI/RPI37/RC14					
17	PGEC2/LCDBIAS3/AN6/RP6/RB6	49	SEG20/ RP24 /U5TX/RD1					
18	PGED2/AN7/ RP7 /T1CK/U6TX/RB7	50	SEG21/ RP23 /RD2					
19	AV _{DD}	51	SEG22/RP22/SCK3/RD3					
20	AVSS	52	SEG23/ RP25 /SDI3/RD4					
21	COM7/SEG31/AN8/ RP8 /RB8	53	SEG24/ RP20 /SDO3/RD5					
22	COM6/SEG30/AN9/ RP9 /RB9	54	SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6					
23	TMS/COM5/SEG29/CV _{REF} /AN10/ RPI44 /RB10	55	SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7					
24	TDO/AN11/RB11	56	VCAP					
25	Vss	57	RH0					
26	VUSB3V3	58	SEG27/U5CTS/RF0					
27	TCK/SEG18/AN12/U6RX/RB12	59	COM4/SEG48/RPI45/OCM1E/RF1					
28	TDI/SEG19/AN13/RB13	60	COM3/RE0					
29	SEG8/AN14/RP14/OCM1C/RB14	61	COM2/RE1					
30	SEG9/AN15/ RP29 /OCM1D/RB15 ⁽³⁾	62	COM1/RE2					
31	SEG10/ RP10 /SDA2/RF4	63	COM0/RE3					
32	SEG11/ RP17 /SCL2/RF5	64	SEG63/LVDIN/RE4					

Notes:

- 1. **RPn** and **RPIn** represent remappable pins for Peripheral Pin Select (PPS) functions.
- 2. This pin may be toggled during programming.
- 3. These pins have an increased current drive strength.

Pin Diagrams (PIC24FJXXXGU406 Devices) (Continued)

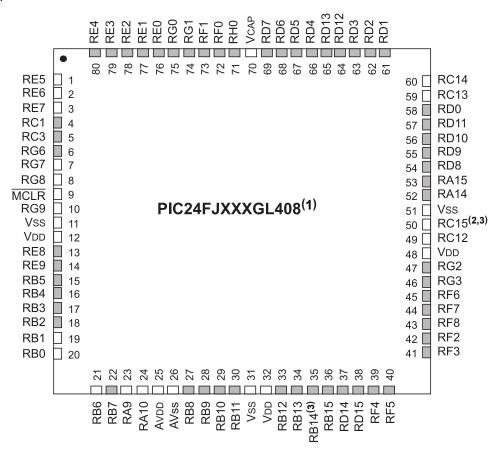
64-Pin TQFP/QFN

Notes:

- 1. Shaded pins are up to $5.5 V_{DC}$ tolerant.
- 2. This pin may be toggled during programming.
- 3. This pin has an increased current drive strength.
- 4. Open-drain configuration does not apply to this pin.

Table 5. PIC24FJXXXGU406 Devices

Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾
1	LCDBIAS2/RP34/RE5	33	SEG12/RP16/USBID/RF3
2	LCDBIAS1/RP35/SCL3/RE6	34	V _{BUS} /RF7
3	LCDBIAS0/RP36/SDA3/RE7	35	V _{USB3V3}
4	SEG0/C1IND/RP21/OCM1A/RG6	36	D-/OCM1F/RG3 ⁽⁴⁾
5	V _{LCAP1} /C1INC/AC2INC/AC3INC/ RP26 /OCM1B/RG7	37	D+/RG2 ⁽⁴⁾
6	V _{LCAP2} /C2IND/ RP19 /OCM2A/RG8	38	V_{DD}
7	MCLR	39	OSC1/CLKI/RC12
8	SEG1/C2INC/RP27/DACOUT/OCM2B/RG9	40	OSC2/CLKO/RC15 ^(2,3)
9	V_{SS}	41	V _{SS}


	continued							
Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾					
10	V_{DD}	42	SEG13/RP2/U6RTS/U6BCLK/RD8					
11	PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/OCM3A/RB5	43	SEG14/ RP4 /SDA1/RD9					
12	PGED3/SEG3/AN4/C1INB/ RP28 /ASDA1/ USBOEN /OCM3B/RB4	44	SEG15/C3IND/RP3/SCL1/RD10					
13	SEG4/AN3/C2INA/RB3	45	SEG16/C3INC/ RP12 /RD11					
14	SEG5/AN2/C2INB/ RP13 /RB2	46	SEG17/RP11/U6CTS/INT0/RD0					
15	PGEC1/SEG6/CV _{REF} -/AN1/ RP1 /RB1	47	SOSCI/RC13					
16	${\sf PGED1/SEG7/V_{REF}+/CV_{REF}+/DV_{REF}+/AN0/\textbf{RP0}/RB0}$	48	SOSCO/SCLKI/RPI37/RC14					
17	PGEC2/LCDBIAS3/AN6/ RP6 /RB6	49	SEG20/ RP24 /U5TX/RD1					
18	PGED2/AN7/ RP7 /T1CK/U6TX/RB7	50	SEG21/ RP23 /RD2					
19	AV_{DD}	51	SEG22/ RP22 /SCK3/RD3					
20	AV _{SS}	52	SEG23/ RP25 /SDI3/RD4					
21	COM7/SEG31/AN8/RP8/RB8	53	SEG24/RP20/SDO3/RD5					
22	COM6/SEG30/AN9/ RP9 /RB9	54	SEG25/C3INB/ RP32 /U5RX/ SS3 / FSYNC3/RD6					
23	TMS/COM5/SEG29/CV _{REF} /AN10/ RPI44 /RB10	55	SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7					
24	TDO/AN11/RB11	56	V _{CAP}					
25	V _{SS}	57	RH0					
26	V_{DD}	58	SEG27/U5CTS/RF0					
27	TCK/SEG18/AN12/U6RX/RB12	59	COM4/SEG48/RPI45/OCM1E/RF1					
28	TDI/SEG19/AN13/RB13	60	COM3/RE0					
29	SEG8/AN14/ RP14 /OCM1C/RB14	61	COM2/RE1					
30	SEG9/AN15/ RP29 /OCM1D/RB15 ⁽³⁾	62	COM1/RE2					
31	SEG10/RP10/SDA2/RF4	63	COM0/RE3					
32	SEG11/ RP17 /SCL2/RF5	64	SEG63/LVDIN/RE4					

Notes:

- 1. **RPn** and **RPln** represent remappable pins for Peripheral Pin Select (PPS) functions.
- 2. This pin may be toggled during programming.
- 3. These pins have an increased current drive strength.
- 4. Open-drain configuration does not apply to this pin.

Pin Diagrams (PIC24FJXXXGL408 Devices) (Continued)

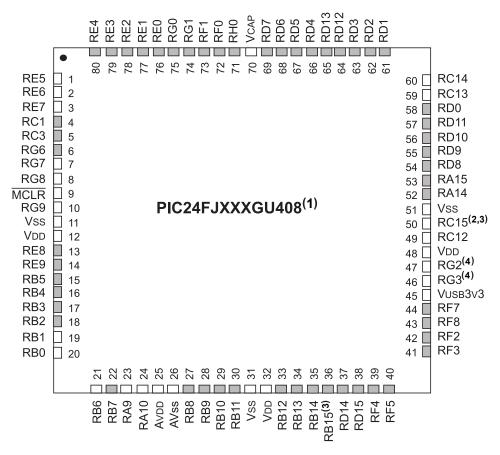
80-Pin TQFP

Notes:

- 1. Shaded pins are up to $5.5 V_{DC}$ tolerant.
- 2. This pin may be toggled during programming.
- 3. This pin has an increased current drive strength.

Table 6. PIC24FJXXXGL408 Devices

Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾
1	LCDBIAS2/RP34/RE5	41	SEG12/ RP16 /RF3
2	LCDBIAS1/RP35/SCL3/RE6	42	SEG40/ RP30 /RF2
3	LCDBIAS0/RP36/SDA3/RE7	43	SEG41/ RP15 /RF8
4	SEG32/RPI38/OCM1D/RC1	44	RF7
5	SEG33/RPI40/OCM2D/RC3	45	INT0/RF6
6	SEG0/C1IND/RP21/OCM1A/RG6	46	SEG47/SDA1/RG3
7	V _{LCAP1} /C1INC/AC2INC/AC3INC/ RP26 /OCM1B/RG7	47	SEG28/SCL1/RG2
8	V _{LCAP2} /C2IND/RP19/OCM2A/RG8	48	V_{DD}
9	MCLR	49	OSC1/CLKI/RC12
10	SEG1/C2INC/RP27/DACOUT/OCM2B/RG9	50	OSC2/CLKO/RC15 ^(2,3)


Pin			
	Function ⁽¹⁾	Pin	Function ⁽¹⁾
11	V _{SS}	51	V _{SS}
12	V_{DD}	52	SEG42/ RPI50 /RA14
13	SEG34/ RPI47 /RE8	53	SEG43/ RPI49 /RA15
14	SEG35/AN21/ RPI48 /RE9	54	SEG13/RP2/U6RTS/U6BCLK/RD8
15	PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/OCM3A/RB5	55	SEG14/ RP4 /RD9
16	PGED3/SEG3/AN4/C1INB/ RP28 /ASDA1/OCM3B/RB4	56	SEG15/C3IND/ RP3 /RD10
17	SEG4/AN3/C2INA/RB3	57	SEG16/C3INC/ RP12 /RD11
18	SEG5/AN2/C2INB/ RP13 /RB2	58	SEG17/ RP11 / U6CTS /RD0
19	PGEC1/SEG6/CV _{REF} -/AN1/ RP1 /RB1	59	SOSCI/RC13
20	PGED1/SEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/ RP0 /RB0	60	SOSCO/SCLKI/RPI37/RC14
21	PGEC2/LCDBIAS3/AN6/ RP6 /RB6	61	SEG20/ RP24 /U5TX/RD1
22	PGED2/AN7/ RP7 /T1CK/U6TX/RB7	62	SEG21/ RP23 /RD2
23	SEG36/RA9	63	SEG22/ RP22 /SCK3/RD3
24	SEG37/RA10	64	SEG44/RPI42/OCM3E/RD12
25	AV _{DD}	65	SEG45/OCM3F/RD13
26	AV _{SS}	66	SEG23/ RP25 /SDI3/RD4
27	COM7/SEG31/AN8/ RP8 /RB8	67	SEG24/ RP20 /SDO3/RD5
28	COM6/SEG30/AN9/ RP9 /RB9	68	SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6
29	TMS/COM5/SEG29/CV _{REF} /AN10/ RPI44 /RB10	69	SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7
30	TDO/AN11/RB11	70	V _{CAP}
31	V _{SS}	71	RH0
32	V _{USB3V3}	72	SEG27/U5CTS/RF0
33	TCK/SEG18/AN12/U6RX/RB12	73	COM4/SEG48/ RPI45 /RF1
34	TDI/SEG19/AN13/RB13	74	SEG46/RG1
35	SEG8/AN14/ RP14 /OCM1C/RB14	75	SEG50/RG0
36	SEG9/AN15/ RP29 /RB15 ⁽³⁾	76	COM3/RE0
37	SEG38/ RPI43 /RD14	77	COM2/RE1
38	SEG39/ RP5 /RD15	78	COM1/RE2
39	SEG10/ RP10 /SDA2/RF4	79	COM0/RE3
40	SEG11/RP17/SCL2/RF5	80	SEG63/LVDIN/RE4

Notes:

- 1. **RPn** and **RPln** represent remappable pins for Peripheral Pin Select (PPS) functions.
- 2. This pin may be toggled during programming.
- 3. These pins have an increased current drive strength.

Pin Diagrams (PIC24FJXXXGU408 Devices) (Continued)

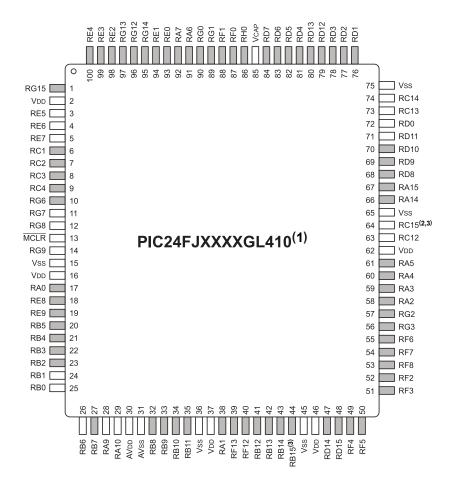
80-Pin TQFP

Notes:

- 1. **Shaded** pins are up to 5.5 V_{DC} tolerant.
- 2. This pin may be toggled during programming.
- 3. This pin has an increased current drive strength.
- 4. Open-drain configuration does not apply to this pin.

Table 7. PIC24FJXXXGU408 Device

Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾
1	LCDBIAS2/ RP34 /RE5	41	SEG12/ RP16 /USBID/RF3
2	LCDBIAS1/RP35/SCL3/RE6	42	SEG40/ RP30 /RF2
3	LCDBIAS0/RP36/SDA3/RE7	43	SEG41/ RP15 /RF8
4	SEG32/RPI38/OCM1D/RC1	44	V _{BUS} /RF7
5	SEG33/RPI40/OCM2D/RC3	45	V _{USB3V3}
6	SEG0/C1IND/RP21/OCM1A/RG6	46	D-/RG3 ⁽⁴⁾
7	V _{LCAP1} /C1INC/AC2INC/AC3INC/ RP26 /OCM1B/RG7	47	D+/RG2 ⁽⁴⁾
8	V _{LCAP2} /C2IND/ RP19 /OCM2A/RG8	48	V_{DD}
9	MCLR	49	OSC1/CLKI/RC12
10	SEG1/C2INC/RP27/DACOUT/OCM2B/RG9	50	OSC2/CLKO/RC15 ^(2,3)


	continued					
Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾			
11	V_{SS}	51	V _{SS}			
12	V_{DD}	52	SEG42/RPI50/SCL1/RA14			
13	SEG34/ RPI47 /RE8	53	SEG43/RPI49/SDA1/RA15			
14	SEG35/AN21/ RPI48 /RE9	54	SEG13/RP2/U6RTS/U6BCLK/RD8			
15	PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/OCM3A/RB5	55	SEG14/ RP4 /RD9			
16	PGED3/SEG3/AN4/C1INB/ RP28 /ASDA1/ USBOEN/ OCM3B/RB4	56	SEG15/C3IND/ RP3 /RD10			
17	SEG4/AN3/C2INA/RB3	57	SEG16/C3INC/ RP12 /RD11			
18	SEG5/AN2/C2INB/ RP13 /RB2	58	SEG17/RP11/U6CTS/INT0/RD0			
19	PGEC1/SEG6/CV _{REF} -/AN1/ RP1 /RB1	59	SOSCI/RC13			
20	${\sf PGED1/SEG7/V_{REF}+/CV_{REF}+/DV_{REF}+/AN0/\textbf{RP0}/RB0}$	60	SOSCO/SCLKI/RPI37/RC14			
21	PGEC2/LCDBIAS3/AN6/RP6/RB6	61	SEG20/ RP24 /U5TX/RD1			
22	PGED2/AN7/ RP7 /T1CK/U6TX/RB7	62	SEG21/ RP23 /RD2			
23	SEG36/RA9	63	SEG22/ RP22 /SCK3/RD3			
24	SEG37/RA10	64	SEG44/RPI42/OCM3E/RD12			
25	AV_{DD}	65	SEG45/OCM3F/RD13			
26	AV _{SS}	66	SEG23/ RP25 /SDI3/RD4			
27	COM7/SEG31/AN8/ RP8 /RB8	67	SEG24/ RP20 /SDO3/RD5			
28	COM6/SEG30/AN9/ RP9 /RB9	68	SEG25/C3INB/ RP32 /U5RX/ SS3 / FSYNC3/RD6			
29	TMS/COM5/SEG29/CV _{REF} /AN10/ RPI44 /RB10	69	SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7			
30	TDO/AN11/RB11	70	V_{CAP}			
31	V_{SS}	71	RH0			
32	V_{DD}	72	SEG27/U5CTS/RF0			
33	TCK/SEG18/AN12/U6RX/RB12	73	COM4/SEG48/RPI45/RF1			
34	TDI/SEG19/AN13/RB13	74	SEG46/RG1			
35	SEG8/AN14/ RP14 /OCM1C/RB14	75	SEG50/RG0			
36	SEG9/AN15/ RP29 /RB15 ⁽³⁾	76	COM3/RE0			
37	SEG38/ RPI43 /RD14	77	COM2/RE1			
38	SEG39/ RP5 /RD15	78	COM1/RE2			
39	SEG10/ RP10 /SDA2/RF4	79	COM0/RE3			
40	SEG11/ RP17 /SCL2/RF5	80	SEG63/LVDIN/RE4			

Notes:

- 1. **RPn** and **RPln** represent remappable pins for Peripheral Pin Select (PPS) functions.
- 2. This pin may be toggled during programming.
- 3. These pins have an increased current drive strength.
- 4. Open-drain configuration does not apply to this pin.

Pin Diagrams (PIC24FJXXXGL410 Devices) (Continued)

100-Pin TQFP

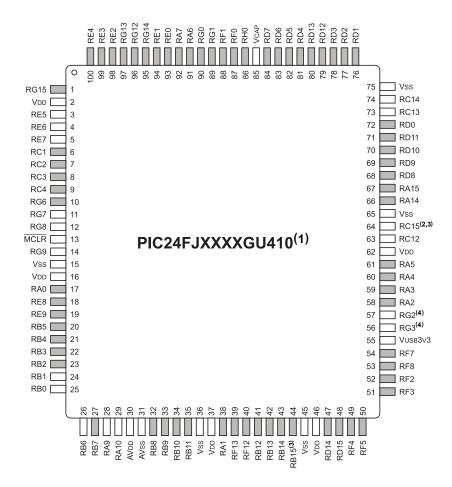
Notes:

- 1. **Shaded** pins are up to 5.5 V_{DC} tolerant.
- 2. This pin may be toggled during programming.
- 3. This pin has an increased current drive strength.

Table 8. PIC24FJXXXGL410 Devices

Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾
1	SEG51/OCM1C/RG15	51	SEG12/ RP16 /RF3
2	V_{DD}	52	SEG40/ RP30 /RF2
3	LCDBIAS2/RP34/RE5	53	SEG41/ RP15 /RF8
4	LCDBIAS1/RP35/SCL3/RE6	54	RF7
5	LCDBIAS0/RP36/SDA3/RE7	55	INT0/RF6
6	SEG32/RPI38/OCM1D/RC1	56	SEG47/SDA1/RG3
7	SEG52/RPI39/OCM2C/RC2	57	SEG28/SCL1/RG2
8	SEG33/RPI40/OCM2D/RC3	58	SEG56/SCL2/RA2
9	SEG53/AN16/RPI41/OCM3C/RC4	59	SEG57/SDA2/RA3
10	SEG0/AN17/C1IND/RP21/OCM1A/RG6	60	TDI/RA4

OCM1E	Function ⁽¹⁾ AN18/C1INC/AC2INC/AC3INC/RP26/ B/RG7	Pin 61	Function ⁽¹⁾
OCM1E		61	
20/11 2		01	TDO/RA5
13 MCLR	AN19/C2IND/ RP19 /OCM2A/RG8	62	V_{DD}
		63	OSC1/CLKI/RC12
14 SEG1//	AN20/C2INC/RP27/DACOUT/OCM2B/RG9	64	OSC2/CLKO/RC15 ^(2,3)
15 V _{SS}		65	V _{SS}
16 V _{DD}		66	SEG42/ RPI50 /RA14
17 TMS/SI	EG49/OCM3D/RA0	67	SEG43/ RPI49 /RA15
18 SEG34	/ RPI47 /RE8	68	SEG13/RP2/U6RTS/U6BCLK/RD8
19 SEG35	/AN21/ RPI48 /RE9	69	SEG14/ RP4 /RD9
20 PGEC3	S/SEG2/AN5/C1INA/ RP18 /ASCL1/OCM3A/RB5	70	SEG15/C3IND/RP3/RD10
21 PGED3	S/SEG3/AN4/C1INB/ RP28 /ASDA1/OCM3B/RB4	71	SEG16/C3INC/ RP12 /RD11
22 SEG4//	AN3/C2INA/RB3	72	SEG17/ RP11 / U6CTS /RD0
23 SEG5//	AN2/C2INB/ RP13 /RB2	73	SOSCI/RC13
24 PGEC1	/SEG6/CV _{REF} -/AN1/RP1/RB1	74	SOSCO/SCLKI/RPI37/RC14
25 PGED1	/SEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/ RP0 /RB0	75	V _{SS}
26 PGEC2	2/LCDBIAS3/AN6/ RP6 /RB6	76	SEG20/RP24/U5TX/RD1
27 PGED2	2/AN7/ RP7 /T1CK/U6TX/RB7	77	SEG21/ RP23 /RD2
28 SEG36	/RA9	78	SEG22/RP22/SCK3/RD3
29 SEG37	/RA10	79	SEG44/RPI42/OCM3E/RD12
30 AV _{DD}		80	SEG45/OCM3F/RD13
31 AV _{SS}		81	SEG23/ RP25 /SDI3/RD4
32 COM7/	SEG31/AN8/ RP8 /RB8	82	SEG24/RP20/SDO3/RD5
33 COM6/	SEG30/AN9/ RP9 /RB9	83	SEG25/C3INB/ RP32 /U5RX/ SS3 /FSYNC3/RD6
34 COM5/	SEG29/CV _{REF} /AN10/ RPI44 /RB10	84	SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7
35 AN11/F	RB11	85	V _{CAP}
36 V _{SS}		86	RH0
37 V _{USB3V}	3	87	SEG27/U5CTS/RF0
38 TCK/R/	A1	88	COM4/SEG48/RPI45/RF1
39 SEG54	/ RP31 /RF13	89	SEG46/RG1
40 SEG55	/ RPI46 /RF12	90	SEG50/RG0
41 SEG18	/AN12/U6RX/RB12	91	SEG58/AN23/OCM1E/RA6
42 SEG19	/AN13/RB13	92	SEG59/AN22/OCM1F/RA7
43 SEG8/	AN14/ RP14 /RB14	93	COM3/RE0
44 SEG9/	AN15/ RP29 /RB15 ⁽³⁾	94	COM2/RE1


	continued				
Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾		
45	V_{SS}	95	SEG60/RG14		
46	V_{DD}	96	SEG61/OCM2E/RG12		
47	SEG38/ RPI43 /RD14	97	SEG62/OCM2F/RG13		
48	SEG39/ RP5 /RD15	98	COM1/RE2		
49	SEG10/ RP10 /RF4	99	COM0/RE3		
50	SEG11/ RP17 /RF5	100	SEG63/LVDIN/RE4		

Notes:

- 1. **RPn** and **RPln** represent remappable pins for Peripheral Pin Select (PPS) functions.
- 2. This pin may be toggled during programming.
- 3. These pins have an increased current drive strength.

Pin Diagrams (PIC24FJXXXGU410 Devices) (Continued)

100-Pin TQFP

Notes:

- 1. **Shaded** pins are up to 5.5 V_{DC} tolerant.
- 2. This pin may be toggled during programming.
- 3. This pin has an increased current drive strength.
- 4. Open-drain configuration does not apply to this pin.

Table 9. PIC24FJXXXGU410 Devices

Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾
1	SEG51/OCM1C/RG15	51	SEG12/ RP16 /USBID/RF3
2	V_{DD}	52	SEG40/ RP30 /RF2
3	LCDBIAS2/RP34/RE5	53	SEG41/ RP15 /RF8
4	LCDBIAS1/RP35/SCL3/RE6	54	V _{BUS} /RF7
5	LCDBIAS0/RP36/SDA3/RE7	55	V_{USB3V3}
6	SEG32/RPI38/OCM1D/RC1	56	D-/RG3 ⁽⁴⁾
7	SEG52/RPI39/OCM2C/RC2	57	D+/RG2 ⁽⁴⁾
8	SEG33/RPI40/OCM2D/RC3	58	SEG56/SCL2/RA2
9	SEG53/AN16/RPI41/OCM3C/RC4	59	SEG57/SDA2/RA3

Pin Function(1) Pin Function(1) 10 SEGO/AN17/CI IND/RP21/OCM14/RG6 60 TDURA4 11 VLGAPI/AN18/CI INC/AC2INC/AC3INC/RP26/ OCM18/RG7 61 TDO/RA5 12 VLGAPZ/AN19/CZ IND/RP19/OCM2A/RG8 62 VbD 13 MCLR 63 OSC1/CLKI/RC12 14 SEG1/AN20/CZINC/RP27/DACOUT/OCM2B/RG9 64 OSC2/CLKO/RC15(2-3) 15 Vss 65 Vss 16 VbD 66 SEG4/RP140/SCDA1/RA14 17 TMS/SEG49/OCM3D/RA0 67 SEG43/RP149/SDA1/RA14 18 SEG35/AN21/RP148/RE9 69 SEG14/RP4/RD9 20 PGEC3/SEG2/AN4/CIINA/RP18/ASCL1/OCM3A/RB5 70 SEG15/C3IND/RP3/RD10 21 PGEC3/SEG3/AN4/CIINB/RP28/ASDA1/USBOEN/ OCM38/RB4 71 SEG16/C3INC/RP14/RD1 22 SEG4/AN3/C2INB/RP3/RB2 73 SOSCI/RC13 23 SEG5/AN2/C2INB/RP13/RB2 73 SOSCI/RC13 24 PGEC1/SEG6/CV _{REF} +/AN1/RP14/RB1 74 SOSCO/SCLK/RP13/TRC14 25 P		continued				
1	Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾		
OCM1B/RG7	10	SEG0/AN17/C1IND/RP21/OCM1A/RG6	60	TDI/RA4		
13 MCLR 63 OSC1/CLKI/RC12 14 SEG1/AN20/C2INC/RP27/DACOUT/OCM2B/RG9 64 OSC2/CLKO/RC15 ^(2,3) 15 V _{SS} 65 V _{SS} 16 V _{DD} 66 SEG42/RP150/SCL1/RA14 17 TMS/SEG49/OCM3D/RA0 67 SEG43/RP149/SDA1/RA15 18 SEG35/AN21/RP148/RE9 68 SEG13/RP2/J0RTS/U6BCLK/RD8 19 SEG35/AN21/RP148/RE9 69 SEG13/RP2/J0RTS/U6BCLK/RD8 21 PGED3/SEG2/ANS/C1INA/RP18/ASCL1/OCM3A/RB5 70 SEG15/C3IND/RP3/RD10 21 PGED3/SEG2/ANA/C2INA/RP18/ASCL1/OCM3A/RB5 70 SEG16/C3INC/RP12/RD11 22 SEG4/AN3/C2INA/RP3/RD1 71 SEG16/C3INC/RP12/RD11 23 SEG5/ANA/C2INA/RB3 72 SEG17/RP11/UGCTS/INTO/RD0 24 PGEC1/SEG8/CVREE*/AN1/RP1/IRB1 74 SOSCO/SCLKI/RP137/RC14 25 PGEC1/SEG8/CVREE*/AN1/RP1/RB1 75 Vss 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG22/RP22/SCK3/RD3 27 SEG33/RA9 SEG23/RP23/RD2 SEG34/RP142/COCM3E/RD12	11		61	TDO/RA5		
14 SEG1/AN20/C2INC/RP27/DACOUT/OCM2B/RG9 64 OSC2/CLKO/RC15 ^(2,3) 15 V _{SS} 65 V _{SS} 16 V _{DD} 66 SEG42/RPI50/SCL1/RA14 17 TMS/SEG49/OCM3D/RA0 67 SEG43/RPI49/SDA1/RA15 18 SEG34/RP147/RE8 68 SEG13/RP2/U6RTS/U6BCLK/RD8 19 SEG35/AN21/RPI48/RE9 69 SEG14/RP4/RD9 20 PGED3/SEG3/AN4/C1INB/RP28/ASDA1/USBOEN/OCM3B/RB4 71 SEG16/C3IND/RP3/RD10 21 PGED3/SEG3/AN4/C1INB/RP28/ASDA1/USBOEN/OCM3B/RB4 72 SEG16/C3INC/RP12/RD11 22 SEG4/AN3/C2INA/RB3 72 SEG16/C3INC/RP12/RD10 23 SEG5/AN2/C2INB/RP13/RB2 73 SOSCO/SCLK/RP13/RC14 24 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 74 SOSCO/SCLK/RP13/RC14 25 PGED1/SEG7/NaEF+/CV _{REF} +/DV _{REF} +/AN0/RP0/RB0 75 V _{SS} 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG29/RP24/U5TX/RD1 27 PGED2/ANT/RP7/T1CK/U6TX/RB7 77 SEG23/RP25/SCK3/RD3 28 SEG3/RA9 8 SEG24/RP	12	V _{LCAP2} /AN19/C2IND/ RP19 /OCM2A/RG8	62	V_{DD}		
15 Vss 65 Vss 16 VpD 66 SEG42/RPI50/SCL1/RA14 17 TMS/SEG49/OCM3D/RA0 67 SEG43/RPI49/SDA1/RA15 18 SEG34/RPI47/RE8 68 SEG13/RP2/U6RTS/U6BCLK/RD8 19 SEG35/AN2/1/RPI48/RE9 69 SEG14/RP4/RD9 20 PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/OCM3A/RB5 70 SEG15/C3IND/RP3/RD10 21 PGED3/SEG3/AN4/C1INB/RP28/ASDA1/USBOEN/ OCM3B/RB4 71 SEG16/C3INC/RP12/RD11 22 SEG4/AN3/C2INA/RB3 72 SEG16/C3INC/RP12/RD11 23 SEG5/AN2/C2INA/RB3 73 SOSC/IRC13 24 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 74 SOSCO/SCLKI/RP137/RC14 25 PGED1/SEG7/VREF+/CV _{REF} +/DV _{REF} +/AN0/RP0/RB0 75 Vss 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/ANT/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/SCK3/RD3 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 31 AV _{DD} 80 SEG44/RP12/CCM3E/RD12 32 <td>13</td> <td>MCLR</td> <td>63</td> <td>OSC1/CLKI/RC12</td>	13	MCLR	63	OSC1/CLKI/RC12		
16 V _{DD} 66 SEG42/RPI50/SCL1/RA14 17 TMS/SEG49/OCM3D/RA0 67 SEG43/RPI49/SDA1/RA15 18 SEG34/RPI47/RE8 68 SEG13/RP2/UGRTS/UGBCLK/RD8 19 SEG35/AN21/RPI48/RE9 69 SEG14/RP4/RD9 20 PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/OCM3A/RB5 70 SEG15/C3IND/RP3/RD10 21 PGED3/SEG3/AN4/C1INB/RP28/ASDA1/USBOEN/OCM3B/RB4 71 SEG16/C3INC/RP12/RD11 22 SEG4/AN3/C2INA/RB3 72 SEG17/RP11/U6CTS/INTO/RD0 23 SEG5/AN2/C2INB/RP13/RB2 73 SOSCO/SCLKI/RP137/RC14 25 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 74 SOSCO/SCLKI/RP137/RC14 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD13 31 AVss 81 SEG23/RP25/SD13/RD4 32 COM7/SEG31/AN3/RP8/RB8 82 SEG24/RP20/SD03/RD5 <td>14</td> <td>SEG1/AN20/C2INC/RP27/DACOUT/OCM2B/RG9</td> <td>64</td> <td>OSC2/CLKO/RC15^(2,3)</td>	14	SEG1/AN20/C2INC/RP27/DACOUT/OCM2B/RG9	64	OSC2/CLKO/RC15 ^(2,3)		
17 TMS/SEG49/OCM3D/RA0 67 SEG43/RPI49/SDA1/RA15 18 SEG34/RPI47/RE8 68 SEG13/RP2/UGRTS/UGBCLK/RD8 19 SEG35/AN21/RPI48/RE9 69 SEG14/RP4/RD9 20 PGEC3/SEG2/ANS/C1INA/RP18/ASCL1/OCM3A/RB5 70 SEG15/C3INC/RP12/RD11 21 PGED3/SEG3/ANA/C1INB/RP28/ASDA1/USBOEN/OCM3B/RB4 71 SEG16/C3INC/RP12/RD11 22 SEG4/AN3/C2INA/RB3 72 SEG17/RP11/UGCTS/INTO/RD0 23 SEG5/AN2/C2INB/RP13/RB2 73 SOSCO/RC13 24 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 74 SOSCO/SCLKI/RP137/RC14 25 PGED1/SEG7/N _{REF} +/CV _{REF} +/DV _{REF} +/AN0/RP0/RB0 75 Vs 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP14/COCM3E/RD13 31 AV _{SS} 81 SEG29/COM3F/RD13 32 COM7/SEG31/AN8/RP8/RB8 82 SEG2//SINB/RP32/U5RX/	15	V_{SS}	65	V _{SS}		
18 SEG34/RPI47/RE8 68 SEG13/RP2/ÜGRTS/ÜGBCLK/RD8 19 SEG35/AN21/RPI48/RE9 69 SEG14/RP4/RD9 20 PGEC3/SEG2/ANS/C1INA/RP18/ASCL1/OCM3A/RB5 70 SEG15/C3IND/RP3/RD10 21 PGED3/SEG3/AN4/C1INB/RP28/ASDA1/ÜSBÖEN/OCM3B/RB4 71 SEG16/C3INC/RP12/RD11 22 SEG4/AN3/C2INA/RB3 72 SEG17/RP11/ÜGCTS/INTO/RD0 23 SEG5/AN2/C2INB/RP13/RB2 73 SOSCI/RC13 24 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 74 SOSCO/SCLKI/RP137/RC14 25 PGED1/SEG7/V _{REF} +/CV _{REF} +/AN0/RP0/RB0 75 Vss 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD12 30 AV _{DD} 80 SEG29/RD25/SD13/RD4 31 AV _{SS} 81 SEG29/RD25/SD13/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG26/C3INA/RP33/U5RTS/USBCLK/RD7	16	V_{DD}	66	SEG42/RPI50/SCL1/RA14		
19 SEG35/AN21/RPI48/RE9 69 SEG14/RP4/RD9 20 PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/OCM3A/R55 70 SEG15/C3IND/RP3/RD10 21 PGED3/SEG3/AN4/C1INB/RP28/ASDA1/USBOEN/OCM3B/RB4 71 SEG16/C3INC/RP12/RD11 22 SEG4/AN3/C2INA/RB3 72 SEG17/RP11/U6CTS/INTO/RD0 23 SEG5/AN2/C2INB/RP13/RB2 73 SOSCO/SCLKI/RP137/RC14 24 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 74 SOSCO/SCLKI/RP137/RC14 25 PGED1/SEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/RP0/RB0 75 Vs 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD12 30 AV _{DD} 80 SEG23/RP25/SD13/RD4 31 AV _{SS} 81 SEG23/RP25/SD13/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG26/C3INA/RP33/U5RX/	17	TMS/SEG49/OCM3D/RA0	67	SEG43/ RPI49 /SDA1/RA15		
20 PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/OCM3A/RB5 70 SEG15/C3IND/RP3/RD10 21 PGED3/SEG3/AN4/C1INB/RP28/ASDA1/USBOEN/ OCM3B/RB4 71 SEG16/C3INC/RP12/RD11 22 SEG4/AN3/C2INA/RB3 72 SEG17/RP11/U6CTS/INTO/RD0 23 SEG5/AN2/C2INB/RP13/RB2 73 SOSCI/RC13 24 PGEC1/SEG6/CV_REF-/AN1/RP1/RB1 74 SOSCO/SCLKI/RP137/RC14 25 PGED1/SEG7/V_REF+/CV_REF+/ANO/RP0/RB0 75 Vss 26 PGED2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD12 30 AV _{DD} 80 SEG45/OCM3F/RD13 31 AV _{SS} 81 SEG23/RP25/SDI3/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP33/USRX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV_REF/AN10/RP144/RB10 84 SEG26/C3INA	18	SEG34/ RPI47 /RE8	68	SEG13/RP2/U6RTS/U6BCLK/RD8		
PGED3/SEG3/AN4/C1INB/RP28/ASDA1/USBOEN/ OCM3B/RB4 22 SEG4/AN3/C2INA/RB3 23 SEG5/AN2/C2INB/RP13/RB2 24 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 25 PGED1/SEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/RP0/RB0 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 28 SEG36/RA9 29 SEG37/RA10 20 AV _{DD} 21 AV _{SS} 22 SEG3/RP24/SEG31/AN8/RP8/RB8 23 SEG33/RP25/SDI3/RD4 24 PGEC3/SEG31/AN8/RP8/RB8 25 SEG32/RP25/SDI3/RD4 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 28 SEG36/RA9 29 SEG37/RA10 20 SEG44/RP142/OCM3E/RD12 20 AV _{DD} 21 AV _{SS} 22 SEG37/RA10 23 SEG4/RP20/SDO3/RD5 24 COM7/SEG31/AN8/RP8/RB8 25 SEG24/RP20/SDO3/RD5 26 COM6/SEG30/AN9/RP9/RB9 27 SEG26/C3INA/RP32/U5RX/SS3/FSYNC3/RD6 28 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 29 AN11/RB11 20 AN11/RB11 21 AV _{SS} 22 SEG54/RP31/RF13 23 SEG54/RP31/RF13 24 SEG55/RP146/RF12 25 SEG59/AN12/OCM1E/RA6 26 SEG59/AN12/OCM1E/RA6 27 SEG59/AN12/OCM1E/RA6 28 SEG19/AN13/RB13 29 SEG59/AN22/OCM1E/RA6	19	SEG35/AN21/ RPI48 /RE9	69	SEG14/ RP4 /RD9		
OCM3B/RB4 72 SEG17/RP11/U6CTS/INTO/RD0 22 SEG4/AN3/C2INA/RB3 72 SEG17/RP11/U6CTS/INTO/RD0 23 SEG5/AN2/C2INB/RP13/RB2 73 SOSCO/SCLKI/RP137/RC14 24 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 74 SOSCO/SCLKI/RP137/RC14 25 PGED2/ISEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/RP0/RB0 75 V _{SS} 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD12 30 AV _{DD} 80 SEG45/OCM3F/RD13 31 AV _{SS} 81 SEG23/RP25/SDI3/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RP144/RB10 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36	20	PGEC3/SEG2/AN5/C1INA/RP18/ASCL1/OCM3A/RB5	70	SEG15/C3IND/RP3/RD10		
23 SEG5/AN2/C2INB/RP13/RB2 73 SOSCI/RC13 24 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 74 SOSCO/SCLKI/RP137/RC14 25 PGED1/SEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/RP0/RB0 75 V _{SS} 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD12 30 AV _{DD} 80 SEG45/OCM3F/RD13 31 AV _{SS} 81 SEG23/RP25/SDI3/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RP144/RB10 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88	21		71	SEG16/C3INC/ RP12 /RD11		
24 PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1 74 SOSCO/SCLKI/RPI37/RC14 25 PGED1/SEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/RP0/RB0 75 V _{SS} 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD12 30 AV _{DD} 80 SEG45/OCM3F/RD13 31 AV _{SS} 81 SEG23/RP25/SDI3/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RP144/RB10 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RP145/RF1 39 SEG56/RP146/RF12 90	22	SEG4/AN3/C2INA/RB3	72	SEG17/RP11/U6CTS/INT0/RD0		
25 PGED1/SEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/RP0/RB0 75 Vs 26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD12 30 AV _{DD} 80 SEG45/OCM3F/RD13 31 AV _{SS} 81 SEG23/RP25/SDI3/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RP144/RB10 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RP145/RF1 39 SEG56/RP146/RF12 90 SEG59/RO 40 SEG55/RP146/RF12 91 SEG58/AN23/OCM1E/RA6<	23	SEG5/AN2/C2INB/ RP13 /RB2	73	SOSCI/RC13		
26 PGEC2/LCDBIAS3/AN6/RP6/RB6 76 SEG20/RP24/U5TX/RD1 27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD12 30 AV _{DD} 80 SEG45/OCM3F/RD13 31 AV _{SS} 81 SEG23/RP25/SDI3/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RP144/RB10 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RP145/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RP146/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG59/AN22/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	24	PGEC1/SEG6/CV _{REF} -/AN1/RP1/RB1	74	SOSCO/SCLKI/RPI37/RC14		
27 PGED2/AN7/RP7/T1CK/U6TX/RB7 77 SEG21/RP23/RD2 28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RP142/OCM3E/RD12 30 AV _{DD} 80 SEG45/OCM3F/RD13 31 AV _{SS} 81 SEG23/RP25/SDI3/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RP144/RB10 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RP145/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RP146/RF12 90 SEG59/RR0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	25	PGED1/SEG7/V _{REF} +/CV _{REF} +/DV _{REF} +/AN0/ RP0 /RB0	75	V _{SS}		
28 SEG36/RA9 78 SEG22/RP22/SCK3/RD3 29 SEG37/RA10 79 SEG44/RPI42/OCM3E/RD12 30 AV _{DD} 80 SEG45/OCM3F/RD13 31 AV _{SS} 81 SEG23/RP25/SDI3/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RPI44/RB10 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RPI45/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RPI46/RF12 90 SEG55/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	26	PGEC2/LCDBIAS3/AN6/ RP6 /RB6	76	SEG20/ RP24 /U5TX/RD1		
29 SEG37/RA10 79 SEG44/RPI42/OCM3E/RD12 30 AV _{DD} 80 SEG45/OCM3F/RD13 31 AV _{SS} 81 SEG23/RP25/SDI3/RD4 32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RPI44/RB10 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RPI45/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RPI46/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	27	PGED2/AN7/ RP7 /T1CK/U6TX/RB7	77	SEG21/ RP23 /RD2		
30 AV _{DD} 31 AV _{SS} 31 AV _{SS} 32 COM7/SEG31/AN8/RP8/RB8 33 SEG24/RP20/SDO3/RD5 34 COM6/SEG30/AN9/RP9/RB9 35 AN11/RB11 36 V _{SS} 36 V _{SS} 37 V _{DD} 38 TCK/RA1 39 SEG54/RP31/RF13 40 SEG55/RP146/RF12 41 SEG18/AN12/U6RX/RB12 42 SEG19/AN13/RB13 48 SEG25/CM3F/RD13/RD6 48 SEG26/C3INA/RP33/U5RX/SS3/FSYNC3/RD6 49 SEG59/AN22/OCM1F/RA7	28	SEG36/RA9	78	SEG22/RP22/SCK3/RD3		
31 AV _{SS} 32 COM7/SEG31/AN8/RP8/RB8 33 COM6/SEG30/AN9/RP9/RB9 34 COM5/SEG29/CV _{REF} /AN10/RP144/RB10 35 AN11/RB11 36 V _{SS} 37 V _{DD} 38 TCK/RA1 39 SEG55/RP146/RF12 40 SEG55/RP146/RF12 40 SEG18/AN12/U6RX/RB12 41 SEG18/AN13/RB13 42 SEG23/RP25/SDI3/RD4 32 SEG24/RP20/SDO3/RD5 33 SEG24/RP20/SDO3/RD5 34 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 35 AR11/RB11 36 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 37 V _{DD} 38 TCK/RA1 39 SEG27/U5CTS/RF0 39 SEG4/RP31/RF13 39 SEG46/RG1 40 SEG55/RP146/RF12 40 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 48 SEG59/AN22/OCM1F/RA7	29	SEG37/RA10	79	SEG44/RPI42/OCM3E/RD12		
32 COM7/SEG31/AN8/RP8/RB8 82 SEG24/RP20/SDO3/RD5 33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RPI44/RB10 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RPI45/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RPI46/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	30	AV_{DD}	80	SEG45/OCM3F/RD13		
33 COM6/SEG30/AN9/RP9/RB9 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 34 COM5/SEG29/CV _{REF} /AN10/RPI44/RB10 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RPI45/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RPI46/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 83 SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6 84 SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7 85 V _{CAP} 86 RH0 87 SEG27/U5CTS/RF0 88 COM4/SEG48/RPI45/RF1 99 SEG50/RG0 90 SEG50/RG0 91 SEG58/AN23/OCM1E/RA6	31	AV _{SS}	81	SEG23/ RP25 /SDI3/RD4		
34 COM5/SEG29/CV _{REF} /AN10/ RPI44 /RB10 84 SEG26/C3INA/ RP33 /Ū5RTS/U5BCLK/RD7 35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/Ū5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/ RPI45 /RF1 39 SEG54/ RP31 /RF13 89 SEG46/RG1 40 SEG55/ RPI46 /RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	32	COM7/SEG31/AN8/RP8/RB8	82	SEG24/ RP20 /SDO3/RD5		
35 AN11/RB11 85 V _{CAP} 36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/Ū5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RPI45/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RPI46/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	33	COM6/SEG30/AN9/RP9/RB9	83	SEG25/C3INB/RP32/U5RX/SS3/FSYNC3/RD6		
36 V _{SS} 86 RH0 37 V _{DD} 87 SEG27/Ū5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RP145/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RP146/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	34	COM5/SEG29/CV _{REF} /AN10/ RPI44 /RB10	84	SEG26/C3INA/RP33/U5RTS/U5BCLK/RD7		
37 V _{DD} 87 SEG27/U5CTS/RF0 38 TCK/RA1 88 COM4/SEG48/RPI45/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RPI46/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	35	AN11/RB11	85	V _{CAP}		
38 TCK/RA1 88 COM4/SEG48/RPI45/RF1 39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RPI46/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	36	V_{SS}	86	RH0		
39 SEG54/RP31/RF13 89 SEG46/RG1 40 SEG55/RPI46/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	37	V_{DD}	87	SEG27/U5CTS/RF0		
40 SEG55/RPI46/RF12 90 SEG50/RG0 41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	38	TCK/RA1	88	COM4/SEG48/RPI45/RF1		
41 SEG18/AN12/U6RX/RB12 91 SEG58/AN23/OCM1E/RA6 42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	39	SEG54/ RP31 /RF13	89	SEG46/RG1		
42 SEG19/AN13/RB13 92 SEG59/AN22/OCM1F/RA7	40	SEG55/ RPI46 /RF12	90	SEG50/RG0		
	41	SEG18/AN12/U6RX/RB12	91	SEG58/AN23/OCM1E/RA6		
43 SEG8/AN14/ RP14 /RB14 93 COM3/RE0	42	SEG19/AN13/RB13	92	SEG59/AN22/OCM1F/RA7		
	43	SEG8/AN14/ RP14 /RB14	93	COM3/RE0		

	continued				
Pin	Function ⁽¹⁾	Pin	Function ⁽¹⁾		
44	SEG9/AN15/ RP29 /RB15 ⁽³⁾	94	COM2/RE1		
45	V_{SS}	95	SEG60/RG14		
46	V_{DD}	96	SEG61/OCM2E/RG12		
47	SEG38/ RPI43 /RD14	97	SEG62/OCM2F/RG13		
48	SEG39/ RP5 /RD15	98	COM1/RE2		
49	SEG10/ RP10 /RF4	99	COM0/RE3		
50	SEG11/ RP17 /RF5	100	0 SEG63/LVDIN/RE4		

Notes:

- 1. **RPn** and **RPln** represent remappable pins for Peripheral Pin Select (PPS) functions.
- 2. This pin may be toggled during programming.
- 3. These pins have an increased current drive strength.
- 4. Open-drain configuration does not apply to this pin.

Datasheet DS30010203C-page 22

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at: www.microchip.com/ You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended work arounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Website: www.microchip.com/
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com/ to receive the most current information on all of our products.

Table of Contents

High	n-Perf	ormance CPU	1
LCE) Disp	lay Controller	1
Ana	log Fe	eatures	1
eXtr	eme l	Low-Power Features	2
Fun	ctiona	ll Safety and Security Peripherals	2
Spe	cial M	licrocontroller Features	2
Peri	phera	l Features	3
PIC	24FJ5	512GU410 Product Families	3
		ams (PIC24FJXXXGL405 Devices)	
	_	ams (PIC24FJXXXGU405 Devices) (Continued)	
		ams (PIC24FJXXXGL406 Devices) (Continued)	
	_		
Pin	Diagra	ams (PIC24FJXXXGU406 Devices) (Continued)	11
Pin	Diagra	ams (PIC24FJXXXGL408 Devices) (Continued)	13
Pin	Diagra	ams (PIC24FJXXXGU408 Devices) (Continued)	15
Pin	Diagra	ams (PIC24FJXXXGL410 Devices) (Continued)	17
Pin	Diagra	ams (PIC24FJXXXGU410 Devices) (Continued)	20
1.	Devic	ce Overview	30
	1.1.	Core Features	
	1.2.	DMA Controller	31
	1.3.	LCD Controller	31
	1.4.	USB On-The-Go (OTG)	31
	1.5.	Other Special Features	
	1.6.	Available Features	32
2.	Guide	elines for Getting Started with 16-Bit MCUs	39
	2.1.	Basic Connection Requirements	39
	2.2.	Power Supply Pins	40
	2.3.	Master Clear (MCLR) Pin	
	2.4.	Voltage Regulator Pin (V _{CAP})	
	2.5.	ICSP Pins	
	2.6.	External Oscillator Pins	
	2.7.	Unused I/Os	
3.	CPU.		44
	3.1.	Programmer's Model	44
	3.2.	Arithmetic Logic Unit (ALU)	47

	3.3.	CPU Registers	48
4.	Progr	am Memory	77
	4.1.	Program Memory Organization	80
	4.2.	Hard Memory Vectors	81
	4.3.	Configuration Bits Overview	81
	4.4.	Code-Protect Configuration Bits	81
	4.5.	Table Instructions and Flash Programming	81
	4.6.	RTSP Operation	82
	4.7.	Error Correcting Code (ECC)	88
	4.8.	Flash OTP by ICSP [™] Write Inhibit	89
	4.9.	JTAG Operation	89
	4.10.	Enhanced In-Circuit Serial Programming	89
	4.11.	Program Memory Registers	90
5.	Data	Memory Space	102
	5.1.	Data Space Width	102
	5.2.	Data Memory Organization and Alignment	103
	5.3.	Near Data Space	103
	5.4.	Special Function Register (SFR) Space	103
	5.5.	Interfacing Program and Data Memory Spaces	103
6.	Direc	t Memory Access Controller (DMA)	109
	6.1.	Summary of DMA Operations	110
	6.2.	Typical Setup	114
	6.3.	Peripheral Module Disable	114
	6.4.	DMA Registers	115
7.	Rese	ts	163
	7.1.	Special Function Register Reset States	164
	7.2.	Device Reset Times	164
	7.3.	Brown-out Reset (BOR)	165
	7.4.	Low-Power BOR	166
	7.5.	Clock Source at Reset	166
	7.6.	Reset Register	167
8.	Interr	upt Controller	170
	8.1.	Interrupt Vector Table	170
	8.2.	Reset Sequence	170
	8.3.	Interrupt Controller Registers	177
9.	Oscill	ator Configuration	256
	9.1.	Initial Configuration on POR	257
	9.2.	Clock Switching Operation	257
	9.3.	Fail-Safe Clock Monitor (FSCM)	258
	9.4.	Internal Fast RC (FRC) Oscillator with Active Clock Tuning	259
	9.5.	Primary Oscillator (PRI or POSC)	259
	9.6.	Low-Power RC (LPRC) Oscillator	259
	9.7.	Secondary Oscillator (SOSC)	260

	9.8.	PLL Block and USB Operation	260
	9.9.	Reference Clock Output	261
	9.10.	Oscillator Registers	263
10.	Powe	r-Saving Features	275
	10.1.	Clock Frequency and Clock Switching	275
	10.2.	Instruction-Based Power-Saving Modes	275
	10.3.	Doze Mode	277
	10.4.	Selective Peripheral Module Control	277
	10.5.	Peripheral Module Disable Registers	279
11.	I/O Po	orts	288
	11.1.	Parallel I/O (PIO) Ports	288
		Configuring Analog Port Pins	
		Interrupt-on-Change (IOC)	
		Peripheral Pin Select (PPS)	
		I/O Port and Peripheral Pin Select Registers	
12.	Timer	1	426
		Timer1 Registers	
12		2/3 and Timer4/5	
13.		Timer2/3 and Timer4/5 Registers	
		•	
14.		re/Compare/PWM/Timer Modules (MCCP)	
		Time Base Generator	
		General Purpose Timer	
		Output Compare Mode	
		Input Capture Mode	
		Auxiliary Output	
	14.6.	MCCP Registers	462
15.	Serial	Peripheral Interface (SPI)	612
	15.1.	Master Mode Operation	614
	15.2.	Slave Mode Operation	615
	15.3.	Audio Mode Operation	615
	15.4.	Relationship Between Device and SPI Clock Speed	616
	15.5.	SPI Registers	617
16.	Inter-I	ntegrated Circuit (I ² C)	684
	16.1.	Communicating as a Master in a Single Master Environment	686
		Setting Baud Rate When Operating as a Bus Master	
		Slave Address Masking	
		I2C Registers	
17.	Unive	rsal Asynchronous Receiver Transmitter (UART)	725
		UART Baud Rate Generator (BRG)	
		Transmitting in 8-Bit Data Mode	
		Transmitting in 9-Bit Data Mode	
		Break and Sync Transmit Sequence	

	17.5. Receiving in 8-Bit or 9-Bit Data Mode	727
	17.6. Operation of UxCTS and UxRTS Control Pins	727
	17.7. Infrared Support	728
	17.8. UART Registers	729
18.	Liquid Crystal Display (LCD) Controller	779
	18.1. LCD Registers	781
40	D 17: 01 1 10 1 1 (DT00) ''I T	007
19.	Real-Time Clock and Calendar (RTCC) with Timestamp	
	19.1. RTCC Source Clock	
	19.3. Calibration	
	19.4. Alarm	
	19.5. Power Control	
	19.6. Event Timestamping	1002
	19.7. RTCC Registers	1003
20.	. 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	1023
	20.1. User Interface	
	20.2. CRC Registers	
0.4	•	
21.	Configurable Logic Cell (CLC)	
	21.1. CLC Registers	1038
22.	. 12-Bit A/D Converter with Threshold Detect	1072
	22.1. Basic Operation	1074
	22.2. Extended DMA Operations	1074
	22.3. Sampling Time Requirements	
	22.4. 12-Bit A/D Converter Registers	1078
23.	10-Bit Digital-to-Analog Converter (DAC)	1118
	23.1. DAC Registers	1120
24	Triple Comparator Module	1104
24.	24.1. Triple Comparator Module Registers	
	24.1. Triple Comparator Module Registers	1120
25.	Comparator Voltage Reference	1134
	25.1. Comparator Voltage Reference Register	1135
26.	. High/Low-Voltage Detect (HLVD)	1137
	26.1. High/Low-Voltage Detect (HLVD) Register	
27.	Deadman Timer (DMT)	
	27.1. Deadman Timer (DMT) Registers	1142
28.	USB with On-The-Go (USB OTG) Support	1154
	28.1. Hardware Configuration	1156
	28.2. USB Buffer Descriptors and the BDT	1159
	28.3. USB On-The-Go Registers	
	28.4. USB Interrupts	1165

	28.5.	Device Mode Operation	1167
	28.6.	Host Mode Operation	1168
	28.7.	OTG Operation	1170
	28.8.	USB OTG Module Registers	1171
	28.9.	USB Interrupt Registers	1171
	28.10.	USB OTG Registers	1184
	28.11.	USB Endpoint Management Registers	1201
29.	Specia	al Features	1218
	29.1.	Configuration Bits	1218
	29.2.	Device Identification	1237
	29.3.	Unique Device Identifier (UDID)	1239
	29.4.	On-Chip Voltage Regulator	1240
	29.5.	Watchdog Timer (WDT)	1241
		Program Verification and Code Protection	
		JTAG Interface	
		In-Circuit Serial Programming [™] (ICSP) [™]	
		Customer OTP Memory	
		In-Circuit Debugger	
30.	Devel	opment Support	1244
31.	Instruc	ction Set Summary	1245
32.	Electri	ical Characteristics	1255
		Absolute Maximum Ratings ⁽¹⁾	
		DC Characteristics.	
		AC Characteristics and Timing Parameters	
		-	
33.		ge Information	
	33.1.	Package Marking Information	1289
	33.2.	Package Marking Information (Continued)	1290
	33.3.	Package Details	1290
34.	Revisi	on History	1307
	34.1.	Revision A (August 2019)	1307
	34.2.	Revision B (December 2019)	1307
	34.3.	Revision C (May 2020)	1307
The	Micro	chip Website	1308
Pro	duct Cl	nange Notification Service	1308
Cus	stomer	Support	1308
Pro	duct Id	entification System	1309
		Devices Code Protection Feature	
	-	ce	
Гrа	demark	S	1310

Quality Management System	1310
Vorldwide Sales and Service	1311

1. Device Overview

This document contains device-specific information for the following devices:

• PIC24FJ512GU410	• PIC24FJ512GL410
• PIC24FJ512GU408	• PIC24FJ512GL408
• PIC24FJ512GU406	• PIC24FJ512GL406
• PIC24FJ512GU405	• PIC24FJ512GL405
• PIC24FJ256GU410	• PIC24FJ256GL410
• PIC24FJ256GU408	• PIC24FJ256GL408
• PIC24FJ256GU406	• PIC24FJ256GL406
• PIC24FJ256GU405	• PIC24FJ256GL405
• PIC24FJ128GU410	• PIC24FJ128GL410
• PIC24FJ128GU408	• PIC24FJ128GL408
• PIC24FJ128GU406	• PIC24FJ128GL406
• PIC24FJ128GU405	• PIC24FJ128GL405
 PIC24FJ256GU406 PIC24FJ256GU405 PIC24FJ128GU410 PIC24FJ128GU408 PIC24FJ128GU406 	 PIC24FJ256GL406 PIC24FJ256GL405 PIC24FJ128GL410 PIC24FJ128GL408 PIC24FJ128GL406

The PIC24FJ512GU410 family introduces eXtreme Low-Power Microcontrollers with USB in smaller package sizes. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a Digital Signal Processor (DSP).

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

1.1 Core Features

1.1.1 16-Bit Architecture

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC® Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between program and data memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- · A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- · Operational performance up to 16 MIPS

1.1.2 Power-Saving Technology

The PIC24FJ512GU410 family of devices includes low-voltage Sleep, a low-power mode with essential circuits being powered from a separate low-voltage regulator. This low-power mode also supports the continuous operation of the low-power, on-chip Real-Time Clock/Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.

Device Overview

Aside from this feature, PIC24FJ512GU410 family devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- · Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- · Instruction-Based Power-Saving Modes, for quick invocation of the Idle and Sleep modes

1.1.3 Oscillator Options and Features

All of the devices in the PIC24FJ512GU410 family offer six different oscillator options, allowing users a range of choices in developing application hardware. These include:

- · Two Crystal modes
- · External Clock (EC) mode
- A Phase-Locked Loop (PLL) frequency multiplier, which allows processor speeds up to 32 MHz
- · An internal Fast RC Oscillator (FRC), a nominal 8 MHz output with multiple frequency divider options
- A separate internal Low-Power RC (LPRC) Oscillator, 32 kHz nominal for low-power, timing-insensitive applications

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 Easy Migration

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger device.

1.2 DMA Controller

PIC24FJ512GU410 family devices have a Direct Memory Access (DMA) Controller. This module acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Six independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

1.3 LCD Controller

The versatile on-chip LCD Controller includes many features that make the integration of displays in low-power applications easier. These include an integrated voltage regulator with charge pump and an integrated internal resistor ladder that allows contrast control in software, and display operation above the device V_{DD} .

Core-Independent Automatic Display Features:

- · Dual display memory
- · Blink mode of individual pixels or all pixels
- Blank of individual pixels or all pixels
- · Timing schedule can be changed without core intervention, based on user configurations

1.4 USB On-The-Go (OTG)

The PIC24FJ512GU410 family of devices has USB On-The-Go functionality. This module provides on-chip functionality as a target device compatible with the USB 2.0 standard, as well as limited stand-alone functionality as a USB embedded host. By implementing USB Host Negotiation Protocol (HNP), the module can also dynamically switch between device and host operation, allowing for a much wider range of versatile USB-enabled applications on a microcontroller platform. In addition to USB host functionality, the PIC24FJ512GU410 family devices provide a true

Device Overview

single chip USB solution, including an on-chip transceiver and voltage regulator, and a voltage boost generator for sourcing bus power during host operations.

1.5 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Configurable Logic Cell: The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins.
- Timing Modules: The PIC24FJ512GU410 family provides three independent, general purpose, 16-bit timers (two
 of which can be combined into two 32-bit timer). The devices also include five multiple output advanced
 Capture/Compare/PWM/Timer peripherals.
- Communications: The PIC24FJ512GU410 family incorporates a range of serial communication peripherals to
 handle a range of application requirements. There are two independent I²C modules that support both Master
 and Slave modes of operation. Devices also have, through the PPS feature, two independent UARTs with builtin IrDA[®] encoders/decoders and two SPI modules.
- Analog Features: All members of the PIC24FJ512GU410 family include a 12-bit A/D Converter (ADC) module
 and a triple comparator module. The A/D module incorporates a range of new features that allow the converter
 to assess and make decisions on incoming data, reducing CPU overhead for routine A/D conversions. The
 comparator module includes three analog comparators that are configurable for a wide range of operations.
- Real-Time Clock and Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- Deadman Timer (DMT): This module is provided to interrupt the processor in the event of a software malfunction.

1.6 Available Features

Devices in the PIC24FJ512GU410 family are available in 48-pin, 64-pin, 80-pin and 100-pin packages. The general block diagram for all devices is shown in Figure 1-1.

A list of the pin features available on the PIC24FJ512GU410 family devices, sorted by function, is shown in Table 1-1. Pin feature information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

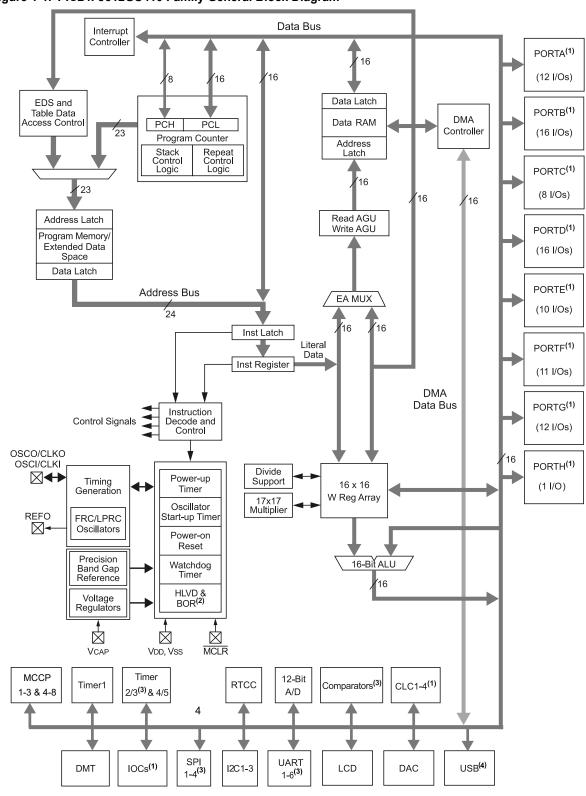


Figure 1-1. PIC24FJ512GU410 Family General Block Diagram

Notes:

- 1. Not all I/O pins or features are implemented on all device pinout configurations. See pinout diagrams and tables for specific implementations by pin count.
- 2. BOR functionality is provided when the on-board voltage regulator is enabled.
- 3. Some peripheral I/Os are only accessible through remappable pins.
- 4. USB is available on PIC24FJXXXGUXXX devices only.

Table 1-1. PIC24FJ512GU410 Family Pinout Description

Pin Name	Pin Type	Buffer Type	PPS	Description
AN0-AN23	I	Analog	No	A/D Analog Inputs
AV_{DD}	Р	_	No	Positive Supply for Analog Modules
AV _{SS}	Р	_	No	Ground Reference for Analog Modules
C1INA-C1IND C1OUT	0	Analog DIG	No Yes	Comparator 1 Input A through D Comparator 1 Output
C2INA-C2IND C2OUT	0	Analog DIG	No Yes	Comparator 2 Input A through D Comparator 2 Output
AC2INC	I	Analog	No	Alternate Comparator 2 Input C
C3INA-C3IND C3OUT	I 0	Analog DIG	No Yes	Comparator 3 Input A through D Comparator 3 Output
AC3INC	I	Analog	No	Alternate Comparator 3 Input C
CLKI	<u> </u>	— DIG	No No	Primary Oscillator Clock Input (EC) System Clock Output
COM0-COM7	0	Analog	No	LCD Driver Common Outputs
LCDBIAS0-LCDBIAS3	0	Analog	No	Bias Inputs for LCD Driver Charge Pump
V _{LCAP1}	0	Analog	No	LCD Drive Charge Pump Capacitor Input 1
V_{LCAP2}	0	Analog	No	LCD Drive Charge Pump Capacitor Input 2
SEG0-SEG63	0	Analog	No	LCD Driver Segment Outputs
CV _{REF}	0	Analog	No	Comparator Voltage Reference Output
CV _{REF} +	I	Analog	No	Comparator Voltage Reference (high) Input
CV _{REF} -	I	Analog	No	Comparator Voltage Reference (low) Input
INT0 INT1-INT4	l I	ST ST	No Yes	External Interrupt Input 0 External Interrupt Inputs 1 through 4
LVDIN	I	Analog	No	Low-Voltage Detect Input
MCLR	I	ST	No	Master Clear (device Reset) Input, this line is brought low to cause a Reset

continued				
Pin Name	Pin Type	Buffer Type	PPS	Description
ICM1-ICM8	1	ST	Yes	MCCP Capture Inputs 1 through 8
TCKIA-TCKIB	1	ST	Yes	MCCP Timer Clock Inputs
OCFA-OCFB	1	ST	Yes	MCCP Fault Inputs A through B
OCM1A-OCM1F	0	DIG	No	MCCP1 Outputs A through F
OCM2A-OCM2F	0	DIG	No	MCCP2 Outputs A through F
OCM3A-OCM3F	0	DIG	No	MCCP3 Outputs A through F
OCM4A-OCM4B	0	DIG	Yes	MCCP4 Outputs A through B
OCM5A-OCM5B	0	DIG	Yes	MCCP5 Outputs A through B
OCM6A-OCM6B	0	DIG	Yes	MCCP6 Outputs A through B
OCM7A-OCM7B	0	DIG	Yes	MCCP7 Outputs A through B
OCM8A-OCM7B	0	DIG	Yes	MCCP8 Outputs A through B
CLCINA-CLCIND CLC1OUT-CLC4OUT	0	ST DIG	Yes Yes	CLC Inputs A through D CLC Outputs 1 through 4
DACOUT	0	Analog	No	DAC1 Output
OSC1 OSC2	I 0	Analog Analog	No No	Primary Oscillator Crystal Connection Input Primary Oscillator Crystal Connection Output
SOSCI SOSCO	I 0	Analog Analog	No No	Secondary Oscillator Crystal Connection Input Secondary Oscillator Crystal Connection Output
CLKI CLKO	0	ST DIG	No	Primary Oscillator Input (EC) CPU Clock Output
PGEC1	I	ST	No	ICSP [™] Programming Clock 1
PGED1	I/O	DIG/ST	No	ICSP Programming Data 1
PGEC2	1	ST	No	ICSP Programming Clock 2
PGED2	I/O	DIG/ST	No	ICSP Programming Data 2
PGEC3	1	ST	No	ICSP Programming Clock 3
PGED3	I/O	DIG/ST	No	ICSP Programming Data 3
PWRLCLK	ı	ST	No	Real-Time Clock 50/60 Hz Clock Input
TMPRN	1	ST	Yes	Tamper Detect
PWRGT	0	DIG	Yes	RTCC Power Control
RTCC	0	DIG	Yes	RTCC Clock Output
REFO	0	DIG	Yes	Reference Clock Output
REFI	1	ST	Yes	Reference Clock Input
RA0-7, RA9-10, RA14-15	I/O	DIG/ST	No	PORTA Digital I/Os
RB0-15	I/O	DIG/ST	No	PORTB Digital I/Os
RC1-4, RC12-15	I/O	DIG/ST	No	PORTC Digital I/Os
RD0-15	I/O	DIG/ST	No	PORTD Digital I/Os
RE0-9	I/O	DIG/ST	No	PORTE Digital I/Os

continued				
Pin Name	Pin Type	Buffer Type	PPS	Description
RF0-5, RF7-8, RF12-13	I/O	DIG/ST	No	PORTF Digital I/Os
RG0-3, RG6-9, RG12-15 RH0	I/O I/O	DIG/ST DIG/ST	No No	PORTG Digital I/Os PORTH Digital I/O
RP0-RP36	I/O	DIG/ST	Yes	Remappable Peripherals (input or output)
RPI37-RPI50	ı	ST	Yes	Remappable Peripherals (input only)
SCK1	I/O	ST	Yes	Synchronous Serial Clock Input/Output for SPI1
SDI1	1	ST	Yes	SPI1 Data In
SDO1	0	DIG	Yes	SPI1 Data Out
SS1	I/O	ST	Yes	SPI1 Slave Synchronization or Frame Pulse I/O
SCK2	I/O	ST	Yes	Synchronous Serial Clock Input/Output for SPI2
SDI2	I	ST	Yes	SPI2 Data In
SDO2	0	DIG	Yes	SPI2 Data Out
SS2	I/O	ST	Yes	SPI2 Slave Synchronization or Frame Pulse I/O
SCK3	I/O	ST	No	Synchronous Serial Clock Input/Output for SPI3
SDI3	1	ST	No	SPI3 Data In
SDO3	0	DIG	No	SPI3 Data Out
SS3	I/O	ST	No	SPI3 Slave Synchronization or Frame Pulse I/O
SCK4	I/O	ST	Yes	Synchronous Serial Clock Input/Output for SPI4
SDI4	1	ST	Yes	SPI4 Data In
SDO4	0	DIG	Yes	SPI4 Data Out
SS4	I/O	ST	Yes	SPI4 Slave Synchronization or Frame Pulse I/O
SCL1	I/O	DIG/I2C/SMB	No	I2C1 Synchronous Serial Clock Input/Output
SDA1	I/O	DIG/I2C/SMB	No	I2C1 Data Input/Output
ASCL1	I/O	DIG/I2C/SMB	No	Alternate I2C1 Synchronous Serial Clock Input/Output
ASDA1	I/O	DIG/I2C/SMB	No	Alternate I2C1 Data Input/Output
SCL2	I/O	DIG/I2C/SMB	No	I2C2 Synchronous Serial Clock Input/Output
SDA2	I/O	DIG/I2C/SMB	No	I2C2 Data Input/Output
SCL3 SDA3	I/O I/O	DIG/I2C/SMB DIG/I2C/SMB	No No	I2C3 Synchronous Serial Clock Input/Output I2C3 Data Input/Output
U1CTS	ı	ST	Yes	UART1 Clear-to-Send
U1RTS	0	DIG	Yes	UART1 Request-to-Send
U1RX	I	ST	Yes	UART1 Receive
U1TX	0	DIG	Yes	UART1 Transmit

continued				
Pin Name	Pin Type	Buffer Type	PPS	Description
U2CTS	I	ST	Yes	UART2 Clear-to-Send
U2RTS	0	DIG	Yes	UART2 Request-to-Send
U2RX	I	ST	Yes	UART2 Receive
U2TX	0	DIG	Yes	UART2 Transmit
U3CTS	I	ST	Yes	UART3 Clear-to-Send
U3RTS	0	DIG	Yes	UART3 Request-to-Send
U3RX	I	ST	Yes	UART3 Receive
U3TX	0	DIG	Yes	UART3 Transmit
U4CTS	I	ST	Yes	UART4 Clear-to-Send
U4RTS	0	DIG	Yes	UART4 Request-to-Send
U4RX	I	ST	Yes	UART4 Receive
U4TX	0	DIG	Yes	UART4 Transmit
U5CTS	I	ST	No	UART5 Clear-to-Send
U5RTS	0	DIG	No	UART5 Request-to-Send
U5RX	I	ST	No	UART5 Receive
U5TX	0	DIG	No	UART5 Transmit
U6CTS	I	ST	No	UART6 Clear-to-Send
U6RTS	0	DIG	No	UART6 Request-to-Send
U6RX	I	ST	No	UART6 Receive
U6TX	0	DIG	No	UART6 Transmit
SCLKI	I	ST	No	Secondary Oscillator Clock Input
T1CK	I	ST	No	Timer1 Clock
T2CK-T5CK	I	ST	Yes	Timer2 through Timer5 Clock
TxCK	I	ST	Yes	Generic Timerx External Clock
TCK	I	ST	No	JTAG Test Clock/Programming Clock Input
TDI	I	ST	No	JTAG Test Data/Programming Data Input
TDO	0	DIG	No	JTAG Test Data Output
TMS	I	ST	No	JTAG Test Mode Select Input
V _{CAP}	Р	_	No	External Filter Capacitor Connection (regulator enabled)
V_{DD}	Р	_	No	Positive Supply for Peripheral Digital Logic and I/O Pins
V _{REF} +	I	Analog	No	Comparator and A/D Reference Voltage (high) Input
V _{SS}	Р	_	No	Ground Reference for Peripheral Digital Logic and I/O Pins

Device Overview

continued				
Pin Name	Pin Type	Buffer Type	PPS	Description
D+	I/O	_		USB Signaling High
D-	I/O	_		USB Signaling Low
USBOEN	I	DIG		USB Output Enable (active-low)
V _{BUS}	I	Analog		V _{USB} Supply Detect
V _{USB3V3}	Р	_		3.3V V _{USB}
USBID	ı	ST		USB OTG ID Input

Legend: DIG = Digital levels output, ST = Schmitt Trigger input buffer, I2C = I^2 C/SMBus input buffer, Analog = Analog level input/output

2. Guidelines for Getting Started with 16-Bit MCUs

2.1 Basic Connection Requirements

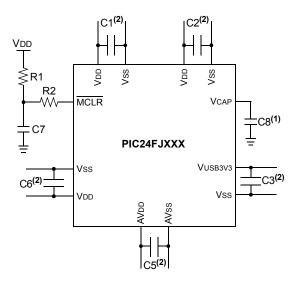
Getting started with the PIC24FJ512GU410 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All V_{DD}, V_{USB3V3} and V_{SS} pins (see 2.2 Power Supply Pins)
- All AV_{DD} and AV_{SS} pins, regardless of whether or not the analog device features are used (see 2.2 Power Supply Pins)
- MCLR pin (see 2.3 Master Clear (MCLR) Pin)
- V_{CAP} pin (see 2.4 Voltage Regulator Pin (VCAP))

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see 2.5 ICSP Pins)
- OSC1 and OSC2 pins when an external oscillator is used (see 2.6 External Oscillator Pins)


Additionally, the following pins may be required:

V_{REF}+ pin used when external voltage reference for analog modules is implemented

Note: The AV_{DD} and AV_{SS} pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

Figure 2-1. Recommended Minimum Connections

Key (all values are recommendations):

C1 through C7: 0.1 µF, 20V ceramic

C8: 10 µF, 6.3V or greater, tantalum or ceramic

R1: $10 \text{ k}\Omega$ R2: 100Ω to 470Ω

Guidelines for Getting Started with 16-Bit M...

Notes:

- 1. See 2.4 Voltage Regulator Pin (VCAP) for an explanation of voltage regulator pin connections.
- The example shown is for a PIC24F device with five V_{DD}/V_{SS}, V_{USB3V3}/V_{SS} and AV_{DD}/AV_{SS} pin pairs. Other
 devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.
- 3. These pins have an increased current drive strength.

2.2 Power Supply Pins

2.2.1 Decoupling Capacitors

The use of decoupling capacitors on every power supply pin, such as V_{DD}, V_{USB3V3} and AV_{DD}, is required.

Consider the following criteria when using decoupling capacitors:

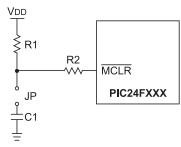
- Value and type of capacitor: 0.1 µF (100 nF), 25V-50V capacitor is recommended. The capacitor should be a low-ESR device with a self-resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the Printed Circuit Board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a
 second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second
 capacitor can be in the range of 0.01 μF to 0.001 μF. Place this second capacitor next to each primary
 decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as
 close to the power and ground pins as possible (e.g., 0.1 μF in parallel with 0.001 μF).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to
 the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first
 in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a
 minimum, thereby reducing PCB trace
 inductance.

2.2.2 Bulk Capacitors

On boards with power traces running longer than six inches in length, it is suggested to use a bulk capacitance of $10~\mu\text{F}$ or greater located near the MCU. The value of the capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. Typical values range from $10~\mu\text{F}$ to $47~\mu\text{F}$.

2.3 Master Clear (MCLR) Pin

The \overline{MCLR} pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to V_{DD} may be all that is required. The addition of other components to help increase the application's resistance to spurious Resets from voltage sags may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented depending on the application's requirements.


During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (V_{IH} and V_{IL}) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the \overline{MCLR} pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the \overline{MCLR} pin should be placed within 0.25 inch (6 mm) of the pin.

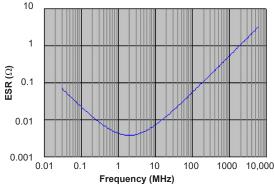
DS30010203C-page 40

Guidelines for Getting Started with 16-Bit M...

Figure 2-2. Example of MCLR Pin Connections

Notes:

- R1 ≤ 10 kΩ is recommended. A suggested starting value is 10 kΩ. Ensure that the MCLR pin V_{IH} and V_{IL} specifications are met.
- 2. R2 \leq 470 Ω will limit any current flowing into \overline{MCLR} from the external capacitor, C, in the event of a MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the \overline{MCLR} pin V_{IH} and V_{IL} specifications are met.


2.4 Voltage Regulator Pin (V_{CAP})

A low-ESR ($< 5\Omega$) capacitor is required on the V_{CAP} pin to stabilize the voltage regulator output voltage. The V_{CAP} pin must not be connected to V_{DD} and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate the ESR equivalence of candidate devices.

The placement of this capacitor should be close to V_{CAP} . It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to 32. Electrical Characteristics for additional information.

Figure 2-3. Frequency vs. ESR Performance for Suggested V_{CAP}

Note: Typical data measurement at +25°C, 0V DC bias.

Table 2-1. Suitable Capacitor Equivalent (0805 Case Size)

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage
TDK Corporation	C2012X5R1E106K085AC	10 μF	±10%	25V
TDK Corporation	C2012X5R1C106K085AC	10 μF	±10%	16V
KEMET	C0805C106M4PACTU	10 μF	±10%	16V
Murata Electronics®	GRM21BR61E106KA3L	10 μF	±10%	25V
Murata Electronics	GRM21BR61C106KE15	10 μF	±10%	16V

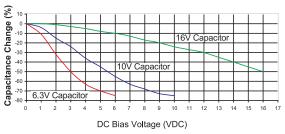
Datasheet DS30010203C-page 41

Guidelines for Getting Started with 16-Bit M...

2.4.1 Considerations for Ceramic Capacitors

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost-effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, $10 \,\mu\text{F}$ ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as $\pm 10\%$ to $\pm 20\%$ (X5R and X7R) or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: ±15% over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of +22%/-82%. Due to the extreme temperature tolerance, a 10 µF nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

Figure 2-4. DC Bias Voltage vs. Capacitance Characteristics

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at a minimum of 16V for the 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging.

For device emulation, ensure that the "Communication Channel Select" pins (i.e., PGECx/PGEDx) programmed into the device match the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tool connection requirements, refer to 30. Development Support.

Datasheet DS30010203C-page 42

Guidelines for Getting Started with 16-Bit M...

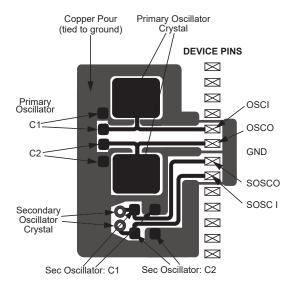
2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to 9. Oscillator Configuration for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.


In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate website (www.microchip.com):

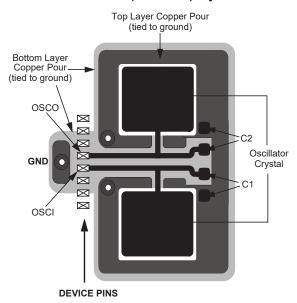

- AN943, "Practical PICmicro® Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"
- AN1798, "Crystal Selection for Low-Power Secondary Oscillator"

Figure 2-5. Suggested Placement of the Oscillator Circuit

Single-Sided and In-Line Layouts:

Fine-Pitch (Dual-Sided) Layouts:

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to V_{SS} on unused pins.

DS30010203C-page 43

3. CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to "CPU with Extended Data Space (EDS)" (www.microchip.com/DS39732) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The lower 32 Kbytes of the Data Space (DS) can be accessed linearly. The upper 32 Kbytes of the Data Space are referred to as Extended Data Space (EDS), to which the extended data RAM or program memory can be mapped.

The core supports Inherent (no operand), Relative, Literal and Memory Direct Addressing modes, along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (for example, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions.

A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory-mapped.

Figure 3-1. PIC24F CPU Core Block Diagram

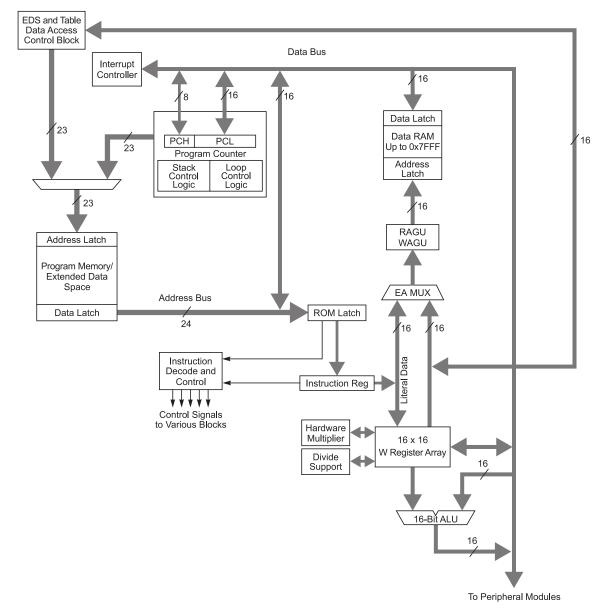
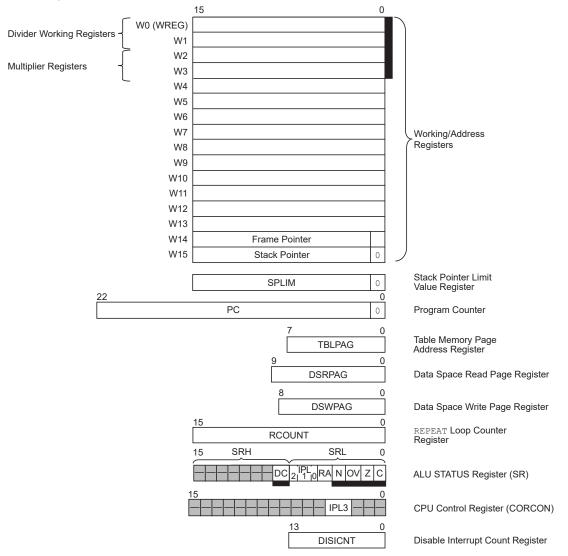



Table 3-1. CPU Core Registers

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register

continued								
Register(s) Name	Description							
RCOUNT	REPEAT Loop Counter Register							
CORCON	CPU Control Register							
DISICNT	Disable Interrupt Count Register							
DSRPAG	Data Space Read Page Register							
DSWPAG	Data Space Write Page Register							

Figure 3-2. Programmer's Model

Registers or bits are shadowed for PUSH.S and POP.S instructions.

3.2 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.2.1 Multiplier

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.2.2 Divider

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- · 32-bit signed/16-bit signed divide
- · 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- · 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.2.3 Multibit Shift Support

The PIC24F ALU supports both single bit and single-cycle, multibit arithmetic and logic shifts. Multibit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multibit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

Table 3-2. Instructions that Use the Single Bit and Multibit Shift Operation

Instruction	Description
ASR	Arithmetic Shift Right source register by one or more bits.
SL	Shift Left source register by one or more bits.
LSR	Logical Shift Right source register by one or more bits.

3.3 CPU Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
		7:0	WREG0[7:0]								
0x00	WREG0	15:8	WREG0[15:8]								
		7:0	WREG1[7:0]								
0x02	WREG1	15:8	WREG1[15:8]								
		7:0		WREG2[7:03]							
0x04	WREG2	15:8					62[15:8]				
		7:0					G3[7:0]				
0x06	WREG3	15:8					G3[15:8]				
		7:0					G4[7:0]				
0x08	WREG4	15:8					64[15:8]				
0x0A	WREG5	7:0					G5[7:0]				
		15:8					55[15:8]				
0x0C	WREG6	7:0					G6[7:0]				
		15:8					66[15:8]				
0x0E	WREG7	7:0					G7[7:0]				
OXOL	WILE	15:8					67[15:8]				
0x10	WREG8	7:0					G8[7:0]				
0.00	WKEGO	15:8				WREG	S8[15:8]				
0.40	MDEOO	7:0				WRE	G9[7:0]				
0x12	WREG9	15:8				WREG	9[15:8]				
		7:0					G10[7:0]				
0x14	WREG10	15:8					10[15:8]				
		7:0					G11[7:0]				
0x16	WREG11	15:8					11[15:8]				
		7:0					612[7:0]				
0x18	WREG12	15:8					12[15:8]				
		7:0					613[7:0]				
0x1A	WREG13										
		15:8					13[15:8]				
0x1C	WREG14	7:0					614[7:0]				
		15:8					14[15:8]				
0x1E	WREG15	7:0					G15[7:0]				
-		15:8					15[15:8]				
0x20	SPLIM	7:0					M[7:0]				
07120		15:8				SPLIN	M[15:8]				
0x22											
 0x2D	Reserved										
0v2E	DCI.	7:0					_[7:0]				
0x2E	PCL	15:8				PCL	[15:8]				
	DOLL	7:0				PCH	H[7:0]				
0x30	PCH	15:8									
		7:0				DSRP	AG[7:0]				
0x32	DSRPAG	15:8							DSRI	PAG[9:8]	
		7:0				DSWP	'AG[7:0]		20.1.	7.0[0.0]	
0x33	DSWPAG	15:8					, (0[7:0]			DSWPAG[8]	
0x35	Reserved	10.0								DOWN ACIO	
UXSS	Reserved	7.0				DCOLL	INIT[7.0]				
0x36	RCOUNT	7:0 15:8					NT[7:0]				
0.00		15:8	RCOUNT[15:8]								
0x38	D 1										
 0x41	Reserved										
0v42	SR	7:0		IPL[2:0]		RA	N	OV	Z	С	
0x42	NC NC	15:8								DC	
044	000001	7:0					IPL3	PSV			
0x44	CORCON	15:8									
		.									

continued											
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x46 0x51	Reserved										
0x52	DISICNT	7:0 15:8		DISICNT[7:0] DISICNT[13:8]							
0x52	TBLPAG	7:0 15:8		TBLPAG[7:0]							

CPU

3.3.1 Working Register 0

Name: WREG0 0x00

Bit	15	14	13	12	11	10	9	8
				WREG	0[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				WREC	G0[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - WREG0[15:0] Data bits

CPU

3.3.2 Working Register 1

Name: WREG1 Offset: 0x02

Bit	15	14	13	12	11	10	9	8				
		WREG1[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
				WREC	G1[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

Bits 15:0 - WREG1[15:0] Data bits

CPU

3.3.3 Working Register 2

Name: WREG2 Offset: 0x04

Bit	15	14	13	12	11	10	9	8				
		WREG2[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
				WREC	G2[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

Bits 15:0 - WREG2[15:0] Data bits

CPU

3.3.4 Working Register 3

Name: WREG3 Offset: 0x06

Bit	15	14	13	12	11	10	9	8				
		WREG3[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
				WREC	G3[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

Bits 15:0 - WREG3[15:0] Data bits

CPU

3.3.5 Working Register 4

Name: WREG4 Offset: 0x08

Bit	15	14	13	12	11	10	9	8		
	WREG4[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				WREC	G4[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - WREG4[15:0] Data bits

3.3.6 Working Register 5

Name: WREG5 Offset: 0x0A

Bit	15	14	13	12	11	10	9	8		
	WREG5[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				WREC	G5[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - WREG5[15:0] Data bits

CPU

3.3.7 Working Register 6

Name: WREG6 Offset: 0x0C

Bit	15	14	13	12	11	10	9	8			
		WREG6[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				WREC	G6[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - WREG6[15:0] Data bits

CPU

3.3.8 Working Register 7

Name: WREG7 Offset: 0x0E

Bit	15	14	13	12	11	10	9	8			
		WREG7[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				WREC	G7[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - WREG7[15:0] Data bits

CPU

3.3.9 Working Register 8

Name: WREG8 Ox10

Bit	15	14	13	12	11	10	9	8		
	WREG8[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				WREG	S8[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - WREG8[15:0] Data bits

CPU

3.3.10 Working Register 9

Name: WREG9 Ox12

Bit	15	14	13	12	11	10	9	8		
	WREG9[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				WREC	39[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - WREG9[15:0] Data bits

CPU

3.3.11 Working Register 10

Name: WREG10 Offset: 0x14

Bit	15	14	13	12	11	10	9	8			
		WREG10[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				WREG	10[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - WREG10[15:0] Data bits

CPU

3.3.12 Working Register 11

Name: WREG11 Offset: 0x16

Bit	15	14	13	12	11	10	9	8
				WREG ²	11[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				WREG	11[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - WREG11[15:0] Data bits

CPU

3.3.13 Working Register 12

Name: WREG12 Offset: 0x18

Bit	15	14	13	12	11	10	9	8			
		WREG12[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				WREG	12[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - WREG12[15:0] Data bits

CPU

3.3.14 Working Register 13

Name: WREG13 Offset: 0x1A

Bit	15	14	13	12	11	10	9	8		
	WREG13[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				WREG	13[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - WREG13[15:0] Data bits

3.3.15 Working Register 14

Name: WREG14 Offset: 0x1C

Bit	15	14	13	12	11	10	9	8			
		WREG14[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				WREG	14[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - WREG14[15:0] Data or Frame Pointer bits

CPU

3.3.16 Working Register 15

Name: WREG15 Offset: 0x1E

Bit	15	14	13	12	11	10	9	8	
				WREG	15[15:8]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	WREG15[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - WREG15[15:0] Data or Stack Pointer bits

CPU

3.3.17 Stack Pointer Limit Value Register

Name: SPLIM 0x20

Bit	15	14	13	12	11	10	9	8
				SPLIM	1[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				SPLI	M[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - SPLIM[15:0] Stack Limit Address bits

CPU

3.3.18 Program Counter Low Register

Name: PCL Offset: 0x2E

Bit	15	14	13	12	11	10	9	8
				PCL[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PCL	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PCL[15:0] Program Counter Low Value bits

R/W

R/W

R/W

0

3.3.19 Program Counter High Register

Name: PCH Offset: 0x30

R/W

0

Access

Reset

Bit	15	14	13	12	11	10	9	8
Access Reset								
Reset								
Bit	7	6	5	4	3	2	1	0
				PCH	[7:0]			

R/W

0

R/W

0

Bits 7:0 - PCH[7:0] Program Counter High Value bits

R/W

0

R/W

0

CPU

3.3.20 Data Space Read Page Register

Name: DSRPAG Offset: 0x32

Bit	15	14	13	12	11	10	9	8
							DSRPA	AG[9:8]
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				DSRP	AG[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 9:0 - DSRPAG[9:0] Data Space Read Page Value bits

CPU

3.3.21 Data Space Write Page Register

Name: DSWPAG Offset: 0x33

Bit	15	14	13	12	11	10	9	8
								DSWPAG[8]
Access								R/W
Reset								0
Bit	7	6	5	4	3	2	1	0
				DSWP	AG[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 8:0 - DSWPAG[8:0] Data Space Write Page Value bits

CPU

3.3.22 REPEAT Loop Counter Register

Name: RCOUNT Offset: 0x36

Bit	15	14	13	12	11	10	9	8
				RCOUN	NT[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RCOU	NT[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – RCOUNT[15:0] Current Loop Counter Value for REPEAT Instruction bits

3.3.23 ALU STATUS Register

Name: SR Offset: 0x42

Notes:

- 1. The IPLx Status bits are read-only when NSTDIS (INTCON1[15]) = 1.
- 2. The IPLx Status bits are concatenated with the IPL3 Status bit (CORCON[3]) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

Bit	15	14	13	12	11	10	9	8
								DC
Access						•	•	R/W
Reset								0
Bit	7	6	5	4	3	2	1	0
		IPL[2:0]		RA	N	OV	Z	С
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 8 - DC ALU Half Carry/Borrow bit

Value	Description
1	A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of
	the result occurred
0	No carry-out from the 4th or 8th low-order bit of the result has occurred

Bits 7:5 - IPL[2:0] CPU Interrupt Priority Level Status bits^(1,2)

Dit3 7.0	Dita 7:0 - II E[2:0] Of O Interrupt 1 Hority Edver of attack bits					
Value	Description					
111	CPU Interrupt Priority Level is 7 (15); user interrupts are disabled					
110	SDOx pin is controlled by the module					
101	CPU Interrupt Priority Level is 5 (13)					
100	CPU Interrupt Priority Level is 4 (12)					
011	CPU Interrupt Priority Level is 3 (11)					
010	CPU Interrupt Priority Level is 2 (10)					
001	CPU Interrupt Priority Level is 1 (9)					
000	CPU Interrupt Priority Level is 0 (8)					

Bit 4 - RA REPEAT Loop Active bit

	2						
Value	Description						
1	REPEAT loop is in progress						
0	REPEAT loop is not in progress						

Bit 3 - N ALU Negative bit

Value	Description
1	Result was negative
0	Result was not negative (zero or positive)

Bit 2 - OV ALU Overflow bit

Value	Description
1	Overflow occurred for signed (two's complement) arithmetic in this arithmetic operation
0	No overflow has occurred

Bit 1 - Z ALU Zero bit

	Value	Description
ſ	1	An operation, which affects the Z bit, has set it at some time in the past
	0	The most recent operation, which affects the Z bit, has cleared it (i.e., a non-zero result)

CPU

Bit 0 - C ALU Carry/Borrow bit

Value	Description
1	A carry-out from the Most Significant bit (MSb) of the result occurred
0	No carry-out from the Most Significant bit of the result occurred

CPU

3.3.24 CPU Core Control Register

Name: CORCON Offset: 0x44

Notes:

- 1. The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level; see 3.3.23 SR for bit description.
- 2. If PSV = 0, any reads from data memory at 0x8000 and above will cause an address trap error instead of reading from the PSV section of program memory. This bit is not individually addressable.

Bit	15	14	13	12	11	10	9	8	
Access Reset									
Reset									
Bit	7	6	5	4	3	2	1	0	
					IPL3	PSV			
Access Reset			,		R/W	R/W	,	,	_
Reset					0	0			

Bit 3 - IPL3 CPU Interrupt Priority Level Status bit(1)

Dit 0 11 E0	The Control apen northy Lover States Sit					
Value	Description					
1	CPU Interrupt Priority Level is greater than 7					
0	CPU Interrupt Priority Level is 7 or less					

Bit 2 - PSV Program Space Visibility (PSV) in Data Space Enable⁽²⁾

Value	Description
1	Program space is visible in Data Space
0	Program space is not visible in Data Space

CPU

3.3.25 Disable Interrupt Count Register

Name: DISICNT Offset: 0x52

Bit	15	14	13	12	11	10	9	8
					DISICN	IT[13:8]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DISIC	NT[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 13:0 - DISICNT[13:0] Current Counter Value for DISI Instruction bits

3.3.26 **Table Memory Page Address Register**

Name: **TBLPAG** Offset: 0x52

Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
				TBLPA	G[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - TBLPAG[7:0] Table Memory Page Value bits

Program Memory

4. Program Memory

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "PIC24F Flash Program Memory" (www.microchip.com/DS30009715) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

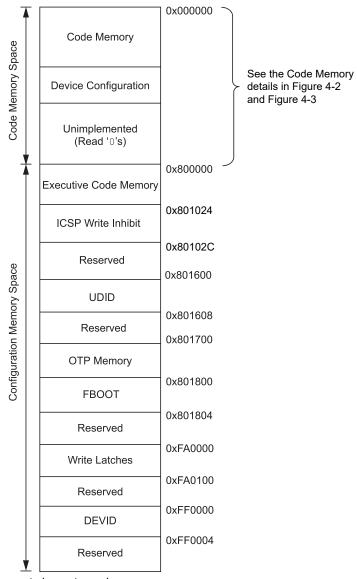
As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space during code execution.

The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- · Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ512GU410 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (V_{DD}), ground (V_{SS}) and Master Clear (\overline{MCLR}). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 128 instructions (384 bytes) at a time and erase program memory in blocks of 1024 instructions (3072 bytes) at a time.


The device implements a 7-bit Error Correcting Code (ECC). The NVM block contains a logic to write and read ECC bits to and from the Flash memory. The Flash is programmed at the same time as the corresponding ECC parity bits. The ECC provides improved resistance to Flash errors. ECC single bit errors can be transparently corrected; ECC double-bit errors generate an interrupt.

The program address memory space of the PIC24FJ512GU410 family devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in 5.5 Interfacing Program and Data Memory Spaces.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG[7] to permit access to the Configuration bits and customer OTP sections of the configuration memory space.

The memory map for the PIC24FJ512GU410 family of devices is shown in Figure 4-1.

Figure 4-1. Program Memory Map for PIC24FJ512GU410 Family Devices

Note: Memory areas are not shown to scale.

Figure 4-2. Code Memory Map for Devices with 512 Kbytes Flash (PIC24FJ512GX4XX)

Single Partition Dual Partition 0x000000 0x000000 User Program Active Partition User Memory Program Memory 0x02AF00 **Device Configuration** 0x02B000 Unimplemented 0x055F00 **Device Configuration** (Read '0's) 0x400000 0x056000 User Inactive Partition Program Memory Unimplemented 0x42AF00 **Device Configuration** (Read '0's) 0x42B000 Unimplemented (Read '0's) 0x800000 0x800000

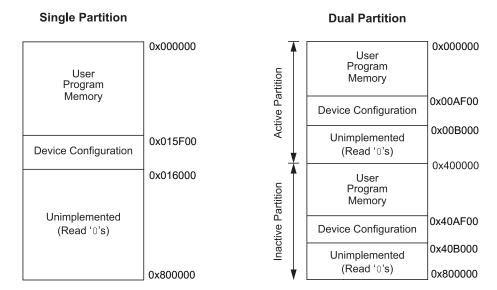

Note: Memory areas are not shown to scale

Figure 4-3. Code Memory Map for Devices with 256 Kbytes Flash (PIC24FJ256GX4XX)

Single Partition Dual Partition 0x000000 0x000000 User Program Active Partition User Memory Program Memory 0x015700 **Device Configuration** 0X015800 Unimplemented 0x02AF00 **Device Configuration** (Read '0's) 0x400000 0x02B000 User Inactive Partition Program Memory Unimplemented 0x415700 **Device Configuration** (Read '0's) 0x415800 Unimplemented (Read '0's) 0x800000 0x800000

Note: Memory areas are not shown to scale

Figure 4-4. Code Memory Map for Devices with 128 Kbytes Flash (PIC24FJ128GX4XX)

4.1 Program Memory Organization

The program memory is organized as an array of 24-bit wide words. Although the program memory space is treated as 24 bits wide (3 bytes per instruction), the upper byte is not addressable. Only the lower 2 bytes of the words (instructions) have addresses. The entire 24-bits of the instruction words are read and decoded by the MCU. Also, the upper byte can be accessed from the application code using special table instructions (TBLRD and TBLWT).

The program memory array is organized into write blocks (rows) of 128 words (instructions). Eight write blocks form an erase block (page) of 1024 instructions. The program memory can be programmed one row (write block) at a time and can be erased by one page (erase block) at a time. Also, the double-word programming (two instructions) and entire code memory erase operations are supported.

Program Memory

4.2 Hard Memory Vectors

All PIC24F devices reserve the addresses between 000000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on a device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

The PIC24FJ512GU410 devices can have up to two Interrupt Vector Tables (IVT). The first is located from addresses, 000004h to 0000FFh. The Alternate Interrupt Vector Table (AIVT) can be enabled by the AIVTDIS Configuration bit if the Boot Segment (BS) is present. If the user has configured a Boot Segment, the AIVT will be located at the address, (BSLIM[12:0] – 1) x 800h. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in 8.1 Interrupt Vector Table.

4.3 Configuration Bits Overview

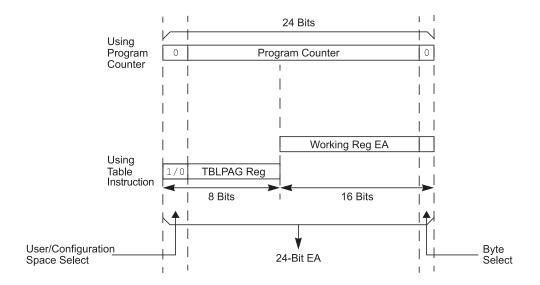
The Configuration bits are stored in the last page location of implemented program memory. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.

Refer to 29. Special Features for the full Configuration register description for each specific device.

4.4 Code-Protect Configuration Bits

The device implements intermediate security features defined by the FSEC register. The Boot Segment (BS) is the higher privileged segment and the General Segment (GS) is the lower privileged segment. The total user code memory can be split into BS or GS. The size of the segments is determined by the BSLIM[12:0] bits. The relative location of the segments within user space does not change, such that BS (if present) occupies the memory area just after the Interrupt Vector Table (IVT) and the GS occupies the space just after the BS (or if the Alternate IVT is enabled, just after it).

The Configuration Segment (CS) is a small segment (less than a page, typically just one row) within user Flash address space. It contains all user configuration data that are loaded by the NVM Controller during the Reset sequence.


4.5 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG[7:0] bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 4-5.

The TBLRDL and the TBLWTL instructions are used to read or write to bits[15:0] of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits[23:16] of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

Figure 4-5. Addressing for Table Registers

4.6 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user to erase blocks of eight rows (1024 instructions) at a time and to program one row at a time. It is also possible to program two instruction word blocks.

The eight-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.

When data are written to program memory using TBLWT instructions, the data are not written directly to memory. Instead, data written using Table Writes are stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 128 TBLWT instructions are required to write the full row of memory.

To ensure that no data are corrupted during a write, any unused address should be programmed with FFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set the Table Pointer to point to the programming latches, do a series of TBLWT instructions to load the buffers and set the NVMADRU/NVMADR registers to point to the destination. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is not allowed.

All of the Table Write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

4.6.1 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON[15]) starts the operation and the WR bit is automatically cleared when the operation is finished.

4.6.2 Programming Algorithm for Flash Program Memory

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the eight-row erase block containing the desired row. The general process is:

Program Memory

- 1. Read eight rows of program memory (1024 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 4-1):
 - 3.1. Set the NVMOP[3:0] bits (NVMCON[3:0]) to '0011' to configure for block erase. Set the WREN (NVMCON[14]) bit.
 - 3.2. Write the starting address of the block to be erased into the NVMADRU/NVMADR registers.
 - 3.3. Write 55h to NVMKEY.
 - 3.4. Write AAh to NVMKEY.
 - 3.5. Set the WR bit (NVMCON[15]). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.
- Update the TBLPAG register to point to the programming latches on the device. Update the NVMADRU/ NVMADR registers to point to the destination in the program memory.
- Write the first 128 instructions from data RAM into the program memory buffers (see Example 4-2).
- 6. Write the program block to Flash memory:
 - 6.1. Set the NVMOPx bits to '0010' to configure for row programming. Set the WREN bit.
 - 6.2. Write 55h to NVMKEY.
 - 6.3. Write AAh to NVMKEY.
 - 6.4. Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 7. Repeat Steps 4 through 6, using the next available 128 instructions from the block in data RAM, by incrementing the value in NVMADRU/NVMADR until all 1024 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs.

Table 4-1. Page Erase

Step 1: Set the NVMCON register to erase a page. MOV #0x4003, W0 MOV WO, NVMCON Step 2: Load the address of the page to be erased into the NVMADR register pair. MOV #PAGE ADDR LO, WO MOV WO, NVMADR MOV #PAGE ADDR HI, WO MOV WO, NVMADRU Step 3: Set the WR bit. MOV #0x55, W0 MOV WO, NVMKEY MOV #0xAA, W0 MOV WO, NVMKEY BSET NVMCON, #WR NOP NOP NOP

Program Memory

Example 4-1. Erasing a Program Memory Block ('C' Language Code)

```
Table 4-2. Code Memory Programming Example: Row Writes
Step 1: Set the NVMCON register to program 128 instruction words.
MOV #0x4002, W0
MOV WO, NVMCON
Step 2: Initialize the TBLPAG register for writing to the latches.
MOV #0xFA, W12
MOV W12, TBLPAG
Step 3: Load W0:W5 with the next four instruction words to program.
MOV #<LSW0>, W0
MOV #<MSB1:MSB0>, W1
MOV #<LSW1>, W2
MOV #<LSW2>, W3
MOV #<MSB3:MSB2>, W4
MOV #<LSW3>, W5
Step 4: Set the Read Pointer (W6) and load the (next set of) write latches.
CLR W6
CLR W7
TBLWTL [W6++], [W7]
TBLWTH.B [W6++], [W7++]
TBLWTH.B [W6++], [++W7]
TBLWTL [W6++], [W7++]
TBLWTL [W6++], [W7]
TBLWTH.B [W6++], [W7++]
TBLWTH.B [W6++], [++W7]
TBLWTL [W6++], [W7++]
Step 5: Repeat Steps 4 and 5, for a total of 32 times, to load the write latches with 128 instructions.
Step 6: Set the NVMADRU/NVMADR register pair to point to the correct address.
MOV #DestinationAddress[15:0], W3
```

```
MOV #DestinationAddress[15:0], W3
MOV #DestinationAddress[23:16], W4
MOV W3, NVMADR
MOV W4, NVMADRU
```

Step 7: Execute the WR bit unlock sequence and initiate the write cycle.

```
MOV #0x55, W0
MOV W0, NVMKEY

MOV #0xAA, W0

MOV W0, NVMKEY

BSET NVMCON, #WR

NOP

NOP
```

```
Example 4-2. Example: Row Programming ('C' Language Code)
 ROW PROGRAMMING ('C' LANGUAGE CODE)
    int varWord1L[128];
    int varWord1H[128];
                                        // bits[15:0]
    int targetWriteAddressL;
    int targetWriteAddressH;
                                        // bits[22:16]
                                        // Set WREN and row program mode
    NVMCON = 0x4002;
    TBLPAG = 0xFA;
    NVMADRL = targetWriteAddressL;
                                        // set target write address
    NVMADRH = targetWriteAddressH;
    for(i=0; i<128; i++)
                                         // load write latches with data
    { // to be written
      builtin_tblwtl( (i*2), varWordlL[i]);
builtin_tblwth( (i*2), varWordlH[i]);
      builtin_disi(5);
                                       //Disable interrupts for NVM unlock
 sequence
     builtin write NVM();
                                        // initiate write
```

4.6.3 Programming a Double Word of Flash Program Memory

If a Flash location has been erased, it can be programmed using Table Write instructions to write two instruction words (2 x 24-bit) into the write latch. The TBLPAG register is loaded with the address of the write latches and the NVMADRU/NVMADR registers are loaded with the address of the first of the two instruction words to be programmed. The TBLWTL and TBLWTH instructions write the desired data into the write latches. To configure the NVMCON register for a two-word write, set the NVMOPx bits (NVMCON[3:0]) to '0001'. The write is performed by executing the unlock sequence and setting the WR bit. An equivalent procedure in 'C', using the MPLAB® XC16 compiler and built-in hardware functions, is shown in Table 4-3.

Table 4-3. Programming a Double Word of Flash Program Memory

```
Step 1: Initialize the TBLPAG register for writing to the latches.

MOV #0xFA, W12
MOV W12, TBLPAG

Step 2: Load W0:W2 with the next two packed instruction words to program.

MOV #<LSW0>, W0
MOV #<MSB1:MSB0>, W1
MOV #<LSW1>, W2

Step 3: Set the Read Pointer (W6) and Write Pointer (W7), and load the (next set of) write latches.
```

Program Memory

```
CLR W6
CLR W7
TBLWTL [W6++], [W7]
TBLWTH.B [W6++], [W7++]
TBLWTH.B [W6++], [++W7]
TBLWTL.W [W6++], [W7++]
Step 4: Set the NVMADRU/NVMADR register pair to point to the correct address.
MOV #DestinationAddress[15:0], W3
MOV #DestinationAddress[23:16], W4
MOV W3, NVMADR
MOV W4, NVMADRU
Step 5: Set the NVMCON register to program two instruction words.
MOV #0x4001, W10
MOV W10, NVMCON
NOP
Step 6: Initiate the write cycle.
MOV #0x55, W1
MOV W1, NVMKEY
MOV #0xAA, W1
MOV W1, NVMKEY
BSET NVMCON, #WR
NOP
NOP
NOP
```

Example 4-3. Programming a Double Word of Flash Program Memory ('C' Language Code)

```
// C example using MPLAB XC16
unsigned long progAddr = 0xXXXXXX;
                                       // Address of word to program
unsigned int progData1L = 0xXXXX;
                                      // Data to program lower word of word 1
unsigned char progData1H = 0xXX;
                                      // Data to program upper byte of word 1
unsigned int progData2L = 0xXXXX;
                                      // Data to program lower word of word 2
unsigned char progData2H = 0xXX;
                                       // Data to program upper byte of word 2
//Set up NVMCON for word programming
NVMCON = 0x4001;
                                       // Initialize NVMCON
TBLPAG = 0xFA;
                                       // Point TBLPAG to the write latches
//Set up pointer to the first memory location to be written
NVMADRU = progAddr>>16;
                                      // Initialize PM Page Boundary SFR
NVMADRU = progAddr>>16;
NVMADR = progAddr & 0xFFFF;
                                      // Initialize lower word of address
//Perform TBLWT instructions to write latches
 __builtin_tblwtl(1, progData2H); // Write word 2 to address low word builtin_tblwth(1, progData2H); // Write word 2 to upper byte asm("DISI #5"); // Block interrupts with priority <
                                      // Block interrupts with priority <7 for
                                       // next 5 instructions
 builtin write NVM();
                                       // XC16 function to perform unlock
sequence and set WR
```

4.7 Error Correcting Code (ECC)

In order to improve program memory performance and durability, these devices include Error Correcting Code (ECC) functionality as an integral part of the Flash memory controller. ECC can determine the presence of single bit errors in program data, including which bit is in error, and correct the data automatically without user intervention. ECC cannot be disabled.

When data are written to program memory, ECC generates a 7-bit Hamming code parity value for every two (24-bit) instruction words. The data are stored in blocks of 48 data bits and 7 parity bits; parity data are not memory-mapped and are inaccessible. When the data are read back, the ECC calculates the parity on them and compares them to the previously stored parity value. If a parity mismatch occurs, there are two possible outcomes:

- Single bit error has occurred and has been automatically corrected on read-back.
- · Double-bit error has occurred and the read data are not changed.

The ECCSTATL register contains the parity information for single bit errors. The SECOUT[7:0] bits field contains the expected calculated SEC parity and the SECIN[7:0] bits contain the actual value from a Flash read operation. The SECSYNDx bits (ECCSTATH[7:0]) indicate the bit position of the single bit error within the 48-bit pair of instruction words. When no error is present, SECINx equals SECOUTx and the SECSYNDx bits are zero.

Double-bit error occurrences generate a generic hard trap and set the ECCDBE (INTCON4[1]) bit. The ECCSTATH register contains double-bit error status information. The DEDOUT bit is the expected calculated DED parity and DEDIN is the actual value from a Flash read operation. When no error is present, DEDIN equals DEDOUT.

4.7.1 ECC Fault Injection

To test Fault handling, an ECC error can be generated. Both single and double-bit errors can be generated in both the read and write data paths. Read path Fault injection first reads the Flash data and then modifies them prior to entering the ECC logic. Write path Fault injection modifies the actual data prior to them being written into the target Flash and will cause an EEC error on a subsequent Flash read. The following procedure is used to inject a Fault:

- 1. Load the Flash target address into the ECCADDR register.
- 2. Select 1st Fault bit determined by FLT1PTRx (ECCCONH[7:0]). The target bit is inverted to create the Fault.
- 3. If a double Fault is desired, select the 2nd Fault bit determined by FLT2PTRx (ECCCONH[15:8]); otherwise, set to all '1's.
- Write the NVMKEY unlock sequence.

- 5. Enable the ECC Fault injection logic by setting the FLTINJ bit (ECCCONL[0]).
- 6. Perform a read or write to the Flash target address.

4.8 Flash OTP by ICSP™ Write Inhibit

ICSP Write Inhibit is an access restriction feature that, when activated, restricts all of Flash memory. Once activated, ICSP Write Inhibit permanently prevents ICSP Flash programming and erase operations, and cannot be deactivated. This feature is intended to prevent alteration of Flash memory contents, with behavior similar to One-Time-Programmable (OTP) devices.

RTSP, including erase and programming operations, is not restricted when ICSP Write Inhibit is activated; however, code to perform these actions must be programmed into the device before ICSP Write Inhibit is activated. This allows for a bootloader-type application to alter Flash contents with ICSP Write Inhibit activated.

Entry into ICSP and Enhanced ICSP modes is not affected by ICSP Write Inhibit. In these modes, it will continue to be possible to read configuration memory space and any user memory space regions which are not code-protected. With ICSP writes inhibited, an attempt to set WR (NVMCON[15]) = 1 will maintain WR = 0 and instead, set WRERR (NVMCON[13]) = 1. All Enhanced ICSP erase and programming commands will have no effect with self-checked programming commands returning a FAIL response opcode (PASS if the destination already exactly matched the requested programming data).

Once ICSP Write Inhibit is activated, it is not possible for a device executing in Debug mode to erase/write Flash, nor can a debug tool switch the device to Production mode. ICSP Write Inhibit should therefore only be activated on devices programmed for production.

4.8.1 Activating Flash OTP by ICSP Write Inhibit

Note: It is not possible to deactivate ICSP Write Inhibit.

ICSP Write Inhibit is activated by executing a pair of NVMCON double-word programming commands to save two 16-bit activation values in the configuration memory space. The target NVM addresses and values required for activation are shown in Table 4-4. Once both addresses contain their activation values, ICSP Write Inhibit will take permanent effect on the next device Reset.

Only the lower 16 data bits stored at the activation addresses are evaluated; the upper eight bits and second 24-bit word, written by the double-word programming, should be written as '0's. The addresses can be programmed in any order and also during separate ICSP/Enhanced ICSP/RTSP sessions, but any attempt to program an incorrect 16-bit value, or use a row programming operation to program the values, will be aborted without altering the existing data.

Table 4-4. ICSP™ Write Inhibit Activation Addresses and Data

	Configuration Memory Address	ICSP Write Inhibit Activation Value
Write Lock 1	0x801024	0x006D63
Write Lock 2	0x801028	0x006870

4.9 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

4.10 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

4.11 Program Memory Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x075F										
0x0760	NVMCON	7:0							DP[3:0]	
0,0700		15:8	WR	WREN	WRERR	NVMSIDL	SFTSWP	P2ACTIV		
0x0762	NVMADR	7:0				NVMA	DR[7:0]			
0.0702	TVW/ADIX	15:8					DR[15:8]			
0x0764	NVMADRU	7:0				NVMAD	RU[7:0]			
0.07.04	IVIVIADIO	15:8								
0x0766	NVMKEY	7:0				NVMK	EY[7:0]			
0.0700	TAVIVITAL	15:8								
0x0768										
 0x076B	Reserved									
0x076C	ECCCONL	7:0								FLTINJ
000760	ECCCONE	15:8								
0x076E	ECCCONH	7:0				FLT1P	TR[7:0]			
UXU/OE	ECCCONH	15:8				FLT2P	TR[7:0]			
0x0770	ECCADDRL	7:0				ECCAD	DR[7:0]			
0.0770	LOCADDINE	15:8	ECCADDR[15:8]							
0x0772	ECCADDRH	7:0				ECCADE	DR[23:16]			
000112	ECCADDRH	15:8								
0x0774	ECCSTATL	7:0				SECI	N[7:0]			
0.0774	LOGSTATE	15:8					UT[7:0]			
0x0774	ECCSTATH	7:0				SECSY	ND[7:0]			
0.0774	LOOSIAIII	15:8							DEDOUT	DEDIN

4.11.1 Control Registers

There are four SFRs used to read and write the program Flash memory: NVMCON, NVMADRU, NVMADR and NVMKEY.

The NVMCON register (4.11.2 NVMCON) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY (4.11.5 NVMKEY) is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to 4.6.1 Programming Operations for further details.

The NVMADRU/NVMADR registers contain the upper byte and lower word of the destination of the NVM write or erase operation. Some operations (chip erase) operate on fixed locations and do not require an address value.

The ECCCONL/H, ECCADDRL/H and ECCSTATL/H registers control and allow capturing status information for the Error Correcting Code (ECC) feature.

4.11.2 Nonvolatile Memory (NVM) Control Register

Name: NVMCON Offset: 0x760

Notes:

- 1. These bits can only be reset on a Power-on Reset.
- 2. All other combinations of NVMOP[3:0] are unimplemented.
- 3. Unlock sequence must be executed before writing to this bit.

Legend: SO = Settable Only bit

Bit	15	14	13	12	11	10	9	8
	WR	WREN	WRERR	NVMSIDL	SFTSWP	P2ACTIV		
Access	R/SO	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0
						NVMC	P[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bit 15 - WR Write Control bit(1,3)

Value	Description
1	Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is cleared
	by hardware once the operation is complete
0	Program or erase operation is complete and inactive

Bit 14 - WREN Write Enable bit(1)

Value	Description
1	Enables Flash program/erase operations
0	Inhibits Flash program/erase operations

Bit 13 - WRERR Write Sequence Error Flag bit(1)

Value	Description
1	An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit)
0	The program or erase operation completed normally

Bit 12 - NVMSIDL NVM Stop in Idle Control bit

Value	Description
1	Removes power from the program memory when device enters Idle mode
0	Powers program memory in Standby mode when the device enters Idle mode

Bit 11 - SFTSWP Soft Swap Status bit

In Single Partition Mode:

Read as '0'.

In Dual Partition Mode:

 in Buair artifort Mode.					
Value	Description				
1	Partitions have been successfully swapped using the BOOTSWP instruction				
0	Awaiting successful panel swap using the BOOTSWP instruction				

Datasheet

Bit 10 - P2ACTIV Dual Partition Active Status bit

In Single Partition Mode:

Read as '0'.

In Dual Partition Mode:

Program Memory

Value	Description
1	Partition 2 is mapped into the active region
0	Partition 1 is mapped into the active region

Bits 3:0 - NVMOP[3:0] NVM Operation Select bits⁽²⁾

Value	Description
1110	Chip Erase Operation, erases user memory (does not erase Device ID, customer OTP or executive
	memory)
1000	The next WR command will program FBOOT with the data held in the first 48 bits of the write latch and
	then will program the Dual Partition Signature (SIGN) bit in Flash. The device must be reset before the
	newly programmed mode can take effect.
0100	Erases user memory and Configuration Words in the Inactive Partition (Dual Partition modes only)
0011	Erases a page of program or executive memory
0010	Row programming operation
0001	Double-word programming operation

Program Memory

4.11.3 Nonvolatile Memory (NVM) Write Address Low Register

Name: NVMADR Offset: 0x762

Bit	15	14	13	12	11	10	9	8			
	NVMADR[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	NVMADR[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - NVMADR[15:0] Nonvolatile Memory Write Address Lower bits

Program Memory

4.11.4 Nonvolatile Memory (NVM) Write Address High Register

Name: NVMADRU Offset: 0x764

Bit	15	14	13	12	11	10	9	8	
Access Reset									
Bit	7	6	5	4	3	2	1	0	
	NVMADRU[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

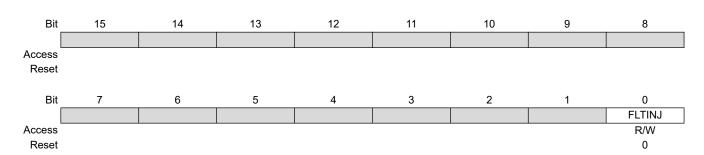
Bits 7:0 - NVMADRU[7:0] Nonvolatile Memory Write Address Upper bits

Program Memory

4.11.5 Nonvolatile Memory (NVM) Key Register

Name: NVMKEY Offset: 0x766

Reset


Bit	15	14	13	12	11	10	9	8	
Access Reset									
Bit	7	6	5	4	3	2	1	0	
	NVMKEY[7:0]								
Access	W	W	W	W	W	W	W	W	

Bits 7:0 - NVMKEY[7:0] NVM Key Register bits (write-only)

Program Memory

4.11.6 ECC Fault Injection Configuration Register Low

Name: ECCCONL Offset: 0x76C

Bit 0 - FLTINJ Fault Injection Sequence Enable bit

Write Enable bit.

Value	Description
1	Enabled
0	Disabled

Program Memory

4.11.7 ECC Fault Injection Configuration Register High

Name: ECCCONH Offset: 0x76E

Bit	15	14	13	12	11	10	9	8			
	FLT2PTR[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
[FLT1PTR[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:8 - FLT2PTR[7:0] ECC Fault Injection Bit Pointer 2 bits

Value	Description
11111111-10001001	No Fault injection occurs
10001000	Fault injection (bit inversion) occurs on bit 136 of ECC bit order
0000001	Fault injection (bit inversion) occurs on bit 1 of ECC bit order
0000000	Fault injection (bit inversion) occurs on bit 0 of ECC bit order

Bits 7:0 - FLT1PTR[7:0] ECC Fault Injection Bit Pointer 1 bits

Value	Description
11111111-10001001	No Fault injection occurs
10001000	Fault injection (bit inversion) occurs on bit 136 of ECC bit order
0000001	Fault injection (bit inversion) occurs on bit 1 of ECC bit order
0000000	Fault injection (bit inversion) occurs on bit 0 of ECC bit order

Program Memory

4.11.8 ECC Fault Inject Address Compare Register Low

Name: ECCADDRL Offset: 0x770

Bit	15	14	13	12	11	10	9	8		
	ECCADDR[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	ECCADDR[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ECCADDR[15:0] ECC Fault Injection NVM Address Match Compare bits

Program Memory

4.11.9 ECC Fault Inject Address Compare Register High

Name: ECCADDRH Offset: 0x772

Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
				ECCADE	PR[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - ECCADDR[23:16] ECC Fault Injection NVM Address Match Compare bits

Program Memory

4.11.10 ECC System Status Display Register Low

Name: ECCSTATL Offset: 0x774

Bit	15	14	13	12	11	10	9	8
	SECOUT[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SECIN[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - SECOUT[7:0] Calculated Single Error Correction Parity Value bits

Bits 7:0 – SECIN[7:0] Read Single Error Correction Parity Value bits SECIN[7:0] bits are the actual parity value of a Flash read operation.

Program Memory

4.11.11 ECC System Status Display Register High

Name: ECCSTATH Offset: 0x774

Bit	15	14	13	12	11	10	9	8
							DEDOUT	DEDIN
Access			•				R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
	SECSYND[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 9 – DEDOUT Calculated Dual Bit Error Detection Parity bit

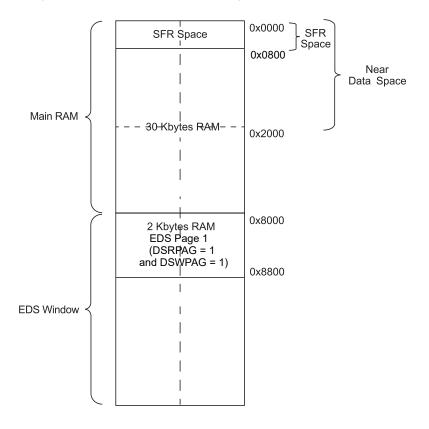
Bit 8 – DEDIN Read Dual Bit Error Detection Parity bit DEDIN is the actual parity value of a Flash read operation.

Bits 7:0 – SECSYND[7:0] Calculated ECC Syndrome Value bits Indicates the bit location that contains the error.

5. Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "**Data Memory with Extended Data Space (EDS)**" (www.microchip.com/DS39733) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 5-1.


The 16-bit wide data addresses in the data memory space point to bytes within the Data Space (DS). This gives a DS address range of 64 Kbytes or 32K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.

The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16-bit address range. EDS is discussed in detail in 5.5 Interfacing Program and Data Memory Spaces.

5.1 Data Space Width

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data are aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses. The data memory map is shown in Figure 5-1.

Figure 5-1. Data Memory Map for PIC24FJ512GU410 Family Devices

Data Memory Space

5.2 Data Memory Organization and Alignment

To maintain backward compatibility with PIC[®] MCUs and improve Data Space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode, [Ws++], will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

5.3 Near Data Space

The 8-Kbyte area, between 0000h and 1FFFh, is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the Data Space is addressable indirectly. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

5.4 Special Function Register (SFR) Space

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR.

5.5 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use these data successfully, they must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- · Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis,

DS30010203C-page 103

Data Memory Space

which is ideal for look-ups from a large table of static data. It can only access the least significant word of the program word.

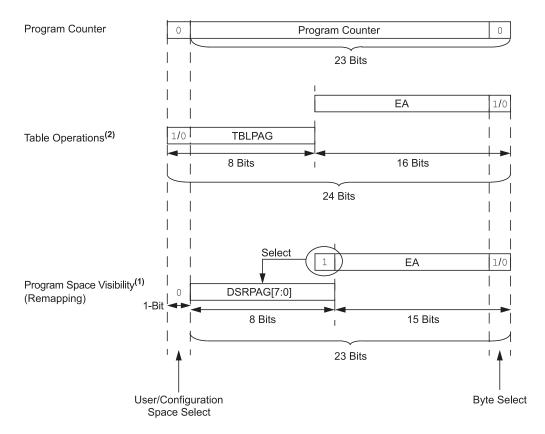
5.5.1 Addressing Program Space

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSBs of TBLPAG are used to determine if the operation occurs in the user memory (TBLPAG[7] = 0) or the configuration memory (TBLPAG[7] = 1).

For remapping operations, the 10-bit Extended Data Space Read register (DSRPAG) is used to define a 16K word page in the program space. When the Most Significant bit (MSb) of the EA is '1', and the MSb (bit 9) of DSRPAG is '1', the lower eight bits of DSRPAG are concatenated with the lower 15 bits of the EA to form a 23-bit program space address. The DSRPAG[8] bit decides whether the lower word (when the bit is '0') or the higher word (when the bit is '1') of program memory is mapped. Unlike table operations, this strictly limits remapping operations to the user memory area.

Table 5-1 and Figure 5-2 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P[23:0] refers to a program space word, whereas D[15:0] refers to a Data Space word.


Table 5-1. Program Space Address Construction

Access Type	Access Space	Program Space Address					
Access Type		[23]	[22:16]	[15]	[14:1]	[0]	
Instruction Access	User	0	PC[22:1] 0			0	
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0					
TBLRD/TBLWT	User	TBLPAG[7:0]			Data EA[15:0]		
(Byte/Word Read/Write)		0xxx xxxx x			xxxx xxxx xxxx		
	Configuration	TBLPAG[7:0] Data EA[15:0]					
		1xxx xxxx		XX	XXXX XXXX XXXX		
Program Space Visibility	User	0	0 DSRPAG[7:0		[7:0] ⁽²⁾ Data EA[14:0] ⁽¹⁾		
(Block Remap/Read)		0	XXXX	XXXX XXX XXX		xxx xxxx	

Notes:

- 1. Data EA[15] is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is DSRPAG[0].
- 2. DSRPAG[9] is always '1' in this case. DSRPAG[8] decides whether the lower word or higher word of program memory is read. When DSRPAG[8] is '0', the lower word is read and when it is '1', the higher word is read.

Figure 5-2. Data Access from Program Space Address Generation

Notes:

- 1. DSRPAG[8] acts as word select. DSRPAG[9] should always be '1' to map program memory to data memory.
- 2. The instructions, TBLRDH/TBLWTH/TBLRDL/TBLWTL, decide if the higher or lower word of program memory is accessed. TBLRDH/TBLWTH instructions access the higher word and TBLRDL/TBLWTL instructions access the lower word. Table Read operations are permitted in the configuration memory space.

5.5.2 Data Access from Program Memory Using Table Instructions

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper eight bits of a program space word as data.

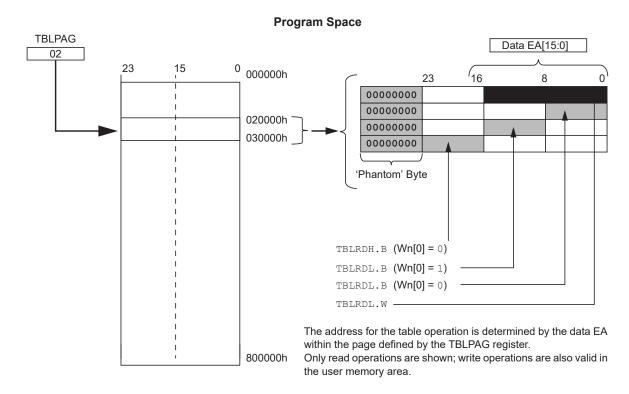
The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P[15:0]) to a data address (D[15:0]).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.

TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P[23:16]) to a data address. Note that D[15:8], the 'phantom' byte, will always be '0'.


In Byte mode, it maps the upper or lower byte of the program word to D[7:0] of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG[7] = 0, the table page is located in the user memory space. When TBLPAG[7] = 1, the page is located in configuration space. The data access using table instructions is shown in Figure 5-3.

Note: Only Table Read operations will execute in the configuration memory space where Device IDs are located. Table Write operations are not allowed.

Figure 5-3. Access Program Memory with Table Instructions

5.5.3 Reading Data from Program Memory Using EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs when the MSb of EA is '1' and the DSRPAG[9] bit is also '1'. The lower eight bits of DSRPAG are concatenated to the Wn[14:0] bits to form a 23-bit EA to access program memory. The DSRPAG[8] bit decides which word should be addressed; when the bit is '0', it is the lower word and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported.

Table 5-2 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses. EDS access is also explained in Figure 5-4 and Figure 5-5.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- · Execution prior to exiting the loop due to an interrupt
- · Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

Table 5-2. EDS Program Address with Different Pages and Addresses

DSRPAG (Data Space Read Register)	Source Address while Indirect Addressing	23-Bit EA Pointing to EDS	Comment
200h • •	8000h to FFFFh	000000h to 007FFEh • •	Lower words of 4M program instructions (8 Mbytes) for read operations only.
2FFh		7F8000h to 7FFFEh	
300h • •		000001h to 007FFFh	Upper words of 4M program instructions (4 Mbytes remaining; 4 Mbytes are phantom bytes) for read operations only.
3FFh		7F8001h to 7FFFFh	
000h		Invalid Address	Address error trap.(1)

Note:

 When the source/destination address is above 8000h and DSRPAG/DSWPAG is '0', an address error trap will occur.

Example 5-1. EDS Read Code from Program Memory in Assembly

```
; Set the EDS page from where the data to be read

mov #0x0202, w0

mov w0, DSRPAG ;page 0x202, consisting lower words, is selected for read

mov #0x000A, w1 ;select the location (0x0A) to be read

bset w1, #15 ;set the MSB of the base address, enable EDS mode

;Read a byte from the selected location

mov.b [w1++], w2 ;read Low byte

mov.b [w1++], w3 ;read High byte

;Read a word from the selected location

mov [w1], w2 ;

;Read Double - word from the selected location

mov.d [w1], w2 ;two word read, stored in w2 and w3
```

Datasheet

Figure 5-4. Program Space Visibility Operation to Access Lower Word

When DSRPAG[9:8] = 10 and EA[15] = 1:

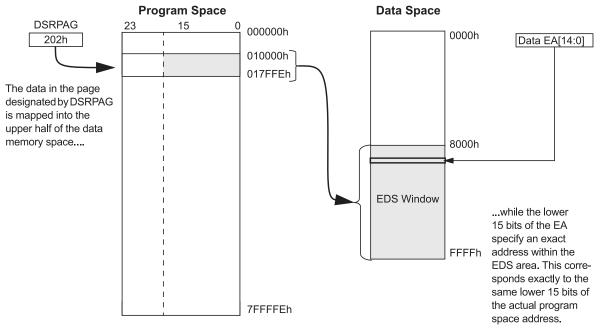
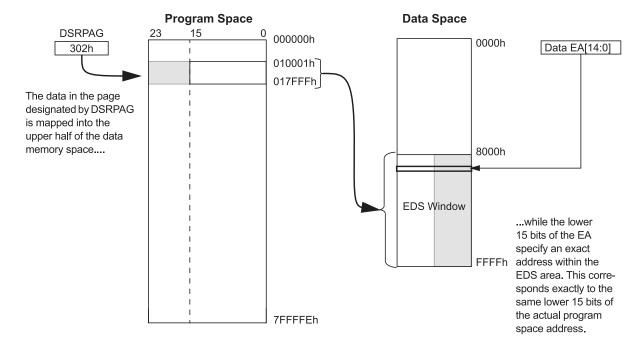



Figure 5-5. Program Space Visibility Operation to Access Upper Word

When DSRPAG[9:8] = 11 and EA[15] = 1:

Direct Memory Access Controller (DMA)

6. Direct Memory Access Controller (DMA)

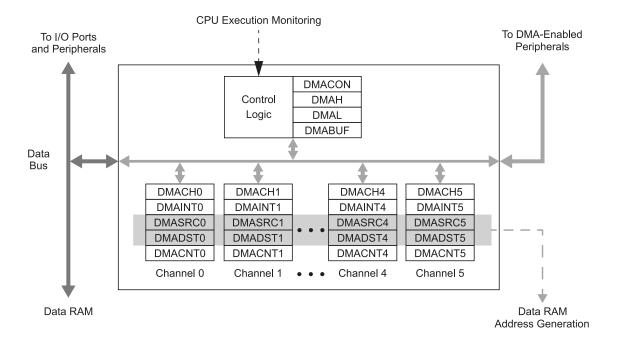
Note: This data sheet summarizes the features of the PIC24FJ512GU410 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Direct Memory Access Controller (DMA)**" (DS30009742) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Direct Memory Access (DMA) Controller is designed to service high throughput data peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU-intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.

The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA-capable peripherals located on the new DMA SFR bus. The controller serves as a Master device on the DMA SFR bus, controlling data flow from DMA-capable peripherals.

The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations causing a processor Stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:


- Six Independent and Independently Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- · DMA Bus Arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for Each Channel, Dynamically Updated and Reloadable
- · 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- · Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- Software Triggered Transfer
- · Null Write mode for Symmetric Buffer Operations

A simplified block diagram of the DMA Controller is shown in Figure 6-1.

DS30010203C-page 109

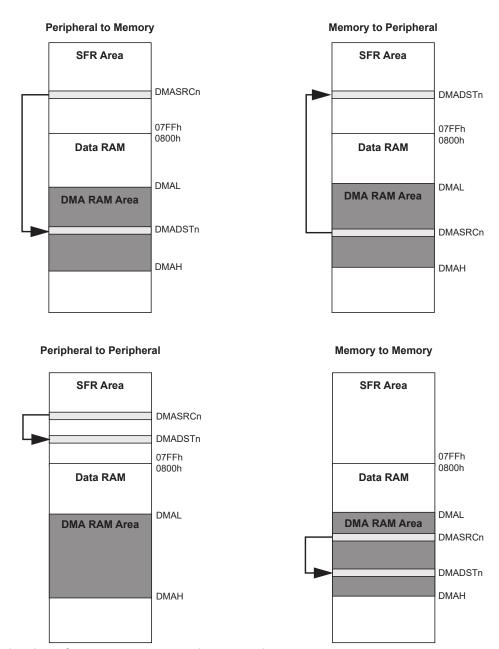
Direct Memory Access Controller (DMA)

Figure 6-1. DMA Functional Block Diagram

6.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction; in addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- Source and destination (SFRs and data RAM)
- · Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (Fixed Address or Address Blocks, with or without Address Increment/ Decrement)


In addition, the DMA Controller provides channel priority arbitration for all channels.

6.1.1 Source and Destination

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 07FFh), or the data RAM space (0800h to FFFFh), can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 6-2.

Direct Memory Access Controller (DMA)

Figure 6-2. Types of DMA Data Transfers

Note: Relative sizes of memory areas are not shown to scale.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

6.1.2 Data Size

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn[1]). By default, each channel is configured for word-sized transactions. When byte-sized transactions are chosen, the LSb of the source and/or destination address determines if the data represent the upper or lower byte of the data RAM location.

Direct Memory Access Controller (DMA)

6.1.3 Trigger Source

The DMA Controller can use any one of the device's interrupt sources to initiate a transaction. The triggers for the DMA channels are selected by the CHSEL[6:0] bits in the DMAINTn registers. The DMA trigger sources are listed in Table 6-1.

Table 6-1. DMA Trigger Sources

CHSEL[6:0]	Trigger (Interrupt)	CHSEL[6:0]	Trigger (Interrupt)		
0	Off	61	UART4 Error Interrupt		
1	MCCP8 IC/OC Interrupt	CCP8 IC/OC Interrupt 62 UART3 TX Interru			
2	MCCP8 Timer Interrupt	63	UART3 RX Interrupt		
3	MCCP7 IC/OC Interrupt	64	UART3 Error Interrupt		
4	MCCP7 Timer Interrupt	65	UART2 TX Interrupt		
5	MCCP6 IC/OC Interrupt	66	UART2 RX Interrupt		
6	MCCP6 Timer Interrupt	67	UART2 Error Interrupt		
7	MCCP5 IC/OC Interrupt	68	UART1 TX Interrupt		
8	MCCP5 Timer Interrupt	69	UART1 RX Interrupt		
9	MCCP4 IC/OC Interrupt	70	UART1 Error Interrupt		
10	MCCP4 Timer Interrupt	71 74	Reserved		
11	MCCP3 IC/OC Interrupt	75	DMACHA5 Interrupt		
12	MCCP3 Timer Interrupt	76	DMACHA4 Interrupt		
13	MCCP2 IC/OC Interrupt	77	DMACHA3 Interrupt		
14	MCCP2 Timer Interrupt	78	DMACHA2 Interrupt		
15	MCCP1 IC/OC Interrupt	79	DMACHA1 Interrupt		
16	MCCP1 Timer Interrupt	80	DMACHA0 Interrupt		
17 28	Reserved	81	ADC Interrupt		
29	SPI4 Receive Interrupt	82	USB Interrupt		
30	SPI4 Transmit Interrupt	83	Reserved		
31	SPI4 General Interrupt	84	HLVD Interrupt		
32	SPI3 Receive Interrupt	85	CRC Interrupt		
33	SPI3 Transmit Interrupt	86	LCD Interrupt		
34	SPI3 General Interrupt	87	LCD Automation Interrupt		
35	SPI2 Receive Interrupt	88	Reserved		
36	SPI2 Transmit Interrupt	89	CLC4 Out		
37	SPI2 General Interrupt	90	CLC3 Out		
38	SPI1 Receive Interrupt	91	CLC2 Out		
39	SPI1 Transmit Interrupt	92	CLC1 Out		
40	SPI1 General Interrupt	93	Reserved		
41 43	Reserved	94	RTCC Alarm Interrupt		
44	I2C3 Slave Interrupt	95	TMR5 Interrupt		

Direct Memory Access Controller (DMA)

continued			
CHSEL[6:0]	Trigger (Interrupt)	CHSEL[6:0]	Trigger (Interrupt)
45	I2C3 Master Interrupt	96	TMR4 Interrupt
46	I2C3 Collision Interrupt	97	TMR3 Interrupt
47	I2C2 Slave Interrupt	98	TMR2 Interrupt
48	I2C2 Master Interrupt	99	TMR1 Interrupt
49	I2C2 Collision Interrupt	100	Reserved
50	I2C1 Slave Interrupt	101	DAC1 Interrupt
51	I2C1 Master Interrupt	102	Reserved
52	I2C1 Collision Interrupt	103	Comparator Interrupt
53	UART6 TX Interrupt	104	INT4 Interrupt
54	UART6 RX Interrupt	105	INT3 Interrupt
55	UART6 Error Interrupt	106	INT2 Interrupt
56	UART5 TX Interrupt	107	INT1 Interrupt
57	UART5 RX Interrupt	108	INT0 Interrupt
58	UART5 Error Interrupt	109	Interrupt-on-Change (IOC)
59	UART4 TX Interrupt	110 127	Reserved
60	UART4 RX Interrupt		

Since the source and destination addresses for any transaction can be programmed independently of the trigger source, the DMA Controller can use any trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

6.1.4 Transfer Mode

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each trigger.

- One-Shot: A single transaction occurs for each trigger.
- Continuous: A series of back-to-back transactions occur for each trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per trigger, until the DMA channel is disabled
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per trigger, until the DMA channel is disabled.

All transfer modes allow the option to have the source and destination addresses, and counter value automatically reloaded after the completion of a transaction. Repeated mode transfers do this automatically.

6.1.5 Addressing Modes

The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- · Block-to-Fixed: From a range of source addresses to a single, constant destination address
- · Block-to-Block: From a range of source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA-capable peripheral.

DS30010203C-page 113

Direct Memory Access Controller (DMA)

When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.

For PIC24FJ512GU410 family devices, the 12-bit A/D Converter module is the only PIA-capable peripheral. Details for its use in PIA mode are provided in 22. 12-Bit A/D Converter with Threshold Detect.

6.1.6 Channel Priority

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round Robin: When two or more channels collide, the lower numbered channel receives
 priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority
 based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives
 priority, regardless of past history; however, any channel being actively processed is not available for an
 immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service
 after the next lower priority channel with a pending request.

6.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- 2. Program DMAH and DMAL with the appropriate upper and lower address boundaries for data RAM operations.
- 3. Select the DMA channel to be used and disable its operation (CHEN = 0).
- 4. Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA mode addressing, use the base address value.
- 5. Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE[1:0] bits to select the Data Transfer mode.
- 8. Program the SAMODE[1:0] and DAMODE[1:0] bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

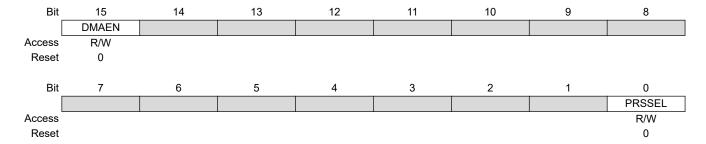
6.3 Peripheral Module Disable

Unlike other peripheral modules, the channels of the DMA Controller cannot be individually powered down using the Peripheral Module Disable (PMD) registers. Instead, the channels are controlled as two groups. The DMA03MD bit (PMD7[4]) selectively controls DMACH0 through DMACH3. The DMA45MD bit (PMD7[5]) controls DMACH4 and DMACH5. Setting both bits effectively disables the DMA Controller.

Direct Memory Access Controller (DMA)

6.4 DMA Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x04C3										
0x04C4	DMACON	7:0								PRSSEL
		15:8	DMAEN							
0x04C6	DMABUF	7:0					UF[7:0]			
		15:8					JF[15:8]			
0x04C8	DMAL	7:0					R[7:0]			
		15:8					R[15:8]			
0x04CA	DMAH	7:0 15:8					P[7:0]			
		7:0	OMAS	DE[1:0]	DAMO	DE[1:0]	R[15:8]	DE[1:0]	SIZE	CHEN
0x04CC	DMACH0	15:8	SAIVIO	DE[1.0]	DAIVIO	Reserved	TRIVIO	NULLW	RELOAD	CHREQ
		7:0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	NOLLVV	RELOAD	HALFEN
0x04CE	DMAINT0	15:8	DBUFWF	LOVVII	DONLII	HALIII	CHSEL[6:0]			HALILIN
		7:0	DDOI WI			SADD				
0x04D0	DMASRC0	15:8					R[15:8]			
		7:0					R[7:0]			
0x04D2	DMADST0	15:8					R[15:8]			
		7:0					[7:0]			
0x04D4	DMACNT0	15:8					[15:8]			
		7:0	SAMO	DE[1:0]	DAMO	DE[1:0]		DE[1:0]	SIZE	CHEN
0x04D6	DMACH1	15:8				Reserved		NULLW	RELOAD	CHREQ
		7:0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	110 ==11		HALFEN
0x04D8	DMAINT1	15:8	DBUFWF	_	-		CHSEL[6:0]			
		7:0				SADD	PR[7:0]			
0x04DA	DMASRC1	15:8					R[15:8]			
	DILLBOTI	7:0					PR[7:0]			
0x04DC	DMADST1	15:8				DADD	R[15:8]			
004DE	DMACNITA	7:0				CNT	[7:0]			
0x04DE	DMACNT1	15:8				CNT	[15:8]			
0x04E0	DMACH2	7:0	SAMO	DE[1:0]	DAMO	DE[1:0]	TRMO	DE[1:0]	SIZE	CHEN
UXU4EU	DIVIACEZ	15:8				Reserved		NULLW	RELOAD	CHREQ
0x04E2	DMAINT2	7:0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN
UXU4L2	DIVIAINTZ	15:8	DBUFWF				CHSEL[6:0]			
0x04E4	DMASRC2	7:0					R[7:0]			
0.00 FE-7	2111 101102	15:8					R[15:8]			
0x04E6	DMADST2	7:0					PR[7:0]			
		15:8					R[15:8]			
0x04E8	DMACNT2	7:0					[7:0]			
-		15:8		DE11 01			[15:8]	DE:/ 07	0	01
0x04EA	DMACH3	7:0	SAMO	DE[1:0]	DAMO	DE[1:0]	TRMO	DE[1:0]	SIZE	CHEN
		15:8	11101115	101115	DOMEST	Reserved	0) (D: :::::=	NULLW	RELOAD	CHREQ
0x04EC	DMAINT3	7:0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN
		15:8	DBUFWF			0455	CHSEL[6:0]			
0x04EE	DMASRC3	7:0					P[7:0]			
		15:8 7:0					R[15:8]			
0x04F0	DMADST3	15:8					P[7:0]			
		7:0	DADDR[15:8] CNT[7:0]							
0x04F2	DMACNT3		15:8 CNT[15:8]							
15:8 CNT[15:8] 2::0154					CHEN					
0x04F4	DMACH4	15:8	SAIVIO	J=[1.0]	DAIVIO	Reserved	TIXIVIO	NULLW	RELOAD	CHEN
		7:0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	INOLLYV	RELOAD	HALFEN
0x04F6	DMAINT4	15:8	DBUFWF	LOVVII	DONLII	11/16/11	CHSEL[6:0]			III ALI LIN
		13.0	DDOI WI				OI IOLL[0.0]			


Direct Memory Access Controller (DMA)

conti	nued									
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x04F8	DMASRC4	7:0				SADE	PR[7:0]			
0X04F6	DIVIAGRU4	15:8				SADD	R[15:8]			
0x04FA	DMADST4	7:0				DADE	PR[7:0]			
UXU4FA	DIVIADS 14	15:8				DADD	R[15:8]			
0x04FC	DMACNT4	7:0				CNT	[7:0]			
UXU4FC	DIVIACIN14	15:8				CNT	[15:8]			
0x04FE	DMACH5	7:0	SAMOI	DE[1:0]	DAMODE[1:0] TRMO		DE[1:0]	SIZE	CHEN	
UXU4FE	DIVIACHS	15:8				Reserved		NULLW	RELOAD	CHREQ
0x0500	DMAINT5	7:0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN
000000	DIVIAINTS	15:8	DBUFWF				CHSEL[6:0]		•	
0x0502	DMASRC5	7:0				SADE	P[7:0]			
0x0302	DIVIAGROS	15:8				SADD	R[15:8]			
0x0504	DMADST5	7:0	DADDR[7:0]							
0x0304	DIVIADS 15	15:8		DADDR[15:8]						
0x0506	DMACNITE	7:0				CNT	[7:0]			
000000	DMACNT5	15:8				CNT	[15:8]			

Direct Memory Access Controller (DMA)

6.4.1 DMA Engine Control Register

Name: DMACON Offset: 0x4C4

Bit 15 - DMAEN DMA Module Enable bit

Value	Description
1	Enables module
0	Disables module and terminates all active DMA operation(s)

Bit 0 - PRSSEL Channel Priority Scheme Selection bit

Value	Description
1	Round robin scheme
0	Fixed priority scheme

Direct Memory Access Controller (DMA)

6.4.2 DMA Buffer Register

Name: DMABUF Offset: 0x4C6

Bit	15	14	13	12	11	10	9	8
				DMABU	JF[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		DMABUF[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - DMABUF[15:0] DMA Buffer bits

Direct Memory Access Controller (DMA)

6.4.3 DMA Low Address Limit Register

Name: DMAL Offset: 0x4C8

Bit	15	14	13	12	11	10	9	8
				LADDI	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				LADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - LADDR[15:0] DMA Low Address Limit bits

Direct Memory Access Controller (DMA)

6.4.4 DMA High Address Limit Register

Name: DMAH Offset: 0x4CA

Bit	15	14	13	12	11	10	9	8
				HADD	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				HADD	PR[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - HADDR[15:0] DMA High Address Limit bits

Direct Memory Access Controller (DMA)

6.4.5 DMA Channel 0 Control Register

Name: DMACH0 Offset: 0x4CC

Notes:

- 1. Only the original DMACNT0 is required to be stored to recover the original DMASRC0 and DMADST0 values.
- 2. DMACNT0 will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
- 3. The number of transfers executed while CHREQ is set depends on the configuration of TRMODE[1:0].

Legend: r = Reserved bit

Bit	15	14	13	12	11	10	9	8
				Reserved		NULLW	RELOAD	CHREQ
Access				r		R/W	R/W	R/W
Reset				0		0	0	0
Bit	7	6	5	4	3	2	1	0
	SAMO	DE[1:0]	DAMO	DE[1:0]	TRMO	DE[1:0]	SIZE	CHEN
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 12 - Reserved Maintain as '0'.

Bit 10 - NULLW Null Write Mode bit

Value	Description
1	A dummy write is initiated to DMASRC0 for every write to DMADST0
0	No dummy write is initiated

Bit 9 - RELOAD Address and Count Reload bit(1)

Value	Description
1	DMASRC0, DMADST0 and DMACNT0 registers are reloaded to their previous values upon the start of
	the next operation
0	DMASRC0, DMADST0 and DMACNT0 are not reloaded on the start of the next operation ⁽²⁾

Bit 8 - CHREQ DMA Channel Software Request bit(3)

Value	Description
1	A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer
0	No DMA request is pending

Bits 7:6 - SAMODE[1:0] Source Address Mode Selection bits

Value	Description
11	Reserved
10	DMASRC0 is decremented based on the SIZE bit after a transfer completion
01	DMASRC0 is incremented based on the SIZE bit after a transfer completion
00	DMASRC0 remains unchanged after a transfer completion

Bits 5:4 - DAMODE[1:0] Destination Address Mode Selection bits

Value	Description
11	DMADST0 is used in Peripheral Indirect Addressing and remains unchanged
10	DMADST0 is decremented based on the SIZE bit after a transfer completion
01	DMADST0 is incremented based on the SIZE bit after a transfer completion
00	DMADST0 remains unchanged after a transfer completion

Bits 3:2 - TRMODE[1:0] Transfer Mode Selection bits

Direct Memory Access Controller (DMA)

Value	Description
11	Repeated Continuous mode
10	Continuous mode
01	Repeated One-Shot mode
00	One-Shot mode

Bit 1 - SIZE Data Size Selection bit

Value	Description
1	Byte (8-bit)
0	Word (16-bit)

Bit 0 - CHEN DMA Channel Enable bit

Value	Description
1	The corresponding channel is enabled
0	The corresponding channel is disabled

Direct Memory Access Controller (DMA)

6.4.6 DMA Channel 0 Interrupt Register

Name: DMAINT0 Offset: 0x4CE

Notes:

- 1. Setting these flags in software does not generate an interrupt.
- Testing for address limit violations (DMASRC0 or DMADST0 is either greater than DMAH or less than DMAL) is NOT done before the actual access.

Bit	15	14	13	12	11	10	9	8
	DBUFWF				CHSEL[6:0]			
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN
Access	R/W	R/W	R/W	R/W	R/W			R/W
Reset	0	0	0	0	0			0

Bit 15 - DBUFWF DMA Buffered Data Write Flag bit(1)

Value	Description
1	The content of the DMA buffer has not been written to the location specified in DMADST0 or
	DMASRC0 in Null Write mode
0	The content of the DMA buffer has been written to the location specified in DMADST0 or DMASRC0 in
	Null Write mode

Bits 14:8 - CHSEL[6:0] DMA Channel Trigger Selection bits

See Table 6-1 for a complete list.

Bit 7 - HIGHIF DMA High Address Limit Interrupt Flag bit (1,2)

Value	Description				
1	The DMA channel has attempted to access an address higher than DMAH or the upper limit of the data				
	RAM space				
0	The DMA channel has not invoked the high address limit interrupt				

Bit 6 - LOWIF DMA Low Address Limit Interrupt Flag bit^(1,2)

Value	Description
1	The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above the
	SFR range (07FFh)
0	The DMA channel has not invoked the low address limit interrupt

Bit 5 – DONEIF DMA Complete Operation Interrupt Flag bit⁽¹⁾

Value	Description
<u>If CHEN = 1:</u>	
1	The previous DMA session has ended with completion
0	The current DMA session has not yet completed
<u>If CHEN = 0:</u>	
1	The previous DMA session has ended with completion
0	The previous DMA session has ended without completion

Bit 4 – HALFIF DMA 50% Watermark Level Interrupt Flag bit⁽¹⁾

Value	Description
1	DMACNT0 has reached the halfway point to 0000h
0	DMACNT0 has not reached the halfway point

Datasheet

Direct Memory Access Controller (DMA)

Bit 3 – OVRUNIF DMA Channel Overrun Flag bit⁽¹⁾

	_
Value	Description
1	The DMA channel is triggered while it's still completing the operation based on the previous trigger
0	The overrun condition has not occurred

Bit 0 - HALFEN Halfway Completion Watermark bit

Value	Description
1	Interrupts are invoked when DMACNT0 has reached its halfway point and at completion
0	An interrupt is invoked only at the completion of the transfer

Direct Memory Access Controller (DMA)

6.4.7 DMA Data Source Address Pointer 0 Register

Name: DMASRC0 Offset: 0x4D0

Bit	15	14	13	12	11	10	9	8
				SADDI	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				SADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - SADDR[15:0] DMA Data Source Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.8 DMA Data Source Address Pointer 0 Register

Name: DMADST0 Offset: 0x4D2

Bit	15	14	13	12	11	10	9	8
				DADD	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - DADDR[15:0] DMA Data Destination Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.9 DMA Transaction Counter 0 Register

Name: DMACNT0 Offset: 0x4D4

Bit	15	14	13	12	11	10	9	8
				CNT	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CNT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - CNT[15:0] DMA Transaction Counter bits

Direct Memory Access Controller (DMA)

6.4.10 DMA Channel 1 Control Register

Name: DMACH1 Offset: 0x4D6

Notes:

- 1. Only the original DMACNT1 is required to be stored to recover the original DMASRC1 and DMADST1 values.
- 2. DMACNT1 will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
- 3. The number of transfers executed while CHREQ is set depends on the configuration of TRMODE[1:0].

Legend: r = Reserved bit

Bit	15	14	13	12	11	10	9	8
				Reserved		NULLW	RELOAD	CHREQ
Access				r		R/W	R/W	R/W
Reset				0		0	0	0
Bit	7	6	5	4	3	2	1	0
	SAMO	DE[1:0]	DAMO	DE[1:0]	TRMO	DE[1:0]	SIZE	CHEN
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 12 - Reserved Maintain as '0'.

Bit 10 - NULLW Null Write Mode bit

Value	Description
1	A dummy write is initiated to DMASRC1 for every write to DMADST1
0	No dummy write is initiated

Bit 9 - RELOAD Address and Count Reload bit(1)

Value	Description
1	DMASRC1, DMADST1 and DMACNT1 registers are reloaded to their previous values upon the start of
	the next operation
0	DMASRC1, DMADST1 and DMACNT1 are not reloaded on the start of the next operation ⁽²⁾

Bit 8 - CHREQ DMA Channel Software Request bit(3)

V	alue	Description
1		A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer
0		No DMA request is pending

Bits 7:6 - SAMODE[1:0] Source Address Mode Selection bits

Value	Description
11	Reserved
10	DMASRC1 is decremented based on the SIZE bit after a transfer completion
01	DMASRC1 is incremented based on the SIZE bit after a transfer completion
00	DMASRC1 remains unchanged after a transfer completion

Bits 5:4 - DAMODE[1:0] Destination Address Mode Selection bits

Value	Description
11	DMADST1 is used in Peripheral Indirect Addressing and remains unchanged
10	DMADST1 is decremented based on the SIZE bit after a transfer completion
01	DMADST1 is incremented based on the SIZE bit after a transfer completion
00	DMADST1 remains unchanged after a transfer completion

Bits 3:2 - TRMODE[1:0] Transfer Mode Selection bits

Direct Memory Access Controller (DMA)

Value	Description
11	Repeated Continuous mode
10	Continuous mode
01	Repeated One-Shot mode
00	One-Shot mode

Bit 1 - SIZE Data Size Selection bit

Value	Description
1	Byte (8-bit)
0	Word (16-bit)

Bit 0 - CHEN DMA Channel Enable bit

Value	Description
1	The corresponding channel is enabled
0	The corresponding channel is disabled

Direct Memory Access Controller (DMA)

6.4.11 DMA Channel 1 Interrupt Register

Name: DMAINT1 Offset: 0x4D8

Notes:

- 1. Setting these flags in software does not generate an interrupt.
- Testing for address limit violations (DMASRC1 or DMADST1 is either greater than DMAH or less than DMAL) is NOT done before the actual access.

Bit	15	14	13	12	11	10	9	8
	DBUFWF CF			CHSEL[6:0]				
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN
Access	R/W	R/W	R/W	R/W	R/W			R/W
Reset	0	0	0	0	0			0

Bit 15 - DBUFWF DMA Buffered Data Write Flag bit(1)

Value	Description
1	The content of the DMA buffer has not been written to the location specified in DMADST1 or
	DMASRC1 in Null Write mode
0	The content of the DMA buffer has been written to the location specified in DMADST1 or DMASRC1 in
	Null Write mode

Bits 14:8 - CHSEL[6:0] DMA Channel Trigger Selection bits

See Table 6-1 for a complete list.

Bit 7 - HIGHIF DMA High Address Limit Interrupt Flag bit(1,2)

Value	Description
1	The DMA channel has attempted to access an address higher than DMAH or the upper limit of the data
	RAM space
0	The DMA channel has not invoked the high address limit interrupt

Bit 6 - LOWIF DMA Low Address Limit Interrupt Flag bit (1,2)

Value	Description
1	The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above the
	SFR range (07FFh)
0	The DMA channel has not invoked the low address limit interrupt

Bit 5 - DONEIF DMA Complete Operation Interrupt Flag bit⁽¹⁾

Value	Description
<u>If CHEN = 1:</u>	
1	The previous DMA session has ended with completion
0	The current DMA session has not yet completed
<u>If CHEN = 0:</u>	
1	The previous DMA session has ended with completion
0	The previous DMA session has ended without completion

Bit 4 – HALFIF DMA 50% Watermark Level Interrupt Flag bit⁽¹⁾

Value	Description
1	DMACNT1 has reached the halfway point to 0000h
0	DMACNT1 has not reached the halfway point

Direct Memory Access Controller (DMA)

Bit 3 – OVRUNIF DMA Channel Overrun Flag bit⁽¹⁾

Value	Description
1	The DMA channel is triggered while it's still completing the operation based on the previous trigger
0	The overrun condition has not occurred

Bit 0 - HALFEN Halfway Completion Watermark bit

Value	Description
1	Interrupts are invoked when DMACNT1 has reached its halfway point and at completion
0	An interrupt is invoked only at the completion of the transfer

Direct Memory Access Controller (DMA)

6.4.12 DMA Data Source Address Pointer 1 Register

Name: DMASRC1 Offset: 0x4DA

Bit	15	14	13	12	11	10	9	8
	SADDR[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				SADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - SADDR[15:0] DMA Data Source Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.13 DMA Data Source Address Pointer 1 Register

Name: DMADST1 Offset: 0x4DC

Bit	15	14	13	12	11	10	9	8	
	DADDR[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				DADD	R[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - DADDR[15:0] DMA Data Destination Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.14 DMA Transaction Counter 1 Register

Name: DMACNT1 Offset: 0x4DE

Bit	15	14	13	12	11	10	9	8
				CNT	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CNT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - CNT[15:0] DMA Transaction Counter bits

Direct Memory Access Controller (DMA)

6.4.15 DMA Channel 2 Control Register

Name: DMACH2 Offset: 0x4E0

Notes:

- 1. Only the original DMACNT2 is required to be stored to recover the original DMASRC2 and DMADST2 values.
- 2. DMACNT2 will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
- 3. The number of transfers executed while CHREQ is set depends on the configuration of TRMODE[1:0].

Legend: r = Reserved bit

Bit	15	14	13	12	11	10	9	8
				Reserved		NULLW	RELOAD	CHREQ
Access				r		R/W	R/W	R/W
Reset				0		0	0	0
Bit	7	6	5	4	3	2	1	0
	SAMO	DE[1:0]	DAMO	DE[1:0]	TRMO	DE[1:0]	SIZE	CHEN
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 12 - Reserved Maintain as '0'.

Bit 10 - NULLW Null Write Mode bit

Value	Description
1	A dummy write is initiated to DMASRC2 for every write to DMADST2
0	No dummy write is initiated

Bit 9 - RELOAD Address and Count Reload bit(1)

Value	Description
1	DMASRC2, DMADST2 and DMACNT2 registers are reloaded to their previous values upon the start of
	the next operation
0	DMASRC2, DMADST2 and DMACNT2 are not reloaded on the start of the next operation ⁽²⁾

Bit 8 - CHREQ DMA Channel Software Request bit(3)

Value	Description
1	A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer
0	No DMA request is pending

Bits 7:6 - SAMODE[1:0] Source Address Mode Selection bits

Value	Description
11	Reserved
10	DMASRC2 is decremented based on the SIZE bit after a transfer completion
01	DMASRC2 is incremented based on the SIZE bit after a transfer completion
00	DMASRC2 remains unchanged after a transfer completion

Bits 5:4 - DAMODE[1:0] Destination Address Mode Selection bits

Value	Description
11	DMADST2 is used in Peripheral Indirect Addressing and remains unchanged
10	DMADST2 is decremented based on the SIZE bit after a transfer completion
01	DMADST2 is incremented based on the SIZE bit after a transfer completion
00	DMADST2 remains unchanged after a transfer completion

Bits 3:2 - TRMODE[1:0] Transfer Mode Selection bits

Direct Memory Access Controller (DMA)

Value	Description
11	Repeated Continuous mode
10	Continuous mode
01	Repeated One-Shot mode
00	One-Shot mode

Bit 1 - SIZE Data Size Selection bit

Value	Description
1	Byte (8-bit)
0	Word (16-bit)

Bit 0 - CHEN DMA Channel Enable bit

Value	Description
1	The corresponding channel is enabled
0	The corresponding channel is disabled

Datasheet

Direct Memory Access Controller (DMA)

6.4.16 DMA Channel 2 Interrupt Register

Name: DMAINT2 Offset: 0x4E2

Notes:

- 1. Setting these flags in software does not generate an interrupt.
- Testing for address limit violations (DMASRC2 or DMADST2 is either greater than DMAH or less than DMAL) is NOT done before the actual access.

Bit	15	14	13	12	11	10	9	8
	DBUFWF				CHSEL[6:0]			
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN
Access	R/W	R/W	R/W	R/W	R/W			R/W
Reset	0	0	0	0	0			0

Bit 15 - DBUFWF DMA Buffered Data Write Flag bit(1)

Value	Description
1	The content of the DMA buffer has not been written to the location specified in DMADST2 or
	DMASRC2 in Null Write mode
0	The content of the DMA buffer has been written to the location specified in DMADST2 or DMASRC2 in
	Null Write mode

Bits 14:8 - CHSEL[6:0] DMA Channel Trigger Selection bits

See Table 6-1 for a complete list.

Bit 7 - HIGHIF DMA High Address Limit Interrupt Flag bit (1,2)

Value	Description
1	The DMA channel has attempted to access an address higher than DMAH or the upper limit of the data
	RAM space
0	The DMA channel has not invoked the high address limit interrupt

Bit 6 - LOWIF DMA Low Address Limit Interrupt Flag bit(1,2)

Value	Description
1	The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above the
	SFR range (07FFh)
0	The DMA channel has not invoked the low address limit interrupt

Bit 5 - DONEIF DMA Complete Operation Interrupt Flag bit⁽¹⁾

Value	Description
<u>If CHEN = 1:</u>	
1	The previous DMA session has ended with completion
0	The current DMA session has not yet completed
<u>If CHEN = 0:</u>	
1	The previous DMA session has ended with completion
0	The previous DMA session has ended without completion

Bit 4 – HALFIF DMA 50% Watermark Level Interrupt Flag bit⁽¹⁾

Value	Description
1	DMACNT2 has reached the halfway point to 0000h
0	DMACNT2 has not reached the halfway point

Direct Memory Access Controller (DMA)

Bit 3 – OVRUNIF DMA Channel Overrun Flag bit⁽¹⁾

	_
Value	Description
1	The DMA channel is triggered while it's still completing the operation based on the previous trigger
0	The overrun condition has not occurred

Bit 0 - HALFEN Halfway Completion Watermark bit

Value	Description
1	Interrupts are invoked when DMACNT2 has reached its halfway point and at completion
0	An interrupt is invoked only at the completion of the transfer

Direct Memory Access Controller (DMA)

6.4.17 DMA Data Source Address Pointer 2 Register

Name: DMASRC2 Offset: 0x4E4

Bit	15	14	13	12	11	10	9	8
				SADDI	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				SADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - SADDR[15:0] DMA Data Source Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.18 DMA Data Source Address Pointer 2 Register

Name: DMADST2 Offset: 0x4E6

Bit	15	14	13	12	11	10	9	8
				DADD	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - DADDR[15:0] DMA Data Destination Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.19 DMA Transaction Counter 2 Register

Name: DMACNT2 Offset: 0x4E8

Bit	15	14	13	12	11	10	9	8
				CNT	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CNT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - CNT[15:0] DMA Transaction Counter bits

Direct Memory Access Controller (DMA)

6.4.20 DMA Channel 3 Control Register

Name: DMACH3 Offset: 0x4EA

Notes:

- 1. Only the original DMACNT3 is required to be stored to recover the original DMASRC3 and DMADST3 values.
- 2. DMACNT3 will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
- 3. The number of transfers executed while CHREQ is set depends on the configuration of TRMODE[1:0].

Legend: r = Reserved bit

Bit	15	14	13	12	11	10	9	8
				Reserved		NULLW	RELOAD	CHREQ
Access				r		R/W	R/W	R/W
Reset				0		0	0	0
Bit	7	6	5	4	3	2	1	0
	SAMO	DE[1:0]	DAMO	DE[1:0]	TRMO	DE[1:0]	SIZE	CHEN
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 12 - Reserved Maintain as '0'.

Bit 10 - NULLW Null Write Mode bit

Value	Description
1	A dummy write is initiated to DMASRC3 for every write to DMADST3
0	No dummy write is initiated

Bit 9 - RELOAD Address and Count Reload bit(1)

Value	Description
1	DMASRC3, DMADST3 and DMACNT3 registers are reloaded to their previous values upon the start of
	the next operation
0	DMASRC3, DMADST3 and DMACNT3 are not reloaded on the start of the next operation ⁽²⁾

Bit 8 - CHREQ DMA Channel Software Request bit(3)

Value	Description
1	A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer
0	No DMA request is pending

Bits 7:6 - SAMODE[1:0] Source Address Mode Selection bits

Value	Description
11	Reserved
10	DMASRC3 is decremented based on the SIZE bit after a transfer completion
01	DMASRC3 is incremented based on the SIZE bit after a transfer completion
00	DMASRC3 remains unchanged after a transfer completion

Bits 5:4 - DAMODE[1:0] Destination Address Mode Selection bits

Value	Description
11	DMADST3 is used in Peripheral Indirect Addressing and remains unchanged
10	DMADST3 is decremented based on the SIZE bit after a transfer completion
01	DMADST3 is incremented based on the SIZE bit after a transfer completion
00	DMADST3 remains unchanged after a transfer completion

Bits 3:2 - TRMODE[1:0] Transfer Mode Selection bits

Direct Memory Access Controller (DMA)

Value	Description
11	Repeated Continuous mode
10	Continuous mode
01	Repeated One-Shot mode
00	One-Shot mode

Bit 1 - SIZE Data Size Selection bit

Value	Description
1	Byte (8-bit)
0	Word (16-bit)

Bit 0 - CHEN DMA Channel Enable bit

Value	Description
1	The corresponding channel is enabled
0	The corresponding channel is disabled

Direct Memory Access Controller (DMA)

6.4.21 DMA Channel 3 Interrupt Register

Name: DMAINT3 Offset: 0x4EC

Notes:

1. Setting these flags in software does not generate an interrupt.

Testing for address limit violations (DMASRC3 or DMADST3 is either greater than DMAH or less than DMAL) is NOT done before the actual access.

Bit	15	14	13	12	11	10	9	8
	DBUFWF				CHSEL[6:0]			
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN
Access	R/W	R/W	R/W	R/W	R/W			R/W
Reset	0	0	0	0	0			0

Bit 15 - DBUFWF DMA Buffered Data Write Flag bit(1)

Value	Description
1	The content of the DMA buffer has not been written to the location specified in DMADST3 or
	DMASRC3 in Null Write mode
0	The content of the DMA buffer has been written to the location specified in DMADST3 or DMASRC3 in
	Null Write mode

Bits 14:8 - CHSEL[6:0] DMA Channel Trigger Selection bits

See Table 6-1 for a complete list.

Bit 7 - HIGHIF DMA High Address Limit Interrupt Flag bit(1,2)

Value	Description				
1	The DMA channel has attempted to access an address higher than DMAH or the upper limit of the data				
	RAM space				
0	The DMA channel has not invoked the high address limit interrupt				

Bit 6 - LOWIF DMA Low Address Limit Interrupt Flag bit (1,2)

Value	Description
1	The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above the
	SFR range (07FFh)
0	The DMA channel has not invoked the low address limit interrupt

Bit 5 – DONEIF DMA Complete Operation Interrupt Flag bit⁽¹⁾

Value	Description
<u>If CHEN = 1:</u>	
1	The previous DMA session has ended with completion
0	The current DMA session has not yet completed
<u>If CHEN = 0:</u>	
1	The previous DMA session has ended with completion
0	The previous DMA session has ended without completion

Bit 4 – HALFIF DMA 50% Watermark Level Interrupt Flag bit⁽¹⁾

Value	Description
1	DMACNT3 has reached the halfway point to 0000h
0	DMACNT3 has not reached the halfway point

Direct Memory Access Controller (DMA)

Bit 3 – OVRUNIF DMA Channel Overrun Flag bit⁽¹⁾

	_
Value	Description
1	The DMA channel is triggered while it's still completing the operation based on the previous trigger
0	The overrun condition has not occurred

Bit 0 - HALFEN Halfway Completion Watermark bit

Value	Description
1	Interrupts are invoked when DMACNT3 has reached its halfway point and at completion
0	An interrupt is invoked only at the completion of the transfer

Direct Memory Access Controller (DMA)

6.4.22 DMA Data Source Address Pointer 3 Register

Name: DMASRC3 Offset: 0x4EE

Bit	15	14	13	12	11	10	9	8
				SADDI	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				SADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - SADDR[15:0] DMA Data Source Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.23 DMA Data Source Address Pointer 3 Register

Name: DMADST3 Offset: 0x4F0

Bit	15	14	13	12	11	10	9	8
				DADD	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - DADDR[15:0] DMA Data Destination Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.24 DMA Transaction Counter 3 Register

Name: DMACNT3 Offset: 0x4F2

Bit	15	14	13	12	11	10	9	8
				CNT	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CNT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - CNT[15:0] DMA Transaction Counter bits

Direct Memory Access Controller (DMA)

6.4.25 DMA Channel 4 Control Register

Name: DMACH4 Offset: 0x4F4

Notes:

- 1. Only the original DMACNT4 is required to be stored to recover the original DMASRC4 and DMADST4 values.
- 2. DMACNT4 will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
- 3. The number of transfers executed while CHREQ is set depends on the configuration of TRMODE[1:0].

Legend: r = Reserved bit

Bit	15	14	13	12	11	10	9	8
				Reserved		NULLW	RELOAD	CHREQ
Access				r		R/W	R/W	R/W
Reset				0		0	0	0
Bit	7	6	5	4	3	2	1	0
	SAMO	DE[1:0]	DAMO	DE[1:0]	TRMO	DE[1:0]	SIZE	CHEN
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 12 - Reserved Maintain as '0'.

Bit 10 - NULLW Null Write Mode bit

Value	Description
1	A dummy write is initiated to DMASRC4 for every write to DMADST4
0	No dummy write is initiated

Bit 9 - RELOAD Address and Count Reload bit(1)

Value	Description
1	DMASRC4, DMADST4 and DMACNT4 registers are reloaded to their previous values upon the start of
	the next operation
0	DMASRC4, DMADST4 and DMACNT4 are not reloaded on the start of the next operation ⁽²⁾

Bit 8 - CHREQ DMA Channel Software Request bit(3)

Value	Description
1	A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer
0	No DMA request is pending

Bits 7:6 - SAMODE[1:0] Source Address Mode Selection bits

Value	Description
11	Reserved
10	DMASRC4 is decremented based on the SIZE bit after a transfer completion
01	DMASRC4 is incremented based on the SIZE bit after a transfer completion
00	DMASRC4 remains unchanged after a transfer completion

Bits 5:4 - DAMODE[1:0] Destination Address Mode Selection bits

Value	Description
11	DMADST4 is used in Peripheral Indirect Addressing and remains unchanged
10	DMADST4 is decremented based on the SIZE bit after a transfer completion
01	DMADST4 is incremented based on the SIZE bit after a transfer completion
00	DMADST4 remains unchanged after a transfer completion

Bits 3:2 - TRMODE[1:0] Transfer Mode Selection bits

Direct Memory Access Controller (DMA)

Value	Description
11	Repeated Continuous mode
10	Continuous mode
01	Repeated One-Shot mode
00	One-Shot mode

Bit 1 - SIZE Data Size Selection bit

Value	Description
1	Byte (8-bit)
0	Word (16-bit)

Bit 0 - CHEN DMA Channel Enable bit

Value	Description
1	The corresponding channel is enabled
0	The corresponding channel is disabled

Direct Memory Access Controller (DMA)

6.4.26 DMA Channel 4 Interrupt Register

Name: DMAINT4 Offset: 0x4F6

Notes:

- 1. Setting these flags in software does not generate an interrupt.
- Testing for address limit violations (DMASRC4 or DMADST4 is either greater than DMAH or less than DMAL) is NOT done before the actual access.

Bit	15	14	13	12	11	10	9	8
	DBUFWF		CHSEL[6:0]					
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN
Access	R/W	R/W	R/W	R/W	R/W			R/W
Reset	0	0	0	0	0			0

Bit 15 - DBUFWF DMA Buffered Data Write Flag bit(1)

Value	Description
1	The content of the DMA buffer has not been written to the location specified in DMADST4 or
	DMASRC4 in Null Write mode
0	The content of the DMA buffer has been written to the location specified in DMADST4 or DMASRC4 in
	Null Write mode

Bits 14:8 - CHSEL[6:0] DMA Channel Trigger Selection bits

See Table 6-1 for a complete list.

Bit 7 - HIGHIF DMA High Address Limit Interrupt Flag bit (1,2)

Value	Description
1	The DMA channel has attempted to access an address higher than DMAH or the upper limit of the data
	RAM space
0	The DMA channel has not invoked the high address limit interrupt

Bit 6 - LOWIF DMA Low Address Limit Interrupt Flag bit^(1,2)

Value	Description
1	The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above the
	SFR range (07FFh)
0	The DMA channel has not invoked the low address limit interrupt

Bit 5 - DONEIF DMA Complete Operation Interrupt Flag bit⁽¹⁾

Value	Description
<u>If CHEN = 1:</u>	
1	The previous DMA session has ended with completion
0	The current DMA session has not yet completed
<u>If CHEN = 0:</u>	
1	The previous DMA session has ended with completion
0	The previous DMA session has ended without completion

Bit 4 - HALFIF DMA 50% Watermark Level Interrupt Flag bit(1)

	LET II DIMA 30 % Watermark Level Interrupt Flag bit
Value	Description
1	DMACNT4 has reached the halfway point to 0000h
0	DMACNT4 has not reached the halfway point

Datasheet

Direct Memory Access Controller (DMA)

Bit 3 – OVRUNIF DMA Channel Overrun Flag bit⁽¹⁾

Value	Description
1	The DMA channel is triggered while it's still completing the operation based on the previous trigger
0	The overrun condition has not occurred

Bit 0 - HALFEN Halfway Completion Watermark bit

Value	Description
1	Interrupts are invoked when DMACNT4 has reached its halfway point and at completion
0	An interrupt is invoked only at the completion of the transfer

Direct Memory Access Controller (DMA)

6.4.27 DMA Data Source Address Pointer 4 Register

Name: DMASRC4 Offset: 0x4F8

Bit	15	14	13	12	11	10	9	8
	SADDR[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				SADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - SADDR[15:0] DMA Data Source Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.28 DMA Data Source Address Pointer 4 Register

Name: DMADST4 Offset: 0x4FA

Bit	15	14	13	12	11	10	9	8	
	DADDR[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				DADD	R[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - DADDR[15:0] DMA Data Destination Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.29 DMA Transaction Counter 4 Register

Name: DMACNT4 Offset: 0x4FC

Bit	15	14	13	12	11	10	9	8
				CNT	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CNT	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - CNT[15:0] DMA Transaction Counter bits

Direct Memory Access Controller (DMA)

6.4.30 DMA Channel 5 Control Register

Name: DMACH5 Offset: 0x4FE

Notes:

- 1. Only the original DMACNT5 is required to be stored to recover the original DMASRC5 and DMADST5 values.
- DMACNT5 will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
- 3. The number of transfers executed while CHREQ is set depends on the configuration of TRMODE[1:0].

Legend: r = Reserved bit

Bit	15	14	13	12	11	10	9	8
				Reserved		NULLW	RELOAD	CHREQ
Access				r		R/W	R/W	R/W
Reset				0		0	0	0
Bit	7	6	5	4	3	2	1	0
	SAMO	DE[1:0]	DAMO	DE[1:0]	TRMO	DE[1:0]	SIZE	CHEN
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 12 - Reserved Maintain as '0'.

Bit 10 - NULLW Null Write Mode bit

Value	Description
1	A dummy write is initiated to DMASRC5 for every write to DMADST5
0	No dummy write is initiated

Bit 9 - RELOAD Address and Count Reload bit(1)

Value	Description
1	DMASRC5, DMADST5 and DMACNT5 registers are reloaded to their previous values upon the start of
	the next operation
0	DMASRC5, DMADST5 and DMACNT5 are not reloaded on the start of the next operation ⁽²⁾

Bit 8 - CHREQ DMA Channel Software Request bit(3)

Value	Description
1	A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer
0	No DMA request is pending

Bits 7:6 - SAMODE[1:0] Source Address Mode Selection bits

Value	Description
11	Reserved
10	DMASRC5 is decremented based on the SIZE bit after a transfer completion
01	DMASRC5 is incremented based on the SIZE bit after a transfer completion
00	DMASRC5 remains unchanged after a transfer completion

Bits 5:4 - DAMODE[1:0] Destination Address Mode Selection bits

Value	Description
11	DMADST5 is used in Peripheral Indirect Addressing and remains unchanged
10	DMADST5 is decremented based on the SIZE bit after a transfer completion
01	DMADST5 is incremented based on the SIZE bit after a transfer completion
00	DMADST5 remains unchanged after a transfer completion

Bits 3:2 - TRMODE[1:0] Transfer Mode Selection bits

Direct Memory Access Controller (DMA)

Value	Description
11	Repeated Continuous mode
10	Continuous mode
01	Repeated One-Shot mode
00	One-Shot mode

Bit 1 - SIZE Data Size Selection bit

Value	Description
1	Byte (8-bit)
0	Word (16-bit)

Bit 0 - CHEN DMA Channel Enable bit

Value	Description
1	The corresponding channel is enabled
0	The corresponding channel is disabled

Direct Memory Access Controller (DMA)

6.4.31 DMA Channel 5 Interrupt Register

Name: DMAINT5 Offset: 0x500

Notes:

- 1. Setting these flags in software does not generate an interrupt.
- Testing for address limit violations (DMASRC5 or DMADST5 is either greater than DMAH or less than DMAL) is NOT done before the actual access.

Bit	15	14	13	12	11	10	9	8
	DBUFWF				CHSEL[6:0]			
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF			HALFEN
Access	R/W	R/W	R/W	R/W	R/W			R/W
Reset	0	0	0	0	0			0

Bit 15 - DBUFWF DMA Buffered Data Write Flag bit(1)

Value	Description
1	The content of the DMA buffer has not been written to the location specified in DMADST5 or
	DMASRC5 in Null Write mode
0	The content of the DMA buffer has been written to the location specified in DMADST5 or DMASRC5 in
	Null Write mode

Bits 14:8 - CHSEL[6:0] DMA Channel Trigger Selection bits

See Table 6-1 for a complete list.

Bit 7 - HIGHIF DMA High Address Limit Interrupt Flag bit (1,2)

Value	Description
1	The DMA channel has attempted to access an address higher than DMAH or the upper limit of the data
	RAM space
0	The DMA channel has not invoked the high address limit interrupt

Bit 6 - LOWIF DMA Low Address Limit Interrupt Flag bit(1,2)

Value	Description
1	The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above the
	SFR range (07FFh)
0	The DMA channel has not invoked the low address limit interrupt

Bit 5 – DONEIF DMA Complete Operation Interrupt Flag bit⁽¹⁾

Value	Description
<u>If CHEN = 1:</u>	
1	The previous DMA session has ended with completion
0	The current DMA session has not yet completed
<u>If CHEN = 0:</u>	
1	The previous DMA session has ended with completion
0	The previous DMA session has ended without completion

Bit 4 – HALFIF DMA 50% Watermark Level Interrupt Flag bit⁽¹⁾

Value	Description
1	DMACNT5 has reached the halfway point to 0000h
0	DMACNT5 has not reached the halfway point

Direct Memory Access Controller (DMA)

Bit 3 – OVRUNIF DMA Channel Overrun Flag bit⁽¹⁾

	_
Value	Description
1	The DMA channel is triggered while it's still completing the operation based on the previous trigger
0	The overrun condition has not occurred

Bit 0 - HALFEN Halfway Completion Watermark bit

Value	Description
1	Interrupts are invoked when DMACNT5 has reached its halfway point and at completion
0	An interrupt is invoked only at the completion of the transfer

Direct Memory Access Controller (DMA)

6.4.32 DMA Data Source Address Pointer 5 Register

Name: DMASRC5 Offset: 0x502

Bit	15	14	13	12	11	10	9	8			
	SADDR[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				SADD	R[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - SADDR[15:0] DMA Data Source Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.33 DMA Data Source Address Pointer 5 Register

Name: DMADST5 Offset: 0x504

Bit	15	14	13	12	11	10	9	8			
	DADDR[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	DADDR[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - DADDR[15:0] DMA Data Destination Address Pointer bits

Direct Memory Access Controller (DMA)

6.4.34 DMA Transaction Counter 5 Register

Name: DMACNT5 Offset: 0x506

Bit	15	14	13	12	11	10	9	8			
	CNT[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				CNT	[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - CNT[15:0] DMA Transaction Counter bits

7. Resets

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Reset" (www.microchip.com/DS39712) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- BOR: Brown-out Reset
- · CM: Configuration Mismatch Reset
- · TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see 7.6.1 RCON(1,6)). A POR will clear all bits, except for the BOR and POR (RCON[1:0]) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register values after a device Reset will be meaningful.

Figure 7-1. Reset System Block Diagram

7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC[2:0] bits in the FOSCSEL Flash Configuration Word. Some bits in the NVMCON register are only affected by a POR.

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-1. Note that the Master Reset Signal, SYSRST. is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the $\overline{\text{SYSRST}}$ signal is released.

Table 7-1. Reset Delay Times for Various Device Resets

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR	EC	T _{POR} + T _{STARTUP} + T _{RST}	_	1, 2 , 3
	ECPLL	T _{POR} + T _{STARTUP} + T _{RST}	T _{LOCK}	1, 2, 3, 5
	XT, HS, SOSC	T _{POR} + T _{STARTUP} + T _{RST}	T _{OST}	1, 2, 3, 4
	XTPLL, HSPLL	T _{POR} + T _{STARTUP} + T _{RST}	T _{OST} + T _{LOCK}	1, 2, 3, 4, 5
	FRC, OSCFDIV	T _{POR} + T _{STARTUP} + T _{RST}	T _{FRC}	1, 2, 3, 6, 7
	FRCPLL	T _{POR} + T _{STARTUP} + T _{RST}	T _{FRC} + T _{LOCK}	1, 2, 3, 5, 6
	LPRC	T _{POR} + T _{STARTUP} + T _{RST}	T _{LPRC}	1, 2, 3, 6
BOR	EC	T _{STARTUP} + T _{RST}	_	2, 3
	ECPLL	T _{STARTUP} + T _{RST}	T _{LOCK}	2, 3, 5
	XT, HS, SOSC	T _{STARTUP} + T _{RST}	T _{OST}	2, 3, 4
	XTPLL, HSPLL	T _{STARTUP} + T _{RST}	T _{OST} + T _{LOCK}	2, 3, 4, 5
	FRC, OSCFDIV	T _{STARTUP} + T _{RST}	T _{FRC}	2, 3, 6, 7
	FRCPLL	T _{STARTUP} + T _{RST}	T _{FRC} + T _{LOCK}	2, 3, 5, 6
	LPRC	T _{STARTUP} + T _{RST}	T _{LPRC}	2, 3, 6
MCLR	Any Clock	T _{RST}	_	3
WDT	Any Clock	T _{RST}	_	3
Software	Any clock	T _{RST}	_	3
Illegal Opcode	Any Clock	T _{RST}	_	3
Uninitialized W	Any Clock	T _{RST}	_	3
Trap Conflict	Any Clock	T _{RST}	_	3

Note:

- 1. T_{POR} = Power-on Reset Delay (10 μs nominal).
- 2. $T_{STARTUP} = T_{VREG}$.
- 3. T_{RST} = Internal State Reset Time (2 μs nominal).
- 4. T_{OST} = Oscillator Start-up Timer (OST). A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- 5. T_{LOCK} = PLL Lock Time.
- 6. T_{FRC} and T_{LPRC} = RC Oscillator Start-up Times.
- If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC so the system clock delay is just T_{FRC}, and in such cases, FRC start-up time is valid; it switches to the Primary Oscillator after its respective clock delay.

7.3 Brown-out Reset (BOR)

PIC24FJ512GU410 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN[1:0] (FPOR[1:0]) Configuration bits.

When BOR is enabled, any drop of V_{DD} below the BOR threshold results in a device BOR. Threshold levels are described in 32.2 DC Characteristics.

7.4 Low-Power BOR

Low-Power BOR provides a downside protection when the main BOR controlled BOREN[1:0] Configuration bits are disabled.

Low-Power BOR re-arms the POR to ensure that the device will reset if V_{DD} drops below the POR threshold. The Low-Power BOR trip point is around 2.0V.

Low-Power BOR is selected in the configuration through the LPBOREN(FPOR[3]) bit. Because it is designed for very low-current consumption, the accuracy may vary slightly.

7.5 Clock Source at Reset

After Reset, the system clock source is always selected according to the Oscillator Configuration bits.

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- · The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- · The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system.

Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

Resets

7.6 Reset Register

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x010F										
0x0110	RCON(1,6)	7:0	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR
UXUTTU		15:8	TRAPR	IOPUWR	SBOREN	RETEN			CM	VREGS

7.6.1 Reset Control Register

Name: RCON^(1,6) Offset: 0x110

Notes:

- 1. All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
- 2. If the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect.
- 3. Re-enabling the regulator after it enters Standby mode will add a delay, T_{VREG}, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
- 4. If the FWDTEN[1:0] Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
- The BOREN[1:0] (FPOR[1:0]) Configuration bits must be set to '01' in order for SBOREN to have an effect.
- 6. RCON flags are set to the default state (POR) when the device wakes up from the Low Voltage Retention Sleep mode or if any Reset occurs when the device is in the Retention Sleep mode.

Bit	15	14	13	12	11	10	9	8
	TRAPR	IOPUWR	SBOREN	RETEN			СМ	VREGS
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0 1				0	0
Bit	7	6	5	4	3	2	1	0
	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1

Bit 15 - TRAPR Trap Reset Flag bit

Value	Description
1	A Trap Conflict Reset has occurred
0	A Trap Conflict Reset has not occurred

Bit 14 - IOPUWR Illegal Opcode or Uninitialized W Register Access Reset Flag bit

Value	Description
1	An illegal opcode detection, an illegal address mode or Uninitialized W register used as an Address
	Pointer caused a Reset
0	An illegal opcode or Uninitialized W Register Reset has not occurred

Bit 13 – SBOREN Software Control Over the BOR Function bit⁽⁵⁾

Value	Description
1	BOR is enabled
0	BOR is disabled

Bit 12 - RETEN Retention Mode Enable bit(2)

Value	Description
1	Low-Voltage Regulator mode is enabled while device is in Sleep mode (1.2V regulator supplies to the
	core)
0	Low-Voltage Regulator mode is disabled

Bit 9 - CM Configuration Word Mismatch Reset Flag bit

	- 0	J
Value	Description	
1	A Configurat	on Word Mismatch Reset has occurred
0	A Configurat	on Word Mismatch Reset has not occurred

Bit 8 – VREGS Fast Wake-up from Sleep bit⁽³⁾

Value	Description
1	Regulator Standby mode is disabled (fast wake-up, uses more power)
0	Regulator Standby mode is enabled (slow wake-up, uses less power)

Bit 7 - EXTR External Reset (MCLR) Pin bit

Valu	ue	Description
1		A Master Clear (pin) Reset has occurred
0		A Master Clear (pin) Reset has not occurred

Bit 6 - SWR Software RESET (Instruction) Flag bit

Value	Description
1	A RESET instruction has been executed
0	A RESET instruction has not been executed

Bit 5 - SWDTEN Software Enable/Disable of WDT bit(4)

Value	Description
1	WDT is enabled
0	WDT is disabled

Bit 4 - WDTO Watchdog Timer Time-out Flag bit

Value	Description
1	WDT time-out has occurred
0	WDT time-out has not occurred

Bit 3 - SLEEP Wake-up from Sleep Flag bit

١	/alue	Description
1	=	Device has been in Sleep mode
()	Device has not been in Sleep mode

Bit 2 - IDLE Wake-up from Idle Flag bit

Value	Description	
1	Device has been in Idle mode	
0	Device has not been in Idle mode	

Bit 1 - BOR Brown-out Reset Flag bit

Value	Description
1	A Brown-out Reset has occurred (also set after a Power-on Reset)
0	A Brown-out Reset has not occurred

Bit 0 - POR Power-on Reset Flag bit

	=10 0 1 011 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Value	Description							
1	A Power-on Reset has occurred							
0	A Power-on Reset has not occurred							

Interrupt Controller

8. Interrupt Controller

This data sheet summarizes the features of the PIC24FJ512GU410 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ512GU410 family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU.

The interrupt controller has the following features:

- · Up to Eight Processor Exceptions and Software Traps
- · Seven User-Selectable Priority Levels
- · Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- · Fixed Priority within a Specified User Priority Level
- · Fixed Interrupt Entry and Return Latencies

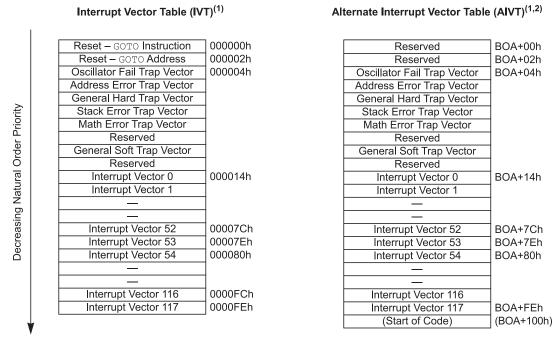
8.1 Interrupt Vector Table

The PIC24FJ512GU410 family Interrupt Vector Table (IVT), shown in Figure 8-1, resides in program memory starting at location, 000004h. The IVT contains non-maskable trap vectors and interrupt vectors. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

8.1.1 Alternate Interrupt Vector Table

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The AIVTEN (INTCON2[8]) control bit provides access to the AIVT. If the AIVTEN bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.


The AIVT is available only if the Boot Segment has been defined and the AIVT has been enabled. To enable the AIVT, both the Configuration bit, AIVTDIS (FSEC[15]), and the AIVTEN bit (INTCON2[8] in the SFR), have to be set. When the AIVT is enabled, all interrupts and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment (BS) defined by the BSLIM[12:0] bits. The AIVT address is: $(BSLIM[12:0] - 1) \times 0x800$.

8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24FJ512GU410 family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x0000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

Figure 8-1. PIC24F Interrupt Vector Tables

Legend: BOA: Base Offset Address for AIVT, which is the starting address of the last page of the Boot Segment. All addresses are in hexadecimal.

Notes:

- 1. See Table 8-1 and Table 8-2 for the vectors list.
- 2. AIVT is only available when a Boot Segment is implemented.

Table 8-1. Trap Vector Details

Trap	MPLAB [®] XC16	Vector	IVT or AIVT		Trap Bit Lo	cation	
Description	Trap ISR Name	#	Address Offset	Generic Flag	Source Flag	Enable	Priority
Oscillator Failure Trap	_OscillatorFail	0	0x000004	INTCON1[1]	_	_	15
Address Error Trap	_AddressError	1	0x000006	INTCON1[3]	_	_	14
Generic Hard Trap – ECCDBE	_HardTrapError	2	0x000008	_	INTCON4[1]	_	13
Generic Hard Trap – SGHT	_HardTrapError	2	0x000008	_	INTCON4[0]	INTCON2[13]	13
Stack Error Trap	_StackError	3	0x00000A	INTCON1[2]	_	_	12
Math Error Trap – DIV0ERR	_MathError	4	0x00000C	INTCON1[4]	_	_	11
Reserved	Reserved	5	0x00000E	_	_	_	_
Reserved	Reserved	5	0x000010	_	_	_	_

continued									
Trap	MPLAB [®] XC16	Vector	IVT or AIVT Address Offset	Trap Bit Location					
Description	Trap ISR Name	#		Generic Flag	Source Flag	Enable	Priority		
Reserved	Reserved	7	0x000012	_	_	_	_		

Table 8-2. Interrupt Vector Details

Interrupt	MPLAB [®] XC16 ISR	Vastav #	IRQ	IVT or AIVT	Inte	rrupt Bit L	ocation
Description	Name	Vector #	#	Address Offset	Flag	Enable	Priority
External Interrupt 0	_INT0Interrupt	8	0	000014h	IFS0[0]	IEC0[0]	IPC0[2:0]
Capture/ Compare/ Timer1	_CCT1Interrupt	9	1	000016h	IFS0[1]	IEC0[1]	IPC0[6:4]
Capture/ Compare/ Timer2	_CCT2Interrupt	10	2	000018h	IFS0[2]	IEC0[2]	IPC0[10:8]
Timer1	_T1Interrupt	11	3	00001Ah	IFS0[3]	IEC0[3]	IPC0[14:12]
Direct Memory Access 0	_DMA0Interrupt	12	4	00001Ch	IFS0[4]	IEC0[4]	IPC1[2:0]
Reserved	Reserved	13-14	5-6	00001Eh-000020h	_	_	_
Timer2	_T2Interrupt	15	7	000022h	IFS0[7]	IEC0[7]	IPC1[14:12]
Timer3	mer3 _T3Interrupt		8	000024h	IFS0[8]	IEC0[8]	IPC2[2:0]
SPI1 General	_SPI1Interrupt	17	9	000026h	IFS0[9]	IEC0[9]	IPC2[6:4]
SPI1 Transfer Done	_SPI1TXInterrupt	18	10	000028h	IFS0[10]	IEC0[10]	IPC2[10:8]
UART1 Receiver	_U1RXInterrupt	19	11	00002Ah	IFS0[11]	IEC0[11]	IPC2[14:12]
UART1 Transmitter	_U1TXInterrupt	20	12	00002Ch	IFS0[12]	IEC0[12]	IPC3[2:0]
A/D Converter 1	_ADC1Interrupt	21	13	00002Eh	IFS0[13]	IEC0[13]	IPC3[6:4]
Direct Memory Access 1	_DMA1Interrupt	22	14	000030h	IFS0[14]	IEC0[14]	IPC3[10:8]
NVM Program/ Erase Complete	_NVMInterrupt	23	15	000032h	IFS0[15]	IEC0[15]	IPC3[14:12]
I2C1 Slave Events	_SI2C1Interrupt	24	16	000034h	IFS1[0]	IEC1[0]	IPC4[2:0]
I2C1 Master Events	_MI2C1Interrupt	25	17	000036h	IFS1[1]	IEC1[1]	IPC4[6:4]
Comparator	_Complnterrupt	26	18	000038h	IFS1[2]	IEC1[2]	IPC4[10:8]

continue	d						
Interrupt	MPLAB® XC16 ISR	Vector #	IRQ	IVT or AIVT	Inte	errupt Bit I	_ocation
Description	Name	100101 #	#	Address Offset	Flag	Enable	Priority
Interrupt-on- Change Interrupt	_IOCInterrupt	27	19	00003Ah	IFS1[3]	IEC1[3]	IPC4[14:12]
External Interrupt 1	_INT1Interrupt	28	20	00003Ch	IFS1[4]	IEC1[4]	IPC5[2:0]
Reserved	Reserved	29	21	00003Eh	_	_	_
Capture/ Compare 5	_CCP5Interrupt	30	22	000040h	IFS1[6]	IEC1[6]	IPC5[10:8]
Capture/ Compare 6	_CCP6Interrupt	31	23	000042h	IFS1[7]	IEC1[7]	IPC5[14:12]
Direct Memory Access 2	_DMA2Interrupt	32	24	000044h	IFS1[8]	IEC1[8]	IPC6[2:0]
Reserved	Reserved	33-34	25-26	000046h-000048h	_	_	_
Timer4	_T4Interrupt	35	27	00004Ah	IFS1[11]	IEC1[11]	IPC6[14:12]
Timer5	_T5Interrupt	36	28	00004Ch	IFS1[12]	IEC1[12]	IPC7[4:2]
External Interrupt 2			00004Eh	IFS1[13]	IEC1[13]	IPC7[6:4]	
UART2 Receiver	_U2RXInterrupt	38	30	000050h	IFS1[14]	IEC1[14]	IPC7[10:8]
UART2 Transmitter	_U2TXInterrupt	39	31	000052h	IFS1[15]	IEC1[15]	IPC7[14:12]
SPI2 General	_SPI2Interrupt	40	32	000054h	IFS2[0]	IEC2[0]	IPC8[2:0]
SPI2 Transfer Done	_SPI2TXInterrupt	41	33	000056h	IFS2[1]	IEC2[1]	IPC8[6:4]
Reserved	Reserved	42-43	34-35	000058h-00005Ah	_	_	_
Direct Memory Access 3	_DMA3Interrupt	44	36	00005Ch	IFS2[4]	IEC2[4]	IPC9[2:0]
Reserved	Reserved	45-50	37-42	00005Eh-000068h	_	_	_
Capture/ Compare/ Timer3	_CCT3Interrupt	51	43	00006Ah	IFS2[11]	IEC2[11]	IPC10[14:12]
Capture/ Compare/ Timer4	_CCT4Interrupt	52	44	00006Ch	IFS2[12]	IEC2[12]	IPC11[2:0]
Reserved	Reserved	53	45	00006Eh	_	_	_
Direct Memory Access 4	_DMA4Interrupt	54	46	000070h	IFS2[14]	IEC2[14]	IPC11[10:8]
Capture/ Compare/ Timer5	_CCT5Interrupt	55	47	000072h	IFS2[15]	IEC2[15]	IPC11[14:12]

continue	d						
Interrupt	MPLAB® XC16 ISR	Vector #	IRQ	IVT or AIVT	Inte	rrupt Bit I	_ocation
Description	Name	100101 #	#	Address Offset	Flag	Enable	Priority
Capture/ Compare/ Timer6	_CCT6Interrupt	56	48	000074h	IFS3[0]	IEC3[0]	IPC12[2:0]
I2C2 Slave Events	_SI2C2Interrupt	57	49	000076h	IFS3[1]	IEC3[1]	IPC12[6:4]
I2C2 Master Events	_MI2C2Interrupt	58	50	000078h	IFS3[2]	IEC3[2]	IPC12[10:8]
Capture/ Compare/ Timer7	_CCT7Interrupt	59	51	00007Ah	IFS3[3]	IEC3[3]	IPC12[14:12]
Capture/ Compare/ Timer8	_CCT8Interrupt	60	52	00007Ch	IFS3[4]	IEC3[4]	IPC13[2:0]
External Interrupt 3	_INT3Interrupt	61	53	00007Eh	IFS3[5]	IEC3[5]	IPC13[6:4]
External Interrupt 4	_INT4Interrupt	Interrupt 62 54 000080h		IFS3[6]	IEC3[6]	IPC13[10:8]	
Reserved	Reserved	63-65	55-57	000082h-000086h	<u> </u>	_	_
SPI1 Receive Done	_SPI1RXInterrupt	66	58	000088h	IFS3[10]	IEC3[10]	IPC14[10:8]
SPI2 Receive Done	_SPI2RXInterrupt	67	59	00008Ah	IFS3[11]	IEC3[11]	IPC14[14:12]
SPI3 Receive Done	_SPI3RXInterrupt	68	60	00008Ch	IFS3[12]	IEC3[12]	IPC15[2:0]
Direct Memory Access 5	_DMA5Interrupt	69	61	00008Eh	IFS3[13]	IEC3[13]	IPC15[6:4]
Real-Time Clock and Calendar	_RTCCInterrupt	70	62	000090h	IFS3[14]	IEC3[14]	IPC15[10:8]
Capture/ Compare 1	_CCP1Interrupt	71	63	000092h	IFS3[15]	IEC3[15]	IPC15[14:12]
Capture/ Compare 2	_CCP2Interrupt	72	64	000094h	IFS4[0]	IEC4[0]	IPC16[2:0]
UART1 Error	_U1ErrInterrupt	73	65	000096h	IFS4[1]	IEC4[1]	IPC16[6:4]
UART2 Error	_U2ErrInterrupt	74	66	000098h	IFS4[2]	IEC4[2]	IPC16[10:8]
Cyclic Redundancy Check	_CRCInterrupt	75	67	00009Ah	IFS4[3]	IEC4[3]	IPC16[14:12]
Reserved	Reserved	76-77	68-69	00009Ch-00009Eh	_	_	_
I2C3 Slave Events	_SI2C3Interrupt	78	70	0000A0h	IFS4[6]	IEC4[6]	IPC17[10:8]

continue	d						
Interrupt	MPLAB® XC16 ISR	Vector #	IRQ	IVT or AIVT	Inte	errupt Bit I	_ocation
Description	Name		#	Address Offset	Flag	Enable	Priority
I2C3 Master Events	_MI2C3Interrupt	79	71	0000A2h	IFS4[7]	IEC4[7]	IPC17[14:12]
High/Low- Voltage Detect	_HLVDInterrupt	80	72	0000A4h	IFS4[8]	IEC4[8]	IPC18[2:0]
Capture/ Compare 7	_CCP7Interrupt	81	73	0000A6h	IFS4[9]	IEC4[9]	IPC18[6:4]
Capture/ Compare 8	_CCP8Interrupt	82	74	0000A8h	IFS4[10]	IEC4[10]	IPC18[10:8]
Reserved	Reserved	83-85	75-87	0000AAh-0000AEh	_	_	_
DAC Trigger	_DAC1Interrupt	86	78	0000B0h	IFS4[14]	IEC4[14]	IPC19[10:8]
Reserved	Reserved	87-88	79-80	0000B2h-0000B4h	_	_	_
UART3 Error	_U3ErrInterrupt	89	81	0000B6h	IFS5[1]	IEC5[1]	IPC20[6:4]
UART3 Receiver	_U3RXInterrupt	90	82	0000B8h	IFS5[2]	IEC5[2]	IPC20[10:8]
UART3 Transmitter	_U3TXInterrupt	91	83	0000BAh	IFS5[3]	IEC5[3]	IPC20[14:12]
I2C1 Bus Collision	_I2C1BCInterrupt	92	84	0000BCh	IFS5[4]	IEC5[4]	IPC21[2:0]
I2C2 Bus Collision	_I2C2BCInterrupt	93	85	0000BEh	IFS5[5]	IEC5[5]	IPC21[6:4]
USB OTG Interrupt	_USB1Interrupt	94	86	0000C0h	IFS5[6]	IEC5[6]	IPC21[10:8]
UART4 Error	_U4ErrInterrupt	95	87	0000C2h	IFS5[7]	IEC5[7]	IPC21[14:12]
UART4 Receiver	_U4RXInterrupt	96	88	0000C4h	IFS5[8]	IEC5[8]	IPC22[2:0]
UART4 Transmitter	_U4TXInterrupt	97	89	0000C6h	IFS5[9]	IEC5[9]	IPC20[6:4]
SPI3 General	_SPI3 General	98	90	0000C8h	IFS5[10]	IEC5[10]	IPC22[10:8]
SPI3 Transmit Done	_SPI3TXInterrupt	99	91	0000CAh	IFS5[11]	IEC5[11]	IPC22[14:12]
SPI4 General	_SPI4 General	100	92	0000CCh	IFS5[12]	IEC5[12]	IPC23[2:0]
SPI4 Transmit Done	_SPI4TXInterrupt	101	93	0000CEh	IFS5[13]	IEC5[13]	IPC23[6:4]
Capture/ Compare 3	_CCP3Interrupt	102	94	0000D0h	IFS5[14]	IEC5[14]	IPC23[10:8]
Capture/ Compare 4	_CCP4Interrupt	103	95	0000D2h	IFS5[15]	IEC5[15]	IPC23[14:12]
Configurable Logic Cell 1	_CLC1Interrupt	104	96	0000D4h	IFS6[0]	IEC6[0]	IPC24[2:0]

continue	d						
Interrupt	MPLAB® XC16 ISR	Vector #	IRQ	IVT or AIVT	Inte	errupt Bit L	_ocation
Description	Name	Vector #	#	Address Offset	Flag	Enable	Priority
Configurable Logic Cell 2	_CLC2Interrupt	105	97	0000D6h	IFS6[1]	IEC6[1]	IPC24[6:4]
Configurable Logic Cell 3	_CLC3Interrupt	106	98	0000D8h	IFS6[2]	IEC6[2]	IPC24[10:8]
Configurable Logic Cell 4	_CLC4Interrupt	107	99	0000DAh	IFS6[3]	IEC6[3]	IPC24[14:12]
LCD	_LCDInterrupt	108	100	0000DCh	IFS6[4]	IEC6[4]	IPC25[2:0]
LCD Automation Timer	_LCDATInterrupt	109	101	101 0000DEh		IEC6[5]	IPC25[6:4]
Reserved	Reserved	110-113	102-105	0000E0h-0000E6h	_		_
FRC Self- Tuning Interrupt	_ '		0000E8h	IFS6[10]	IEC6[10]	IPC26[10:8]	
Reserved	Reserved	115	107	0000EAh	_	_	_
ECC Single Bit Error	_ECCSBEInterrupt	116	108	0000ECh	IFS6[12]	IEC6[12]	IPC27[2:0]
I2C3 Bus Collision	_I2C3BCInterrupt	117	109	0000EEh	IFS6[13]	IEC6[13]	IPC27[6:4]
Real-Time Clock Timestamp	_RTCCTSInterrupt	118	110	0000F0h	IFS6[14]	IEC6[14]	IPC27[10:8]
UART5 Receiver	_U5RXInterrupt	119	111	0000F2h	IFS6[15]	IEC6[15]	IPC27[14:12]
UART5 Transmitter	_U5TXInterrupt	120	112 0000F4h		IFS7[0]	IEC7[0]	IPC28[2:0]
UART5 Error	_U5ErrInterrupt	121	113	0000F6h	IFS7[1]	IEC7[1]	IPC28[6:4]
UART6 Receiver	_U6RXInterrupt	122	114	0000F8h	IFS7[2]	IEC7[2]	IPC28[10:8]
UART6 Transmitter	_U6TXInterrupt	123	115	0000FAh	IFS7[3]	IEC7[3]	IPC28[14:12]
UART6 Error	_U6ErrInterrupt	124	116	0000FCh	IFS7[4]	IEC7[4]	IPC29[2:0]
JTAG	_JTAGInterrupt	125	117	0000FEh	IFS7[5]	IEC7[5]	IPC29[6:4]

8.3 Interrupt Controller Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x7F										
0x80	INTCON1	7:0	NOTDIO			MATHERR	ADDRERR	STKERR	OSCFAIL	
		15:8	NSTDIS			INITAED	INITOED	INITOED	INIT1ED	INTOED
0x82	INTCON2	7:0 15:8	GIE	DISI	SWTRAP	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP AIVTEN
		7:0	OIL	Dioi	OWITCH					AIVILIN
0x84	INTCON3	15:8	DMT							
		7:0	5						ECCDBE	SGHT
0x86	INTCON4	15:8								
000	IECO	7:0	T2IF			DMA0IF	T1IF	CCT2IF	CCT1IF	INT0IF
0x88	IFS0	15:8	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1TXIF	SPI1IF	T3IF
0.404	IFS1	7:0	CCP6IF	CCP5IF		INT1IF	IOCIF	CMIF	MI2C1IF	SI2C1IF
0x8A	IF51	15:8	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF			DMA2IF
0x8C	IFS2	7:0				DMA3IF			SPI2TXIF	SPI2IF
0,00		15:8	CCT5IF	DMA4IF		CCT4IF	CCT3IF			
0x8E	IFS3	7:0		INT4IF	INT3IF	CCT8IF	CCT7IF	MI2C2IF	SI2C2IF	CCT6IF
2,000		15:8	CCP1IF	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	SPI4RXIF	
0x90	IFS4	7:0	MI2C3IF	SI2C3IF			CRCIF	U2ERIF	U1ERIF	CCP2IF
		15:8		DAC1IF				CCP8IF	CCP7IF	HLVDIF
0x92	IFS5	7:0	U4ERIF	USB1IF	I2C2BCIF	I2C1BCIF	U3TXIF	U3RXIF	U3ERIF	
		15:8	CCP4IF	CCP3IF	SPI4TXIF	SPI4IF	SPI3TXIF	SPI3IF	U4TXIF	U4RXIF
0x94	IFS6	7:0	LIEDVIE	DECOTOR	LCDATIF	LCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF
		15:8	U5RXIF	RTCCTSIF	I2C3BCIF	LIGERIE	LIOTALE	FSTIF	LISEDIE	LIETVIE
0x96	IFS7	7:0				U6ERIF	U6TXIF	U6RXIF	U5ERIF	U5TXIF
		15:8 7:0	T2IE			DMA0IE	T1IE	CCT2IE	CCT1IE	INT0IE
0x98	IEC0	15:8	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1TXIE	SPI1IE	T3IE
		7:0	CCP6IE	CCP5IE	ADIIL	INT1IE	IOCIE	CMIE	MI2C1IE	SI2C1IE
0x9A	IEC1	15:8	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OWIL	WIIZOTIL	GIZOTIL
		7:0	9217112	02.0		DMA3IE			SPI2TXIE	SPI2IE
0x9C	IEC2	15:8	CCT5IE	DMA4IE		CCT4IE	CCT3IE			
		7:0		INT4IE	INT3IE	CCT8IE	CCT7IE	MI2C2IE	SI2C2IE	CCT6IE
0x9E	IEC3	15:8	CCP1IE	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	SPI4RXIE	
0.40	IEO4	7:0	MI2C3IE	SI2C3IE			CRCIE	U2ERIE	U1ERIE	CCP2IE
0xA0	IEC4	15:8		DAC1IE				CCP8IE	CCP7IE	HLVDIE
0v42	IEC5	7:0	U4ERIE	USB1IE	I2C2BCIE	I2C1BCIE	U3TXIE	U3RXIE	U3ERIE	
0xA2	IEU3	15:8	CCP4IE	CCP3IE	SPI4TXIE	SPI4IE	SPI3TXIE	SPI3IE	U4TXIE	U4RXIE
0xA4	IEC6	7:0			LCDATIE	LCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE
VACT	1200	15:8	U5RXIE	RTCCTSIE	I2C3BCIE			FSTIE		
0xA6	IFS7	7:0			JTAGIE	U6ERIE	U6TXIE	U6RXIE	U5ERIE	U5TXIE
		15:8								
0xA8	IPC0	7:0			CCT1IP[2:0]				INT0IP[2:0]	
	-	15:8			T1IP[2:0]				CCT2IP[2:0]	
0xAA	IPC1	7:0			TOIDIO O				DMA0IP[2:0]	
		15:8			T2IP[2:0]				TOIDIO.01	
0xAC	IPC2	7:0 15:8			SPI1IP[2:0]				T3IP[2:0]	
		7:0			U1RXIP[2:0]				SPI1TXIP[2:0]	
0xAE	IPC3	15:8		AD1IP[2:0] NVMIP[2:0]				U1TXIP[2:0] DMA1IP[2:0]		
		7:0			MI2C1IP[2:0]				SI2C1IP[2:0]	
0xB0	IPC4	15:8			IOCIP[2:0]				CMIP[2:0]	
		7:0			10011 [2.0]				INT1IP[2:0]	
0xB2	IPC5	15:8			CCP6IP[2:0]				CCP5IP[2:0]	
					· · · [=.0]				[2.0]	

contii	nued										
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0.04	IDOO	7:0				_		_		_	
0xB4	IPC6	15:8			T4IP[2:0]						
	IDO7	7:0			INT2IP[2:0]				T5IP[2:0]		
0xB6	IPC7	15:8			U2TXIP[2:0]				U2RXIP[2:0]		
	ID00	7:0			SPI2TXIP[2:0]				SPI2IP[2:0]		
0xB8	IPC8	15:8									
	ID00	7:0							DMA3IP[2:0]		
0xBA	IPC9	15:8									
000	IDO40	7:0									
0xBC	IPC10	15:8			CCT3IP[2:0]						
OVDE	IDC44	7:0							CCT4IP[2:0]		
0xBE	IPC11	15:8			CCT5IP[2:0]				DMA4IP[2:0]		
000	IDO40	7:0			SI2C2IP[2:0]				CCT6IP[2:0]		
0xC0	IPC12	15:8			CCT7IP[2:0]				MI2C2IP[2:0]		
0,400	IDC42	7:0			INT3IP[2:0]				CCT8IP[2:0]		
0xC2	IPC13	15:8							INT4IP[2:0]		
004	IDO44	7:0			SPI4RXIP[2:0]						
0xC4	IPC14	15:8			SPI2RXIP[2:0]				SPI1RXIP[2:0]		
000	IDO45	7:0			DMA5IP[2:0]		SPI3RXIP[2:0]				
0xC6	IPC15	15:8			CCP1IP[2:0]		RTCIP[2:0]				
000	IDO46	7:0							CCP2IP[2:0]		
0xC8	IPC16	15:8			U1ERIP[2:0] CRCIP[2:0]				U2ERIP[2:0]		
0.04	10047	7:0									
0xCA	IPC17	15:8			MI2C3IP[2:0]				SI2C3IP[2:0]		
0.00	IDO40	7:0			CCP7IP[2:0]				HLVDIP[2:0]		
0xCC	IPC18	15:8						CCP8IP[2:0]			
0.05	IDO40	7:0									
0xCE	IPC19	15:8							DAC1IP[2:0]		
000	IDOOO	7:0			U3ERIP[2:0]						
0xD0	IPC20	15:8			U3TXIP[2:0]				U3RXIP[2:0]		
000	IDO04	7:0			I2C2BCIP[2:0]				I2C1BCIP[2:0]		
0xD2	IPC21	15:8			U4ERIP[2:0]				USB1IP[2:0]		
004	IDOOO	7:0			U4TXIP[2:0]				U4RXIP[2:0]		
0xD4	IPC22	15:8			SPI3TXIP[2:0]				SPI3IP[2:0]		
000	IDOOO	7:0			SPI4TXIP[2:0]				SPI4IP[2:0]		
0xD6	IPC23	15:8			CCP4IP[2:0]				CCP3IP[2:0]		
0.00	IDOO4	7:0			CLC2IP[2:0]				CLC1IP[2:0]		
0xD8	IPC24	15:8			CLC4IP[2:0]				CLC3IP[2:0]		
0.04	IDOOF	7:0			LCDATIP[2:0]				LCDIP[2:0]		
0xDA	IPC25	15:8									
0.00	IDOOO	7:0									
0xDC	IPC26	15:8							FSTIP[2:0]		
0D.E	IDO07	7:0			I2C3BCIP[2:0]						
0xDE	IPC27	15:8			U5RXIP[2:0]				RTCCTSIP[2:0]		
0=0	IDOOO	7:0			U5ERIP[2:0]				U5TXIP[2:0]		
0xE0	IPC28	15:8					U6RXIP[2:0]				
0	IDOOO	7:0			JTAGIP[2:0]				U6ERIP[2:0]		
0xE2	IPC29	15:8									
0	INITTOECO	7:0				VECN	IUM[7:0]				
0xE4	INTTREG	15:8	CPUIRQ		VHOLD			IL	R[3:0]		

Interrupt Controller

8.3.1 Interrupt Control and Status Registers Overview

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources.

The INTCON2 register controls global interrupt generation, the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

The INTCON3 register contains the Deadman Timer (DMT) trap bit. The INTCON4 register contains the Software Generated Hard Trap bit (SGHT).

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

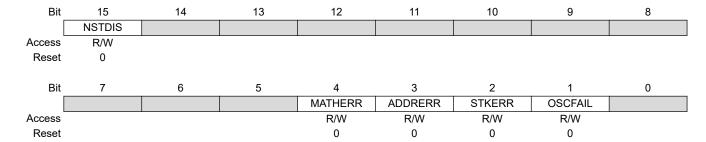
The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM[7:0]) and Interrupt Priority Level bits (ILR[3:0]) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 8-2. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0[0], the INT0IE bit in IEC0[0] and the INT0IPx bits in the first position of IPC0 (IPC0[2:0]).

Two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "CPU with Extended Data Space (EDS)" (DS39732) in the "dsPIC33/PIC24 Family Reference Manual".

The CPU STATUS Register, SR, contains the IPL[2:0] bits (SR[7:5]). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.


The CORCON register contains the IPL3 bit, which together with the IPL[2:0] bits, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described from 8.3.2 INTCON1 through 8.3.52 INTTREG in the following pages.

Interrupt Controller

8.3.2 Interrupt Control Register 1

Name: INTCON1 Offset: 0x80

Bit 15 - NSTDIS Interrupt Nesting Disable bit

Value	Description
1	Interrupt nesting is disabled
0	Interrupt nesting is enabled

Bit 4 - MATHERR Math Error Status bit

Value	Description
1	Math error trap has occurred
0	Math error trap has not occurred

Bit 3 - ADDRERR Address Error Trap Status bit

Value	Description
1	Address error trap has occurred
0	Address error trap has not occurred

Bit 2 - STKERR Stack Frror Trap Status bit

Bit 2 - OTNERIN Stack Error map Status bit		
Value	Description	
1	Stack error trap has occurred	
0	Stack error trap has not occurred	

Bit 1 – OSCFAIL Oscillator Failure Trap Status bit

Value	Description
1	Oscillator failure trap has occurred
0	Oscillator failure trap has not occurred

Datasheet

8.3.3 Interrupt Control Register 2

Name: INTCON2 Offset: 0x82

Bit	15	14	13	12	11	10	9	8
	GIE	DISI	SWTRAP					AIVTEN
Access	R/W	R	R/W					R/W
Reset	1	0	0					0
Bit	7	6	5	4	3	2	1	0
				INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 15 - GIE Global Interrupt Enable bit

	Value	Description	
	1 Interrupts and associated interrupt enable bits are enabled		
0 Interrupts		Interrupts are disabled, but traps are still enabled	

Bit 14 - DISI DISI Instruction Status bit

Value	Description
1	DISI instruction is active
0	DISI instruction is not active

Bit 13 - SWTRAP Software Trap Status bit

ı	Value	Description
	1	Software trap is enabled
	0	Software trap is disabled

Bit 8 - AIVTEN Alternate Interrupt Vector Table Enable bit

Valu	e Description
1	Uses Alternate Interrupt Vector Table (if enabled in Configuration bits)
0	Uses standard Interrupt Vector Table (default)

Bit 4 - INT4EP External Interrupt 4 Edge Detect Polarity Select bit

Value	Description
1	Interrupt on negative edge
0	Interrupt on positive edge

Bit 3 - INT3EP External Interrupt 3 Edge Detect Polarity Select bit

Value	Description
1	Interrupt on negative edge
0	Interrupt on positive edge

Bit 2 - INT2EP External Interrupt 2 Edge Detect Polarity Select bit

Value	Description
1	Interrupt on negative edge
0	Interrupt on positive edge

Bit 1 - INT1EP External Interrupt 1 Edge Detect Polarity Select bit

Va	lue	Description
1		Interrupt on negative edge
0		Interrupt on positive edge

Interrupt Controller

Bit 0 - INTOEP	External Interrupt 0	Edge Detect Polarit	v Select bit
----------------	----------------------	----------------------------	--------------

Value	Description
1	Interrupt on negative edge
0	Interrupt on positive edge

Interrupt Controller

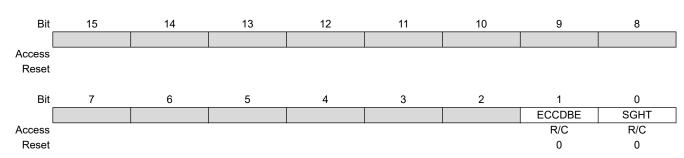
8.3.4 Interrupt Control Register 3

Name: INTCON3 Offset: 0x84

Bit	15	14	13	12	11	10	9	8
	DMT							
Access Reset	R/W							
Reset	0							
Bit	7	6	5	4	3	2	1	0

Access Reset

Bit 15 - DMT Deadman Timer Soft Trap Status bit


Value	Description
1	Deadman Timer trap has occurred
0	Deadman Timer trap has not occurred

Interrupt Controller

8.3.5 Interrupt Control Register 4

Name: INTCON4 Offset: 0x86

Legend: C = Clearable bit

Bit 1 - ECCDBE ECC Double-Bit Error Trap bit

Value	Description
1	ECC double-bit error trap has occurred
0	ECC double-bit error trap has not occurred

Bit 0 - SGHT Software Generated Hard Trap Status bit

Value	Description
1	Software generated hard trap has occurred
0	Software generated hard trap has not occurred

8.3.6 Interrupt Request Flags Register 0

Name: IFS0 Offset: 0x88

Bit	15	14	13	12	11	10	9	8
	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1TXIF	SPI1IF	T3IF
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	T2IF			DMA0IF	T1IF	CCT2IF	CCT1IF	INT0IF
Access	R/W			R/W	R/W	R/W	R/W	R/W
Reset	0			0	0	0	0	0

Bit 15 - NVMIF NVM Program/Erase Complete Interrupt bit

Valu	ıe	Description
1		Interrupt enabled
0		Interrupt not enabled

Bit 14 - DMA1IF Direct Memory Access 1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 13 - AD1IF A/D Converter 1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 12 - U1TXIF UART1 Transmitter Interrupt bit

Dit iz 0	TIME OF ICE I Transmitter interrupt bit
Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 11 - U1RXIF UART1 Receiver Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 10 - SPI1TXIF SPI1 Transfer Done Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 9 - SPI1IF SPI1 General Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 8 - T3IF Timer3 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 7 - T2IF Timer2 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 4 - DMA0IF Direct Memory Access 0 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 3 - T1IF Timer1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - CCT2IF Capture/Compare/Timer2 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 1 - CCT1IF Capture/Compare/Timer1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 0 - INT0IF External Interrupt 0 bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.7 Interrupt Request Flags Register 1

Name: IFS1 Offset: 0x8A

Bit	15	14	13	12	11	10	9	8
	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF			DMA2IF
Access	R/W	R/W	R/W	R/W	R/W			R/W
Reset	0	0	0	0	0			0
Bit	7	6	5	4	3	2	1	0
	CCP6IF	CCP5IF		INT1IF	IOCIF	CMIF	MI2C1IF	SI2C1IF
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - U2TXIF UART2 Transmitter Interrupt bit

Va	lue	Description
1		Interrupt enabled
0		Interrupt not enabled

Bit 14 - U2RXIF UART2 Receiver Interrupt bit

Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 13 - INT2IF External Interrupt 2 bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 12 - T5IF Timer5 Interrupt bit

DIC 12 1	on Timero interrupt bit
Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 11 - T4IF Timer4 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 8 - DMA2IF Direct Memory Access 2 Interrupt bit

bit 6 - bitiAzii Birect Memory Access 2 interrupt bit		
Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 7 - CCP6IF Capture/Compare 6 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 6 - CCP5IF Capture/Compare 5 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 4 - INT1IF External Interrupt 1 bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 3 - IOCIF Interrupt-on-Change Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - CMIF Comparator Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 1 - MI2C1IF I2C1 Master Events Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 0 - SI2C1IF I2C1 Slave Events Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

8.3.8 Interrupt Request Flags Register 2

Name: IFS2 Offset: 0x8C

Bit	15	14	13	12	11	10	9	8
	CCT5IF	DMA4IF		CCT4IF	CCT3IF			
Access	R/W	R/W		R/W	R/W			
Reset	0	0		0	0			
Bit	7	6	5	4	3	2	1	0
				DMA3IF			SPI2TXIF	SPI2IF
Access				R/W			R/W	R/W
Reset				0			0	0

Bit 15 - CCT5IF Capture/Compare/Timer5 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 14 - DMA4IF Direct Memory Access 4 Interrupt bit

Valu	e Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 12 - CCT4IF Capture/Compare/Timer4 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 11 - CCT3IF Capture/Compare/Timer3 Interrupt bit

Dit ii O	Bit 11 = 0010ii Captare/Compare/Timero interrupt bit			
Value	Description			
1	Interrupt enabled			
0	Interrupt not enabled			

Bit 4 - DMA3IF Direct Memory Access 3 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 1 - SPI2TXIF SPI2 Transfer Done Interrupt bit

Valu	e Descr	iption
1	Interru	ıpt enabled
0	Interru	ıpt not enabled

Bit 0 - SPI2IF SPI2 General Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.9 Interrupt Request Flags Register 3

Name: IFS3 Offset: 0x8E

Bit	15	14	13	12	11	10	9	8
	CCP1IF	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	SPI4RXIF	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0
		INT4IF	INT3IF	CCT8IF	CCT7IF	MI2C2IF	SI2C2IF	CCT6IF
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bit 15 - CCP1IF Capture/Compare 1 Interrupt bit

Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 14 - RTCIF Real-Time Clock and Calendar bit

Value	Description			
1	Interrupt enabled			
0	Interrupt not enabled			

Bit 13 - DMA5IF Direct Memory Access 5 Interrupt bit

	•
Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 12 - SPI3RXIF SPI3 Receive Done Interrupt bit

Dit 12	Bit 12 - Of lotter of to receive botto interrupt bit		
Value	lue Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 11 - SPI2RXIF SPI2 Receive Done Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 10 - SPI1RXIF SPI1 Receive Done Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 9 - SPI4RXIF SPI4 Receive Done Interrupt bit

Value	Description			
1	Interrupt enabled			
0	Interrupt not enabled			

Bit 6 - INT4IF External Interrupt 4 bit

Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Interrupt Controller

Bit 5 - INT3IF External Interrupt 3 bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 4 - CCT8IF Capture/Compare/Timer8 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 3 - CCT7IF Capture/Compare/Timer7 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - MI2C2IF I2C2 Master Events Interrupt bit

_	·	
Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 1 - SI2C2IF I2C2 Slave Events Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 0 - CCT6IF Capture/Compare/Timer6 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.10 Interrupt Request Flags 4 Register

Name: IFS4 Offset: 0x90

Bit	15	14	13	12	11	10	9	8
		DAC1IF				CCP8IF	CCP7IF	HLVDIF
Access		R/W				R/W	R/W	R/W
Reset		0				0	0	0
Bit	7	6	5	4	3	2	1	0
	MI2C3IF	SI2C3IF			CRCIF	U2ERIF	U1ERIF	CCP2IF
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

Bit 14 - DAC1IF 10-Bit Digital-to-Analog 1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 10 - CCP8IF Capture/Compare 8 Interrupt bit

	Col on Captal of Compare of Monape Sit
Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 9 - CCP7IF Capture/Compare 7 Interrupt bit

Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 8 - HLVDIF High/I ow-Voltage Detect Interrupt bit

DICO III	Bit 6 - 1124 Bit 1 high/20w-voltage Detect interrupt bit		
Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 7 - MI2C3IF I2C3 Master Events Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 6 - SI2C3IF I2C3 Slave Events Interrupt bit

Bit 6 - GIZGON 1200 GIAVE EVENTS INTERNAPT BIT	
Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 3 - CRCIF Cyclic Redundancy Check Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - U2ERIF UART2 Error Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 1 - U1ERIF UART1 Error Interrupt bit

	V alue	Description
	1	Interrupt enabled
()	Interrupt not enabled

Bit 0 - CCP2IF Capture/Compare 2 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.11 Interrupt Request Flags Register 5

Name: IFS5 Offset: 0x92

Bit	15	14	13	12	11	10	9	8
	CCP4IF	CCP3IF	SPI4TXIF	SPI4IF	SPI3TXIF	SPI3IF	U4TXIF	U4RXIF
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	U4ERIF	USB1IF	I2C2BCIF	I2C1BCIF	U3TXIF	U3RXIF	U3ERIF	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	

Bit 15 - CCP4IF Capture/Compare 4 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 14 - CCP3IF Capture/Compare 3 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 13 - SPI4TXIF SPI2 Transfer Done Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 12 - SPI4IF SPI4 General Interrupt bit

DIC 12 0	bit 12 - of 14ii of 14 ochoral interrupt bit		
Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 11 - SPI3TXIF SPI3 Transfer Done Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 10 - SPI3IF SPI3 General Interrupt bit

Valu	e Descr	Description	
1	Interru	ıpt enabled	
0	Interru	ıpt not enabled	

Bit 9 - U4TXIF UART4 Transmitter Interrupt bit

Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 8 - U4RXIF UART4 Receiver Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 7 – U4ERIF UART4 Error Interrupt bit

Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 6 - USB1IF USB1 OTG Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 5 - I2C2BCIF I2C2 Bus Collision Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 4 - I2C1BCIF I2C1 Bus Collision Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 3 - U3TXIF UART3 Transmitter Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - U3RXIF UART3 Receiver Interrupt bit

1	/alue	Description
-	_	Interrupt enabled
()	Interrupt not enabled

Bit 1 - U3ERIF UART3 Error Interrupt bit

Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

8.3.12 Interrupt Request Flags Register 6

Name: IFS6 Offset: 0x94

Bit	15	14	13	12	11	10	9	8
	U5RXIF	RTCCTSIF	I2C3BCIF			FSTIF		
Access	R/W	R/W	R/W			R/W		
Reset	0	0	0			0		
Bit	7	6	5	4	3	2	1	0
			LCDATIF	LCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - U5RXIF UART5 Receiver Interrupt bit

Val	ue	Description
1		Interrupt enabled
0		Interrupt not enabled

Bit 14 - RTCCTSIF Real-Time Clock Timestamp Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 13 - I2C3BCIF I2C3 Bus Collision Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 10 - FSTIF FRC Self-Tuning Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 5 - LCDATIF LCD Timer Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 4 - LCDIF LCD Interrupt bit

Dit + LO	Sk + LOB intorrupt bit					
Value	Description					
1	Interrupt enabled					
0	Interrupt not enabled					

Bit 3 - CLC4IF Configurable Logic Cell 4 Interrupt bit

Value	Description			
1	Interrupt enabled			
0	Interrupt not enab	led		

Bit 2 - CLC3IF Configurable Logic Cell 3 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 1 - CLC2IF Configurable Logic Cell 2 Interrupt bit

		-		
Value	Description			
1	Interrupt enabled			
0	Interrupt not enab	led		

Bit 0 - CLC1IF Configurable Logic Cell 1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

8.3.13 Interrupt Request Flags Register 7

Name: IFS7 Offset: 0x96

Access Reset

Bit	7	6	5	4	3	2	1	0
				U6ERIF	U6TXIF	U6RXIF	U5ERIF	U5TXIF
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - U6ERIF UART6 Error Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 3 - U6TXIF UART6 Transmission Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - U6RXIF UART6 Receiver Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 1 - U5ERIF UART5 Error Interrupt bit

D.C. 00	erti ortito Enoi intoraptoti
Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 0 - U5TXIF UART5 Transmission Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.14 Interrupt Enable Register 0

Name: IEC0 Offset: 0x98

Bit	15	14	13	12	11	10	9	8
	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1TXIE	SPI1IE	T3IE
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	T2IE			DMA0IE	T1IE	CCT2IE	CCT1IE	INT0IE
Access	R/W			R/W	R/W	R/W	R/W	R/W
Reset	0			0	0	0	0	0

Bit 15 - NVMIE NVM Program/Erase Complete Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 14 - DMA1IE Direct Memory Access 1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 13 - AD1IE A/D Converter 1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 12 - U1TXIE UART1 Transmitter Interrupt bit

Dit 12 C	TIME ONTO Transmitter interrupt bit
Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 11 - U1RXIE UART1 Receiver Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 10 - SPI1TXIE SPI1 Transfer Done Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 9 - SPI1IE SPI1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 8 - T3IE Timer3 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 7 - T2IE Timer2 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 4 - DMA0IE Direct Memory Access 0 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 3 - T1IE Timer1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - CCT2IE Capture/Compare/Timer2 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 1 - CCT1IE Capture/Compare/Timer1 Interrupt bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 0 - INTOIE External Interrupt 0 bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.15 Interrupt Enable Register 1

Name: IEC1 Offset: 0x9A

Bit	15	14	13	12	11	10	9	8
	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE			
Access	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0
	CCP6IE	CCP5IE		INT1IE	IOCIE	CMIE	MI2C1IE	SI2C1IE
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - U2TXIE UART2 Transmitter Interrupt Enable bit

1	Value	Description
	1	Interrupt enabled
	0	Interrupt not enabled

Bit 14 - U2RXIE UART2 Receiver Transmitter Interrupt Enable bit

Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 13 - INT2IE External Interrupt 2 Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 12 - T5IE Timer5 Interrupt Enable bit

DIC 12 1	Bit 12 - Tole Timero Interrupt Enable bit		
Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 11 - T4IE Timer4 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 7 - CCP6IE Capture/Compare 6 Interrupt Enable bit

	Bit 7 - GOT GIE Gaptare/Gornpare o interrupt Enable bit		
	Value	Description	
1 Interrupt enabled		Interrupt enabled	
	0	Interrupt not enabled	

Bit 6 - CCP5IE Capture/Compare 5 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 4 - INT1IE External Interrupt 1 Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 3 - IOCIE Interrupt-on-Change Interrupt Enable bit

_		· · · · · · · · · · · · · · · · · · ·
٧	alue	Description
1		Interrupt enabled
0		Interrupt not enabled

Bit 2 - CMIE Comparator Interrupt Enable bit

Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 1 - MI2C1IE I2C2 Master Events Interrupt Enable bit

Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 0 - SI2C1IE I2C2 Slave Events Interrupt Enable bit

Valu	ie	Description	
1		Interrupt enabled	
0		Interrupt not enabled	

Interrupt Controller

8.3.16 Interrupt Enable Register 2

Name: IEC2 Offset: 0x9C

Bit	15	14	13	12	11	10	9	8
	CCT5IE	DMA4IE		CCT4IE	CCT3IE			
Access	R/W	R/W		R/W	R/W			
Reset	0	0		0	0			
Bit	7	6	5	4	3	2	1	0
				DMA3IE			SPI2TXIE	SPI2IE
Access				R/W			R/W	R/W
Reset				0			0	0

Bit 15 - CCT5IE Capture/Compare/Timer5 Interrupt Enable bit

Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 14 - DMA4IE Direct Memory Access 4 Interrupt Enable bit

<u></u>		
Value Description		Description
1	1 Interrupt enabled	
0		Interrupt not enabled

Bit 12 - CCT4IE Capture/Compare/Timer4 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 11 - CCT3IE Capture/Compare/Timer3 Interrupt Enable bit

Bit II - Go Tole Captare/Compare/Timero Interrupt Enable bit		
Value	ue Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 4 - DMA3IE Direct Memory Access 3 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 1 - SPI2TXIE SPI2 Transfer Done Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 0 - SPI2IE SPI2 General Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.17 Interrupt Enable Register 3

Name: IEC3 Offset: 0x9E

Bit	15	14	13	12	11	10	9	8
	CCP1IE	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	SPI4RXIE	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0
		INT4IE	INT3IE	CCT8IE	CCT7IE	MI2C2IE	SI2C2IE	CCT6IE
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bit 15 - CCP1IE Capture/Compare 1 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 14 - RTCIE Real-Time Clock and Calendar Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 13 - DMA5IE Direct Memory Access 5 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 12 - SPI3RXIE SPI3 Receive Done Interrupt Enable bit

Dit iz C	Bit 12 - Grid Nate of to Necotive Bothe Interrupt Enable bit		
Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 11 - SPI2RXIE SPI2 Receive Done Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 10 - SPI1RXIE SPI1 Receive Done Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 9 - SPI4RXIE SPI4 Receive Done Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 6 - INT4IE External Interrupt 4 Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 5 - INT3IE External Interrupt 4 Enable bit

1	Value	Description
	1	Interrupt enabled
	0	Interrupt not enabled

Bit 4 - CCT8IE Capture/Compare/Timer8 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 3 - CCT7IE Capture/Compare/Timer7 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - MI2C2IE I2C2 Master Events Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 1 - SI2C2IE I2C2 Slave Events Interrupt Enable bit

1	Value	Description
	1	Interrupt enabled
	0	Interrupt not enabled

Bit 0 - CCT6IE Capture/Compare/Timer6 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.18 Interrupt Enable Register 4

Name: IEC4 Offset: 0xA0

Bit	15	14	13	12	11	10	9	8
		DAC1IE				CCP8IE	CCP7IE	HLVDIE
Access		R/W				R/W	R/W	R/W
Reset		0				0	0	0
Bit	7	6	5	4	3	2	1	0
	MI2C3IE	SI2C3IE			CRCIE	U2ERIE	U1ERIE	CCP2IE
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

Bit 14 - DAC1IE 10-Bit Digital-to-Analog Converter 1 Interrupt Enable bit

١	/alue	Description
1	•	Interrupt enabled
C)	Interrupt not enabled

Bit 10 - CCP8IE Capture/Compare 8 Interrupt Enable bit

210 10 001 012 00ptano/00mpano 0 mionapi 2masio 2m		
Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 9 - CCP7IE Capture/Compare 7 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 8 - HLVDIE High/I ow-Voltage Detect Interrupt Enable bit

Dit 0 TIE	Dit 6 - Het Die Trigit/Edw-Voltage Detect interrupt Enable bit		
Value	lue Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 7 - MI2C3IE I2C3 Master Events Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 6 - SI2C3IE I2C3 Slave Events Interrupt Enable bit

D.C 0 0.2	CO CIZCOL 1200 Clave Evento Interrupt Eriable bit		
Value	Description		
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 3 - CRCIE Cyclic Redundancy Check Interrupt Enable bit

Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 2 - U2ERIE UART2 Error Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 1 – U1ERIE UART1 Error Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 0 - CCP2IE Capture/Compare 2 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.19 Interrupt Enable Register 5

Name: IEC5 Offset: 0xA2

Bit	15	14	13	12	11	10	9	8
	CCP4IE	CCP3IE	SPI4TXIE	SPI4IE	SPI3TXIE	SPI3IE	U4TXIE	U4RXIE
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	U4ERIE	USB1IE	I2C2BCIE	I2C1BCIE	U3TXIE	U3RXIE	U3ERIE	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	

Bit 15 - CCP4IE Capture/Compare 4 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 14 - CCP3IE Capture/Compare 4 Interrupt Enable bit

	and the state of t
Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 13 - SPI4TXIE SPI4 Transfer Done Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 12 - SPI4IE SPI2 General Interrupt Enable bit

Dit iz C	Sit 12 - Of 1412 Of 12 Ochoral Interrupt Enable bit	
Value	Description	
1	Interrupt enabled	
0	Interrupt not enabled	

Bit 11 - SPI3TXIE SPI3 Transfer Done Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 10 - SPI3IE SPI3 General Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 9 - U4TXIE UART4 Transmitter Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 8 - U4RXIE UART4 Receiver Interrupt Enable bit

	<u> </u>
Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 7 - U4ERIE UART4 Error Interrupt Enable bit

-1	Value	Description
	1	Interrupt enabled
	0	Interrupt not enabled

Bit 6 - USB1IE USB OTG 1 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 5 - I2C2BCIE I2C2 Bus Collision Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 4 - I2C1BCIE I2C1 Bus Collision Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 3 - U3TXIE UART3 Transmitter Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - U3RXIE UART3 Receiver Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 1 - U3ERIE UART3 Error Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

8.3.20 Interrupt Enable Register 6

Name: IEC6 Offset: 0xA4

Bit	15	14	13	12	11	10	9	8
	U5RXIE	RTCCTSIE	I2C3BCIE			FSTIE		
Access	R/W	R/W	R/W	•		R/W		
Reset	0	0	0			0		
Bit	7	6	5	4	3	2	1	0
			LCDATIE	LCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - U5RXIE UART5 Receiver Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 14 - RTCCTSIE Real-Time Clock Timestamp Interrupt Enable bit

Value Description			
1	Interrupt enabled		
0	Interrupt not enabled		

Bit 13 - I2C3BCIE I2C3 Bus Collision Interrupt Enable bit

Value	Description			
1	Interrupt enabled			
0	Interrupt not enabled			

Bit 10 - FSTIE FRC Self-Tuning Interrupt Enable bit

	Bit 16 - 1 OTIE 1 NO Ocil-Tulling interrupt Enable bit					
Value	Description					
1	Interrupt enabled					
0	Interrupt not enabled					

Bit 5 - LCDATIE LCD Automation Timer Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 4 - LCDIE LCD Interrupt Enable bit

DIC - LOD	Bit 4 LOBIE 200 Intollapt Enable bit					
Value	Description					
1	Interrupt enabled					
0	Interrupt not enabled					

Bit 3 - CLC4IE Configurable Logic Cell 4 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - CLC3IE Configurable Logic Cell 3 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

Bit 2 - CCT2IE Capture/Compare/Timer2 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 1 - CLC2IE Configurable Logic Cell 2 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 0 - CLC1IE Configurable Logic Cell 1 Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Interrupt Controller

8.3.21 Interrupt Enable Register 7

Name: IFS7 Offset: 0xA6

Bit	15	14	13	12	11	10	9	8	
									Ī

Access Reset

Bit	7	6	5	4	3	2	1	0
			JTAGIE	U6ERIE	U6TXIE	U6RXIE	U5ERIE	U5TXIE
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 5 - JTAGIE JTAG Interrupt Enable bit

Value	Description				
1	Interrupt enabled				
0	Interrupt not enabled				

Bit 4 - U6ERIE UART6 Error Interrupt Enable bit

1	/alue	Description
	_	Interrupt enabled
()	Interrupt not enabled

Bit 3 - U6TXIE UART6 Transmitter Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 2 - U6RXIE UART6 Receiver Interrupt Enable bit

D.C 2	Dit 2 Of the Country Interrupt Endblo bit						
Value	Description						
1	Interrupt enabled						
0	Interrupt not enabled						

Bit 1 - U5ERIE UART5 Error Interrupt Enable bit

Value	Description
1	Interrupt enabled
0	Interrupt not enabled

Bit 0 - U5TXIE UART5 Transmitter Interrupt Enable bit

Value	Description						
1	Interrupt enabled						
0	Interrupt not enabled						

8.3.22 Interrupt Priority Register 0

Name: IPC0 Offset: 0xA8

Bit	15	14	13	12	11	10	9	8
			T1IP[2:0]			CCT2IP[2:0]		
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
		CCT1IP[2:0]				INT0IP[2:0]		
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - T1IP[2:0] Timer1 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - CCT2IP[2:0] Capture/Compare/Timer2 Interrupt Priority bits

D.10 . 0.0	College Captaro, Comparo, Timore Interrupt Priority Site
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - CCT1IP[2:0] Capture/Compare/Timer1 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - INT0IP[2:0] External Interrupt 0 Interrupt Priority bits

	······································
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Datasheet

Interrupt Controller

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.23 Interrupt Priority Register 1

Name: IPC1 Offset: 0xAA

Bit	15	14	13	12	11	10	9	8
			T2IP[2:0]					
Access		R/W	R/W	R/W				
Reset		1	0	0				
Bit	7	6	5	4	3	2	1	0
							DMA0IP[2:0]	
Access						R/W	R/W	R/W
Reset						1	0	0

Bits 14:12 - T2IP[2:0] Timer2 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - DMA0IP[2:0] Direct Memory Access 0 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.24 Interrupt Priority Register 2

Name: IPC2 Offset: 0xAC

Bit	15	14	13	12	11	10	9	8
			U1RXIP[2:0]				SPI1TXIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
			SPI1IP[2:0]				T3IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - U1RXIP[2:0] UART1 Receiver Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - SPI1TXIP[2:0] SPI1 Transfer Interrupt Priority bits

	of the tall of the manifest menty site
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - SPI1IP[2:0] SPI1 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - T3IP[2:0] Timer3 Interrupt Priority bits

	The same same specific same sp
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.25 Interrupt Priority Register 3

Name: IPC3 Offset: 0xAE

Bit	15	14	13	12	11	10	9	8
			NVMIP[2:0]				DMA1IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
			AD1IP[2:0]				U1TXIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - NVMIP[2:0] NVM Program/Erase Complete Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - DMA1IP[2:0] Direct Memory Access 1 Interrupt Priority bits

Differ [2:0] Brook Mornery Accorde 1 Interrupt 1 Horty Bito
Description
Interrupt Priority Level 7 (highest)
Interrupt Priority Level 6
Interrupt Priority Level 5
Interrupt Priority Level 4 (default)
Interrupt Priority Level 3
Interrupt Priority Level 2
Interrupt Priority Level 1
Interrupt Priority Level 0 (lowest)

Bits 6:4 - AD1IP[2:0] A/D Converter 1 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - U1TXIP[2:0] UART1 Transmitter Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.26 Interrupt Priority Register 4

Name: IPC4 Offset: 0xB0

Bit	15	14	13	12	11	10	9	8
			IOCIP[2:0]				CMIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
			MI2C1IP[2:0]				SI2C1IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - IOCIP[2:0] Interrupt-on-Change Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - CMIP[2:0] Comparator Interrupt Priority bits

Description
Interrupt Priority Level 7 (highest)
Interrupt Priority Level 6
Interrupt Priority Level 5
Interrupt Priority Level 4 (default)
Interrupt Priority Level 3
Interrupt Priority Level 2
Interrupt Priority Level 1
Interrupt Priority Level 0 (lowest)

Bits 6:4 - MI2C1IP[2:0] I2C1 Master Events Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - SI2C1IP[2:0] I2C1 Slave Events Interrupt Priority bits

	The same and the s
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.27 Interrupt Priority Register 5

Name: IPC5 Offset: 0xB2

Bit	15	14	13	12	11	10	9	8
			CCP6IP[2:0]				CCP5IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
							INT1IP[2:0]	
Access						R/W	R/W	R/W
Reset						1	0	0

Bits 14:12 - CCP6IP[2:0] Capture/Compare 6 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - CCP5IP[2:0] Capture/Compare 5 Interrupt Priority bits

D.10 10.0	Cor on [2:0] Captaro, Comparo o interrupt i nonty site
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - INT1IP[2:0] External Interrupt 1 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.28 Interrupt Priority Register 6

Name: IPC6 Offset: 0xB4

Bit	15	14	13	12	11	10	9	8
			T4IP[2:0]					
Access Reset		R/W	R/W	R/W				
Reset		1	0	0				
Bit	7	6	. 5	4	3	2	1	0

Access Reset

Bits 14:12 - T4IP[2:0] Timer4 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.29 Interrupt Priority Register 7

Name: IPC7 Offset: 0xB6

Bit	15	14	13	12	11	10	9	8
			U2TXIP[2:0]				U2RXIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
			INT2IP[2:0]				T5IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - U2TXIP[2:0] UART2 Transmitter Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - U2RXIP[2:0] UART2 Receiver Interrupt Priority bits

	Caroni [are] Contract the contract mental site
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - INT2IP[2:0] External Interrupt 2 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - T5IP[2:0] Timer5 Interrupt Priority bits

	Ton [210] Timero interrupt i tierry and
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.30 Interrupt Priority Register 8

Name: IPC8 Offset: 0xB8

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
			SPI2TXIP[2:0]				SPI2IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 6:4 - SPI2TXIP[2:0] SPI2 Transfer Done Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - SPI2IP[2:0] SPI2 General Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

0

0

8.3.31 Interrupt Priority Register 9

Name: IPC9 Offset: 0xBA

Reset

Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
							DMA3IP[2:0]	
Access						R/W	R/W	R/W

Bits 2:0 - DMA3IP[2:0] Direct Memory Access 3 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.32 Interrupt Priority Register 10

Name: IPC10 Offset: 0xBC

Bit	15	14	13	12	11	10	9	8
			CCT3IP[2:0]					
Access Reset		R/W	R/W	R/W				
Reset		1	0	0				
Bit	7	6	5	4	3	2	1	0

Access Reset

Bits 14:12 - CCT3IP[2:0] Capture/Compare/Timer3 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.33 Interrupt Priority Register 11

Name: IPC11 Offset: 0xBE

Bit	15	14	13	12	11	10	9	8
			CCT5IP[2:0]				DMA4IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
							CCT4IP[2:0]	
Access						R/W	R/W	R/W
Reset						1	0	0

Bits 14:12 - CCT5IP[2:0] Capture/Compare/Timer5 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - DMA4IP[2:0] Direct Memory Access 4 Interrupt Priority bits

D110 10.0	Differ [2:0] Birock Womery Accord I interrupt I nonky bito
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - CCT4IP[2:0] Capture/Compare/Timer4 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.34 Interrupt Priority Register 12

Name: IPC12 Offset: 0xC0

Bit	15	14	13	12	11	10	9	8	
		CCT7IP[2:0]				MI2C2IP[2:0]			
Access		R/W	R/W	R/W		R/W	R/W	R/W	
Reset		1	0	0		1	0	0	
Bit	7	6	5	4	3	2	1	0	
			SI2C2IP[2:0]				CCT6IP[2:0]		
Access		R/W	R/W	R/W		R/W	R/W	R/W	
Reset		1	0	0		1	0	0	

Bits 14:12 - CCT7IP[2:0] Capture/Compare/Timer7 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - MI2C2IP[2:0] I2C2 Master Events Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - SI2C2IP[2:0] I2C2 Slave Events Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - CCT6IP[2:0] Capture/Compare/Timer6 Interrupt Priority bits

	o o o o la company o o o o o o o o o o o o o o o o o o o
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.35 Interrupt Priority Register 13

Name: IPC13 Offset: 0xC2

Bit	15	14	13	12	11	10	9	8
							INT4IP[2:0]	
Access						R/W	R/W	R/W
Reset						1	0	0
Bit	7	6	5	4	3	2	1	0
			INT3IP[2:0]				CCT8IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		0	0	0

Bits 10:8 - INT4IP[2:0] External Interrupt 4 Interrupt Priority bits

• • •
Description
Interrupt Priority Level 7 (highest)
Interrupt Priority Level 6
Interrupt Priority Level 5
Interrupt Priority Level 4 (default)
Interrupt Priority Level 3
Interrupt Priority Level 2
Interrupt Priority Level 1
Interrupt Priority Level 0 (lowest)

Bits 6:4 - INT3IP[2:0] External Interrupt 3 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - CCT8IP[2:0] Capture/Compare/Timer8 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.36 Interrupt Priority Register 14

Name: IPC14 Offset: 0xC4

Bit	15	14	13	12	11	10	9	8	
			SPI2RXIP[2:0]			SPI1RXIP[2:0]			
Access		R/W	R/W	R/W		R/W	R/W	R/W	
Reset		1	0	0		1	0	0	
Bit	7	6	5	4	3	2	1	0	
			SPI4RXIP[2:0]						
Access		R/W	R/W	R/W					
Reset		1	0	0					

Bits 14:12 - SPI2RXIP[2:0] SPI2 Receive Done Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - SPI1RXIP[2:0] SPI1 Receive Done Priority bits

D.10 10.0	Ci intali [2:0] Of it it doctor Botto i flority bito
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - SPI4RXIP[2:0] SPI4 Receive Done Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.37 Interrupt Priority Register 15

Name: IPC15 Offset: 0xC6

Bit	15	14	13	12	11	10	9	8
			CCP1IP[2:0]				RTCIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
			DMA5IP[2:0]				SPI3RXIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - CCP1IP[2:0] Capture/Compare 1 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - RTCIP[2:0] Real-Time Clock and Calendar Interrupt Priority bits

	Tere [210] Troat Time Glock and Calondar Interrupt Thomas Site
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - DMA5IP[2:0] Direct Memory Access 5 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - SPI3RXIP[2:0] SPI3 Receive Done bits

	and the second s
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.38 Interrupt Priority Register 16

Name: IPC16 Offset: 0xC8

Bit	15	14	13	12	11	10	9	8
			CRCIP[2:0]				U2ERIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
			U1ERIP[2:0]				CCP2IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - CRCIP[2:0] Cyclic Redundancy Check Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - U2ERIP[2:0] UART2 Error Interrupt Priority bits

D.10 10.0	OZZIMI [Z:0] OTATIZ Ziror interrupt i norty bito
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - U1ERIP[2:0] UART2 Error Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - CCP2IP[2:0] Capture/Compare 2 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.39 Interrupt Priority Register 17

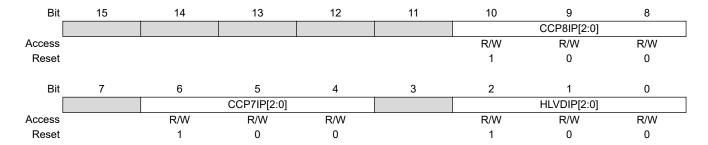
Name: IPC17 Offset: 0xCA

Bit	15	14	13	12	11	10	9	8
		MI2C3IP[2:0]				SI2C3IP[2:0]		
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0

Access Reset

Bits 14:12 - MI2C3IP[2:0] I2C2 Master Events Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)


Bits 10:8 - SI2C3IP[2:0] I2C2 Slave Events Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.40 Interrupt Priority Register 18

Name: IPC18 Offset: 0xCC

Bits 10:8 - CCP8IP[2:0] Capture/Compare 8 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - CCP7IP[2:0] Capture/Compare 7 Interrupt Priority bits

Joi Fit [2.0] Captaro, Compare Fitherrapt Fronty Site
Description
Interrupt Priority Level 7 (highest)
Interrupt Priority Level 6
Interrupt Priority Level 5
Interrupt Priority Level 4 (default)
Interrupt Priority Level 3
Interrupt Priority Level 2
Interrupt Priority Level 1
Interrupt Priority Level 0 (lowest)

Bits 2:0 - HLVDIP[2:0] High/Low-Voltage Detect Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.41 Interrupt Priority Register 19

Name: IPC19 Offset: 0xCE

Bit	15	14	13	12	11	10	9	8
							DAC1IP[2:0]	
Access Reset						R/W	R/W	R/W
Reset						0	0	0
Bit	7	6	5	4	3	2	1	0

Access Reset

Bits 10:8 - DAC1IP[2:0] 10-Bit Digital-to-Analog Converter 1 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.42 Interrupt Priority Register 20

Name: IPC20 Offset: 0xD0

Bit	15	14	13	12	11	10	9	8	
			U3TXIP[2:0]			U3RXIP[2:0]			
Access		R/W	R/W	R/W		R/W	R/W	R/W	
Reset		1	0	0		1	0	0	
Bit	7	6	5	4	3	2	1	0	
			U3ERIP[2:0]						
Access		R/W	R/W	R/W					
Reset		1	0	0					

Bits 14:12 - U3TXIP[2:0] UART3 Transmitter Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - U3RXIP[2:0] UART3 Receiver Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - U3ERIP[2:0] UART3 Error Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.43 Interrupt Priority Register 21

Name: IPC21 Offset: 0xD2

Bit	15	14	13	12	11	10	9	8
			U4ERIP[2:0]				USB1IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
			I2C2BCIP[2:0]				I2C1BCIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - U4ERIP[2:0] UART4 Error Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - USB1IP[2:0] USB OTG 1 Interrupt Priority bits

D110 10.0	COD III [2:0] COD CT CT Interrupt Thority Bite
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - I2C2BCIP[2:0] I2C2 Bus Collision Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - I2C1BCIP[2:0] I2C1 Bus Collision Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.44 Interrupt Priority Register 22

Name: IPC22 Offset: 0xD4

Bit	15	14	13	12	11	10	9	8	
			SPI3TXIP[2:0]			SPI3IP[2:0]			
Access		R/W	R/W	R/W		R/W	R/W	R/W	
Reset		1	0	0		0	0	0	
Bit	7	6	5	4	3	2	1	0	
			U4TXIP[2:0]				U4RXIP[2:0]		
Access		R/W	R/W	R/W		R/W	R/W	R/W	
Reset		1	0	0		1	0	0	

Bits 14:12 - SPI3TXIP[2:0] SPI3 Transfer Done Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - SPI3IP[2:0] SPI3 General Interrupt Priority bits

D110 10.0	Ci ion [2.0] of to Contract Mentaper Honey Site
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - U4TXIP[2:0] UART4 Transmitter Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - U4RXIP[2:0] UART4 Receiver Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.45 Interrupt Priority Register 23

Name: IPC23 Offset: 0xD6

Bit	15	14	13	12	11	10	9	8
			CCP4IP[2:0]				CCP3IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
	_	_	_					
Bit	/	6	5	4	3	2	1	0
			SPI4TXIP[2:0]				SPI4IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - CCP4IP[2:0] Capture/Compare 4 Interrupt Priority bits

	1 7
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - CCP3IP[2:0] Capture/Compare 3 Interrupt Priority bits

D.10 10.0	Cor on [2:0] Captaro, Comparo o interrupt i nonty sito
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - SPI4TXIP[2:0] SPI4 Transfer Done Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - SPI4IP[2:0] SPI4 General Interrupt Priority bits

	or the [2.0] or the deficient minor apt the my and
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.46 Interrupt Priority Register 24

Name: IPC24 Offset: 0xD8

Bit	15	14	13	12	11	10	9	8
			CLC4IP[2:0]				CLC3IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
			CLC2IP[2:0]				CLC1IP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 14:12 - CLC4IP[2:0] Configurable Logic Cell 4 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - CLC3IP[2:0] Configurable Logic Cell 3 Interrupt Priority bits

D.10.0	22001 [2.0] Comigarable 20gle Con a monaper noney blo
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - CLC2IP[2:0] Configurable Logic Cell 2 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - CLC1IP[2:0] Configurable Logic Cell 1 Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3

Value	Description
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.47 Interrupt Priority Register 25

Name: IPC25 Offset: 0xDA

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
			LCDATIP[2:0]				LCDIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 6:4 - LCDATIP[2:0] LCD Automation Timer Interrupt bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - LCDIP[2:0] LCD Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.48 Interrupt Priority Register 26

Name: IPC26 Offset: 0xDC

Bit	15	14	13	12	11	10	9	8
							FSTIP[2:0]	
Access Reset						R/W	R/W	R/W
Reset						1	0	0
Bit	7	6	5	4	3	2	1	0

Access Reset

Bits 10:8 - FSTIP[2:0] FRC Self-Tuning Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.49 Interrupt Priority Register 27

Name: IPC27 Offset: 0xDE

Bit	15	14	13	12	11	10	9	8
			U5RXIP[2:0]			RTCCTSIP[2:0]		
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0
Bit	7	6	5	4	3	2	1	0
			I2C3BCIP[2:0]					
Access		R/W	R/W	R/W				
Reset		1	0	0				

Bits 14:12 - U5RXIP[2:0] UART5 Receiver Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 10:8 - RTCCTSIP[2:0] Real-Time Clock and Calendar Timestamp Interrupt Priority bits

D.10 10.0	111 Go Ton [2:0] Thou Time Clock and Calonaar Timestamp Interrupt Themy bite
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - I2C3BCIP[2:0] I2C3 Bus Collision Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

8.3.50 Interrupt Priority Register 28

Name: IPC28 Offset: 0xE0

Bit	15	14	13	12	11	10	9	8
							U6RXIP[2:0]	
Access						R/W	R/W	R/W
Reset						1	0	0
Bit	7	6	5	4	3	2	1	0
			U5ERIP[2:0]				U5TXIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 10:8 - U6RXIP[2:0] UART6 Receiver Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 6:4 - U5ERIP[2:0] UART5 Error Interrupt Priority bits

Dito o.+ (Jozian [2.0] Office Enter interrupt Friends Site
Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - U5TXIP[2:0] UART5 Transmitter Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.51 Interrupt Priority Register 29

Name: IPC29 Offset: 0xE2

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
			JTAGIP[2:0]				U6ERIP[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		1	0	0		1	0	0

Bits 6:4 - JTAGIP[2:0] JTAG Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Bits 2:0 - U6ERIP[2:0] UART6 Error Interrupt Priority bits

Value	Description
7	Interrupt Priority Level 7 (highest)
6	Interrupt Priority Level 6
5	Interrupt Priority Level 5
4	Interrupt Priority Level 4 (default)
3	Interrupt Priority Level 3
2	Interrupt Priority Level 2
1	Interrupt Priority Level 1
0	Interrupt Priority Level 0 (lowest)

Interrupt Controller

8.3.52 Interrupt Control and Status Register

Name: INTTREG Offset: 0xE4

Note:

1. See Table 8-1 and Table 8-2 for the vector numbers.

Bit	15	14	13	12	11	10	9	8
	CPUIRQ		VHOLD			ILR	[3:0]	
Access	R		R/W	•	R/W	R/W	R/W	R/W
Reset	0		0		0	0	0	0
Bit	7	6	5	4	3	2	1	0
				VECN	JM[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit 15 - CPUIRQ Interrupt Request from Interrupt Controller to CPU bit

Value	Description
1	An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when
	the CPU priority is higher than the interrupt priority
0	No interrupt request is unacknowledged

Bit 13 - VHOLD Vector Number Capture Configuration bit

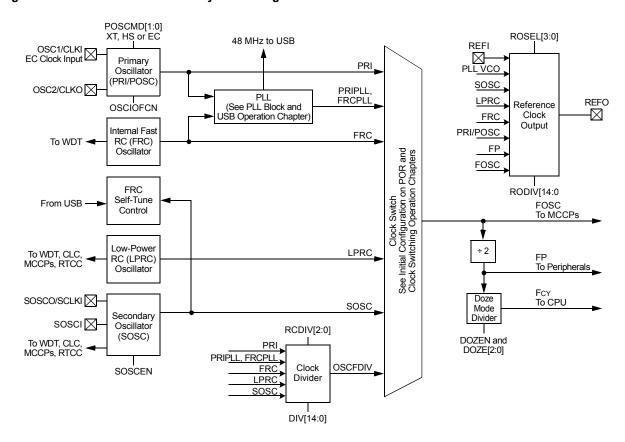
Value	Description
1	The VECNUMx bits contain the value of the highest priority pending interrupt
0	The VECNUMx bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that has
	occurred with higher priority than the CPU, even if other interrupts are pending)

Bits 11:8 - ILR[3:0] New CPU Interrupt Priority Level bits

Value	Description
1111	New CPU Interrupt Priority Level bits
0001	CPU Interrupt Priority Level is 1
0000	CPU Interrupt Priority Level is 0

Bits 7:0 - VECNUM[7:0] Vector Number of Pending Interrupt bits⁽¹⁾

9. Oscillator Configuration


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Oscillator" (DS39700) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The oscillator system for the PIC24FJ512GU410 family devices has the following features:

- · An On-Chip PLL Block to Provide a Range of Frequency Options for the System Clock
- · Software-Controllable Switching between Various Clock Sources
- · Software-Controllable Postscaler for Selective Clocking of CPU for System Power Savings
- A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- A Separate and Independently Configurable System Clock Output for Synchronizing External Hardware

A simplified diagram of the oscillator system is shown in Figure 9-1.

Figure 9-1. PIC24FJ512GU410 Family Clock Diagram

The system clock source can be provided by one of the following sources:

- Primary Oscillator (PRI or POSC) on the OSCI and OSCO pins
- Fast Internal RC (FRC) Oscillator (8 MHz)
- · Primary Oscillator with PLL (PRIPLL)
- · Fast Internal RC Oscillator with PLL (FRCPLL)
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Low-Power Internal RC (LPRC) Oscillator (32 kHz)

Oscillator Configuration

The Primary Oscillator and FRC sources have the option of using the internal PLL block, which can generate a 4x, 6x or 8x PLL clock. If the PLL is used, the PLL clocks can then be postscaled, if necessary, and used as the system clock. Refer to 9.8 PLL Block and USB Operation for additional information.

Each clock source (PRIPLL, FRCPLL, PRI, FRC, LPRC and SOSC) can be used as an input to an additional divider, which can then be used to produce a divided clock source for use as a system clock (OSCFDIV).

The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, F_{CY} . In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clock, $F_{OSC}/2$, can be provided on the OSCO I/O pin for the EC operating mode of the Primary Oscillator.

9.1 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to 4.3 Configuration Bits Overview for further details). The Primary Oscillator Configuration bits, POSCMD[1:0] (FOSC[1:0]), and the Oscillator Select Configuration bits, FNOSC[2:0] (FOSCSEL[2:0]), select the oscillator source that is used at a Power-on Reset.

9.2 Clock Switching Operation

With few limitations, applications are free to switch between any of the clock sources under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD[1:0] Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different Primary Oscillator submodes without reprogramming the device.

9.2.1 Enabling Clock Switching

To enable clock switching, the FCKSM[1:0] Configuration bits in FOSC must be programmed to '0x'. (Refer to 29.1 Configuration Bits for further details.) If the FCKSM[1:0] Configuration bits are programmed to '1x', the clock switching function is disabled; this is the default setting.

The NOSC[1:0] control bits (OSCCON[10:8]) do not control the clock selection when clock switching is disabled. However, the COSC[2:0] bits (OSCCON[14:12]) will reflect the clock source selected by the FOSC Configuration bits.

The OSWEN control bit (OSCCON[0]) has no effect when clock switching is disabled; it is held at '0' at all times.

9.2.2 Oscillator Switching Sequence

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC[2:0] bits (OSCCON[14:12]) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSC[2:0] bits (OSCCON[10:8]) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

The clock switching hardware compares the COSC[2:0] bits with the new value of the NOSC[2:0] bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

If a valid clock switch has been initiated, the LOCK (OSCCON[5]) and CF (OSCCON[3]) bits are cleared.

The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until it is ready. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).

Oscillator Configuration

The hardware waits for ten clock cycles from the new clock source and then performs the clock switch.

The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC[2:0] bits value is transferred to the COSC[2:0] bits.

The old clock source is turned off at this time, unless this oscillator is needed for other modules.

The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

Direct clock switches between any Primary Oscillator mode with PLL and FRC with PLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- 2. Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON[15:8] in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON[7:0] in two backto-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'; if it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The assembler code sequence for unlocking the OSCCON register and initiating a clock switch is shown below:

```
Example 9-1. Unlocking OSCCON and Initiating a Clock Switch
 ; OSCCONH (high byte) Unlock Sequence
       #OSCCONH, w1
 mov
 mov
       #0x78, w2
       #0x9A, w3
 mov
 mov.b w2, [w1]
 mov.b w3, [w1]
 ; Set new oscillator selection
       #<New Clock Option Number>, w0
 mov.b w0, OSCCONH
 ; OSCCONL (low byte) unlock sequence
       #OSCCONL, w1
 mov
       #0x46, w2
 mov
 mov
       #0x57, w3
 mov.b w2, [w1]
 mov.b w3, [w1]
 ; Start oscillator switch operation
 bset OSCCON, #0
```

The MPLAB® XC16 C compiler offers "built-in" functions for the clock switching as follows:

Example:

```
__builtin_write_OSCCONH(<New Clock Option Number>);
__builtin_write_OSCCONL(OSCCON | 0x01); // Start oscillator switch operation
```

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) detects clock failures. In case of a clock problem, the Fail-Safe Clock Monitor switches the clock to the on-chip Low-Power RC oscillator (LPRC) and generates the oscillator trap. To enable clock switching, the FCKSM[1:0] Configuration bits in FOSC must be programmed to '00'.

Oscillator Configuration

9.4 Internal Fast RC (FRC) Oscillator with Active Clock Tuning

The FRC includes an automatic mechanism to calibrate the frequency during run time. This system uses active clock tuning from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. The TUN[5:0] bits in the OSCTUN register allow applications to fine-tune the FRC Oscillator over a range of approximately ±1.5%.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN[15]) enables the self-tuning feature, allowing the hardware to calibrate to a source selected by the STSRC bit (OSCTUN[12]).

When STSRC = 0, the system uses the crystal-controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN[5:0] bits (OSCTUN[5:0]) to change the FRC Oscillator's frequency. Frequency monitoring and adjustment are dynamic, occurring continuously during run time. While the system is active, the TUN[5:0] bits cannot be written to by software.

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference, by greater than 0.2% in either direction, or whenever the frequency deviation is beyond the ability of the TUN[5:0] bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN[11,9]) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN[10,8]) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

9.5 Primary Oscillator (PRI or POSC)

The PIC24FJ512GU410 family devices feature a Primary Oscillator (POSC), which is available on the OSCI and OSCO pins. This connection enables an external crystal (or ceramic resonator) to provide the clock to the device. The Primary Oscillator provides three modes of operation:

- Medium Speed Oscillator (XT Mode): The XT mode is a Medium Gain, Medium Frequency mode used to work with crystal frequencies of 3.5 MHz to 10 MHz.
- High-Speed Oscillator (HS Mode): The HS mode is a High-Gain, High-Frequency mode used to work with crystal frequencies of 10 MHz to 32 MHz.
- External Clock Source Operation (EC Mode): If the crystal driver is disabled, the EC mode allows the internal oscillator to be bypassed. The device clocks are generated from an external source (0 MHz to up to 64 MHz) and input on the CLKI pin.

9.6 Low-Power RC (LPRC) Oscillator

The PIC24FJ512GU410 family devices contain one instance of the Low-Power RC (LPRC) Oscillator and provides a nominal clock frequency of 32 kHz. The LPRC Oscillator is the clock source for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM) circuits in the clock subsystem. The LPRC Oscillator is enabled at power-on. The LPRC Oscillator remains enabled under these conditions:

- · The FSCM is enabled
- · The WDT is enabled
- · The LPRC Oscillator is selected as the system clock

If none of these conditions is true, the LPRC Oscillator shuts off after the PWRT expires. The LPRC Oscillator is shut off in Sleep mode.

Oscillator Configuration

9.7 Secondary Oscillator (SOSC)

9.7.1 Basic Operation

PIC24FJ512GU410 family devices do not have to set the SOSCEN bit to use the Secondary Oscillator. Any module requiring the SOSC (such as the RTCC or Timer1) will automatically turn on the SOSC when the clock signal is needed. The SOSC, however, has a long start-up time (as long as one second). To avoid delays for peripheral start-up, the SOSC can be manually started using the SOSCEN bit.

To use the Secondary Oscillator, the SOSCSEL bit (FOSC[3]) must be set to '1'. Programming the SOSCSEL bit to '0' configures the SOSC pins for Digital mode, enabling digital I/O functionality on the pins.

9.7.2 Crystal Selection

The 32.768 kHz crystal used for the SOSC must have the following specifications in order to properly start up and run at the correct frequency when the SOSC is in High-Power mode (default):

- · 12.5 pF loading capacitance
- 1.0 pF shunt capacitance
- A typical ESR of 35k-50k; 70k maximum

In addition, the two external crystal loading capacitors should be in the range of 18 pF-22 pF, which will be based on the PC board layout. The capacitors should be C0G, 5% tolerance and rated 25V or greater.

The accuracy and duty cycle of the SOSC can be measured on the REFO pin, and is recommended to be in the range of 40-60% and accurate to ± 0.65 Hz.

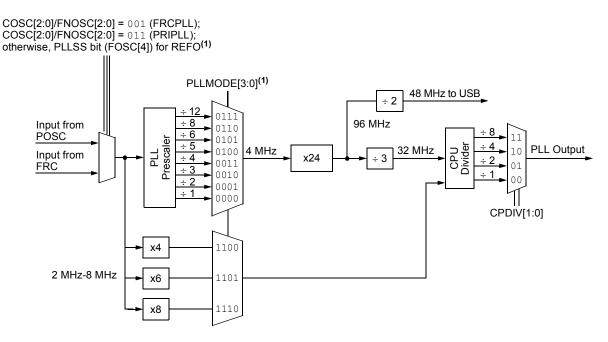
9.7.3 Low-Power Operation

The Secondary Oscillator can operate in two distinct levels of power consumption based on device configuration. In Low-Power mode, the oscillator operates in a low drive strength, low-power state. By default, the oscillator uses a higher drive strength, and therefore, requires more power. Low-Power mode is selected by Configuration bit, SOSCHP (FDEVOPT1[3]). The lower drive strength of this mode makes the SOSC more sensitive to noise and requires a longer start-up time. This mode can be used with lower load capacitance crystals (6 pF-9 pF) to reduce Sleep current in the RTCC. When Low-Power mode is used, care must be taken in the design and layout of the SOSC circuit to ensure that the oscillator starts up and oscillates properly. PC board layout issues, stray capacitance and other factors will need to be carefully controlled in order for the crystal to operate.

9.8 PLL Block and USB Operation

The PLL block, shown in Figure 9-2, can generate a wide range of clocks used for both parts with USB functionality (PIC24FJXXXGU4XX devices) and non-USB functionality (PIC24FJXXXGL4XX devices). All of the PLL modes are available regardless if USB is present or not.

The PLL input clock source (FRC or POSC) is controlled by the COSC[2:0] bits (OSCCON[14:12]) if the PLL output is used as a system clock. When COSC[2:0] = 001 (FRCPLL), the PLL is clocked from FRC. When COSC[2:0] = 011 (PRIPLL), the Primary Oscillator (POSC) is connected to the PLL. The default COSC[2:0] value is selected by the FNOSC[2:0] Configuration bits (FOSCSEL[2:0]). Also, REFO can use the PLL when it is not selected for the system clock (COSC[2:0] bits (OSCCON[14:12]) are not '001' or '011'). In this case, the PLL clock source is selected by the PLLSS Configuration bit (FOSC[4]). If PLLSS is cleared ('0'), the PLL is fed by the FRC Oscillator. If the PLLSS Configuration bit is not programmed ('1'), the PLL is clocked from the Primary Oscillator.


When used in a USB application, the 48 MHz internal clock must be running at all times, which requires the VCO of the PLL to run at 96 MHz. This, in turn, forces the system clock (that drives the CPU and peripherals) to route the 96 MHz through a fixed divide-by-3 block (generating 32 MHz) and then through a selection of four fixed divisors ('postscaler'). The postscaler controlled by the CPDIV[1:0] bits output becomes the system clock.

The input to the PLL must be 4 MHz when used in a USB application, which restricts the frequency input sources to be used with a small set of fixed frequency dividers (see Figure 9-2). The 96 MHz (USB) PLL prescaler is configured by the PLLMODE[3:0] Configuration bits. For example, if a 12 MHz crystal is used, the PLLMODE[3:0] Configuration bits must be set for divide-by-3 to generate the required 4 MHz. A popular baud rate crystal is 11.0592 MHz, but this value cannot be used for USB operation as there are no divisors available to generate 4 MHz exactly.

Oscillator Configuration

Non-USB operation allows a wider range of PLL input frequencies. The multiplier ratios can be selected as 4x, 6x or 8x. There is no clock prescaler. The postscaler (CPDIV[1:0]) is available and can be used to reduce the system clock to meet the 32 MHz maximum frequency specification. Note that the minimum input frequency to the PLL is 2 MHz, but the range is from 2 MHz to 8 MHz.

Figure 9-2. PLL Block

Note:

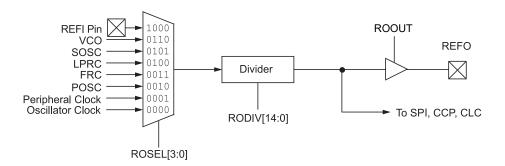
1. The FNOSC[2:0], PLLMODE[3:0] and PLLSS bits are in the configuration area. See the FOSC and FOSCSEL Configuration registers (29.1.6 FOSC and 29.1.5 FOSCSEL) for more information.

9.9 Reference Clock Output

In addition to the CLKO output ($F_{OSC}/2$), the device clock in the PIC24FJ512GU410 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application. CLKO is enabled by Configuration bit, OSCIOFCN, and is independent of the REFO reference clock. REFO is mappable to any I/O pin that has mapped output capability. Refer to Table 11-3 for more information.

This reference clock output is controlled by the REFOCONL and REFOCONH registers. Setting the ROEN bit (REFOCONL[15]) makes the clock signal available on the REFO pin. The RODIV[14:0] bits (REFOCONH[14:0]) enable the selection of different clock divide options. The ROSWEN bit (REFOCONL[9]) indicates that the clock divider has successfully switched. In order to change the divider, the user should wait until this bit has been cleared. Write the updated values to RODIV[14:0], set the ROSWEN bit and then wait until it is cleared before assuming that the REFO clock is valid.

The ROSEL[3:0] bits (REFOCONL[3:0]) determine which clock source is used for the reference clock output. The ROSLP bit (REFOCONL[11]) determines if the reference source is available on REFO when the device is in Sleep mode.


The ROOUT bit enables/disables the reference clock output on the REFO pin.

The ROACTIVE bit (REFOCONL[8]) indicates that the module is active; it can be cleared by disabling the module (setting ROEN to '0'). The user must not change the reference clock source or adjust the divider when the ROACTIVE bit indicates that the module is active. To avoid glitches, the user should not disable the module until the ROACTIVE bit is '1'.

Oscillator Configuration

The PLLSS Configuration bit (FOSC[4]), when cleared, can be used to generate a REFO clock with the PLL that is independent of the system clock. For example, if the system clock is using FRC at 8 MHz, the PLL can use the FRC as the input and generate 32 MHz (PLL 4x mode) out of REFO.

Figure 9-3. Reference Clock Generator

9.10 Oscillator Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00	Reserved									
0xFF	Neserveu									
0x0100	OSCCON(1)	7:0	CLKLOCK	IOLOCK	LOCK		CF	POSCEN	SOSCEN	OSWEN
0.0100	0000011(1)	15:8			COSC[2:0]				NOSC[2:0]	
0x0102	CLKDIV	7:0	CPDI	V[1:0]	PLLEN					
0.00102	CERDIV	15:8	ROI		DOZE[2:0]		DOZEN		RCDIV[2:0]	
0x0104										
	Reserved									
0x0105										
0x0106	OSCTUN	7:0						[5:0]		
0.0100	0001014	15:8	STEN		STSIDL	STSRC	STLOCK	STLPOL	STOR	STORPOL
0x0108										
	Reserved									
0x010B										
0x010C	OSCDIV	7:0		DIV[7:0]						
0,0100		15:8					DIV[14:8]			
0x010E	OSCFDIV(1)	7:0	TRIM[0]							
OXOTOL	0001 011(1)	15:8					TRIM[7:1]			
0x0110										
	Reserved									
0x0167										
0x0168	REFOCONL	7:0						ROSE	EL[3:0]	
0.0100	THE TOOLINE	15:8	ROEN		ROSIDL	ROOUT	ROSLP		ROSWEN	ROACTIV
0x016A	REFOCONH	7:0				RODI	IV[7:0]			
UXUTOA	REFUCUNH	15:8					RODIV[14:8]			

9.10.1 Control Registers Overview

The OSCCON register is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. OSCCON is protected by a write lock to prevent inadvertent clock switches. See 9.2 Clock Switching Operation for more information.

The CLKDIV register controls the features associated with Doze mode, as well as the postscalers for the OSCFDIV Clock mode and the PLL module.

The OSCDIV and OSCFDIV registers provide control for the system oscillator frequency divider.

The REFOCONL and REFOCONH registers control the reference clock feature.

9.10.2 FRC Oscillator Tuning Register

Name: OSCTUN Offset: 0x106

Note:

- 1. Use of either clock tuning reference source has specific application requirements. See 9.4 Internal Fast RC (FRC) Oscillator with Active Clock Tuning for details.
- 2. These bits are read-only when STEN = 1.

Bit	15	14	13	12	11	10	9	8
	STEN		STSIDL	STSRC	STLOCK	STLPOL	STOR	STORPOL
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TUN[5:0]				
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - STEN FRC Self-Tune Enable bit

Value	Description
1	FRC self-tuning is enabled; TUNx bits are controlled by hardware
0	FRC self-tuning is disabled; application may optionally control the TUNx bits

Bit 13 - STSIDL FRC Self-Tune Stop in Idle bit

Value	Description
1	Self-tuning stops during Idle mode
0	Self-tuning continues during Idle mode

Bit 12 - STSRC FRC Self-Tune Reference Clock Source bit(1)

Value	Description
1	FRC approximately matches the USB host clock tolerance
0	FRC approximately matches the 32.768 kHz SOSC tolerance

Bit 11 - STLOCK FRC Self-Tune Lock Status bit

Value	Description
1	FRC accuracy is currently within ±0.2% of the STSRC reference accuracy
0	FRC accuracy may not be within ±0.2% of the STSRC reference accuracy

Bit 10 - STLPOL FRC Self-Tune Lock Interrupt Polarity bit

Value	Description
1	A self-tune lock interrupt is generated when STLOCK is '0'
0	A self-tune lock interrupt is generated when STLOCK is '1'

Bit 9 - STOR FRC Self-Tune Out of Range Status bit

Value	Description
1	STSRC reference clock error is beyond the range of TUN[5:0]; no tuning is performed
0	STSRC reference clock is within the tunable range; tuning is performed

Bit 8 - STORPOL FRC Self-Tune Out of Range Interrupt Polarity bit

Value	Description
1	A self-tune out of range interrupt is generated when STOR is '0'
0	A self-tune out of range interrupt is generated when STOR is '1'

Bits 5:0 - TUN[5:0] FRC Oscillator Tuning bits(2)

Oscillator Configuration

Value	Description
011111	A self-tune out of range interrupt is generated when STOR is '0'
011110	A self-tune out of range interrupt is generated when STOR is '1'
000001	
000000	Center frequency oscillator is running at factory calibrated frequency
111111	
100001	
100000	Minimum frequency deviation

9.10.3 Oscillator Control Register

Name: OSCCON⁽¹⁾
Offset: 0x100

Notes:

- OSCCON is protected by a write lock to prevent inadvertent clock switches. See 9.2 Clock Switching Operation for more information.
- 2. Reset values for these bits are determined by the FNOSCx Configuration bits.
- 3. The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
- 4. This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

Legend: y = Value Set from Configuration bits on POR

Bit	15	14	13	12	11	10	9	8	
			COSC[2:0]			NOSC[2:0]			
Access		R	R	R		R/W	R/W	R/W	
Reset		0	0	X		у	у	у	
Bit	7	6	5	4	3	2	1	0	
	CLKLOCK	IOLOCK	LOCK		CF	POSCEN	SOSCEN	OSWEN	
Access	R/W	R/W	R/W		R/W	R/W	R/W	R/W	
Reset	0	0	0		0	0	0	0	

Bits 14:12 - COSC[2:0] Current Oscillator Selection bits(2)

Value	Description
111	Oscillator with Frequency Divider (OSCFDIV)
110	Reserved
101	Low-Power RC Oscillator (LPRC)
100	Secondary Oscillator (SOSC)
011	Primary Oscillator with PLL module (XTPLL, ECPLL)
010	Primary Oscillator (XT, HS, EC)
001	Fast RC Oscillator with PLL module (FRCPLL)
000	Fast RC Oscillator (FRC)

Bits 10:8 - NOSC[2:0] New Oscillator Selection bits⁽²⁾

Value	Description
111	Oscillator with Frequency Divider (OSCFDIV)
110	Reserved
101	Low-Power RC Oscillator (LPRC)
100	Secondary Oscillator (SOSC)
011	Primary Oscillator with PLL module (XTPLL, ECPLL)
010	Primary Oscillator (XT, HS, EC)
001	Fast RC Oscillator with PLL module (FRCPLL)
000	Fast RC Oscillator (FRC)

Bit 7 - CLKLOCK Clock Lock Enable bit

Value	Description
	If FSCM is Enabled (FCKSM[1:0] = 00):
1	Clock and PLL selections are locked
0	Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is Disabled (FCKSM[1:0] = 1x):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.

Bit 6 - IOLOCK I/O Lock Enable bit(3)

Oscillator Configuration

Value	Description
1	I/O lock is active
0	I/O lock is not active

Bit 5 - LOCK PLL Lock Status bit(4)

Value	Description
1	PLL module is in lock or PLL module start-up timer is satisfied
0	PLL module is out of lock, PLL start-up timer is running or PLL is disabled

Bit 3 - CF Clock Fail Detect bit

V	alue	Description
1		FSCM has detected a clock failure
0		FSCM has not detected a clock failure

Bit 2 - POSCEN Primary Oscillator Sleep Enable bit

Value	Description
1	Primary Oscillator continues to operate during Sleep mode
0	Primary Oscillator is disabled during Sleep mode

Bit 1 - SOSCEN 32 kHz Secondary Oscillator (SOSC) Enable bit

Value	Description
1	Enables Secondary Oscillator
0	Disables Secondary Oscillator

Bit 0 - OSWEN Oscillator Switch Enable bit

Valu	ue	Description
1		Initiates an oscillator switch to a clock source specified by the NOSC[2:0] bits
0		Oscillator switch is complete

Datasheet

9.10.4 Clock Divider Register

Name: CLKDIV Offset: 0x102

Note:

1. This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

Bit	15	14	13	12	11	10	9	8	
	ROI	ROI DOZE[2:0]			DOZEN	RCDIV[2:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	1	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	CPDIV[1:0]		PLLEN						
Access	R/W	R/W	R/W						
Reset	0	0	1						

Bit 15 - ROI Recover on Interrupt bit

Value	Description
1	Interrupts will clear the DOZEN bit and the processor clock, and the peripheral clock ratio is set to 1:1
0	Interrupts have no effect on the DOZEN bit

Bits 14:12 - DOZE[2:0] CPU Peripheral Clock Ratio Select bits

Value	Description
111	1:128
110	1:64
101	1:32
100	1:16
011	1:8 (default)
010	1:4
001	1:2
000	1:1

Bit 11 - DOZEN Doze Mode Enable bit(1)

Val	lue	Description
1		DOZE[2:0] bits specify the CPU peripheral clock ratio
0		CPU peripheral clock ratio is set to 1:1

Bits 10:8 - RCDIV[2:0] System Frequency Divider Clock Source Select bits

Value	Description
111	Reserved; do not use
110	Reserved
101	Low-Power RC Oscillator (LPRC)
100	Secondary Oscillator (SOSC)
011	Primary Oscillator (XT, HS, EC) with PLL module (XTPLL, HSPLL, ECPLL)
010	Primary Oscillator (XT, HS, EC)
001	Fast RC Oscillator (FRC) with PLL module (FRCPLL)
000	Fast RC Oscillator (FRC)

Bits 7:6 - CPDIV[1:0] System Clock Select bits (postscaler select from PLL, 32 MHz clock branch)

		\1	, -	,	
Value	Description				
11	Divide by 8				
10	Divide by 4				
01	Divide by 2				
00	Divide by 1 (default)				

Oscillator Configuration

Bit 5 - PLLEN PLL Enable bit

Value	Description
1	PLL is always active (including Sleep modes)
0	PLL is only active when a PLL Oscillator mode is selected (OSCCON[14:12] = 001 or 011)

Oscillator Configuration

9.10.5 Oscillator Divisor Register

Name: OSCDIV Offset: 0x10C

Bit	15	14	13	12	11	10	9	8
					DIV[14:8]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DIV	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:0 - DIV[14:0] Reference Clock Divider bits

Specifies the 1/2 period of the reference clock in the source clocks (ex: Period of ref clk output = [Reference Source * 2] * DIV[14:0]).

(2):: 2::2 2::2 [:	10.0.0.000 000.000 = 1 = 1.1[0]/.
Value	Description
1111111111111	Oscillator frequency divided by 65,534 (32,767 * 2)
11111111111110	Oscillator frequency divided by 65,532 (32,766 * 2)
• • •	
00000000000011	Oscillator frequency divided by 6 (3 * 2)
000000000000000000000000000000000000000	Oscillator frequency divided by 4 (2 * 2)
00000000000001	Oscillator frequency divided by 2 (1 * 2) (default)
00000000000000	Oscillator frequency is unchanged (no divider)

Oscillator Configuration

9.10.6 Oscillator Fractional Divisor Register

Name: OSCFDIV⁽¹⁾
Offset: 0x10E

Note:

Reset

1. TRIMx values greater than zero are ONLY valid when DIVx values are greater than zero.

Bit	15	14	13	12	11	10	9	8
					TRIM[7:1]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TRIM[0]							
Access	R/W							

Bits 14:7 - TRIM[7:0] Trim bits

0

Provides fractional additive to the DIV[14:0] bits value for the 1/2 period of the oscillator clock.

i iovidoo iidolloiidi	To vide of the contact of the BTV[11.0] bite value for the 1/2 period of the contact clock.					
Value	Description					
00000000	0/512 (0.0) divisor added to DIVx value					
00000001	1/512 (0.001953125) divisor added to DIVx value					
00000010	2/512 (0.00390625) divisor added to DIVx value					
100000000	256/512 (0.5000) divisor added to DIVx value					
111111110	510/512 (0.99609375) divisor added to DIVx value					
111111111	511/512 (0.998046875) divisor added to DIVx value					

9.10.7 Reference Oscillator Control Register Low

Name: REFOCONL Offset: 0x168

Legend: HC = Hardware Clearable bit

Bit	15	14	13	12	11	10	9	8
	ROEN		ROSIDL	ROOUT	ROSLP		ROSWEN	ROACTIV
Access	R/W		R/W	R/W	R/W		R/W/HC	R
Reset	0		0	0	0		0	0
Bit	7	6	5	4	3	2	1	0
						ROSE	L[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bit 15 - ROEN Reference Oscillator Output Enable bit

Value	Description
1	Reference Oscillator module is enabled
0	Reference Oscillator module is disabled

Bit 13 - ROSIDL REFO Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - ROOUT Reference Clock Output Enable bit

Va	lue	Description
1		Reference clock is driven out on the REFO pin
0		Reference clock is not driven out on the REFO pin

Bit 11 - ROSLP Reference Oscillator Output Stop in Sleep bit

Value	Description
1	Reference Oscillator continues to run in Sleep mode
0	Reference Oscillator is disabled in Sleep mode

Bit 9 - ROSWEN Reference Clock RODIVx Switch Enable bit

Value	Description			
1	Switches clock divider; clock divider switching is currently in progress			
0	Clock divider switch has been completed			

Bit 8 - ROACTIV Reference Clock Request Status bit

Value	Description
1	Reference clock is active (user should not change the REFO settings)
0	Reference clock is inactive (user can update the REFO settings)

Bits 3:0 - ROSEL[3:0] Reference Clock Source Select bits

Value	Description
1111-1001	Reserved
1000	REFI pin
0111	Reserved
0110	PLL VCO (PLL output before postscaler)
0101	SOSC
0100	LPRC
0011	FRC

Oscillator Configuration

Value	Description
0010	POSC
0001	System clock (F _{OSC} /2)
0000	F _{OSC}

Oscillator Configuration

9.10.8 Reference Oscillator Control Register High

Name: REFOCONH Offset: 0x16A

Bit	15	14	13	12	11	10	9	8
					RODIV[14:8]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RODI	V[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:0 - RODIV[14:0] Reference Clock Divider bits

Specifies 1/2 period of the reference clock in the source clocks (ex: Period of Output = [Reference Source * 2] * RODIV[14:0]; this equation does not apply to RODIV[14:0] = 0).

Value	Description
11111111111111	REFO clock is the base clock frequency divided by 65,534 (32,767 * 2)
1111111111111	REFO clock is the base clock frequency divided by 65,532 (32,766 * 2)
00000000000011	REFO clock is the base clock frequency divided by 6 (3 * 2)
000000000000000000000000000000000000000	REFO clock is the base clock frequency divided by 4 (2 * 2)
000000000000001	REFO clock is the base clock frequency divided by 2 (1 * 2)
000000000000000	REFO clock is the same frequency as the base clock (no divider)

10. Power-Saving Features

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "**Power-Saving Features with Deep Sleep**" (DS39727) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ512GU410 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC[2:0] bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in 9. Oscillator Configuration.

10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown below:

Example:

```
PWRSAV #1 ; places part in Idle
PWRSAV #0 ; places part in Sleep
```

The MPLAB® XC16 C compiler offers "built-in" functions for the power-saving modes as follows:

Example:

```
Idle(); // places part in Idle
Sleep(); // places part in Sleep
```

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 Sleep Mode

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- · The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.

Power-Saving Features

• Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- · On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered. The instruction execution begins starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.2 Idle Mode

Idle mode has these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see 10.4 Selective Peripheral Module Control).
- · If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- · A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 Interrupts Coincident with Power Save Instructions

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.4 Low-Voltage Regulator Mode and Band Gap Power

PIC24FJ512GU410 family devices incorporate a Low-Power and Low-Voltage Regulator mode. This Regulator mode allows the data RAM and WDT to be maintained in power-saving modes at a low-voltage level, from 0.9V to 1.2V on the V_{CAP} pin.

Low-Voltage Sleep uses less power than standard Sleep mode, but takes more time to recover and begin the code execution. An additional 10-15 μ s (typical) is required to charge V_{CAP} to 1.8V and start to execute instructions when exiting Low-Voltage Sleep.

The VREGS bit (RCON[8]) allows control of the band gap circuit power. It changes the speed to exit from the Sleep modes (Regular and Low-Voltage). When the VREGS bit is cleared (= 0), the band gap is powered in Sleep mode. It increases the current but reduces time to recover from Sleep by ~10 μ s.

The Low-Voltage Regulator mode is only available when Sleep mode is invoked. It is controlled by the <u>LPREGEN</u> Configuration bit (FPOR[2]) and in firmware by the RETEN bit (RCON[12]). <u>LPREGEN</u> must be programmed (= 0) and the RETEN bit must be set (= 1) for the Low-Voltage Regulator mode.

10.2.5 Summary of Low-Power Sleep Modes

The low-voltage RETEN bit (RCON[12]) and the standby VREGS bit (RCON[8]) allow for four different Sleep modes, which will vary by wake-up time and power consumption. Refer to Table 10-1 for a summary of these modes. Specific information about the current consumption and wake times can be found in 32. Electrical Characteristics.

Power-Saving Features

Table 10-1. Low-Power Sleep Modes

RETEN	VREGS	MODE	Relative Power
0	0	Standby Sleep	A Few μA Range
0	1	Sleep	100 μA Range
1	0	Low-Voltage Standby Sleep	Less than 1 µA
1	1	Low-Voltage Sleep	A Few μA Range

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV[11]). The ratio between peripheral and core clock speed is determined by the DOZE[2:0] bits (CLKDIV[14:12]). There are eight possible configurations, from 1:1 to 1:256, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV[15]). By default, interrupt events have no effect on Doze mode operation.

10.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- · The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling their associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

Power-Saving Features

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

10.5 Peripheral Module Disable Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00 0x0177	Reserved									
0x0178	PMD1	7:0	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD			AD1MD
0.0170	TIVIDT	15:8	T5MD	T4MD	T3MD	T2MD	T1MD			
0x017A 0x017B	Reserved									
0x017C	PMD3	7:0 15:8	CRCMD	DAC1MD			U3MD	I2C3MD CMPMD	I2C2MD RTCCMD	
0x017E	PMD4	7:0 15:8			U4MD		REFOMD		HLVDMD	USBMD
0x0180	PMD5	7:0 15:8	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
0x0182	PMD6	7:0 15:8		LCDMD					SPI4MD	SPI3MD
0x0184	PMD7	7:0 15:8			DMA45MD	DMA03MD				
0x0186	PMD8	7:0 15:8	U6MD	U5MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD		DMTMD

10.5.1 Peripheral Module Disable Register 1

Name: PMD1 Offset: 0x178

Bit	15	14	13	12	11	10	9	8
	T5MD	T4MD	T3MD	T2MD	T1MD			
Access	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0
	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD			AD1MD
Access	R/W	R/W	R/W	R/W	R/W			R/W
Reset	0	0	0	0	0			0

Bit 15 - T5MD Timer5 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 14 - T4MD Timer4 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 13 - T3MD Timer3 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 12 - T2MD Timer2 Module Disable bit

Bit 12 - 12MB Timerz Wodale Bisable bit		
Value	Description	
1	Module is disabled	
0	Module power and clock sources are enabled	

Bit 11 - T1MD Timer1 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 7 - I2C1MD I2C1 Module Disable bit

V	/alue	Description
1	-	Module is disabled
С)	Module power and clock sources are enabled

Bit 6 - U2MD UART2 Module Disable bit

Valu	16	Description
1		Module is disabled
0		Module power and clock sources are enabled

Bit 5 - U1MD UART1 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

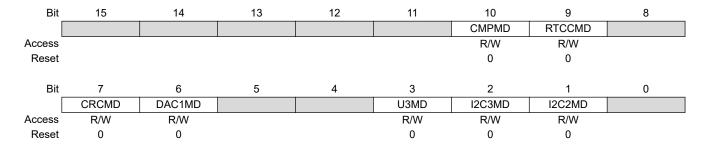
Power-Saving Features

Bit 4 - SPI2MD SPI2 Module Disable bit

Valu	ue	Description
1		Module is disabled
0		Module power and clock sources are enabled

Bit 3 - SPI1MD SPI1 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled


Bit 0 - AD1MD A/D Converter Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Power-Saving Features

10.5.2 Peripheral Module Disable Register 3

Name: PMD3 Offset: 0x17C

Bit 10 - CMPMD Triple Comparator Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 9 - RTCCMD RTCC Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 7 - CRCMD CRC Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 6 - DAC1MD DAC Module Disable bit

D.C 0 D7	DR G DAG IND DAG MOCALO DICADIO DIC	
Value	Description	
1	Module is disabled	
0	Module power and clock sources are enabled	

Bit 3 - U3MD UART3 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 2 - I2C3MD I2C3 Module Disable bit

V	/alue	Description
1	-	Module is disabled
С)	Module power and clock sources are enabled

Bit 1 - I2C2MD I2C2 Module Disable bit

Valu	16	Description
1		Module is disabled
0		Module power and clock sources are enabled

Power-Saving Features

10.5.3 Peripheral Module Disable Register 4

Name: PMD4 Offset: 0x17E

Access Reset

Bit	7	6	5	4	3	2	1	0
			U4MD		REFOMD		HLVDMD	USBMD
Access			R/W		R/W		R/W	R/W
Reset			0		0		0	0

Bit 5 - U4MD UART4 Module Disable bit

Val	ue	Description
1		Module is disabled
0		Module power and clock sources are enabled

Bit 3 - REFOMD Reference Clock Output Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 1 - HLVDMD High/Low-Voltage Detect Module Disable bit

Valu	e Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 0 - USBMD USB Module Disable bit

Value	Description					
1	Module is disabled					
0	Module power and clock sources are enabled					

Power-Saving Features

10.5.4 Peripheral Module Disable Register 5

Name: PMD5 Offset: 0x180

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 7 - CCP8MD MCCP8 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 6 - CCP7MD MCCP7 Module Disable bit

1	Value	Description			
	1	Module is disabled			
	0	Module power and clock sources are enabled			

Bit 5 - CCP6MD MCCP6 Module Disable bit

Value	Description					
1	Module is disabled					
0	Module power and clock sources are enabled					

Bit 4 - CCP5MD MCCP5 Module Disable bit

	zit i dei diiz indei diidaale zieasie sii						
Value	Value Description						
1	Module is disabled						
0	Module power and clock sources are enabled						

Bit 3 - CCP4MD MCCP4 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 2 - CCP3MD MCCP3 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 1 - CCP2MD MCCP2 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 0 - CCP1MD MCCP1 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Power-Saving Features

Peripheral Module Disable Register 6 10.5.5

Name: PMD6 Offset: 0x182

Access

Reset

Bit	7	6	5	4	3	2	1	0
		LCDMD					SPI4MD	SPI3MD
Access		R/W					R/W	R/W
Reset		0					0	0

Bit 6 - LCDMD LCD Module Disable bit

Val	ue	Description
1		Module is disabled
0		Module power and clock sources are enabled

Bit 1 - SPI4MD SPI4 Module Disable bit

1	Value	Description
	1	Module is disabled
	0	Module power and clock sources are enabled

Bit 0 - SPI3MD SPI3 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Power-Saving Features

10.5.6 Peripheral Module Disable Register 7

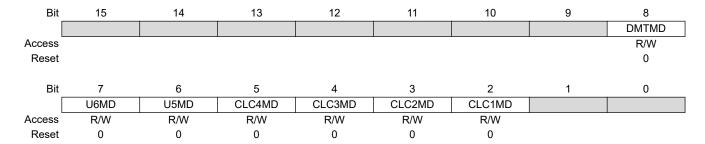
Name: PMD7 Offset: 0x184

Access Reset

Bit	7	6	5	4	3	2	1	0
			DMA45MD	DMA03MD				
Access			R/W	R/W				
Reset			0	0				

Bit 5 - DMA45MD DMA Controller (Channels 4 and 5) Disable bit

Value	Description
1	Controller is disabled
0	Controller power and clock sources are enabled


Bit 4 - DMA03MD DMA Controller (Channels 0 through 3) Disable bit

Value	Description
1	Controller is disabled
0	Controller power and clock sources are enabled

Power-Saving Features

10.5.7 Peripheral Module Disable Register 8

Name: PMD8 Offset: 0x186

Bit 8 - DMTMD DMT Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 7 - U6MD UART6 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 6 - U5MD UART5 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 5 - CLC4MD CI C4 Module Disable bit

D 0	Dit C CEC-IIID CEC I Modalo Bicabio Bit	
Value	Description	
1	Module is disabled	
0	Module power and clock sources are enabled	

Bit 4 - CLC3MD CLC3 Module Disable bit

Value	Description
1	Module is disabled
0	Module power and clock sources are enabled

Bit 3 - CLC2MD CLC2 Module Disable bit

V	/alue	Description
1	-	Module is disabled
С		Module power and clock sources are enabled

Bit 2 - CLC1MD CLC1 Module Disable bit

Valu	ue	Description
1		Module is disabled
0		Module power and clock sources are enabled

11. I/O Ports

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "I/O Ports with Interrupt-on-Change (IOC)" (www.microchip.com/DS70005186) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

All of the device pins (except V_{DD}, V_{SS}, MCLR and OSCI/CLKI) are shared between the peripherals and the Parallel I/O (PIO) ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/Os and one register associated with their operation as analog inputs. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the PORTx register, read the port pins; writes to the port pins, write the port pins.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin, will read as zeros.

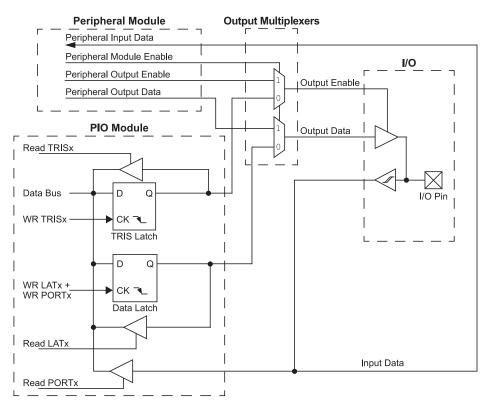


Figure 11-1. Block Diagram of a Typical Shared Port Structure

11.1.1 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than V_{DD} (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum V_{IH} specification.

Note: D+/D- pins on PIC24FJXXX**GU**XXX devices do not support open drain-configuration.

11.2 Configuring Analog Port Pins

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits, which decide if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

Table 11-1. Configuring Analog/Digital Function of an I/O Pin

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	
Analog Output	1	1	It is recommended to keep TRISx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

11.2.1 Analog Input Pins and Voltage Considerations

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to V_{DD} . Voltage excursions beyond V_{DD} on these pins should always be avoided.

For more information, refer to 32. Electrical Characteristics for more details.

11.3 Interrupt-on-Change (IOC)

The Interrupt-on-Change function of the I/O ports allows the PIC24FJ512GU410 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled.

Interrupt-on-Change functionality is enabled on a pin by setting the IOCPx and/or IOCNx register bit for that pin. For example, PORTC has register names, IOCPC and IOCNC, for these functions. Setting a value of '1' in the IOCPx register enables interrupts for low-to-high transitions, while setting a value of '1' in the IOCNx register enables interrupts for high-to-low transitions. Setting a value of '1' in both register bits will enable interrupts for either case (e.g., a pulse on the pin will generate two interrupts). In order for any IOC to be detected, the global IOC Interrupt Enable bit (IEC1[3]) must be set, the IOCON bit (PADCON[15]) set and the associated ISFx flag cleared.

When an interrupt request is generated for a pin, the corresponding status flag (IOCFx register bit) will be set, indicating that a Change-of-State occurred on that pin. The IOCFx register bit will remain set until cleared by writing a zero to it. When any IOCFx flag bit in a given port is set, the corresponding IOCPxF bit in the IOCSTAT register will be set. This flag indicates that a change was detected on one of the bits on the given port. The IOCPxF flag will be cleared when all IOCFx[15:0] bits are cleared.

Multiple individual status flags can be cleared by writing a zero to one or more bits using a Read-Modify-Write (RMW) operation. If another edge is detected on a pin whose status bit is being cleared during the Read-Modify-Write sequence, the associated change flag will still be set at the end of the Read-Modify-Write sequence.

The user should use the instruction sequence (or equivalent) shown in Example 11-1 to clear the Interrupt-on-Change Status registers.

At the end of this sequence, the W0 register will contain a zero for each bit for which the port pin had a change detected. In this way, any indication of a pin changing will not be lost.

Due to the asynchronous and real-time nature of the Interrupt-on-Change, the value read on the port pins may not indicate the state of the port when the change was detected, as a second change can occur during the interval between clearing the flag and reading the port. It is up to the user code to handle this case if it is a possibility in their application. To keep this interval to a minimum, it is recommended that any code modifying the IOCFx registers be run either in the interrupt handler or with interrupts disabled.

Each Interrupt-on-Change (IOC) pin has both a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source connected to the pin, while the pull-downs act as a current sink connected to the pin. These pull-ups eliminate the need for external resistors when push button or keypad devices are connected.

The pull-ups and pull-downs are separately enabled using the IOCPUx registers (for pull-ups) and the IOCPDx registers (for pull-downs). Each IOC pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

Note: Pull-ups and pull-downs on pins should always be disabled whenever the pin is configured as a digital output.

```
MOV 0xFFFF, W0 ; Initial mask value 0xFFFF -> W0
XOR IOCFx, W0 ; W0 has '1' for each bit set in IOCFx
AND IOCFx ; IOCFx & W0 ->IOCFx
```

Example 11-2. Port Read/Write in Assembly MOV 0xFF00, W0 ; Configure PORTB[15:8] as inputs MOV W0, TRISB ; and PORTB[7:0] as outputs NOP ; Delay 1 cycle BTSS PORTB, #13 ; Next Instruction

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 Available Pins

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPln", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 Available Peripherals and Peripheral Pin Select Function Priority

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

PPS is not available for these peripherals:

- I²C (input and output)
- · Input Change Notifications
- Analog (inputs and outputs)

INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as port I/Os. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 Controlling Peripheral Pin Select

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

11.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see 11.5 I/O Port and Peripheral Pin Select Registers).

Each register contains one or two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Table 11-2. Selectable Input Sources (Maps Input to Function)

Input Name	Function Name	Register	Function Mapping Bits
External Interrupt 1	INT1	RPINR0[13:8]	INT1R[5:0]
External Interrupt 2	INT2	RPINR1[5:0]	INT2R[5:0]
External Interrupt 3	INT3	RPINR1[13:8]	INT3R[5:0]
External Interrupt 4	INT4	RPINR2[5:0]	INT4R[5:0]
Timer2 External Clock	T2CK	RPINR3[5:0]	T2CKR[5:0]
Timer3 External Clock	T3CK	RPINR3[13:8]	T3CKR[5:0]
Timer4 External Clock	T4CK	RPINR4[5:0]	T4CKR[5:0]
Timer5 External Clock	T5CK	RPINR4[13:8]	T5CKR[5:0]
MCCP1 Input Capture	ICM1	RPINR5[5:0]	ICM1R[5:0]
MCCP2 Input Capture	ICM2	RPINR5[13:8]	ICM2R[5:0]
MCCP3 Input Capture	ICM3	RPINR6[5:0]	ICM3R[5:0]
MCCP4 Input Capture	ICM4	RPINR6[13:8]	ICM4R[5:0]
Output Compare Fault A	OCFA	RPINR11[5:0]	OCFAR[5:0]
Output Compare Fault B	OCFB	RPINR11[13:8]	OCFBR[5:0]
MCCP Clock Input A	TCKIA	RPINR12[5:0]	TCKIAR[5:0]

continued			
Input Name	Function Name	Register	Function Mapping Bits
MCCP Clock Input B	TCKIB	RPINR12[13:8]	TCKIBR[5:0]
Reference Clock Input	REFI	RPINR13[5:0]	REFIR[5:0]
Tamper Detect	TMPRN	RPINR13[13:8]	TMPRNR[5:0]
MCCP5 Input Capture	ICM5	RPINR14[5:0]	ICM5R[5:0]
MCCP6 Input Capture	ICM6	RPINR14[15:8]	ICM6R[5:0]
MCCP7 Input Capture	ICM7	RPINR15[7:0]	ICM7R[5:0]
MCCP8 Input Capture	ICM8	RPINR15[15:8]	ICM8R[5:0]
UART3 Receive	U3RX	RPINR17[13:8]	U3RXR[5:0]
UART1 Receive	U1RX	RPINR18[5:0]	U1RXR[5:0]
UART1 Clear-to-Send	U1CTS	RPINR18[13:8]	U1CTSR[5:0]
UART2 Receive	U2RX	RPINR19[5:0]	U2RXR[5:0]
UART2 Clear-to-Send	U2CTS	RPINR19[13:8]	U2CTSR[5:0]
SPI1 Data	SDI1	RPINR20[5:0]	SDI1R[5:0]
SPI1 Clock	SCK1	RPINR20[13:8]	SCK1R[5:0]
SPI1 Slave Select	SS1	RPINR21[5:0]	SS1R[5:0]
UART3 Clear-to-Send	U3CTS	RPINR21[13:8]	U3CTSR[5:0]
SPI2 Data	SDI2	RPINR22[5:0]	SDI2R[5:0]
SPI2 Clock	SCK2	RPINR22[13:8]	SCK2R[5:0]
SPI2 Slave Select	SS2	RPINR23[5:0]	SS2R[5:0]
Generic Timer External Clock	TxCK	RPINR23[13:8]	TXCKR[5:0]
CLC Input A	CLCINA	RPINR25[5:0]	CLCINAR[5:0]
CLC Input B	CLCINB	RPINR25[13:8]	CLCINBR[5:0]
CLC Input C	CLCINC	RPINR26[5:0]	CLCINCR[5:0]
CLC Input D	CLCIND	RPINR26[13:8]	CLCINDR[5:0]
UART4 Receive	U4RX	RPINR27[5:0]	U4RXR[5:0]
UART4 Clear-to-Send	U4CTS	RPINR27[13:8]	U4CTSR[5:0]
SPI4 Slave Select	SS4	RPINR30[7:0]	SS4INR[5:0]
SPI4 Data	SDI4	RPINR31[7:0]	SDI4R[5:0]
SPI4 Clock	SCK4	RPINR31[15:8]	SCK4R[5:0]

11.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see 11.5 I/O Port and Peripheral Pin Select Registers). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

Table 11-3. Selectable Output Sources (Maps Function to Output)

Output Function Number	Function	Output Name
0	None (Pin Disabled)	_
1	C1OUT	Comparator 1
2	C2OUT	Comparator 2
3	U1TX	UART1 Transmit
4	U1RTS	UART1 Request-to-Send
5	U2TX	UART2 Transmit
6	U2RTS	UART2 Request-to-Send
7	SDO1	SPI1 Data
8	SCK1	SPI1 Clock
9	FSYNC1	SPI1 Synchronization
10	SDO2	SPI2 Data
11	SCK2	SPI2 Clock
12	FSYNC2	SPI2 Synchronization
13	SCK4	SPI4 Clock
14	FSYNC4	SPI4 Synchronization
15	SDO4	SPI4 Data
16	OCM4A	MCCP4 Output A
17	OCM4B	MCCP4 Output B
18	OCM5A	MCCP5 Output A
19	OCM5B	MCCP5 Output B
20	OCM6A	MCCP6 Output A
21	OCM6B	MCCP6 Output B
22	U3TX	UART3 Transmit
23	U3RTS	UART3 Request-to-Send
24	U4TX	UART4 Transmit
25	Ū4RTS	UART4 Request-to-Send
26	C3OUT	Comparator 3
27	PWRGT	RTCC Power Control
28	REFO	Reference Clock
29	CLC1OUT	CLC1 Output
30	CLC2OUT	CLC2 Output
31	CLC3OUT	CLC3 Output
32	CLC4OUT	CLC4 Output
33	RTCC	RTCC Clock
34	OCM7A	MCCP7 Output A

continued							
Output Function Number	Function	Output Name					
35	ОСМ7В	MCCP7 Output B					
36	OCM8A	MCCP8 Output A					
37	OCM8B	MCCP8 Output B					

11.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input, or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

MAPPING EXCEPTIONS FOR FAMILY DEVICES

The differences in available remappable pins are summarized in Table 11-3.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it.
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented; writing to these fields will have no effect.

11.4.4 Controlling Configuration Changes

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- · Continuous state monitoring
- Configuration bit remapping lock

CONTROL REGISTER LOCK

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON[6]). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- Write 46h to OSCCON[7:0].
- Write 57h to OSCCON[7:0].
- Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

CONTINUOUS STATE MONITORING

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

CONFIGURATION BIT REMAPPING LOCK

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC[5]) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

I/O Ports

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

11.4.5 Considerations for Peripheral Pin Selection

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '1111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to V_{SS} , and all Peripheral Pin Select outputs are disconnected.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use.

Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/Os. If a pin is configured as an analog input on a device Reset, it must be explicitly reconfigured as a digital I/O when used with Peripheral Pin Select.

Example 11-4 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

Input Functions: U1RX, U1CTS
 Output Functions: U1TX, U1RTS

Example 11-4. Configuring UART1 Input and Output Functions

```
Unlock Registers volatile ("MOV #OSCCON, w1 \n"
//
asm volatile
                   "MOV #0x46, w2 \n"
"MOV #0x57, w3 \n"
"MOV.b w2, [w1] \n"
"MOV.b w3, [w1] \n"
                   "BCLR OSCCON, #6");
// or use XC16 built-in macro:
// __builtin_write_OSCCONL(OSCCON & 0xbf);
// Configure Input Functions (Table 11-2)
// Assign U1RX To Pin RP0
   RPINR18bits.U1RXR = 0;
// Assign U1CTS To Pin RP1
RPINR18bits.U1CTSR = 1;
// Configure Output Functions (Table 11-3)
    // Assign U1TX To Pin RP2
   RPOR1bits.RP2R = 3;
    // Assign U1RTS To Pin RP3
   RPOR1bits.RP3R = 4;
// Lock Registers
                 ("MOV #OSCCON, w1 \n"
asm volatile
                   "MOV #0x46, w2 \n"
"MOV #0x57, w3 \n"
                   "MOV.b w2, [w1] \n"
"MOV.b w3, [w1] \n"
                   "BSET OSCCON, #6");
// or use XC16 built-in macro:
// __builtin_write_OSCCONL(OSCCON | 0x40);
```

11.5 I/O Port and Peripheral Pin Select Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
 0x065B	Reserved									
0x065C	PADCON	7:0								
UXU05C	PADCON	15:8	IOCON							
0x065E	IOCSTAT	7:0	IOCPHF	IOCPGF	IOCPFF	IOCPEF	IOCPDF	IOCPCF	IOCPBF	IOCPAF
CACCOL		15:8								
0x0660	TRISA	7:0				TRIS	A[7:0]			
		15:8	TRISA	[15:14]			[TRISA	\[10:9]	
0x0662	PORTA	7:0	DAM	F.4.41		RA	[7:0]	DAI	10.01	
		15:8	KA[1	5:14]		LAT	\[7:0]	RAL	10:9]	
0x0664	LATA	7:0 15:8	1 0701	15:14]		LAIA	A[7:0]	LATA	[10:9]	
		7:0	LAIA	10.14]		ODC	A[7:0]	LAIA	[10.9]	
0x0666	ODCA	15:8	ODCA	[15:14]			, ([ODCA	A[10:9]	
		7:0		A[7:6]				OBO,	ų 10.0j	
0x0668	ANSA	15:8	7.1107	1,10,1						
		7:0				ANS	A[7:0]			
0x0668	ANSF	15:8					ANSA[14:8]			
		7:0				IOCP	A[7:0]			
0x066A	IOCPA	15:8	IOCPA	[15:14]				IOCP	\[10:9]	
0.0000	100114	7:0				IOCN	A[7:0]			
0x066C	IOCNA	15:8	IOCNA	[15:14]				IOCN	A[10:9]	
0,000	IOCEA	7:0				IOCF	A[7:0]			
0x066E	IOCFA	15:8	IOCFA	[15:14]				IOCF	\[10:9]	
0x0670	IOCPUA	7:0				IOCPL	JA[7:0]			
0,0070	IOCFUA	15:8	IOCPU	A[15:14]				IOCPL	A[10:9]	
0x0672	IOCPDA	7:0				IOCPI	DA[7:0]			
0,0072	1001 1571	15:8	IOCPD	A[15:14]				IOCPE	A[10:9]	
0x0674	TRISB	7:0					B[7:0]			
		15:8					3[15:8]			
0x0676	PORTB	7:0	RB[7:0]							
		15:8					15:8]			
0x0678	LATB	7:0					3[7:0]			
		15:8					[15:8]			
0x067A	ODCB	7:0 15:8					B[7:0] B[15:8]			
		7:0					B[7:0]			
0x067C	ANSB	15:8					B[15:8]			
		7:0					B[7:0]			
0x067E	IOCPB	15:8					B[15:8]			
		7:0					B[7:0]			
0x0680	IOCNB	15:8					B[15:8]			
00000	10055	7:0					B[7:0]			
0x0682	IOCFB	15:8					3[15:8]			
0v0604	IOCDUR	7:0					JB[7:0]			
0x0684	IOCPUB	15:8				IOCPU	IB[15:8]			
0x0686	IOCPDB	7:0					DB[7:0]			
0,0000	IOOFDB	15:8				IOCPD	B[15:8]			
0x0688	TRISC	7:0					TRIS	C[4:1]		
0000		15:8		TRISC	[15:12]					
0x068A	PORTC	7:0					RC	[4:1]		
		15:8		RC[15:12]					
0x068C	LATC	7:0			515 103		LATO	C[4:1]		
		15:8		LATC	[15:12]					

conti	nued								
Offset	Name	Bit Pos.	7	6	5	4	3 2	1	0
		7:0					ODCC[4:1]		
0x068E	ODCC	15:8		ODC	C[15:12]				
0x0690	ANSC	7:0				ANSC4			
		15:8 7:0					100D0[4.4]		
0x0692	IOCPC	15:8		IOCP	C[15:12]		IOCPC[4:1]		
		7:0		1001	0[10.12]		IOCNC[4:1]		
0x0694	IOCNC	15:8		IOCN	C[15:12]				
0x0696	IOCFC	7:0					IOCFC[4:1]		
ОХОССС		15:8		IOCF	C[15:12]				
0x0698	IOCPUC	7:0 15:8		IOCPI	JC[15:12]		IOCPUC[4:1]		
		7:0		1001 0	00[10.12]		IOCPDC[4:1]		
0x069A	IOCPDC	15:8		IOCPE	DC[15:12]				
0x069C	TRISD	7:0				TRISI	D[7:0]		
0,0000	THOD	15:8					TRISD[14:8]		
0x069E	PORTD	7:0 15:8				RD[
		7:0				LATE	RD[14:8] 0(7:0)		
0x06A0	LATD	15:8				27112	LATD[14:8]		
0x06A2	ODOD	7:0				ODCI			
UXU6A2	ODCD	15:8					ODCD[14:8]		
0x06A4	ANSD	7:0	ANS	D[7:6]					
		15:8 7:0				IOCD	ANSD[11:10]		
0x06A6	IOCPD	15:8				IOCPI	IOCPD[14:8]		
		7:0				IOCN			
0x06A8	IOCND	15:8					IOCND[14:8]		
0x06AA	IOCFD	7:0				IOCFI			
		15:8				IOODI	IOCFD[14:8]		
0x06AC	IOCPUD	7:0 15:8				IOCPL	IOCPUD[14:8]		
		7:0				IOCPE			
0x06AE	IOCPDD	15:8					IOCPDD[14:8]		
0x06B0	TRISE	7:0				TRISI	E[9:0]		
ОХООВО		15:8						TRIS	SE[9:0]
0x06B2	PORTE	7:0 15:8				RE[9:0]	DE	-10.01
		7:0				LATE	E[9:01	, RE	E[9:0]
0x06B4	LATE	15:8					-[]	LAT	E[9:0]
0x06B6	ODCE	7:0				ODC	E[9:0]		
CACOBO		15:8					-11.03	ODO	CE[9:0]
0x06B8	ANSE	7:0 15:8				ANSE	=[4:3]	ANSE9	
		7:0				IOCP	E[9:0]	AINOES	
0x06BA	IOCPE	15:8				.551	r1	IOCI	PE[9:0]
0x06BC	IOCNE	7:0				IOCN	E[9:0]		
ОХООВС	TOONE	15:8						IOCI	NE[9:0]
0x06BE	IOCFE	7:0				IOCF	E[9:0]	100	EE[0:0]
	15:8					IOCPL	JE[9:0]	IOC	FE[9:0]
0x06C0	IOCPUE	15:8				IOOFC	,_[0.0]	IOCF	PUE[9:0]
0x06C2	IOCPDE	7:0				IOCPE	DE[9:0]		
0,00002	IOCFDE	15:8							DE[9:0]
0x06C4	TRISF	7:0			TD	TRISI	F[8:0]		TDIOFICO
		15:8 7:0			TRIS	SF[13:12] RF[8.01		TRISF[8:0]
0x06C6	PORTF	15:8			RF	[13:12]	0.0]		RF[8:0]
						j			[0.0]

conti	nued									
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
		7:0				LAT	F[8:0]			
0x06C8	LATF	15:8			LATE	[13:12]	. []			LATF[8:0]
0x06CA										
	Reserved									
0x06CD		7:0				100	DE(0.01			
0x06CE	IOCPF	15:8			IOCP	F[13:12]	PF[8:0]			IOCPF[8:0]
		7:0			1001		CF[8:0]			10011[0.0]
0x06CF	ODCF	15:8			ODCI	[13:12]				ODCF[8:0]
0x06D0	IOCNF	7:0				IOCI	NF[8:0]			
OXOODO	100141	15:8			IOCN	F[13:12]				IOCNF[8:0]
0x06D2	IOCFF	7:0			1005		FF[8:0]			1005510.01
		15:8 7:0			IOCF	F[13:12]	NIETO-OI			IOCFF[8:0]
0x06D4	IOCPUF	15:8			IOCPI	IF[13:12]	PUF[8:0]			IOCPUF[8:0]
		7:0			1001 0		PDF[8:0]			1001 01 [0.0]
0x06D6	IOCPDF	15:8			IOCPE	F[13:12]				IOCPDF[8:0]
0,0600	TRICC	7:0	TRISC					TRIS	G[3:0]	
0x06D8	TRISG	15:8		TRISG	[15:12]				TF	RISG[9:6]
0x06DA	PORTG	7:0	RG[9					RG	[3:0]	
		15:8			15:12]					RG[9:6]
0x06DC	LATG	7:0	LATG		[45,40]			LAIC	G[3:0]	ATG[9:6]
		15:8 7:0	ODCG		[15:12]			ODC	G[3:0]	41 G[9.6]
0x06DE	ODCG	15:8	ODOC		[15:12]			CDO		DCG[9:6]
2 2252		7:0	ANSG							
0x06E0	ANSG	15:8							Al	NSG[9:6]
0x06E2	IOCPG	7:0	IOCPO					IOCP	G[3:0]	
OXOGEZ		15:8			G[15:12]					CPG[9:6]
0x06E4	IOCNG	7:0	IOCNO		2545 403			IOCNG[3:0] IOCNG[9:6]		
		15:8 7:0	IOCFO		G[15:12]			IOCE	G[3:0]	CNG[9:6]
0x06E6	IOCFG	15:8	ЮСГС		[[15:12]			IOCF		CFG[9:6]
		7:0	IOCPU		,,,,,,			IOCPL	JG[3:0]	<u> </u>
0x06E8	IOCPUG	15:8		• •	G[15:12]		IOCPUG[9:6]			
0x06EA	IOCPDG	7:0	IOCPD	G[9:6]				IOCPI	OG[3:0]	
OXOULA	1001 00	15:8		IOCPD	G[15:12]				100	CPDG[9:6]
0x06EC	TRISH	7:0								TRISH0
		15:8								DUO
0x06EE	PORTH	7:0 15:8								RH0
		7:0								LATH0
0x06F0	LATH	15:8								
0x06F2	ODCH	7:0								ODCH0
	ODON	15:8								
0x06F4	December									
0x06F5	Reserved									
		7:0								IOCPH0
0x06F6	IOCPH	15:8								.55.110
Ovosto	IOCNIII	7:0								IOCNH0
0x06F8	IOCNH	15:8								
0x06FA	IOCFH	7:0								IOCFH0
		15:8								100511110
0x06FC	IOCPUH	7:0 15:8								IOCPUH0
		7:0								IOCPDH0
0x06FE	IOCPDH	15:8								ICCI DITO
		10.0								

conti	nued									
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
	Nume	Dit i os.					,			Ů
0x0700	Reserved									
0x078F	Reserved									
		7:0								
0x0790	RPINR0	15:8					INT1	R[5:0]		
		7:0						R[5:0]		
0x0792	RPINR1	15:8						R[5:0]		
0.0704	DDUIDO	7:0						R[5:0]		
0x0794	RPINR2	15:8								
00700	DDINDO	7:0					T2CK	R[5:0]		
0x0796	RPINR3	15:8					T3CK	R[5:0]		
0,0700	DDIND4	7:0					T4CK	R[5:0]		
0x0798	RPINR4	15:8					T5CK	R[5:0]		
0x079A	RPINR5	7:0						R[5:0]		
0,013/4	KEINKS	15:8						R[5:0]		
0x079C	RPINR6	7:0						R[5:0]		
0,0730	TAT IIVIA	15:8					ICM4	R[5:0]		
0x079E										
	Reserved									
0x07A5										
0x07A6	RPINR11	7:0					OCFA	R[5:0]		
		15:8						BR[5:0]		
0x07A8	RPINR12	7:0	TCKIAR[5:0]							
		15:8						BR[5:0]		
0x07AA	RPINR13	7:0						R[5:0]		
		15:8						NR[5:0]		
0x07AC	RPINR14	7:0						R[5:0]		
0.0745		15:8					ICM6	R[5:0]		
0x07AE	Reserved									
0x07B1	Neserveu									
		7:0								
0x07B2	RPINR17	15:8					U3RX	(R[5:0]		
		7:0						(R[5:0]		
0x07B4	RPINR18	15:8						SR[5:0]		
		7:0						(R[5:0]		
0x07B6	RPINR19	15:8						SR[5:0]		
0.0700	DDINIDOO	7:0						R[5:0]		
0x07B8	RPINR20	15:8						R[5:0]		
0x07BA	DDIND24	7:0					SS1I	R[5:0]		
UXU7 DA	RPINR21	15:8					U3CT:	SR[5:0]		
0x07BC	RPINR22	7:0					SDI2	R[5:0]		
0X07BC	INFIININZZ	15:8						R[5:0]		
0x07BE	RPINR23	7:0						R[5:0]		
	13/1141320	15:8					TXCK	[5:0]		
0x07C0										
	Reserved									
0x07C1										
0x07C2	RPINR25	7:0						AR[5:0]		
		15:8						BR[5:0]		
0x07C4	RPINR26	7:0						CR[5:0]		
		15:8						DR[5:0]		
0x07C6	RPINR27	7:0			U4RXR[5:0] U4CTSR[5:0]					
0v0700		15:8					U4CT	[0.cj/nc		
0x07C8	Reserved									
0x07CB	Reserved									
		7:0					1199	R[5:0]		
0x07CC	RPINR30	15:8					3341	.[U.U]		
		10.0								

I/O Ports

contir	continued											
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0		
00705	DDINID24	7:0				•	SDI4	R[5:0]				
0x07CE	RPINR31	15:8			SCK4R[5:0]							
0x07D0												
	Reserved											
0x07D3												
0x07D4	RPOR0	7:0					RP0R[6:0]					
		15:8			RP1R[6:0]							
0x07D6	RPOR1	7:0					RP2R[6:0]					
		15:8					RP3R[6:0]					
0x07D8	RPOR2	7:0					RP4R[6:0]					
		15:8					RP5R[6:0]					
0x07DA	RPOR3	7:0					RP6R[6:0]					
		15:8					RP7R[6:0]					
0x07DC	RPOR4	7:0					RP8R[6:0]					
		15:8					RP9R[6:0]					
0x07DE	RPOR5	7:0					RP10R[6:0]					
		15:8 7:0					RP11R[6:0] RP12R[6:0]					
0x07E0	RPOR6	15:8					RP12R[6:0]					
		7:0					RP14R[6:0]					
0x07E2	RPOR7	15:8					RP15R[6:0]					
		7:0					RP16R[6:0]					
0x07E4	RPOR8	15:8					RP17R[6:0]					
		7:0					RP18R[6:0]					
0x07E6	RPOR9	15:8					RP19R[6:0]					
		7:0					RP20R[6:0]					
0x07E8	RPOR10	15:8					RP21R[6:0]					
		7:0					RP22R[6:0]					
0x07EA	RPOR11	15:8					RP23R[6:0]					
		7:0					RP24R[6:0]					
0x07EC	RPOR12	15:8					RP25R[6:0]					
0.0755	DD0D40	7:0					RP26R[6:0]					
0x07EE	RPOR13	15:8					RP27R[6:0]					
0x07F0	RPOR14	7:0					RP28R[6:0]					
UXU/FU	RPOR14	15:8					RP29R[6:0]					
0x07F2	RPOR15	7:0					RP30R[6:0]					
UNUTFZ	INFORIO	15:8					RP31R[6:0]					
0x07F4	RPOR16	7:0					RP32R[6:0]					
27071 -		15:8					RP33R[6:0]					
0x07F6	RPOR17	7:0					RP34R[6:0]					
0	51(1)	15:8					RP35R[6:0]					
0x07F8	RPOR18	7:0					RP36R[6:0]					
		15:8										

I/O Ports

11.5.1 Port Configuration Register

Name: PADCON Offset: 0x65C

Bit	15	14	13	12	11	10	9	8
	IOCON							
Access Reset	R/W							
Reset	0							
Bit	7	6	5	4	3	2	1	0

Access Reset

Bit 15 - IOCON Interrupt-on-Change Enable bit

1	Value	Description
	1	Interrupt-on-change functionality is enabled
	0	Interrupt-on-change functionality is disabled

11.5.2 Interrupt-on-Change Status Register

Name: IOCSTAT Offset: 0x65E

Legend: HS = Hardware Settable bit; HC = Hardware Clearable bit

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
	IOCPHF	IOCPGF	IOCPFF	IOCPEF	IOCPDF	IOCPCF	IOCPBF	IOCPAF
Access	R/HS/HC							
Reset	0	0	0	0	0	0	0	0

Bit 7 - IOCPHF Interrupt-on-Change PORTH Flag bit

Value	Description
1	A change was detected on an IOC-enabled pin on PORTH
0	No change was detected or the user has cleared all detected changes

Bit 6 - IOCPGF Interrupt-on-Change PORTG Flag bit

Value	Description
1	A change was detected on an IOC-enabled pin on PORTG
0	No change was detected or the user has cleared all detected changes

Bit 5 - IOCPFF Interrupt-on-Change PORTF Flag bit

Value	Description
1	A change was detected on an IOC-enabled pin on PORTF
0	No change was detected or the user has cleared all detected changes

Bit 4 - IOCPEF Interrupt-on-Change PORTE Flag bit

Value	Description
1	A change was detected on an IOC-enabled pin on PORTE
0	No change was detected or the user has cleared all detected changes

Bit 3 – IOCPDF Interrupt-on-Change PORTD Flag bit

Value	Description
1	A change was detected on an IOC-enabled pin on PORTD
0	No change was detected or the user has cleared all detected changes

Bit 2 - IOCPCF Interrupt-on-Change PORTC Flag bit

Value	Description
1	A change was detected on an IOC-enabled pin on PORTC
0	No change was detected or the user has cleared all detected changes

Bit 1 - IOCPBF Interrupt-on-Change PORTB Flag bit

Value	Description
1	A change was detected on an IOC-enabled pin on PORTB
0	No change was detected or the user has cleared all detected changes

Bit 0 - IOCPAF Interrupt-on-Change PORTA Flag bit

Value	Description
1	A change was detected on an IOC-enabled pin on PORTA
0	No change was detected or the user has cleared all detected changes

I/O Ports

11.5.3 Output Enable for PORTA Register

Name: TRISA Offset: 0x0660

Bit	15	14	13	12	11	10	9	8
	TRISA	[15:14]				TRISA	\[10:9]	
Access	R/W	R/W				R/W	R/W	
Reset	1	1				1	1	
Bit	7	6	5	4	3	2	1	0
				TRIS	A[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 15:14 - TRISA[15:14] Output Enable bits

١	/alue	Description
1	•	Pin is configured as input
C)	Pin is configured as output

Bits 10:9 - TRISA[10:9] Output Enable bits

	and the state of t
Value	Description
1	Pin is configured as input
0	Pin is configured as output

Bits 7:0 - TRISA[7:0] Output Enable bits

Value	Description
1	Pin is configured as input
0	Pin is configured as output

I/O Ports

11.5.4 Input Data for PORTA Register

Name: PORTA 0x662

Bit	15	14	13	12	11	10	9	8
	RA[1	5:14]				RA[10:9]	
Access	R/W	R/W				R/W	R/W	
Reset	0	0				0	0	
Bit	7	6	5	4	3	2	1	0
				RA[[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:14 - RA[15:14] Data Input Value bits

Bits 10:9 - RA[10:9] Data Input Value bits

Bits 7:0 - RA[7:0] Data Input Value bits

I/O Ports

11.5.5 Output Data for PORTA Register

Name: LATA Offset: 0x664

Bit	15	14	13	12	11	10	9	8
	LATA	[15:14]				LATA	[10:9]	
Access	R/W	R/W				R/W	R/W	
Reset	0	0				0	0	
Bit	7	6	5	4	3	2	1	0
LATA[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:14 - LATA[15:14] Output Data bits

Bits 10:9 - LATA[10:9] Output Data bits

Bits 7:0 - LATA[7:0] Output Data bits

I/O Ports

11.5.6 Open-Drain Enable for PORTA Register

Name: ODCA Offset: 0x666

Bit	15	14	13	12	11	10	9	8
	ODCA	[15:14]				ODCA	\[10:9]	
Access	R/W	R/W				R/W	R/W	
Reset	0	0				0	0	
Bit	7	6	5	4	3	2	1	0
				ODC	A[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:14 - ODCA[15:14] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

Bits 10:9 - ODCA[10:9] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

Bits 7:0 - ODCA[7:0] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

I/O Ports

11.5.7 Analog Select for PORTA Register

Name: ANSA Offset: 0x668

1

Reset

Bit	15	14	13	12	11	10	9	8
Access			•					
Access Reset								
Bit	7	6	5	4	3	2	1	0
	ANS	A[7:6]						
Access	R/W	R/W						

Bits 7:6 - ANSA[7:6] Analog Input Select bits

Value	Description						
1	Analog input is enabled and digital input is disabled on the pin						
0	O Analog input is disabled and digital input is enabled on the pin						

11.5.8 Interrupt-on-Change Positive Edge PORTA Register

Name: IOCPA Offset: 0x66A

Bit	15	14	13	12	11	10	9	8
	IOCPA	[15:14]				IOCPA	\[10:9]	
Access	R/W	R/W				R/W	R/W	
Reset	0	0				0	0	
Bit	7	6	5	4	3	2	1	0
				IOCP	A[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:14 - IOCPA[15:14] Interrupt-on-Change Positive Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

Bits 10:9 - IOCPA[10:9] Interrupt-on-Change Positive Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

Bits 7:0 - IOCPA[7:0] Interrupt-on-Change Positive Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

11.5.9 Interrupt-on-Change Negative Edge PORTA Register

Name: IOCNA Offset: 0x66C

Bit	15	14	13	12	11	10	9	8	
	IOCNA	[15:14]				IOCNA	\ [10:9]		
Access	R/W	R/W				R/W	R/W		_
Reset	0	0				0	0		
Bit	7	6	5	4	3	2	1	0	
				IOCN	A[7:0]				1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Reset	0	0	0	0	0	0	0	0	

Bits 15:14 - IOCNA[15:14] Interrupt-on-Change Negative Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a negative going edge

Bits 10:9 - IOCNA[10:9] Interrupt-on-Change Negative Edge Enable bits

Value	Description				
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and				
	interrupt flag will be set upon detecting an edge				
0	Interrupt-on-change is disabled on the pin for a negative going edge				

Bits 7:0 - IOCNA[7:0] Interrupt-on-Change Negative Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a negative going edge

11.5.10 Interrupt-on-Change Flag PORTA Register

Name: IOCFA Offset: 0x66E

Bit	15	14	13	12	11	10	9	8
	IOCFA	IOCFA[15:14]				IOCFA	\[10:9]	
Access	R/W	R/W				R/W	R/W	
Reset	0	0				0	0	
Bit	7	6	5	4	3	2	1	0
				IOCF.	A[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:14 - IOCFA[15:14] Interrupt-on-Change Flag bits

Value	Description
1	An enabled change was detected on the associated pin
0	No change was detected or the user cleared the detected change

Bits 10:9 - IOCFAI10:91 Interrupt-on-Change Flag bits

		To any firm and any one of the state of the
١	/alue	Description
1		An enabled change was detected on the associated pin
C)	No change was detected or the user cleared the detected change

Bits 7:0 - IOCFA[7:0] Interrupt-on-Change Flag bits

Value	Description
1	An enabled change was detected on the associated pin
0	No change was detected or the user cleared the detected change

11.5.11 Interrupt-on-Change Pull-up Enable PORTA Register

Name: IOCPUA Offset: 0x670

Bit	15	14	13	12	11	10	9	8
	IOCPU	A[15:14]				IOCPU	A[10:9]	
Access	R/W	R/W				R/W	R/W	
Reset	0	0				0	0	
Bit	7	6	5	4	3	2	1	0
				IOCPU	JA[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:14 - IOCPUA[15:14] Interrupt-on-Change Pull-up Enable bits

Value	Description
1	Pull-up is enabled
0	Pull-up is disabled

Bits 10:9 - IOCPUA[10:9] Interrupt-on-Change Pull-up Enable bits

1	/alue	Description
1	-	Pull-up is enabled
C)	Pull-up is disabled

Bits 7:0 - IOCPUA[7:0] Interrupt-on-Change Pull-up Enable bits

Value	Description
1	Pull-up is enabled
0	Pull-up is disabled

11.5.12 Interrupt-on-Change Pull-Down Enable PORTA Register

Name: IOCPDA Offset: 0x672

Bit	15	14	13	12	11	10	9	8
	IOCPD	A[15:14]				IOCPD	A[10:9]	
Access	R/W	R/W				R/W	R/W	
Reset	0	0				0	0	
Bit	7	6	5	4	3	2	1	0
				IOCPI	DA[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:14 - IOCPDA[15:14] Interrupt-on-Change Pull-Down Enable bits

1	Value	Description
	1	Pull-down is enabled
	0	Pull-down is disabled

Bits 10:9 - IOCPDA[10:9] Interrupt-on-Change Pull-Down Enable bits

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

Bits 7:0 - IOCPDA[7:0] Interrupt-on-Change Pull-Down Enable bits

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

I/O Ports

11.5.13 Output Enable for PORTB Register

Name: TRISB Offset: 0x674

Bit	15	14	13	12	11	10	9	8
				TRISE	3[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				TRIS	B[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 15:0 - TRISB[15:0] Output Enable bits

-1	Value	Description
	1	Pin is configured as input
	0	Pin is configured as output

I/O Ports

11.5.14 Input Data for PORTB Register

Name: PORTB Offset: 0x676

Bit	15	14	13	12	11	10	9	8
				RB[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RB[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - RB[15:0] Data Input Value bits

I/O Ports

11.5.15 Output Data for PORTB Register

Name: LATB Offset: 0x678

Bit	15	14	13	12	11	10	9	8
				LATB	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				LATE	B[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - LATB[15:0] Output Data bits

I/O Ports

11.5.16 Open-Drain Enable for PORTB Register

Name: ODCB Offset: 0x67A

Bit	15	14	13	12	11	10	9	8
				ODCE	3[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ODCI	B[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - ODCB[15:0] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

I/O Ports

11.5.17 Analog Select for PORTB Register

Name: ANSB Offset: 0x67C

Bit	15	14	13	12	11	10	9	8
				ANSB	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				ANS	3[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 15:0 - ANSB[15:0] Analog Input Select bits

V	/alue	Description
1	-	Analog input is enabled and digital input is disabled on the pin
C)	Analog input is disabled and digital input is enabled on the pin

I/O Ports

11.5.18 Interrupt-on-Change Positive Edge PORTB Register

Name: IOCPB Offset: 0x67E

Bit	15	14	13	12	11	10	9	8
				IOCPE	3[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[IOCP	B[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - IOCPB[15:0] Interrupt-on-Change Positive Edge Enable bits

Value	Description						
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and						
	interrupt flag will be set upon detecting an edge						
0	Interrupt-on-change is disabled on the pin for a positive going edge						

I/O Ports

11.5.19 Interrupt-on-Change Negative Edge PORTB Register

Name: IOCNB Offset: 0x680

Bit	15	14	13	12	11	10	9	8
				IOCNE	3[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[IOCN	B[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - IOCNB[15:0] Interrupt-on-Change Negative Edge Enable bits

Value	Description						
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and						
	interrupt flag will be set upon detecting an edge						
0	Interrupt-on-change is disabled on the pin for a negative going edge						

I/O Ports

11.5.20 Interrupt-on-Change Flag PORTB Register

Name: IOCFB Offset: 0x682

Bit	15	14	13	12	11	10	9	8
				IOCFE	3[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[IOCF	B[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - IOCFB[15:0] Interrupt-on-Change Flag bits

V	alue	Description
1		An enabled change was detected on the associated pin
0		No change was detected or the user cleared the detected change

I/O Ports

11.5.21 Interrupt-on-Change Pull-up Enable PORTB Register

Name: IOCPUB Offset: 0x684

Bit	15	14	13	12	11	10	9	8
				IOCPU	B[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IOCPL	JB[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – IOCPUB[15:0] Interrupt-on-Change Pull-up Enable bits

٧	alue	Description
1		Pull-up is enabled
0		Pull-up is disabled

I/O Ports

11.5.22 Interrupt-on-Change Pull-Down Enable PORTB Register

Name: IOCPDB Offset: 0x686

Bit	15	14	13	12	11	10	9	8
				IOCPD	B[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IOCPE	DB[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – IOCPDB[15:0] Interrupt-on-Change Pull-Down Enable bits

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

I/O Ports

11.5.23 Output Enable for PORTC Register

Name: TRISC Offset: 0x688

Bit	15	14	13	12	11	10	9	8
		TRISC	[15:12]					
Access	R/W	R/W	R/W	R/W				
Reset	1	1	1	1				
Bit	7	6	5	4	3	2	1	0
Access				R/W	R/W	R/W	R/W	
Reset				1	1	1	1	

Bits 15:12 - TRISC[15:12] Output Enable bits

١	/alue	Description
1	•	Pin is configured as input
C)	Pin is configured as output

Bits 4:1 - TRISC[4:1] Output Enable bits

Value	Description
1	Pin is configured as input
0	Pin is configured as output

I/O Ports

11.5.24 Input Data for PORTC Register

Name: PORTC Ox68A

Bit	15	14	13	12	11	10	9	8
		RC[1	5:12]					
Access	R/W	R/W	R/W	R/W				
Reset	0	0	0	0				
Bit	7	6	5	4	3	2	1	0
					RC[4:1]		
Access				R/W	R/W	R/W	R/W	
Reset				0	0	0	0	

Bits 15:12 - RC[15:12] Data Input Value bits

Bits 4:1 - RC[4:1] Data Input Value bits

I/O Ports

11.5.25 Output Data for PORTC Register

Name: LATC Offset: 0x68C

Bit	15	14	13	12	11	10	9	8
		LATC	[15:12]					
Access	R/W	R/W	R/W	R/W				
Reset	0	0	0	0				
Bit	7	6	5	4	3	2	1	0
					LATO	C[4:1]		
Access				R/W	R/W	R/W	R/W	
Reset				0	0	0	0	

Bits 15:12 - LATC[15:12] Output Data bits

Bits 4:1 - LATC[4:1] Output Data bits

I/O Ports

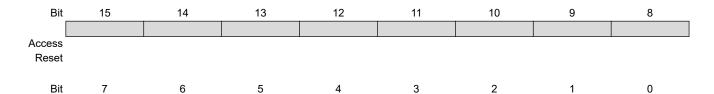
11.5.26 Open-Drain Enable for PORTC Register

Name: ODCC Offset: 0x68E

Bit	15	14	13	12	11	10	9	8
		ODCC	[15:12]					
Access	R/W	R/W	R/W	R/W				
Reset	0	0	0	0				
Bit	7	6	5	4	3	2	1	0
					ODC	C[4:1]		
Access				R/W	R/W	R/W	R/W	
Reset				0	0	0	0	

Bits 15:12 - ODCC[15:12] Open-Drain Enable bits

Valu	e Description	
1	Open-drain is enabled on the pin	
0	Open-drain is disabled on the pin	


Bits 4:1 - ODCC[4:1] Open-Drain Enable bits

	• •
Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

I/O Ports

11.5.27 Analog Select for PORTC Register

Name: ANSC Offset: 0x690

ANSC4

Access R/W Reset 1

Bit 4 - ANSC4 Analog Input Select bit

Valu	ıe	Description
1		Analog input is enabled and digital input is disabled on the pin
0		Analog input is disabled and digital input is enabled on the pin

11.5.28 Interrupt-on-Change Positive Edge PORTC Register

Name: IOCPC Offset: 0x692

Bit	15	14	13	12	11	10	9	8
		IOCPC	[15:12]					
Access	R/W	R/W	R/W	R/W				
Reset	0	0	0	0				
Bit	7	6	5	4	3	2	1	0
					IOCP	C[4:1]		
Access		•	'	R/W	R/W	R/W	R/W	
Reset				0	0	0	0	

Bits 15:12 - IOCPC[15:12] Interrupt-on-Change Positive Edge Enable bits

			_					
Va	alue	Description	1					
1		Interrupt-on	-chang	je is enal	led on the pi	in for a positive o	going edge; the associated status bit and	
		interrupt flag	g will b	e set upo	n detecting a	an edge		
0		Interrupt-on	-chang	je is disa	oled on the p	in for a positive	going edge	

Bits 4:1 - IOCPC[4:1] Interrupt-on-Change Positive Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

11.5.29 Interrupt-on-Change Negative Edge PORTC Register

Name: IOCNC Offset: 0x694

Bit	15	14	13	12	11	10	9	8
		IOCNO	[15:12]					
Access	R/W	R/W	R/W	R/W				
Reset	0	0	0	0				
Bit	7	6	5	4	3	2	1	0
					IOCN	C[4:1]		
Access		•		R/W	R/W	R/W	R/W	
Reset				0	0	0	0	

Bits 15:12 - IOCNC[15:12] Interrupt-on-Change Negative Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a negative going edge

Bits 4:1 - IOCNC[4:1] Interrupt-on-Change Negative Edge Enable bits

		<u> </u>
\	Value	Description
-	1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and interrupt flag will be set upon detecting an edge
(0	Interrupt-on-change is disabled on the pin for a negative going edge

I/O Ports

11.5.30 Interrupt-on-Change Flag PORTC Register

Name: IOCFC Offset: 0x696

Bit	15	14	13	12	11	10	9	8
	IOCFC[15:12]							
Access	R/W	R/W	R/W	R/W				
Reset	0	0	0	0				
Bit	7	6	5	4	3	2	1	0
					IOCF	C[4:1]		
Access			•	R/W	R/W	R/W	R/W	
Reset				0	0	0	0	

Bits 15:12 - IOCFC[15:12] Interrupt-on-Change Flag bits

Value	Description
1	An enabled change was detected on the associated pin
0	No change was detected or the user cleared the detected change

Bits 4:1 – IOCFC[4:1] Interrupt-on-Change Flag bits

Value	Description
1	An enabled change was detected on the associated pin
0	No change was detected or the user cleared the detected change

I/O Ports

11.5.31 Interrupt-on-Change Pull-up Enable PORTC Register

Name: IOCPUC Offset: 0x698

Bit	15	14	13	12	11	10	9	8
		IOCPUC[15:12]						
Access	R/W	R/W	R/W	R/W				
Reset	0	0	0	0				
Bit	7	6	5	4	3	2	1	0
					IOCPL	JC[4:1]		
Access				R/W	R/W	R/W	R/W	
Reset				0	0	0	0	

Bits 15:12 - IOCPUC[15:12] Interrupt-on-Change Pull-up Enable bits

Value	Description
1	Pull-up is enabled
0	Pull-up is disabled

Bits 4:1 - IOCPUC[4:1] Interrupt-on-Change Pull-up Enable bits

Value	Description			
1	Pull-up is enable	ed		
0	Pull-up is disable	ed		

I/O Ports

11.5.32 Interrupt-on-Change Pull-Down Enable PORTC Register

Name: IOCPDC Offset: 0x69A

Bit	15	14	13	12	11	10	9	8
		IOCPDC[15:12]						
Access	R/W	R/W	R/W	R/W				
Reset	0	0	0	0				
Bit	7	6	5	4	3	2	1	0
					IOCPE	C[4:1]		
Access				R/W	R/W	R/W	R/W	
Reset				0	0	0	0	

Bits 15:12 - IOCPDC[15:12] Interrupt-on-Change Pull-Down Enable bits

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

Bits 4:1 - IOCPDC[4:1] Interrupt-on-Change Pull-Down Enable bits

	• • · · · · · · · · · · · · · · · · · ·
Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

I/O Ports

11.5.33 Output Enable for PORTD Register

Name: TRISD 0x69C

Bit	15	14	13	12	11	10	9	8
					TRISD[14:8]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				TRISI	D[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 14:0 - TRISD[14:0] Output Enable bits

-1	Value	Description
	1	Pin is configured as input
	0	Pin is configured as output

I/O Ports

11.5.34 Input Data for PORTD Register

Name: PORTD 0x69E

Bit	15	14	13	12	11	10	9	8		
					RD[14:8]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			RD[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 14:0 - RD[14:0] Data Input Value bits

I/O Ports

11.5.35 Output Data for PORTD Register

Name: LATD Offset: 0x6A0

Bit	15	14	13	12	11	10	9	8		
					LATD[14:8]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			LATD[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 14:0 - LATD[14:0] Output Data bits

I/O Ports

11.5.36 Open-Drain Enable for PORTD Register

Name: ODCD Offset: 0x6A2

Bit	15	14	13	12	11	10	9	8
					ODCD[14:8]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ODC	D[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:0 - ODCD[14:0] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

I/O Ports

11.5.37 Analog Select for PORTD Register

Name: ANSD Offset: 0x6A4

Bit	15	14	13	12	11	10	9	8
					ANSD	[11:10]		
Access					R/W	R/W		
Reset					1	1		
Bit	7	6	5	4	3	2	1	0
	ANSD[7:6]							
Access	R/W	R/W						
Reset	1	1						

Bits 11:10 - ANSD[11:10] Analog Input Select bits

Value	Description
1	Analog input is enabled and digital input is disabled on the pin
0	Analog input is disabled and digital input is enabled on the pin

Bits 7:6 - ANSD[7:6] Analog Input Select bits

Value	Description
1	Analog input is enabled and digital input is disabled on the pin
0	Analog input is disabled and digital input is enabled on the pin

I/O Ports

11.5.38 Interrupt-on-Change Positive Edge PORTD Register

Name: IOCPD Ox6A6

Bit	15	14	13	12	11	10	9	8	
					IOCPD[14:8]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			IOCPD[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 14:0 - IOCPD[14:0] Interrupt-on-Change Positive Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

I/O Ports

11.5.39 Interrupt-on-Change Negative Edge PORTD Register

Name: IOCND Offset: 0x6A8

Bit	15	14	13	12	11	10	9	8			
			IOCND[14:8]								
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset		0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				IOCN	D[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 14:0 - IOCND[14:0] Interrupt-on-Change Negative Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a negative going edge

I/O Ports

11.5.40 Interrupt-on-Change Flag PORTD Register

Name: IOCFD Ox6AA

Bit	15	14	13	12	11	10	9	8
					IOCFD[14:8]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IOCF	D[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:0 - IOCFD[14:0] Interrupt-on-Change Flag bits

Value	Description
1	An enabled change was detected on the associated pin
0	No change was detected or the user cleared the detected change

I/O Ports

11.5.41 Interrupt-on-Change Pull-up Enable PORTD Register

Name: IOCPUD Offset: 0x6AC

Bit	15	14	13	12	11	10	9	8
					IOCPUD[14:8]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IOCPL	JD[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:0 – IOCPUD[14:0] Interrupt-on-Change Pull-up Enable bits

Value	Description
1	Pull-up is enabled
0	Pull-up is disabled

I/O Ports

11.5.42 Interrupt-on-Change Pull-Down Enable PORTD Register

Name: IOCPDD Ox6AE

Bit	15	14	13	12	11	10	9	8
					IOCPDD[14:8]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IOCPE	DD[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:0 - IOCPDD[14:0] Interrupt-on-Change Pull-Down Enable bits

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

I/O Ports

11.5.43 Output Enable for PORTE Register

Name: TRISE Offset: 0x6B0

Bit	15	14	13	12	11	10	9	8
							TRIS	E[9:0]
Access			•				R/W	R/W
Reset							1	1
Bit	7	6	5	4	3	2	1	0
				TRIS	E[9:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 9:0 - TRISE[9:0] Output Enable bits

Value	Description
1	Pin is configured as input
0	Pin is configured as output

I/O Ports

11.5.44 Input Data for PORTE Register

Name: PORTE Offset: 0x6B2

Bit	15	14	13	12	11	10	9	8
							RE[9:0]
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				RE	[9:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 9:0 - RE[9:0] Data Input Value bits

I/O Ports

11.5.45 Output Data for PORTE Register

Name: LATE Offset: 0x6B4

Bit	15	14	13	12	11	10	9	8
							LATE	[9:0]
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				LATE	[9:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

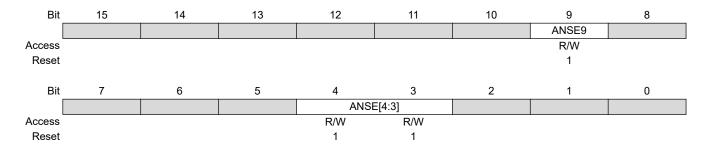
Bits 9:0 - LATE[9:0] Output Data bits

I/O Ports

11.5.46 Open-Drain Enable for PORTE Register

Name: ODCE Offset: 0x6B6

Bit	15	14	13	12	11	10	9	8
							ODCI	Ξ[9:0]
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				ODC	E[9:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0


Bits 9:0 - ODCE[9:0] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

I/O Ports

11.5.47 Analog Select for PORTE Register

Name: ANSE Ox6B8

Bit 9 - ANSE9 Analog Input Select bits

Value	Description
1	Analog input is enabled and digital input is disabled on the pin
0	Analog input is disabled and digital input is enabled on the pin

Bits 4:3 - ANSE[4:3] Analog Input Select bits

Value	Description
1	Analog input is enabled and digital input is disabled on the pin
0	Analog input is disabled and digital input is enabled on the pin

I/O Ports

11.5.48 Interrupt-on-Change Positive Edge PORTE Register

Name: IOCPE Offset: 0x6BA

Bit	15	14	13	12	11	10	9	8	
							IOCPE[9:0]		
Access							R/W	R/W	
Reset							0	0	
Bit	7	6	5	4	3	2	1	0	
	IOCPE[9:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 9:0 - IOCPE[9:0] Interrupt-on-Change Positive Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

I/O Ports

11.5.49 Interrupt-on-Change Negative Edge PORTE Register

Name: IOCNE Offset: 0x6BC

Bit	15	14	13	12	11	10	9	8
							IOCNE[9:0]	
Access			•				R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
	IOCNE[9:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 9:0 - IOCNE[9:0] Interrupt-on-Change Negative Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a negative going edge

I/O Ports

11.5.50 Interrupt-on-Change Flag PORTE Register

Name: IOCFE Offset: 0x6BE

Bit	15	14	13	12	11	10	9	8
							IOCFE[9:0]	
Access			•				R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
	IOCFE[9:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 9:0 - IOCFE[9:0] Interrupt-on-Change Flag bits

V	'alue	Description
1		An enabled change was detected on the associated pin
0		No change was detected or the user cleared the detected change

I/O Ports

11.5.51 Interrupt-on-Change Pull-up Enable PORTE Register

Name: IOCPUE Offset: 0x6C0

Bit	15	14	13	12	11	10	9	8
							IOCPUE[9:0]	
Access			•				R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
	IOCPUE[9:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 9:0 - IOCPUE[9:0] Interrupt-on-Change Pull-up Enable bits

V alue	Description
1	Pull-up is enabled
)	Pull-up is disabled

I/O Ports

11.5.52 Interrupt-on-Change Pull-Down Enable PORTE Register

Name: IOCPDE Ox6C2

Bit	15	14	13	12	11	10	9	8	
							IOCPDE[9:0]		
Access							R/W	R/W	
Reset							0	0	
Bit	7	6	5	4	3	2	1	0	
	IOCPDE[9:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 9:0 - IOCPDE[9:0] Interrupt-on-Change Pull-Down Enable bits

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

I/O Ports

11.5.53 Output Enable for PORTF Register

Name: TRISF Ox6C4

Bit	15	14	13	12	11	10	9	8
			TRISF	[13:12]				TRISF[8:0]
Access			R/W	R/W				R/W
Reset			1	1				1
Bit	7	6	5	4	3	2	1	0
				TRIS	F[8:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 13:12 - TRISF[13:12] Output Enable bits

Value	Description
1	Pin is configured as input
0	Pin is configured as output

Bits 8:0 - TRISF[8:0] Output Enable bits

Value	Description
1	Pin is configured as input
0	Pin is configured as output

I/O Ports

11.5.54 Input Data for PORTF Register

Name: PORTF Offset: 0x6C6

Bit	15	14	13	12	11	10	9	8
			RF[1	3:12]				RF[8:0]
Access			R/W	R/W				R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
				RF	[8:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 13:12 - RF[13:12] Data Input Value bits

Bits 8:0 - RF[8:0] Data Input Value bits

I/O Ports

11.5.55 Output Data for PORTF Register

Name: LATF Offset: 0x6C8

Bit	15	14	13	12	11	10	9	8
			LATF[13:12]				LATF[8:0]
Access			R/W	R/W				R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
				LAT	F[8:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 13:12 - LATF[13:12] Output Data bits

Bits 8:0 - LATF[8:0] Output Data bits

11.5.56 Interrupt-on-Change Positive Edge PORTF Register

Name: IOCPF Offset: 0x6CE

Bit	15	14	13	12	11	10	9	8
			IOCPF	[13:12]				IOCPF[8:0]
Access			R/W	R/W				R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
				IOCF	PF[8:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 13:12 - IOCPF[13:12] Interrupt-on-Change Positive Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

Bits 8:0 - IOCPF[8:0] Interrupt-on-Change Positive Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

I/O Ports

11.5.57 Open-Drain Enable for PORTF Register

Name: ODCF Offset: 0x6CF

Bit	15	14	13	12	11	10	9	8
			ODCF	[13:12]				ODCF[8:0]
Access			R/W	R/W	•			R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
				ODC	F[8:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 13:12 - ODCF[13:12] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

Bits 8:0 - ODCF[8:0] Open-Drain Enable bits

	• • •
Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

I/O Ports

11.5.58 Analog Select for PORTF Register

Name: ANSF Offset: 0x668

Bit	15	14	13	12	11	10	9	8
					ANSA[14:8]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			ANSA[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	1

Bits 14:0 - ANSA[14:0] Analog Select for PORTF bits

7	/alue	Description			
-	_	Analog input is enabled and digital input is disabled on the PORTx[n] pin			
()	Analog input is disabled and digital input is enabled on the PORTx[n] pin			

11.5.59 Interrupt-on-Change Negative Edge PORTF Register

Name: IOCNF Offset: 0x6D0

Bit	15	14	13	12	11	10	9	8
			IOCNF	[13:12]				IOCNF[8:0]
Access			R/W	R/W			•	R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
				IOCI	NF[8:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 13:12 - IOCNF[13:12] Interrupt-on-Change Negative Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a negative going edge

Bits 8:0 - IOCNF[8:0] Interrupt-on-Change Negative Edge Enable bits

	• • · · · · · · · · · · · · · · · · · ·
Value	Description
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and
	interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a negative going edge

I/O Ports

11.5.60 Interrupt-on-Change Flag PORTF Register

Name: IOCFF Offset: 0x6D2

Bit	15	14	13	12	11	10	9	8
			IOCFF	[13:12]				IOCFF[8:0]
Access			R/W	R/W				R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
				IOCF	F[8:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 13:12 – IOCFF[13:12] Interrupt-on-Change Flag bits

1	Value	Description
	1	An enabled change was detected on the associated pin
	0	No change was detected or the user cleared the detected change

Bits 8:0 - IOCFF[8:0] Interrupt-on-Change Flag bits

Value	Description
1	An enabled change was detected on the associated pin
0	No change was detected or the user cleared the detected change

I/O Ports

11.5.61 Interrupt-on-Change Pull-up Enable PORTF Register

Name: IOCPUF Offset: 0x6D4

Bit	15	14	13	12	11	10	9	8
			IOCPU	- [13:12]				IOCPUF[8:0]
Access			R/W	R/W				R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
				IOCP	UF[8:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 13:12 – IOCPUF[13:12] Interrupt-on-Change Pull-up Enable bits

		· · · · · · · · · · · · · · · · · · ·
Value	Description	
1	Pull-up is enabled	
0	Pull-up is disabled	

Bits 8:0 - IOCPUF[8:0] Interrupt-on-Change Pull-up Enable bits

	• • · · · · · · · · · · · · · · · · · ·
Value	Description
1	Pull-up is enabled
0	Pull-up is disabled

I/O Ports

11.5.62 Interrupt-on-Change Pull-Down Enable PORTF Register

Name: IOCPDF Offset: 0x6D6

Bit	15	14	13	12	11	10	9	8
			IOCPDF	F[13:12]				IOCPDF[8:0]
Access			R/W	R/W			•	R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
				IOCP	DF[8:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 13:12 - IOCPDF[13:12] Interrupt-on-Change Pull-Down Enable bits

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

Bits 8:0 - IOCPDF[8:0] Interrupt-on-Change Pull-Down Enable bits

D110 0.0	1001 Di [0:0] Interrupt on Change i an Down Enable bite
Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

I/O Ports

11.5.63 Output Enable for PORTG Register

Name: TRISG Offset: 0x6D8

Bit	15	14	13	12	11	10	9	8
		TRISC	G[15:12]				TRIS	G[9:6]
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	1	1	1	1			1	1
Bit	7	6	5	4	3	2	1	0
	TRISG[9:6]					TRIS	G[3:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	1	1			1	1	1	1

Bits 15:12 - TRISG[15:12] Output Enable bits

V	/alue	Description
1	•	Pin is configured as input
C)	Pin is configured as output

Bits 9:6 - TRISGI9:61 Output Enable bits

	o[o.o] oalpat =asio site
Value	Description
1	Pin is configured as input
0	Pin is configured as output

Bits 3:0 - TRISG[3:0] Output Enable bits

Value	Description
1	Pin is configured as input
0	Pin is configured as output

I/O Ports

11.5.64 Input Data for PORTG Register

Name: PORTG Offset: 0x6DA

Bit	15	14	13	12	11	10	9	8	
		RG[1	[5:12]				RG[9:6]		
Access	R/W	R/W	R/W	R/W			R/W	R/W	
Reset	0	0	0	0			0	0	
Bit	7	6	5	4	3	2	1	0	
	RG	RG[9:6]				RG	[3:0]		
Access	R/W	R/W			R/W	R/W	R/W	R/W	
Reset	0	0			0	0	0	0	

Bits 15:12 - RG[15:12] Data Input Value bits

Bits 9:6 - RG[9:6] Data Input Value bits

Bits 3:0 - RG[3:0] Data Input Value bits

I/O Ports

11.5.65 Output Data for PORTG Register

Name: LATG Offset: 0x6DC

Bit	15	14	13	12	11	10	9	8
		LATG	[15:12]			LATG[9:6]		
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0
Bit	7	6	5	4	3	2	1	0
Γ	LATO	LATG[9:6]				LATO	G[3:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

Bits 15:12 - LATG[15:12] Output Data bits

Bits 9:6 - LATG[9:6] Output Data bits

Bits 3:0 - LATG[3:0] Output Data bits

I/O Ports

11.5.66 Open-Drain Enable for PORTG Register

Name: ODCG Offset: 0x6DE

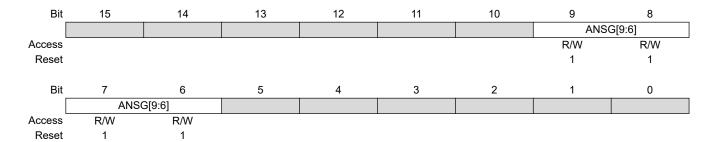
Bit	15	14	13	12	11	10	9	8	
		ODCG	G[15:12]				ODCG[9:6]		
Access	R/W	R/W	R/W	R/W			R/W	R/W	
Reset	0	0	0	0			0	0	
Bit	7	6	5	4	3	2	1	0	
	ODC	ODCG[9:6]				ODC	G[3:0]		
Access	R/W	R/W			R/W	R/W	R/W	R/W	
Reset	0	0			0	0	0	0	

Bits 15:12 - ODCG[15:12] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

Bits 9:6 - ODCG[9:6] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin


Bits 3:0 - ODCG[3:0] Open-Drain Enable bits

Value	Description
1	Open-drain is enabled on the pin
0	Open-drain is disabled on the pin

I/O Ports

11.5.67 Analog Select for PORTG Register

Name: ANSG Offset: 0x6E0

Bits 9:6 - ANSG[9:6] Analog Input Select bits

V	/alue	Description
1	=	Analog input is enabled and digital input is disabled on the pin
C)	Analog input is disabled and digital input is enabled on the pin

11.5.68 Interrupt-on-Change Positive Edge PORTG Register

Name: IOCPG Offset: 0x6E2

Bit	15	14	13	12	11	10	9	8
		IOCPO	G[15:12]				IOCP	G[9:6]
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0
Bit	7	6	5	4	3	2	1	0
	IOCPG[9:6]					IOCP	G[3:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

Bits 15:12 - IOCPG[15:12] Interrupt-on-Change Positive Edge Enable bits

Value	Description						
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and						
	interrupt flag will be set upon detecting an edge						
0	Interrupt-on-change is disabled on the pin for a positive going edge						

Bits 9:6 - IOCPG[9:6] Interrupt-on-Change Positive Edge Enable bits

Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

Bits 3:0 - IOCPG[3:0] Interrupt-on-Change Positive Edge Enable bits

Value	Description					
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and					
	interrupt flag will be set upon detecting an edge					
0	Interrupt-on-change is disabled on the pin for a positive going edge					

11.5.69 Interrupt-on-Change Negative Edge PORTG Register

Name: IOCNG Offset: 0x6E4

Bit	15	14	13	12	11	10	9	8	
	IOCNG[15:12]						IOCNG[9:6]		
Access	R/W	R/W	R/W	R/W			R/W	R/W	
Reset	0	0	0	0			0	0	
Bit	7	6	5	4	3	2	1	0	
	IOCNG[9:6]					IOCN	G[3:0]		
Access	R/W	R/W			R/W	R/W	R/W	R/W	
Reset	0	0			0	0	0	0	

Bits 15:12 - IOCNG[15:12] Interrupt-on-Change Negative Edge Enable bits

Value	Description				
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and				
	interrupt flag will be set upon detecting an edge				
0	Interrupt-on-change is disabled on the pin for a negative going edge				

Bits 9:6 - IOCNG[9:6] Interrupt-on-Change Negative Edge Enable bits

	Value	Description			
Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and interrupt flag will be set upon detecting an edge					
	0	Interrupt-on-change is disabled on the pin for a negative going edge			

Bits 3:0 - IOCNG[3:0] Interrupt-on-Change Negative Edge Enable bits

Value	Description					
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and					
	interrupt flag will be set upon detecting an edge					
0	Interrupt-on-change is disabled on the pin for a negative going edge					

I/O Ports

11.5.70 Interrupt-on-Change Flag PORTG Register

Name: IOCFG Offset: 0x6E6

Bit	15	14	13	12	11	10	9	8
	IOCFG[15:12]					IOCFG[9:6]		
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0
Bit	7	6	5	4	3	2	1	0
[IOCFG[9:6]				IOCFG[3:0]			
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

Bits 15:12 - IOCFG[15:12] Interrupt-on-Change Flag bits

1	Value	Description
	1	An enabled change was detected on the associated pin
	0	No change was detected or the user cleared the detected change

Bits 9:6 - IOCFG[9:6] Interrupt-on-Change Flag bits

-	Value	Description
	1	An enabled change was detected on the associated pin
	0	No change was detected or the user cleared the detected change

Bits 3:0 - IOCFG[3:0] Interrupt-on-Change Flag bits

Value	Description
1	An enabled change was detected on the associated pin
0	No change was detected or the user cleared the detected change

11.5.71 Interrupt-on-Change Pull-up Enable PORTG Register

Name: IOCPUG Offset: 0x6E8

Bit	15	14	13	12	11	10	9	8
	IOCPUG[15:12]					IOCPUG[9:6]		
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0
Bit	7	6	5	4	3	2	1	0
	IOCPUG[9:6]					IOCPL	IG[3:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

Bits 15:12 - IOCPUG[15:12] Interrupt-on-Change Pull-up Enable bits

Value	Description
1	Pull-up is enabled
0	Pull-up is disabled

Bits 9:6 - IOCPUG[9:6] Interrupt-on-Change Pull-up Enable bits

	and the state of t
Value	Description
1	Pull-up is enabled
0	Pull-up is disabled

Bits 3:0 - IOCPUG[3:0] Interrupt-on-Change Pull-up Enable bits

Value	Description
1	Pull-up is enabled
0	Pull-up is disabled

11.5.72 Interrupt-on-Change Pull-Down Enable PORTG Register

Name: IOCPDG Offset: 0x6EA

Bit	15	14	13	12	11	10	9	8
		IOCPD	G[15:12]				IOCPE)G[9:6]
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0
Bit	7	6	5	4	3	2	1	0
	IOCPI	OG[9:6]				IOCPE	OG[3:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

Bits 15:12 - IOCPDG[15:12] Interrupt-on-Change Pull-Down Enable bits

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

Bits 9:6 - IOCPDG[9:6] Interrupt-on-Change Pull-Down Enable bits

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

Bits 3:0 - IOCPDG[3:0] Interrupt-on-Change Pull-Down Enable bits

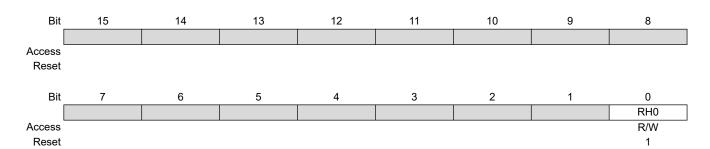
Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

I/O Ports

11.5.73 Output Enable for PORTH Register

Name: TRISH Ox6EC

Bit	15	14	13	12	11	10	9	8
Access Reset								
Reset								
Bit	7	6	5	4	3	2	1	0
								TRISH0
Access Reset								R/W
Reset								1


Bit 0 - TRISHO Output Enable bit

Value	Description
1	Pin is configured as input
0	Pin is configured as output

I/O Ports

11.5.74 Input Data for PORTH Register

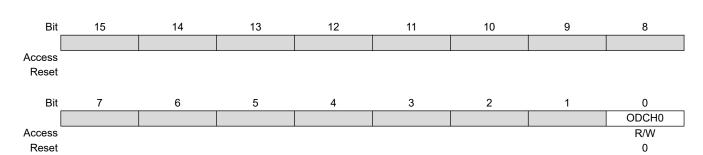
Name: PORTH Ox6EE

Bit 0 - RH0 PORTH Data Input Value bit

I/O Ports

11.5.75 Output Data for PORTH Register

Name: LATH Offset: 0x6F0

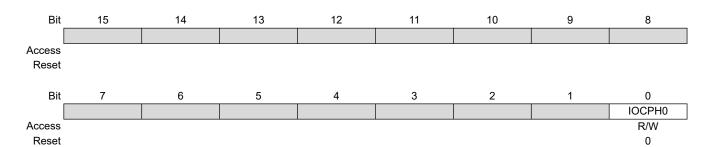

Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
								LATH0
Access Reset								R/W
Reset								0

Bit 0 - LATHO Output Data bit

I/O Ports

11.5.76 Open-Drain Enable for PORTH Register

Name: ODCH Offset: 0x6F2

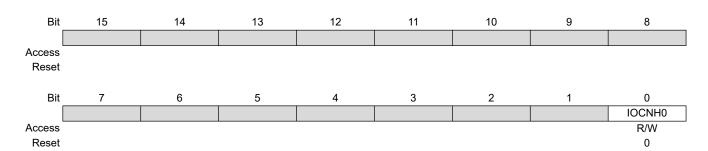

Bit 0 - ODCH0 Open-Drain Enable bit

1	/alue	Description
1	=	Open-drain is enabled on the pin
()	Open-drain is disabled on the pin

I/O Ports

11.5.77 Interrupt-on-Change Positive Edge PORTH Register

Name: IOCPH Offset: 0x6F6

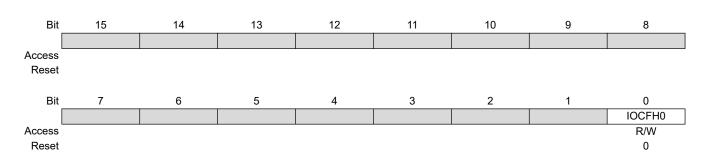

Bit 0 - IOCPH0 Interrupt-on-Change Positive Edge Enable bit

	1 0
Value	Description
1	Interrupt-on-change is enabled on the pin for a positive going edge; the associated status bit and interrupt flag will be set upon detecting an edge
0	Interrupt-on-change is disabled on the pin for a positive going edge

I/O Ports

11.5.78 Interrupt-on-Change Negative Edge PORTH Register

Name: IOCNH Offset: 0x6F8

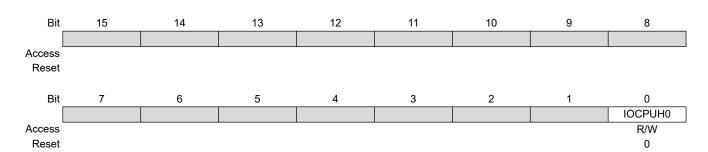

Bit 0 - IOCNH0 Interrupt-on-Change Negative Edge Enable bit

Value	Description							
1	Interrupt-on-change is enabled on the pin for a negative going edge; the associated status bit and							
	interrupt flag will be set upon detecting an edge							
0	Interrupt-on-change is disabled on the pin for a negative going edge							

I/O Ports

11.5.79 Interrupt-on-Change Flag PORTH Register

Name: IOCFH Offset: 0x6FA

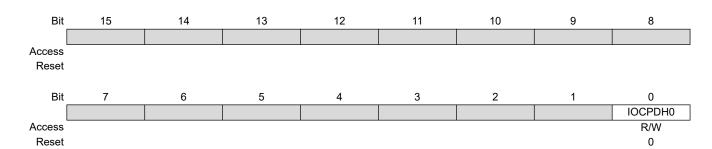

Bit 0 - IOCFH0 Interrupt-on-Change Flag bit

Value	Description
1	An enabled change was detected on the associated pin
0	No change was detected or the user cleared the detected change

I/O Ports

11.5.80 Interrupt-on-Change Pull-up Enable PORTH Register

Name: IOCPUH Offset: 0x6FC


Bit 0 - IOCPUH0 Interrupt-on-Change Pull-up Enable bit

Value	Description
1	Pull-up is enabled
0	Pull-up is disabled

I/O Ports

11.5.81 Interrupt-on-Change Pull-Down Enable PORTH Register

Name: IOCPDH Offset: 0x6FE

Bit 0 - IOCPDH0 Interrupt-on-Change Pull-Down Enable bit

Value	Description
1	Pull-down is enabled
0	Pull-down is disabled

11.5.82 Peripheral Pin Select Registers

Note: Input and Output register values can only be changed if IOLOCK (OSCCON[6]) = 0. See 11.4.4 Controlling Configuration Changes for a specific command sequence.

I/O Ports

11.5.83 Peripheral Pin Select Input Register 0

Name: RPINR0 Offset: 0x790

Bit	15	14	13	12	11	10	9	8
					INT1I	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	. 4	3	2	1	0

Access Reset

Bits 13:8 – INT1R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.84 Peripheral Pin Select Input Register 1

Name: RPINR1 Offset: 0x792

Bit	15	14	13	12	11	10	9	8		
				INT3R[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			INT2R[5:0]							
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		

Bits 13:8 – INT3R[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – INT2R[5:0] Refer to Table 11-2 for bit field definitions

R/W

0

R/W

I/O Ports

R/W

0

11.5.85 Peripheral Pin Select Input Register 2

Name: RPINR2 Offset: 0x794

Access

Reset

Bit	15	14	13	12	11	10	9	8
Access Reset								
Reset								
Bit	7	6	5	4	3	2	1	0
			INT4R[5:0]					

R/W

0

R/W

0

Bits 5:0 - INT4R[5:0] Refer to Table 11-2 for bit field definitions

R/W

0

I/O Ports

11.5.86 Peripheral Pin Select Input Register 3

Name: RPINR3 Offset: 0x796

Bit	15	14	13	12	11	10	9	8	
					T3CK	R[5:0]			
Access			R/W	R/W	R/W	R/W	R/W	R/W	
Reset			0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				T2CKR[5:0]					
Access			R/W	R/W	R/W	R/W	R/W	R/W	
Reset			0	0	0	0	0	0	

Bits 13:8 – T3CKR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 - T2CKR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.87 Peripheral Pin Select Input Register 4

Name: RPINR4 Offset: 0x798

Bit	15	14	13	12	11	10	9	8		
				T5CKR[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			T4CKR[5:0]							
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		

Bits 13:8 – T5CKR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 - T4CKR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.88 Peripheral Pin Select Input Register 5

Name: RPINR5 Offset: 0x79A

Bit	15	14	13	12	11	10	9	8		
				ICM2R[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			ICM1R[5:0]							
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		

Bits 13:8 – ICM2R[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – ICM1R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.89 Peripheral Pin Select Input Register 6

Name: RPINR6 Offset: 0x79C

Bit	15	14	13	12	11	10	9	8		
				ICM4R[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			ICM3R[5:0]							
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		

Bits 13:8 – ICM4R[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – ICM3R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.90 Peripheral Pin Select Input Register 11

Name: RPINR11 Offset: 0x7A6

Bit	15	14	13	12	11	10	9	8	
					OCFB	R[5:0]			
Access			R/W	R/W	R/W	R/W	R/W	R/W	
Reset			0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				OCFAR[5:0]					
Access		•	R/W	R/W	R/W	R/W	R/W	R/W	
Reset			0	0	0	0	0	0	

Bits 13:8 – OCFBR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – OCFAR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.91 Peripheral Pin Select Input Register 12

Name: RPINR12 Offset: 0x7A8

Bit	15	14	13	12	11	10	9	8	
				TCKIBR[5:0]					
Access			R/W	R/W	R/W	R/W	R/W	R/W	
Reset			0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
					TCKIA	R[5:0]			
Access		•	R/W	R/W	R/W	R/W	R/W	R/W	
Reset			0	0	0	0	0	0	

Bits 13:8 – TCKIBR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – TCKIAR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.92 Peripheral Pin Select Input Register 13

Name: RPINR13 Offset: 0x7AA

Bit	15	14	13	12	11	10	9	8		
				TMPRNR[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
					REFI	R[5:0]				
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		

Bits 13:8 – TMPRNR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 - REFIR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.93 Peripheral Pin Select Input Register 14

Name: RPINR14 Offset: 0x7AC

Bit	15	14	13	12	11	10	9	8		
				ICM6R[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
					ICM5	R[5:0]				
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		

Bits 13:8 – ICM6R[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – ICM5R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.94 Peripheral Pin Select Input Register 17

Name: RPINR17 Offset: 0x7B2

Bit	15	14	13	12	11	10	9	8
					U3RX	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0

Access Reset

Bits 13:8 – U3RXR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.95 Peripheral Pin Select Input Register 18

Name: RPINR18 Offset: 0x7B4

Bit	15	14	13	12	11	10	9	8		
				U1CTSR[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
					U1RX	R[5:0]				
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		

Bits 13:8 – U1CTSR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – U1RXR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.96 Peripheral Pin Select Input Register 19

Name: RPINR19 Offset: 0x7B6

Bit	15	14	13	12	11	10	9	8
					U2CTS	SR[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					U2RX	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 13:8 – U2CTSR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – U2RXR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.97 Peripheral Pin Select Input Register 20

Name: RPINR20 Offset: 0x7B8

Bit	15	14	13	12	11	10	9	8
					SCK1	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					SDI1I	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 13:8 – SCK1R[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 - SDI1R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.98 Peripheral Pin Select Input Register 21

Name: RPINR21 Offset: 0x7BA

Bit	15	14	13	12	11	10	9	8
					U3CTS	SR[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					SS1F	R[5:0]		
Access		•	R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 13:8 – U3CTSR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – SS1R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.99 Peripheral Pin Select Input Register 22

Name: RPINR22 Offset: 0x7BC

Bit	15	14	13	12	11	10	9	8
					SCK2	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					SDI2I	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 13:8 – SCK2R[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 - SDI2R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.100 Peripheral Pin Select Input Register 23

Name: RPINR23 Offset: 0x7BE

Bit	15	14	13	12	11	10	9	8
					TXCK	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					SS2F	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 13:8 – TXCKR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 - SS2R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.101 Peripheral Pin Select Input Register 25

Name: RPINR25 Offset: 0x7C2

Bit	15	14	13	12	11	10	9	8
					CLCINI	BR[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					CLCIN	AR[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 13:8 – CLCINBR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 - CLCINAR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.102 Peripheral Pin Select Input Register 26

Name: RPINR26 Offset: 0x7C4

Bit	15	14	13	12	11	10	9	8
					CLCIN	DR[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					CLCIN	CR[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 13:8 – CLCINDR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – CLCINCR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.103 Peripheral Pin Select Input Register 27

Name: RPINR27 Offset: 0x7C6

Bit	15	14	13	12	11	10	9	8
					U4CTS	SR[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					U4RX	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 13:8 – U4CTSR[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 – U4RXR[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.104 Peripheral Pin Select Input Register 30

Name: RPINR30 Offset: 0x7CC

Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					SS4F	R[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 5:0 – SS4R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.105 Peripheral Pin Select Input Register 31

Name: RPINR31 Offset: 0x7CE

Bit	15	14	13	12	11	10	9	8				
				SCK4R[5:0]								
Access			R/W	R/W	R/W	R/W	R/W	R/W				
Reset			0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
					SDI4I	R[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W				
Reset			0	0	0	0	0	0				

Bits 13:8 – SCK4R[5:0] Refer to Table 11-2 for bit field definitions

Bits 5:0 - SDI4R[5:0] Refer to Table 11-2 for bit field definitions

I/O Ports

11.5.106 Peripheral Pin Select Output Register 0

Name: RPOR0 Offset: 0x7D4

Bit	15	14	13	12	11	10	9	8
					RP1R[6:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					RP0R[6:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bits 14:8 - RP1R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP0R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.107 Peripheral Pin Select Output Register 1

Name: RPOR1 Offset: 0x7D6

Bit	15	14	13	12	11	10	9	8			
			RP3R[6:0]								
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset		0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
					RP2R[6:0]						
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset		0	0	0	0	0	0	0			

Bits 14:8 - RP3R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP2R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.108 Peripheral Pin Select Output Register 2

Name: RPOR2 Offset: 0x7D8

Bit	15	14	13	12	11	10	9	8		
					RP5R[6:0]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			RP4R[6:0]							
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		

Bits 14:8 - RP5R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP4R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.109 Peripheral Pin Select Output Register 3

Name: RPOR3 Offset: 0x7DA

Bit	15	14	13	12	11	10	9	8		
					RP7R[6:0]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			RP6R[6:0]							
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		

Bits 14:8 - RP7R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP6R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.110 Peripheral Pin Select Output Register 4

Name: RPOR4 Offset: 0x7DC

Bit	15	14	13	12	11	10	9	8		
					RP9R[6:0]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			RP8R[6:0]							
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		

Bits 14:8 - RP9R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP8R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.111 Peripheral Pin Select Output Register 5

Name: RPOR5 Offset: 0x7DE

Bit	15	14	13	12	11	10	9	8			
			RP11R[6:0]								
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset		0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
			RP10R[6:0]								
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset		0	0	0	0	0	0	0			

Bits 14:8 – RP11R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP10R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.112 Peripheral Pin Select Output Register 6

Name: RPOR6 Offset: 0x7E0

Bit	15	14	13	12	11	10	9	8	
					RP13R[6:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			RP12R[6:0]						
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 14:8 – RP13R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP12R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.113 Peripheral Pin Select Output Register 7

Name: RPOR7 Offset: 0x7E2

Bit	15	14	13	12	11	10	9	8	
					RP15R[6:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			RP14R[6:0]						
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 14:8 – RP15R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP14R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.114 Peripheral Pin Select Output Register 8

Name: RPOR8 Offset: 0x7E4

Bit	15	14	13	12	11	10	9	8		
					RP17R[6:0]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			RP16R[6:0]							
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		

Bits 14:8 – RP17R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP16R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.115 Peripheral Pin Select Output Register 9

Name: RPOR9 Offset: 0x7E6

Bit	15	14	13	12	11	10	9	8	
					RP19R[6:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			RP18R[6:0]						
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 14:8 – RP19R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP18R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.116 Peripheral Pin Select Output Register 10

Name: RPOR10 Offset: 0x7E8

Bit	15	14	13	12	11	10	9	8	
					RP21R[6:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			RP20R[6:0]						
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 14:8 – RP21R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP20R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.117 Peripheral Pin Select Output Register 11

Name: RPOR11 Offset: 0x7EA

Bit	15	14	13	12	11	10	9	8	
					RP23R[6:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			RP22R[6:0]						
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 14:8 – RP23R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP22R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.118 Peripheral Pin Select Output Register 12

Name: RPOR12 Offset: 0x7EC

Bit	15	14	13	12	11	10	9	8		
					RP25R[6:0]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			RP24R[6:0]							
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		

Bits 14:8 – RP25R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP24R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.119 Peripheral Pin Select Output Register 13

Name: RPOR13 Offset: 0x7EE

Bit	15	14	13	12	11	10	9	8		
					RP27R[6:0]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
			RP26R[6:0]							
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		

Bits 14:8 – RP27R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP26R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.120 Peripheral Pin Select Output Register 14

Name: RPOR14 Offset: 0x7F0

Bit	15	14	13	12	11	10	9	8	
					RP29R[6:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			RP28R[6:0]						
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 14:8 – RP29R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP28R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.121 Peripheral Pin Select Output Register 15

Name: RPOR15 Offset: 0x7F2

Bit	15	14	13	12	11	10	9	8
					RP31R[6:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			RP30R[6:0]					
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bits 14:8 – RP31R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP30R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.122 Peripheral Pin Select Output Register 16

Name: RPOR16 Offset: 0x7F4

Bit	15	14	13	12	11	10	9	8	
					RP33R[6:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			RP32R[6:0]						
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 14:8 – RP33R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP32R[6:0] Refer to Table 11-3 for bit field definitions

I/O Ports

11.5.123 Peripheral Pin Select Output Register 17

Name: RPOR17 Offset: 0x7F6

Bit	15	14	13	12	11	10	9	8	
					RP35R[6:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			RP34R[6:0]						
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 14:8 – RP35R[6:0] Refer to Table 11-3 for bit field definitions

Bits 6:0 - RP34R[6:0] Refer to Table 11-3 for bit field definitions

0

0

I/O Ports

0

11.5.124 Peripheral Pin Select Output Register 18

0

Name: RPOR18 Offset: 0x7F8

Reset

Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
					RP36R[6:0]			
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W

0

0

Bits 6:0 - RP36R[6:0] Refer to Table 11-3 for bit field definitions

0

12. Timer1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Timers" (www.microchip.com/DS39704) in the "dsPIC33/PIC24 Family Reference Manual"). The information in this data sheet supersedes the information in the FRM.

Timer1 can operate in three modes:

- · 16-Bit Timer
- · 16-Bit Synchronous Counter
- · 16-Bit Asynchronous Counter

Timer1 also supports these features:

- · Timer Gate Operation
- · Selectable Prescaler Settings
- · Timer Operation during CPU Idle and Sleep modes
- · Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 shows a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Select the timer prescaler ratio using the TCKPS[1:0] bits.
- 2. Set the Clock and Gating modes using the TCS, TECS[1:0] and TGATE bits.
- 3. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 4. Load the timer period value into the PR1 register.
- If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP[2:0], to set the interrupt priority.
- 6. Set the TON bit (= 1).

Figure 12-1. 16-Bit Timer1 Module Block Diagram

12.1 Timer1 Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0		
0x00												
 0x018F	Reserved											
0x0190	TMR1	7:0	TMR1[7:0]									
0.0190	TIVITY	15:8	TMR1[15:8]									
0x0192	PR1	7:0		PR1[7:0]								
000192	PKI	15:8	PR1[15:8]									
0x0194	T1CON	7:0	TGATE		TCKP	S[1:0]		TSYNC	TCS			
0.0194	TTCON	15:8	TON		TSIDL				TECS	S[1:0]		

Timer1

12.1.1 Timer1 Counter Register

Name: TMR1 Offset: 0x190

Bit	15	14	13	12	11	10	9	8
				TMR1	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMR1[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMR1[15:0] Timer1 Value bits

Timer1

12.1.2 Timer1 Period Register

Name: PR1 Offset: 0x192

Bit	15	14	13	12	11	10	9	8
				PR1[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	PR1[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PR1[15:0] Timer1 Period Value bits

12.1.3 Timer1 Control Register

Name: T1CON Offset: 0x194

Note:

1. Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

Bit	15	14	13	12	11	10	9	8
	TON		TSIDL				TEC	S[1:0]
Access	R/W		R/W				R/W	R/W
Reset	0		0				0	0
Bit	7	6	5	4	3	2	1	0
	TGATE		TCKP	TCKPS[1:0]		TSYNC	TCS	
Access	R/W		R/W	R/W		R/W	R/W	
Reset	•		0	0		0	^	

Bit 15 - TON Timer 1 On bit(1)

Value	Description	
1	Starts 16-bit Timer1	
0	Stops 16-bit Timer1	

Bit 13 - TSIDL Timer1 Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bits 9:8 - TECS[1:0] Timer1 Extended Clock Select bits (selected when TCS = 1)

Value	Description
11	Generic timer (TxCK) external input
10	LPRC Oscillator
01	T1CK external clock input
00	SOSC

Bit 7 - TGATE Timer1 Gated Time Accumulation Enable bit

When TCS = 1:

This bit is ignored.

When TCS = 0:

Value	Description
1	Gated time accumulation is enabled
0	Gated time accumulation is disabled

Bits 5:4 - TCKPS[1:0] Timer1 Input Clock Prescale Select bits

Value	Description
11	1:256
10	1:64
01	1:8
00	1:1

Bit 2 - TSYNC Timer1 External Clock Input Synchronization Select bit

When TCS = 0:

This bit is ignored.

When TCS = 1:

Timer1

Value	Description
1	Synchronizes the external clock input
0	Does not synchronize the external clock input

Bit 1 - TCS Timer1 Clock Source Select bit

Value	Description
1	External clock source selected by TECS[1:0]
0	Internal peripheral clock (F _{OSC})

Timer2/3 and Timer4/5

13. Timer2/3 and Timer4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "**Timers**" (DS39704) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 or Timer4/5 can operate in four modes:

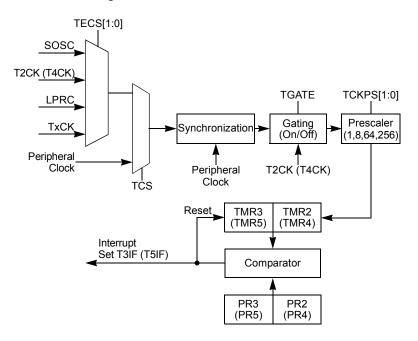
- · Two Independent 16-Bit Synchronous Timers
- · Two Independent 16-Bit Synchronous Counters
- Single 32-Bit Synchronous Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- · Selectable Prescaler Settings
- Timer Operation during Idle mode
- · Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger

Individually, all of the timers can function as synchronous timers or counters. These timers cannot operate in Sleep mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON registers.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer5 are the most significant word of the 32-bit timer.

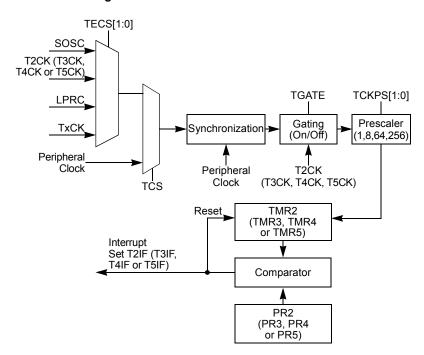

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clocks and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 bit (T2CON[3] = 1 or T4CON[3] = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS[1:0] bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TyCK) must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).
- 4. Load the timer period value. PR3 or PR5 will contain the most significant word (msw) of the value, while PR2 or PR4 contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE. Use the priority bits, T3IP[2:0] or T5IP[2:0], to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR3/2 (or TMR5/4). TMR3 (or TMR5) always contains the most significant word of the count, while TMR2 (or TMR4) contains the least significant word. The 32-bit timer is shown in Figure 13-1.

Figure 13-1. 32-Bit Timer Block Diagram



To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit (T2CON[3] for Timer2 and Timer3 or T4CON[3] for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS[1:0] bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. See 11.4 Peripheral Pin Select (PPS) for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE. Use the Timerx Interrupt Priority bits, TxIP[2:0], to set the interrupt priority.
- 6. Set the TON bit (= 1).

The 16-bit timer is shown in Figure 13-2.

Figure 13-2. 16-Bit Timer Block Diagram

13.1 Timer2/3 and Timer4/5 Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x00											
0x0193	Reserved										
0x0194	TMR4	7:0		TMR4[7:0]							
000134	TIVITY	15:8					I[15:8]				
0x0196	TMR2	7:0					2[7:0]				
000100	TIVITYZ	15:8					2[15:8]				
0x0198	TMR3HLD	7:0					ILD[7:0]				
0.0130	TWINGITED	15:8				TMR3H	LD[15:8]				
0x019A	TMR3	7:0				TMR	3[7:0]				
0.013.4	TIVITO	15:8				TMR	8[15:8]				
0x019C	PR2	7:0					[7:0]				
0.0190	FIZ	15:8				PR2	[15:8]				
0x019E	PR3	7:0				PR3	[7:0]				
OXO 19E	FNS	15:8				PR3	[15:8]				
0x01A0	T2CON	7:0	TGATE		TCKF	PS[1:0]	T32	TSYNC	TCS		
UXUTAU	IZCON	15:8	TON		TSIDL				TECS[1:0]		
0x01A2	T3CON	7:0	TGATE		TCKF	PS[1:0]		TSYNC	TCS		
UXUTAZ	ISCON	15:8	TON		TSIDL				TEC	S[1:0]	
0x01A4											
 0x01A5	Reserved										
0.0440	THEFT	7:0				TMR5F	ILD[7:0]				
0x01A6	TMR5HLD	15:8				TMR5H	LD[15:8]				
0.0440	T. 10.5	7:0					5[7:0]				
0x01A8	TMR5	15:8					5[15:8]				
	554	7:0					·[7:0]				
0x01AA	PR4	15:8	PR4[15:8]								
		7:0					[7:0]				
0x01AC PR5		15:8					[15:8]				
0.0445		7:0	TGATE		TCKF	PS[1:0]	T32	TSYNC	TCS		
0x01AE	T4CON	15:8	TON		TSIDL				TEC	S[1:0]	
0.0450		7:0	TGATE		TCKF	PS[1:0]		TSYNC	TCS		
0x01B0	T5CON	15:8	TON		TSIDL					S[1:0]	

Timer2/3 and Timer4/5

13.1.1 Timer2 Counter Register

Name: TMR2 Offset: 0x196

Bit	15	14	13	12	11	10	9	8
				TMR2	2[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMR	2[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMR2[15:0] Timer2 Value bits

Timer2/3 and Timer4/5

13.1.2 Timer3 Holding Register (for 32-bit timer operations only)

Name: TMR3HLD Offset: 0x198

Bit	15	14	13	12	11	10	9	8
				TMR3HI	LD[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMR3H	ILD[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMR3HLD[15:0] Timer3 Holding Value bits

Timer2/3 and Timer4/5

13.1.3 Timer3 Counter Register

Name: TMR3 Offset: 0x19A

Bit	15	14	13	12	11	10	9	8
				TMR3	B[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMR	3[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMR3[15:0] Timer3 Value bits

Timer2/3 and Timer4/5

13.1.4 Timer2 Period Register

Name: PR2 Offset: 0x19C

Bit	15	14	13	12	11	10	9	8
				PR2[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PR2	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PR2[15:0] Timer2 Period Value bits

Timer2/3 and Timer4/5

13.1.5 Timer3 Period Register

Name: PR3 Offset: 0x19E

Bit	15	14	13	12	11	10	9	8
				PR3[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PR3	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PR3[15:0] Timer3 Period Value bits

13.1.6 Timer2 Control Register

Name: T2CON Offset: 0x1A0

Note:

1. Changing the value of T2CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

Bit	15	14	13	12	11	10	9	8
	TON		TSIDL				TEC	S[1:0]
Access	R/W		R/W				R/W	R/W
Reset	0		0				0	0
Bit	7	6	5	4	3	2	1	0
	TGATE		TCKP	S[1:0]	T32	TSYNC	TCS	
Access	R/W		R/W	R/W	R/W	R/W	R/W	
Reset	0		0	0	0	0	0	

Bit 15 - TON Timer2 On bit(1)

Value	Description	
1	Starts 16-bit Timer	
0	Stops 16-bit Timer	

Bit 13 - TSIDL Timer2 Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bits 9:8 - TECS[1:0] Timer2 Extended Clock Select bits (selected when TCS = 1)

Value	Description
11	Generic timer (TxCK) external input
10	LPRC Oscillator
01	T1CK external clock input
00	SOSC

Bit 7 - TGATE Timer2 Gated Time Accumulation Enable bit

When TCS = 1:

This bit is ignored.

When TCS = 0:

Value	Description
1	Gated time accumulation is enabled
0	Gated time accumulation is disabled

Bits 5:4 - TCKPS[1:0] Timer2 Input Clock Prescale Select bits

Value	Description
11	1:256
10	1:64
01	1:8
00	1:1

Bit 3 – T32 32-Bit Timer Mode Select bit

In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.

III JZ-DIL I	in 32-bit mode, 1300 it control bits do not anect 32-bit timer operation.				
Value	Description				
1	Timer2 and Timer3 form a single 32-bit timer				
0	Timer2 and Timer3 act as two 16-bit timers				

Timer2/3 and Timer4/5

Bit 2 – TSYNC Timer2 External Clock Input Synchronization Select bit⁽¹⁾

When TCS = 0:

This bit is ignored.

When TCS = 1:

Value	Description
1	Synchronizes the external clock input
0	Does not synchronize the external clock input

Bit 1 - TCS Timer2 Clock Source Select bit

Value	Description
1	External clock source selected by TECS[1:0]
0	Internal peripheral clock (F _{OSC})

13.1.7 Timer3 Control Register

Name: T3CON Offset: 0x1A2

Note:

1. Changing the value of T3CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

Bit	15	14	13	12	11	10	9	8
	TON		TSIDL				TEC	CS[1:0]
Access	R/W		R/W				R/W	R/W
Reset	0		0				0	0
Bit	7	6	5	4	3	2	1	0
	TGATE		TCKPS[1:0]			TSYNC	TCS	
Access	R/W		R/W	R/W		R/W	R/W	
Reset								

Bit 15 - TON Timer3 On bit(1)

Value	Description
1	Starts 16-bit Timer
0	Stops 16-bit Timer

Bit 13 - TSIDL Timer3 Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bits 9:8 – TECS[1:0] Timer3 Extended Clock Select bits (selected when TCS = 1)

Value	Description
11	Generic timer (TxCK) external input
10	LPRC Oscillator
01	T1CK external clock input
00	SOSC

Bit 7 - TGATE Timer3 Gated Time Accumulation Enable bit

When TCS = 1:

This bit is ignored.

When TCS = 0:

Value	Description
1	Gated time accumulation is enabled
0	Gated time accumulation is disabled

Bits 5:4 - TCKPS[1:0] Timer3 Input Clock Prescale Select bits

Value	Description
11	1:256
10	1:64
01	1:8
00	1:1

Bit 2 - TSYNC Timer3 External Clock Input Synchronization Select bit(1)

When TCS = 0:

This bit is ignored.

When TCS = 1:

Timer2/3 and Timer4/5

Value	Description
1	Synchronizes the external clock input
0	Does not synchronize the external clock input

Bit 1 - TCS Timer3 Clock Source Select bit

Value	Description
1	External clock source selected by TECS[1:0]
0	Internal peripheral clock (F _{OSC})

Timer2/3 and Timer4/5

13.1.8 Timer4 Counter Register

Name: TMR4 Offset: 0x194

Bit	15	14	13	12	11	10	9	8	
	TMR4[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	TMR4[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - TMR4[15:0] Timer4 Value bits

Timer2/3 and Timer4/5

13.1.9 Timer5 Holding Register (for 32-bit timer operations only)

Name: TMR5HLD Ox1A6

Bit	15	14	13	12	11	10	9	8
				TMR5HI	LD[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMR5H	ILD[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMR5HLD[15:0] Timer5 Holding Value bits

Timer2/3 and Timer4/5

13.1.10 Timer5 Counter Register

Name: TMR5 Offset: 0x1A8

Bit	15	14	13	12	11	10	9	8
				TMR5	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMR	5[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMR5[15:0] Timer5 Value bits

Timer2/3 and Timer4/5

13.1.11 Timer4 Period Register

Name: PR4 Offset: 0x1AA

Bit	15	14	13	12	11	10	9	8
				PR4[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PR4	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PR4[15:0] Timer4 Period Value bits

Timer2/3 and Timer4/5

13.1.12 Timer5 Period Register

Name: PR5 Offset: 0x1AC

Bit	15	14	13	12	11	10	9	8
				PR5[[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PR5	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PR5[15:0] Timer5 Period Value bits

13.1.13 Timer4 Control Register

Name: T4CON Offset: 0x1AE

Note:

1. Changing the value of T4CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

Bit	15	14	13	12	11	10	9	8
	TON		TSIDL				TEC	S[1:0]
Access	R/W		R/W				R/W	R/W
Reset	0		0				0	0
Bit	7	6	5	4	3	2	1	0
	TGATE		TCKP	S[1:0]	T32	TSYNC	TCS	
Access	R/W		R/W	R/W	R/W	R/W	R/W	
Reset	0		0	0	0	Λ	Λ	

Bit 15 - TON Timer4 On bit(1)

	Timor on sic
Value	Description
1	Starts 16-bit Timer
0	Stops 16-bit Timer

Bit 13 - TSIDL Timer4 Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bits 9:8 - TECS[1:0] Timer4 Extended Clock Select bits (selected when TCS = 1)

Value	Description
11	Generic timer (TxCK) external input
10	LPRC Oscillator
01	T1CK external clock input
00	SOSC

Bit 7 - TGATE Timer4 Gated Time Accumulation Enable bit

When TCS = 1:

This bit is ignored.

When TCS = 0:

Value	Description
1	Gated time accumulation is enabled
0	Gated time accumulation is disabled

Bits 5:4 - TCKPS[1:0] Timer4 Input Clock Prescale Select bits

Value	Description
11	1:256
10	1:64
01	1:8
00	1:1

Bit 3 - T32 32-Bit Timer Mode Select bit

In 32-bit mode, T5CON control bits do not affect 32-bit timer operation.

III JZ-DIL I	in 52-bit mode, 1300N control bits do not anect 52-bit timel operation.				
Value	Description				
1	Timer4 and Timer5 form a single 32-bit timer				
0	Timer4 and Timer5 act as two 16-bit timers				

Timer2/3 and Timer4/5

Bit 2 – TSYNC Timer4 External Clock Input Synchronization Select bit⁽¹⁾

When TCS = 0:

This bit is ignored.

When TCS = 1:

Value	Description
1	Synchronizes the external clock input
0	Does not synchronize the external clock input

Bit 1 - TCS Timer4 Clock Source Select bit

Value	Description
1	External clock source selected by TECS[1:0]
0	Internal peripheral clock (F _{OSC})

13.1.14 Timer5 Control Register

Name: T5CON Offset: 0x1B0

Note:

1. Changing the value of T5CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

Bit	15	14	13	12	11	10	9	8
	TON		TSIDL				TEC	CS[1:0]
Access	R/W		R/W				R/W	R/W
Reset	0		0				0	0
Bit	7	6	5	4	3	2	1	0
	TGATE		TCKP	S[1:0]		TSYNC	TCS	
Access	R/W		R/W	R/W		R/W	R/W	
Reset	0		0	0		0	0	

Bit 15 - TON Timer 5 On bit(1)

	Timoro on sic
Value	Description
1	Starts 16-bit Timer
0	Stops 16-bit Timer

Bit 13 - TSIDL Timer5 Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bits 9:8 - TECS[1:0] Timer5 Extended Clock Select bits (selected when TCS = 1)

Value	Description
11	Generic timer (TxCK) external input
10	LPRC Oscillator
01	T1CK external clock input
00	SOSC

Bit 7 - TGATE Timer5 Gated Time Accumulation Enable bit

When TCS = 1:

This bit is ignored.

When TCS = 0:

Value	Description
1	Gated time accumulation is enabled
0	Gated time accumulation is disabled

Bits 5:4 - TCKPS[1:0] Timer5 Input Clock Prescale Select bits

Value	Description
11	1:256
10	1:64
01	1:8
00	1:1

Datasheet

Bit 2 - TSYNC Timer5 External Clock Input Synchronization Select bit(1)

When TCS = 0:

This bit is ignored.

When TCS = 1:

Timer2/3 and Timer4/5

Value	Description
1	Synchronizes the external clock input
0	Does not synchronize the external clock input

Bit 1 - TCS Timer5 Clock Source Select bit

Value	Description
1	External clock source selected by TECS[1:0]
0	Internal peripheral clock (F _{OSC})

Capture/Compare/PWM/Timer Modules (MCCP)

14. Capture/Compare/PWM/Timer Modules (MCCP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS30003035) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

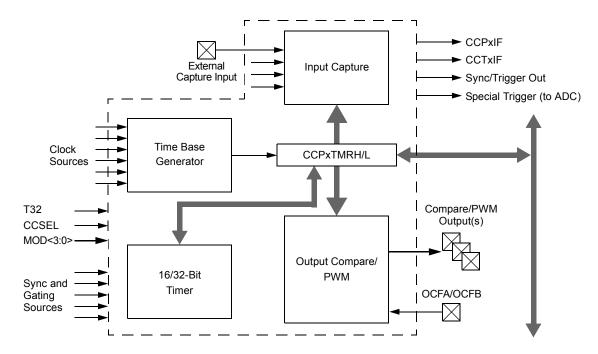
PIC24FJ512GU410 family devices include several Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals of earlier PIC24F devices. The module can operate in one of three major modes:

- · General Purpose Timer
- Input Capture
- Output Compare/PWM

This family of devices features eight instances of the MCCP module. MCCP1-3 provides up to six outputs and an extended range of power control features, whereas MCCP4-MCCP8 support two outputs.

The MCCPx modules can be operated only in one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode.

A conceptual block diagram for the module is shown in Figure 14-1. All three modules share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.

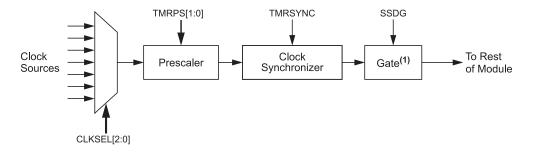

Each module has a total of eight control and status registers:

- CCPxCON1L
- CCPxCON1H
- CCPxCON2L
- CCPxCON2H
- CCPxCON3L
- CCPxCON3H
- CCPxSTATL

Each module also includes eight buffer/counter registers that serve as Timer Value registers or data holding buffers:

- CCPxTMRH/CCPxTMRL (Timer High/Low Counters)
- CCPxPRH/CCPxPRL (Timer Period High/Low)
- CCPxRAH/CCPxRAL (Primary Output Compare Data Buffer)
- CCPxRBH/CCPxRBL (Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (Input Capture High/Low Buffers)

Figure 14-1. MCCP Conceptual Block Diagram



14.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 14-2.

There are eight inputs available to the clock generator, which are selected using the CLKSEL[2:0] bits (CCPxCON1L[10:8]). Available sources include the FRC and LPRC, the Secondary Oscillator and the TCLKI external clock inputs. The system clock is the default source (CLKSEL[2:0] = 000). On PIC24FJ512GU410 family devices, clock sources to the MCCPx module can be synchronized with the system clock. As a result, when clock sources are selected, clock input timing restrictions or module operating restrictions may exist.

Figure 14-2. Timer Clock Generator

Note:

1. Gating available in Timer modes only.

14.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD[3:0] = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 14-1).

Capture/Compare/PWM/Timer Modules (MCCP)

Table 14-1. Timer Operation Mode

T32 (CCPxCON1L[5])	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

Dual 16-Bit Timer mode (Figure 14-3) provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses the CCPxTMRL and CCPxPRL registers. Only the primary timer can interact with other modules on the device. It generates the MCCPx Sync out signals for use by other MCCPx modules. It can also use the SYNC[4:0] bits' signal generated by other modules.

The secondary timer uses the CCPxTMRH and CCPxPRH registers. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an output Sync/Trigger mode signal like the primary time base. In Dual Timer mode, the Timer Period High register, CCPxPRH, generates the MCCPx compare event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode (Figure 14-4) uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments by one. This mode provides a simple timer function when it is important to track long time periods. Note that the T32 bit (CCPxCON1L[5]) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

14.2.1 Sync and Trigger Operation

In both 16-bit and 32-bit modes, the timer can also function in either Synchronization ("Sync") or Trigger mode operation. Both use the SYNC[4:0] bits (CCPxCON1H[4:0]) to determine the input signal source. The difference is how that signal affects the timer.

In Sync mode operation, the Timer Reset or clear occurs when the input selected by SYNC[4:0] is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H[7]) is cleared. The SYNC[4:0] bits can have any value except '11111'.

In Trigger mode operation, the timer is held in Reset until the input selected by SYNC[4:0] is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a trigger event as long as the CCPTRIG bit (CCPxSTATL[7]) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL[5]) must be set to clear the trigger event, reset the timer and hold it at zero until another trigger event occurs. On PIC24FJ512GU410 family devices, Trigger mode operation can only be used when the peripheral clock is the time base source (CLKSEL[2:0] = 000).

Figure 14-3. Dual 16-Bit Timer Mode

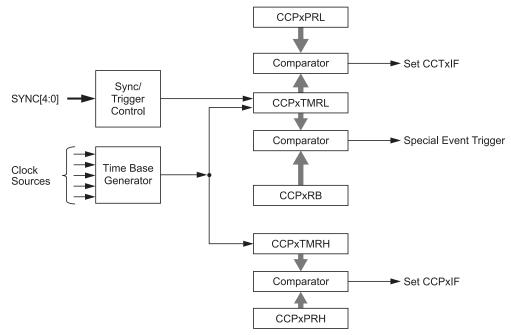
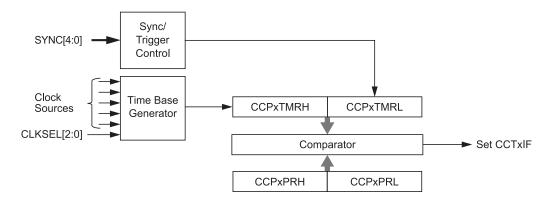



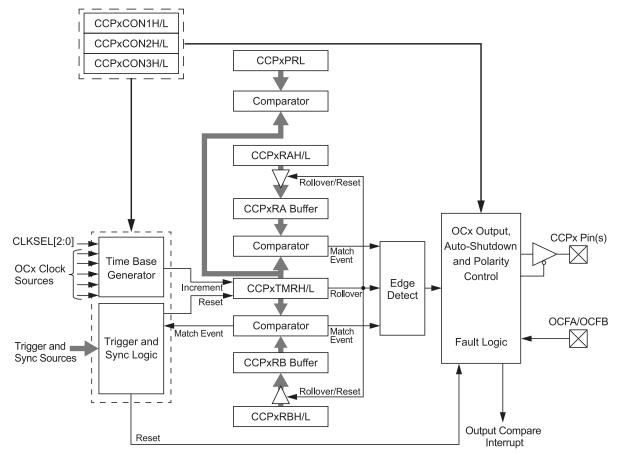
Figure 14-4. 32-Bit Timer Mode

14.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The output compare module, on compare match events, has the ability to generate a single output transition or a train of output pulses. Like most PIC[®] MCU peripherals, the output compare module can also generate interrupts on a compare match event.

Table 14-2 shows the various modes available in Output Compare modes. Figure 14-5 depicts a simplified block diagram of the Output Compare mode.

Capture/Compare/PWM/Timer Modules (MCCP)


Table 14-2. Output Compare/PWM Modes

MOD[3:0] (CCPxCON1L[3:0])	T32 (CCPxCON1L[5])	Operating Mode	
0001	0	Output High on Compare (16-bit)	Single Edge Mode
0001	1	Output High on Compare (32-bit)	
0010	0	Output Low on Compare (16-bit)	
0010	1	Output Low on Compare (32-bit)	
0011	0	Output Toggle on Compare (16-bit)	
0011	1	Output Toggle on Compare (32-bit)	
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode
0110	0	Center-Aligned Pulse (16-bit buffered) ⁽¹⁾	Center PWM Mode
0111	0	Variable Frequency Pulse (16-bit) ⁽¹⁾	
1111	0	External Input Source Mode (16-bit)	

Note:

1. Available only on MCCP1-MCCP3 modules.

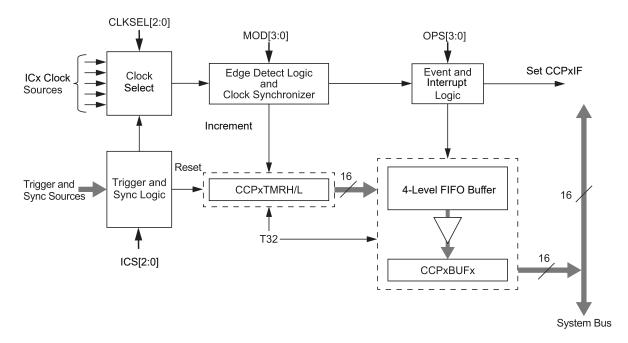
Figure 14-5. Output Compare Block Diagram

14.4 Input Capture Mode

Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 14-6 depicts a simplified block diagram of the Input Capture mode.

Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L registers.

To use Input Capture mode, the CCSEL bit (CCPxCON1L[4]) must be set. The T32 and MOD[3:0] bits are used to select the proper Capture mode, as shown in Table 14-3.


Table 14-3. Input Capture Modes

MOD[3:0] (CCPxCON1L[3:0])	T32 (CCPxCON1L[5])	Operating Mode
0000	0	Edge Detect (16-bit capture)
0000	1	Edge Detect (32-bit capture)
0001	0	Every Rising (16-bit capture)
0001	1	Every Rising (32-bit capture)
0010	0	Every Falling (16-bit capture)
0010	1	Every Falling (32-bit capture)

Capture/Compare/PWM/Timer Modules (MCCP)

continued		
MOD[3:0] (CCPxCON1L[3:0])	T32 (CCPxCON1L[5])	Operating Mode
0011	0	Every Rise/Fall (16-bit capture)
0011	1	Every Rise/Fall (32-bit capture)
0100	0	Every 4th Rising (16-bit capture)
0100	1	Every 4th Rising (32-bit capture)
0101	0	Every 16th Rising (16-bit capture)
0101	1	Every 16th Rising (32-bit capture)

Figure 14-6. Input Capture Block Diagram

14.5 Auxiliary Output

The MCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCPx modules, or other digital peripherals, to provide these types of functions:

- · Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- · Signal Gating

The type of output signal is selected using the AUXOUT[1:0] control bits (CCPxCON2H[4:3]). The type of output signal is also dependent on the module operating mode, as shown in Table 14-4.

Capture/Compare/PWM/Timer Modules (MCCP)

Table 14-4. Auxiliary Output

AUXOUT[1:0]	CCSEL	MOD[3:0]	Comments	Signal Description
00	Х	xxxx	Auxiliary Output Disabled	No Output
01	0	0000	Time Base Modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0 0001	Output Compare Modes	Time Base Period Reset or Rollover	
10		through		Output Compare Event Signal
11		1111		Output Compare Signal
01	1	xxxx	Input Capture Modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

Capture/Compare/PWM/Timer Modules (MCCP)

14.6 MCCP Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x00											
 0x0247	Reserved										
0x0248	CCP8CON1L	7:0	TMRF	S[1:0]	T32	CCSEL		MOI	D[3:0]		
0.0240	CCFOCONTE	15:8	CCPON		CCPSIDL	CCPSLP	TMRSYNC		CLKSEL[2:0]		
0x024A	CCP8CON1H	7:0	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]			
OXOZ II (15:8	OPSSRC	RTRGEN				OPS	3[3:0]		
0x024C	CCP8CON2L	7:0					G[7:0]				
		15:8	PWMRSEN	ASDGM		SSDG					
0x024E	CCP8CON2H	7:0	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]		
		15:8	OENSYNC				OCIF	:A]EN			
0x0250	CCP8CON3L	7:0						DT[4:0]			
		15:8 7:0			DOLACE.	POLBDF	DCCA	OE[4.0]	Deepr	DE[4.0]	
0x0252	CCP8CON3H	15:8	OETRIG		POLACE OSCNT[2:0]	POLBUF	PSSA	CE[1:0]	PSSBI OUTM[2:0]	טרןו:טן	
		7:0	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	
0x0254	CCP8STATL	15:8	OOI IING	TINGLI	TROLIX	AGEVI	JOLVI	ICGARM	1000	IODIAL	
0x0256		10.0						IOOAINI			
	Reserved										
0x0257											
	CODOTAGO	7:0		TMRL[7:0]							
0x0258	CCP8TMRL	15:8	TMRL[15:8]								
0.0054	CCDOTMBU	7:0					[23:16]				
0x025A	CCP8TMRH	15:8				TMRH	[31:24]				
0x025C	CCP8PRL	7:0				PRL	[7:0]				
0.0230	COFOFILE	15:8				PRL	[15:8]				
0x025E	CCP8PRH	7:0					23:16]				
OXOZOL		15:8					31:24]				
0x0260	CCP8RA	7:0	CMP[7:0]								
		15:8				CMP	[15:8]				
0x0262											
	Reserved										
0x0263		7:0				CME	P[7:0]				
0x0264	CCP8RB	15:8					[15:8]				
0x0266		10.0				Civii	[10.0]				
	Reserved										
0x0267											
	000001151	7:0				BUF	[7:0]				
0x0268	CCP8BUFL	15:8				BUF	[15:8]				
0x026A	CCP8BUFH	7:0					23:16]				
UNUZUA	ССЕОВОЕП	15:8					31:24]				
0x026C	CCP1CON1L	7:0		'S[1:0]	T32	CCSEL		MOI	D[3:0]		
0.0200		15:8	CCPON		CCPSIDL	CCPSLP	TMRSYNC		CLKSEL[2:0]		
0x026E	CCP1CON1H	7:0	TRIGEN	ONESHOT	ALTSYNC		ı	SYNC[4:0]			
15:8 OPSSRC RTRGEN OPS3[3:0]											
0x0270											
		15:8	PWMRSEN	ASDGM		SSDG					
0x0272	CCP1CON2H	7:0						ICS[2:0]			
		15:8	OENSYNC				OC[F				
0x0274	CCP1CON3L	7:0						DT[4:0]			
		15:8			POLACE	DOI DDE	DOCA	CE[1:0]	Deepr	DF[1:0]	
0x0276	CCP1CON3H	7:0 15:8	OETRIG		OSCNT[2:0]	POLBDF	P55A0	CE[1:0]	OUTM[2:0])F[1:0]	
		7:0	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	
0x0278	CCP1STATL	15:8	OUF INIG	IIVOEI	INCLR	AGEVI	SUEVI	ICGARM	1000	ICDIVE	
		13.0						ICGARIN			

cont	inued										
			_		_						
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x027A											
 0x027B	Reserved										
00070	CODATMO	7:0				TMRI	L[7:0]				
0x027C	CCP1TMRL	15:8				TMRL	.[15:8]				
		7:0				TMRH					
0x027E	CCP1TMRH	15:8					[31:24]				
	0001001	7:0		PRL[7:0]							
0x0280	CCP1PRL	15:8				PRL[
0.0000	00040011	7:0		PRH[23:16]							
0x0282	CCP1PRH	15:8				PRH[31:24]				
0.0004	000404	7:0		CMP[7:0]							
0x0284	CCP1RA	15:8		CMP[15:8]							
0x0286							-				
	Reserved										
0x0287											
0x0288	CCP1RB	7:0				CMP	P[7:0]				
UXU200	CCPIRB	15:8				CMP	[15:8]				
0x028A											
	Reserved										
0x028B											
0x028C	CCP1BUFL	7:0				BUF					
0.0200	COLIDOLE	15:8				BUF[
0x028E	CCP1BUFH	7:0				BUF[2					
UXUZUL	COPIDOTTI	15:8				BUF[3	31:24]				
0x0290	CCP2CON1L	7:0	TMRF	PS[1:0]	T32	CCSEL		MOI	D[3:0]		
	COFZCONIL	15:8	CCPON		CCPSIDL	CCPSLP	TMRSYNC		CLKSEL[2:0]		
0x0292	CCP2CON1H	7:0	TRIGEN ONESHOT ALTSYNC SYNC[4:0]								
0x0292	CCF2CONTIT	15:8	OPSSRC	RTRGEN				OPS	3[3:0]		
0x0294	CCP2CON2L	7:0				ASDO	G[7:0]				
0.0234	COFZCONZL	15:8	PWMRSEN	ASDGM		SSDG					
0x0296	CCP2CON2H	7:0	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]		
0.0230	OOI ZOONZII	15:8	OENSYNC				OC[F	:A]EN			
0x0298	CCP2CON3L	7:0						DT[4:0]			
0.0230	OOI ZOONSE	15:8									
0x029A	CCP2CON3H	7:0			POLACE	POLBDF	PSSA	CE[1:0]	PSSBI	DF[1:0]	
0,020/1	001 20011011	15:8	OETRIG		OSCNT[2:0]				OUTM[2:0]		
0x029C	CCP2STATL	7:0	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	
	001 2017 112	15:8						ICGARM			
0x029E											
	Reserved										
0x029F						T. (5)	 				
0x02A0	CCP2TMRL	7:0				TMRI					
		15:8					.[15:8]				
0x02A2	CCP2TMRH	7:0					[23:16]				
		15:8					[31:24]				
0x02A4	CCP2PRL	7:0					[7:0]				
		15:8					[15:8]				
0x02A6	CCP2PRH	7:0				PRH[2					
		15:8				PRH[
0x02A8	CCP2RA	7:0					P[7:0]				
000 4 4		15:8	15:8 CMP[15:8]								
0x02AA	Described										
 0v02AB	Reserved										
0x02AB		7:0				C145	0.7:01				
0x02AC	CCP2RB	7:0	CMP[7:0]								
		15:8	CMP[15:8]								

cont	inued										
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
	Name	Dit FUS.	,	•	3		3		'		
0x02AE	D										
0x02AF	Reserved										
UNUZAI		7:0		BUF[7:0]							
0x02B0	CCP2BUFL	15:8		BUF[15:8]							
		7·0 BUF[23:16]									
0x02B2	CCP2BUFH	15:8					31:24]				
		7:0	TMRP	PS[1:0]	T32	CCSEL		MOI	D[3:0]		
0x02B4	CCP3CON1L	15:8	CCPON	,	CCPSIDL	CCPSLP	TMRSYNC		CLKSEL[2:0]		
	0000001111	7:0	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]			
0x02B6	CCP3CON1H	15:8	OPSSRC	RTRGEN					3[3:0]		
0.0000	000000000	7:0				ASD	G[7:0]				
0x02B8	CCP3CON2L	15:8	PWMRSEN	ASDGM		SSDG					
0,0000	CCD2CONOLL	7:0	ICGSI	M[1:0]		AUXO	UT[1:0]		ICS[2:0]		
0x02BA	CCP3CON2H	15:8	OENSYNC				OC[F	:A]EN			
0x02BC	CCP3CON3L	7:0						DT[4:0]			
UNUZDO	COFSCONSE	15:8									
0x02BE	CCP3CON3H	7:0			POLACE	POLBDF	PSSA	CE[1:0]	PSSBE)F[1:0]	
UXUZDE	COFSCONSFI	15:8	OETRIG		OSCNT[2:0]				OUTM[2:0]		
0x02C0	CCP3STATL	7:0	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	
UNUZUU	COFJOIAIL	15:8						ICGARM			
0x02C2											
	Reserved										
0x02C3											
0x02C4	CCP3TMRL	7:0					L[7:0]				
	00.02	15:8					_[15:8]				
0x02C6	CCP3TMRH	7:0	TMRH[23:16]								
		15:8					[31:24]				
0x02C8	CCP3PRL	7:0	PRL[7:0]								
		15:8					[15:8]				
0x02CA	CCP3PRH	7:0					23:16]				
		15:8					31:24]				
0x02CC	CCP3RA	7:0					P[7:0]				
0x02CE		15:8				CIVIP	[15:8]				
	Reserved										
0x02CF	Reserved										
		7:0				CMF	P[7:0]				
0x02D0	CCP3RB	15:8					[15:8]				
0x02D2											
	Reserved										
0x02D3											
0x02D4	CCP3BUFL	7:0				BUF	[7:0]				
UAUZD4	COFSBUFL	15:8					[15:8]				
0x02D6	CCP3BUFH	7:0					23:16]				
	COLOBOLU	15:8				BUF[31:24]				
0x02D8											
	Reserved										
0x02FF											
0x0300	CCP4CON1L	7:0	TMRF	'S[1:0]	T32	CCSEL		IOM	D[3:0]		
	001 1001112	15:8	CCPON		CCPSIDL	CCPSLP	TMRSYNC		CLKSEL[2:0]		
0x0302	CCP4CON1H	7:0	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]			
		15:8	OPSSRC	RTRGEN				OPS	3[3:0]		
0x0304	CCP4CON2L	7:0					G[7:0]				
		15:8	PWMRSEN	ASDGM		SSDG	1		100::		
0x0306	CCP4CON2H	7:0	ICGSI	M[1:0]		AUXO	UT[1:0]	A15A1	ICS[2:0]		
		15:8	OENSYNC				OC[F	:A]EN			
0x0308	CCP4CON3L	7:0						DT[4:0]			
		15:8									

conti	nued											
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0		
0x030A	CCD4CON3U	7:0			POLACE	POLBDF	PSSA	CE[1:0]	PSSBI	DF[1:0]		
UXUSUA	CCP4CON3H	15:8	OETRIG		OSCNT[2:0]				OUTM[2:0]			
0x030C	CCP4STATL	7:0	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE		
0,0000	OOI 40 IAIL	15:8						ICGARM				
0x030E												
	Reserved											
0x030F												
0x0310	CCP4TMRL	7:0					L[7:0]					
		15:8				TMRL						
0x0312	CCP4TMRH	7:0 15:8					[23:16]					
		7:0				PRL	[31:24]					
0x0314	CCP4PRL	15:8					[15:8]					
		7:0				PRH[:						
0x0316	CCP4PRH	15:8					31:24]					
		7:0					P[7:0]					
0x0318	CCP4RA	15:8				CMP						
0x031A		10.0				CIVIE	[10.0]					
	Reserved											
0x031B	5001 100											
		7:0		CMP[7:0]								
0x031C	CCP4RB	15:8				CMP						
0x031E												
	Reserved											
0x031F												
00000	CODADUE	7:0		-		BUF	[7:0]		'			
0x0320	CCP4BUFL	15:8				BUF	[15:8]					
0x0322	CCP4BUFH	7:0				BUF[2	23:16]					
0x0322	ССР4ВОГП	15:8				BUF[3	31:24]					
0x0324	CCP5CON1L	7:0	TMRF	PS[1:0]	T32	CCSEL		MOI	D[3:0]			
0,0024	OCI SOCIVIL	15:8	CCPON		CCPSIDL	CCPSIDL CCPSLP TMRSYNC CLKSEL[2:0]						
0x0326	CCP5CON1H	7:0	TRIGEN	ONESHOT	ALTSYNC	SYNC[4:0]						
0,0020		15:8	OPSSRC	RTRGEN				OPS3[3:0]				
0x0328	CCP5CON2L	7:0					G[7:0]					
0,0020		15:8	PWMRSEN	ASDGM		SSDG						
0x032A	CCP5CON2H	7:0		M[1:0]		AUXO			ICS[2:0]			
		15:8	OENSYNC				OC[F	:A]EN				
0x032C	CCP5CON3L	7:0						DT[4:0]				
		15:8			BC: 15=	DC: 55 =		05(4.6)		2514.63		
0x032E	CCP5CON3H	7:0	OFTDIO		POLACE	POLBDF	PSSA	CE[1:0]	PSSBI	JF[1:0]		
		15:8	OETRIG	TDOCT	OSCNT[2:0]	A C E \ / T	COEVT	IODIO	OUTM[2:0]	IODAIC		
0x0330	CCP5STATL	7:0 15:8	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS ICGARM	ICOV	ICBNE		
0x0332		15.8						ICGARINI				
	Reserved											
0x0333	Neserveu											
		7:0				TMR	L[7:0]					
0x0334	CCP5TMRL	15:8					_[15:8]					
		7:0					[23:16]					
0x0336	CCP5TMRH	15:8					[31:24]					
0.000	000505	7:0					[7:0]					
0x0338	CCP5PRL	15:8					[15:8]					
0.0001	00055511	7:0				PRH[
0x033A	CCP5PRH	15:8				PRH[:						
7:0							P[7:0]					
0x033C	CCP5RA	5RA 15:8 CMP[15:8]										
0x033E							-					
	Reserved											
0x033F												

conti	inued										
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
		7:0					P[7:0]				
0x0340	CCP5RB	15:8					[15:8]				
0x0342							-				
	Reserved										
0x0343		7:0				DUE	77.01				
0x0344	CCP5BUFL	15:8					[7:0] [15:8]				
		7:0					23:16]				
0x0346	CCP5BUFH	15:8					31:24]				
0x0348	CCP6CON1L	7:0	TMRF	PS[1:0]	T32	CCSEL		MOI	D[3:0]		
	15:8 CCPON				CCPSIDL	CCPSLP	TMRSYNC	0./\0.01	CLKSEL[2:0]		
0x034A	CCP6CON1H	7:0 15:8	TRIGEN OPSSRC	ONESHOT RTRGEN	ALTSYNC			SYNC[4:0]	3[3.0]		
		7:0	OPSSRC RTRGEN OPS3[3:0] ASDG[7:0] ASDG[7:0]								
0x034C	CCP6CON2L	15:8	PWMRSEN	ASDGM		SSDG					
0x034E	CCP6CON2H	7:0	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]		
UNUUTL	001 000N211	15:8	OENSYNC				OC[F	:A]EN			
0x0350	CCP6CON3L	7:0 15:8						DT[4:0]			
		7:0			POLACE	POLBDF	PSSA	CE[1:0]	PSSB	DF[1:0]	
0x0352	CCP6CON3H	15:8	OETRIG		OSCNT[2:0]	I OLDDI	1 00/1	JE[1.0]	OUTM[2:0]	31 [1.0]	
00254	CCP6STATL	7:0	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	
0x0354	CCP6STATE	15:8						ICGARM			
0x0356											
 0x0357	Reserved										
		7:0				TMR	L[7:0]				
0x0358	CCP6TMRL	15:8					_[15:8]				
0x035A	CCP6TMRH	7:0	TMRH[23:16]								
UNUUUA	COLOLIMICAL	15:8	TMRH[31:24]								
0x035C	CCP6PRL	7:0 15:8					.[7:0]				
		7:0					[15:8] 23:16]				
0x035E	CCP6PRH	15:8					31:24]				
0x0360	CCP6RA	7:0					P[7:0]				
	CCFORA	15:8				CMP	[15:8]				
0x0362	Reserved										
0x0363	Reserveu										
	CODODD	7:0				CMF	P[7:0]				
0x0364	CCP6RB	15:8					[15:8]				
0x0366											
 0x0367	Reserved										
		7:0				BUF	[7:0]				
0x0368	CCP6BUFL	15:8					[15:8]				
0x036A	CCP6BUFH	7:0					23:16]				
OXOGOT	001 000111	15:8					31:24]				
0x036C	CCP7CON1L	7:0 15:8	TMRF CCPON	PS[1:0]	T32 CCPSIDL	CCSEL	TMDCVNC	MOI	D[3:0] CLKSEL[2:0]		
		7:0	TRIGEN	ONESHOT	ALTSYNC	CCPSLP	TMRSYNC	SYNC[4:0]	CLKSEL[2:0]		
0x036E	CCP7CON1H	15:8	OPSSRC	RTRGEN	7.2131140				3[3:0]		
0x0370	CCP7CON2L	7:0	-	I		ASD	G[7:0]				
0x03/0	COPTOUNZL	15:8	PWMRSEN	ASDGM		SSDG					
0x0372	CCP7CON2H	7:0		M[1:0]		AUXO	UT[1:0]	AJEN	ICS[2:0]		
		15:8	OENSYNC				OC[F	:A]EN			
0x0374	CCP7CON3L	7:0 15:8						DT[4:0]			
		13.0									

conti	inued											
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0		
00270	CODZCONOLI	7:0			POLACE	POLBDF	PSSA	CE[1:0]	PSSB	DF[1:0]		
0x0376	CCP7CON3H	15:8	OETRIG OSCNT[2:0] OU						OUTM[2:0]	DUTM[2:0]		
0x0378	CCP7STATL	7:0	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE		
0.00376	COPTSTATE	15:8						ICGARM				
0x037A 0x037B	Reserved											
0x037C	CCP7TMRL	7:0		TMRL[7:0]								
000370	CCP/ TWIKE	15:8				TMRL	. [15:8]					
0x037E	CCP7TMRH	7:0				TMRH	[23:16]					
0X037L	CCF/TWINT	15:8	TMRH[31:24]									
0x0380	380 CCP7PRL	7:0	PRL[7:0]									
0.0000	OOI /I IKE	15:8	PRL[15:8]									
0x0382	CCP7PRH	7:0	PRH[23:16]									
0,0002		15:8	PRH[31:24]									
0x0384	CCP7RA	7:0					P[7:0]					
		15:8	CMP[15:8]									
0x0386												
 0x0387	Reserved											
0x0388	CCP7RB	7:0					P[7:0]					
0.0000	COLTRD	15:8				CMP	[15:8]					
0x038A												
 0x038B	Reserved											
0x038C	CCP7BUFL	7:0				BUF	[7:0]					
UXU36C	OCF/BUFL	15:8					[15:8]					
0x038E	CCP7BUFH	7:0				BUF[23:16]					
UNUSOE	COFTBUFF	15:8				BUF[31:24]					

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.1 CCP8 Control 1 Low Register

Name: CCP8CON1L Offset: 0x248

Bit	15	14	13	12	11	10	9	8
	CCPON		CCPSIDL	CCPSLP	TMRSYNC		CLKSEL[2:0]	
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRF	PS[1:0]	T32	CCSEL		MOE	[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - CCPON CCP Module Enable bit

Value	Description
1	Module is enabled with an operating mode specified by the MOD[3:0] control bits
0	Module is disabled

Bit 13 - CCPSIDL CCP Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - CCPSLP CCP Sleep Mode Enable bit

Value	Description
1	Module continues to operate in Sleep modes
0	Module does not operate in Sleep modes

Bit 11 - TMRSYNC Time Base Clock Synchronization bit

Value	Description
1	Module time base clock is synchronized to the internal system clocks; timing restrictions apply
0	Module time base clock is not synchronized to the internal system clocks

Bits 10:8 - CLKSEL[2:0] CCP Time Base Clock Select bits

Value	Description
111	TCKIA pin
110	TCKIB pin
101	PLL clock
100	2x peripheral clock
011	CLC4
010	SOSC clock
001	Reference clock output
000	Peripheral clock

Bits 7:6 - TMRPS[1:0] Time Base Prescale Select bits

Value	Description
11	1:64 prescaler
10	1:16 prescaler
01	1:4 prescaler
00	1:1 prescaler

Bit 5 - T32 32-Bit Time Base Select bit

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
1	Uses 32-bit time base for timer, single edge output compare or input capture function
0	Uses 16-bit time base for timer, single edge output compare or input capture function

Bit 4 - CCSEL Capture/Compare Mode Select bit

Value	Description
1	Input capture peripheral
0	Output Compare/PWM/Timer peripheral (exact function is selected by the MOD[3:0] bits)

Bits 3:0 - MOD[3:0] CCP Mode Select bits

For CCSEL = 1 (Input Capture modes):

Value	Description
1xxx	Reserved
011x	Reserved
0101	Capture every 16th rising edge
0100	Capture every 4th rising edge
0011	Capture every rising and falling edge
0010	Capture every falling edge
0001	Capture every rising edge
0000	Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

Value	Description
1111	External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]
1110	Reserved
110x	Reserved
10xx	Reserved
0111	Reserved
0110	Reserved
0101	Dual Edge Compare mode, buffered
0100	Dual Edge Compare mode
0011	16-Bit/32-Bit Single Edge mode, toggles output on compare match
0010	16-Bit/32-Bit Single Edge mode, drives output low on compare match
0001	16-Bit/32-Bit Single Edge mode, drives output high on compare match
0000	16-Bit/32-Bit Timer mode, output functions are disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.2 CCP8 Control 1 High Register

Name: CCP8CON1H Offset: 0x24A

Notes:

- 1. This control bit has no function in Input Capture modes.
- 2. This control bit has no function when TRIGEN = 0.
- 3. Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

Bit	15	14	13	12	11	10	9	8
	OPSSRC	RTRGEN				OPS:	3[3:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - OPSSRC Output Postscaler Source Select bit(1)

V	'alue	Description	
1		Output postscaler scales module trigger output events	
0		Output postscaler scales time base interrupt events	

Bit 14 - RTRGEN Retrigger Enable bit(2)

Value	Description
1	Time base can be retriggered when TRIGEN bit = 1
0	Time base may not be retriggered when TRIGEN bit = 1

Bits 11:8 - OPS3[3:0] CCP Interrupt Output Postscale Select bits(3)

Value	Description
1111	Interrupt every 16th time base period match
1110	Interrupt every 15th time base period match
0100	Interrupt every 5th time base period match
0011	Interrupt every 4th time base period match or 4th input capture event
0010	Interrupt every 3rd time base period match or 3rd input capture event
0001	Interrupt every 2nd time base period match or 2nd input capture event
0000	Interrupt after each time base period match or input capture event

Bit 7 - TRIGEN CCP Trigger Enable bit

Value	Description
1	Trigger operation of time base is enabled
0	Trigger operation of time base is disabled

Bit 6 - ONESHOT One-Shot Trigger Mode Enable bit

Value	Description
1	One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]
0	One-Shot Trigger mode is disabled

Bit 5 - ALTSYNC CCP Clock Select bit

Value	Description
1	An alternate signal is used as the module synchronization output signal
0	The module synchronization output signal is the Time Base Reset/rollover event

Capture/Compare/PWM/Timer Modules (MCCP)

Bits 4:0 - SYNC[4:0] CCP Synchronization Source Select bits

SYNC[4:0]	Synchronization Source
11111	None; timer with rollover on CCPxPR match or FFFFh
11110	Reserved
11101	Reserved
11100	Reserved
11011	A/D start conversion
11010	CMP3 trigger
11001	CMP2 trigger
11000	CMP1 trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 output
10010	CLC3 output
10001	CLC2 output
10000	CLC1 output
01111	Reserved
01110	MCCP8 sync output
01101	INT4 pin
01100	INT3 pin
01011	INT2 pin
01010	INT1 pin
01001	INT0 pin
01000	MCCP7 sync output
00111	MCCP6 sync output
00110	MCCP5 sync output
00101	MCCP4 sync output
00100	MCCP3 sync output
00011	MCCP2 sync output
00010	MCCP1 sync output
00001	MCCP8 sync output
00000	MCCP8 timer sync output

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.3 CCP8 Control 2 Low Register

Name: CCP8CON2L Offset: 0x24C

Bit	15	14	13	12	11	10	9	8
	PWMRSEN	ASDGM		SSDG				
Access	R/W	R/W		R/W				
Reset	0	0		0				
Bit	7	6	5	4	3	2	1	0
				ASD	G[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - PWMRSEN CCP PWM Restart Enable bit

Value	Description
1	ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has
	ended
0	ASEVT bit must be cleared in software to resume PWM activity on output pins

Bit 14 - ASDGM CCP Auto-Shutdown Gate Mode Enable bit

1	/alue	Description
1		Waits until next Time Base Reset or rollover for shutdown to occur
C		Shutdown event occurs immediately

Bit 12 - SSDG CCP Software Shutdown/Gate Control bit

Value	Description
1	Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM
	bit still applies)
0	Normal module operation

Bits 7:0 - ASDG[7:0] CCP Auto-Shutdown/Gating Source Enable bits

Value	Description
1000000	OCFB
01000000	OCFA
00100000	CLC1
00010000	MCCP4
00001000	MCCP5
00000100	CMP3 out
0000010	CMP2 out
0000001	CMP1 out

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.4 CCP8 Control 2 High Register

Name: CCP8CON2H Offset: 0x24E

Bit	15	14	13	12	11	10	9	8
	OENSYNC		OC[F:A]EN					
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]	
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - OENSYNC Output Enable Synchronization bit

Value	Description
1	Update by output enable bits occurs on the next Time Base Reset or rollover
0	Update by output enable bits occurs immediately

Bits 13:8 - OC[F:A]EN Output Enable/Steering Control bits

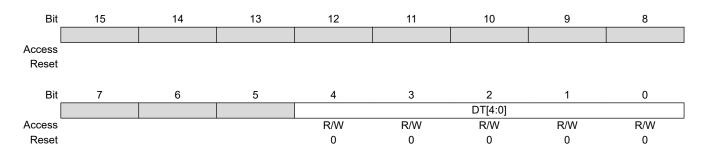
		• • · · · · · · · · · · · · · · · · · ·
Va	alue	Description
1		OCx pin is controlled by the CCP module and produces an output compare or PWM signal
0		OCx pin is not controlled by the CCP module; the pin is available to the port logic or another peripheral multiplexed on the pin

Bits 7:6 - ICGSM[1:0] Input Capture Gating Source Mode Control bits

Value	Description
11	Reserved
10	One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
01	One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
00	Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will
	disable future capture events

Bits 4:3 - AUXOUT[1:0] Auxiliary Output Signal on Event Selection bits

Value	Description
11	Input capture or output compare event; no signal in Timer mode
10	Signal output depends on module operating mode
01	Time base rollover event (all modes)
00	Disabled


Bits 2:0 - ICS[2:0] Input Capture Source Select bits

Value	Description
111	CLC4
110	CLC3
101	CLC2
100	CLC1
011	Comparator 3
010	Comparator 2
001	Comparator 1
000	Input capture pin (ICM8)

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.5 CCP8 Control 3 Low Register

Name: CCP8CON3L Offset: 0x250

Bits 4:0 - DT[4:0] PWM Dead-Time Select bits

Value	Description
111111	Inserts 63 dead-time delay periods between complementary output signals
111110	Inserts 62 dead-time delay periods between complementary output signals
000010	Inserts 2 dead-time delay periods between complementary output signals
000001	Inserts 1 dead-time delay period between complementary output signals
000000	Dead-time logic is disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.6 CCP8 Control 3 High Register

Name: CCP8CON3H Offset: 0x252

Bit	15	14	13	12	11	10	9	8
	OETRIG		OSCNT[2:0]				OUTM[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			POLACE	POLBDF	PSSAC	CE[1:0]	PSSBI	DF[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - OETRIG CCP Dead-Time Select bit

Value	Description
1	For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered
0	Normal output pin operation

Bits 14:12 - OSCNT[2:0] One-Shot Event Count bits

	COUNTY IN CHARLES COUNTY DEC
Value	Description
111	Extends one-shot event by 7 time base periods (8 time base periods total)
110	Extends one-shot event by 6 time base periods (7 time base periods total)
101	Extends one-shot event by 5 time base periods (6 time base periods total)
100	Extends one-shot event by 4 time base periods (5 time base periods total)
011	Extends one-shot event by 3 time base periods (4 time base periods total)
010	Extends one-shot event by 2 time base periods (3 time base periods total)
001	Extends one-shot event by 1 time base period (2 time base periods total)
000	Does not extend one-shot trigger event

Bits 10:8 - OUTM[2:0] PWM Output Mode Control bits

Value	Description
111	Reserved
110	Output Scan mode
101	Brush DC Output mode, forward
100	Brush DC Output mode, reverse
011	Reserved
010	Half-Bridge Output mode
001	Push-Pull Output mode
000	Steerable Single Output mode

Bit 5 - POLACE CCP Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit

	Dit I DE TOE OUT Output I mo, Common, Commo and Comme, Toland, Common and				
Value	Description				
1	Output pin polarity is active-low				
0	Output pin polarity is active-high				

Bit 4 - POLBDF CCP Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit

Value	Description
1	Output pin polarity is active-low
0	Output pin polarity is active-high

Bits 3:2 - PSSACE[1:0] PWM Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
10	Pins are driven inactive when a shutdown event occurs
0×	Pins are tri-stated when a shutdown event occurs

Bits 1:0 - PSSBDF[1:0] PWM Output Pins, OCMxB, OCMxD and OCMxF, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs
10	Pins are driven inactive when a shutdown event occurs
0 x	Pins are in a high-impedance state when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.7 CCP8 Status Register Low

Name: CCP8STATL Offset: 0x254

Legend: C = Clearable bit; W1 = Write '1' Only bit

Bit	15	14	13	12	11	10	9	8
						ICGARM		
Access						W		
Reset						0		
Bit	7	6	5	4	3	2	1	0
	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
Access	R	W1	W1	R/C	R/C	R/C	R/C	R/C
Reset	0	0	0	0	0	0	0	0

Bit 10 - ICGARM Input Capture Gate Arm bit

A write of '1' to this location will arm the Input Capture x module for a one-shot gating event when ICGSM[1:0] = 01 or 10; read as '0'.

Bit 7 - CCPTRIG CCP Trigger Status bit

Value	Description
1	Timer has been triggered and is running
0	Timer has not been triggered and is held in Reset

Bit 6 - TRSET CCP Trigger Set Request bit

Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').

Bit 5 - TRCLR CCP Trigger Clear Request bit

Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').

Bit 4 - ASEVT CCP Auto-Shutdown Event Status/Control bit

Value	Description
1	A shutdown event is in progress; CCP outputs are in the shutdown state
0	CCP outputs operate normally

Bit 3 - SCEVT Single Edge Compare Event Status bit

0	Tari Single Lage Compare Lyon Catalor Sit
Value	Description
1	A single edge compare event has occurred
0	A single edge compare event has not occurred

Bit 2 - ICDIS Input Capture Disable bit

Value	Description
1	Event on input capture pin (ICM8) does not generate a capture event
0	Event on input capture pin will generate a capture event

Bit 1 - ICOV Input Capture Buffer Overflow Status bit

Value	Description
1	The input capture FIFO buffer has overflowed
0	The input capture FIFO buffer has not overflowed

Bit 0 - ICBNE Input Capture Buffer Status bit

Value	Description
1	Input capture buffer has data available
0	Input capture buffer is empty

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.8 CCP8 Time Base Low Register

Name: CCP8TMRL Offset: 0x258

Bit	15	14	13	12	11	10	9	8
				TMRL	_[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMR	L[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Bits 15:0 - TMRL[15:0] CCP8 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.9 CCP8 Time Base High Register

Name: CCP8TMRH Offset: 0x25A

Bit	15	14	13	12	11	10	9	8
				TMRH	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMRH	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - TMRH[31:24] CCP8 16-Bit Time Base Value bits

Bits 7:0 - TMRH[23:16] CCP8 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.10 CCP8 Period Low Register

Name: CCP8PRL Offset: 0x25C

Bit	15	14	13	12	11	10	9	8
				PRL[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PRL	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PRL[15:0] CCP8 Period Low Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.11 CCP8 Period High Register

Name: CCP8PRH Offset: 0x25E

Bit	15	14	13	12	11	10	9	8
				PRH[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PRH[:	23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - PRH[31:24] CCP8 Period High Register bits

Bits 7:0 - PRH[23:16] CCP8 Period High Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.12 CCP8 Primary Compare Register (Timer/Compare Modes Only)

Name: CCP8RA Offset: 0x260

Bit	15	14	13	12	11	10	9	8		
	CMP[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				CMF	P[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 – CMP[15:0] CCP8 Primary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.13 CCP8 Secondary Compare Register (Timer/Compare Modes Only)

Name: CCP8RB Offset: 0x264

Bit	15	14	13	12	11	10	9	8		
	CMP[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				CMF	P[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 – CMP[15:0] CCP8 Secondary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.14 CCP8 Capture Buffer Low Register (Capture Modes Only)

Name: CCP8BUFL Offset: 0x268

Bit	15	14	13	12	11	10	9	8		
		BUF[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				BUF	[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 – BUF[15:0] CCP8 Compare Buffer Value bits Indicates the oldest captured time base value in the FIFO.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.15 CCP8 Capture Buffer High Register (Capture Modes Only)

Name: CCP8BUFH Offset: 0x26A

Bit	15	14	13	12	11	10	9	8
				BUF[3	31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUF[2	23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - BUF[31:24] CCP8 Compare Buffer Value bits

Bits 7:0 - BUF[23:16] CCP8 Compare Buffer Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.16 CCP1 Control 1 Low Register

Name: CCP1CON1L Offset: 0x26C

Bit	15	14	13	12	11	10	9	8
	CCPON		CCPSIDL	CCPSLP	TMRSYNC	CLKSEL[2:0]		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRPS[1:0]		T32	CCSEL		MOE	[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - CCPON CCP Module Enable bit

Value	Description
1	Module is enabled with an operating mode specified by the MOD[3:0] control bits
0	Module is disabled

Bit 13 - CCPSIDL CCP Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - CCPSLP CCP Sleep Mode Enable bit

Value	Description
1	Module continues to operate in Sleep modes
0	Module does not operate in Sleep modes

Bit 11 - TMRSYNC Time Base Clock Synchronization bit

V	alue	Description
1		Module time base clock is synchronized to the internal system clocks; timing restrictions apply
0		Module time base clock is not synchronized to the internal system clocks

Bits 10:8 - CLKSEL[2:0] CCP Time Base Clock Select bits

Value	Description
111	TCKIA pin
110	TCKIB pin
101	PLL clock
100	2x peripheral clock
011	CLC1
010	SOSC clock
001	Reference clock output
000	Peripheral clock

Bits 7:6 - TMRPS[1:0] Time Base Prescale Select bits

Value	Description
11	1:64 prescaler
10	1:16 prescaler
01	1:4 prescaler
00	1:1 prescaler

Bit 5 - T32 32-Bit Time Base Select bit

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
1	Uses 32-bit time base for timer, single edge output compare or input capture function
0	Uses 16-bit time base for timer, single edge output compare or input capture function

Bit 4 - CCSEL Capture/Compare Mode Select bit

Value	Description
1	Input capture peripheral
0	Output Compare/PWM/Timer peripheral (exact function is selected by the MOD[3:0] bits)

Bits 3:0 - MOD[3:0] CCP Mode Select bits

For CCSEL = 1 (Input Capture modes):

Value	Description
1xxx	Reserved
011x	Reserved
0101	Capture every 16th rising edge
0100	Capture every 4th rising edge
0011	Capture every rising and falling edge
0010	Capture every falling edge
0001	Capture every rising edge
0000	Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

Value	Description
1111	External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]
1110	Reserved
110x	Reserved
10xx	Reserved
0111	Variable Frequency Pulse mode
0110	Center-Aligned Pulse Compare mode, buffered
0101	Dual Edge Compare mode, buffered
0100	Dual Edge Compare mode
0011	16-Bit/32-Bit Single Edge mode, toggles output on compare match
0010	16-Bit/32-Bit Single Edge mode, drives output low on compare match
0001	16-Bit/32-Bit Single Edge mode, drives output high on compare match
0000	16-Bit/32-Bit Timer mode, output functions are disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.17 CCP1 Control 1 High Register

Name: CCP1CON1H Offset: 0x26E

Notes:

- 1. This control bit has no function in Input Capture modes.
- 2. This control bit has no function when TRIGEN = 0.
- 3. Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

Bit	15	14	13	12	11	10	9	8
	OPSSRC	RTRGEN			OPS3[3:0]			
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - OPSSRC Output Postscaler Source Select bit(1)

V	'alue	Description			
1		Output postscaler scales module trigger output events			
Output postscaler scales time base interrupt events		Output postscaler scales time base interrupt events			

Bit 14 - RTRGEN Retrigger Enable bit(2)

Value	Description
1	Time base can be retriggered when TRIGEN bit = 1
0	Time base may not be retriggered when TRIGEN bit = 1

Bits 11:8 - OPS3[3:0] CCP Interrupt Output Postscale Select bits(3)

Value	Description			
1111	Interrupt every 16th time base period match			
1110	Interrupt every 15th time base period match			
0100	Interrupt every 5th time base period match			
0011	Interrupt every 4th time base period match or 4th input capture event			
0010	Interrupt every 3rd time base period match or 3rd input capture event			
0001	Interrupt every 2nd time base period match or 2nd input capture event			
0000	Interrupt after each time base period match or input capture event			

Bit 7 - TRIGEN CCP Trigger Enable bit

Value	Description				
1	Trigger operation of time base is enabled				
0	Trigger operation of time base is disabled				

Bit 6 - ONESHOT One-Shot Trigger Mode Enable bit

Value Description			
1 One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]		One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]	
	0	One-Shot Trigger mode is disabled	

Bit 5 - ALTSYNC CCP Clock Select bit

Value	Description
1	An alternate signal is used as the module synchronization output signal
0	The module synchronization output signal is the Time Base Reset/rollover event

Capture/Compare/PWM/Timer Modules (MCCP)

Bits 4:0 - SYNC[4:0] CCP Synchronization Source Select bits

SYNC[4:0]	Synchronization Source
11111	None; timer with rollover on CCP1PR match or FFFFh
11110	Reserved
11101	Reserved
11100	Reserved
11011	A/D start conversion
11010	CMP3 trigger
11001	CMP2 trigger
11000	CMP1 trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 output
10010	CLC3 output
10001	CLC2 output
10000	CLC1 output
01111	Reserved
01110	MCCP8 sync output
01101	INT4 pin
01100	INT3 pin
01011	INT2 pin
01010	INT1 pin
01001	INT0 pin
01000	MCCP7 sync output
00111	MCCP6 sync output
00110	MCCP5 sync output
00101	MCCP4 sync output
00100	MCCP3 sync output
00011	MCCP2 sync output
00010	MCCP1 sync output
00001	MCCP1 sync output
00000	MCCP1 timer sync output

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.18 CCP1 Control 2 Low Register

Name: CCP1CON2L Offset: 0x270

Bit	15	14	13	12	11	10	9	8
	PWMRSEN	ASDGM		SSDG				
Access	R/W	R/W		R/W				
Reset	0	0		0				
Bit	7	6	5	4	3	2	1	0
	ASDG[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - PWMRSEN CCP PWM Restart Enable bit

Value	Description		
1	ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has		
	ended		
0	ASEVT bit must be cleared in software to resume PWM activity on output pins		

Bit 14 - ASDGM CCP Auto-Shutdown Gate Mode Enable bit

Value	Description
1	Waits until next Time Base Reset or rollover for shutdown to occur
0	Shutdown event occurs immediately

Bit 12 - SSDG CCP Software Shutdown/Gate Control bit

Value	Description		
1	Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM		
	bit still applies)		
0	Normal module operation		

Bits 7:0 - ASDG[7:0] CCP Auto-Shutdown/Gating Source Enable bits

Value	Description
1000000	OCFB
01000000	OCFA
00100000	CLC1
00010000	MCCP2
00001000	MCCP3
00000100	CMP3 out
0000010	CMP2 out
0000001	CMP1 out

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.19 CCP1 Control 2 High Register

Name: CCP1CON2H Offset: 0x272

Bit	15	14	13	12	11	10	9	8
OENSYNC				OC[F	:A]EN			
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]	
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - OENSYNC Output Enable Synchronization bit

ν	'alue	Description	
1		Update by output enable bits occurs on the next Time Base Reset or rollover	
0		Update by output enable bits occurs immediately	

Bits 13:8 - OC[F:A]EN Output Enable/Steering Control bits

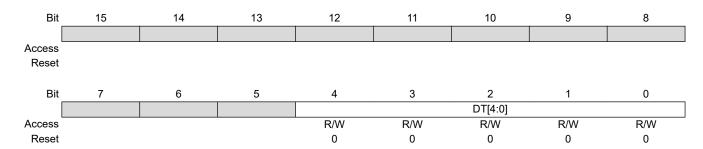
Value	Description
1	OCx pin is controlled by the CCPx module and produces an output compare or PWM signal
0	OCx pin is not controlled by the CCPx module; the pin is available to the port logic or another peripheral multiplexed on the pin

Bits 7:6 - ICGSM[1:0] Input Capture Gating Source Mode Control bits

Value	Description		
11	Reserved		
One-Shot mode: Falling edge from gating source disables future capture events (ICDIS			
01	One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)		
00	Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will		
	disable future capture events		

Bits 4:3 - AUXOUT[1:0] Auxiliary Output Signal on Event Selection bits

Value	Description
11	Input capture or output compare event; no signal in Timer mode
10	Signal output depends on module operating mode
01	Time base rollover event (all modes)
00	Disabled


Bits 2:0 - ICS[2:0] Input Capture Source Select bits

Value	Description
111	CLC4
110	CLC3
101	CLC2
100	CLC1
011	Comparator 3
010	Comparator 2
001	Comparator 1
000	Input capture pin (ICM1)

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.20 CCP1 Control 3 Low Register

Name: CCP1CON3L Offset: 0x274

Bits 4:0 - DT[4:0] PWM Dead-Time Select bits

Value	Description
111111	Inserts 63 dead-time delay periods between complementary output signals
111110	Inserts 62 dead-time delay periods between complementary output signals
000010	Inserts 2 dead-time delay periods between complementary output signals
000001	Inserts 1 dead-time delay period between complementary output signals
000000	Dead-time logic is disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.21 CCP1 Control 3 High Register

Name: CCP1CON3H Offset: 0x276

Bit	15	14	13	12	11	10	9	8
	OETRIG		OSCNT[2:0]				OUTM[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			POLACE	POLBDF	PSSAC	CE[1:0]	PSSBI	DF[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - OETRIG CCP Dead-Time Select bit

Value	Description		
1	For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered		
0	Normal output pin operation		

Bits 14:12 - OSCNT[2:0] One-Shot Event Count bits

	COUNTY IN CHARLES COUNTY DEC
Value	Description
111	Extends one-shot event by 7 time base periods (8 time base periods total)
110	Extends one-shot event by 6 time base periods (7 time base periods total)
101	Extends one-shot event by 5 time base periods (6 time base periods total)
100	Extends one-shot event by 4 time base periods (5 time base periods total)
011	Extends one-shot event by 3 time base periods (4 time base periods total)
010	Extends one-shot event by 2 time base periods (3 time base periods total)
001	Extends one-shot event by 1 time base period (2 time base periods total)
000	Does not extend one-shot trigger event

Bits 10:8 - OUTM[2:0] PWM Output Mode Control bits

Value	Description
111	Reserved
110	Output Scan mode
101	Brush DC Output mode, forward
100	Brush DC Output mode, reverse
011	Reserved
010	Half-Bridge Output mode
001	Push-Pull Output mode
000	Steerable Single Output mode

Bit 5 - POLACE CCP Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit

Die Tollie Got Gatpat i ind, Gotting and Gotting, Folding Control Sit				
Value	Description			
1	Output pin polarity is active-low			
0	Output pin polarity is active-high			

Bit 4 - POLBDF CCP Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit

Value	Description
1	Output pin polarity is active-low
0	Output pin polarity is active-high

Bits 3:2 - PSSACE[1:0] PWM Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs

Datasheet

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
10	Pins are driven inactive when a shutdown event occurs
0×	Pins are tri-stated when a shutdown event occurs

Bits 1:0 - PSSBDF[1:0] PWM Output Pins, OCMxB, OCMxD and OCMxF, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs
10	Pins are driven inactive when a shutdown event occurs
0 x	Pins are in a high-impedance state when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.22 CCP1 Status Register Low

Name: CCP1STATL Offset: 0x278

Legend: C = Clearable bit; W1 = Write '1' Only bit

Bit	15	14	13	12	11	10	9	8
						ICGARM		
Access						W		
Reset						0		
Bit	7	6	5	4	3	2	1	0
	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
Access	R	W1	W1	R/C	R/C	R/C	R/C	R/C
Reset	0	0	0	0	0	0	0	0

Bit 10 - ICGARM Input Capture Gate Arm bit

A write of '1' to this location will arm the Input Capture x module for a one-shot gating event when ICGSM[1:0] = 01 or 10; read as '0'.

Bit 7 - CCPTRIG CCP Trigger Status bit

Value	Description
1	Timer has been triggered and is running
0	Timer has not been triggered and is held in Reset

Bit 6 - TRSET CCP Trigger Set Request bit

Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').

Bit 5 - TRCLR CCP Trigger Clear Request bit

Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').

Bit 4 - ASEVT CCP Auto-Shutdown Event Status/Control bit

Value	Description
1	A shutdown event is in progress; CCP outputs are in the shutdown state
0	CCP outputs operate normally

Bit 3 - SCEVT Single Edge Compare Event Status bit

Value	Description					
1	A single edge compare event has occurred					
0	A single edge compare event has not occurred					

Bit 2 - ICDIS Input Capture Disable bit

Value	Description
1	Event on input capture pin (ICM1) does not generate a capture event
0	Event on input capture pin will generate a capture event

Bit 1 - ICOV Input Capture Buffer Overflow Status bit

Value	Description
1	The input capture FIFO buffer has overflowed
0	The input capture FIFO buffer has not overflowed

Bit 0 - ICBNF Input Capture Buffer Status bit

Bit V - IOBITE Impat Capture Build Status bit					
Value	Description				
1	Input capture buffer has data available				
0	Input capture buffer is empty				

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.23 CCP1 Time Base Low Register

Name: CCP1TMRL Offset: 0x27C

Bit	15	14	13	12	11	10	9	8
	TMRL[15:8]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRL[7:0]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMRL[15:0] CCP1 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.24 CCP1 Time Base High Register

Name: CCP1TMRH Offset: 0x27E

Bit	15	14	13	12	11	10	9	8
				TMRH	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMRH	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - TMRH[31:24] CCP1 16-Bit Time Base Value bits

Bits 7:0 - TMRH[23:16] CCP1 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.25 CCP1 Period Low Register

Name: CCP1PRL Offset: 0x280

Bit	15	14	13	12	11	10	9	8
				PRL[[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PRL	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PRL[15:0] CCP1 Period Low Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.26 CCP1 Period High Register

Name: CCP1PRH Offset: 0x282

Bit	15	14	13	12	11	10	9	8
				PRH[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PRH[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - PRH[31:24] CCP1 Period High Register bits

Bits 7:0 - PRH[23:16] CCP1 Period High Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.27 CCP1 Primary Compare Register (Timer/Compare Modes Only)

Name: CCP1RA Offset: 0x284

Bit	15	14	13	12	11	10	9	8
				CMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CMF	P[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – CMP[15:0] CCP1 Primary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.28 CCP1 Secondary Compare Register (Timer/Compare Modes Only)

Name: CCP1RB Offset: 0x288

Bit	15	14	13	12	11	10	9	8
				CMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CMF	P[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – CMP[15:0] CCP1 Secondary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.29 CCP1 Capture Buffer Low Register (Capture Modes Only)

Name: CCP1BUFL Offset: 0x28C

Bit	15	14	13	12	11	10	9	8
				BUF[[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUF	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – BUF[15:0] CCP1 Compare Buffer Value bits Indicates the oldest captured time base value in the FIFO.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.30 CCP1 Capture Buffer High Register (Capture Modes Only)

Name: CCP1BUFH Offset: 0x28E

Bit	15	14	13	12	11	10	9	8
				BUF[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUF[2	23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - BUF[31:24] CCP1 Compare Buffer Value bits

Bits 7:0 - BUF[23:16] CCP1 Compare Buffer Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.31 CCP2 Control 1 Low Register

Name: CCP2CON1L Offset: 0x290

Bit	15	14	13	12	11	10	9	8
	CCPON		CCPSIDL	CCPSLP	TMRSYNC		CLKSEL[2:0]	
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRF	PS[1:0]	T32	CCSEL		MOE	[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - CCPON CCP Module Enable bit

V	alue	Description
1		Module is enabled with an operating mode specified by the MOD[3:0] control bits
0		Module is disabled

Bit 13 - CCPSIDL CCP Stop in Idle Mode bit

	······································				
V	'alue	Description			
1		Discontinues module operation when device enters Idle mode			
0		Continues module operation in Idle mode			

Bit 12 - CCPSLP CCP Sleep Mode Enable bit

Value	Description
1	Module continues to operate in Sleep modes
0	Module does not operate in Sleep modes

Bit 11 - TMRSYNC Time Base Clock Synchronization bit

V	alue	Description
1		Module time base clock is synchronized to the internal system clocks; timing restrictions apply
0		Module time base clock is not synchronized to the internal system clocks

Bits 10:8 - CLKSEL[2:0] CCP Time Base Clock Select bits

Description
TCKIA pin
TCKIB pin
PLL clock
2x peripheral clock
CLC2
SOSC clock
Reference clock output
Peripheral clock

Bits 7:6 - TMRPS[1:0] Time Base Prescale Select bits

	The second secon
Value	Description
11	1:64 prescaler
10	1:16 prescaler
01	1:4 prescaler
00	1:1 prescaler

Bit 5 - T32 32-Bit Time Base Select bit

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
1	Uses 32-bit time base for timer, single edge output compare or input capture function
0	Uses 16-bit time base for timer, single edge output compare or input capture function

Bit 4 - CCSEL Capture/Compare Mode Select bit

Value	Description
1	Input capture peripheral
0	Output Compare/PWM/Timer peripheral (exact function is selected by the MOD[3:0] bits)

Bits 3:0 - MOD[3:0] CCP Mode Select bits

For CCSEL = 1 (Input Capture modes):

Value	Description
1xxx	Reserved
011x	Reserved
0101	Capture every 16th rising edge
0100	Capture every 4th rising edge
0011	Capture every rising and falling edge
0010	Capture every falling edge
0001	Capture every rising edge
0000	Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

Value	Description
1111	External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]
1110	Reserved
110x	Reserved
10xx	Reserved
0111	Variable Frequency Pulse mode
0110	Center-Aligned Pulse Compare mode, buffered
0101	Dual Edge Compare mode, buffered
0100	Dual Edge Compare mode
0011	16-Bit/32-Bit Single Edge mode, toggles output on compare match
0010	16-Bit/32-Bit Single Edge mode, drives output low on compare match
0001	16-Bit/32-Bit Single Edge mode, drives output high on compare match
0000	16-Bit/32-Bit Timer mode, output functions are disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.32 CCP2 Control 1 High Register

Name: CCP2CON1H Offset: 0x292

Notes:

- 1. This control bit has no function in Input Capture modes.
- 2. This control bit has no function when TRIGEN = 0.
- 3. Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

Bit	15	14	13	12	11	10	9	8
	OPSSRC	RTRGEN				OPS:	3[3:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - OPSSRC Output Postscaler Source Select bit(1)

Valu	e Description	
1	Output postscaler scales module trigger output events	
0	Output postscaler scales time base interrupt events	

Bit 14 - RTRGEN Retrigger Enable bit(2)

Value	Description
1	Time base can be retriggered when TRIGEN bit = 1
0	Time base may not be retriggered when TRIGEN bit = 1

Bits 11:8 - OPS3[3:0] CCP Interrupt Output Postscale Select bits(3)

Value	Description
1111	Interrupt every 16th time base period match
1110	Interrupt every 15th time base period match
0100	Interrupt every 5th time base period match
0011	Interrupt every 4th time base period match or 4th input capture event
0010	Interrupt every 3rd time base period match or 3rd input capture event
0001	Interrupt every 2nd time base period match or 2nd input capture event
0000	Interrupt after each time base period match or input capture event

Bit 7 - TRIGEN CCP Trigger Enable bit

Value	Description		
1	Trigger operation of time base is enabled		
0	Trigger operation of time base is disabled		

Bit 6 - ONESHOT One-Shot Trigger Mode Enable bit

Value Description		Description
	1	One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]
	0	One-Shot Trigger mode is disabled

Bit 5 - ALTSYNC CCP Clock Select bit

Value	Description
1	An alternate signal is used as the module synchronization output signal
0	The module synchronization output signal is the Time Base Reset/rollover event

Datasheet

Capture/Compare/PWM/Timer Modules (MCCP)

Bits 4:0 - SYNC[4:0] CCP Synchronization Source Select bits

SYNC[4:0]	Synchronization Source
11111	None; timer with rollover on CCP2PR match or FFFFh
11110	Reserved
11101	Reserved
11100	Reserved
11011	A/D start conversion
11010	CMP3 trigger
11001	CMP2 trigger
11000	CMP1 trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 output
10010	CLC3 output
10001	CLC2 output
10000	CLC1 output
01111	Reserved
01110	MCCP8 sync output
01101	INT4 pin
01100	INT3 pin
01011	INT2 pin
01010	INT1 pin
01001	INT0 pin
01000	MCCP7 sync output
00111	MCCP6 sync output
00110	MCCP5 sync output
00101	MCCP4 sync output
00100	MCCP3 sync output
00011	MCCP2 sync output
00010	MCCP1 sync output
00001	MCCP2 sync output
00000	MCCP2 timer sync output

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.33 CCP2 Control 2 Low Register

Name: CCP2CON2L Offset: 0x294

Bit	15	14	13	12	11	10	9	8
	PWMRSEN	ASDGM		SSDG				
Access	R/W	R/W		R/W				
Reset	0	0		0				
Bit	7	6	5	4	3	2	1	0
				ASD	G[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - PWMRSEN CCP PWM Restart Enable bit

Value	Description
1	ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has
	ended
0	ASEVT bit must be cleared in software to resume PWM activity on output pins

Bit 14 - ASDGM CCP Auto-Shutdown Gate Mode Enable bit

Value	Description
1	Waits until next Time Base Reset or rollover for shutdown to occur
0	Shutdown event occurs immediately

Bit 12 - SSDG CCP Software Shutdown/Gate Control bit

Value	Description
1	Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM
	bit still applies)
0	Normal module operation

Bits 7:0 - ASDG[7:0] CCP Auto-Shutdown/Gating Source Enable bits

Value	Description
1000000	OCFB
01000000	OCFA
00100000	CLC2
00010000	MCCP1
00001000	MCCP2
00000100	CMP3 out
0000010	CMP2 out
0000001	CMP1 out

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.34 CCP2 Control 2 High Register

Name: CCP2CON2H Offset: 0x296

Note:

1. OCFEN through OCBEN (bits[13:9]) are implemented in MCCP modules only.

Bit	15	14	13	12	11	10	9	8
	OENSYNC	OC[F:A]EN						
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]	
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - OENSYNC Output Enable Synchronization bit

Value	Description
1	Update by output enable bits occurs on the next Time Base Reset or rollover
0	Update by output enable bits occurs immediately

Bits 13:8 - OC[F:A]EN Output Enable/Steering Control bits(1)

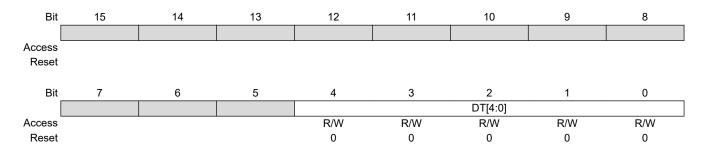
Value	Description
1	OCx pin is controlled by the CCP module and produces an output compare or PWM signal
0	OCx pin is not controlled by the CCP module; the pin is available to the port logic or another peripheral multiplexed on the pin

Bits 7:6 - ICGSM[1:0] Input Capture Gating Source Mode Control bits

Value	Description
11	Reserved
10	One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
01	One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
00	Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will
	disable future capture events

Bits 4:3 - AUXOUT[1:0] Auxiliary Output Signal on Event Selection bits

Value	Description
11	Input capture or output compare event; no signal in Timer mode
10	Signal output depends on module operating mode
01	Time base rollover event (all modes)
00	Disabled


Bits 2:0 - ICS[2:0] Input Capture Source Select bits

Value	Description
111	CLC4
110	CLC3
101	CLC2
100	CLC1
011	Comparator 3
010	Comparator 2
001	Comparator 1
000	Input capture pin (ICM2)

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.35 CCP2 Control 3 Low Register

Name: CCP2CON3L Offset: 0x298

Bits 4:0 - DT[4:0] PWM Dead-Time Select bits

Value	Description
111111	Inserts 63 dead-time delay periods between complementary output signals
111110	Inserts 62 dead-time delay periods between complementary output signals
000010	Inserts 2 dead-time delay periods between complementary output signals
000001	Inserts 1 dead-time delay period between complementary output signals
000000	Dead-time logic is disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.36 CCP2 Control 3 High Register

Name: CCP2CON3H Offset: 0x29A

Bit	15	14	13	12	11	10	9	8
	OETRIG		OSCNT[2:0]				OUTM[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			POLACE	POLBDF	PSSAC	CE[1:0]	PSSBI	DF[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - OETRIG CCP Dead-Time Select bit

Value	Description
1	For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered
0	Normal output pin operation

Bits 14:12 - OSCNT[2:0] One-Shot Event Count bits

	COUNTY IN CHARLES COUNTY DEC
Value	Description
111	Extends one-shot event by 7 time base periods (8 time base periods total)
110	Extends one-shot event by 6 time base periods (7 time base periods total)
101	Extends one-shot event by 5 time base periods (6 time base periods total)
100	Extends one-shot event by 4 time base periods (5 time base periods total)
011	Extends one-shot event by 3 time base periods (4 time base periods total)
010	Extends one-shot event by 2 time base periods (3 time base periods total)
001	Extends one-shot event by 1 time base period (2 time base periods total)
000	Does not extend one-shot trigger event

Bits 10:8 - OUTM[2:0] PWM Output Mode Control bits

Value	Description
111	Reserved
110	Output Scan mode
101	Brush DC Output mode, forward
100	Brush DC Output mode, reverse
011	Reserved
010	Half-Bridge Output mode
001	Push-Pull Output mode
000	Steerable Single Output mode

Bit 5 - POLACE CCP Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit

	Die 1 DE 10E 001 Calpat 1 110, COMMUNI, COMMUNICATION COMU				
Value	Description				
1	Output pin polarity is active-low				
0	Output pin polarity is active-high				

Bit 4 - POLBDF CCP Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit

Value	Description
1	Output pin polarity is active-low
0	Output pin polarity is active-high

Bits 3:2 - PSSACE[1:0] PWM Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
10	Pins are driven inactive when a shutdown event occurs
0 x	Pins are tri-stated when a shutdown event occurs

Bits 1:0 - PSSBDF[1:0] PWM Output Pins, OCMxB, OCMxD and OCMxF, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs
10	Pins are driven inactive when a shutdown event occurs
0×	Pins are in a high-impedance state when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.37 CCP2 Status Register Low

Name: CCP2STATL Offset: 0x29C

Legend: C = Clearable bit; W1 = Write '1' Only bit

Bit	15	14	13	12	11	10	9	8
						ICGARM		
Access						W		
Reset						0		
Bit	7	6	5	4	3	2	1	0
	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
Access	R	W1	W1	R/C	R/C	R/C	R/C	R/C
Reset	0	0	0	0	0	0	0	0

Bit 10 - ICGARM Input Capture Gate Arm bit

A write of '1' to this location will arm the Input Capture x module for a one-shot gating event when ICGSM[1:0] = 01 or 10; read as '0'.

Bit 7 - CCPTRIG CCP Trigger Status bit

Value	Description
1	Timer has been triggered and is running
0	Timer has not been triggered and is held in Reset

Bit 6 - TRSET CCP Trigger Set Request bit

Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').

Bit 5 - TRCLR CCP Trigger Clear Request bit

Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').

Bit 4 - ASEVT CCP Auto-Shutdown Event Status/Control bit

Value	Description
1	A shutdown event is in progress; CCP outputs are in the shutdown state
0	CCP outputs operate normally

Bit 3 - SCEVT Single Edge Compare Event Status bit

	· · · · · · · · · · · · · · · · · ·
Value	Description
1	A single edge compare event has occurred
0	A single edge compare event has not occurred

Bit 2 - ICDIS Input Capture Disable bit

Value	Description
1	Event on input capture pin (ICM2) does not generate a capture event
0	Event on input capture pin will generate a capture event

Bit 1 - ICOV Input Capture Buffer Overflow Status bit

Value	Description
1	The input capture FIFO buffer has overflowed
0	The input capture FIFO buffer has not overflowed

Bit 0 - ICBNF Input Capture Buffer Status bit

Dit 0 10	Bit 6 - 10Bit E impat Captare Baner Ctatas bit							
Value	Description							
1	Input capture buffer has data available							
0	Input capture buffer is empty							

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.38 CCP2 Time Base Low Register

Name: CCP2TMRL Offset: 0x2A0

Bit	15	14	13	12	11	10	9	8
				TMRL	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMRI	L[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMRL[15:0] CCP2 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.39 CCP2 Time Base High Register

Name: CCP2TMRH Offset: 0x2A2

Bit	15	14	13	12	11	10	9	8			
		TMRH[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				TMRH	[23:16]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:8 - TMRH[31:24] CCP2 16-Bit Time Base Value bits

Bits 7:0 - TMRH[23:16] CCP2 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.40 CCP2 Period Low Register

Name: CCP2PRL Offset: 0x2A4

Bit	15	14	13	12	11	10	9	8	
	PRL[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				PRL	[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - PRL[15:0] CCP2 Period Low Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.41 CCP2 Period High Register

Name: CCP2PRH Offset: 0x2A6

Bit	15	14	13	12	11	10	9	8
				PRH[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PRH[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - PRH[31:24] CCP2 Period High Register bits

Bits 7:0 - PRH[23:16] CCP2 Period High Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.42 CCP2 Primary Compare Register (Timer/Compare Modes Only)

Name: CCP2RA Offset: 0x2A8

Bit	15	14	13	12	11	10	9	8
				CMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CMF	7[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – CMP[15:0] CCP2 Primary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.43 CCP2 Secondary Compare Register (Timer/Compare Modes Only)

Name: CCP2RB Offset: 0x2AC

Bit	15	14	13	12	11	10	9	8		
	CMP[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				CMF	7[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 – CMP[15:0] CCP2 Secondary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.44 CCP2 Capture Buffer Low Register (Capture Modes Only)

Name: CCP2BUFL Offset: 0x2B0

Bit	15	14	13	12	11	10	9	8		
	BUF[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				BUF	[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 – BUF[15:0] CCP2 Compare Buffer Value bits Indicates the oldest captured time base value in the FIFO.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.45 CCP2 Capture Buffer High Register (Capture Modes Only)

Name: CCP2BUFH Offset: 0x2B2

Bit	15	14	13	12	11	10	9	8			
		BUF[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				BUF[2	23:16]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:8 - BUF[31:24] CCP2 Compare Buffer Value bits

Bits 7:0 - BUF[23:16] CCP2 Compare Buffer Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.46 CCP3 Control 1 Low Register

Name: CCP3CON1L Offset: 0x2B4

Bit	15	14	13	12	11	10	9	8
	CCPON		CCPSIDL	CCPSLP	TMRSYNC	CLKSEL[2:0]		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRPS[1:0]		T32	CCSEL		MOE	D[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - CCPON CCP Module Enable bit

Value	Description
1	Module is enabled with an operating mode specified by the MOD[3:0] control bits
0	Module is disabled

Bit 13 - CCPSIDL CCP Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - CCPSLP CCP Sleep Mode Enable bit

Value	Description
1	Module continues to operate in Sleep modes
0	Module does not operate in Sleep modes

Bit 11 - TMRSYNC Time Base Clock Synchronization bit

V	alue	Description
1		Module time base clock is synchronized to the internal system clocks; timing restrictions apply
0		Module time base clock is not synchronized to the internal system clocks

Bits 10:8 - CLKSEL[2:0] CCP Time Base Clock Select bits

Value	Description
111	TCKIA pin
110	TCKIB pin
101	PLL clock
100	2x peripheral clock
011	CLC3
010	SOSC clock
001	Reference clock output
000	Peripheral clock

Bits 7:6 - TMRPS[1:0] Time Base Prescale Select bits

Value	Description
11	1:64 prescaler
10	1:16 prescaler
01	1:4 prescaler
00	1:1 prescaler

Bit 5 - T32 32-Bit Time Base Select bit

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
1	Uses 32-bit time base for timer, single edge output compare or input capture function
0	Uses 16-bit time base for timer, single edge output compare or input capture function

Bit 4 - CCSEL Capture/Compare Mode Select bit

Value	Description
1	Input capture peripheral
0	Output Compare/PWM/Timer peripheral (exact function is selected by the MOD[3:0] bits)

Bits 3:0 - MOD[3:0] CCP Mode Select bits

For CCSEL = 1 (Input Capture modes):

Value	Description
1xxx	Reserved
011x	Reserved
0101	Capture every 16th rising edge
0100	Capture every 4th rising edge
0011	Capture every rising and falling edge
0010	Capture every falling edge
0001	Capture every rising edge
0000	Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

Value	Description
1111	External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]
1110	Reserved
110x	Reserved
10xx	Reserved
0111	Variable Frequency Pulse mode
0110	Center-Aligned Pulse Compare mode, buffered
0101	Dual Edge Compare mode, buffered
0100	Dual Edge Compare mode
0011	16-Bit/32-Bit Single Edge mode, toggles output on compare match
0010	16-Bit/32-Bit Single Edge mode, drives output low on compare match
0001	16-Bit/32-Bit Single Edge mode, drives output high on compare match
0000	16-Bit/32-Bit Timer mode, output functions are disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.47 CCP3 Control 1 High Register

Name: CCP3CON1H Offset: 0x2B6

Notes:

- 1. This control bit has no function in Input Capture modes.
- 2. This control bit has no function when TRIGEN = 0.
- 3. Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

Bit	15	14	13	12	11	10	9	8
	OPSSRC	RTRGEN			OPS3[3:0]			
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TRIGEN	ONESHOT	ALTSYNC		SYNC[4:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - OPSSRC Output Postscaler Source Select bit(1)

V	'alue	Description		
1		Output postscaler scales module trigger output events		
0	Output postscaler scales time base interrupt events			

Bit 14 - RTRGEN Retrigger Enable bit(2)

	V alue	Description	
	1	Time base can be retriggered when TRIGEN bit = 1	
()	Time base may not be retriggered when TRIGEN bit = 1	

Bits 11:8 - OPS3[3:0] CCP Interrupt Output Postscale Select bits(3)

Value	Description
1111	Interrupt every 16th time base period match
1110	Interrupt every 15th time base period match
0100	Interrupt every 5th time base period match
0011	Interrupt every 4th time base period match or 4th input capture event
0010	Interrupt every 3rd time base period match or 3rd input capture event
0001	Interrupt every 2nd time base period match or 2nd input capture event
0000	Interrupt after each time base period match or input capture event

Bit 7 - TRIGEN CCP Trigger Enable bit

Value	Description				
1	Trigger operation of time base is enabled				
0	Trigger operation of time base is disabled				

Bit 6 - ONESHOT One-Shot Trigger Mode Enable bit

Value	Description		
1	One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]		
0	One-Shot Trigger mode is disabled		

Bit 5 - ALTSYNC CCP Clock Select bit

Value	Description
1	An alternate signal is used as the module synchronization output signal
0	The module synchronization output signal is the Time Base Reset/rollover event

Capture/Compare/PWM/Timer Modules (MCCP)

Bits 4:0 - SYNC[4:0] CCP Synchronization Source Select bits

SYNC[4:0]	Synchronization Source
11111	None; timer with rollover on CCP3PR match or FFFFh
11110	Reserved
11101	Reserved
11100	Reserved
11011	A/D start conversion
11010	CMP3 trigger
11001	CMP2 trigger
11000	CMP1 trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 output
10010	CLC3 output
10001	CLC2 output
10000	CLC1 output
01111	Reserved
01110	MCCP8 sync output
01101	INT4 pin
01100	INT3 pin
01011	INT2 pin
01010	INT1 pin
01001	INTO pin
01000	MCCP7 sync output
00111	MCCP6 sync output
00110	MCCP5 sync output
00101	MCCP4 sync output
00100	MCCP3 sync output
00011	MCCP2 sync output
00010	MCCP1 sync output
00001	MCCP3 sync output
00000	MCCP3 timer sync output

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.48 CCP3 Control 2 Low Register

Name: CCP3CON2L Offset: 0x2B8

Bit	15	14	13	12	11	10	9	8
	PWMRSEN	ASDGM		SSDG				
Access	R/W	R/W		R/W				
Reset	0	0		0				
Bit	7	6	5	4	3	2	1	0
	ASDG[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - PWMRSEN CCP PWM Restart Enable bit

Value	Description		
1	ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has		
	ended		
0	ASEVT bit must be cleared in software to resume PWM activity on output pins		

Bit 14 - ASDGM CCP Auto-Shutdown Gate Mode Enable bit

Value	Description	
1	Waits until next Time Base Reset or rollover for shutdown to occur	
0	Shutdown event occurs immediately	

Bit 12 - SSDG CCP Software Shutdown/Gate Control bit

Value	Description	
1	Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM	
	bit still applies)	
0	Normal module operation	

Bits 7:0 - ASDG[7:0] CCP Auto-Shutdown/Gating Source Enable bits

Value	Description
1000000	OCFB
01000000	OCFA
00100000	CLC3
00010000	MCCP1
00001000	MCCP2
00000100	CMP3 out
0000010	CMP2 out
0000001	CMP1 out

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.49 CCP3 Control 2 High Register

Name: CCP3CON2H Offset: 0x2BA

Bit	15	14	13	12	11	10	9	8
	OENSYNC		OC[F:A]EN					
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]	
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - OENSYNC Output Enable Synchronization bit

Val	lue	Description
1		Update by output enable bits occurs on the next Time Base Reset or rollover
0		Update by output enable bits occurs immediately

Bits 13:8 - OC[F:A]EN Output Enable/Steering Control bits

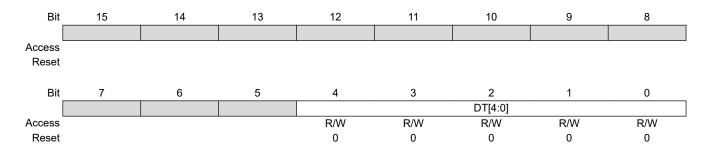
		• • · · · · · · · · · · · · · · · · · ·
Va	alue	Description
1		OCx pin is controlled by the CCP module and produces an output compare or PWM signal
0		OCx pin is not controlled by the CCP module; the pin is available to the port logic or another peripheral multiplexed on the pin

Bits 7:6 - ICGSM[1:0] Input Capture Gating Source Mode Control bits

Value	Description
11	Reserved
10	One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
01	One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
00	Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will
	disable future capture events

Bits 4:3 – AUXOUT[1:0] Auxiliary Output Signal on Event Selection bits

Value	Description
11	Input capture or output compare event; no signal in Timer mode
10	Signal output depends on module operating mode
01	Time base rollover event (all modes)
00	Disabled


Bits 2:0 - ICS[2:0] Input Capture Source Select bits

Value	Description
111	CLC4
110	CLC3
101	CLC2
100	CLC1
011	Comparator 3
010	Comparator 2
001	Comparator 1
000	Input capture pin (ICM3)

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.50 CCP3 Control 3 Low Register

Name: CCP3CON3L Offset: 0x2BC

Bits 4:0 - DT[4:0] PWM Dead-Time Select bits

Value	Description
111111	Inserts 63 dead-time delay periods between complementary output signals
111110	Inserts 62 dead-time delay periods between complementary output signals
000010	Inserts 2 dead-time delay periods between complementary output signals
000001	Inserts 1 dead-time delay period between complementary output signals
000000	Dead-time logic is disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.51 CCP3 Control 3 High Register

Name: CCP3CON3H Offset: 0x2BE

Bit	15	14	13	12	11	10	9	8
	OETRIG		OSCNT[2:0]				OUTM[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			POLACE	POLBDF	PSSAC	CE[1:0]	PSSBI	DF[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - OETRIG CCP Dead-Time Select bit

Value	Description
1	For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered
0	Normal output pin operation

Bits 14:12 - OSCNT[2:0] One-Shot Event Count bits

	COUNTY IN CHARLES COUNTY DEC
Value	Description
111	Extends one-shot event by 7 time base periods (8 time base periods total)
110	Extends one-shot event by 6 time base periods (7 time base periods total)
101	Extends one-shot event by 5 time base periods (6 time base periods total)
100	Extends one-shot event by 4 time base periods (5 time base periods total)
011	Extends one-shot event by 3 time base periods (4 time base periods total)
010	Extends one-shot event by 2 time base periods (3 time base periods total)
001	Extends one-shot event by 1 time base period (2 time base periods total)
000	Does not extend one-shot trigger event

Bits 10:8 - OUTM[2:0] PWM Output Mode Control bits

Value	Description
111	Reserved
110	Output Scan mode
101	Brush DC Output mode, forward
100	Brush DC Output mode, reverse
011	Reserved
010	Half-Bridge Output mode
001	Push-Pull Output mode
000	Steerable Single Output mode

Bit 5 - POLACE CCP Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit

Dit of Calpate inc, Comme and Comme, Comme and				
Value	Description			
1	Output pin polarity is active-low			
0	Output pin polarity is active-high			

Bit 4 - POLBDF CCP Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit

Value	Description
1	Output pin polarity is active-low
0	Output pin polarity is active-high

Bits 3:2 - PSSACE[1:0] PWM Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
10	Pins are driven inactive when a shutdown event occurs
0x	Pins are tri-stated when a shutdown event occurs

Bits 1:0 - PSSBDF[1:0] PWM Output Pins, OCMxB, OCMxD and OCMxF, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs
10	Pins are driven inactive when a shutdown event occurs
0×	Pins are in a high-impedance state when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.52 CCP3 Status Register Low

Name: CCP3STATL Offset: 0x2C0

Legend: C = Clearable bit; W1 = Write '1' Only bit

Bit	15	14	13	12	11	10	9	8
						ICGARM		
Access						W		
Reset						0		
Bit	7	6	5	4	3	2	1	0
	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
Access	R	W1	W1	R/C	R/C	R/C	R/C	R/C
Reset	0	0	0	0	0	0	0	0

Bit 10 - ICGARM Input Capture Gate Arm bit

A write of '1' to this location will arm the Input Capture x module for a one-shot gating event when ICGSM[1:0] = 01 or 10; read as '0'.

Bit 7 - CCPTRIG CCP Trigger Status bit

Value	Description
1	Timer has been triggered and is running
0	Timer has not been triggered and is held in Reset

Bit 6 - TRSET CCP Trigger Set Request bit

Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').

Bit 5 - TRCLR CCP Trigger Clear Request bit

Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').

Bit 4 - ASEVT CCP Auto-Shutdown Event Status/Control bit

Value	Description
1	A shutdown event is in progress; CCP outputs are in the shutdown state
0	CCP outputs operate normally

Bit 3 - SCEVT Single Edge Compare Event Status bit

Value	Description					
1	A single edge compare event has occurred					
0	A single edge compare event has not occurred					

Bit 2 - ICDIS Input Capture Disable bit

Value	Description
1	Event on input capture pin (ICM3) does not generate a capture event
0	Event on input capture pin will generate a capture event

Bit 1 - ICOV Input Capture Buffer Overflow Status bit

Value	Description
1	The input capture FIFO buffer has overflowed
0	The input capture FIFO buffer has not overflowed

Bit 0 - ICBNE Input Capture Buffer Status bit

Value	Description
1	Input capture buffer has data available
0	Input capture buffer is empty

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.53 CCP3 Time Base Low Register

Name: CCP3TMRL Offset: 0x2C4

Bit	15	14	13	12	11	10	9	8
	TMRL[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRL[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMRL[15:0] CCP3 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.54 CCP3 Time Base High Register

Name: CCP3TMRH Offset: 0x2C6

Bit	15	14	13	12	11	10	9	8
				TMRH	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMRH	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - TMRH[31:24] CCP3 16-Bit Time Base Value bits

Bits 7:0 - TMRH[23:16] CCP3 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.55 CCP3 Period Low Register

Name: CCP3PRL Offset: 0x2C8

Bit	15	14	13	12	11	10	9	8
				PRL[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PRL	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PRL[15:0] CCP3 Period Low Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.56 CCP3 Period High Register

Name: CCP3PRH Offset: 0x2CA

Bit	15	14	13	12	11	10	9	8
				PRH[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PRH[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - PRH[31:24] CCP3 Period High Register bits

Bits 7:0 - PRH[23:16] CCP3 Period High Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.57 CCP3 Primary Compare Register (Timer/Compare Modes Only)

Name: CCP3RA Offset: 0x2CC

Bit	15	14	13	12	11	10	9	8
				CMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CMF	7[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – CMP[15:0] CCP3 Primary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.58 CCP3 Secondary Compare Register (Timer/Compare Modes Only)

Name: CCP3RB Offset: 0x2D0

Bit	15	14	13	12	11	10	9	8
				CMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CMF	P[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – CMP[15:0] CCP3 Secondary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.59 CCP3 Capture Buffer Low Register (Capture Modes Only)

Name: CCP3BUFL Offset: 0x2D4

Bit	15	14	13	12	11	10	9	8
				BUF	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUF	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – BUF[15:0] CCP3 Compare Buffer Value bits Indicates the oldest captured time base value in the FIFO.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.60 CCP3 Capture Buffer High Register (Capture Modes Only)

Name: CCP3BUFH Offset: 0x2D6

Bit	15	14	13	12	11	10	9	8
				BUF[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUF[2	23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - BUF[31:24] CCP3 Compare Buffer Value bits

Bits 7:0 - BUF[23:16] CCP3 Compare Buffer Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.61 CCP4 Control 1 Low Register

Name: CCP4CON1L Offset: 0x300

Bit	15	14	13	12	11	10	9	8
	CCPON		CCPSIDL	CCPSLP	TMRSYNC		CLKSEL[2:0]	
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRF	PS[1:0]	T32	CCSEL		MOE	D[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - CCPON CCP Module Enable bit

Value	Description
1	Module is enabled with an operating mode specified by the MOD[3:0] control bits
0	Module is disabled

Bit 13 - CCPSIDL CCP Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - CCPSLP CCP Sleep Mode Enable bit

Value	Description
1	Module continues to operate in Sleep modes
0	Module does not operate in Sleep modes

Bit 11 - TMRSYNC Time Base Clock Synchronization bit

Value	Description
1	Module time base clock is synchronized to the internal system clocks; timing restrictions apply
0	Module time base clock is not synchronized to the internal system clocks

Bits 10:8 - CLKSEL[2:0] CCP Time Base Clock Select bits

Value	Description
111	TCKIA pin
110	TCKIB pin
101	PLL clock
100	2x peripheral clock
011	CLC4
010	SOSC clock
001	Reference clock output
000	Peripheral clock

Bits 7:6 - TMRPS[1:0] Time Base Prescale Select bits

	The state of the s
Value	Description
11	1:64 prescaler
10	1:16 prescaler
01	1:4 prescaler
00	1:1 prescaler

Bit 5 - T32 32-Bit Time Base Select bit

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
1	Uses 32-bit time base for timer, single edge output compare or input capture function
0	Uses 16-bit time base for timer, single edge output compare or input capture function

Bit 4 - CCSEL Capture/Compare Mode Select bit

Value	Description
1	Input capture peripheral
0	Output Compare/PWM/Timer peripheral (exact function is selected by the MOD[3:0] bits)

Bits 3:0 - MOD[3:0] CCP Mode Select bits

For CCSEL = 1 (Input Capture modes):

Value	Description
1xxx	Reserved
011x	Reserved
0101	Capture every 16th rising edge
0100	Capture every 4th rising edge
0011	Capture every rising and falling edge
0010	Capture every falling edge
0001	Capture every rising edge
0000	Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

Value	Description
1111	External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]
1110	Reserved
110x	Reserved
10xx	Reserved
0111	Reserved
0110	Reserved
0101	Dual Edge Compare mode, buffered
0100	Dual Edge Compare mode
0011	16-Bit/32-Bit Single Edge mode, toggles output on compare match
0010	16-Bit/32-Bit Single Edge mode, drives output low on compare match
0001	16-Bit/32-Bit Single Edge mode, drives output high on compare match
0000	16-Bit/32-Bit Timer mode, output functions are disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.62 CCP4 Control 1 High Register

Name: CCP4CON1H Offset: 0x302

Notes:

- 1. This control bit has no function in Input Capture modes.
- 2. This control bit has no function when TRIGEN = 0.
- 3. Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

Bit	15	14	13	12	11	10	9	8
	OPSSRC	RTRGEN				OPS:	3[3:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - OPSSRC Output Postscaler Source Select bit(1)

Valu	e Description	
1	Output postscaler scales	s module trigger output events
0	Output postscaler scales	s time base interrupt events

Bit 14 - RTRGEN Retrigger Enable bit(2)

Value	Description
1	Time base can be retriggered when TRIGEN bit = 1
0	Time base may not be retriggered when TRIGEN bit = 1

Bits 11:8 - OPS3[3:0] CCP Interrupt Output Postscale Select bits(3)

Value	Description
1111	Interrupt every 16th time base period match
1110	Interrupt every 15th time base period match
0100	Interrupt every 5th time base period match
0011	Interrupt every 4th time base period match or 4th input capture event
0010	Interrupt every 3rd time base period match or 3rd input capture event
0001	Interrupt every 2nd time base period match or 2nd input capture event
0000	Interrupt after each time base period match or input capture event

Bit 7 - TRIGEN CCP Trigger Enable bit

Value	Description	
1	Trigger operation of time base is enabled	
0	Trigger operation of time base is disabled	

Bit 6 - ONESHOT One-Shot Trigger Mode Enable bit

Value	Description
1	One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]
0	One-Shot Trigger mode is disabled

Bit 5 - ALTSYNC CCP Clock Select bit

Value	Description
1	An alternate signal is used as the module synchronization output signal
0	The module synchronization output signal is the Time Base Reset/rollover event

Capture/Compare/PWM/Timer Modules (MCCP)

Bits 4:0 - SYNC[4:0] CCP Synchronization Source Select bits

SYNC[4:0]	Synchronization Source
11111	None; timer with rollover on CCP4PR match or FFFFh
11110	Reserved
11101	Reserved
11100	Reserved
11011	A/D start conversion
11010	CMP3 trigger
11001	CMP2 trigger
11000	CMP1 trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 output
10010	CLC3 output
10001	CLC2 output
10000	CLC1 output
01111	Reserved
01110	MCCP8 sync output
01101	INT4 pin
01100	INT3 pin
01011	INT2 pin
01010	INT1 pin
01001	INTO pin
01000	MCCP7 sync output
00111	MCCP6 sync output
00110	MCCP5 sync output
00101	MCCP4 sync output
00100	MCCP3 sync output
00011	MCCP2 sync output
00010	MCCP1 sync output
00001	MCCP4 sync output
00000	MCCP4 timer sync output

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.63 CCP4 Control 2 Low Register

Name: CCP4CON2L Offset: 0x304

Bit	15	14	13	12	11	10	9	8
	PWMRSEN	ASDGM		SSDG				
Access	R/W	R/W		R/W				
Reset	0	0		0				
Bit	7	6	5	4	3	2	1	0
				ASD	G[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - PWMRSEN CCP PWM Restart Enable bit

Value	Description
1	ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has
	ended
0	ASEVT bit must be cleared in software to resume PWM activity on output pins

Bit 14 - ASDGM CCP Auto-Shutdown Gate Mode Enable bit

Value	Description
1	Waits until the next Time Base Reset or rollover for shutdown to occur
0	Shutdown event occurs immediately

Bit 12 - SSDG CCP Software Shutdown/Gate Control bit

Value	Description
1	Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM
	bit still applies)
0	Normal module operation

Bits 7:0 - ASDG[7:0] CCP Auto-Shutdown/Gating Source Enable bits

Value	Description
1000000	OCFB
01000000	OCFA
00100000	CLC4
00010000	MCCP5
00001000	MCCP6
00000100	CMP3 out
0000010	CMP2 out
0000001	CMP1 out

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.64 CCP4 Control 2 High Register

Name: CCP4CON2H Offset: 0x306

Bit	15	14	13	12	11	10	9	8
	OENSYNC		OC[F:A]EN					
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]	
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - OENSYNC Output Enable Synchronization bit

Val	lue	Description
1		Update by output enable bits occurs on the next Time Base Reset or rollover
0		Update by output enable bits occurs immediately

Bits 13:8 - OC[F:A]EN Output Enable/Steering Control bits

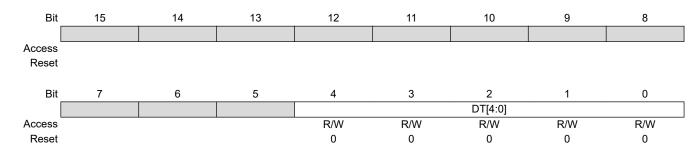
Value	Description
1	OCx pin is controlled by the CCPx module and produces an output compare or PWM signal
0	OCx pin is not controlled by the CCPx module; the pin is available to the port logic or another peripheral multiplexed on the pin

Bits 7:6 - ICGSM[1:0] Input Capture Gating Source Mode Control bits

Value	Description
11	Reserved
10	One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
01	One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
00	Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will
	disable future capture events

Bits 4:3 - AUXOUT[1:0] Auxiliary Output Signal on Event Selection bits

Value	Description
11	Input capture or output compare event; no signal in Timer mode
10	Signal output depends on module operating mode
01	Time base rollover event (all modes)
00	Disabled


Bits 2:0 - ICS[2:0] Input Capture Source Select bits

Value	Description
111	CLC4
110	CLC3
101	CLC2
100	CLC1
011	Comparator 3
010	Comparator 2
001	Comparator 1
000	Input capture pin (ICM4)

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.65 CCP4 Control 3 Low Register

Name: CCP4CON3L Offset: 0x308

Bits 4:0 - DT[4:0] PWM Dead-Time Select bits

Value	Description
111111	Inserts 63 dead-time delay periods between complementary output signals
111110	Inserts 62 dead-time delay periods between complementary output signals
000010	Inserts 2 dead-time delay periods between complementary output signals
000001	Inserts 1 dead-time delay period between complementary output signals
000000	Dead-time logic is disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.66 CCP4 Control 3 High Register

Name: CCP4CON3H Offset: 0x30A

Bit	15	14	13	12	11	10	9	8
	OETRIG		OSCNT[2:0]				OUTM[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			POLACE	POLBDF	PSSAC	CE[1:0]	PSSBI	DF[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - OETRIG CCP Dead-Time Select bit

Value	Description
1	For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered
0	Normal output pin operation

Bits 14:12 - OSCNT[2:0] One-Shot Event Count bits

	COUNTY IN CHARLES COUNTY DEC
Value	Description
111	Extends one-shot event by 7 time base periods (8 time base periods total)
110	Extends one-shot event by 6 time base periods (7 time base periods total)
101	Extends one-shot event by 5 time base periods (6 time base periods total)
100	Extends one-shot event by 4 time base periods (5 time base periods total)
011	Extends one-shot event by 3 time base periods (4 time base periods total)
010	Extends one-shot event by 2 time base periods (3 time base periods total)
001	Extends one-shot event by 1 time base period (2 time base periods total)
000	Does not extend one-shot trigger event

Bits 10:8 - OUTM[2:0] PWM Output Mode Control bits

Value	Description
111	Reserved
110	Output Scan mode
101	Brush DC Output mode, forward
100	Brush DC Output mode, reverse
011	Reserved
010	Half-Bridge Output mode
001	Push-Pull Output mode
000	Steerable Single Output mode

Bit 5 - POLACE CCP Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit

Die 1 Cartea Col Carpat i inc, Collina i, Collina and Collina, i Calling Collina bit				
Value	Description			
1	Output pin polarity is active-low			
0	Output pin polarity is active-high			

Bit 4 - POLBDF CCP Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit

Value	Description
1	Output pin polarity is active-low
0	Output pin polarity is active-high

Bits 3:2 - PSSACE[1:0] PWM Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
10	Pins are driven inactive when a shutdown event occurs
0x	Pins are tri-stated when a shutdown event occurs

Bits 1:0 - PSSBDF[1:0] PWM Output Pins, OCMxB, OCMxD and OCMxF, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs
10	Pins are driven inactive when a shutdown event occurs
0×	Pins are in a high-impedance state when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.67 CCP4 Status Register Low

Name: CCP4STATL Offset: 0x30C

Legend: C = Clearable bit; W1 = Write '1' Only bit

Bit	15	14	13	12	11	10	9	8
						ICGARM		
Access						W		
Reset						0		
Bit	7	6	5	4	3	2	1	0
	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
Access	R	W1	W1	R/C	R/C	R/C	R/C	R/C
Reset	0	0	0	0	0	0	0	0

Bit 10 - ICGARM Input Capture Gate Arm bit

A write of '1' to this location will arm the input capture module for a one-shot gating event when ICGSM[1:0] = 01 or 10; read as '0'.

Bit 7 - CCPTRIG CCP Trigger Status bit

1	Value	Description
	1	Timer has been triggered and is running
	0	Timer has not been triggered and is held in Reset

Bit 6 - TRSET CCP Trigger Set Request bit

Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').

Bit 5 - TRCLR CCP Trigger Clear Request bit

Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').

Bit 4 - ASEVT CCP Auto-Shutdown Event Status/Control bit

Value	Description
1	A shutdown event is in progress; CCP outputs are in the shutdown state
0	CCP outputs operate normally

Bit 3 - SCEVT Single Edge Compare Event Status bit

Value	Description
1	A single edge compare event has occurred
0	A single edge compare event has not occurred

Bit 2 - ICDIS Input Capture Disable bit

Value	Description
1	Event on input capture pin (ICM4) does not generate a capture event
0	Event on input capture pin will generate a capture event

Bit 1 - ICOV Input Capture Buffer Overflow Status bit

Value	Description
1	The input capture FIFO buffer has overflowed
0	The input capture FIFO buffer has not overflowed

Bit 0 - ICBNE Input Capture Buffer Status bit

Value	Description
1	Input capture buffer has data available
0	Input capture buffer is empty

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.68 CCP4 Time Base Low Register

Name: CCP4TMRL Offset: 0x310

Bit	15	14	13	12	11	10	9	8
				TMRL	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMRI	L[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMRL[15:0] CCP4 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.69 CCP4 Time Base High Register

Name: CCP4TMRH Offset: 0x312

Bit	15	14	13	12	11	10	9	8
				TMRH	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMRH	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - TMRH[31:24] CCP4 16-Bit Time Base Value bits

Bits 7:0 - TMRH[23:16] CCP4 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.70 CCP4 Period Low Register

Name: CCP4PRL Offset: 0x314

Bit	15	14	13	12	11	10	9	8		
	PRL[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				PRL	[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - PRL[15:0] CCP4 Period Low Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.71 CCP4 Period High Register

Name: CCP4PRH Offset: 0x316

Bit	15	14	13	12	11	10	9	8	
				PRH[31:24]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	PRH[23:16]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:8 - PRH[31:24] CCP4 Period High Register bits

Bits 7:0 - PRH[23:16] CCP4 Period High Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.72 CCP4 Primary Compare Register (Timer/Compare Modes Only)

Name: CCP4RA Offset: 0x318

Bit	15	14	13	12	11	10	9	8			
		CMP[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				CMF	7[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 – CMP[15:0] CCP4 Primary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.73 CCP4 Secondary Compare Register (Timer/Compare Modes Only)

Name: CCP4RB Offset: 0x31C

Bit	15	14	13	12	11	10	9	8		
	CMP[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				CMF	P[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 – CMP[15:0] CCP4 Secondary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.74 CCP4 Capture Buffer Low Register (Capture Modes Only)

Name: CCP4BUFL Offset: 0x320

Bit	15	14	13	12	11	10	9	8
				BUF	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUF	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – BUF[15:0] CCP4 Compare Buffer Value bits Indicates the oldest captured time base value in the FIFO.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.75 CCP4 Capture Buffer High Register (Capture Modes Only)

Name: CCP4BUFH Offset: 0x322

Bit	15	14	13	12	11	10	9	8		
		BUF[31:24]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				BUF[2	23:16]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - BUF[31:24] CCP4 Compare Buffer Value bits

Bits 7:0 - BUF[23:16] CCP4 Compare Buffer Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.76 CCP5 Control 1 Low Register

Name: CCP5CON1L Offset: 0x324

Bit	15	14	13	12	11	10	9	8
	CCPON		CCPSIDL	CCPSLP	TMRSYNC	CLKSEL[2:0]		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRPS[1:0]		T32	CCSEL		MOE	[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - CCPON CCP Module Enable bit

Value	Description
1	Module is enabled with an operating mode specified by the MOD[3:0] control bits
0	Module is disabled

Bit 13 - CCPSIDL CCP Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - CCPSLP CCP Sleep Mode Enable bit

Value	Description
1	Module continues to operate in Sleep modes
0	Module does not operate in Sleep modes

Bit 11 - TMRSYNC Time Base Clock Synchronization bit

V	alue	Description
1		Module time base clock is synchronized to the internal system clocks; timing restrictions apply
0		Module time base clock is not synchronized to the internal system clocks

Bits 10:8 - CLKSEL[2:0] CCP Time Base Clock Select bits

Value	Description
111	TCKIA pin
110	TCKIB pin
101	PLL clock
100	2x peripheral clock
011	CLC1
010	SOSC clock
001	Reference clock output
000	Peripheral clock

Bits 7:6 - TMRPS[1:0] Time Base Prescale Select bits

Value	Description
11	1:64 prescaler
10	1:16 prescaler
01	1:4 prescaler
00	1:1 prescaler

Bit 5 - T32 32-Bit Time Base Select bit

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
1	Uses 32-bit time base for timer, single edge output compare or input capture function
0	Uses 16-bit time base for timer, single edge output compare or input capture function

Bit 4 - CCSEL Capture/Compare Mode Select bit

Value	Description
1	Input capture peripheral
0	Output Compare/PWM/Timer peripheral (exact function is selected by the MOD[3:0] bits)

Bits 3:0 - MOD[3:0] CCP Mode Select bits

For CCSEL = 1 (Input Capture modes):

Value	Description
1xxx	Reserved
011x	Reserved
0101	Capture every 16th rising edge
0100	Capture every 4th rising edge
0011	Capture every rising and falling edge
0010	Capture every falling edge
0001	Capture every rising edge
0000	Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

Value	Description
1111	External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]
1110	Reserved
110x	Reserved
10xx	Reserved
0111	Reserved
0110	Reserved
0101	Dual Edge Compare mode, buffered
0100	Dual Edge Compare mode
0011	16-Bit/32-Bit Single Edge mode, toggles output on compare match
0010	16-Bit/32-Bit Single Edge mode, drives output low on compare match
0001	16-Bit/32-Bit Single Edge mode, drives output high on compare match
0000	16-Bit/32-Bit Timer mode, output functions are disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.77 CCP5 Control 1 High Register

Name: CCP5CON1H Offset: 0x326

Notes:

- 1. This control bit has no function in Input Capture modes.
- 2. This control bit has no function when TRIGEN = 0.
- 3. Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

Bit	15	14	13	12	11	10	9	8
	OPSSRC	RTRGEN			OPS3[3:0]			
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - OPSSRC Output Postscaler Source Select bit(1)

V	'alue	Description			
1		Output postscaler scales module trigger output events			
0		Output postscaler scales time base interrupt events			

Bit 14 - RTRGEN Retrigger Enable bit(2)

Value	Description		
1	Time base can be retriggered when TRIGEN bit = 1		
0	Time base may not be retriggered when TRIGEN bit = 1		

Bits 11:8 - OPS3[3:0] CCP Interrupt Output Postscale Select bits(3)

Value	Description		
1111	Interrupt every 16th time base period match		
1110	Interrupt every 15th time base period match		
0100	Interrupt every 5th time base period match		
0011	Interrupt every 4th time base period match or 4th input capture event		
0010	Interrupt every 3rd time base period match or 3rd input capture event		
0001	Interrupt every 2nd time base period match or 2nd input capture event		
0000	Interrupt after each time base period match or input capture event		

Bit 7 - TRIGEN CCP Trigger Enable bit

	2.0.1 11.0-11.001 11.990. 21.0010 21.				
Value	Description				
1	Trigger operation of time base is enabled				
0	Trigger operation of time base is disabled				

Bit 6 - ONESHOT One-Shot Trigger Mode Enable bit

Value	Description		
1	One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]		
0	One-Shot Trigger mode is disabled		

Bit 5 - ALTSYNC CCP Clock Select bit

Value	Description
1	An alternate signal is used as the module synchronization output signal
0	The module synchronization output signal is the Time Base Reset/rollover event

Capture/Compare/PWM/Timer Modules (MCCP)

Bits 4:0 - SYNC[4:0] CCP Synchronization Source Select bits

SYNC[4:0]	Synchronization Source
11111	None; timer with rollover on CCP5PR match or FFFFh
11110	Reserved
11101	Reserved
11100	Reserved
11011	A/D start conversion
11010	CMP3 trigger
11001	CMP2 trigger
11000	CMP1 trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 output
10010	CLC3 output
10001	CLC2 output
10000	CLC1 output
01111	Reserved
01110	MCCP8 sync output
01101	INT4 pin
01100	INT3 pin
01011	INT2 pin
01010	INT1 pin
01001	INT0 pin
01000	MCCP7 sync output
00111	MCCP6 sync output
00110	MCCP5 sync output
00101	MCCP4 sync output
00100	MCCP3 sync output
00011	MCCP2 sync output
00010	MCCP1 sync output
00001	MCCP5 sync output
00000	MCCP5 timer sync output

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.78 CCP5 Control 2 Low Register

Name: CCP5CON2L Offset: 0x328

Bit	15	14	13	12	11	10	9	8
	PWMRSEN	ASDGM		SSDG				
Access	R/W	R/W		R/W				
Reset	0	0		0				
Bit	7	6	5	4	3	2	1	0
				ASDO	G[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - PWMRSEN CCP PWM Restart Enable bit

Value	Description		
1	ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has		
	ended		
0	ASEVT bit must be cleared in software to resume PWM activity on output pins		

Bit 14 - ASDGM CCP Auto-Shutdown Gate Mode Enable bit

Value	Description
1	Waits until the next Time Base Reset or rollover for shutdown to occur
0	Shutdown event occurs immediately

Bit 12 - SSDG CCP Software Shutdown/Gate Control bit

Value	Description		
1	Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM		
	bit still applies)		
0	Normal module operation		

Bits 7:0 - ASDG[7:0] CCP Auto-Shutdown/Gating Source Enable bits

Value	Description
1000000	OCFB
01000000	OCFA
00100000	CLC1
00010000	MCCP6
00001000	MCCP7
00000100	CMP3 out
0000010	CMP2 out
0000001	CMP1 out

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.79 CCP5 Control 2 High Register

Name: CCP5CON2H Offset: 0x32A

Bit	15	14	13	12	11	10	9	8
	OENSYNC				OC[F	:A]EN		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ICGSM[1:0]			AUXO	UT[1:0]		ICS[2:0]	
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - OENSYNC Output Enable Synchronization bit

Value	Description
1	Update by output enable bits occurs on the next Time Base Reset or rollover
0	Update by output enable bits occurs immediately

Bits 13:8 - OC[F:A]EN Output Enable/Steering Control bits

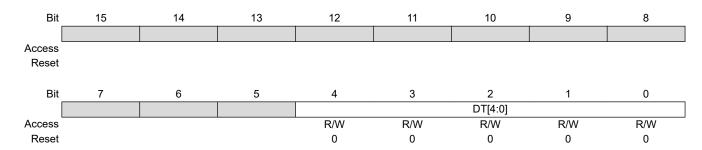
Value	Description
1	OCx pin is controlled by the CCPx module and produces an output compare or PWM signal
0	OCx pin is not controlled by the CCPx module; the pin is available to the port logic or another
	peripheral multiplexed on the pin

Bits 7:6 - ICGSM[1:0] Input Capture Gating Source Mode Control bits

Value	Description
11	Reserved
10	One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
01	One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
00	Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will
	disable future capture events

Bits 4:3 – AUXOUT[1:0] Auxiliary Output Signal on Event Selection bits

Value	Description
11	Input capture or output compare event; no signal in Timer mode
10	Signal output depends on module operating mode
01	Time base rollover event (all modes)
00	Disabled


Bits 2:0 - ICS[2:0] Input Capture Source Select bits

Dito 2.0	ibo[zio] impat captaro coaros colost sito
Value	Description
111	CLC4
110	CLC3
101	CLC2
100	CLC1
011	Comparator 3
010	Comparator 2
001	Comparator 1
000	Input capture pin (ICM5)

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.80 CCP5 Control 3 Low Register

Name: CCP5CON3L Offset: 0x32C

Bits 4:0 - DT[4:0] PWM Dead-Time Select bits

Value	Description
111111	Inserts 63 dead-time delay periods between complementary output signals
111110	Inserts 62 dead-time delay periods between complementary output signals
000010	Inserts 2 dead-time delay periods between complementary output signals
000001	Inserts 1 dead-time delay period between complementary output signals
000000	Dead-time logic is disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.81 CCP5 Control 3 High Register

Name: CCP5CON3H Offset: 0x32E

Bit	15	14	13	12	11	10	9	8
	OETRIG		OSCNT[2:0]				OUTM[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			POLACE	POLBDF	PSSAC	CE[1:0]	PSSBI	DF[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - OETRIG CCP Dead-Time Select bit

Value	Description
1	For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered
0	Normal output pin operation

Bits 14:12 - OSCNT[2:0] One-Shot Event Count bits

D10 17.12	COUNTIES ON CHOICE COUNT SILE
Value	Description
111	Extends one-shot event by 7 time base periods (8 time base periods total)
110	Extends one-shot event by 6 time base periods (7 time base periods total)
101	Extends one-shot event by 5 time base periods (6 time base periods total)
100	Extends one-shot event by 4 time base periods (5 time base periods total)
011	Extends one-shot event by 3 time base periods (4 time base periods total)
010	Extends one-shot event by 2 time base periods (3 time base periods total)
001	Extends one-shot event by 1 time base period (2 time base periods total)
000	Does not extend one-shot trigger event

Bits 10:8 - OUTMI2:01 PWM Output Mode Control bits

Value	Description
111	Reserved
110	Output Scan mode
101	Brush DC Output mode, forward
100	Brush DC Output mode, reverse
011	Reserved
010	Half-Bridge Output mode
001	Push-Pull Output mode
000	Steerable Single Output mode

Bit 5 - POLACE CCP Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit

Die 1 GENTOE GOT Galpat I IIIG, GOTING AND GOTINE, I GIAITY GOTIAGI DIE			
Value	Description		
1	Output pin polarity is active-low		
0	Output pin polarity is active-high		

Bit 4 - POLBDF CCP Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit

Value	Description
1	Output pin polarity is active-low
0	Output pin polarity is active-high

Bits 3:2 - PSSACE[1:0] PWM Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs

Datasheet

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
10	Pins are driven inactive when a shutdown event occurs
0 x	Pins are tri-stated when a shutdown event occurs

Bits 1:0 - PSSBDF[1:0] PWM Output Pins, OCMxB, OCMxD and OCMxF, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs
10	Pins are driven inactive when a shutdown event occurs
0×	Pins are in a high-impedance state when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.82 CCP5 Status Register Low

Name: CCP5STATL Offset: 0x330

Legend: C = Clearable bit; W1 = Write '1' Only bit

Bit	15	14	13	12	11	10	9	8
						ICGARM		
Access						W		
Reset						0		
Bit	7	6	5	4	3	2	1	0
	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
Access	R	W1	W1	R/C	R/C	R/C	R/C	R/C
Reset	0	0	0	0	0	0	0	0

Bit 10 - ICGARM Input Capture Gate Arm bit

A write of '1' to this location will arm the Input Capture x module for a one-shot gating event when ICGSM[1:0] = 01 or 10; read as '0'.

Bit 7 - CCPTRIG CCP Trigger Status bit

1	Value	Description
	1	Timer has been triggered and is running
	0	Timer has not been triggered and is held in Reset

Bit 6 - TRSET CCP Trigger Set Request bit

Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').

Bit 5 - TRCLR CCP Trigger Clear Request bit

Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').

Bit 4 - ASEVT CCP Auto-Shutdown Event Status/Control bit

Value	Description
1	A shutdown event is in progress; CCP outputs are in the shutdown state
0	CCP outputs operate normally

Bit 3 - SCEVT Single Edge Compare Event Status bit

	-it v volti. Single Lage vollipale Lielli statas att					
Value	Description					
1	A single edge compare event has occurred					
0	A single edge compare event has not occurred					

Bit 2 - ICDIS Input Capture Disable bit

Value	Description
1	Event on input capture pin (ICM5) does not generate a capture event
0	Event on input capture pin will generate a capture event

Bit 1 - ICOV Input Capture Buffer Overflow Status bit

Value	Description
1	The input capture FIFO buffer has overflowed
0	The input capture FIFO buffer has not overflowed

Bit 0 - ICBNF Input Capture Buffer Status bit

Bit 0 - IOBITE Input Capture Builer Ctatus bit					
Value	Description				
1	Input capture buffer has data available				
0	Input capture buffer is empty				

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.83 CCP5 Time Base Low Register

Name: CCP5TMRL Offset: 0x334

Bit	15	14	13	12	11	10	9	8
	TMRL[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRL[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMRL[15:0] CCP5 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.84 CCP5 Time Base High Register

Name: CCP5TMRH Offset: 0x336

Bit	15	14	13	12	11	10	9	8
				TMRH	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMRH	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - TMRH[31:24] CCP5 16-Bit Time Base Value bits

Bits 7:0 - TMRH[23:16] CCP5 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.85 CCP5 Period Low Register

Name: CCP5PRL Offset: 0x338

Bit	15	14	13	12	11	10	9	8
				PRL[[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PRL	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PRL[15:0] CCP5 Period Low Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.86 CCP5 Period High Register

Name: CCP5PRH Offset: 0x33A

Bit	15	14	13	12	11	10	9	8
				PRH[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PRH[:	23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - PRH[31:24] CCP5 Period High Register bits

Bits 7:0 - PRH[23:16] CCP5 Period High Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.87 CCP5 Primary Compare Register (Timer/Compare Modes Only)

Name: CCP5RA Offset: 0x33C

Bit	15	14	13	12	11	10	9	8
				CMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CMF	P[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – CMP[15:0] CCP5 Primary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.88 CCP5 Secondary Compare Register (Timer/Compare Modes Only)

Name: CCP5RB Offset: 0x340

Bit	15	14	13	12	11	10	9	8
				CMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CMF	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – CMP[15:0] CCP5 Secondary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.89 CCP5 Capture Buffer Low Register (Capture Modes Only)

Name: CCP5BUFL Offset: 0x344

Bit	15	14	13	12	11	10	9	8
				BUF	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUF	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – BUF[15:0] CCP5 Compare Buffer Value bits Indicates the oldest captured time base value in the FIFO.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.90 CCP5 Capture Buffer High Register (Capture Modes Only)

Name: CCP5BUFH Offset: 0x346

Bit	15	14	13	12	11	10	9	8
				BUF[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUF[2	23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - BUF[31:24] CCP5 Compare Buffer Value bits

Bits 7:0 - BUF[23:16] CCP5 Compare Buffer Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.91 CCP6 Control 1 Low Register

Name: CCP6CON1L Offset: 0x348

Bit	15	14	13	12	11	10	9	8
	CCPON		CCPSIDL	CCPSLP	TMRSYNC		CLKSEL[2:0]	
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRF	PS[1:0]	T32	CCSEL		MOE	[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - CCPON CCP Module Enable bit

Value	Description
1	Module is enabled with an operating mode specified by the MOD[3:0] control bits
0	Module is disabled

Bit 13 - CCPSIDL CCP Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - CCPSLP CCP Sleep Mode Enable bit

Value	Description
1	Module continues to operate in Sleep modes
0	Module does not operate in Sleep modes

Bit 11 - TMRSYNC Time Base Clock Synchronization bit

Value	Description
1	Module time base clock is synchronized to the internal system clocks; timing restrictions apply
0	Module time base clock is not synchronized to the internal system clocks

Bits 10:8 - CLKSEL[2:0] CCP Time Base Clock Select bits(1)

Value	Description
111	TCKIA pin
110	TCKIB pin
101	PLL clock
100	2x peripheral clock
011	CLC2
010	SOSC clock
001	Reference clock output
000	Peripheral clock

Bits 7:6 - TMRPS[1:0] Time Base Prescale Select bits

Value	Description
11	1:64 prescaler
10	1:16 prescaler
01	1:4 prescaler
00	1:1 prescaler

Bit 5 - T32 32-Bit Time Base Select bit

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
1	Uses 32-bit time base for timer, single edge output compare or input capture function
0	Uses 16-bit time base for timer, single edge output compare or input capture function

Bit 4 - CCSEL Capture/Compare Mode Select bit

Value	Description
1	Input capture peripheral
0	Output Compare/PWM/Timer peripheral (exact function is selected by the MOD[3:0] bits)

Bits 3:0 - MOD[3:0] CCP Mode Select bits

For CCSEL = 1 (Input Capture modes):

Value	Description
1xxx	Reserved
011x	Reserved
0101	Capture every 16th rising edge
0100	Capture every 4th rising edge
0011	Capture every rising and falling edge
0010	Capture every falling edge
0001	Capture every rising edge
0000	Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

Value	Description
1111	External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]
1110	Reserved
110x	Reserved
10xx	Reserved
0111	Reserved
0110	Reserved
0101	Dual Edge Compare mode, buffered
0100	Dual Edge Compare mode
0011	16-Bit/32-Bit Single Edge mode, toggles output on compare match
0010	16-Bit/32-Bit Single Edge mode, drives output low on compare match
0001	16-Bit/32-Bit Single Edge mode, drives output high on compare match
0000	16-Bit/32-Bit Timer mode, output functions are disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.92 CCP6 Control 1 High Register

Name: CCP6CON1H Offset: 0x34A

Notes:

- 1. This control bit has no function in Input Capture modes.
- 2. This control bit has no function when TRIGEN = 0.
- 3. Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

Bit	15	14	13	12	11	10	9	8
	OPSSRC	RTRGEN				OPS:	3[3:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - OPSSRC Output Postscaler Source Select bit(1)

V	'alue	Description		
1		Output postscaler scales module trigger output events		
0		Output postscaler scales time base interrupt events		

Bit 14 - RTRGEN Retrigger Enable bit(2)

	V alue	Description
	1	Time base can be retriggered when TRIGEN bit = 1
()	Time base may not be retriggered when TRIGEN bit = 1

Bits 11:8 - OPS3[3:0] CCP Interrupt Output Postscale Select bits(3)

Value	Description
1111	Interrupt every 16th time base period match
1110	Interrupt every 15th time base period match
0100	Interrupt every 5th time base period match
0011	Interrupt every 4th time base period match or 4th input capture event
0010	Interrupt every 3rd time base period match or 3rd input capture event
0001	Interrupt every 2nd time base period match or 2nd input capture event
0000	Interrupt after each time base period match or input capture event

Bit 7 - TRIGEN CCP Trigger Enable bit

	interior in ingention in ingention in		
Value	Description		
1	Trigger operation of time base is enabled		
0	Trigger operation of time base is disabled		

Bit 6 - ONESHOT One-Shot Trigger Mode Enable bit

Value	Description
1	One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]
0	One-Shot Trigger mode is disabled

Bit 5 - ALTSYNC CCP Clock Select bit

Value	Description
1	An alternate signal is used as the module synchronization output signal
0	The module synchronization output signal is the Time Base Reset/rollover event

Capture/Compare/PWM/Timer Modules (MCCP)

Bits 4:0 - SYNC[4:0] CCP Synchronization Source Select bits

SYNC[4:0]	Synchronization Source
11111	None; timer with rollover on CCP6PR match or FFFFh
11110	Reserved
11101	Reserved
11100	Reserved
11011	A/D start conversion
11010	CMP3 trigger
11001	CMP2 trigger
11000	CMP1 trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 output
10010	CLC3 output
10001	CLC2 output
10000	CLC1 output
01111	Reserved
01110	MCCP8 sync output
01101	INT4 pin
01100	INT3 pin
01011	INT2 pin
01010	INT1 pin
01001	INTO pin
01000	MCCP7 sync output
00111	MCCP6 sync output
00110	MCCP5 sync output
00101	MCCP4 sync output
00100	MCCP3 sync output
00011	MCCP2 sync output
00010	MCCP1 sync output
00001	MCCP6 sync output
00000	MCCP6 timer sync output

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.93 CCP6 Control 2 Low Register

Name: CCP6CON2L Offset: 0x34C

Bit	15	14	13	12	11	10	9	8
	PWMRSEN	ASDGM		SSDG				
Access	R/W	R/W		R/W				
Reset	0	0		0				
Bit	7	6	5	4	3	2	1	0
				ASD	G[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - PWMRSEN CCP PWM Restart Enable bit

Value	Description
1	ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has
	ended
0	ASEVT bit must be cleared in software to resume PWM activity on output pins

Bit 14 - ASDGM CCP Auto-Shutdown Gate Mode Enable bit

Value	Description
1	Waits until the next Time Base Reset or rollover for shutdown to occur
0	Shutdown event occurs immediately

Bit 12 - SSDG CCP Software Shutdown/Gate Control bit

Value	Description
1	Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM
	bit still applies)
0	Normal module operation

Bits 7:0 - ASDG[7:0] CCP Auto-Shutdown/Gating Source Enable bits

Value	Description
10000000	OCFB
01000000	OCFA
00100000	CLC1
00010000	MCCP7
00001000	MCCP8
00000100	CMP3 out
0000010	CMP2 out
0000001	CMP1 out

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.94 CCP6 Control 2 High Register

Name: CCP6CON2H Offset: 0x34E

Bit	15	14	13	12	11	10	9	8
	OENSYNC		OC[F:A]EN					
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]	
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - OENSYNC Output Enable Synchronization bit

ν	'alue	Description
1		Update by output enable bits occurs on the next Time Base Reset or rollover
0		Update by output enable bits occurs immediately

Bits 13:8 - OC[F:A]EN Output Enable/Steering Control bits

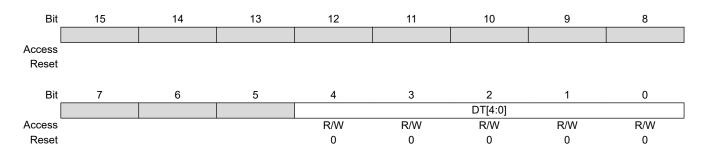
Value	Description
1	OCx pin is controlled by the CCP module and produces an output compare or PWM signal
0	OCx pin is not controlled by the CCP module; the pin is available to the port logic or another peripheral multiplexed on the pin

Bits 7:6 - ICGSM[1:0] Input Capture Gating Source Mode Control bits

Value	Description
11	Reserved
10	One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
01	One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
00	Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will
	disable future capture events

Bits 4:3 - AUXOUT[1:0] Auxiliary Output Signal on Event Selection bits

Value	Description
11	Input capture or output compare event; no signal in Timer mode
10	Signal output depends on module operating mode
01	Time base rollover event (all modes)
00	Disabled


Bits 2:0 - ICS[2:0] Input Capture Source Select bits

Value	Description
111	CLC4
110	CLC3
101	CLC2
100	CLC1
011	Comparator 3
010	Comparator 2
001	Comparator 1
000	Input capture pin (ICM6)

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.95 CCP6 Control 3 Low Register

Name: CCP6CON3L Offset: 0x350

Bits 4:0 - DT[4:0] PWM Dead-Time Select bits

Value	Description
111111	Inserts 63 dead-time delay periods between complementary output signals
111110	Inserts 62 dead-time delay periods between complementary output signals
000010	Inserts 2 dead-time delay periods between complementary output signals
000001	Inserts 1 dead-time delay period between complementary output signals
000000	Dead-time logic is disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.96 CCP6 Control 3 High Register

Name: CCP6CON3H Offset: 0x352

Bit	15	14	13	12	11	10	9	8
	OETRIG	OSCNT[2:0]			OUTM[2:0]			
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			POLACE	POLBDF	PSSAC	CE[1:0]	PSSBI	DF[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - OETRIG CCP Dead-Time Select bit

Value	Description
1	For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered
0	Normal output pin operation

Bits 14:12 - OSCNT[2:0] One-Shot Event Count bits

	COUNTY IN CHARLES COUNTY DEC
Value	Description
111	Extends one-shot event by 7 time base periods (8 time base periods total)
110	Extends one-shot event by 6 time base periods (7 time base periods total)
101	Extends one-shot event by 5 time base periods (6 time base periods total)
100	Extends one-shot event by 4 time base periods (5 time base periods total)
011	Extends one-shot event by 3 time base periods (4 time base periods total)
010	Extends one-shot event by 2 time base periods (3 time base periods total)
001	Extends one-shot event by 1 time base period (2 time base periods total)
000	Does not extend one-shot trigger event

Bits 10:8 - OUTM[2:0] PWM Output Mode Control bits

Value	Description
111	Reserved
110	Output Scan mode
101	Brush DC Output mode, forward
100	Brush DC Output mode, reverse
011	Reserved
010	Half-Bridge Output mode
001	Push-Pull Output mode
000	Steerable Single Output mode

Bit 5 - POLACE CCP Output Pins, OCMxA, OCMxC and OCMxE. Polarity Control bit

Die 1 Cartea Col Carpat i inc, Collina i, Collina and Collina, i ciality Collina bit					
Value	Description				
1	Output pin polarity is active-low				
0	Output pin polarity is active-high				

Bit 4 - POLBDF CCP Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit

Value	Description
1	Output pin polarity is active-low
0	Output pin polarity is active-high

Bits 3:2 - PSSACE[1:0] PWM Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
10	Pins are driven inactive when a shutdown event occurs
0x	Pins are tri-stated when a shutdown event occurs

Bits 1:0 - PSSBDF[1:0] PWM Output Pins, OCMxB, OCMxD and OCMxF, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs
10	Pins are driven inactive when a shutdown event occurs
0 x	Pins are in a high-impedance state when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.97 CCP6 Status Register Low

Name: CCP6STATL Offset: 0x354

Legend: C = Clearable bit; W1 = Write '1' Only bit

Bit	15	14	13	12	11	10	9	8
						ICGARM		
Access						W		
Reset						0		
Bit	7	6	5	4	3	2	1	0
	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
Access	R	W1	W1	R/C	R/C	R/C	R/C	R/C
Reset	0	0	0	0	0	0	0	0

Bit 10 - ICGARM Input Capture Gate Arm bit

A write of '1' to this location will arm the Input Capture x module for a one-shot gating event when ICGSM[1:0] = 01 or 10; read as '0'.

Bit 7 - CCPTRIG CCP Trigger Status bit

1	Value	Description
	1	Timer has been triggered and is running
	0	Timer has not been triggered and is held in Reset

Bit 6 - TRSET CCP Trigger Set Request bit

Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').

Bit 5 - TRCLR CCP Trigger Clear Request bit

Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').

Bit 4 - ASEVT CCP Auto-Shutdown Event Status/Control bit

Value	Description
1	A shutdown event is in progress; CCP outputs are in the shutdown state
0	CCP outputs operate normally

Bit 3 - SCEVT Single Edge Compare Event Status bit

	· · · · · · · · · · · · · · · · · ·
Value	Description
1	A single edge compare event has occurred
0	A single edge compare event has not occurred

Bit 2 - ICDIS Input Capture Disable bit

Value	Description
1	Event on input capture pin (ICM6) does not generate a capture event
0	Event on input capture pin will generate a capture event

Bit 1 - ICOV Input Capture Buffer Overflow Status bit

Vá	alue	Description
1		The input capture FIFO buffer has overflowed
0		The input capture FIFO buffer has not overflowed

Bit 0 - ICBNF Input Capture Buffer Status bit

DIL U - IC	Bit 0 - ICBNE Imput Capture Buller Status bit						
Value	Description						
1	Input capture buffer has data available						
0	Input capture buffer is empty						

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.98 CCP6 Time Base Low Register

Name: CCP6TMRL Offset: 0x358

Bit	15	14	13	12	11	10	9	8
				TMRL	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TMRI	L[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMRL[15:0] CCP6 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.99 CCP6 Time Base High Register

Name: CCP6TMRH Offset: 0x35A

Bit	15	14	13	12	11	10	9	8		
		TMRH[31:24]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	TMRH[23:16]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - TMRH[31:24] CCP6 16-Bit Time Base Value bits

Bits 7:0 - TMRH[23:16] CCP6 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.100 CCP6 Period Low Register

Name: CCP6PRL Offset: 0x35C

Bit	15	14	13	12	11	10	9	8
				PRL[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	PRL[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PRL[15:0] CCP6 Period Low Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.101 CCP6 Period High Register

Name: CCP6PRH Offset: 0x35E

Bit	15	14	13	12	11	10	9	8
				PRH[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	PRH[23:16]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - PRH[31:24] CCP6 Period High Register bits

Bits 7:0 - PRH[23:16] CCP6 Period High Register bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.102 CCP6 Primary Compare Register (Timer/Compare Modes Only)

Name: CCP6RA Offset: 0x360

Bit	15	14	13	12	11	10	9	8		
		CMP[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	CMP[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 – CMP[15:0] CCP6 Primary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.103 CCP6 Secondary Compare Register (Timer/Compare Modes Only)

Name: CCP6RB Offset: 0x364

Bit	15	14	13	12	11	10	9	8
				CMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CMF	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – CMP[15:0] CCP6 Secondary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.104 CCP6 Capture Buffer Low Register (Capture Modes Only)

Name: CCP6BUFL Offset: 0x368

Bit	15	14	13	12	11	10	9	8
				BUF[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BUF	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – BUF[15:0] CCP6 Compare Buffer Value bits Indicates the oldest captured time base value in the FIFO.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.105 CCP6 Capture Buffer High Register (Capture Modes Only)

Name: CCP6BUFH Offset: 0x36A

Bit	15	14	13	12	11	10	9	8		
	BUF[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	BUF[23:16]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - BUF[31:24] CCP6 Compare Buffer Value bits

Bits 7:0 - BUF[23:16] CCP6 Compare Buffer Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.106 CCP7 Control 1 Low Register

Name: CCP7CON1L Offset: 0x36C

Bit	15	14	13	12	11	10	9	8
	CCPON		CCPSIDL	CCPSLP	TMRSYNC	CLKSEL[2:0]		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRPS[1:0]		T32	CCSEL		MOE	D[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - CCPON CCP Module Enable bit

Value	Description
1	Module is enabled with an operating mode specified by the MOD[3:0] control bits
0	Module is disabled

Bit 13 - CCPSIDL CCP Stop in Idle Mode bit

V	'alue	Description
1		Discontinues module operation when device enters Idle mode
0		Continues module operation in Idle mode

Bit 12 - CCPSLP CCP Sleep Mode Enable bit

Value	Description
1	Module continues to operate in Sleep modes
0	Module does not operate in Sleep modes

Bit 11 - TMRSYNC Time Base Clock Synchronization bit

Value	Description
1	Module time base clock is synchronized to the internal system clocks; timing restrictions apply
0	Module time base clock is not synchronized to the internal system clocks

Bits 10:8 - CLKSEL[2:0] CCP Time Base Clock Select bits

Description
TCKIA pin
TCKIB pin
PLL clock
2x peripheral clock
CLC3
SOSC clock
Reference clock output
Peripheral clock

Bits 7:6 - TMRPS[1:0] Time Base Prescale Select bits

Value	Description
11	1:64 prescaler
10	1:16 prescaler
01	1:4 prescaler
00	1:1 prescaler

Bit 5 - T32 32-Bit Time Base Select bit

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
1	Uses 32-bit time base for timer, single edge output compare or input capture function
0	Uses 16-bit time base for timer, single edge output compare or input capture function

Bit 4 - CCSEL Capture/Compare Mode Select bit

Value	Description
1	Input capture peripheral
0	Output Compare/PWM/Timer peripheral (exact function is selected by the MOD[3:0] bits)

Bits 3:0 - MOD[3:0] CCP Mode Select bits

For CCSEL = 1 (Input Capture modes):

Value	Description
1xxx	Reserved
011x	Reserved
0101	Capture every 16th rising edge
0100	Capture every 4th rising edge
0011	Capture every rising and falling edge
0010	Capture every falling edge
0001	Capture every rising edge
0000	Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

Value	Description
1111	External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]
1110	Reserved
110x	Reserved
10xx	Reserved
0111	Reserved
0110	Reserved
0101	Dual Edge Compare mode, buffered
0100	Dual Edge Compare mode
0011	16-Bit/32-Bit Single Edge mode, toggles output on compare match
0010	16-Bit/32-Bit Single Edge mode, drives output low on compare match
0001	16-Bit/32-Bit Single Edge mode, drives output high on compare match
0000	16-Bit/32-Bit Timer mode, output functions are disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.107 CCP7 Control 1 High Register

Name: CCP7CON1H Offset: 0x36E

Notes:

- 1. This control bit has no function in Input Capture modes.
- 2. This control bit has no function when TRIGEN = 0.
- 3. Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

Bit	15	14	13	12	11	10	9	8
	OPSSRC	RTRGEN			OPS3[3:0]			
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TRIGEN	ONESHOT	ALTSYNC			SYNC[4:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - OPSSRC Output Postscaler Source Select bit(1)

V	'alue	Description		
1		Output postscaler scales module trigger output events		
0		Output postscaler scales time base interrupt events		

Bit 14 - RTRGEN Retrigger Enable bit(2)

Value	Description
1	Time base can be retriggered when TRIGEN bit = 1
0	Time base may not be retriggered when TRIGEN bit = 1

Bits 11:8 - OPS3[3:0] CCP Interrupt Output Postscale Select bits(3)

Value	Description
1111	Interrupt every 16th time base period match
1110	Interrupt every 15th time base period match
0100	Interrupt every 5th time base period match
0011	Interrupt every 4th time base period match or 4th input capture event
0010	Interrupt every 3rd time base period match or 3rd input capture event
0001	Interrupt every 2nd time base period match or 2nd input capture event
0000	Interrupt after each time base period match or input capture event

Bit 7 - TRIGEN CCP Trigger Enable bit

	211 1110211 001 111990 211			
Value	ue Description			
1	Trigger operation of time base is enabled			
0	Trigger operation of time base is disabled			

Bit 6 - ONESHOT One-Shot Trigger Mode Enable bit

Value	Description		
1	One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]		
0	One-Shot Trigger mode is disabled		

Bit 5 - ALTSYNC CCP Clock Select bit

Value	Description
1	An alternate signal is used as the module synchronization output signal
0	The module synchronization output signal is the Time Base Reset/rollover event

Capture/Compare/PWM/Timer Modules (MCCP)

Bits 4:0 - SYNC[4:0] CCP Synchronization Source Select bits

SYNC[4:0]	Synchronization Source
11111	None; timer with rollover on CCP7PR match or FFFFh
11110	Reserved
11101	Reserved
11100	Reserved
11011	A/D start conversion
11010	CMP3 trigger
11001	CMP2 trigger
11000	CMP1 trigger
10111	Reserved
10110	Reserved
10101	Reserved
10100	Reserved
10011	CLC4 output
10010	CLC3 output
10001	CLC2 output
10000	CLC1 output
01111	Reserved
01110	MCCP8 sync output
01101	INT4 pin
01100	INT3 pin
01011	INT2 pin
01010	INT1 pin
01001	INT0 pin
01000	MCCP7 sync output
00111	MCCP6 sync output
00110	MCCP5 sync output
00101	MCCP4 sync output
00100	MCCP3 sync output
00011	MCCP2 sync output
00010	MCCP1 sync output
00001	MCCP7 sync output
00000	MCCP7 timer sync output

Datasheet

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.108 CCP7 Control 2 Low Register

Name: CCP7CON2L Offset: 0x370

Bit	15	14	13	12	11	10	9	8
	PWMRSEN	ASDGM		SSDG				
Access	R/W	R/W		R/W				
Reset	0	0		0				
Bit	7	6	5	4	3	2	1	0
	ASDG[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - PWMRSEN CCP PWM Restart Enable bit

Value	Description
1	ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has
	ended
0	ASEVT bit must be cleared in software to resume PWM activity on output pins

Bit 14 - ASDGM CCP Auto-Shutdown Gate Mode Enable bit

Value	Description
1	Waits until the next Time Base Reset or rollover for shutdown to occur
0	Shutdown event occurs immediately

Bit 12 - SSDG CCP Software Shutdown/Gate Control bit

Value	Description
1	Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM
	bit still applies)
0	Normal module operation

Bits 7:0 - ASDG[7:0] CCP Auto-Shutdown/Gating Source Enable bits

Value	Description
1000000	OCFB
01000000	OCFA
00100000	CLC1
00010000	MCCP8
00001000	MCCP4
00000100	CMP3 out
0000010	CMP2 out
0000001	CMP1 out

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.109 CCP7 Control 2 High Register

Name: CCP7CON2H Offset: 0x372

Bit	15	14	13	12	11	10	9	8
	OENSYNC				OC[F:	A]EN		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ICGS	M[1:0]		AUXO	UT[1:0]		ICS[2:0]	
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 15 - OENSYNC Output Enable Synchronization bit

Value	Description
1	Update by output enable bits occurs on the next Time Base Reset or rollover
0	Update by output enable bits occurs immediately

Bits 13:8 - OC[F:A]EN Output Enable/Steering Control bits

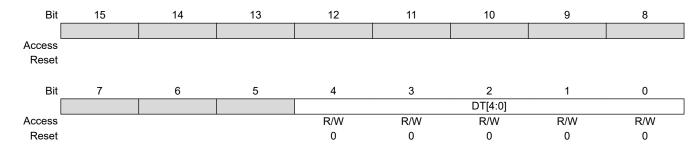
Value	Description
1	OCx pin is controlled by the CCP module and produces an output compare or PWM signal
0	OCx pin is not controlled by the CCP module; the pin is available to the port logic or another peripheral multiplexed on the pin

Bits 7:6 - ICGSM[1:0] Input Capture Gating Source Mode Control bits

Value	Description
11	Reserved
10	One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1)
01	One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0)
00	Level-Sensitive mode: A high level from gating source will enable future capture events; a low level will
	disable future capture events

Bits 4:3 - AUXOUT[1:0] Auxiliary Output Signal on Event Selection bits

Value	Description
11	Input capture or output compare event; no signal in Timer mode
10	Signal output depends on module operating mode
01	Time base rollover event (all modes)
00	Disabled


Bits 2:0 - ICS[2:0] Input Capture Source Select bits

Value	Description
111	CLC4
110	CLC3
101	CLC2
100	CLC1
011	Comparator 3
010	Comparator 2
001	Comparator 1
000	Input capture pin (ICM7)

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.110 CCP7 Control 3 Low Register

Name: CCP7CON3L Offset: 0x374

Bits 4:0 - DT[4:0] PWM Dead-Time Select bits

Value	Description
111111	Inserts 63 dead-time delay periods between complementary output signals
111110	Inserts 62 dead-time delay periods between complementary output signals
000010	Inserts 2 dead-time delay periods between complementary output signals
000001	Inserts 1 dead-time delay period between complementary output signals
000000	Dead-time logic is disabled

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.111 CCP7 Control 3 High Register

Name: CCP7CON3H Offset: 0x376

Bit	15	14	13	12	11	10	9	8
	OETRIG		OSCNT[2:0]				OUTM[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			POLACE	POLBDF	PSSAC	CE[1:0]	PSSBI	DF[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bit 15 - OETRIG CCP Dead-Time Select bit

Value	Description
1	For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered
0	Normal output pin operation

Bits 14:12 - OSCNT[2:0] One-Shot Event Count bits

	COUNTY IN CHARLES COUNTY DEC
Value	Description
111	Extends one-shot event by 7 time base periods (8 time base periods total)
110	Extends one-shot event by 6 time base periods (7 time base periods total)
101	Extends one-shot event by 5 time base periods (6 time base periods total)
100	Extends one-shot event by 4 time base periods (5 time base periods total)
011	Extends one-shot event by 3 time base periods (4 time base periods total)
010	Extends one-shot event by 2 time base periods (3 time base periods total)
001	Extends one-shot event by 1 time base period (2 time base periods total)
000	Does not extend one-shot trigger event

Bits 10:8 - OUTM[2:0] PWM Output Mode Control bits

Value	Description
111	Reserved
110	Output Scan mode
101	Brush DC Output mode, forward
100	Brush DC Output mode, reverse
011	Reserved
010	Half-Bridge Output mode
001	Push-Pull Output mode
000	Steerable Single Output mode

Bit 5 - POLACE CCP Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit

	Die 1 GENTOE GOT Galpat I IIIG, GOTING AND GOTINE, I GIAITY GOTIAGI DIE			
Value	Description			
1	Output pin polarity is active-low			
0	Output pin polarity is active-high			

Bit 4 - POLBDF CCP Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit

Value	Description
1	Output pin polarity is active-low
0	Output pin polarity is active-high

Bits 3:2 - PSSACE[1:0] PWM Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

Value	Description
10	Pins are driven inactive when a shutdown event occurs
0x	Pins are tri-stated when a shutdown event occurs

Bits 1:0 - PSSBDF[1:0] PWM Output Pins, OCMxB, OCMxD and OCMxF, Shutdown State Control bits

Value	Description
11	Pins are driven active when a shutdown event occurs
10	Pins are driven inactive when a shutdown event occurs
0 x	Pins are in a high-impedance state when a shutdown event occurs

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.112 CCP7 Status Register Low

Name: CCP7STATL Offset: 0x378

Legend: C = Clearable bit; W1 = Write '1' Only bit

Bit	15	14	13	12	11	10	9	8
						ICGARM		
Access						W		
Reset						0		
Bit	7	6	5	4	3	2	1	0
	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
Access	R	W1	W1	R/C	R/C	R/C	R/C	R/C
Reset	0	0	0	0	0	0	0	0

Bit 10 - ICGARM Input Capture Gate Arm bit

A write of '1' to this location will arm the Input Capture x module for a one-shot gating event when ICGSM[1:0] = 01 or 10; read as '0'.

Bit 7 - CCPTRIG CCP Trigger Status bit

Value	Description
1	Timer has been triggered and is running
0	Timer has not been triggered and is held in Reset

Bit 6 - TRSET CCP Trigger Set Request bit

Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').

Bit 5 - TRCLR CCP Trigger Clear Request bit

Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').

Bit 4 - ASEVT CCP Auto-Shutdown Event Status/Control bit

Value	Description
1	A shutdown event is in progress; CCP outputs are in the shutdown state
0	CCP outputs operate normally

Bit 3 - SCEVT Single Edge Compare Event Status bit

	-it v vol. i migro -ugo vomparo - i om otanta o m						
Value	Description						
1	A single edge compare event has occurred						
0	A single edge compare event has not occurred						

Bit 2 - ICDIS Input Capture Disable bit

Value	Description
1	Event on input capture pin (ICM7) does not generate a capture event
0	Event on input capture pin will generate a capture event

Bit 1 - ICOV Input Capture Buffer Overflow Status bit

Value	Description
1	The input capture FIFO buffer has overflowed
0	The input capture FIFO buffer has not overflowed

Bit 0 - ICBNE Input Capture Buffer Status bit

Value	Description
1	Input capture buffer has data available
0	Input capture buffer is empty

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.113 CCP7 Time Base Low Register

Name: CCP7TMRL Offset: 0x37C

Bit	15	14	13	12	11	10	9	8
	TMRL[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TMRL[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TMRL[15:0] CCP7 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.114 CCP7 Time Base High Register

Name: CCP7TMRH Offset: 0x37E

Bit	15	14	13	12	11	10	9	8		
	TMRH[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	TMRH[23:16]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - TMRH[31:24] CCP7 16-Bit Time Base Value bits

Bits 7:0 - TMRH[23:16] CCP7 16-Bit Time Base Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.115 CCP7 Period Low Register

Name: CCP7PRL Offset: 0x380

Bit	15	14	13	12	11	10	9	8
				PRL[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	PRL[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PRL[15:0] CCP7 Period Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.116 CCP7 Period High Register

Name: CCP7PRH Offset: 0x382

Bit	15	14	13	12	11	10	9	8		
	PRH[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	PRH[23:16]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - PRH[31:24] CCP7 Period Value bits

Bits 7:0 - PRH[23:16] CCP7 Period Value bits

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.117 CCP7 Primary Compare Register (Timer/Compare Modes Only)

Name: CCP7RA Offset: 0x384

Bit	15	14	13	12	11	10	9	8
				CMP	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CMP[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 – CMP[15:0] CCP7 Primary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.118 CCP7 Secondary Compare Register (Timer/Compare Modes Only)

Name: CCP7RB Offset: 0x388

Bit	15	14	13	12	11	10	9	8		
	CMP[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	CMP[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 – CMP[15:0] CCP7 Secondary Compare Value bits The 16-bit value to be compared against the CCP time base.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.119 CCP7 Capture Buffer Low Register (Capture Modes Only)

Name: CCP7BUFL Offset: 0x38C

Bit	15	14	13	12	11	10	9	8		
		BUF[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	BUF[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 – BUF[15:0] CCP7 Compare Buffer Value bits Indicates the oldest captured time base value in the FIFO.

Capture/Compare/PWM/Timer Modules (MCCP)

14.6.120 CCP7 Capture Buffer High Register (Capture Modes Only)

Name: CCP7BUFH Offset: 0x38E

Bit	15	14	13	12	11	10	9	8		
	BUF[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	BUF[23:16]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - BUF[31:24] CCP7 Compare Buffer Value bits

Bits 7:0 - BUF[23:16] CCP7 Compare Buffer Value bits

Serial Peripheral Interface (SPI)

15. Serial Peripheral Interface (SPI)

Note: This data sheet summarizes the features of the PIC24FJ512GU410 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola® SPI and SIOP interfaces. All devices in the PIC24FJ512GU410 family include four SPI modules.

The module supports operation in two buffer modes. In Standard Buffer mode, data are shifted through a single serial buffer. In Enhanced Buffer mode, data are shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Note: FIFO depth for this device is 32 (in 8-Bit Data mode).

Variable length data can be transmitted and received from 2 to 32 bits.

Note: Do not perform Read-Modify-Write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available:

- I²S mode
- · Left Justified mode
- · Right Justified mode
- PCM/DSP mode

In each of these modes, the serial clock is free-running and audio data are always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the Master and the other is the Slave. However, audio data can be transferred between two Slaves. Because the audio protocols require free-running clocks, the Master can be a third party controller. In either case, the Master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock is available on the SSX/FSYNCx pin).

The SPI serial interface consists of four pins:

- · SDIx: Serial Data Input
- SDOx: Serial Data Output
- · SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using two, three or four pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

Serial Peripheral Interface (SPI)

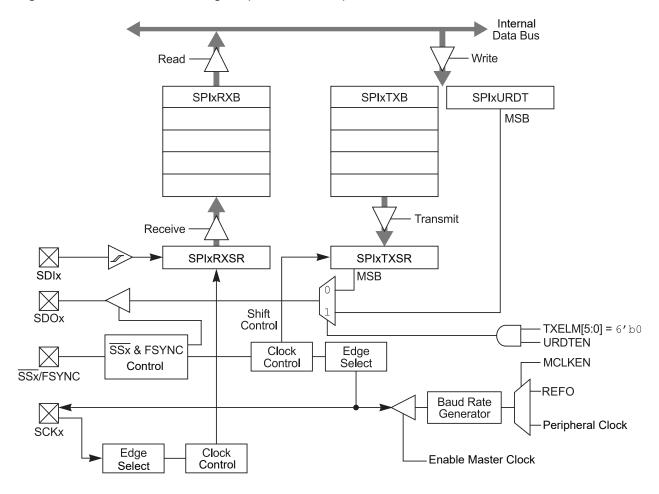
The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signaled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signaled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.


- 3. General interrupts are signaled by SPIxIF. This event occurs when:
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

A block diagram of the module in Enhanced Buffer mode is shown in Figure 15-1.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 or SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for either of the two SPI modules.

Figure 15-1. SPI Module Block Diagram (Enhanced Mode)

15.1 Master Mode Operation

Perform the following steps to set up the SPIx module for Master mode operation:

- 1. Disable the SPIx interrupts in the respective IECx register.
- 2. Stop and reset the SPIx module by clearing the SPIEN bit.
- 3. Clear the receive buffer.
- Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using Enhanced Buffer mode.
- 5. Clear the SPIx interrupt flags/events in the respective IFSx register.
- 6. Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
- 7. Set the SPIx interrupt enable bits in the respective IECx register.
- 8. Write the Baud Rate register, SPIxBRGL.
- 9. Clear the SPIROV bit (SPIxSTATL[6]).
- 10. Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L[5]) = 1.
- 11. Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).
- 12. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data are written to the SPIxBUFL/H registers.

Serial Peripheral Interface (SPI)

15.2 Slave Mode Operation

The following steps are used to set up the SPIx module for the Slave mode of operation:

- 1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
- 2. Stop and reset the SPIx module by clearing the SPIEN bit.
- 3. Clear the receive buffer.
- Clear the ENHBUF bit (SPIxCON1L[0]) if using Standard Buffer mode or set the bit if using Enhanced Buffer mode.
- 5. Clear the SPIx interrupt flags/events in the respective IFSx register.
- 6. Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
- 7. Set the SPIx interrupt enable bits in the respective IECx register.
- 8. Clear the SPIROV bit (SPIxSTATL[6]).
- 9. Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L[5]) = 0.
- 10. Enable SPI operation by setting the SPIEN bit (SPIxCON1L[15]).

Transmission (and reception) will start as soon as the Master provides the serial clock.

The following additional features are provided in Slave mode:

· Slave Select Synchronization:

The \overline{SSx} pin allows a Synchronous Slave mode. If the SSEN bit (SPIxCON1L[7]) is set, transmission and reception are enabled in Slave mode only if the \overline{SSx} pin is driven to a low state. The port output, or other peripheral outputs, must not be driven in order to allow the \overline{SSx} pin to function as an input. If the SSEN bit is set and the \overline{SSx} pin is driven high, the SDOx pin is no longer driven and will tri-state, even if the module is in the middle of a transmission. An aborted transmission will be tried again the next time the \overline{SSx} pin is driven low using the data held in the SPIxTXB register. If the SSEN bit is not set, the \overline{SSx} pin does not affect the module operation in Slave mode.

· SPITBE Status Flag Operation:

The SPITBE bit (SPIxSTATL[3]) has a different function in the Slave mode of operation. The following describes the function of SPITBE for various settings of the Slave mode of operation:

- If SSEN (SPIxCON1L[7]) is cleared, the SPITBE bit is cleared when SPIxBUF is loaded by the user code. It
 is set when the module transfers SPIxTXB to SPIxTXSR.
 - This is similar to the SPITBE bit function in Master mode.
- If SSEN is set, SPITBE is cleared when SPIxBUF is loaded by the user code. However, it is set only when
 the SPIx module completes data transmission. A transmission will be aborted when the SSx pin goes high
 and may be retried at a later time. So, each data word is held in SPIxTXB until all bits are transmitted to the
 receiver.

15.3 Audio Mode Operation

To initialize the SPIx module for Audio mode, follow the steps to initialize it for Master/Slave mode, but also set the AUDEN bit (SPIxCON1H[15]).

In Master+Audio mode:

- This mode enables the device to generate SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L[15]) = 1.
- The SPIx module generates LRC and SCKx continuously in all cases, regardless of the transmit data, while in Master mode.
- The SPIx module drives the leading edge of LRC and SCKx within one SCKx period, and the serial data shift in and out continuously, even when the TX FIFO is empty.

In Slave+Audio mode:

- This mode enables the device to receive SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L[15]) = 1.
- The SPIx module drives zeros out of SDOx, but does not shift data out or in (SDIx) until the module receives the LRC (i.e., the edge that precedes the left channel).

Serial Peripheral Interface (SPI)

Once the module receives the leading edge
 of LRC, it starts receiving data if DISSDI (SPIxCON1L[4]) = 0 and the serial data shift out continuously, even
 when the TX FIFO is empty.

15.4 Relationship Between Device and SPI Clock Speed

Equation 15-1. Relationship Between Device and SPI Clock Speed

Baud Rate =
$$\frac{\text{FPB}}{(2 * (\text{SPIxBRG} + 1))}$$

Where: FPB is the Peripheral Bus Clock Frequency.

Serial Peripheral Interface (SPI)

15.5 SPI Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
 0x03F3	Reserved									
0,0254	CDI4CON4I	7:0	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF
0x03F4	SPI1CON1L	15:8	SPIEN		SPISIDL	DISSDO	MOD	E[1:0]	SMP	CKE
0x03F6	SPI1CON1H	7:0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW		FRMCNT[2:0]	
UXUSFU	SPITCONTH	15:8	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDM	OD[1:0]
0x03F8	SPI1CON2L	7:0						WLENGTH[4:0)]	
0,0001 0	GITTOONZE	15:8								
0x03FA										
	Reserved									
0x03FB		7.0	ODMT	ODIDO) /	ODIDDE		ODITOE		ODITOE	ODIDDE
0x03FC	SPI1STATL	7:0	SRMT	SPIROV	SPIRBE	EDMEDD	SPITBE		SPITBF	SPIRBF
		15:8				FRMERR	SPIBUSY	MIT-01		SPITUR
0x03FE	SPI1STATH	7:0						M[5:0]		
		15:8				DAT		M[5:0]		
0x0400	SPI1BUFL	7:0					A[7:0]			
		15:8 7:0				DATA				
0x0402	SPI1BUFH	15:8				DATA[
		7:0				DATA[BRG				
0x0404	SPI1BRGL	15:8				BRG	5[7:0]	BRG[12:8]		
0x0406		10.0						BRG[12.0]		
	Reserved									
0x0407	Reserved									
0,0401	SPI1IMSKL SPI1IMSKH	7:0	SRMTEN	SPIROVEN	SPIRBEN		SPITBEN		SPITBFEN	SPIRBFEN
0x0408		15:8	Oranier	OI II (OVEIV	OI II (BEIT	FRMERREN	BUSYEN		OI II DI EII	SPITUREN
		7:0	TXWIEN					SK[5:0]		0
0x040A		15:8	RXWIEN RXMSK[5:0]							
		7:0				URDA				
0x040C	SPI1URDTL	15:8				URDAT				
2 2425	00111100711	7:0				URDAT				
0x040E	SPI1URDTH	15:8				URDAT				
00440	CDIOCONAL	7:0	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF
0x0410	SPI2CON1L	15:8	SPIEN		SPISIDL	DISSDO	MOD	E[1:0]	SMP	CKE
0.0440	SPI2CON1H	7:0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW		FRMCNT[2:0]	
0x0412		15:8	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDM	OD[1:0]
0x0414	SPI2CON2L	7:0						WLENGTH[4:0)]	
UAUT 14	OI IZOONZE	15:8								
0x0416										
	Reserved									
0x0417		7.0	05:17	ODIDO:	ODIDOT		ODITO		ODITO	ODIESE
0x0418	SPI2STATL	7:0	SRMT	SPIROV	SPIRBE	EDMESS	SPITBE		SPITBF	SPIRBF
		15:8				FRMERR	SPIBUSY	MENO		SPITUR
0x041A	SPI2STATH	7:0 15:8						M[5:0] M[5:0]		
		7:0				DAT/		ivi[ɔ.U]		
0x041C	SPI2BUFL	15:8					\[7:0] .[15:8]			
		7:0				DATA				
0x041E	SPI2BUFH	15:8				DATA				
		7:0					[31.24] [7:0]			
0x0420	SPI2BRGL	15:8				Dive	ر، .v]	BRG[12:8]		
0x0422		10.0						DI (O[12.0]		
	Reserved									
0x0423										
0.0420										

Serial Peripheral Interface (SPI)

contir	nued			continued							
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
Onoot	Trains	7:0	SRMTEN	SPIROVEN	SPIRBEN	_	SPITBEN		SPITBFEN		
0x0424	SPI2IMSKL	15:8	SKIVITEIN	SPIROVEN	SPIRDEN	FRMERREN	BUSYEN		SPIIDFEN	SPIRBFEN SPITUREN	
		7:0	TXWIEN			THUILITALIT	TXMS	K[5:0]		OI ITOILEIT	
0x0426	SPI2IMSKH	15:8	RXWIEN				RXMS				
		7:0		URDATA[7:0]							
0x0428	SPI2URDTL	15:8				URDAT	A[15:8]				
0x042A	SPI2URDTH	7:0				URDATA	4[23:16]				
000427	SFIZONDITI	15:8				URDATA					
0x042C	SPI3CON1L	7:0	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF	
0.00.120		15:8	SPIEN		SPISIDL	DISSDO	MOD	E[1:0]	SMP	CKE	
0x042E	SPI3CON1H	7:0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW		FRMCNT[2:0]		
		15:8	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN		OD[1:0]	
0x0430	SPI3CON2L	7:0					,	WLENGTH[4:0]		
0.0400		15:8									
0x0432	December										
0x0433	Reserved										
0.0433		7:0	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF	
0x0434	SPI3STATL	15:8	SIXWII	SFIROV	SFINDL	FRMERR	SPIBUSY		SFIIDI	SPITUR	
		7:0				TIMILITY	TXEL	M(5·01		OFFICIA	
0x0436	SPI3STATH	15:8					RXEL				
		7:0				DATA		IVI[J.U]			
0x0438	SPI3BUFL	15:8				DATA	<u> </u>				
		7:0				DATA[
0x043A	SPI3BUFH	15:8				DATA[-				
		7:0				BRG					
0x043C	SPI3BRGL	15:8				Di Co	.[7.0]	BRG[12:8]			
0x043E		10.0						2. (0[.2.0]			
	Reserved										
0x043F											
0.0440	ODIOINACIAI	7:0	SRMTEN	SPIROVEN	SPIRBEN		SPITBEN		SPITBFEN	SPIRBFEN	
0x0440	SPI3IMSKL	15:8				FRMERREN	BUSYEN			SPITUREN	
00440	ODIOIMOKU	7:0	TXWIEN				TXMS	K[5:0]			
0x0442	SPI3IMSKH	15:8	RXWIEN				RXMS	K[5:0]			
00444	CDIQUIDDTI	7:0				URDA ⁻	TA[7:0]				
0x0444	SPI3URDTL	15:8	URDATA[15:8]								
0.0446	CDISLIDDTLI	7:0				URDATA	A[23:16]				
0x0446	SPI3URDTH	15:8				URDATA	A[31:24]				
0x0448	SPI4CON1L	7:0	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF	
0.0440	JE 1400NTL	15:8	SPIEN		SPISIDL	DISSDO	MOD	E[1:0]	SMP	CKE	
0x044A	SPI4CON1H	7:0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW		FRMCNT[2:0]		
VAUTTA	O. ITOONIII	15:8	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN		OD[1:0]	
0x044C	SPI4CON2L	7:0					'	WLENGTH[4:0]	i	
	OFFICER	15:8									
0x044E											
	Reserved										
	Reserved										
	Reserved SPI4STATL	7:0	SRMT	SPIROV	SPIRBE	EDI/EDD	SPITBE		SPITBF	SPIRBF	
 0x044F		15:8	SRMT	SPIROV	SPIRBE	FRMERR	SPIBUSY	MIE OI	SPITBF	SPIRBF SPITUR	
 0x044F		15:8 7:0	SRMT	SPIROV	SPIRBE	FRMERR	SPIBUSY TXEL		SPITBF		
0x044F 0x0450	SPI4STATL	15:8 7:0 15:8	SRMT	SPIROV	SPIRBE		SPIBUSY TXEL RXEL		SPITBF		
0x044F 0x0450	SPI4STATL	15:8 7:0 15:8 7:0	SRMT	SPIROV	SPIRBE	DATA	SPIBUSY TXEL RXEL A[7:0]		SPITBF		
0x044F 0x0450 0x0452	SPI4STATL SPI4STATH	15:8 7:0 15:8 7:0 15:8	SRMT	SPIROV	SPIRBE	DATA DATA	SPIBUSY TXEL RXEL A[7:0] [15:8]		SPITBF		
0x044F 0x0450 0x0452	SPI4STATL SPI4STATH	15:8 7:0 15:8 7:0 15:8 7:0	SRMT	SPIROV	SPIRBE	DATA DATA	SPIBUSY TXEL RXEL A[7:0] [15:8] 23:16]		SPITBF		
0x044F 0x0450 0x0452 0x0454	SPI4STATL SPI4STATH SPI4BUFL	15:8 7:0 15:8 7:0 15:8 7:0 15:8	SRMT	SPIROV	SPIRBE	DATA DATA DATA[DATA[SPIBUSY TXEL RXEL A[7:0] [15:8] 23:16] 31:24]		SPITBF		
0x044F 0x0450 0x0452 0x0454	SPI4STATL SPI4STATH SPI4BUFL	15:8 7:0 15:8 7:0 15:8 7:0	SRMT	SPIROV	SPIRBE	DATA DATA	SPIBUSY TXEL RXEL A[7:0] [15:8] 23:16] 31:24]		SPITBF		

Serial Peripheral Interface (SPI)

conti	continued										
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x045A											
 0x045B	Reserved										
0x045C	SPI4IMSKL	7:0	SRMTEN	SPIROVEN	SPIRBEN		SPITBEN		SPITBFEN	SPIRBFEN	
000450	OF I4IIVIONE	15:8				FRMERREN	BUSYEN			SPITUREN	
0x045E	E SPI4IMSKH	7:0	TXWIEN		TXMSK[5:0]						
UXU43L		15:8	RXWIEN				RXMS	SK[5:0]			
0x0460	SPI4URDTL	7:0	URDATA[7:0]								
0.0400	SPI4URDIL	15:8		URDATA[15:8]							
0x0462	SDIVLIDUTH	7:0				URDATA	4[23:16]				
0x0402	SPI4URDTH	15:8				URDATA	4[31:24]				

Serial Peripheral Interface (SPI)

15.5.1 SPI1 Control Register 1 Low

Name: SPI1CON1L Offset: 0x3F4

Note:

- 1. When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
- 2. When FRMEN = 1, SSEN is not used.
- 3. MCLKEN can only be written when the SPIEN bit = 0.
- 4. This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

Bit	15	14	13	12	11	10	9	8
	SPIEN		SPISIDL	DISSDO	MOD	E[1:0]	SMP	CKE
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - SPIEN SPI On bit

Value	Description
1	Enables module
0	Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications

Bit 13 - SPISIDL SPI Stop in Idle Mode bit

Value	Description
1	Halts in CPU Idle mode
0	Continues to operate in CPU Idle mode

Bit 12 - DISSDO Disable SDO Output Port bit

Value	Description
1	SDO pin is not used by the module; pin is controlled by the port function
0	SDO pin is controlled by the module

Bits 11:10 - MODE[1:0] Serial Word Length bits^(1,4)

AUDEN = 0:			
MODE32	MODE16	COMMUNICATION	FIFO DEPTH
1	X	32-Bit	8
0	1	16-Bit	16
0	0	8-Bit	32
<u>AUDEN = 1:</u>			
MODE32	MODE16	COMMUNICATION	
1	1	24-Bit Data, 32-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
1	0	32-Bit Data, 32-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
0	1	16-Bit Data, 16-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
0	0	16-Bit Data, 16-Bit FIFO, 16-Bit C	hannel/32-Bit Frame

Bit 9 - SMP SPI Data Input Sample Phase bit

Slave Mode:

Input data are always sampled at the middle of data output time, regardless of the SMP setting. Master Mode:

Serial Peripheral Interface (SPI)

Value	Description
1	Input data are sampled at the end of data output time
0	Input data are sampled at the middle of data output time

Bit 8 - CKE SPI Clock Edge Select bit(1)

Value	Description
1	Transmit happens on transition from active clock state to Idle clock state
0	Transmit happens on transition from Idle clock state to active clock state

Bit 7 - SSEN Slave Select Enable bit (Slave mode)(2)

Value	Description
1	SS pin is used by the macro in Slave mode; SS pin is used as the Slave select input
0	SS pin is not used by the macro (SS pin will be controlled by the port I/O)

Bit 6 - CKP SPI Clock Polarity Select bit

		or release to the second of th
	Value	Description
	1	Idle state for clock is a high level; active state is a low level
	0	Idle state for clock is a low level; active state is a high level

Bit 5 - MSTEN Master Mode Enable bit

Value	Description
1	Master mode
0	Slave mode

Bit 4 - DISSDI Disable SDI Input Port bit

Value	Description
1	SDI pin is not used by the module; pin is controlled by the port function
0	SDI pin is controlled by the module

Bit 3 - DISSCK Disable SCK Output Port bit

Valu	ue	Description
1		SCK pin is not used by the module; pin is controlled by the port function
0		SCK pin is controlled by the module

Bit 2 - MCLKEN Master Clock Enable bit(3)

DICE MIGERALIC MIGROUP CHOCK EMADIO DIC		
Value	Description	
1	Reference Clock Output (REFO) is used by the BRG	
0	Peripheral clock is used by the BRG	

Bit 1 - SPIFE Frame Sync Pulse Edge Select bit

	Value	Description
ſ	1	Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock
	0	Frame Sync pulse (Idle-to-active edge) precedes the first bit clock

Bit 0 - ENHBUF Enhanced Buffer Mode Enable bit

Value	Description		
1	Enhanced Buffer mode is enabled		
0	Enhanced Buffer mode is disabled		

Serial Peripheral Interface (SPI)

15.5.2 SPI1 Control Register 1 High

Name: SPI1CON1H Offset: 0x3F6

Note:

- 1. AUDEN can only be written when the SPIEN bit = 0.
- 2. AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
- 3. URDTEN is only valid when IGNTUR = 1.
- 4. AUDMOD[1:0] bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

Bit	15	14	13	12	11	10	9	8
	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDM	OD[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW		FRMCNT[2:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - AUDEN Audio Codec Support Enable bit(1)

Value	Description
1	Audio protocol is enabled; MSTEN controls the direction of both the SCK and frame (a.k.a. LRC), and this module functions as if FRMEN = 1, FRMSYNC = MSTEN, FRMCNT[2:0] = 001 and SMP = 0,
	regardless of their actual values
0	Audio protocol is disabled

Bit 14 - SPISGNEXT SPI Sign-Extend RX FIFO Read Data Enable bit

Value	Description		
1	Data from RX FIFO are sign-extended		
0	Data from RX FIFO are not sign-extended		

Bit 13 - IGNROV Ignore Receive Overflow bit

Value	Description		
1	A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO are not overwritten by		
	the receive data		
0	A ROV is a critical error that stops SPI operation		

Bit 12 - IGNTUR Ignore Transmit Underrun bit

Value	Description			
1	A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN are transmitted until			
	the SPI1TXB is not empty			
0	A TUR is a critical error that stops SPI operation			

Bit 11 – AUDMONO Audio Data Format Transmit bit(2)

Valu	ue	Description		
1		Audio data are mono (i.e., each data word is transmitted on both left and right channels)		
0		Audio data are stereo		

Bit 10 - URDTEN Transmit Underrun Data Enable bit(3)

Value	Description
1	Transmits data out of SPI1URDTL/H register during Transmit Underrun conditions
0	Transmits the last received data during Transmit Underrun conditions

Serial Peripheral Interface (SPI)

Bits 9:8 - AUDMOD[1:0] Audio Protocol Mode Selection bits⁽⁴⁾

Value	Description
11	PCM/DSP mode
10	Right Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01	Left Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01	I ² S mode: This module functions as if SPIFE = 0, regardless of its actual value

Bit 7 - FRMEN Framed SPI Support bit

Value	Description
1	Framed SPI support is enabled (SS pin is used as the FSYNC input/output)
0	Framed SPI support is disabled

Bit 6 - FRMSYNC Frame Sync Pulse Direction Control bit

Value	Description
1	Frame Sync pulse input (Slave)
0	Frame Sync pulse output (Master)

Bit 5 - FRMPOL Frame Sync/Slave Select Polarity bit

Value	Description
1	Frame Sync pulse/Slave select is active-high
0	Frame Sync pulse/Slave select is active-low

Bit 4 - MSSEN Master Mode Slave Select Enable bit

Value	Description			
1	SPI Slave select support is enabled with polarity determined by FRMPOL (SS pin is automatically			
	driven during transmission in Master mode)			
0	SPI Slave select support is disabled (SS pin will be controlled by port I/O)			

Bit 3 - FRMSYPW Frame Sync Pulse-Width bit

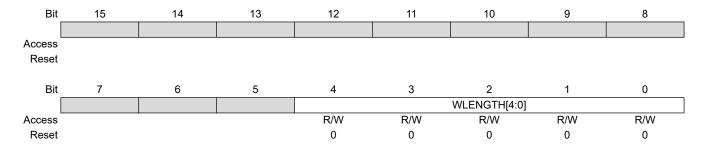
1	/alue	Description
1	•	Frame Sync pulse is one serial word length wide (as defined by MODE[32,16]/WLENGTH[4:0] bits)
C)	Frame Sync pulse is one clock (SCK) wide

Bits 2:0 - FRMCNT[2:0] Frame Sync Pulse Counter bits

Controls the number of serial words transmitted per Sync pulse.

Value	Description
111	Reserved
110	Reserved
101	Generates a Frame Sync pulse on every 32 serial words
100	Generates a Frame Sync pulse on every 16 serial words
011	Generates a Frame Sync pulse on every 8 serial words
010	Generates a Frame Sync pulse on every 4 serial words
001	Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
000	Generates a Frame Sync pulse on each serial word

Serial Peripheral Interface (SPI)


15.5.3 SPI1 Control Register 2 Low

Name: SPI1CON2L Offset: 0x3F8

Note:

1. These bits are effective when AUDEN = 0 only.

2. Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

Bits 4:0 – WLENGTH[4:0] Variable Word Length bits^(1,2)

D110 4.0		Habio vvoia Edilgar bio
Value	Description	
11111	32-bit data	
11110	31-bit data	
11101	30-bit data	
11100	29-bit data	
11011	28-bit data	
11010	27-bit data	
11001	26-bit data	
11000	25-bit data	
10111	24-bit data	
10110	23-bit data	
10101	22-bit data	
10100	21-bit data	
10011	20-bit data	
10010	19-bit data	
10001	18-bit data	
10000	17-bit data	
01111	16-bit data	
01110	15-bit data	
01101	14-bit data	
01100	13-bit data	
01011	12-bit data	
01010	11-bit data	
01001	10-bit data	
01000	9-bit data	
00111	8-bit data	
00110	7-bit data	
00101	6-bit data	
00100	5-bit data	
00011	4-bit data	
00010	3-bit data	
00001	2-bit data	
00000	See MODE[32,16]] bits in SPI1CON1L[11:10]

Serial Peripheral Interface (SPI)

15.5.4 SPI1 Status Register Low

Name: SPI1STATL Offset: 0x3FC

Note:

1. SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

Legend: C = Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8
				FRMERR	SPIBUSY			SPITUR
Access				HS/R/C	HSC			HS/R/C
Reset				0	0			0
Bit	7	6	5	4	3	2	1	0
	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF
Access	HSC	HSC	HSC		HSC		HSC	HSC
Reset	0	0	0		0		0	0

Bit 12 - FRMERR SPI Frame Error Status bit

Value	Description	
1	Frame error is detected	
0	No frame error is detected	

Bit 11 - SPIBUSY SPI Activity Status bit

Value	Description			
1	Module is currently busy with some transactions			
0	No ongoing transactions (at time of read)			

Bit 8 - SPITUR SPI Transmit Underrun Status bit(1)

١	/alue	Description
1		Transmit buffer has encountered a Transmit Underrun condition
C		Transmit buffer does not have a Transmit Underrun condition

Bit 7 - SRMT Shift Register Empty Status bit

Dit i Start Chilit Regions Empty States bit					
Value	Description				
1	No current or pending transactions (i.e., neither SPI1TXB or SPI1TXSR contains data to transmit)				
0	Current or pending transactions				

Bit 6 - SPIROV SPI Receive Overflow Status bit

Value	Description
1	A new byte/half-word/word has been completely received when the SPI1RXB is full
0	No overflow

Bit 5 - SPIRBE SPI RX Buffer Empty Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI1BUF is read from, reading SPI1RXB. Automatically cleared in hardware when SPI transfers data from SPI1RXSR to SPI1RXB.

Enhanced Buffer Mode:

Indicates RXELM[5:0] = 000000.

Value	Description
1	RX buffer is empty
0	RX buffer is not empty

Serial Peripheral Interface (SPI)

Bit 3 - SPITBE SPI Transmit Buffer Empty Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI1 transfers data from SPI1TXB to SPI1TXSR. Automatically cleared in hardware when SPI1BUF is written, loading SPI1TXB.

Enhanced Buffer Mode:

Indicates TXELM[5:0] = 000000.

Value	Description
1	SPI1TXB is empty
0	SPI1TXB is not empty

Bit 1 - SPITBF SPI Transmit Buffer Full Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI1BUF is written, loading SPI1TXB. Automatically cleared in hardware when SPI transfers data from SPI1TXB to SPI1TXSR.

Enhanced Buffer Mode:

Indicates TXELM[5:0] = 1111111.

Val	ue	Description
1		SPI1TXB is full
0		SPI1TXB not full

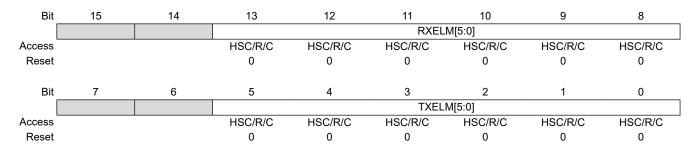
Bit 0 - SPIRBF SPI Receive Buffer Full Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI transfers data from SPI1RXSR to SPI1RXB. Automatically cleared in hardware when SPI1BUF is read from, reading SPI1RXB.

Enhanced Buffer Mode:

Indicates RXELM[5:0] = 111111.


	• •
Value	Description
1	SDI pin is not used by the module; pin is controlled by the port function
0	SDI pin is controlled by the module

Serial Peripheral Interface (SPI)

15.5.5 SPI1 Status Register High

Name: SPI1STATH Offset: 0x3FE

Legend: C = Clearable bit; HSC = Hardware Settable/Clearable bit

Bits 13:8 - RXELM[5:0] Receive Buffer Element Count bits (valid in Enhanced Buffer mode)

Bits 5:0 - TXELM[5:0] Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)

Serial Peripheral Interface (SPI)

15.5.6 SPI1 Buffer Register Low

Name: SPI1BUFL Offset: 0x400

Bit	15	14	13	12	11	10	9	8
				DATA	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DATA	\[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - DATA[15:0] SPI FIFO Data bits

When the MODE[32,16] or WLENGTH[4:0] bits select 16 to 9-bit data, the SPI only uses DATA[15:0]. When the MODE[32,16] or WLENGTH[4:0] bits select 8 to 2-bit data, the SPI only uses DATA[7:0].

Serial Peripheral Interface (SPI)

15.5.7 SPI1 Buffer Register High

Name: SPI1BUFH Offset: 0x402

Bit	15	14	13	12	11	10	9	8
				DATA[[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DATA[[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - DATA[31:24] SPI FIFO Data bits

Bits 7:0 - DATA[23:16] SPI FIFO Data bits

Serial Peripheral Interface (SPI)

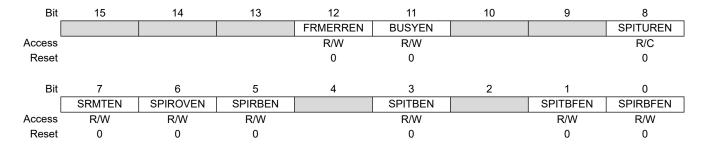
15.5.8 SPI1 Baud Rate Generator Register Low

Name: SPI1BRGL Offset: 0x404

Note:

1. Changing the BRG value when SPIEN = 1 causes undefined behavior.

Bit	15	14	13	12	11	10	9	8
						BRG[12:8]		
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BRG	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0


Bits 12:0 - BRG[12:0] SPI Baud Rate Generator Divisor bits⁽¹⁾

Serial Peripheral Interface (SPI)

15.5.9 SPI1 Interrupt Mask Register Low

Name: SPI1IMSKL Offset: 0x408

Legend: C = Clearable bit

Bit 12 - FRMERREN Enable Interrupt Events via FRMERR bit

Value	Description				
1	Frame error generates an interrupt event				
0	Frame error does not generate an interrupt event				

Bit 11 - BUSYEN Enable Interrupt Events via SPIBUSY bit

Value	Description
1	SPIBUSY generates an interrupt event
0	SPIBUSY does not generate an interrupt event

Bit 8 - SPITUREN Enable Interrupt Events via SPITUR bit

Value	Description
1	Transmit Underrun (TUR) generates an interrupt event
0	Transmit Underrun does not generate an interrupt event

Bit 7 - SRMTEN Enable Interrupt Events via SRMT bit

Val	lue	Description
1		Shift Register Empty (SRMT) generates interrupt events
0		Shift Register Empty does not generate interrupt events

Bit 6 - SPIROVEN Enable Interrupt Events via SPIROV bit

\	/alue	Description
-	_	SPI Receive Overflow generates an interrupt event
()	SPI Receive Overflow does not generate an interrupt event

Bit 5 - SPIRBEN Enable Interrupt Events via SPIRBE bit

Value	Description
1	SPI RX buffer empty generates an interrupt event
0	SPI RX buffer empty does not generate an interrupt event

Bit 3 - SPITBEN Enable Interrupt Events via SPITBE bit

Value	Description
1	SPI transmit buffer empty generates an interrupt event
0	SPI transmit buffer empty does not generate an interrupt event

Bit 1 - SPITBFEN Enable Interrupt Events via SPITBF bit

Value	Description
1	SPI transmit buffer full generates an interrupt event
0	SPI transmit buffer full does not generate an interrupt event

Serial Peripheral Interface (SPI)

Bit 0 - SPIRBFEN Enable Interrupt Events via SPIRBF bit

Value	Description
1	SPI receive buffer full generates an interrupt event
0	SPI receive buffer full does not generate an interrupt event

Serial Peripheral Interface (SPI)

15.5.10 SPI1 Interrupt Mask Register High

Name: SPI1IMSKH Offset: 0x40A

Bit	15	14	13	12	11	10	9	8
	RXWIEN		RXMSK[5:0]					
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TXWIEN				TXMS	K[5:0]		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

Bit 15 - RXWIEN Receive Watermark Interrupt Enable bit

V	alue	Description
1		Triggers receive buffer element watermark interrupt when RXMSK[5:0] ≤ RXELM[5:0]
0		Disables receive buffer element watermark interrupt

Bits 13:8 - RXMSK[5:0] RX Buffer Mask bits

RX mask bits; used in conjunction with the RXWIEN bit.

Bit 7 - TXWIEN Transmit Watermark Interrupt Enable bit

Value	Description
1	Triggers transmit buffer element watermark interrupt when TXMSK[5:0] = TXELM[5:0]
0	Disables transmit buffer element watermark interrupt

Bits 5:0 - TXMSK[5:0] TX Buffer Mask bits

TX mask bits; used in conjunction with the TXWIEN bit.

Serial Peripheral Interface (SPI)

15.5.11 SPI1 Underrun Data Register Low

Name: SPI1URDTL Offset: 0x40C

Bit	15	14	13	12	11	10	9	8	
	URDATA[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	URDATA[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - URDATA[15:0] SPI Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

Serial Peripheral Interface (SPI)

15.5.12 SPI1 Underrun Data Register High

Name: SPI1URDTH Offset: 0x40E

Bit	15	14	13	12	11	10	9	8	
	URDATA[31:24]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	URDATA[23:16]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:8 - URDATA[31:24] SPI Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

Bits 7:0 - URDATA[23:16] SPI Underrun Data bits

Serial Peripheral Interface (SPI)

15.5.13 SPI2 Control Register 1 Low

Name: SPI2CON1L Offset: 0x410

Note:

- 1. When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
- 2. When FRMEN = 1, SSEN is not used.
- 3. MCLKEN can only be written when the SPIEN bit = 0.
- 4. This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

Bit	15	14	13	12	11	10	9	8
	SPIEN		SPISIDL	DISSDO	MOD	E[1:0]	SMP	CKE
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - SPIEN SPI On bit

Value	Description	
1	Enables module	
0	Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications	

Bit 13 - SPISIDL SPI Stop in Idle Mode bit

Value	Description
1	Halts in CPU Idle mode
0	Continues to operate in CPU Idle mode

Bit 12 - DISSDO Disable SDO Output Port bit

Value	Description
1	SDO pin is not used by the module; pin is controlled by the port function
0	SDO pin is controlled by the module

Bits 11:10 - MODE[1:0] Serial Word Length bits^(1,4)

AUDEN = 0:			
MODE32	MODE16	COMMUNICATION	FIFO DEPTH
1	X	32-Bit	8
0	1	16-Bit	16
0	0	8-Bit	32
<u>AUDEN = 1:</u>			
MODE32	MODE16	COMMUNICATION	
1	1	24-Bit Data, 32-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
1	0	32-Bit Data, 32-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
0	1	16-Bit Data, 16-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
0	0	16-Bit Data, 16-Bit FIFO, 16-Bit C	hannel/32-Bit Frame

Bit 9 - SMP SPI Data Input Sample Phase bit

Slave Mode:

Input data are always sampled at the middle of data output time, regardless of the SMP setting. Master Mode:

Serial Peripheral Interface (SPI)

Value	Description
1	Input data are sampled at the end of data output time
0	Input data are sampled at the middle of data output time

Bit 8 - CKE SPI Clock Edge Select bit(1)

Value	Description
1	Transmit happens on transition from active clock state to Idle clock state
0	Transmit happens on transition from Idle clock state to active clock state

Bit 7 - SSEN Slave Select Enable bit (Slave mode)(2)

	1
Value	Description
1	SS pin is used by the macro in Slave mode; SS pin is used as the Slave select input
0	SS pin is not used by the macro (SS pin will be controlled by the port I/O)

Bit 6 - CKP SPI Clock Polarity Select bit

	or release to the second of th
Value	Description
1	Idle state for clock is a high level; active state is a low level
0	Idle state for clock is a low level; active state is a high level

Bit 5 - MSTEN Master Mode Enable bit

Value	Description
1	Master mode
0	Slave mode

Bit 4 - DISSDI Disable SDI Input Port bit

Value	Description
1	SDI pin is not used by the module; pin is controlled by the port function
0	SDI pin is controlled by the module

Bit 3 - DISSCK Disable SCK Output Port bit

Valu	ue	Description
1		SCK pin is not used by the module; pin is controlled by the port function
0		SCK pin is controlled by the module

Bit 2 - MCLKEN Master Clock Enable bit(3)

Dit 2 MODITER Middler Clock Endblo bit		
Value	Description	
1	Reference Clock Output (REFO) is used by the BRG	
0	Peripheral clock is used by the BRG	

Bit 1 - SPIFE Frame Sync Pulse Edge Select bit

	Value	Description
ſ	1	Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock
	0	Frame Sync pulse (Idle-to-active edge) precedes the first bit clock

Bit 0 - ENHBUF Enhanced Buffer Mode Enable bit

Value	Description		
1	Enhanced Buffer mode is enabled		
0	Enhanced Buffer mode is disabled		

Serial Peripheral Interface (SPI)

15.5.14 SPI2 Control Register 1 High

Name: SPI2CON1H Offset: 0x412

Note:

- 1. AUDEN can only be written when the SPIEN bit = 0.
- 2. AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
- 3. URDTEN is only valid when IGNTUR = 1.
- 4. AUDMOD[1:0] bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

Bit	15	14	13	12	11	10	9	8
	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDM	OD[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW		FRMCNT[2:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - AUDEN Audio Codec Support Enable bit(1)

Value	Description
1	Audio protocol is enabled; MSTEN controls the direction of both the SCK and frame (a.k.a. LRC), and
	this module functions as if FRMEN = 1, FRMSYNC = MSTEN, FRMCNT[2:0] = 001 and SMP = 0,
	regardless of their actual values
0	Audio protocol is disabled

Bit 14 - SPISGNEXT SPI Sign-Extend RX FIFO Read Data Enable bit

	<u></u>		
Value	Description		
1	Data from RX FIFO are sign-extended		
0	Data from RX FIFO are not sign-extended		

Bit 13 - IGNROV Ignore Receive Overflow bit

Value	Description
1	A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO are not overwritten by
	the receive data
0	A ROV is a critical error that stops SPI operation

Bit 12 - IGNTUR Ignore Transmit Underrun bit

Value	Description
1	A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN are transmitted until
	the SPI2TXB is not empty
0	A TUR is a critical error that stops SPI operation

Bit 11 – AUDMONO Audio Data Format Transmit bit(2)

Valu	ue	Description
1		Audio data are mono (i.e., each data word is transmitted on both left and right channels)
0		Audio data are stereo

Bit 10 - URDTEN Transmit Underrun Data Enable bit(3)

Value	Description
1	Transmits data out of SPI2URDTL/H register during Transmit Underrun conditions
0	Transmits the last received data during Transmit Underrun conditions

Serial Peripheral Interface (SPI)

Bits 9:8 - AUDMOD[1:0] Audio Protocol Mode Selection bits⁽⁴⁾

Value	Description
11	PCM/DSP mode
10	Right Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01	Left Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01	I ² S mode: This module functions as if SPIFE = 0, regardless of its actual value

Bit 7 - FRMEN Framed SPI Support bit

Value	Description
1	Framed SPI support is enabled (SS pin is used as the FSYNC input/output)
0	Framed SPI support is disabled

Bit 6 - FRMSYNC Frame Sync Pulse Direction Control bit

Value	Description
1	Frame Sync pulse input (Slave)
0	Frame Sync pulse output (Master)

Bit 5 - FRMPOL Frame Sync/Slave Select Polarity bit

Value	Description
1	Frame Sync pulse/Slave select is active-high
0	Frame Sync pulse/Slave select is active-low

Bit 4 - MSSEN Master Mode Slave Select Enable bit

Value	Description		
1	SPI Slave select support is enabled with polarity determined by FRMPOL (SS pin is automatically		
	driven during transmission in Master mode)		
0	SPI Slave select support is disabled (SS pin will be controlled by port I/O)		

Bit 3 – FRMSYPW Frame Sync Pulse-Width bit

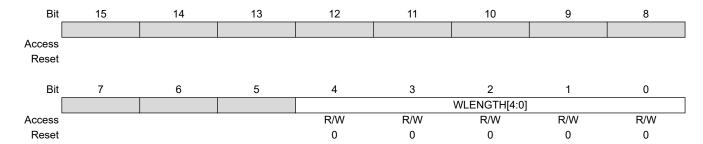
Value	Description
1	Frame Sync pulse is one serial word length wide (as defined by MODE[32,16]/WLENGTH[4:0])
0	Frame Sync pulse is one clock (SCK) wide

Bits 2:0 - FRMCNT[2:0] Frame Sync Pulse Counter bits

Controls the number of serial words transmitted per Sync pulse.

Value	Description
111	Reserved
110	Reserved
101	Generates a Frame Sync pulse on every 32 serial words
100	Generates a Frame Sync pulse on every 16 serial words
011	Generates a Frame Sync pulse on every 8 serial words
010	Generates a Frame Sync pulse on every 4 serial words
001	Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
000	Generates a Frame Sync pulse on each serial word

Serial Peripheral Interface (SPI)


15.5.15 SPI2 Control Register 2 Low

Name: SPI2CON2L Offset: 0x414

Note:

1. These bits are effective when AUDEN = 0 only.

2. Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

Bits 4:0 – WLENGTH[4:0] Variable Word Length bits^(1,2)

D110 4.0		Hable Word Edingth bits
Value	Description	
11111	32-bit data	
11110	31-bit data	
11101	30-bit data	
11100	29-bit data	
11011	28-bit data	
11010	27-bit data	
11001	26-bit data	
11000	25-bit data	
10111	24-bit data	
10110	23-bit data	
10101	22-bit data	
10100	21-bit data	
10011	20-bit data	
10010	19-bit data	
10001	18-bit data	
10000	17-bit data	
01111	16-bit data	
01110	15-bit data	
01101	14-bit data	
01100	13-bit data	
01011	12-bit data	
01010	11-bit data	
01001	10-bit data	
01000	9-bit data	
00111	8-bit data	
00110	7-bit data	
00101	6-bit data	
00100	5-bit data	
00011	4-bit data	
00010	3-bit data	
00001	2-bit data	
00000	See MODE[32,16]	bits in SPI2CON1L[11:10]

Serial Peripheral Interface (SPI)

15.5.16 SPI2 Status Register Low

SPI2STATL Name: Offset: 0x418

Note:

1. SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

Legend: C = Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8
				FRMERR	SPIBUSY			SPITUR
Access				HS/R/C	HSC			HS/R/C
Reset				0	0			0
Bit	7	6	5	4	3	2	1	0
	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF
Access	HSC	HSC	HSC		HSC		HSC	HSC
Reset	0	0	0		0		0	0

Bit 12 - FRMERR SPI Frame Error Status bit

Value	Description
1	Frame error is detected
0	No frame error is detected

Bit 11 - SPIBUSY SPI Activity Status bit

Value	Description	
1	Module is currently busy with some transactions	
0	No ongoing transactions (at time of read)	

Bit 8 - SPITUR SPI Transmit Underrun Status bit(1)

١	/alue	Description
1		Transmit buffer has encountered a Transmit Underrun condition
C		Transmit buffer does not have a Transmit Underrun condition

Rit 7 - SRMT Shift Register Empty Status bit

D.C / O.	Dit 1 Office Region Empty States Sit		
Value Description			
1	No current or pending transactions (i.e., neither SPI2TXB or SPI2TXSR contains data to transmit)		
0	Current or pending transactions		

Bit 6 - SPIROV SPI Receive Overflow Status bit

Value	Description
1	A new byte/half-word/word has been completely received when the SPI2RXB is full
0	No overflow

Bit 5 - SPIRBE SPI RX Buffer Empty Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI2BUF is read from, reading SPI2RXB. Automatically cleared in hardware when SPI transfers data from SPI2RXSR to SPI2RXB.

Enhanced Buffer Mode:

Indicates RXELM[5:0] = 000000.

Value	Description
1	RX buffer is empty
0	RX buffer is not empty

Serial Peripheral Interface (SPI)

Bit 3 - SPITBE SPI Transmit Buffer Empty Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI transfers data from SPI2TXB to SPI2TXSR. Automatically cleared in hardware when SPI2BUF is written, loading SPI2TXB.

Enhanced Buffer Mode:

Indicates TXELM[5:0] = 000000.

Value	Description
1	SPI2TXB is empty
0	SPI2TXB is not empty

Bit 1 - SPITBF SPI Transmit Buffer Full Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI2BUF is written, loading SPI2TXB. Automatically cleared in hardware when SPI transfers data from SPI2TXB to SPI2TXSR.

Enhanced Buffer Mode:

Indicates TXELM[5:0] = 1111111.

Value	Description
1	SPI2TXB is full
0	SPI2TXB not full

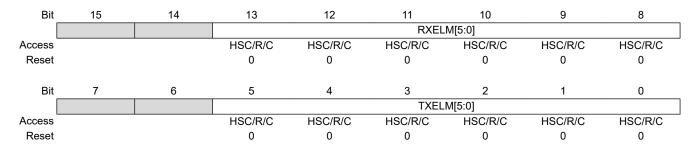
Bit 0 - SPIRBF SPI Receive Buffer Full Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI transfers data from SPI2RXSR to SPI2RXB. Automatically cleared in hardware when SPI2BUF is read from, reading SPI2RXB.

Enhanced Buffer Mode:

Indicates RXELM[5:0] = 111111.


Value	Description
1	SDI pin is not used by the module; pin is controlled by the port function
0	SDI pin is controlled by the module

Serial Peripheral Interface (SPI)

15.5.17 SPI2 Status Register High

Name: SPI2STATH Offset: 0x41A

Legend: C = Clearable bit, HSC = Hardware Settable/Clearable bit

Bits 13:8 - RXELM[5:0] Receive Buffer Element Count bits (valid in Enhanced Buffer mode)

Bits 5:0 - TXELM[5:0] Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)

Serial Peripheral Interface (SPI)

15.5.18 SPI2 Buffer Register Low

Name: SPI2BUFL Offset: 0x41C

Bit	15	14	13	12	11	10	9	8
				DATA	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DATA	\ [7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - DATA[15:0] SPI FIFO Data bits

Serial Peripheral Interface (SPI)

15.5.19 SPI2 Buffer Register High

Name: SPI2BUFH Offset: 0x41E

Bit	15	14	13	12	11	10	9	8
				DATA[[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DATA[[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - DATA[31:24] SPI FIFO Data bits

Bits 7:0 - DATA[23:16] SPI FIFO Data bits

Serial Peripheral Interface (SPI)

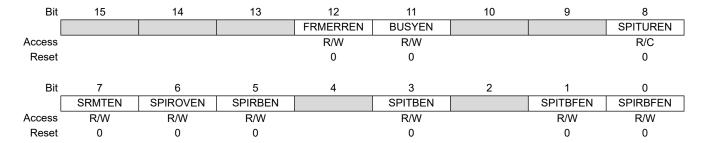
15.5.20 SPI2 Baud Rate Generator Register Low

Name: SPI2BRGL Offset: 0x420

Note:

1. Changing the BRG value when SPIEN = 1 causes undefined behavior.

Bit	15	14	13	12	11	10	9	8
						BRG[12:8]		
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BRG	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0


Bits 12:0 - BRG[12:0] SPI Baud Rate Generator Divisor bits⁽¹⁾

Serial Peripheral Interface (SPI)

15.5.21 SPI2 Interrupt Mask Register Low

Name: SPI2IMSKL Offset: 0x424

Legend: C = Clearable bit

Bit 12 - FRMERREN Enable Interrupt Events via FRMERR bit

Value	Description
1	Frame error generates an interrupt event
0	Frame error does not generate an interrupt event

Bit 11 - BUSYEN Enable Interrupt Events via SPIBUSY bit

Value	Description
1	SPIBUSY generates an interrupt event
0	SPIBUSY does not generate an interrupt event

Bit 8 - SPITUREN Enable Interrupt Events via SPITUR bit

V	alue	Description
1		Transmit Underrun (TUR) generates an interrupt event
0		Transmit Underrun does not generate an interrupt event

Bit 7 - SRMTEN Enable Interrupt Events via SRMT bit

Val	lue	Description
1		Shift Register Empty (SRMT) generates interrupt events
0		Shift Register Empty does not generate interrupt events

Bit 6 - SPIROVEN Enable Interrupt Events via SPIROV bit

Value	Description
1	SPI receive overflow generates an interrupt event
0	SPI receive overflow does not generate an interrupt event

Bit 5 - SPIRBEN Enable Interrupt Events via SPIRBE bit

Value	Description
1	SPI RX buffer empty generates an interrupt event
0	SPI RX buffer empty does not generate an interrupt event

Bit 3 - SPITBEN Enable Interrupt Events via SPITBE bit

Value	Description
1	SPI transmit buffer empty generates an interrupt event
0	SPI transmit buffer empty does not generate an interrupt event

Bit 1 - SPITBFEN Enable Interrupt Events via SPITBF bit

Value	Description
1	SPI transmit buffer full generates an interrupt event
0	SPI transmit buffer full does not generate an interrupt event

Serial Peripheral Interface (SPI)

Bit 0 - SPIRBFEN Enable Interrupt Events via SPIRBF bit

Value	Description
1	SPI receive buffer full generates an interrupt event
0	SPI receive buffer full does not generate an interrupt event

Serial Peripheral Interface (SPI)

15.5.22 SPI2 Interrupt Mask Register High

Name: SPI2IMSKH Offset: 0x426

Bit	15	14	13	12	11	10	9	8
	RXWIEN				RXMS	K[5:0]		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TXWIEN				TXMS	K[5:0]		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

Bit 15 - RXWIEN Receive Watermark Interrupt Enable bit

V	alue	Description
1		Triggers receive buffer element watermark interrupt when RXMSK[5:0] ≤ RXELM[5:0]
0		Disables receive buffer element watermark interrupt

Bits 13:8 - RXMSK[5:0] RX Buffer Mask bits

RX mask bits; used in conjunction with the RXWIEN bit.

Bit 7 - TXWIEN Transmit Watermark Interrupt Enable bit

Value	Description
1	Triggers transmit buffer element watermark interrupt when TXMSK[5:0] = TXELM[5:0]
0	Disables transmit buffer element watermark interrupt

Bits 5:0 - TXMSK[5:0] TX Buffer Mask bits

TX mask bits; used in conjunction with the TXWIEN bit.

Serial Peripheral Interface (SPI)

15.5.23 SPI2 Underrun Data Register Low

Name: SPI2URDTL Offset: 0x428

Bit	15	14	13	12	11	10	9	8
				URDAT	A[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				URDA ⁻	TA[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - URDATA[15:0] SPI Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

Serial Peripheral Interface (SPI)

15.5.24 SPI2 Underrun Data Register High

Name: SPI2URDTH Offset: 0x42A

Bit	15	14	13	12	11	10	9	8
				URDATA	A[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				URDATA	A[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - URDATA[31:24] SPI Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

Bits 7:0 - URDATA[23:16] SPI Underrun Data bits

Serial Peripheral Interface (SPI)

15.5.25 SPI3 Control Register 1 Low

Name: SPI3CON1L Offset: 0x42C

Note:

- 1. When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
- 2. When FRMEN = 1, SSEN is not used.
- 3. MCLKEN can only be written when the SPIEN bit = 0.
- 4. This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

Bit	15	14	13	12	11	10	9	8
	SPIEN		SPISIDL	DISSDO	MOD	E[1:0]	SMP	CKE
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - SPIEN SPI On bit

Value	Description
1	Enables module
0	Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications

Bit 13 - SPISIDL SPI Stop in Idle Mode bit

Value	Description
1	Halts in CPU Idle mode
0	Continues to operate in CPU Idle mode

Bit 12 - DISSDO Disable SDO Output Port bit

Valu	ne	Description
1		SDO pin is not used by the module; pin is controlled by the port function
0		SDO pin is controlled by the module

Bits 11:10 - MODE[1:0] Serial Word Length bits^(1,4)

AUDEN = 0:			
MODE32	MODE16	COMMUNICATION	FIFO DEPTH
1	X	32-Bit	8
0	1	16-Bit	16
0	0	8-Bit	32
<u>AUDEN = 1:</u>			
MODE32	MODE16	COMMUNICATION	
1	1	24-Bit Data, 32-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
1	0	32-Bit Data, 32-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
0	1	16-Bit Data, 16-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
0	0	16-Bit Data, 16-Bit FIFO, 16-Bit C	hannel/32-Bit Frame

Bit 9 - SMP SPI Data Input Sample Phase bit

<u>Slave Mode:</u>

Input data are always sampled at the middle of data output time, regardless of the SMP setting. Master Mode:

Serial Peripheral Interface (SPI)

Value	Description
1	Input data are sampled at the end of data output time
0	Input data are sampled at the middle of data output time

Bit 8 - CKE SPI Clock Edge Select bit(1)

Value	Description
1	Transmit happens on transition from active clock state to Idle clock state
0	Transmit happens on transition from Idle clock state to active clock state

Bit 7 - SSEN Slave Select Enable bit (Slave mode)(2)

Value	Description
1	SS pin is used by the macro in Slave mode; SS pin is used as the Slave select input
0	SS pin is not used by the macro (SS pin will be controlled by the port I/O)

Bit 6 - CKP SPI Clock Polarity Select bit

Value	Description
1	Idle state for clock is a high level; active state is a low level
0	Idle state for clock is a low level; active state is a high level

Bit 5 - MSTEN Master Mode Enable bit

Value	Description
1	Master mode
0	Slave mode

Bit 4 - DISSDI Disable SDI Input Port bit

Value	Description
1	SDI pin is not used by the module; pin is controlled by the port function
0	SDI pin is controlled by the module

Bit 3 - DISSCK Disable SCK Output Port bit

Valu	ue	Description
1		SCK pin is not used by the module; pin is controlled by the port function
0		SCK pin is controlled by the module

Bit 2 - MCLKEN Master Clock Enable bit(3)

D.C 2 111.0 L	Nation Clock Enable bit
Value	Description
1	Reference Clock Output (REFO) is used by the BRG
0	Peripheral clock is used by the BRG

Bit 1 - SPIFE Frame Sync Pulse Edge Select bit

	Value	Description
ſ	1	Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock
	0	Frame Sync pulse (Idle-to-active edge) precedes the first bit clock

Bit 0 - ENHBUF Enhanced Buffer Mode Enable bit

Value	Description
1	Enhanced Buffer mode is enabled
0	Enhanced Buffer mode is disabled

Serial Peripheral Interface (SPI)

15.5.26 SPI3 Control Register 1 High

Name: SPI3CON1H Offset: 0x42E

Note:

- 1. AUDEN can only be written when the SPIEN bit = 0.
- 2. AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
- 3. URDTEN is only valid when IGNTUR = 1.
- 4. AUDMOD[1:0] bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

Bit	15	14	13	12	11	10	9	8
	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDM	OD[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW		FRMCNT[2:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - AUDEN Audio Codec Support Enable bit(1)

Value	Description
1	Audio protocol is enabled; MSTEN controls the direction of both the SCK and frame (a.k.a. LRC), and this module functions as if FRMEN = 1, FRMSYNC = MSTEN, FRMCNT[2:0] = 001 and SMP = 0, regardless of their actual values
0	Audio protocol is disabled

Bit 14 - SPISGNEXT SPI Sign-Extend RX FIFO Read Data Enable bit

Value	Description
1	Data from RX FIFO are sign-extended
0	Data from RX FIFO are not sign-extended

Bit 13 - IGNROV Ignore Receive Overflow bit

Value	Description
1	A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO are not overwritten by
	the receive data
0	A ROV is a critical error that stops SPI operation

Bit 12 - IGNTUR Ignore Transmit Underrun bit

Value	Description
1	A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN are transmitted until
	the SPI3TXB is not empty
0	A TUR is a critical error that stops SPI operation

Bit 11 – AUDMONO Audio Data Format Transmit bit(2)

Valu	ue	Description
1		Audio data are mono (i.e., each data word is transmitted on both left and right channels)
0		Audio data are stereo

Bit 10 - URDTEN Transmit Underrun Data Enable bit(3)

Value	Description
1	Transmits data out of SPI3URDTL/H register during Transmit Underrun conditions
0	Transmits the last received data during Transmit Underrun conditions

Serial Peripheral Interface (SPI)

Bits 9:8 – AUDMOD[1:0] Audio Protocol Mode Selection bits⁽⁴⁾

Value	Description
11	PCM/DSP mode
10	Right Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01	Left Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01	I ² S mode: This module functions as if SPIFE = 0, regardless of its actual value

Bit 7 - FRMEN Framed SPI Support bit

Value	
1	Framed SPI support is enabled (SS pin is used as the FSYNC input/output)
0	Framed SPI support is disabled

Bit 6 - FRMSYNC Frame Sync Pulse Direction Control bit

Value	Description
1	Frame Sync pulse input (Slave)
0	Frame Sync pulse output (Master)

Bit 5 - FRMPOL Frame Sync/Slave Select Polarity bit

	2.00 . Tame 02 . Tame 03.10, clare 00.001. Clare, bit				
Value	Description				
1	Frame Sync pulse/Slave select is active-high				
0	Frame Sync pulse/Slave select is active-low				

Bit 4 - MSSEN Master Mode Slave Select Enable bit

Value	Description
1	SPI Slave select support is enabled with polarity determined by FRMPOL (SS pin is automatically
	driven during transmission in Master mode)
0	SPI Slave select support is disabled (SS pin will be controlled by port I/O)

Bit 3 – FRMSYPW Frame Sync Pulse-Width bit

V	alue	Description
1		Frame Sync pulse is one serial word length wide (as defined by MODE[32,16]/WLENGTH[4:0])
0		Frame Sync pulse is one clock (SCK) wide

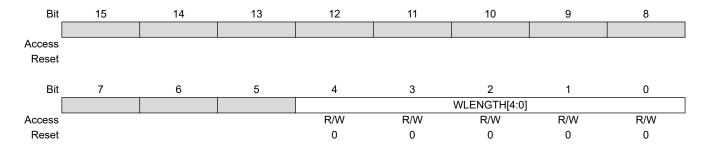
Bits 2:0 - FRMCNT[2:0] Frame Sync Pulse Counter bits

Controls the number of serial words transmitted per Sync pulse.

Value	Description
111	Reserved
110	Reserved
101	Generates a Frame Sync pulse on every 32 serial words
100	Generates a Frame Sync pulse on every 16 serial words
011	Generates a Frame Sync pulse on every 8 serial words
010	Generates a Frame Sync pulse on every 4 serial words
001	Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
000	Generates a Frame Sync pulse on each serial word

Datasheet

Serial Peripheral Interface (SPI)


15.5.27 SPI3 Control Register 2 Low

Name: SPI3CON2L Offset: 0x430

Note:

1. These bits are effective when AUDEN = 0 only.

2. Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

Bits 4:0 – WLENGTH[4:0] Variable Word Length bits^(1,2)

Value Description 11111 32-bit data 11110 31-bit data 11101 30-bit data 11001 28-bit data 11010 27-bit data 11001 26-bit data 11011 24-bit data 10110 23-bit data 10110 23-bit data 10101 23-bit data 10010 21-bit data 10011 20-bit data 10010 19-bit data 10010 19-bit data 10000 17-bit data 01111 16-bit data 01101 14-bit data 01101 12-bit data 01010 13-bit data 01011 11-bit data 01010 11-bit data 01011 15-bit data 01010 15-bit data 01011 15-bit data 01010 15-bit data 00111 8-bit data 00110 5-bit data 00111 4-bit data <th></th> <th>**************************************</th> <th>Variable VVoid Length bits.</th>		**************************************	Variable VVoid Length bits.
11110 31-bit data 11101 30-bit data 11101 28-bit data 11011 28-bit data 11010 27-bit data 11001 26-bit data 11001 25-bit data 11001 23-bit data 11011 24-bit data 10110 23-bit data 10110 23-bit data 10110 22-bit data 10101 22-bit data 10101 120-bit data 10010 19-bit data 10011 16-bit data 10010 17-bit data 10010 15-bit data 10111 16-bit data 10110 13-bit data 10110 13-bit data 10101 12-bit data 10101 13-bit data 10101 15-bit data	Value	Description	
11101 30-bit data 11100 29-bit data 11011 28-bit data 11010 27-bit data 11010 27-bit data 11001 26-bit data 11000 25-bit data 11001 23-bit data 10111 24-bit data 10110 23-bit data 10110 21-bit data 10101 20-bit data 10101 20-bit data 10010 19-bit data 10011	11111		
11100 29-bit data 11011 28-bit data 11010 27-bit data 11000 25-bit data 11000 25-bit data 11001 23-bit data 10111 24-bit data 10110 23-bit data 10110 21-bit data 10101 22-bit data 10010 19-bit data 10011 19-bit data 10001 18-bit data 10000 17-bit data 10110 15-bit data 10101 15-bit data	11110	31-bit data	
11011 28-bit data 11010 27-bit data 11001 26-bit data 11000 25-bit data 11011 24-bit data 10111 23-bit data 10110 23-bit data 10101 22-bit data 10101 21-bit data 10010 19-bit data 10010 18-bit data 10000 17-bit data 10010 15-bit data 10110 15-bit data 10111 16-bit data 10110 15-bit data 10101 17-bit data 10101 18-bit data 10101 10-bit data	11101	30-bit data	
11010 27-bit data 11001 26-bit data 11000 25-bit data 10111 24-bit data 10110 23-bit data 10101 22-bit data 10100 21-bit data 10100 21-bit data 10010 19-bit data 10000 17-bit data 10000 17-bit data 10110 15-bit data 10101 11-bit data 10101 12-bit data 10101 15-bit data	11100	29-bit data	
11001 26-bit data 11000 25-bit data 10111 24-bit data 10110 23-bit data 10101 22-bit data 10101 22-bit data 10101 20-bit data 10011 20-bit data 10010 19-bit data 10001 18-bit data 10000 17-bit data 10000 17-bit data 10110 15-bit data 10110 10-bit data 10110 15-bit data 10101 10-bit data 10101 10-bit data 10101 10-bit data 10101 10-bit data 10100 9-bit data 10101 7-bit data	11011	28-bit data	
11000	11010	27-bit data	
10111 24-bit data 10100 23-bit data 10101 22-bit data 10010 21-bit data 10011 20-bit data 10001 19-bit data 10000 17-bit data 01111 16-bit data 01110 15-bit data 01101 14-bit data 01101 12-bit data 01011 12-bit data 01001 10-bit data 01000 9-bit data 00111 8-bit data 00110 7-bit data 00101 6-bit data 00010 4-bit data 00010 3-bit data 00010 3-bit data 00010 2-bit data	11001		
10110 23-bit data 10101 22-bit data 10011 20-bit data 10010 19-bit data 10000 18-bit data 10000 17-bit data 01111 16-bit data 01110 15-bit data 01101 14-bit data 01101 12-bit data 01010 11-bit data 01010 10-bit data 01001 10-bit data 00111 8-bit data 00110 7-bit data 00101 6-bit data 00101 5-bit data 00010 5-bit data 00010 3-bit data 00010 3-bit data 00010 2-bit data	11000	25-bit data	
10101 22-bit data 10011 20-bit data 10010 19-bit data 10001 18-bit data 10000 17-bit data 01111 16-bit data 01110 15-bit data 01101 14-bit data 01101 12-bit data 01010 11-bit data 01010 10-bit data 01001 10-bit data 01101 8-bit data 00110 7-bit data 00101 6-bit data 00101 5-bit data 00010 3-bit data 00010 3-bit data 00010 2-bit data			
10100 21-bit data 10011 20-bit data 10010 19-bit data 10001 18-bit data 10000 17-bit data 01111 16-bit data 01110 15-bit data 01101 14-bit data 01011 12-bit data 01010 11-bit data 01001 10-bit data 00101 8-bit data 00110 7-bit data 0010 5-bit data 0010 5-bit data 00010 3-bit data 00010 2-bit data			
10011 20-bit data 10010 19-bit data 10001 18-bit data 10000 17-bit data 01111 16-bit data 01110 15-bit data 01101 14-bit data 01010 13-bit data 01011 12-bit data 01010 11-bit data 01001 10-bit data 00101 8-bit data 00110 7-bit data 00101 6-bit data 00101 4-bit data 00010 3-bit data 00010 2-bit data	10101	22-bit data	
10010 19-bit data 10001 18-bit data 10000 17-bit data 01111 16-bit data 01110 15-bit data 01101 14-bit data 01100 13-bit data 01101 12-bit data 01011 12-bit data 01011 10-bit data 01010 11-bit data 01001 10-bit data 01010 9-bit data 00111 8-bit data 00110 7-bit data 00110 7-bit data 00101 6-bit data 00101 6-bit data 00101 3-bit data 00101 5-bit data		21-bit data	
10000 17-bit data 10000 17-bit data 01111 16-bit data 01110 15-bit data 01101 14-bit data 01100 13-bit data 01011 12-bit data 01011 11-bit data 01001 11-bit data 01001 10-bit data 01000 9-bit data 00111 8-bit data 00110 7-bit data 00101 6-bit data 00101 6-bit data 00101 4-bit data 00101 3-bit data	10011	20-bit data	
10000 17-bit data 01111 16-bit data 01110 15-bit data 01101 14-bit data 01100 13-bit data 01101 12-bit data 01011 12-bit data 01010 11-bit data 01001 10-bit data 01001 8-bit data 00111 8-bit data 00110 7-bit data 00110 7-bit data 00101 6-bit data 00101 5-bit data 00101 4-bit data	10010	19-bit data	
01111 16-bit data 01101 15-bit data 01101 14-bit data 01100 13-bit data 01011 12-bit data 01010 11-bit data 01001 10-bit data 01001 9-bit data 01001 9-bit data 00111 8-bit data 00110 7-bit data 00101 5-bit data 00101 5-bit data 00101 5-bit data 00100 5-bit data 00101 4-bit data			
01110 15-bit data 01101 14-bit data 01100 13-bit data 01101 12-bit data 01011 12-bit data 01001 11-bit data 01000 9-bit data 01011 8-bit data 00111 8-bit data 00111 6-bit data 00110 7-bit data 00101 5-bit data 00101 5-bit data 00100 5-bit data 00101 2-bit data		17-bit data	
01101 14-bit data 01100 13-bit data 01011 12-bit data 01010 11-bit data 01001 10-bit data 01000 9-bit data 00111 8-bit data 00100 7-bit data 00101 6-bit data 00101 5-bit data 00011 4-bit data 00010 3-bit data 00001 2-bit data	01111		
01100 13-bit data 01011 12-bit data 01010 11-bit data 01001 10-bit data 01000 9-bit data 00111 8-bit data 00110 7-bit data 00101 6-bit data 00101 5-bit data 00011 4-bit data 00010 3-bit data 00001 2-bit data			
01011 12-bit data 01010 11-bit data 01001 10-bit data 01000 9-bit data 00111 8-bit data 00110 7-bit data 00101 6-bit data 00101 4-bit data 00010 3-bit data 00010 2-bit data			
01010 11-bit data 01001 10-bit data 01000 9-bit data 00111 8-bit data 00110 7-bit data 00101 6-bit data 00100 5-bit data 00011 4-bit data 00010 3-bit data 00001 2-bit data			
01001 10-bit data 01000 9-bit data 00111 8-bit data 00110 7-bit data 00101 6-bit data 00100 5-bit data 00011 4-bit data 00010 3-bit data 00010 2-bit data		12-bit data	
01000 9-bit data 00111 8-bit data 00110 7-bit data 00101 6-bit data 00100 5-bit data 00011 4-bit data 00010 3-bit data 00010 2-bit data		11-bit data	
00111 8-bit data 00110 7-bit data 00101 6-bit data 00100 5-bit data 00011 4-bit data 00010 3-bit data 00001 2-bit data			
00110 7-bit data 00101 6-bit data 00100 5-bit data 00011 4-bit data 00010 3-bit data 00001 2-bit data	01000	9-bit data	
00101 6-bit data 00100 5-bit data 00011 4-bit data 00010 3-bit data 00001 2-bit data			
00100 5-bit data 00011 4-bit data 00010 3-bit data 00001 2-bit data	00110	7-bit data	
00011 4-bit data 00010 3-bit data 00001 2-bit data		6-bit data	
00010		5-bit data	
00001 2-bit data			
00000 See MODE[32,16] bits in SPI3CON1L[11:10]			
	00000	See MODE[32	,16] bits in SPI3CON1L[11:10]

Serial Peripheral Interface (SPI)

15.5.28 SPI3 Status Register Low

Name: SPI3STATL Offset: 0x434

Note:

1. SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

Legend: C = Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8
				FRMERR	SPIBUSY			SPITUR
Access				HS/R/C	HSC			HS/R/C
Reset				0	0			0
Bit	7	6	5	4	3	2	1	0
	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF
Access	HSC	HSC	HSC		HSC		HSC	HSC
Reset	0	0	0		0		0	0

Bit 12 - FRMERR SPI Frame Error Status bit

Value	Description
1	Frame error is detected
0	No frame error is detected

Bit 11 - SPIBUSY SPI Activity Status bit

Value	Description
1	Module is currently busy with some transactions
0	No ongoing transactions (at time of read)

Bit 8 - SPITUR SPI Transmit Underrun Status bit(1)

١	/alue	Description
1		Transmit buffer has encountered a Transmit Underrun condition
C		Transmit buffer does not have a Transmit Underrun condition

Bit 7 - SRMT Shift Register Empty Status bit

D.C. 7	Dit 1 Office Logicia Empty States Sit							
Value	Description							
1	No current or pending transactions (i.e., neither SPI3TXB or SPI3TXSR contains data to transmit)							
0	Current or pending transactions							

Bit 6 - SPIROV SPI Receive Overflow Status bit

Value	Description
1	A new byte/half-word/word has been completely received when SPI3RXB is full
0	No overflow

Bit 5 - SPIRBE SPI RX Buffer Empty Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI3BUF is read from, reading SPI3RXB. Automatically cleared in hardware when SPI transfers data from SPI3RXSR to SPI3RXB.

Enhanced Buffer Mode:

Indicates RXELM[5:0] = 000000.

Value	Description
1	RX buffer is empty
0	RX buffer is not empty

Serial Peripheral Interface (SPI)

Bit 3 - SPITBE SPI Transmit Buffer Empty Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI3 transfers data from SPI3TXB to SPI3TXSR. Automatically cleared in hardware when SPI3BUF is written, loading SPI3TXB.

Enhanced Buffer Mode:

Indicates TXELM[5:0] = 000000.

Value	Description
1	SPI3TXB is empty
0	SPI3TXB is not empty

Bit 1 - SPITBF SPI Transmit Buffer Full Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI3BUF is written, loading SPI3TXB. Automatically cleared in hardware when SPI transfers data from SPI3TXB to SPI3TXSR.

Enhanced Buffer Mode:

Indicates TXELM[5:0] = 1111111.

Value	Description
1	SPI3TXB is full
0	SPI3TXB not full

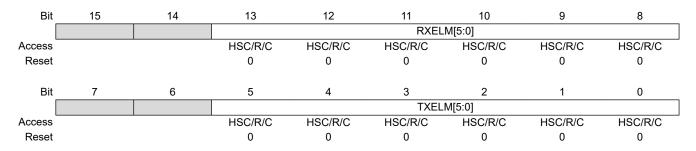
Bit 0 - SPIRBF SPI Receive Buffer Full Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI transfers data from SPI3RXSR to SPI3RXB. Automatically cleared in hardware when SPI3BUF is read from, reading SPI3RXB.

Enhanced Buffer Mode:

Indicates RXELM[5:0] = 111111.


Value	Description
1	SDI pin is not used by the module; pin is controlled by the port function
0	SDI pin is controlled by the module

Serial Peripheral Interface (SPI)

15.5.29 SPI3 Status Register High

Name: SPI3STATH Offset: 0x436

Legend: C = Clearable bit; HSC = Hardware Settable/Clearable bit

Bits 13:8 - RXELM[5:0] Receive Buffer Element Count bits (valid in Enhanced Buffer mode)

Bits 5:0 - TXELM[5:0] Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)

Serial Peripheral Interface (SPI)

15.5.30 SPI3 Buffer Register Low

Name: SPI3BUFL Offset: 0x438

Bit	15	14	13	12	11	10	9	8	
	DATA[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	DATA[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - DATA[15:0] SPI FIFO Data bits

Serial Peripheral Interface (SPI)

15.5.31 SPI3 Buffer Register High

Name: SPI3BUFH Offset: 0x43A

Bit	15	14	13	12	11	10	9	8	
	DATA[31:24]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	DATA[23:16]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:8 - DATA[31:24] SPI FIFO Data bits

Bits 7:0 - DATA[23:16] SPI FIFO Data bits

Serial Peripheral Interface (SPI)

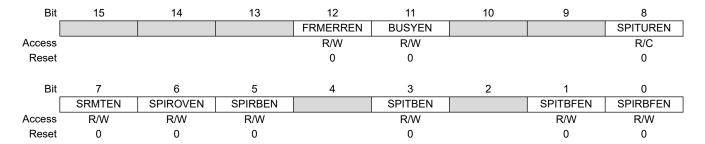
15.5.32 SPI3 Baud Rate Generator Register Low

Name: SPI3BRGL Offset: 0x43C

Note:

1. Changing the BRG value when SPIEN = 1 causes undefined behavior.

Bit	15	14	13	12	11	10	9	8		
					BRG[12:8]					
Access			•	R/W	R/W	R/W	R/W	R/W		
Reset				0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				BRG[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		


Bits 12:0 - BRG[12:0] SPI Baud Rate Generator Divisor bits⁽¹⁾

Serial Peripheral Interface (SPI)

15.5.33 SPI3 Interrupt Mask Register Low

Name: SPI3IMSKL Offset: 0x440

Legend: C = Clearable bit

Bit 12 - FRMERREN Enable Interrupt Events via FRMERR bit

Value	Description
1	Frame error generates an interrupt event
0	Frame error does not generate an interrupt event

Bit 11 - BUSYEN Enable Interrupt Events via SPIBUSY bit

١	/alue	Description
1		SPIBUSY generates an interrupt event
C		SPIBUSY does not generate an interrupt event

Bit 8 - SPITUREN Enable Interrupt Events via SPITUR bit

Value	Description
1	Transmit Underrun (TUR) generates an interrupt event
0	Transmit Underrun does not generate an interrupt event

Bit 7 - SRMTEN Enable Interrupt Events via SRMT bit

Val	lue	Description
1		Shift Register Empty (SRMT) generates interrupt events
0		Shift Register Empty does not generate interrupt events

Bit 6 - SPIROVEN Enable Interrupt Events via SPIROV bit

Value	Description		
1	SPI receive overflow generates an interrupt event		
0	SPI receive overflow does not generate an interrupt event		

Bit 5 - SPIRBEN Enable Interrupt Events via SPIRBE bit

Value	Description
1	SPI RX buffer empty generates an interrupt event
0	SPI RX buffer empty does not generate an interrupt event

Bit 3 - SPITBEN Enable Interrupt Events via SPITBE bit

Value	Description
1	SPI transmit buffer empty generates an interrupt event
0	SPI transmit buffer empty does not generate an interrupt event

Bit 1 - SPITBFEN Enable Interrupt Events via SPITBF bit

Value	Description
1	SPI transmit buffer full generates an interrupt event
0	SPI transmit buffer full does not generate an interrupt event

Serial Peripheral Interface (SPI)

Bit 0 - SPIRBFEN Enable Interrupt Events via SPIRBF bit

Va	alue	Description		
1		SPI receive buffer full generates an interrupt event		
0		SPI receive buffer full does not generate an interrupt event		

Serial Peripheral Interface (SPI)

15.5.34 SPI3 Interrupt Mask Register High

Name: SPI3IMSKH Offset: 0x442

Bit	15	14	13	12	11	10	9	8	
	RXWIEN		RXMSK[5:0]						
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0		0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	TXWIEN				TXMS	K[5:0]			
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0		0	0	0	0	0	0	

Bit 15 - RXWIEN Receive Watermark Interrupt Enable bit

V	alue	Description			
1		Triggers receive buffer element watermark interrupt when RXMSK[5:0] ≤ RXELM[5:0]			
0		Disables receive buffer element watermark interrupt			

Bits 13:8 - RXMSK[5:0] RX Buffer Mask bits

RX mask bits; used in conjunction with the RXWIEN bit.

Bit 7 - TXWIEN Transmit Watermark Interrupt Enable bit

Value	Description
1	Triggers transmit buffer element watermark interrupt when TXMSK[5:0] = TXELM[5:0]
0	Disables transmit buffer element watermark interrupt

Bits 5:0 - TXMSK[5:0] TX Buffer Mask bits

TX mask bits; used in conjunction with the TXWIEN bit.

Serial Peripheral Interface (SPI)

15.5.35 SPI3 Underrun Data Register Low

Name: SPI3URDTL Offset: 0x444

Bit	15	14	13	12	11	10	9	8
				URDAT	TA[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				URDA [*]	TA[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - URDATA[15:0] SPI Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

Serial Peripheral Interface (SPI)

15.5.36 SPI3 Underrun Data Register High

Name: SPI3URDTH Offset: 0x446

Bit	15	14	13	12	11	10	9	8
				URDAT	A[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				URDAT	A[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - URDATA[31:24] SPI Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

Bits 7:0 - URDATA[23:16] SPI Underrun Data bits

Serial Peripheral Interface (SPI)

15.5.37 SPI4 Control Register 1 Low

SPI4CON1L Name: Offset: 0x448

Note:

- 1. When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
- When FRMEN = 1, SSEN is not used. 2.
- 3. MCLKEN can only be written when the SPIEN bit = 0.
- This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

Bit	15	14	13	12	11	10	9	8
	SPIEN		SPISIDL	DISSDO	MOD	E[1:0]	SMP	CKE
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - SPIEN SPI On bit

Value	Description		
1	Enables module		
0	Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications		

Bit 13 - SPISIDL SPI Stop in Idle Mode bit

Value	Description
1	Halts in CPU Idle mode
0	Continues to operate in CPU Idle mode

Bit 12 - DISSDO Disable SDO Output Port bit

Value	Description
1	SDO pin is not used by the module; pin is controlled by the port function
0	SDO pin is controlled by the module

Bits 11:10 - MODE[1:0] Serial Word Length bits^(1,4)

AUDEN = 0:			
MODE32	MODE16	COMMUNICATION	FIFO DEPTH
1	X	32-Bit	8
0	1	16-Bit	16
0	0	8-Bit	32
<u>AUDEN = 1:</u>			
MODE32	MODE16	COMMUNICATION	
1	1	24-Bit Data, 32-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
1	0	32-Bit Data, 32-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
0	1	16-Bit Data, 16-Bit FIFO, 32-Bit C	hannel/64-Bit Frame
0	0	16-Bit Data, 16-Bit FIFO, 16-Bit C	hannel/32-Bit Frame

Datasheet

Bit 9 - SMP SPI Data Input Sample Phase bit

Input data are always sampled at the middle of data output time, regardless of the SMP setting. Master Mode:

Serial Peripheral Interface (SPI)

Value	Description		
1	Input data are sampled at the end of data output time		
0	Input data are sampled at the middle of data output time		

Bit 8 - CKE SPI Clock Edge Select bit(1)

Value	Description
1	Transmit happens on transition from active clock state to Idle clock state
0	Transmit happens on transition from Idle clock state to active clock state

Bit 7 - SSEN Slave Select Enable bit (Slave mode)(2)

Value	Description
1	SS pin is used by the macro in Slave mode; SS pin is used as the Slave select input
0	SS pin is not used by the macro (SS pin will be controlled by the port I/O)

Bit 6 - CKP SPI Clock Polarity Select bit

2. C C.		
Value	Description	
1	Idle state for clock is a high level; active state is a low level	
0	Idle state for clock is a low level; active state is a high level	

Bit 5 - MSTEN Master Mode Enable bit

Value	Description
1	Master mode
0	Slave mode

Bit 4 - DISSDI Disable SDI Input Port bit

Value	Description
1	SDI pin is not used by the module; pin is controlled by the port function
0	SDI pin is controlled by the module

Bit 3 - DISSCK Disable SCK Output Port bit

Valu	ue	Description
1		SCK pin is not used by the module; pin is controlled by the port function
0		SCK pin is controlled by the module

Bit 2 - MCLKEN Master Clock Enable bit(3)

D.C 2 111.0 L	Nation Clock Enable bit
Value	Description
1	Reference Clock Output (REFO) is used by the BRG
0	Peripheral clock is used by the BRG

Bit 1 - SPIFE Frame Sync Pulse Edge Select bit

	Value	Description
ſ	1	Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock
	0	Frame Sync pulse (Idle-to-active edge) precedes the first bit clock

Bit 0 - ENHBUF Enhanced Buffer Mode Enable bit

Value	Description		
1	Enhanced Buffer mode is enabled		
0	Enhanced Buffer mode is disabled		

Serial Peripheral Interface (SPI)

15.5.38 SPI4 Control Register 1 High

Name: SPI4CON1H Offset: 0x44A

Note:

- 1. AUDEN can only be written when the SPIEN bit = 0.
- 2. AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
- 3. URDTEN is only valid when IGNTUR = 1.
- 4. AUDMOD[1:0] bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

Bit	15	14	13	12	11	10	9	8
	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDM	OD[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW		FRMCNT[2:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - AUDEN Audio Codec Support Enable bit(1)

Value	Description
1	Audio protocol is enabled; MSTEN controls the direction of both the SCK and frame (a.k.a. LRC), and this module functions as if FRMEN = 1, FRMSYNC = MSTEN, FRMCNT[2:0] = 001 and SMP = 0, regardless of their actual values
0	Audio protocol is disabled

Bit 14 - SPISGNEXT SPI Sign-Extend RX FIFO Read Data Enable bit

Value	Description
1	Data from RX FIFO are sign-extended
0	Data from RX FIFO are not sign-extended

Bit 13 - IGNROV Ignore Receive Overflow bit

Value	Description
1	A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO are not overwritten by
	the receive data
0	A ROV is a critical error that stops SPI operation

Bit 12 - IGNTUR Ignore Transmit Underrun bit

Value	Description
1	A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN are transmitted until
	the SPI4TXB is not empty
0	A TUR is a critical error that stops SPI operation

Bit 11 – AUDMONO Audio Data Format Transmit bit(2)

Valu	ue	Description
1		Audio data are mono (i.e., each data word is transmitted on both left and right channels)
0		Audio data are stereo

Bit 10 - URDTEN Transmit Underrun Data Enable bit(3)

Value	Description
1	Transmits data out of SPI4URDTL/H register during Transmit Underrun conditions
0	Transmits the last received data during Transmit Underrun conditions

Serial Peripheral Interface (SPI)

Bits 9:8 - AUDMOD[1:0] Audio Protocol Mode Selection bits⁽⁴⁾

Value	Description
11	PCM/DSP mode
10	Right Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01	Left Justified mode: This module functions as if SPIFE = 1, regardless of its actual value
01	I ² S mode: This module functions as if SPIFE = 0, regardless of its actual value

Bit 7 - FRMEN Framed SPI Support bit

Value	Description
1	Framed SPI support is enabled (SS pin is used as the FSYNC input/output)
0	Framed SPI support is disabled

Bit 6 - FRMSYNC Frame Sync Pulse Direction Control bit

Value	Description
1	Frame Sync pulse input (Slave)
0	Frame Sync pulse output (Master)

Bit 5 - FRMPOL Frame Sync/Slave Select Polarity bit

2. C Traini C2 Trainic Cyrre, Clare Colour, Clarity 2.		
Value	Description	
1	Frame Sync pulse/Slave select is active-high	
0	Frame Sync pulse/Slave select is active-low	

Bit 4 - MSSEN Master Mode Slave Select Enable bit

Value	Description		
SPI Slave select support is enabled with polarity determined by FRMPOL (SS pin is automati			
	driven during transmission in Master mode)		
0	SPI Slave select support is disabled (SS pin will be controlled by port I/O)		

Bit 3 - FRMSYPW Frame Sync Pulse-Width bit

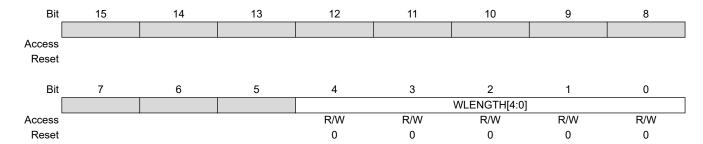
١	/alue	Description
1	=	Frame Sync pulse is one serial word length wide (as defined by MODE[32,16]/WLENGTH[4:0])
()	Frame Sync pulse is one clock (SCK) wide

Bits 2:0 - FRMCNT[2:0] Frame Sync Pulse Counter bits

Controls the number of serial words transmitted per Sync pulse.

Value	Description
111	Reserved
110	Reserved
101	Generates a Frame Sync pulse on every 32 serial words
100	Generates a Frame Sync pulse on every 16 serial words
011	Generates a Frame Sync pulse on every 8 serial words
010	Generates a Frame Sync pulse on every 4 serial words
001	Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
000	Generates a Frame Sync pulse on each serial word

Serial Peripheral Interface (SPI)


15.5.39 SPI4 Control Register 2 Low

Name: SPI4CON2L Offset: 0x44C

Note:

1. These bits are effective when AUDEN = 0 only.

2. Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

Bits 4:0 – WLENGTH[4:0] Variable Word Length bits^(1,2)

	***************************************	Variable Word Length bits.
Value	Description	
11111	32-bit data	
11110	31-bit data	
11101	30-bit data	
11100	29-bit data	
11011	28-bit data	
11010	27-bit data	
11001	26-bit data	
11000	25-bit data	
10111	24-bit data	
10110	23-bit data	
10101	22-bit data	
10100	21-bit data	
10011	20-bit data	
10010	19-bit data	
10001	18-bit data	
10000	17-bit data	
01111	16-bit data	
01110	15-bit data	
01101	14-bit data	
01100	13-bit data	
01011	12-bit data	
01010	11-bit data	
01001	10-bit data	
01000	9-bit data	
00111	8-bit data	
00110	7-bit data	
00101	6-bit data	
00100	5-bit data	
00011	4-bit data	
00010	3-bit data	
00001	2-bit data	
00000	See MODE[32	2,16] bits in SPI4CON1L[11:10]

Serial Peripheral Interface (SPI)

15.5.40 SPI4 Status Register Low

Name: SPI4STATL Offset: 0x450

Note:

1. SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

Legend: C = Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8
				FRMERR	SPIBUSY			SPITUR
Access				HS/R/C	HSC			HS/R/C
Reset				0	0			0
Bit	7	6	5	4	3	2	1	0
	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF
Access	HSC	HSC	HSC		HSC		HSC	HSC
Reset	0	0	0		0		0	0

Bit 12 - FRMERR SPI Frame Error Status bit

٧	alue	Description	
1		Frame error is detected	
0		No frame error is detected	

Bit 11 - SPIBUSY SPI Activity Status bit

Val	lue	Description	
1		Module is currently busy with some transactions	
0		No ongoing transactions (at time of read)	

Bit 8 - SPITUR SPI Transmit Underrun Status bit(1)

١	/alue	Description
1		Transmit buffer has encountered a Transmit Underrun condition
C		Transmit buffer does not have a Transmit Underrun condition

Bit 7 - SRMT Shift Register Empty Status bit

D.C.	Crimi Coglotor Empty Ctatao Sit	
Value	e Description	
1	No current or pending transactions (i.e., neither SPI4	TXB or SPI4TXSR contains data to transmit)
0	Current or pending transactions	

Bit 6 - SPIROV SPI Receive Overflow Status bit

V	/alue	Description
1		A new byte/half-word/word has been completely received when the SPI4RXB is full
0		No overflow

Bit 5 - SPIRBE SPI RX Buffer Empty Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI4BUF is read from, reading SPI4RXB. Automatically cleared in hardware when SPI transfers data from SPI4RXSR to SPI4RXB.

Enhanced Buffer Mode:

Indicates RXELM[5:0] = 000000.

Value	Description
1	RX buffer is empty
0	RX buffer is not empty

Serial Peripheral Interface (SPI)

Bit 3 - SPITBE SPI Transmit Buffer Empty Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI transfers data from SPI4TXB to SPI4TXSR. Automatically cleared in hardware when SPI4BUF is written, loading SPI4TXB.

Enhanced Buffer Mode:

Indicates TXELM[5:0] = 000000.

Va	alue	Description
1		SPI4TXB is empty
0		SPI4TXB is not empty

Bit 1 - SPITBF SPI Transmit Buffer Full Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI4BUF is written, loading SPI4TXB. Automatically cleared in hardware when SPI transfers data from SPI4TXB to SPI4TXSR.

Enhanced Buffer Mode:

Indicates TXELM[5:0] = 1111111.

Value	Description
1	SPI4TXB is full
0	SPI4TXB not full

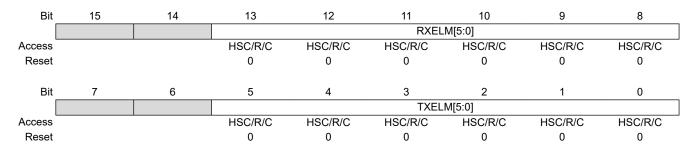
Bit 0 - SPIRBF SPI Receive Buffer Full Status bit

Standard Buffer Mode:

Automatically set in hardware when SPI transfers data from SPI4RXSR to SPI4RXB. Automatically cleared in hardware when SPI4BUF is read from, reading SPI4RXB.

Enhanced Buffer Mode:

Indicates RXELM[5:0] = 111111.


Value	Description
1	SDI pin is not used by the module; pin is controlled by the port function
0	SDI pin is controlled by the module

Serial Peripheral Interface (SPI)

15.5.41 SPI4 Status Register High

Name: SPI4STATH Offset: 0x452

Legend: C = Clearable bit; HSC = Hardware Settable/Clearable bit

Bits 13:8 - RXELM[5:0] Receive Buffer Element Count bits (valid in Enhanced Buffer mode)

Bits 5:0 - TXELM[5:0] Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)

Serial Peripheral Interface (SPI)

15.5.42 SPI4 Buffer Register Low

Name: SPI4BUFL Offset: 0x454

Bit	15	14	13	12	11	10	9	8
				DATA	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DATA	\ [7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - DATA[15:0] SPI FIFO Data bits

Serial Peripheral Interface (SPI)

15.5.43 SPI4 Buffer Register High

Name: SPI4BUFH Offset: 0x456

Bit	15	14	13	12	11	10	9	8
				DATA[[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DATA[[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - DATA[31:24] SPI FIFO Data bits

Bits 7:0 - DATA[23:16] SPI FIFO Data bits

Serial Peripheral Interface (SPI)

15.5.44 SPI4 Baud Rate Generator Register Low

Name: SPI4BRGL Offset: 0x458

Note:

1. Changing the BRG value when SPIEN = 1 causes undefined behavior.

Bit	15	14	13	12	11	10	9	8
						BRG[12:8]		
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BRG	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 12:0 - BRG[12:0] SPI Baud Rate Generator Divisor bits⁽¹⁾

Serial Peripheral Interface (SPI)

15.5.45 SPI4 Interrupt Mask Register Low

Name: SPI4IMSKL Offset: 0x45C

Legend: C = Clearable bit

Bit	15	14	13	12	11	10	9	8
				FRMERREN	BUSYEN			SPITUREN
Access				R/W	R/W			R/C
Reset				0	0			0
Bit	7	6	5	4	3	2	1	0
	SRMTEN	SPIROVEN	SPIRBEN		SPITBEN		SPITBFEN	SPIRBFEN
Access	R/W	R/W	R/W		R/W		R/W	R/W
Reset	0	0	0		0		0	0

Bit 12 - FRMERREN Enable Interrupt Events via FRMERR bit

Value	Description
1	Frame error generates an interrupt event
0	Frame error does not generate an interrupt event

Bit 11 - BUSYEN Enable Interrupt Events via SPIBUSY bit

V	alue	Description
1		SPIBUSY generates an interrupt event
0		SPIBUSY does not generate an interrupt event

Bit 8 - SPITUREN Enable Interrupt Events via SPITUR bit

V	alue	Description
1		Transmit Underrun (TUR) generates an interrupt event
0		Transmit Underrun does not generate an interrupt event

Bit 7 - SRMTEN Enable Interrupt Events via SRMT bit

Val	lue	Description
1		Shift Register Empty (SRMT) generates interrupt events
0		Shift Register Empty does not generate interrupt events

Bit 6 - SPIROVEN Enable Interrupt Events via SPIROV bit

Value	Description
1	SPI receive overflow generates an interrupt event
0	SPI receive overflow does not generate an interrupt event

Bit 5 - SPIRBEN Enable Interrupt Events via SPIRBE bit

Value	Description
1	SPI RX buffer empty generates an interrupt event
0	SPI RX buffer empty does not generate an interrupt event

Bit 3 - SPITBEN Enable Interrupt Events via SPITBE bit

Value	Description
1	SPI transmit buffer empty generates an interrupt event
0	SPI transmit buffer empty does not generate an interrupt event

Bit 1 - SPITBFEN Enable Interrupt Events via SPITBF bit

Value	Description
1	SPI transmit buffer full generates an interrupt event
0	SPI transmit buffer full does not generate an interrupt event

Serial Peripheral Interface (SPI)

Bit 0 - SPIRBFEN Enable Interrupt Events via SPIRBF bit

-1	Value	Description
	1	SPI receive buffer full generates an interrupt event
	0	SPI receive buffer full does not generate an interrupt event

Serial Peripheral Interface (SPI)

15.5.46 SPI4 Interrupt Mask Register High

Name: SPI4IMSKH Offset: 0x45E

Bit	15	14	13	12	11	10	9	8	
	RXWIEN			RXMSK[5:0]					
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0		0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	TXWIEN				TXMS	K[5:0]			
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0		0	0	0	0	0	0	

Bit 15 - RXWIEN Receive Watermark Interrupt Enable bit

Value	Description
1	Triggers receive buffer element watermark interrupt when RXMSK[5:0] ≤ RXELM[5:0]
0	Disables receive buffer element watermark interrupt

Bits 13:8 - RXMSK[5:0] RX Buffer Mask bits

RX mask bits; used in conjunction with the RXWIEN bit.

Bit 7 - TXWIEN Transmit Watermark Interrupt Enable bit

Value	Description
1	Triggers transmit buffer element watermark interrupt when TXMSK[5:0] = TXELM[5:0]
0	Disables transmit buffer element watermark interrupt

Bits 5:0 - TXMSK[5:0] TX Buffer Mask bits

TX mask bits; used in conjunction with the TXWIEN bit.

Serial Peripheral Interface (SPI)

15.5.47 SPI4 Underrun Data Register Low

Name: SPI4URDTL Offset: 0x460

Bit	15	14	13	12	11	10	9	8	
	URDATA[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				URDA [*]	TA[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - URDATA[15:0] SPI Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

Serial Peripheral Interface (SPI)

15.5.48 SPI4 Underrun Data Register High

Name: SPI4URDTH Offset: 0x462

Bit	15	14	13	12	11	10	9	8	
	URDATA[31:24]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				URDAT	A[23:16]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

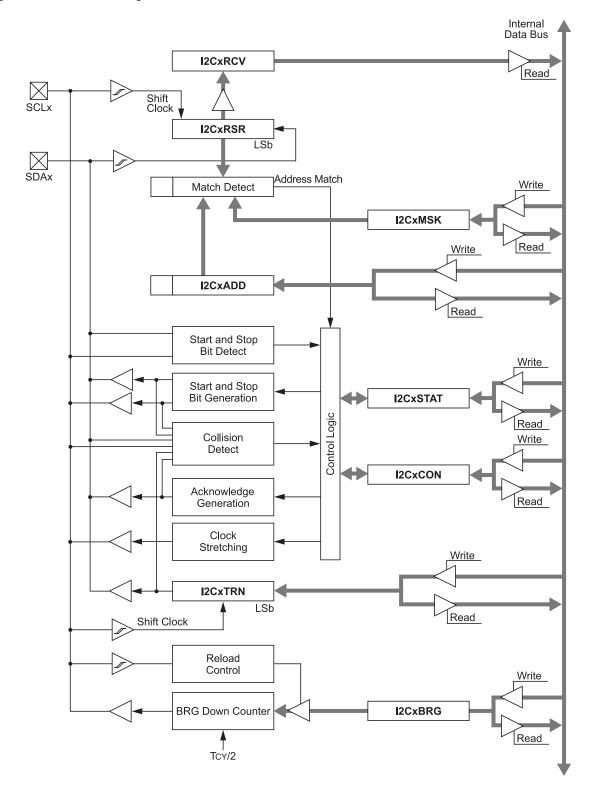
Bits 15:8 - URDATA[31:24] SPI Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

Bits 7:0 - URDATA[23:16] SPI Underrun Data bits

Inter-Integrated Circuit (I2C)

16. Inter-Integrated Circuit (I²C)


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated Circuit (I^2C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc. The I^2C module supports these features:

- · Independent Master and Slave Logic
- · 7-Bit and 10-Bit Device Addresses
- General Call Address as Defined in the I²C Protocol
- · Clock Stretching to Provide Delays for the Processor to Respond to a Slave Data Request
- Both 100 kHz, 400 kHz and 1 MHz Bus Specifications
- · Configurable Address Masking
- Multi-Master modes to Prevent Loss of Messages in Arbitration
- · Bus Repeater mode, Allowing the Acceptance of All Messages as a Slave, regardless of the Address
- · Automatic SCL
- PMBus[™]

A block diagram of the module is shown in Figure 16-1.

Figure 16-1. I²C Block Diagram

Inter-Integrated Circuit (I2C)

16.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the Slave with a write indication.
- 3. Wait for and verify an Acknowledge from the Slave.
- 4. Send the first data byte (sometimes known as the command) to the Slave.
- 5. Wait for and verify an Acknowledge from the Slave.
- 6. Send the serial memory address low byte to the Slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the Slave with a read indication.
- 10. Wait for and verify an Acknowledge from the Slave.
- 11. Enable Master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

16.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 16-1.

Equation 16-1. Computing Baud Rate Reload Value^(1,2,3)

$$FSCL = \frac{FPB}{(I2CxBRG + 2) * 2}$$
 or:
$$I2CxBRG = \left[\frac{FPB}{(FSCL * 2)} - 2\right]$$

Note:

- 1. Based on F_{PB} = F_{OSC}/2 (Peripheral Clock).
- 2. These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.
- 3. BRG values of 0 to 3 are forbidden.

16.3 Slave Address Masking

The I2CxMSK register designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the Slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the Slave module will detect both addresses, '0000000000' and '0010000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL[11]).

Note: As a result of changes in the I²C protocol, the addresses in Table 16-1 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Inter-Integrated Circuit (I2C)

Table 16-1. I²C Reserved Addresses⁽¹⁾

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	х	C-Bus Address
0000 01x	Х	Reserved
0000 1xx	Х	HS Mode Master Code
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	х	Reserved

Note:

- 1. The address bits listed here will never cause an address match independent of address mask settings.
- 2. This address will be Acknowledged only if GCEN = 1.
- 3. A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

16.4 I2C Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x0493										
0x0494	I2C1RCV	7:0				I2CRXD	ATA[7:0]			
		15:8								
0x0496	I2C1TRN	7:0				I2CTXD	ATA[7:0]			
		15:8								
0x0498	I2C1BRG	7:0					RG[7:0]			
		15:8					G[15:8]			
0x049A	I2C1CONL	7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
		15:8	I2CEN	5015	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
0x049C	I2C1CONH	7:0		PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
		15:8	"44001	10001	D.G			5.67	555	
0x049E	I2C1STAT	7:0	IWCOL	I2COV	D/Ā	Р	S	R/W	RBF	TBF
		15:8	ACKSTAT	TRSTAT	ACKTIM			BCL	GCSTAT	ADD10
0x04A0	I2C1ADD	7:0				ADL	D[7:0]			ro 01
		15:8					(17.01		ADD	[9:8]
0x04A2	I2C1MSK	7:0				MSK	([7:0]			/ro. 01
		15:8				loop\/p	ATAIT 01		MSK	.[9:8]
0x04A4	I2C2RCV	7:0				12CRXD	ATA[7:0]	I		
		15:8				IOOTVD	ATA [7.0]			
0x04A6	I2C2TRN	7:0				1201XD	ATA[7:0]			
		15:8				IOODE	2017-01			
0x04A8	I2C2BRG	7:0	I2CBRG[7:0] I2CBRG[15:8]							
		15:8	GCEN	CTDEN	ACKDT	ACKEN	RCEN	PEN	DOEN	CEN
0x04AA	I2C2CONL	7:0	I2CEN	STREN	ACKDT I2CSIDL		STRICT	A10M	RSEN	SEN
		15:8	IZCEN	PCIE	SCIE	SCLREL		SBCDE	DISSLW	SMEN
0x04AC	I2C2CONH	7:0 15:8		PCIE	SCIE	BOEN	SDAHT	SECDE	AHEN	DHEN
			IWCOL	I2COV	D/Ā	P	S	R/W	RBF	TBF
0x04AE	I2C2STAT	7:0	ACKSTAT	TRSTAT		Р	3	BCL	GCSTAT	ADD10
		15:8	ACKSTAT	IKSIAI	ACKTIM	ADE	17.01	BCL	GCSTAT	ADD 10
0x04B0	I2C2ADD	7:0 15:8				ADL	D[7:0]		ADD	IO-01
		7:0				Mek	[7:0]		ADL	[9.0]
0x04B2	I2C2MSK	15:8				IVION	χ _ι , .υ <u>j</u>		MSK	TQ-81
		7:0				ISCOVO	ATA[7:0]		IVISN	.[ə.0]
0x04B4	I2C3RCV	15:8				IZUIND	7 (1/L[1.0]			
		7:0				ISCLAD	ATA[7:0]			
0x04B6	I2C3TRN	15:8				IZCIAD	,[r0]			
		7:0				I2CBE	RG[7:0]			
0x04B8	I2C3BRG	15:8					G[7:0] G[15:8]			
		7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
0x04BA	I2C3CONL	15:8	I2CEN	O I I KEIN	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
		7:0		PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
0x04BC	I2C3CONH	15:8		. 512	23.2	20211	32,411	32302	7.0.7214	5.1614
		7:0	IWCOL	I2COV	D/Ā	P	S	R/W	RBF	TBF
0x04BE	I2C3STAT	15:8	ACKSTAT	TRSTAT	ACKTIM		_	BCL	GCSTAT	ADD10
		7:0				ADD	D[7:0]			
0x04C0	I2C3ADD	15:8				. 1.5.2	,		ADD	[9:8]
		7:0				MSk	([7:0]			LJ
0x04C2	I2C3MSK	15:8					,		MSK	[9:8]
		.0.0							1,101	

Inter-Integrated Circuit (I2C)

16.4.1 I2C1 Receive Register

Name: I2C1RCV Offset: 0x494

Bit	15	14	13	12	11	10	9	8
Access								

Access Reset

Bit	7	6	5	4	3	2	1	0
				I2CRXD	ATA[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - I2CRXDATA[7:0] I2C1 Receive Data bits

R/W

Inter-Integrated Circuit (I2C)

R/W

R/W

0

16.4.2 I2C1 Transmit Register

R/W

0

Access

Reset

Name: I2C1TRN Offset: 0x496

Bit	15	14	13	12	11	10	9	8
Access Reset								
Reset								
Bit	7	6	5	4	3	2	1	0

R/W

0

I2CTXDATA[7:0]

R/W

0

Bits 7:0 - I2CTXDATA[7:0] I2C1 Transmit Data bits

R/W

0

R/W

0

Inter-Integrated Circuit (I2C)

16.4.3 I2C1 Baud Rate Generator Register

Name: I2C1BRG Offset: 0x498

Bit	15	14	13	12	11	10	9	8
				I2CBR	G[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		I2CBRG[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - I2CBRG[15:0] I2C1 Baud Rate Generator bits

Inter-Integrated Circuit (I2C)

16.4.4 I2C1 Control Register Low

Name: I2C1CONL Offset: 0x49A

Note:

- 1. Automatically cleared to '0' at the beginning of Slave transmission; automatically cleared to '0' at the end of Slave reception. The user software must provide a delay between writing to the transmit buffer and setting the SCLREL bit. This delay must be greater than the minimum setup time for Slave transmissions, as specified in 32. Electrical Characteristics.
- 2. Automatically cleared to '0' at the beginning of Slave transmission.
- 3. "SMBus 3.0 Specification" input level can be selected by the SMB3EN Configuration bit (FDEVOPT1[10]).

Legend: HC = Hardware Clearable bit

Bit	15	14	13	12	11	10	9	8
	I2CEN		I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
Access	R/W	R/W	R/W	HC/R/W	HC/R/W	HC/R/W	HC/R/W	HC/R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - I2CEN I2C1 Enable bit (writable from software only)

Value	Description
1	Enables the I ² C module and configures the SDA and SCL pins as serial port pins
0	Disables the I ² C module; all I ² C pins are controlled by port functions

Bit 13 - I2CSIDL I2C1 Stop in Idle Mode bit

DIC 10 12	1001DE 1201 Gtop in Idio Mode bit
Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - SCLREL SCL Release Control bit (I²C Slave mode only)⁽¹⁾

If STREN = 1:

Value	Description
1	Releases clock
0	Holds clock low (clock stretch); user may program this bit to '0', clock stretch at next SCL low

If STREN = 0:(2)

Value	Description
1	Releases clock
0	Forces clock low (clock stretch)

Bit 11 - STRICT I2C1 Strict Reserved Address Rule Enable bit

Value	Description
1	Strict Reserved Addressing is enforced (for reserved addresses, refer to Table 16-1)
	In Slave Mode: The device does not respond to reserved address space and addresses falling in that category are NACKed.
	In Master Mode: The device is allowed to generate addresses with reserved address space.

Inter-Integrated Circuit (I2C)

Value	Description
0	Reserved Addressing would be Acknowledged
	In Slave Mode: The device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK.
	In Master Mode: Reserved.

Bit 10 - A10M 10-Bit Slave Address Flag bit

Value	Description
1	I2C1ADD is a 10-bit Slave address
0	I2C1ADD is a 7-bit Slave address

Bit 9 - DISSLW Slew Rate Control Disable bit

Value	Description
1	Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode)
0	Slew rate control is enabled for High-Speed mode (400 kHz)

Bit 8 - SMEN SMBus Input Levels Enable bit(3)

Value	Description	
1	Enables input logic so thresholds are compliant with the SMBus specification	
0	Disables SMBus-specific inputs	

Bit 7 – GCEN General Call Enable bit (I²C Slave mode only)

Value	Description
1	Enables interrupt when a general call address is received in I2C1RSR; module is enabled for reception
0	General call address is disabled

Bit 6 - STREN SCL Clock Stretch Enable bit

In I²C Slave mode only; used in conjunction with the SCLREL bit.

0 0.0	in i o clave mode only, accum och ancien with the oct the bit.	
Value	Description	
1	Enables clock stretching	
0	Disables clock stretching	

Bit 5 - ACKDT Acknowledge Data bit

In I²C Master mode during Master Receive mode: The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.

In I²C Slave mode when AHEN = 1 or DHEN = 1: The value that the Slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception.

,	, total of the desired at the other of all additions of data recopilions	
Value	Description	
1	NACK is sent	
0	ACK is sent	

Bit 4 - ACKEN Acknowledge Sequence Enable bit

In I²C Master mode only: applicable during Master Receive mode.

Value	Description
1	Initiates Acknowledge sequence on SDA and SCL pins, and transmits the ACKDT data bit
0	Acknowledge sequence is Idle

Bit 3 - RCEN Receive Enable bit (I²C Master mode only)

Value	Description
1	Enables Receive mode for I ² C; automatically cleared by hardware at the end of the 8-bit receive data
	byte
0	Receive sequence is not in progress

Bit 2 - PEN Stop Condition Enable bit (I²C Master mode only)

	•	•	• •
Value	Description		
1	Initiates Stop condition or	n the SDA and SCL p	ins

Inter-Integrated Circuit (I2C)

Value	Description
0	Stop condition is Idle

Bit 1 – RSEN Restart Condition Enable bit (I²C Master mode only)

Value	Description
1	Initiates Restart condition on the SDA and SCL pins
0	Restart condition is Idle

Bit 0 – SEN Start Condition Enable bit (I²C Master mode only)

Value	Description			
1	Initiates Start condition on the SDA and SCL pins			
0	Start condition is Idle			

Inter-Integrated Circuit (I2C)

16.4.5 I2C1 Control Register High

Name: I2C1CONH Offset: 0x49C

Note:

1. This bit must be set to '0' for 1 MHz operation.

Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
		PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bit 6 - PCIE Stop Condition Interrupt Enable bit (I²C Slave mode only)

Value	Description				
1	Enables interrupt on detection of Stop condition				
0	Stop detection interrupts are disabled				

Bit 5 – SCIE Start Condition Interrupt Enable bit (I²C Slave mode only)

			<u>I</u>	\ -	<i>J</i> /	
V	/alue	Description				
1	=	Enables interrupt	on detection	of Start or Rest	art conditions	
0)	Start detection inte	errupts are	disabled		

Bit 4 - BOEN Buffer Overwrite Enable bit (I²C Slave mode only)

Value	Description				
1	I2C1RCV is updated and an ACK is generated for a received address/data byte, ignoring the state of the I2COV bit only if RBF bit = 0				
0	I2C1RCV is only updated when I2COV is clear				

Bit 3 - SDAHT SDA Hold Time Selection bit(1)

Value	Description
1	Minimum of 300 ns hold time on SDA after the falling edge of SCL
0	Minimum of 100 ns hold time on SDA after the falling edge of SCL

Bit 2 – SBCDE Slave Mode Bus Collision Detect Enable bit (I²C Slave mode only)

If, on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit sequences.

	<u> </u>
Value	Description
1	Enables Slave bus collision interrupts
0	Slave bus collision interrupts are disabled

Bit 1 - AHEN Address Hold Enable bit (I²C Slave mode only)

Value	Description				
1	Following the 8th falling edge of SCL for a matching received address byte; SCLREL bit				
	(I2CxCONL[12]) will be cleared and SCL will be held low				
0	Address holding is disabled				

Bit 0 - DHEN Data Hold Enable bit (I²C Slave mode only)

	• • • • • • • • • • • • • • • • • • • •
Value	Description
1	Following the 8th falling edge of SCL for a received data byte; Slave hardware clears the SCLREL bit
	(I2C1CONL[12]) and SCL is held low

Inter-Integrated Circuit (I2C)

Value	Description
0	Data holding is disabled

Inter-Integrated Circuit (I2C)

16.4.6 I2C1 Status Register

Name: I2C1STAT Offset: 0x49E

Bit	15	14	13	12	11	10	9	8
	ACKSTAT	TRSTAT	ACKTIM			BCL	GCSTAT	ADD10
Access	R/W	R/W	R/W	•		R/W	R/W	R/W
Reset	0	0	0			0	0	0
Bit	7	6	5	4	3	2	1	0
	IWCOL	I2COV	D/Ā	Р	S	R/W	RBF	TBF
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - ACKSTAT Acknowledge Status bit (updated in all Master and Slave modes)

Value	Description
1	Acknowledge was not received from Slave
0	Acknowledge was received from Slave

Bit 14 - TRSTAT Transmit Status bit (when operating as I²C Master; applicable to Master transmit operation)

Value	Description
1	Master transmit is in progress (8 bits + ACK)
0	Master transmit is not in progress

Bit 13 – ACKTIM Acknowledge Time Status bit (valid in I²C Slave mode only)

Value	Description
1	Indicates I ² C bus is in an Acknowledge sequence, set on 8th falling edge of SCL clock
0	Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock

Bit 10 - BCL Bus Collision Detect bit (Master/Slave mode; cleared when I²C module is disabled, I2CEN = 0)

Value	Description
1	A bus collision has been detected during a Master or Slave transmit operation
0	No bus collision has been detected

Bit 9 - GCSTAT General Call Status bit (cleared after Stop detection)

Value	Description
1	General call address was received
0	General call address was not received

Bit 8 - ADD10 10-Bit Address Status bit (cleared after Stop detection)

Value	Description
1	10-bit address was matched
0	10-bit address was not matched

Bit 7 - IWCOL 12C1 Write Collision Detect bit

-	Value	Description
	1	An attempt to write to the I2C1TRN register failed because the I ² C module is busy; must be cleared in
		software
	0	No collision

Bit 6 - I2COV I2C1 Receive Overflow Flag bit

Value	Description
1	A byte was received while the I2C1RCV register was still holding the previous byte; I2COV is a "don't
	care" in Transmit mode, must be cleared in software

Inter-Integrated Circuit (I2C)

Value	Description
0	No overflow

Bit 5 – D/A Data/Address bit (when operating as I²C Slave)

Value	Description
1	Indicates that the last byte received was data
0	Indicates that the last byte received or transmitted was an address

Bit 4 - P I2C1 Stop bit

Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0.

Value	Description
1	Indicates that a Stop bit has been detected last
0	Stop bit was not detected last

Bit 3 - S I2C1 Start bit

Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0.

Value	Description
1	Indicates that a Start (or Repeated Start) bit has been detected last
0	Start (or Repeated Start) bit was not detected last

Bit 2 – R/W Read/Write Information bit (when operating as I^2C Slave)

Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0.

Value	Description
1	Read: Indicates the data transfer is output from the Slave
0	Write: Indicates the data transfer is input to the Slave

Bit 1 - RBF Receive Buffer Full Status bit

Value	Description
1	Receive is complete, I2C1RCV is full
0	Receive is not complete, I2C1RCV is empty

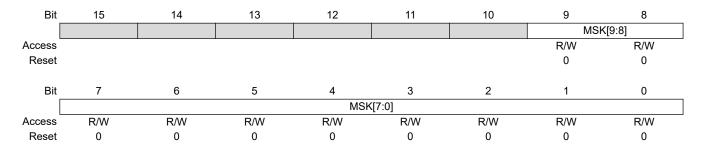
Bit 0 - TBF Transmit Buffer Full Status bit

Value	Description
1	Transmit is in progress, I2C1TRN is full (eight bits of data)
0	Transmit is complete, I2C1TRN is empty

Inter-Integrated Circuit (I2C)

16.4.7 I2C1 Address Register

Name: I2C1ADD Offset: 0x4A0


Bit	15	14	13	12	11	10	9	8
							ADD	[9:8]
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
		ADD[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 9:0 - ADD[9:0] 12C1 Address bits

Inter-Integrated Circuit (I2C)

16.4.8 I2C1 Slave Mode Address Mask Register

Name: I2C1MSK Offset: 0x4A2

Bits 9:0 - MSK[9:0] I2C1 Mask for Address bits

	Value	Description
ſ	1	Enables masking for bit of the incoming message address; bit match is not required in this position
	0	Disables masking for bit; bit match is required in this position

Inter-Integrated Circuit (I2C)

16.4.9 I2C2 Receive Register

Name: I2C2RCV Offset: 0x4A4

Bit	15	14	13	12	11	10	9	8
[

Access Reset

Bit	7	6	5	4	3	2	1	0
	I2CRXDATA[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - I2CRXDATA[7:0] I2C2 Receive Data bits

R/W

Inter-Integrated Circuit (I2C)

R/W

R/W

0

16.4.10 I2C2 Transmit Register

R/W

0

Reset

Name: I2C2TRN Offset: 0x4A6

Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
				I2CTXD.	ATA[7:0]			

R/W

0

Bits 7:0 - I2CTXDATA[7:0] I2C2 Transmit Data bits

R/W

0

R/W

0

Inter-Integrated Circuit (I2C)

16.4.11 I2C2 Baud Rate Generator Register

Name: I2C2BRG Offset: 0x4A8

Bit	15	14	13	12	11	10	9	8
				I2CBR	G[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				I2CBR	RG[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - I2CBRG[15:0] I2C2 Baud Rate Generator bits

Inter-Integrated Circuit (I2C)

16.4.12 I2C2 Control Register Low

Name: I2C2CONL Offset: 0x4AA

Note:

- 1. Automatically cleared to '0' at the beginning of Slave transmission; automatically cleared to '0' at the end of Slave reception. The user software must provide a delay between writing to the transmit buffer and setting the SCLREL bit. This delay must be greater than the minimum setup time for Slave transmissions, as specified in 32. Electrical Characteristics.
- 2. Automatically cleared to '0' at the beginning of Slave transmission.
- 3. "SMBus 3.0 Specification" input level can be selected by the SMB3EN Configuration bit (FDEVOPT1[10]).

Legend: HC = Hardware Clearable bit

Bit	15	14	13	12	11	10	9	8
	I2CEN		I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
Access	R/W	R/W	R/W	HC/R/W	HC/R/W	HC/R/W	HC/R/W	HC/R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - I2CEN I2C2 Enable bit (writable from software only)

Value	Description
1	Enables the I2C2 module and configures the SDA and SCL pins as serial port pins
0	Disables the I2C2 module; all I ² C pins are controlled by port functions

Bit 13 - I2CSIDL I2C2 Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 – SCLREL SCL Release Control bit (I²C Slave mode only)⁽¹⁾ If STREN = 1:

Value	Description
1	Releases clock
Λ	Holds clock low (clock stratch): user may program this bit to '0' clock stratch at payt SCL low

If STREN = 0:(2)

Value	Description	
1	Releases clock	
0	Forces clock low (clock stretch)	

Bit 11 - STRICT I2C2 Strict Reserved Address Rule Enable bit

Value	Description		
1	Strict Reserved Addressing is enforced (for reserved addresses, refer to Table 16-1)		
	In Slave mode: The device does not respond to reserved address space and addresses falling in that category are NACKed.		
	In Master mode: The device is allowed to generate addresses with reserved address space.		

Inter-Integrated Circuit (I2C)

Value	Description		
0	Reserved addressing would be Acknowledged		
	In Slave mode: The device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK.		
	In Master mode: Reserved.		

Bit 10 - A10M 10-Bit Slave Address Flag bit

Value	Description	
1	I2C2ADD is a 10-bit Slave address	
0	I2C2ADD is a 7-bit Slave address	

Bit 9 - DISSLW Slew Rate Control Disable bit

Value	Description			
1	Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode)			
0	Slew rate control is enabled for High-Speed mode (400 kHz)			

Bit 8 - SMEN SMBus Input Levels Enable bit(3)

Value	Description	
1	Enables input logic so thresholds are compliant with the SMBus specification	
0	Disables SMBus-specific inputs	

Bit 7 – GCEN General Call Enable bit (I²C Slave mode only)

Value	Description
1	Enables interrupt when a general call address is received in I2C2RSR; module is enabled for reception
0	General call address is disabled

Bit 6 - STREN SCL Clock Stretch Enable bit

In I²C Slave mode only; used in conjunction with the SCLREL bit.

Value	Description
1	Enables clock stretching
0	Disables clock stretching

Bit 5 - ACKDT Acknowledge Data bit

In I²C Master mode during Master Receive mode: The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.

In I²C Slave mode when AHEN = 1 or DHEN = 1: The value that the Slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception.

, ionilio mongo coquerios di uno cina er an adarese er adar receptioni		
Value	Description	
1	NACK is sent	
0	ACK is sent	

Bit 4 - ACKEN Acknowledge Sequence Enable bit

In I²C Master mode only; applicable during Master Receive mode.

Value	Description	
1	Initiates Acknowledge sequence on SDA and SCL pins, and transmits the ACKDT data bit	
0	Acknowledge sequence is Idle	

Bit 3 - RCEN Receive Enable bit (I²C Master mode only)

Value	Description	
1	Enables Receive mode for I ² C; automatically cleared by hardware at the end of the 8-bit receive data	
	byte	
0	Receive sequence is not in progress	

Bit 2 - PEN Stop Condition Enable bit (I²C Master mode only)

	•	•	• •
Value	Description		
1	Initiates Stop condition or	n the SDA and SCL p	ins

Inter-Integrated Circuit (I2C)

Value	Description
0	Stop condition is Idle

Bit 1 – RSEN Restart Condition Enable bit (I²C Master mode only)

Value	Description
1	Initiates Restart condition on the SDA and SCL pins
0	Restart condition is Idle

Bit 0 – SEN Start Condition Enable bit (I²C Master mode only)

Value	Description		
1	Initiates Start condition on the SDA and SCL pins		
0	Start condition is Idle		

Inter-Integrated Circuit (I2C)

16.4.13 I2C2 Control Register High

Name: I2C2CONH Offset: 0x4AC

Note:

1. This bit must be set to '0' for 1 MHz operation.

Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
		PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bit 6 - PCIE Stop Condition Interrupt Enable bit (I²C Slave mode only)

Value	Description
1	Enables interrupt on detection of Stop condition
0	Stop detection interrupts are disabled

Bit 5 – SCIE Start Condition Interrupt Enable bit (I²C Slave mode only)

Value	Description			
1	Enables interrupt on detection of Start or Restart conditions			
0	Start detection interrupts are disabled			

Bit 4 - BOEN Buffer Overwrite Enable bit (I²C Slave mode only)

Value	Description			
1	I2C2RCV is updated and an ACK is generated for a received address/data byte, ignoring the state of the I2COV bit only if RBF bit = 0			
0	I2C2RCV is only updated when I2COV is clear			

Bit 3 - SDAHT SDA Hold Time Selection bit(1)

Value	Description		
1	Minimum of 300 ns hold time on SDA after the falling edge of SCL		
0	Minimum of 100 ns hold time on SDA after the falling edge of SCL		

Bit 2 – SBCDE Slave Mode Bus Collision Detect Enable bit (I²C Slave mode only)

If, on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit sequences.

	<u> </u>
Value	Description
1	Enables Slave bus collision interrupts
0	Slave bus collision interrupts are disabled

Bit 1 - AHEN Address Hold Enable bit (I²C Slave mode only)

Value	Description			
1	Following the 8th falling edge of SCL for a matching received address byte; SCLREL bit			
	(I2C2CONL[12]) will be cleared and SCL will be held low			
0	Address holding is disabled			

Bit 0 - DHEN Data Hold Enable bit (I²C Slave mode only)

	• • • • • • • • • • • • • • • • • • • •
Value	Description
1	Following the 8th falling edge of SCL for a received data byte; Slave hardware clears the SCLREL bit
	(I2C2CONL[12]) and SCL is held low

Inter-Integrated Circuit (I2C)

Value	Description
0	Data holding is disabled

Inter-Integrated Circuit (I2C)

16.4.14 I2C2 Status Register

Name: I2C2STAT Offset: 0x4AE

Bit	15	14	13	12	11	10	9	8
	ACKSTAT	TRSTAT	ACKTIM			BCL	GCSTAT	ADD10
Access	R/W	R/W	R/W			R/W	R/W	R/W
Reset	0	0	0			0	0	0
Bit	7	6	5	4	3	2	1	0
	IWCOL	I2COV	D/Ā	Р	S	R/W	RBF	TBF
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - ACKSTAT Acknowledge Status bit (updated in all Master and Slave modes)

Value	Description
1	Acknowledge was not received from Slave
0	Acknowledge was received from Slave

Bit 14 - TRSTAT Transmit Status bit (when operating as I²C Master; applicable to Master transmit operation)

Value	Description
1	Master transmit is in progress (8 bits + ACK)
0	Master transmit is not in progress

Bit 13 - ACKTIM Acknowledge Time Status bit (valid in I²C Slave mode only)

Value	Description
1	Indicates I ² C bus is in an Acknowledge sequence, set on 8th falling edge of SCL clock
0	Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock

Bit 10 - BCL Bus Collision Detect bit (Master/Slave mode; cleared when I²C module is disabled, I2CEN = 0)

Value	Description	
1	A bus collision has been detected during a Master or Slave transmit operation	
0	No bus collision has been detected	

Bit 9 - GCSTAT General Call Status bit (cleared after Stop detection)

Value	Description
1	General call address was received
0	General call address was not received

Bit 8 - ADD10 10-Bit Address Status bit (cleared after Stop detection)

1	/alue	Description
-	-	10-bit address was matched
()	10-bit address was not matched

Bit 7 - IWCOL 12C2 Write Collision Detect bit

Value	Description
1	An attempt to write to the I2C2TRN register failed because the I ² C module is busy; must be cleared in
	software
0	No collision

Bit 6 - I2COV I2C2 Receive Overflow Flag bit

Value	Description
1	A byte was received while the I2C2RCV register was still holding the previous byte; I2COV is a "don't
	care" in Transmit mode, must be cleared in software

Inter-Integrated Circuit (I2C)

Value	Description
0	No overflow

Bit 5 – D/A Data/Address bit (when operating as I²C Slave)

Value	Description
1	Indicates that the last byte received was data
0	Indicates that the last byte received or transmitted was an address

Bit 4 - P 12C2 Stop bit

Updated when Start, Reset or Stop is detected; cleared when the I^2C module is disabled, I2CEN = 0.

Value	Description
1	Indicates that a Stop bit has been detected last
0	Stop bit was not detected last

Bit 3 - S I2C2 Start bit

Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0.

Value	Description
1	Indicates that a Start (or Repeated Start) bit has been detected last
0	Start (or Repeated Start) bit was not detected last

Bit 2 – R/\overline{W} Read/Write Information bit (when operating as I^2C Slave)

Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0.

Value	Description
1	Read: Indicates the data transfer is output from the Slave
0	Write: Indicates the data transfer is input to the Slave

Bit 1 - RBF Receive Buffer Full Status bit

Value	Description
1	Receive is complete, I2C2RCV is full.
0	Receive is not complete, I2C2RCV is empty

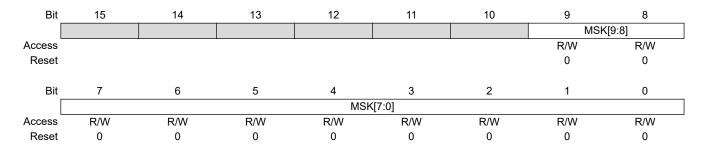
Bit 0 - TBF Transmit Buffer Full Status bit

Value	Description
1	Transmit is in progress, I2C2TRN is full (eight bits of data)
0	Transmit is complete, I2C2TRN is empty

Inter-Integrated Circuit (I2C)

16.4.15 I2C2 Address Register

Name: I2C2ADD Offset: 0x4B0


Bit	15	14	13	12	11	10	9	8
							ADD	[9:8]
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				ADD	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 9:0 - ADD[9:0] 12C2 Address bits

Inter-Integrated Circuit (I2C)

16.4.16 I2C2 Slave Mode Address Mask Register

Name: I2C2MSK Offset: 0x4B2

Bits 9:0 - MSK[9:0] I2C2 Mask for Address bits

	Value	Description
ſ	1	Enables masking for bit of the incoming message address; bit match is not required in this position
	0	Disables masking for bit; bit match is required in this position

Inter-Integrated Circuit (I2C)

16.4.17 I2C3 Receive Register

Name: I2C3RCV Offset: 0x4B4

Bit	15	14	13	12	11	10	9	8
ر محمدد		•						

Access Reset

Bit	7	6	5	4	3	2	1	0
	I2CRXDATA[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - I2CRXDATA[7:0] I2C3 Receive Data bits

R/W

Inter-Integrated Circuit (I2C)

R/W

R/W

0

16.4.18 I2C3 Transmit Register

R/W

0

Reset

Name: I2C3TRN Offset: 0x4B6

Bit	15	14	13	12	11	10	9	8
Access		•	•					
Access Reset								
Bit	7	6	5	4	3	2	1	0
				I2CTXD/	ATA[7:0]			

R/W

0

Bits 7:0 - I2CTXDATA[7:0] I2C3 Transmit Data bits

R/W

0

R/W

0

Inter-Integrated Circuit (I2C)

16.4.19 I2C3 Baud Rate Generator Register

Name: I2C3BRG Offset: 0x4B8

Bit	15	14	13	12	11	10	9	8
				I2CBR	G[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	I2CBRG[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - I2CBRG[15:0] I2C3 Baud Rate Generator bits

Inter-Integrated Circuit (I2C)

16.4.20 I2C3 Control Register Low

Name: I2C3CONL Offset: 0x4BA

Note:

- 1. Automatically cleared to '0' at the beginning of Slave transmission; automatically cleared to '0' at the end of Slave reception. The user software must provide a delay between writing to the transmit buffer and setting the SCLREL bit. This delay must be greater than the minimum setup time for Slave transmissions, as specified in 32. Electrical Characteristics.
- 2. Automatically cleared to '0' at the beginning of Slave transmission.
- 3. "SMBus 3.0 Specification" input level can be selected by the SMB3EN Configuration bit (FDEVOPT1[10]).

Legend: HC = Hardware Clearable bit

Bit	15	14	13	12	11	10	9	8
	I2CEN		I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
Access	R/W	R/W	R/W	HC/R/W	HC/R/W	HC/R/W	HC/R/W	HC/R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - I2CEN I2C3 Enable bit (writable from software only)

Value	Description
1	Enables the I2C3 module and configures the SDA and SCL pins as serial port pins
0	Disables the I2C3 module; all I ² C pins are controlled by port functions

Bit 13 - I2CSIDL I2C3 Stop in Idle Mode bit

DIC 10 12	COIDE 1200 Stop III falo Mode Bit
Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - SCLREL SCL Release Control bit (I²C Slave mode only)⁽¹⁾

If STREN = 1:

Value	Description
1	Releases clock
0	Holds clock low (clock stretch); user may program this bit to '0', clock stretch at next SCL low

If STREN = 0:(2)

Value	Description
1	Releases clock
0	Forces clock low (clock stretch)

Bit 11 - STRICT I2C3 Strict Reserved Address Rule Enable bit

Value	Description
1	Strict Reserved Addressing is enforced (for reserved addresses, refer to Table 16-1)
	In Slave mode: The device does not respond to reserved address space and addresses falling in that category are NACKed.
	In Master mode: The device is allowed to generate addresses with reserved address space.

Inter-Integrated Circuit (I2C)

Value	Description
0	Reserved Addressing would be Acknowledged
	In Slave mode: The device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK.
	In Master mode: Reserved.

Bit 10 - A10M 10-Bit Slave Address Flag bit

Value	Description
1	I2C3ADD is a 10-bit Slave address
0	I2C3ADD is a 7-bit Slave address

Bit 9 - DISSLW Slew Rate Control Disable bit

Value	Description
1	Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode)
0	Slew rate control is enabled for High-Speed mode (400 kHz)

Bit 8 - SMEN SMBus Input Levels Enable bit(3)

Value	Description
1	Enables input logic so thresholds are compliant with the SMBus specification
0	Disables SMBus-specific inputs

Bit 7 – GCEN General Call Enable bit (I²C Slave mode only)

Value	Description
1	Enables interrupt when a general call address is received in I2C2RSR; module is enabled for reception
0	General call address is disabled

Bit 6 - STREN SCL Clock Stretch Enable bit

In I²C Slave mode only; used in conjunction with the SCLREL bit.

	o clare meas cm, , acca m conjunction man all coloridation	
Value	Description	
1	Enables clock stretching	
0	Disables clock stretching	

Bit 5 - ACKDT Acknowledge Data bit

In I²C Master mode during Master Receive mode: The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.

In I²C Slave mode when AHEN = 1 or DHEN = 1: The value that the Slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception.

,	icinio mango obquento di uno oniu or uni dudinoso en dudia nosopiani.	
Value	Description	
1	NACK is sent	
0	ACK is sent	

Bit 4 - ACKEN Acknowledge Sequence Enable bit

In I²C Master mode only; applicable during Master Receive mode.

Value	Description
1	Initiates Acknowledge sequence on SDA and SCL pins, and transmits the ACKDT data bit
0	Acknowledge sequence is Idle

Bit 3 - RCEN Receive Enable bit (I²C Master mode only)

Value	Description
1	Enables Receive mode for I ² C; automatically cleared by hardware at the end of the 8-bit receive data
	byte
0	Receive sequence is not in progress

Bit 2 - PEN Stop Condition Enable bit (I²C Master mode only)

	•	•	• •
Value	Description		
1	Initiates Stop condition or	n the SDA and SCL p	ins

Datasheet

Inter-Integrated Circuit (I2C)

Value	Description
0	Stop condition is Idle

Bit 1 – RSEN Restart Condition Enable bit (I²C Master mode only)

Value	Description
1	Initiates Restart condition on the SDA and SCL pins
0	Restart condition is Idle

Bit 0 – SEN Start Condition Enable bit (I²C Master mode only)

Value	Description
1	Initiates Start condition on the SDA and SCL pins
0	Start condition is Idle

Inter-Integrated Circuit (I2C)

16.4.21 I2C3 Control Register High

Name: I2C3CONH Offset: 0x4BC

Note:

1. This bit must be set to '0' for 1 MHz operation.

Bit	15	14	13	12	11	10	9	8
Access			•					
Reset								
Bit	7	6	5	4	3	2	1	0
		PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bit 6 - PCIE Stop Condition Interrupt Enable bit (I²C Slave mode only)

Value	Description
1	Enables interrupt on detection of Stop condition
0	Stop detection interrupts are disabled

Bit 5 – SCIE Start Condition Interrupt Enable bit (I²C Slave mode only)

Value	Description
1	Enables interrupt on detection of Start or Restart conditions
0	Start detection interrupts are disabled

Bit 4 - BOEN Buffer Overwrite Enable bit (I²C Slave mode only)

Value	Description
1	I2C3RCV is updated and an ACK is generated for a received address/data byte, ignoring the state of the I2COV bit only if RBF bit = 0
0	I2C3RCV is only updated when I2COV is clear

Bit 3 - SDAHT SDAx Hold Time Selection bit(1)

Value	Description
1	Minimum of 300 ns hold time on SDA after the falling edge of SCL
0	Minimum of 100 ns hold time on SDA after the falling edge of SCL

Bit 2 – SBCDE Slave Mode Bus Collision Detect Enable bit (I²C Slave mode only)

If, on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit sequences.

	<u> </u>
Value	Description
1	Enables Slave bus collision interrupts
0	Slave bus collision interrupts are disabled

Bit 1 - AHEN Address Hold Enable bit (I²C Slave mode only)

Value	Description
1	Following the 8th falling edge of SCL for a matching received address byte; SCLREL bit
	(I2C3CONL[12]) will be cleared and SCL will be held low
0	Address holding is disabled

Bit 0 - DHEN Data Hold Enable bit (I²C Slave mode only)

	• • • • • • • • • • • • • • • • • • • •
Value	Description
1	Following the 8th falling edge of SCL for a received data byte; Slave hardware clears the SCLREL bit
	(I2C3CONL[12]) and SCL is held low

Inter-Integrated Circuit (I2C)

Value	Description
0	Data holding is disabled

Inter-Integrated Circuit (I2C)

16.4.22 I2C3 Status Register

Name: I2C3STAT Offset: 0x4BE

Bit	15	14	13	12	11	10	9	8
	ACKSTAT	TRSTAT	ACKTIM			BCL	GCSTAT	ADD10
Access	R/W	R/W	R/W			R/W	R/W	R/W
Reset	0	0	0			0	0	0
Bit	7	6	5	4	3	2	1	0
	IWCOL	I2COV	D/Ā	Р	S	R/W	RBF	TBF
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - ACKSTAT Acknowledge Status bit (updated in all Master and Slave modes)

Value	Description
1	Acknowledge was not received from Slave
0	Acknowledge was received from Slave

Bit 14 - TRSTAT Transmit Status bit (when operating as I²C Master; applicable to Master transmit operation)

Value	Description
1	Master transmit is in progress (8 bits + ACK)
0	Master transmit is not in progress

Bit 13 - ACKTIM Acknowledge Time Status bit (valid in I²C Slave mode only)

Value	Description
1	Indicates I ² C bus is in an Acknowledge sequence, set on 8th falling edge of SCLx clock
0	Not an Acknowledge sequence, cleared on 9th rising edge of SCLx clock

Bit 10 - BCL Bus Collision Detect bit (Master/Slave mode; cleared when I²C module is disabled, I2CEN = 0)

Value	Description	
1	A bus collision has been detected during a Master or Slave transmit operation	
0	No bus collision has been detected	

Bit 9 - GCSTAT General Call Status bit (cleared after Stop detection)

		`		,	
Value	Description				
1	General call address	was received			
0	General call address	was not receive	d		

Bit 8 - ADD10 10-Bit Address Status bit (cleared after Stop detection)

1	/alue	Description
-	-	10-bit address was matched
()	10-bit address was not matched

Bit 7 - IWCOL 12C3 Write Collision Detect bit

Value	Description
1	An attempt to write to the I2C3TRN register failed because the I2C module is busy; must be cleared in
	software
0	No collision

Bit 6 - I2COV I2C3 Receive Overflow Flag bit

Value	Description
1	A byte was received while the I2C3RCV register was still holding the previous byte; I2COV is a "don't
	care" in Transmit mode, must be cleared in software

Inter-Integrated Circuit (I2C)

Value	Description
0	No overflow

Bit 5 – D/A Data/Address bit (when operating as I²C Slave)

Value	Description
1	Indicates that the last byte received was data
0	Indicates that the last byte received or transmitted was an address

Bit 4 – P 12C3 Stop bit

Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0.

Value	Description
1	Indicates that a Stop bit has been detected last
0	Stop bit was not detected last

Bit 3 - S I2C3 Start bit

Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0.

Value	Description
1	Indicates that a Start (or Repeated Start) bit has been detected last
0	Start (or Repeated Start) bit was not detected last

Bit 2 – R/W Read/Write Information bit (when operating as I^2C Slave)

Updated when Start, Reset or Stop is detected; cleared when the I²C module is disabled, I2CEN = 0.

Value	Description
1	Read: Indicates the data transfer is output from the Slave
0	Write: Indicates the data transfer is input to the Slave

Bit 1 - RBF Receive Buffer Full Status bit

Value	Description
1	Receive is complete, I2C3RCV is full
0	Receive is not complete, I2C3RCV is empty

Bit 0 - TBF Transmit Buffer Full Status bit

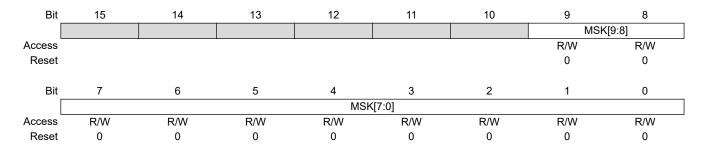
Value	Description
1	Transmit is in progress, I2C3TRN is full (eight bits of data)
0	Transmit is complete, I2C3TRN is empty

Datasheet

Inter-Integrated Circuit (I2C)

16.4.23 I2C3 Address Register

Name: I2C3ADD Offset: 0x4C0


Bit	15	14	13	12	11	10	9	8
							ADD	[9:8]
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				ADD)[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 9:0 - ADD[9:0] 12C3 Address bits

Inter-Integrated Circuit (I2C)

16.4.24 I2C3 Slave Mode Address Mask Register

Name: I2C3MSK Offset: 0x4C2

Bits 9:0 - MSK[9:0] I2C3 Mask for Address bits

	Value	Description
ſ	1	Enables masking for bit of the incoming message address; bit match is not required in this position
	0	Disables masking for bit; bit match is required in this position

Universal Asynchronous Receiver Transmitter ...

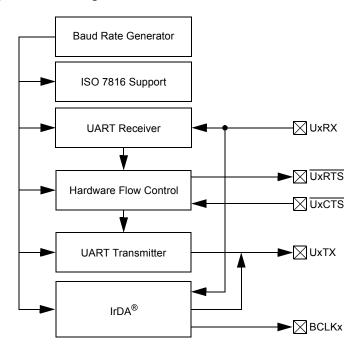
17. Universal Asynchronous Receiver Transmitter (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "**Universal Asynchronous Receiver Transmitter** (**UART**)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins. The UART module includes an IrDA® encoder/decoder unit.

The PIC24FJ512GU410 family devices are equipped with six UART modules, referred to as UART1, UART2, UART3, UART4, UART5 and UART6.

The primary features of the UARTx modules are:


- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Range from Up to 1 Mbps and Down to 15 Hz at 16 MIPS in 16x mode
- Baud Rates Range from Up to 4 Mbps and Down to 61 Hz at 16 MIPS in 4x mode
- 4-Deep, First-In First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- · Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Separate Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- · Polarity Control for Transmit and Receive Lines
- Support for Sync and Break Characters
- · Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- Includes DMA Support
- · 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 17-1. The UARTx module consists of these key important hardware elements:

- Baud Rate Generator
- · Asynchronous Transmitter
- Asynchronous Receiver

Note: Throughout this section, references to register and bit names that may be associated with a specific UART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the UART Status register for any UART module (from UART1 to UART6).

Figure 17-1. UART Simplified Block Diagram

Note: The UART inputs and outputs must all be assigned to available RPn/RPIn pins before use. See 11.4 Peripheral Pin Select (PPS) for more information.

17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate when BRGH = 0.

Equation 17-1. UART Baud Rate with BRGH = $0^{(1)}$

Baud Rate =
$$\frac{\text{FpB}}{16 \cdot (\text{UxBRG} + 1)}$$
$$\text{UxBRG} = \frac{\text{FpB}}{16 \cdot \text{Baud Rate}} - 1$$

Note:

1. F_{PB} denotes the Peripheral Clock Frequency ($F_{OSC}/2$).

Equation 17-2 shows the formula for computation of the baud rate when BRGH = 1.

Equation 17-2. UART Baud Rate with BRGH = 1⁽¹⁾

Baud Rate =
$$\frac{FPB}{4 \cdot (UxBRG + 1)}$$
$$UxBRG = \frac{FPB}{4 \cdot Baud Rate} - 1$$

Note:

1. F_{PB} denotes the Peripheral Clock Frequency ($F_{OSC}/2$).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

Universal Asynchronous Receiver Transmitter ...

17.2 Transmitting in 8-Bit Data Mode

- 1. Write appropriate baud rate value to the UxBRG register.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- 5. Alternatively, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- A transmit interrupt will be generated as per interrupt control bits, UTXISEL[1:0].

17.3 Transmitting in 9-Bit Data Mode

- 1. Write appropriate baud rate value to the UxBRG register.
- 2. Enable the UART.
- Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 5. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- Write appropriate baud rate value to the UxBRG register.
- 2. Enable the UART by setting the URXEN bit (UxSTA[12]).
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL[1:0].
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN[1:0] bits in the UxMODE register configure these pins.

Universal Asynchronous Receiver Transmitter ...

17.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE[3]) is '0'.

17.7.1 IrDA Clock Output for External IrDA Support

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the $\overline{\text{UxRTS}}$ pin) can be configured to generate the 16x baud clock. When UEN[1:0] = 11, the BCLKx pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

17.7.2 Built-in IrDA Encoder and Decoder

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE[12]). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

Universal Asynchronous Receiver Transmitter ...

17.8 UART Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x0397										
0x0398	U1MODE	7:0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	EL[1:0]	STSEL
UNUUUU	OIMODE	15:8	UARTEN		USIDL	IREN	RTSMD			N[1:0]
0x039A	U1STA	7:0		EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
		15:8	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
0x039C	U1TXREG	7:0				U1TXR	EG[7:0]	I		LIATVE COM
		15:8				LIADVD	F0[7:0]			U1TXREG[8]
0x039E	U1RXREG	7:0 15:8				UTRXR	EG[7:0]			U1RXREG[8]
		7:0				PDC	[7:0]			UIRAREGIOJ
0x03A0	U1BRG	15:8					[15:8]			
0x03A2		13.0				ыс	[13.0]			
UXUSAZ	Reserved									
0x03AD	reserved									
		7:0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	EL[1:0]	STSEL
0x03AE	U2MODE	15:8	UARTEN		USIDL	IREN	RTSMD			N[1:0]
		7:0		EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
0x03B0	U2STA	15:8	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
0.0000	LIOTYPEO	7:0				U2TXR	EG[7:0]	ı		
0x03B2	U2TXREG	15:8								U2TXREG[8]
0x03B4	LIODYDEC	7:0				U2RXR	EG[7:0]		1	
UXU3D4	U2RXREG	15:8								U2RXREG[8]
0x03B6	U2BRG	7:0 BRG[7:0]								
000000	UZBING	15:8	BRG[15:8]							
0x03B8										
	Reserved									
0x03C3										
0x03C4	U3MODE	7:0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	EL[1:0]	STSEL
		15:8	UARTEN		USIDL	IREN	RTSMD			N[1:0]
0x03C6	U3STA	7:0		EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
		15:8	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
0x03C8	U3TXREG	7:0 15:8				U3TXR	EG[7:0]			HOTYPECIOL
		7:0				LISDVD	EG[7:0]			U3TXREG[8]
0x03CA	U3RXREG	15:8				USKAR	.EG[7.0]			U3RXREG[8]
		7:0				BRG	[[7:0]			USIXXIXEG[0]
0x03CC	U3BRG	15:8					[15:8]			
0x03CE		10.0				БПО	[10.0]			
	Reserved									
0x03CF										
0.0000	LUMORE	7:0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	EL[1:0]	STSEL
0x03D0	U4MODE	15:8	UARTEN		USIDL	IREN	RTSMD		UE	N[1:0]
0.03D3	LIASTA	7:0	URXIS	EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
0x03D2	U4STA	15:8	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
0x03D4	LINTYPEC	7:0				U4TXR	EG[7:0]			•
UXU3D4	U4TXREG	15:8								U4TXREG[8]
0x03D6	U4RXREG	7:0				U4RXR	EG[7:0]			
3,0000	U4KXREG	15:8								U4RXREG[8]
0x03D8	U4BRG	7:0					G[7:0]			
	3 151.0	15:8				BRG	[15:8]			
0x03DA	_									
	Reserved									
0x03DB										

Universal Asynchronous Receiver Transmitter ...

conti	continued									
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x03DC	U5MODE	7:0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L[1:0]	STSEL
UXUSDC	USWICDE	15:8	UARTEN		USIDL	IREN	RTSMD		UE	N[1:0]
0x03DE	U5STA	7:0	URXIS	EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
UXUSDE	U551A	15:8	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
00050	LISTYPEO	7:0				U5TXR	EG[7:0]			'
0x03E0	U5TXREG	15:8								U5TXREG[8]
00050						U5RXR	EG[7:0]			
0x03E2	U5RXREG	15:8								U5RXREG[8]
0.0054	U5BRG	7:0	BRG[7:0]							
0x03E4		15:8	BRG[15:8]							
0x03E6										
	Reserved									
0x03E7										
0x03E8	U6MODE	7:0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	EL[1:0]	STSEL
UXUSEO	OOMODE	15:8	UARTEN		USIDL	IREN	RTSMD		UE	N[1:0]
0x03EA	U6STA	7:0	URXIS	EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
UXUSEA	003 IA	15:8	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
0x03EC	U6TXREG	7:0				U6TXR	EG[7:0]			
UXUSEC	UDIAREG	15:8								U6TXREG[8]
0x03EE	U6RXREG	7:0				U6RXR	EG[7:0]			
UXU3EE	UDRAREG	15:8								U6RXREG[8]
0,0250	LIEDDO	7:0				BRG	G[7:0]			
0x03F0	U6BRG	15:8				BRG	[15:8]			

Universal Asynchronous Receiver Transmitter ...

17.8.1 UART1 Mode Register

Name: U1MODE Offset: 0x398

Note:

- 1. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).
- 2. This feature is only available for the 16x BRG mode (BRGH = 0).

Bit	15	14	13	12	11	10	9	8
	UARTEN		USIDL	IREN	RTSMD		UEN	N[1:0]
Access	R/W		R/W	R/W	R/W		R/W	R/W
Reset	0		0	0	0		0	0
Bit	7	6	5	4	3	2	1	0
	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L[1:0]	STSEL
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - UARTEN UART Enable bit(1)

Va	lue	Description
1		UART is enabled; all UART pins are controlled by UART as defined by UEN[1:0]
0		UART is disabled; all UART pins are controlled by port latches, UART power consumption is minimal

Bit 13 - USIDL UART Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - IREN IrDA® Encoder and Decoder Enable bit(2)

Value	Description
1	IrDA encoder and decoder are enabled
0	IrDA encoder and decoder are disabled

Bit 11 – RTSMD Mode Selection for U1RTS Pin bit

١	/alue	Description
1	-	U1RTS pin is in Simplex mode
C)	U1RTS pin is in Flow Control mode

Bits 9:8 - UEN[1:0] UART Enable bits

Value	Description
11	U1TX, U1RX and BCLK1 pins are enabled and used; U1CTS pin is controlled by port latches
10	U1TX, U1RX, U1CTS and U1RTS pins are enabled and used
01	U1TX, U1RX and U1RTS pins are enabled and used; U1CTS pin is controlled by port latches
00	U1TX and U1RX pins are enabled and used; U1CTS and U1RTS/BCLK1 pins are controlled by port
	latches

Bit 7 - WAKE Wake-up on Start Bit Detect During Sleep Mode Enable bit

	Trans up on start by betoet burning cloop mode Endblo by					
Value	Description					
1	UART continues to sample the U1RX pin; interrupt is generated on the falling edge, bit is cleared in hardware on the following rising edge					
0	No wake-up is enabled					

Bit 6 - LPBACK UART Loopback Mode Select bit

Universal Asynchronous Receiver Transmitter ...

Value	Description
1	Enables Loopback mode
0	Loopback mode is disabled

Bit 5 - ABAUD Auto-Baud Enable bit

Value	Description			
1	Enables baud rate measurement on the next character – requires reception of a Sync field (55h);			
	cleared in hardware upon completion			
0	Baud rate measurement is disabled or completed			

Bit 4 - URXINV UART Receive Polarity Inversion bit

Value	Description
1	U1RX Idle state is '0'
0	U1RX Idle state is '1'

Bit 3 - BRGH High Baud Rate Enable bit

Value	Description
1	High-Speed mode (4 BRG clock cycles per bit)
0	Standard Speed mode (16 BRG clock cycles per bit)

Bits 2:1 - PDSEL[1:0] Parity and Data Selection bits

Value	Description
11	9-bit data, no parity
10	8-bit data, odd parity
01	8-bit data, even parity
00	8-bit data, no parity

Bit 0 - STSEL Stop Bit Selection bit

Value	Description
1	Two Stop bits
0	One Stop bit

Universal Asynchronous Receiver Transmitter ...

17.8.2 UART1 Status and Control Register

Name: U1STA Offset: 0x39A

C = Clearable bit; HSC = Hardware Settable/Clearable bit

Note:

- 1. The value of this bit only affects the transmit properties of the module when the IrDA® encoder is enabled (IREN = 1).
- 2. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).

Legend: C = Clearable bit; HC = Hardware Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/ Clearable bit

Bit	15	14	13	12	11	10	9	8
	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
Access	R/W	R/W	R/W	R/W	HC/R/W	R/W	HSC/R	HSC/R
Reset	0	0	0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
	URXIS	EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
Access	R/W	R/W	R/W	HSC/R	HSC/R	HSC/R	HS/R/C	HSC/R
Reset	0	0	0	1	0	0	0	0

Bit 15 - UTXISEL1 UART Transmission Interrupt Mode Selection bit

Value of UTXISEL[1:0]	Description
11	Reserved; do not use
10	Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
01	Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
00	Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

Bit 14 – UTXINV UART IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾ IREN = 1:

Value	Description
1	U1TX Idle state is '1'
0	U1TX Idle state is '0'

<u>IREN = 0:</u>

Value	Description
1	U1TX Idle state is '0'
0	U1TX Idle state is '1'

Bit 13 – UTXISEL0 UART Transmission Interrupt Mode Selection bit See description of bit 15 – UTXISEL1.

Bit 12 - URXEN UART Receive Enable bit

Value	Description
1	Receive is enabled, U1RX pin is controlled by UART

Universal Asynchronous Receiver Transmitter ...

Value	Description
0	Receive is disabled, U1RX pin is controlled by the port

Bit 11 - UTXBRK UART Transmit Break bit

Value	Description
1	Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;
	cleared by hardware upon completion
0	Sync Break transmission is disabled or completed

Bit 10 - UTXEN UART Transmit Enable bit(2)

Value	Description
1	Transmit is enabled, U1TX pin is controlled by UART
0	Transmit is disabled, any pending transmission is aborted and the buffer is reset; U1TX pin is controlled by the port

Bit 9 - UTXBF UART Transmit Buffer Full Status bit (read-only)

Value	Description
1	Transmit buffer is full
0	Transmit buffer is not full, at least one more character can be written

Bit 8 - TRMT Transmit Shift Register Empty bit (read-only)

Value	Description
1	Fransmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
0	Fransmit Shift Register is not empty, a transmission is in progress or queued

Bits 7:6 - URXISEL[1:0] UART Receive Interrupt Mode Selection bits

Value	Description
11	Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has four data characters)
10	Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has three data characters)
0 x	Interrupt is set when any character is received and transferred from the RSR to the receive buffer;
	receive buffer has one or more characters

Bit 5 – ADDEN Address Character Detect bit (bit 8 of received data = 1)

Value	Description
1	Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect)
0	Address Detect mode is disabled

Bit 4 - RIDLE Receiver Idle bit (read-only)

	The Property fall by (road only)	
Value	Description	
1	Receiver is Idle	
0	Receiver is active	

Bit 3 - PERR Parity Error Status bit (read-only)

Value	Description
1	Parity error has been detected for the current character (the character at the top of the receive FIFO)
0	Parity error has not been detected

Bit 2 - FERR Framing Error Status bit (read-only)

Value	Description
1	Framing error has been detected for the current character (the character at the top of the receive FIFO)
0	Framing error has not been detected

Bit 1 - OERR Receive Buffer Overrun Error Status bit (clear/read-only)

Value	Description
1	Receive buffer has overflowed

Universal Asynchronous Receiver Transmitter ...

Value	Description
0	Receive buffer has not overflowed (clearing a previously set OERR bit ('1' to '0' transition) will reset the
	receive buffer and the RSR to the empty state)

Bit 0 - URXDA UART Receive Buffer Data Available bit (read-only)

Value	Description
1	Receive buffer has data, at least one more character can be read
0	Receive buffer is empty

Universal Asynchronous Receiver Transmitter ...

17.8.3 UART1 Transmit Register (Normally Write-Only)

Name: U1TXREG Offset: 0x39C

Bit	15	14	13	12	11	10	9	8
								U1TXREG[8]
Access								W
Reset								0
Bit	7	6	5	4	3	2	1	0
				U1TXR	EG[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	X

Bits 8:0 - U1TXREG[8:0] UART1 Transmission Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.4 UART1 Receive Register (Normally Read-Only)

Name: U1RXREG Offset: 0x39E

Bit	15	14	13	12	11	10	9	8
								U1RXREG[8]
Access								R
Reset								0
Bit	7	6	5	4	3	2	1	0
				U1RXR	EG[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 8:0 - U1RXREG[8:0] UART1 Receive Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.5 UART1 Baud Rate Generator Register

Name: U1BRG Offset: 0x3A0

Bit	15	14	13	12	11	10	9	8
				BRG	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BRG	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - BRG[15:0] UART1 Baud Rate Divisor bits

Universal Asynchronous Receiver Transmitter ...

17.8.6 UART2 Mode Register

Name: U2MODE Offset: 0x3AE

Note:

- 1. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).
- 2. This feature is only available for the 16x BRG mode (BRGH = 0).

Bit	15	14	13	12	11	10	9	8
	UARTEN		USIDL	IREN	RTSMD		UEN	N[1:0]
Access	R/W		R/W	R/W	R/W		R/W	R/W
Reset	0		0	0	0		0	0
Bit	7	6	5	4	3	2	1	0
	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L[1:0]	STSEL
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - UARTEN UART Enable bit(1)

١	/alue	Description
1	-	UART is enabled; all UART pins are controlled by UART as defined by UEN[1:0]
()	UART is disabled; all UART pins are controlled by port latches, UART power consumption is minimal

Bit 13 - USIDL UART Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - IREN IrDA® Encoder and Decoder Enable bit(2)

Value	Description
1	IrDA encoder and decoder are enabled
0	IrDA encoder and decoder are disabled

Bit 11 - RTSMD Mode Selection for U2RTS Pin bit

Val	lue	Description
1		U2RTS pin is in Simplex mode
0		U2RTS pin is in Flow Control mode

Bits 9:8 - UEN[1:0] UART Enable bits

Value	Description
11	U2TX, U2RX and BCLK2 pins are enabled and used; U2CTS pin is controlled by port latches
10	U2TX, U2RX, U2CTS and U2RTS pins are enabled and used
01	U2TX, U2RX and U2RTS pins are enabled and used; U2CTS pin is controlled by port latches
00	U2TX and U2RX pins are enabled and used; U2CTS and U2RTS/BCLK2 pins are controlled by port
	latches

Bit 7 - WAKE Wake-up on Start Bit Detect During Sleep Mode Enable bit

Value	Description		
1	UART continues to sample the U2RX pin; interrupt is generated on the falling edge, bit is cleared in hardware on the following rising edge		
0	No wake-up is enabled		

Bit 6 - LPBACK UART Loopback Mode Select bit

Universal Asynchronous Receiver Transmitter ...

Value	Description	
1	Enables Loopback mode	
0	Loopback mode is disabled	

Bit 5 - ABAUD Auto-Baud Enable bit

Value	Description	
1	Enables baud rate measurement on the next character – requires reception of a Sync field (55h);	
	cleared in hardware upon completion	
0	Baud rate measurement is disabled or completed	

Bit 4 - URXINV UART Receive Polarity Inversion bit

Value	Description
1	U2RX Idle state is '0'
0	U2RX Idle state is '1'

Bit 3 - BRGH High Baud Rate Enable bit

Value	Description
1	High-Speed mode (4 BRG clock cycles per bit)
0	Standard Speed mode (16 BRG clock cycles per bit)

Bits 2:1 - PDSEL[1:0] Parity and Data Selection bits

Value	Description
11	9-bit data, no parity
10	8-bit data, odd parity
01	8-bit data, even parity
00	8-bit data, no parity

Bit 0 - STSEL Stop Bit Selection bit

Value	Description
1	Two Stop bits
0	One Stop bit

Universal Asynchronous Receiver Transmitter ...

17.8.7 UART2 Status and Control Register

Name: U2STA Offset: 0x3B0

Note:

- 1. The value of this bit only affects the transmit properties of the module when the IrDA[®] encoder is enabled (IREN = 1).
- 2. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).

Legend: C = Clearable bit; HC = Hardware Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/ Clearable bit

15	14	13	12	11	10	9	8
UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
R/W	R/W	R/W	R/W	HC/R/W	R/W	HSC/R	HSC/R
0	0	0	0	0	0	0	1
7	6	5	4	3	2	1	0
URXIS	EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
R/W	R/W	R/W	HSC/R	HSC/R	HSC/R	HS/R/C	HSC/R
0	0	0	1	0	0	0	0
	UTXISEL1 R/W 0 7 URXIS	UTXISEL1 UTXINV R/W R/W 0 0 7 6 URXISEL[1:0]	UTXISEL1 UTXINV UTXISEL0 R/W R/W R/W 0 0 0 7 6 5 URXISEL[1:0] ADDEN	UTXISEL1 UTXINV UTXISEL0 URXEN R/W R/W R/W R/W 0 0 0 0 7 6 5 4 URXISEL[1:0] ADDEN RIDLE	UTXISEL1 UTXINV UTXISEL0 URXEN UTXBRK R/W R/W R/W R/W HC/R/W 0 0 0 0 0 7 6 5 4 3 URXISEL[1:0] ADDEN RIDLE PERR	UTXISEL1 UTXINV UTXISEL0 URXEN UTXBRK UTXEN R/W R/W R/W HC/R/W R/W 0 0 0 0 0 7 6 5 4 3 2 URXISEL[1:0] ADDEN RIDLE PERR FERR	UTXISEL1 UTXINV UTXISEL0 URXEN UTXBRK UTXEN UTXBF R/W R/W R/W HC/R/W R/W HSC/R 0 0 0 0 0 0 7 6 5 4 3 2 1 URXISEL[1:0] ADDEN RIDLE PERR FERR OERR

Bit 15 - UTXISEL1 UART Transmission Interrupt Mode Selection bit

Value of UTXISEL[1:0]	Description
11	Reserved; do not use
10	Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
01	Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
00	Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

Bit 14 – UTXINV UART IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾ IREN = 1:

Value	Description
1	U2TX Idle state is '1'
0	U2TX Idle state is '0'

IREN = 0:

Valu	ıe	Description
1		U2TX Idle state is '0'
0		U2TX Idle state is '1'

Bit 13 – UTXISEL0 UART Transmission Interrupt Mode Selection bit See description of bit 15 – UTXISEL1.

Bit 12 - URXEN UART Receive Enable bit

Value	Description	
1	Receive is enabled, U2RX pin is controlled by UART	
0	Receive is disabled, U2RX pin is controlled by the port	

Universal Asynchronous Receiver Transmitter ...

Bit 11 - UTXBRK UART Transmit Break bit

Value	Description						
1	Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;						
	cleared by hardware upon completion						
0	Sync Break transmission is disabled or completed						

Bit 10 - UTXEN UART Transmit Enable bit(2)

Value	Description
1	Transmit is enabled, U2TX pin is controlled by UART
0	Transmit is disabled, any pending transmission is aborted and the buffer is reset; U2TX pin is
	controlled by the port

Bit 9 - UTXBF UART Transmit Buffer Full Status bit (read-only)

Value	Description
1	Transmit buffer is full
0	Transmit buffer is not full, at least one more character can be written

Bit 8 - TRMT Transmit Shift Register Empty bit (read-only)

Value	Description
1	Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
0	Transmit Shift Register is not empty, a transmission is in progress or queued

Bits 7:6 - URXISEL[1:0] UART Receive Interrupt Mode Selection bits

Value	Description
11	Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has four data characters)
10	Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has three data characters)
0 x	Interrupt is set when any character is received and transferred from the RSR to the receive buffer;
	receive buffer has one or more characters

Bit 5 - ADDEN Address Character Detect bit (bit 8 of received data = 1)

Value	Description
1	Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect)
0	Address Detect mode is disabled

Bit 4 - RIDLE Receiver Idle bit (read-only)

Dit 4 Riber Roberton late bit (road only)					
Value	Description				
1	Receiver is Idle				
0	Receiver is active				

Bit 3 - PERR Parity Error Status bit (read-only)

Value	e Description
1	Parity error has been detected for the current character (the character at the top of the receive FIFO)
0	Parity error has not been detected

Bit 2 - FERR Framing Error Status bit (read-only)

Value	Description						
1	Framing error has been detected for the current character (the character at the top of the receive FIFO)						
0	Framing error has not been detected						

Bit 1 - OERR Receive Buffer Overrun Error Status bit (clear/read-only)

Value	Description
1	Receive buffer has overflowed
0	Receive buffer has not overflowed (clearing a previously set OERR bit ('1' to '0' transition) will reset the receive buffer and the RSR to the empty state)

Bit 0 - URXDA UART Receive Buffer Data Available bit (read-only)

Universal Asynchronous Receiver Transmitter ...

Value	Description
1	Receive buffer has data, at least one more character can be read
0	Receive buffer is empty

Universal Asynchronous Receiver Transmitter ...

17.8.8 UART2 Transmit Register (Normally Write-Only)

Name: U2TXREG Offset: 0x3B2

Bit	15	14	13	12	11	10	9	8
								U2TXREG[8]
Access								W
Reset								0
Bit	7	6	5	4	3	2	1	0
	U2TXREG[7:0]							
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	X

Bits 8:0 - U2TXREG[8:0] UART2 Transmission Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.9 UART2 Receive Register (Normally Read-Only)

Name: U2RXREG Offset: 0x3B4

Bit	15	14	13	12	11	10	9	8
								U2RXREG[8]
Access								R
Reset								0
Bit	7	6	5	4	3	2	1	0
				U2RXR	EG[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 8:0 - U2RXREG[8:0] UART2 Receive Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.10 UART2 Baud Rate Generator Register

Name: U2BRG Offset: 0x3B6

Bit	15	14	13	12	11	10	9	8
				BRG	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BRG	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - BRG[15:0] UART2 Baud Rate Divisor bits

Universal Asynchronous Receiver Transmitter ...

17.8.11 UART3 Mode Register

Name: U3MODE Offset: 0x3C4

Note:

- 1. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).
- 2. This feature is only available for the 16x BRG mode (BRGH = 0).

Bit	15	14	13	12	11	10	9	8
	UARTEN		USIDL	IREN	RTSMD		UEN	N[1:0]
Access	R/W		R/W	R/W	R/W		R/W	R/W
Reset	0		0	0	0		0	0
Bit	7	6	5	4	3	2	1	0
	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L[1:0]	STSEL
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - UARTEN UART Enable bit(1)

١	/alue	Description
1	-	UART is enabled; all UART pins are controlled by UART as defined by UEN[1:0]
()	UART is disabled; all UART pins are controlled by port latches, UART power consumption is minimal

Bit 13 - USIDL UART Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - IREN IrDA® Encoder and Decoder Enable bit(2)

Value	Description
1	IrDA encoder and decoder are enabled
0	IrDA encoder and decoder are disabled

Bit 11 - RTSMD Mode Selection for U3RTS Pin bit

Value	Description
1	U3RTS pin is in Simplex mode
0	U3RTS pin is in Flow Control mode

Bits 9:8 - UEN[1:0] UART Enable bits

Value	Description
11	U3TX, U3RX and BCLK3 pins are enabled and used; U3CTS pin is controlled by port latches
10	U3TX, U3RX, U3CTS and U3RTS pins are enabled and used
01	U3TX, U3RX and U3RTS pins are enabled and used; U3CTS pin is controlled by port latches
00	U3TX and U3RX pins are enabled and used; U3CTS and U3RTS/BCLK3 pins are controlled by port
	latches

Bit 7 - WAKE Wake-up on Start Bit Detect During Sleep Mode Enable bit

	The traine up on clair Bit Betoot Burning cloop mode Enable bit			
Value	Description			
1	UART continues to sample the U3RX pin; interrupt is generated on the falling edge, bit is cleared in			
	hardware on the following rising edge			
0	No wake-up is enabled			

Bit 6 - LPBACK UART Loopback Mode Select bit

Universal Asynchronous Receiver Transmitter ...

Value	Description
1	Enables Loopback mode
0	Loopback mode is disabled

Bit 5 - ABAUD Auto-Baud Enable bit

Value	Description			
1	Enables baud rate measurement on the next character – requires reception of a Sync field (55h);			
	cleared in hardware upon completion			
0	Baud rate measurement is disabled or completed			

Bit 4 - URXINV UART Receive Polarity Inversion bit

Value	Description
1	U3RX Idle state is '0'
0	U3RX Idle state is '1'

Bit 3 - BRGH High Baud Rate Enable bit

1	/alue	Description
1	-	High-Speed mode (4 BRG clock cycles per bit)
()	Standard Speed mode (16 BRG clock cycles per bit)

Bits 2:1 - PDSEL[1:0] Parity and Data Selection bits

Value	Description
11	9-bit data, no parity
10	8-bit data, odd parity
01	8-bit data, even parity
00	8-bit data, no parity

Bit 0 - STSEL Stop Bit Selection bit

Value	Description
1	Two Stop bits
0	One Stop bit

Universal Asynchronous Receiver Transmitter ...

17.8.12 UART3 Status and Control Register

Name: U3STA Offset: 0x3C6

Note:

- 1. The value of this bit only affects the transmit properties of the module when the IrDA[®] encoder is enabled (IREN = 1).
- 2. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).

Legend: C = Clearable bit; HC = Hardware Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/ Clearable bit

Bit	15	14	13	12	11	10	9	8
	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
Access	R/W	R/W	R/W	R/W	HC/R/W	R/W	HSC/R	HSC/R
Reset	0	0	0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
	URXISEL[1:0]		ADDEN	RIDLE	PERR	FERR	OERR	URXDA
Access	R/W	R/W	R/W	HSC/R	HSC/R	HSC/R	HS/R/C	HSC/R
Reset	0	0	0	1	0	0	0	0

Bit 15 - UTXISEL1 UART Transmission Interrupt Mode Selection bit

Value of UTXISEL[1:0]	Description
11	Reserved; do not use
10	Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
01	Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
00	Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

Bit 14 – UTXINV UART IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾ IREN = 1:

Value	Description
1	U3TX Idle state is '1'
0	U3TX Idle state is '0'

<u>IREN = 0:</u>

Valu	ue	Description
1		U3TX Idle state is '0'
0		U3TX Idle state is '1'

Bit 13 – UTXISEL0 UART Transmission Interrupt Mode Selection bit See description of bit 15 – UTXISEL1.

Bit 12 - URXEN UART Receive Enable bit

Valu	ue	Description
1		Receive is enabled, U3RX pin is controlled by UART
0		Receive is disabled, U3RX pin is controlled by the port

Universal Asynchronous Receiver Transmitter ...

Bit 11 - UTXBRK UART Transmit Break bit

Value	Description		
1	Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;		
	cleared by hardware upon completion		
0	Sync Break transmission is disabled or completed		

Bit 10 - UTXEN UART Transmit Enable bit(2)

Value	Description
1	Transmit is enabled, U3TX pin is controlled by UART
0	Transmit is disabled, any pending transmission is aborted and the buffer is reset; U3TX pin is
	controlled by the port

Bit 9 - UTXBF UART Transmit Buffer Full Status bit (read-only)

	Value	Description
	1	Transmit buffer is full
()	Transmit buffer is not full, at least one more character can be written

Bit 8 - TRMT Transmit Shift Register Empty bit (read-only)

Value	Description
1	Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
0	Transmit Shift Register is not empty, a transmission is in progress or queued

Bits 7:6 - URXISEL[1:0] UART Receive Interrupt Mode Selection bits

Value	Description
11	Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has four data characters)
10	Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has three data characters)
0 x	Interrupt is set when any character is received and transferred from the RSR to the receive buffer;
	receive buffer has one or more characters

Bit 5 - ADDEN Address Character Detect bit (bit 8 of received data = 1)

Value	Description
1	Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect)
0	Address Detect mode is disabled

Bit 4 - RIDLE Receiver Idle bit (read-only)

DICT INDE	THE TROUBLE TOUCH THE BIT (TOUGHTH)					
Value	Description					
1	Receiver is Idle					
0	Receiver is active					

Bit 3 - PERR Parity Error Status bit (read-only)

Value	e Description
1	Parity error has been detected for the current character (the character at the top of the receive FIFO)
0	Parity error has not been detected

Bit 2 - FERR Framing Error Status bit (read-only)

Value Description							
1 Framing error has been detected for the current character (the character at the top of the recei							
	0	Framing error has not been detected					

Bit 1 - OERR Receive Buffer Overrun Error Status bit (clear/read-only)

Value	Description
1	Receive buffer has overflowed
0	Receive buffer has not overflowed (clearing a previously set OERR bit ('1' to '0' transition) will reset the
	receive buffer and the RSR to the empty state)

Bit 0 - URXDA UART Receive Buffer Data Available bit (read-only)

Universal Asynchronous Receiver Transmitter ...

Value	Description			
1	Receive buffer has data, at least one more character can be read			
0 Receive buffer is empty				

Universal Asynchronous Receiver Transmitter ...

17.8.13 UART3 Transmit Register (Normally Write-Only)

Name: U3TXREG Offset: 0x3C8

Bit	15	14	13	12	11	10	9	8
								U3TXREG[8]
Access								W
Reset								0
Bit	7	6	5	4	3	2	1	0
				U3TXR	EG[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	X

Bits 8:0 - U3TXREG[8:0] UART3 Transmission Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.14 UART3 Receive Register (Normally Read-Only)

Name: U3RXREG Offset: 0x3CA

Bit	15	14	13	12	11	10	9	8
								U3RXREG[8]
Access								R
Reset								0
Bit	7	6	5	4	3	2	1	0
				U3RXR	EG[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 8:0 - U3RXREG[8:0] UART3 Receive Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.15 UART3 Baud Rate Generator Register

Name: U3BRG Offset: 0x3CC

Bit	15	14	13	12	11	10	9	8
				BRG	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BRG	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - BRG[15:0] UART3 Baud Rate Divisor bits

Universal Asynchronous Receiver Transmitter ...

17.8.16 UART4 Mode Register

Name: U4MODE Offset: 0x3D0

Note:

- 1. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).
- 2. This feature is only available for the 16x BRG mode (BRGH = 0).

Bit	15	14	13	12	11	10	9	8
	UARTEN		USIDL	IREN	RTSMD		UEN	N[1:0]
Access	R/W		R/W	R/W	R/W		R/W	R/W
Reset	0		0	0	0		0	0
Bit	7	6	5	4	3	2	1	0
	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L[1:0]	STSEL
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - UARTEN UART Enable bit(1)

Value	Description
1	UART is enabled; all UART pins are controlled by UART as defined by UEN[1:0]
0	UART is disabled; all UART pins are controlled by port latches, UART power consumption is minimal

Bit 13 - USIDL UART Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - IREN IrDA® Encoder and Decoder Enable bit(2)

Value	Description
1	IrDA encoder and decoder are enabled
0	IrDA encoder and decoder are disabled

Bit 11 – RTSMD Mode Selection for U4RTS Pin bit

Value	Description
1	U4RTS pin is in Simplex mode
0	U4RTS pin is in Flow Control mode

Bits 9:8 - UEN[1:0] UART Enable bits

Value	Description
11	U4TX, U4RX and BCLK4 pins are enabled and used; U4CTS pin is controlled by port latches
10	U4TX, U4RX, U4CTS and U4RTS pins are enabled and used
01	U4TX, U4RX and U4RTS pins are enabled and used; U4CTS pin is controlled by port latches
00	U4TX and U4RX pins are enabled and used; U4CTS and U4RTS/BCLK4 pins are controlled by port
	latches

Bit 7 - WAKE Wake-up on Start Bit Detect During Sleep Mode Enable bit

	Dit I Witte Hake up on clark bit betoot burning cloop mode Enable bit	
Value	Description	
1	UART continues to sample the U4RX pin; interrupt is generated on the falling edge, bit is cleared in hardware on the following rising edge	
0	No wake-up is enabled	

Bit 6 - LPBACK UART Loopback Mode Select bit

Universal Asynchronous Receiver Transmitter ...

Value	Description
1	Enables Loopback mode
0	Loopback mode is disabled

Bit 5 - ABAUD Auto-Baud Enable bit

Value	Description
1	Enables baud rate measurement on the next character – requires reception of a Sync field (55h);
	cleared in hardware upon completion
0	Baud rate measurement is disabled or completed

Bit 4 - URXINV UART Receive Polarity Inversion bit

Value	Description
1	U4RX Idle state is '0'
0	U4RX Idle state is '1'

Bit 3 - BRGH High Baud Rate Enable bit

Value	Description
1	High-Speed mode (4 BRG clock cycles per bit)
0	Standard Speed mode (16 BRG clock cycles per bit)

Bits 2:1 - PDSEL[1:0] Parity and Data Selection bits

Value	Description
11	9-bit data, no parity
10	8-bit data, odd parity
01	8-bit data, even parity
00	8-bit data, no parity

Bit 0 - STSEL Stop Bit Selection bit

Value	Description
1	Two Stop bits
0	One Stop bit

Universal Asynchronous Receiver Transmitter ...

17.8.17 UART4 Status and Control Register

Name: U4STA Offset: 0x3D2

Note:

- 1. The value of this bit only affects the transmit properties of the module when the IrDA[®] encoder is enabled (IREN = 1).
- 2. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).

Legend: C = Clearable bit; HC = Hardware Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/ Clearable bit

Bit	15	14	13	12	11	10	9	8
	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
Access	R/W	R/W	R/W	R/W	HC/R/W	R/W	HSC/R	HSC/R
Reset	0	0	0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
	URXIS	EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
Access	R/W	R/W	R/W	HSC/R	HSC/R	HSC/R	HS/R/C	HSC/R
Reset	0	^	0	1	0	0	0	0

Bit 15 - UTXISEL1 UART Transmission Interrupt Mode Selection bit

Value of UTXISEL[1:0]	Description
11	Reserved; do not use
10	Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
01	Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
00	Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

Bit 14 – UTXINV UART IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾ IREN = 1:

Value	Description
1	U4TX Idle state is '1'
0	U4TX Idle state is '0'

IREN = 0:

Value	Description
1	U4TX Idle state is '0'
0	U4TX Idle state is '1'

Bit 13 – UTXISEL0 UART Transmission Interrupt Mode Selection bit See description of bit 15 – UTXISEL1.

Bit 12 - URXEN UART Receive Enable bit

Value	Description
1	Receive is enabled, U4RX pin is controlled by UART
0	Receive is disabled, U4RX pin is controlled by the port

Universal Asynchronous Receiver Transmitter ...

Bit 11 - UTXBRK UART Transmit Break bit

Value	Description	
1	Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;	
	cleared by hardware upon completion	
0	Sync Break transmission is disabled or completed	

Bit 10 - UTXEN UART Transmit Enable bit(2)

Value	Description	
1	Transmit is enabled, U4TX pin is controlled by UART	
0	Transmit is disabled, any pending transmission is aborted and the buffer is reset; U4TX pin is	
	controlled by the port	

Bit 9 - UTXBF UART Transmit Buffer Full Status bit (read-only)

	Value	Description
	1	Transmit buffer is full
()	Transmit buffer is not full, at least one more character can be written

Bit 8 - TRMT Transmit Shift Register Empty bit (read-only)

Value	Description
1	Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
0	Transmit Shift Register is not empty, a transmission is in progress or queued

Bits 7:6 - URXISEL[1:0] UART Receive Interrupt Mode Selection bits

Value	Description
11	Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has four data characters)
10	Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has three data characters)
0x	Interrupt is set when any character is received and transferred from the RSR to the receive buffer;
	receive buffer has one or more characters

Bit 5 - ADDEN Address Character Detect bit (bit 8 of received data = 1)

Value	Description
1	Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect)
0	Address Detect mode is disabled

Bit 4 - RIDLE Receiver Idle bit (read-only)

D.C + 10.DL	THE TRIBLE TROUBLE TOUGH SITE (TOUGH SITE)	
Value	Description	
1	Receiver is Idle	
0	Receiver is active	

Bit 3 - PERR Parity Error Status bit (read-only)

Value	e Description
1	Parity error has been detected for the current character (the character at the top of the receive FIFO)
0	Parity error has not been detected

Bit 2 - FERR Framing Error Status bit (read-only)

		· · · · · · · · · · · · · · · · · · ·
1	Value	Description
	1	Framing error has been detected for the current character (the character at the top of the receive FIFO)
	0	Framing error has not been detected

Bit 1 - OERR Receive Buffer Overrun Error Status bit (clear/read-only)

Value	Description
1	Receive buffer has overflowed
0	Receive buffer has not overflowed (clearing a previously set OERR bit ('1' to '0' transition) will reset the receive buffer and the RSR to the empty state)

Datasheet

Bit 0 - URXDA UART Receive Buffer Data Available bit (read-only)

Universal Asynchronous Receiver Transmitter ...

Value	Description
1	Receive buffer has data, at least one more character can be read
0	Receive buffer is empty

Universal Asynchronous Receiver Transmitter ...

17.8.18 UART4 Transmit Register (Normally Write-Only)

Name: U4TXREG Offset: 0x3D4

Bit	15	14	13	12	11	10	9	8
								U4TXREG[8]
Access								W
Reset								0
Bit	7	6	5	4	3	2	1	0
				U4TXR	EG[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	X

Bits 8:0 - U4TXREG[8:0] UART4 Transmission Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.19 UART4 Receive Register (Normally Read-Only)

Name: U4RXREG Offset: 0x3D6

Bit	15	14	13	12	11	10	9	8
								U4RXREG[8]
Access								R
Reset								0
Bit	7	6	5	4	3	2	1	0
				U4RXR	EG[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 8:0 - U4RXREG[8:0] UART4 Receive Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.20 UART4 Baud Rate Generator Register

Name: U4BRG Offset: 0x3D8

Bit	15	14	13	12	11	10	9	8
				BRG	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BRG	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - BRG[15:0] UART4 Baud Rate Divisor bits

Universal Asynchronous Receiver Transmitter ...

17.8.21 UART5 Mode Register

Name: U5MODE Offset: 0x3DC

Note:

- 1. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).
- 2. This feature is only available for the 16x BRG mode (BRGH = 0).

Bit	15	14	13	12	11	10	9	8
	UARTEN		USIDL	IREN	RTSMD		UEN	N[1:0]
Access	R/W		R/W	R/W	R/W		R/W	R/W
Reset	0		0	0	0		0	0
Bit	7	6	5	4	3	2	1	0
	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L[1:0]	STSEL
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - UARTEN UART Enable bit(1)

Value	Description
1	UART is enabled; all UART pins are controlled by UART as defined by UEN[1:0]
0	UART is disabled; all UART pins are controlled by port latches, UART power consumption is minimal

Bit 13 - USIDL UART Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - IREN IrDA® Encoder and Decoder Enable bit(2)

Value	Description
1	IrDA encoder and decoder are enabled
0	IrDA encoder and decoder are disabled

Bit 11 – RTSMD Mode Selection for U5RTS Pin bit

Value	Description
1	U5RTS pin is in Simplex mode
0	U5RTS pin is in Flow Control mode

Bits 9:8 - UEN[1:0] UART Enable bits

Value	Description
11	U5TX, U5RX and BCLK5 pins are enabled and used; U5CTS pin is controlled by port latches
10	U5TX, U5RX, U5CTS and U5RTS pins are enabled and used
01	U5TX, U5RX and U5RTS pins are enabled and used; U5CTS pin is controlled by port latches
00	U5TX and U5RX pins are enabled and used; U5CTS and U5RTS/BCLK5 pins are controlled by port
	latches

Bit 7 - WAKE Wake-up on Start Bit Detect During Sleep Mode Enable bit

	Dit I White Trake up on clark bit belook burning cloop mode Enable bit		
Value	Description		
1	UART5 continues to sample the U5RX pin; interrupt is generated on the falling edge, bit is cleared in		
	hardware on the following rising edge		
0	No wake-up is enabled		

Bit 6 - LPBACK UART Loopback Mode Select bit

Universal Asynchronous Receiver Transmitter ...

Value Description	
1	Enables Loopback mode
0	Loopback mode is disabled

Bit 5 - ABAUD Auto-Baud Enable bit

Value	Description		
1	Enables baud rate measurement on the next character – requires reception of a Sync field (55h);		
	cleared in hardware upon completion		
0	Baud rate measurement is disabled or completed		

Bit 4 - URXINV UART Receive Polarity Inversion bit

Value	Description
1	U5RX Idle state is '0'
0	U5RX Idle state is '1'

Bit 3 - BRGH High Baud Rate Enable bit

Value	Description
1	High-Speed mode (4 BRG clock cycles per bit)
0	Standard Speed mode (16 BRG clock cycles per bit)

Bits 2:1 - PDSEL[1:0] Parity and Data Selection bits

Value	Description
11	9-bit data, no parity
10	8-bit data, odd parity
01	8-bit data, even parity
00	8-bit data, no parity

Bit 0 - STSEL Stop Bit Selection bit

Value	Description
1	Two Stop bits
0	One Stop bit

Universal Asynchronous Receiver Transmitter ...

17.8.22 UART5 Status and Control Register

Name: U5STA Offset: 0x3DE

Note:

- 1. The value of this bit only affects the transmit properties of the module when the IrDA[®] encoder is enabled (IREN = 1).
- 2. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).

Legend: C = Clearable bit; HC = Hardware Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/ Clearable bit

Bit	15	14	13	12	11	10	9	8
	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
Access	R/W	R/W	R/W	R/W	HC/R/W	R/W	HSC/R	HSC/R
Reset	0	0	0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
	URXIS	EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
Access	R/W	R/W	R/W	HSC/R	HSC/R	HSC/R	HS/R/C	HSC/R
Reset	0	0	0	1	0	0	0	0

Bit 15 - UTXISEL1 UART Transmission Interrupt Mode Selection bit

Value of UTXISEL[1:0]	Description
11	Reserved; do not use
10	Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
01	Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
00	Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

Bit 14 – UTXINV UART IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾ IREN = 1:

Value	Description
1	U5TX Idle state is '1'
0	U5TX Idle state is '0'

<u>IREN = 0:</u>

Value Description		Description
	1	U5TX Idle state is '0'
	0	U5TX Idle state is '1'

Bit 13 – UTXISEL0 UART Transmission Interrupt Mode Selection bit See description of bit 15 – UTXISEL1.

Bit 12 - URXEN UART Receive Enable bit

Value	Description
1	Receive is enabled, U5RX pin is controlled by UART
0	Receive is disabled, U5RX pin is controlled by the port

Universal Asynchronous Receiver Transmitter ...

Bit 11 - UTXBRK UART Transmit Break bit

Value	Description
1	Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;
	cleared by hardware upon completion
0	Sync Break transmission is disabled or completed

Bit 10 - UTXEN UART Transmit Enable bit(2)

Value	Description
1	Transmit is enabled, U5TX pin is controlled by UART
0	Transmit is disabled, any pending transmission is aborted and the buffer is reset; U5TX pin is
	controlled by the port

Bit 9 - UTXBF UART Transmit Buffer Full Status bit (read-only)

	Value	Description
	1	Transmit buffer is full
()	Transmit buffer is not full, at least one more character can be written

Bit 8 - TRMT Transmit Shift Register Empty bit (read-only)

Value	Description
1	Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
0	Transmit Shift Register is not empty, a transmission is in progress or queued

Bits 7:6 - URXISEL[1:0] UART Receive Interrupt Mode Selection bits

Value	Description
11	Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has four data characters)
10	Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has three data characters)
0x	Interrupt is set when any character is received and transferred from the RSR to the receive buffer;
	receive buffer has one or more characters

Bit 5 - ADDEN Address Character Detect bit (bit 8 of received data = 1)

Value	Description
1	Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect)
0	Address Detect mode is disabled

Bit 4 - RIDI F Receiver Idle bit (read-only)

Dit 4 Riber Rocolvol lale bit (read only)	
Value	Description
1	Receiver is Idle
0	Receiver is active

Bit 3 - PERR Parity Error Status bit (read-only)

Value	Description
1	Parity error has been detected for the current character (the character at the top of the receive FIFO)
0	Parity error has not been detected

Bit 2 - FERR Framing Error Status bit (read-only)

zit z z z z z z z z z z z z z z z z z z		it i ranning = i o ranao ar (roaa o iii)
	Value	Description
	1	Framing error has been detected for the current character (the character at the top of the receive FIFO)
	0	Framing error has not been detected

Bit 1 - OERR Receive Buffer Overrun Error Status bit (clear/read-only)

	210 1 O 21111 1 1000110 2 and o 1011 and 2111 (0.0011/100110 0.111)	
Value	Description	
1	Receive buffer has overflowed	
0	Receive buffer has not overflowed (clearing a previously set OERR bit ('1' to '0' transition) will reset the	
	receive buffer and the RSR to the empty state)	

Bit 0 - URXDA UART Receive Buffer Data Available bit (read-only)

Universal Asynchronous Receiver Transmitter ...

Value	Description
1	Receive buffer has data, at least one more character can be read
0	Receive buffer is empty

Universal Asynchronous Receiver Transmitter ...

17.8.23 UART5 Transmit Register (Normally Write-Only)

Name: U5TXREG Offset: 0x3E0

Bit	15	14	13	12	11	10	9	8
								U5TXREG[8]
Access								W
Reset								0
Bit	7	6	5	4	3	2	1	0
				U5TXR	EG[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	X

Bits 8:0 - U5TXREG[8:0] UART5 Transmission Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.24 UART5 Receive Register (Normally Read-Only)

Name: U5RXREG Offset: 0x3E2

Bit	15	14	13	12	11	10	9	8
								U5RXREG[8]
Access			•					R
Reset								0
Bit	7	6	5	4	3	2	1	0
				U5RXR	EG[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 8:0 - U5RXREG[8:0] UART5 Receive Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.25 UART5 Baud Rate Generator Register

Name: U5BRG Offset: 0x3E4

Bit	15	14	13	12	11	10	9	8
				BRG	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BRG	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - BRG[15:0] UART5 Baud Rate Divisor bits

Universal Asynchronous Receiver Transmitter ...

17.8.26 UART6 Mode Register

Name: U6MODE Offset: 0x3E8

Note:

- 1. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).
- 2. This feature is only available for the 16x BRG mode (BRGH = 0).

Bit	15	14	13	12	11	10	9	8
	UARTEN		USIDL	IREN	RTSMD		UEN	N[1:0]
Access	R/W		R/W	R/W	R/W		R/W	R/W
Reset	0		0	0	0		0	0
Bit	7	6	5	4	3	2	1	0
	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L[1:0]	STSEL
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - UARTEN UART Enable bit(1)

Value	Description
1	UART is enabled; all UART pins are controlled by UART as defined by UEN[1:0]
0	UART is disabled; all UART pins are controlled by port latches, UART power consumption is minimal

Bit 13 - USIDL UART Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - IREN IrDA® Encoder and Decoder Enable bit(2)

Value	Description
1	IrDA encoder and decoder are enabled
0	IrDA encoder and decoder are disabled

Bit 11 – RTSMD Mode Selection for $\overline{U6RTS}$ Pin bit

Value	Description
1	U6RTS pin is in Simplex mode
0	U6RTS pin is in Flow Control mode

Bits 9:8 - UEN[1:0] UART Enable bits

Value	Description
11	U6TX, U6RX and BCLK6 pins are enabled and used; U6CTS pin is controlled by port latches
10	U6TX, U6RX, U6CTS and U6RTS pins are enabled and used
01	U6TX, U6RX and U6RTS pins are enabled and used; U6CTS pin is controlled by port latches
00	U6TX and U6RX pins are enabled and used; U6CTS and U6RTS/BCLK6 pins are controlled by port
	latches

Bit 7 - WAKE Wake-up on Start Bit Detect During Sleep Mode Enable bit

	The traine up on otal 21. Detect Daining electricate 21.
Value	Description
1	UART6 continues to sample the U6RX pin; interrupt is generated on the falling edge, bit is cleared in
	hardware on the following rising edge
0	No wake-up is enabled

Bit 6 - LPBACK UART Loopback Mode Select bit

Universal Asynchronous Receiver Transmitter ...

Value	Description
1	Enables Loopback mode
0	Loopback mode is disabled

Bit 5 - ABAUD Auto-Baud Enable bit

Value	Description
1	Enables baud rate measurement on the next character – requires reception of a Sync field (55h);
	cleared in hardware upon completion
0	Baud rate measurement is disabled or completed

Bit 4 - URXINV UART Receive Polarity Inversion bit

Value	Description
1	U6RX Idle state is '0'
0	U6RX Idle state is '1'

Bit 3 - BRGH High Baud Rate Enable bit

Value	Description
1	High-Speed mode (4 BRG clock cycles per bit)
0	Standard Speed mode (16 BRG clock cycles per bit)

Bits 2:1 - PDSEL[1:0] Parity and Data Selection bits

Value	Description
11	9-bit data, no parity
10	8-bit data, odd parity
01	8-bit data, even parity
00	8-bit data, no parity

Bit 0 - STSEL Stop Bit Selection bit

Value	Description
1	Two Stop bits
0	One Stop bit

Universal Asynchronous Receiver Transmitter ...

17.8.27 UART6 Status and Control Register

Name: U6STA Offset: 0x3EA

Note:

- 1. The value of this bit only affects the transmit properties of the module when the IrDA[®] encoder is enabled (IREN = 1).
- 2. If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see 11.4 Peripheral Pin Select (PPS).

Legend: C = Clearable bit; HC = Hardware Clearable bit; HS = Hardware Settable bit; HSC = Hardware Settable/ Clearable bit

15	14	13	12	11	10	9	8
UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
R/W	R/W	R/W	R/W	HC/R/W	R/W	HSC/R	HSC/R
0	0	0	0	0	0	0	1
7	6	5	4	3	2	1	0
URXIS	EL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
R/W	R/W	R/W	HSC/R	HSC/R	HSC/R	HS/R/C	HSC/R
0	0	0	1	0	0	0	0
	UTXISEL1 R/W 0 7 URXIS	UTXISEL1 UTXINV R/W R/W 0 0 7 6 URXISEL[1:0]	UTXISEL1 UTXINV UTXISEL0 R/W R/W R/W 0 0 0 7 6 5 URXISEL[1:0] ADDEN	UTXISEL1 UTXINV UTXISEL0 URXEN R/W R/W R/W R/W 0 0 0 0 7 6 5 4 URXISEL[1:0] ADDEN RIDLE	UTXISEL1 UTXINV UTXISEL0 URXEN UTXBRK R/W R/W R/W R/W HC/R/W 0 0 0 0 0 7 6 5 4 3 URXISEL[1:0] ADDEN RIDLE PERR	UTXISEL1 UTXINV UTXISEL0 URXEN UTXBRK UTXEN R/W R/W R/W HC/R/W R/W 0 0 0 0 0 7 6 5 4 3 2 URXISEL[1:0] ADDEN RIDLE PERR FERR	UTXISEL1 UTXINV UTXISEL0 URXEN UTXBRK UTXEN UTXBF R/W R/W R/W HC/R/W R/W HSC/R 0 0 0 0 0 0 7 6 5 4 3 2 1 URXISEL[1:0] ADDEN RIDLE PERR FERR OERR

Bit 15 - UTXISEL1 UART Transmission Interrupt Mode Selection bit

Value of UTXISEL[1:0]	Description
11	Reserved; do not use
10	Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
01	Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
00	Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

Bit 14 – UTXINV UART IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾ IREN = 1:

Value	Description	
1	U6TX Idle state is '1'	
0	U6TX Idle state is '0'	

IREN = 0:

Value	Description
1	U6TX Idle state is '0'
0	U6TX Idle state is '1'

Bit 13 – UTXISEL0 UART Transmission Interrupt Mode Selection bit See description of bit 15 – UTXISEL1.

Bit 12 - URXEN UART Receive Enable bit

Va	alue	Description
1		Receive is enabled, U6RX pin is controlled by UART
0		Receive is disabled, U6RX pin is controlled by the port

Universal Asynchronous Receiver Transmitter ...

Bit 11 - UTXBRK UART Transmit Break bit

Value	Description		
1	Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;		
	cleared by hardware upon completion		
0	Sync Break transmission is disabled or completed		

Bit 10 - UTXEN UART Transmit Enable bit(2)

Value	Description
1	Transmit is enabled, U6TX pin is controlled by UART
0	Transmit is disabled, any pending transmission is aborted and the buffer is reset; U6TX pin is
	controlled by the port

Bit 9 - UTXBF UART Transmit Buffer Full Status bit (read-only)

Value	Description
1	Transmit buffer is full
0	Transmit buffer is not full, at least one more character can be written

Bit 8 - TRMT Transmit Shift Register Empty bit (read-only)

Value	Description
1	Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
0	Transmit Shift Register is not empty, a transmission is in progress or queued

Bits 7:6 - URXISEL[1:0] UART Receive Interrupt Mode Selection bits

Value	Description
11	Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has four data characters)
10	Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has three data characters)
0 x	Interrupt is set when any character is received and transferred from the RSR to the receive buffer;
	receive buffer has one or more characters

Bit 5 – ADDEN Address Character Detect bit (bit 8 of received data = 1)

Value	Description
1	Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect)
0	Address Detect mode is disabled

Bit 4 - RIDLE Receiver Idle bit (read-only)

D.C + 10.DL	L receiver raise bit (read only)
Value	Description
1	Receiver is Idle
0	Receiver is active

Bit 3 - PERR Parity Error Status bit (read-only)

Value	e Description
1	Parity error has been detected for the current character (the character at the top of the receive FIFO)
0	Parity error has not been detected

Bit 2 - FERR Framing Error Status bit (read-only)

	it i ranning = i o ranao ar (roaa o iii)
Value	Description
1	Framing error has been detected for the current character (the character at the top of the receive FIFO)
0	Framing error has not been detected

Bit 1 - OERR Receive Buffer Overrun Error Status bit (clear/read-only)

Value	Description
1	Receive buffer has overflowed
0	Receive buffer has not overflowed (clearing a previously set OERR bit ('1' to '0' transition) will reset the
	receive buffer and the RSR to the empty state)

Bit 0 - URXDA UART Receive Buffer Data Available bit (read-only)

Universal Asynchronous Receiver Transmitter ...

Value	Description
1	Receive buffer has data, at least one more character can be read
0	Receive buffer is empty

Universal Asynchronous Receiver Transmitter ...

17.8.28 UART6 Transmit Register (Normally Write-Only)

Name: U6TXREG Offset: 0x3EC

Bit	15	14	13	12	11	10	9	8
								U6TXREG[8]
Access								W
Reset								0
Bit	7	6	5	4	3	2	1	0
				U6TXR	EG[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	X

Bits 8:0 - U6TXREG[8:0] UART6 Transmission Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.29 UART6 Receive Register (Normally Read-Only)

Name: U6RXREG Offset: 0x3EE

Bit	15	14	13	12	11	10	9	8
								U6RXREG[8]
Access								R
Reset								0
Bit	7	6	5	4	3	2	1	0
				U6RXR	EG[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 8:0 - U6RXREG[8:0] UART6 Receive Data bits

Universal Asynchronous Receiver Transmitter ...

17.8.30 UART6 Baud Rate Generator Register

Name: U6BRG Offset: 0x3F0

Bit	15	14	13	12	11	10	9	8			
		BRG[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	BRG[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - BRG[15:0] UART6 Baud Rate Divisor bits

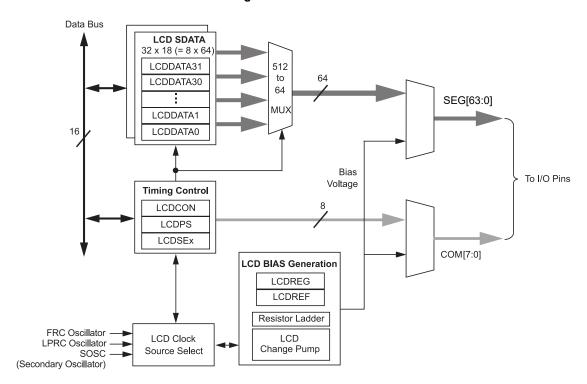
Liquid Crystal Display (LCD) Controller

18. Liquid Crystal Display (LCD) Controller

Note: This data sheet summarizes the features of the PIC24FJ512GU410 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Liquid Crystal Display (LCD)**" (DS30009740) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The Liquid Crystal Display (LCD) controller generates the data and timing control required to directly drive a static or multiplexed LCD panel. The module can drive up to eight Commons signals on all devices, and up to 64 Segments, depending on the specific device.

Note: To be driven by the LCD controller, pins must be set as analog inputs. For the port corresponding to the desired Common or Segment pin, set TRISx = 1 and ANSx = 1.


The LCD Controller has these features:

- · Direct Driving of LCD Panel
- Three LCD Clock Sources with Selectable Prescaler
- · Up to Eight Commons:
 - Static (one Common)
 - 1/2 multiplex (two Commons)
 - 1/3 multiplex (three Commons)
 - 1/4 multiplex (four Commons)
 - 1/5 multiplex (five Commons)
 - 1/6 multiplex (six Commons)
 - 1/7 multiplex (seven Commons)
 - 1/8 multiplex (eight Commons)
- · Static, 1/2 or 1/3 LCD Bias
- On-Chip Bias Generator with Dedicated Charge Pump to Support a Range of Fixed and Bias Options
- · Internal Resistors for Bias Voltage Generation
- Software Contrast Control for LCD Using Internal Biasing
- Core-Independent Automatic Display Features:
 - Dual display memory used to display two different display contents
 - Blink mode of individual pixels or the complete pixels
 - Blanking of individual pixels or the complete pixels
 - Timing schedule can be changed, without core intervention, based on user configurations

A simplified block diagram of the module is shown in Figure 18-1.

Liquid Crystal Display (LCD) Controller

Figure 18-1. LCD Controller Module Block Diagram

Liquid Crystal Display (LCD) Controller

18.1 LCD Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x053F										
0x0540	LCDCON	7:0		SLPEN	WERR	CS[1:0]		LMUX[2:0]	
0,0010	2020011	15:8	LCDEN		LCDSIDL					
0x0542	LCDREF	7:0		P[1:0]	LRLB	P[1:0]			LRLAT[2:0]	
0,0012	LODINEI	15:8	LCDIRE			LCDCST[2:0]		VLCD3PE	VLCD2PE	VLCD1PE
0x0544	LCDPS	7:0	WFT	BIASMD	LCDA	WA		LP	[3:0]	
0,0011		15:8								
0x0546	LCDDATA0	7:0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0
0,00010		15:8	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0
0x0548	LCDDATA1	7:0	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0
0,0040	LODD/II/II	15:8	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0
0x054A	LCDDATA2	7:0	S39C0	S38C0	S37C0	S36C0	S35C0	S34C0	S33C0	S32C0
0.0047	LODDAIAZ	15:8	S47C0	S46C0	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0
0x054C	LCDDATA3	7:0	S55C0	S54C0	S53C0	S52C0	S51C0	S50C0	S49C0	S48C0
0,0040	LODDAIAG	15:8	S63C0	S62C0	S61C0	S60C0	S59C0	S58C0	S57C0	S56C0
0x054E	LCDDATA4	7:0	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1
0X004L		15:8	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1
0x0550	LCDDATA5	7:0	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1
0.00000	LODDATAS	15:8	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1
0,0550	LCDDATAG	7:0	S39C1	S38C1	S37C1	S36C1	S35C1	S34C1	S33C1	S32C1
0x0552	LCDDATA6	15:8	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1
0x0554	LODDATAZ	7:0	S55C1	S54C1	S53C1	S52C1	S51C1	S50C1	S49C1	S48C1
0x0554	LCDDATA7	15:8	S63C1	S62C1	S61C1	S60C1	S59C1	S58C1	S57C1	S56C1
0x0556		7:0	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2
	LCDDATA8	15:8	S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2
0x0558		7:0	S23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2
0x0558	LCDDATA9	15:8	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2
		7:0	S39C2	S38C2	S37C2	S36C2	S35C2	S34C2	S33C2	S32C2
0x055A	LCDDATA10	15:8	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2
		7:0	S55C2	S54C2	S53C2	S52C2	S51C2	S50C2	S49C2	S48C2
0x055C	LCDDATA11	15:8	S63C2	S62C2	S61C2	S60C2	S59C2	S58C2	S57C2	S56C2
		7:0	S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3
0x055E	LCDDATA12	15:8	S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3
		7:0	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3
0x0560	LCDDATA13	15:8	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3
		7:0	S39C3	S38C3	S37C3	S36C3	S35C3	S34C3	S33C3	S32C3
0x0562	LCDDATA14	15:8	S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3
		7:0	S55C3	S54C3	S53C3	S52C3	S51C3	S50C3	S49C3	S48C3
0x0564	LCDDATA15	15:8	S63C3	S62C3	S61C3	S60C3	S59C3	S58C3	S57C3	S56C3
		7:0	S07C4	S02C3	S05C4	S04C4	S03C4	S02C4	S01C4	S00C4
0x0566	LCDDATA16	15:8	S15C4	S14C4	S13C4	S12C4	S11C4	S10C4	S09C4	S08C4
		7:0	S23C4	S22C4	S21C4	S20C4	S19C4	S18C4	S17C4	S16C4
0x0568	LCDDATA17	15:8	S31C4	S30C4	S21C4 S29C4	S28C4	S27C4	S26C4	S25C4	S24C4
		7:0	S39C4	S38C4	S37C4	S36C4	S35C4	S34C4	S33C4	S32C4
0x056A	LCDDATA18				-					-
		15:8	S47C4	S46C4	S45C4	S44C4	S43C4	S42C4	S41C4	S40C4
0x056C	LCDDATA19	7:0	S55C4	S54C4	S53C4	S52C4	S51C4	S50C4	S49C4	S48C4
		15:8	S63C4	S62C4	S61C4	S60C4	S59C4	S58C4	S57C4	S56C4
0x056E	LCDDATA20	7:0	S07C5	S06C5	S05C5	S04C5	S03C5	S02C5	S01C5	S00C5
		15:8	S15C5	S14C5	S13C5	S12C5	S11C5	S10C5	S09C5	S08C5
0x0570	LCDDATA21	7:0	S23C5	S22C5	S21C5	S20C5	S19C5	S18C5	S17C5	S16C5
		15:8	S31C5	S30C5	S29C5	S28C5	S27C5	S26C5	S25C5	S24C5
0x0572	LCDDATA22	7:0	S39C5	S38C5	S37C5	S36C5	S35C5	S34C5	S33C5	S32C5
	_	15:8	S47C5	S46C5	S45C5	S44C5	S43C5	S42C5	S41C5	S40C5

Liquid Crystal Display (LCD) Controller

conti	nued									
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0.0574	1.0DD.474.00	7:0	S55C5	S54C5	S53C5	S52C5	S51C5	S50C5	S49C5	S48C5
0x0574	LCDDATA23	15:8	S63C5	S62C5	S61C5	S60C5	S59C5	S58C5	S57C5	S56C5
00570	LODDATAGA	7:0	S07C6	S06C6	S05C6	S04C6	S03C6	S02C6	S01C6	S00C6
0x0576	LCDDATA24	15:8	S15C6	S14C6	S13C6	S12C6	S11C6	S10C6	S09C6	S08C6
0x0578	LCDDATA25	7:0	S23C6	S22C6	S21C6	S20C6	S19C6	S18C6	S17C6	S16C6
000076	LCDDATA25	15:8	S31C6	S30C6	S29C6	S28C6	S27C6	S26C6	S25C6	S24C6
0x057A	LCDDATA26	7:0	S39C6	S38C6	S37C6	S36C6	S35C6	S34C6	S33C6	S32C6
0,0077	LODDATAZO	15:8	S47C6	S46C6	S45C6	S44C6	S43C6	S42C6	S41C6	S40C6
0x057C	LCDDATA27	7:0	S55C6	S54C6	S53C6	S52C6	S51C6	S50C6	S49C6	S48C6
OXOO1 O	LODD/M/L/	15:8	S63C6	S62C6	S61C6	S60C6	S59C6	S58C6	S57C6	S56C6
0x057E	LCDDATA28	7:0	S07C7	S06C7	S05C7	S04C7	S03C7	S02C7	S01C7	S00C7
0,000.2		15:8	S15C7	S14C7	S13C7	S12C7	S11C7	S10C7	S09C7	S08C7
0x0580	LCDDATA29	7:0	S23C7	S22C7	S21C7	S20C7	S19C7	S18C7	S17C7	S16C7
		15:8	S31C7	S30C7	S29C7	S28C7	S27C7	S26C7	S25C7	S24C7
0x0582	LCDDATA30	7:0	S39C7	S38C7	S37C7	S36C7	S35C7	S34C7	S33C7	S32C7
		15:8	S47C7	S46C7	S45C7	S44C7	S43C7	S42C7	S41C7	S40C7
0x0584	LCDDATA31	7:0	S55C7	S54C7	S53C7	S52C7	S51C7	S50C7	S49C7	S48C7
		15:8	S63C7	S62C7	S61C7	S60C7	S59C7	S58C7	S57C7	S56C7
0x0586	LCDSE0	7:0	SE07	SE06	SE05	SE04	SE03	SE02	SE01	SE00
		15:8	SE15	SE14	SE13	SE12	SE11	SE10	SE09	SE08
0x0588	LCDSE1	7:0	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16
		15:8	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24
0x058A	LCDSE2	7:0 15:8	SE39 SE47	SE38 SE46	SE37	SE36 SE44	SE35 SE43	SE34 SE42	SE33 SE41	SE32 SE40
		7:0	SE47 SE55	SE46 SE54	SE45 SE53	SE44 SE52	SE43 SE51	SE42 SE50	SE41	SE40 SE48
0x058C	LCDSE3	15:8	SE63	SE62	SE61	SE60	SE51	SE50 SE58	SE49 SE57	SE46 SE56
		7:0	3203	SE02	SEUI	3200	3539	3536		EL[1:0]
0x058E	LCDREG	15:8	CPEN						CLRS	LL[1.0]
		7:0		BLANKFCS[2:0)]	BLANKM	ODF[1:0]	FCCS	S[1:0]	ELCDEN
0x0590	LCDACTRL	15:8		SMFCS[2:0]	·1		BLINKFCS[2:0]			ODE[1:0]
		7:0	SMLOCK	SMCLEAR	PMLOCK	PMCLEAR	SMEMEN	PMEMDIS		EL[1:0]
0x0592	LCDASTAT	15:8		SBLANK	SMEMACT	PMEMACT				FC0O
0.0504	1.00500	7:0			Į.	FC0				
0x0594	LCDFC0	15:8				FC0[
0x0596	LCDFC1	7:0				FC1	[7:0]			
0x0590	LCDFC1	15:8				FC1[15:8]			
0x0598	LCDFC2	7:0				FC2	[7:0]			
0.00090	LODI G2	15:8				FC2[15:8]			
0x059A	LCDEVNT	7:0				TEVEN	NT[7:0]			
0,0000	LODEVINI	15:8				TEVEN				
0x059C	LCDSDATA0	7:0	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
		15:8	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
0x059E	LCDSDATA1	7:0	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
		15:8	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
0x05A0	LCDSDATA2	7:0	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
		15:8	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
0x05A2	LCDSDATA3	7:0	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
		15:8	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
0x05A4	LCDSDATA4	7:0	S07C S15C	S06C	S05C S13C	S04C	S03C	S02C S10C	S01C	S00C
		15:8 7:0	S15C S23C	S14C S22C	S13C S21C	S12C S20C	S11C S19C	S10C S18C	S09C S17C	S08C S16C
0x05A6	LCDSDATA5	15:8	S23C S31C	S22C S30C	S21C S29C	S20C S28C	S19C S27C	S18C S26C	\$17C \$25C	S16C S24C
		7:0	S31C S39C	S30C S38C	S29C S37C	S28C S36C	S27C S35C	S26C S34C	S25C S33C	S24C S32C
0x05A8	LCDSDATA6	15:8	S47C	S36C S46C	S45C	S44C	S43C	S42C	S33C S41C	S32C S40C
		7:0	S55C	S54C	S53C	S52C	S51C	S50C	S41C	S40C S48C
0x05AA	LCDSDATA7	15:8	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
		7:0	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
0x05AC	LCDSDATA8	15:8	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
		. 3.0					•			

Liquid Crystal Display (LCD) Controller

cont	inued									
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x05AE	LCDSDATA9	7:0	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
UXUJAL	LODODATAS	15:8	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
0x05B0	LCDSDATA10	7:0	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
OXOODO	LODSDAIAIO	15:8	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
0x05B2	LCDSDATA11	7:0	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
UXUUDZ	LODODAIATI	15:8	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
0x05B4	LCDSDATA12	7:0	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
0,00004	LODOD/(I/(12	15:8	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
0x05B6	LCDSDATA13	7:0	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
ОХООВО	LODODATA	15:8	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
0x05B8	LCDSDATA14	7:0	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
000000	LODODAIAI4	15:8	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
0x05BA	LCDSDATA15	7:0	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
OXOODA	LODGDAIAIS	15:8	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
0x05BC	LCDSDATA16	7:0	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
UXUSBC	LODSDAIAIO	15:8	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
0x05BE	LCDSDATA17	7:0	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
UXUODE	LCDSDAIAT	15:8	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
0x05C0	LCDSDATA18	7:0	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
UXUSCU	LCDSDAIA16	15:8	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
0,0503	LODODATA40	7:0	S55C	S54C	S53C	S52C	S51C	S50C	S49C S48C	
0x05C2	LCDSDATA19	15:8	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
0.0504	LODODATAGO	7:0	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
0x05C4	LCDSDATA20	15:8	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
0.0500	LODODATAGA	7:0	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
0x05C6	LCDSDATA21	15:8	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
0.0500	LODODATAGO	7:0	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
0x05C8	LCDSDATA22	15:8	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
		7:0	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
0x05CA	LCDSDATA23	15:8	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
		7:0	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
0x05CC	LCDSDATA24	15:8	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
		7:0	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
0x05CE	LCDSDATA25	15:8	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
		7:0	S39C6	S38C6	S37C6	S36C6	S35C6	S34C6	S33C6	S32C6
0x05D0	LCDDATA26	15:8	S47C6	S46C6	S45C6	S44C6	S43C6	S42C6	S41C6	S40C6
		7:0	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
0x05D2	LCDSDATA27	15:8	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
		7:0	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
0x05D4	LCDSDATA28	15:8	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
0.05==		7:0	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
0x05D6	LCDSDATA29	15:8	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
		7:0	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
0x05D8	LCDSDATA30	15:8	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
		7:0	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
0x05DA	LCDSDATA31	15:8	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C

Liquid Crystal Display (LCD) Controller

18.1.1 LCD Control Register

Name: LCDCON Offset: 0x540

Legend: C = Clearable bit

Bit	15	14	13	12	11	10	9	8
	LCDEN		LCDSIDL					
Access	R/W		R/W					
Reset	0		0					
Bit	7	6	5	4	3	2	1	0
		SLPEN	WERR	CS[1:0]		LMUX[2:0]	
Access		R/W	R/C	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bit 15 - LCDEN LCD Driver Enable bit

Value	Description
1	LCD driver module is enabled
0	LCD driver module is not enabled

Bit 13 - LCDSIDL Stop LCD Drive in CPU Idle Mode Control bit

Value	Description
1	LCD driver halts in CPU Idle mode
0	LCD driver continues to operate in CPU Idle mode

Bit 6 - SLPEN LCD Driver Enable in Sleep Mode bit

ı	Value	Description
	1	LCD driver module is disabled in Sleep mode
	0	LCD driver module is enabled in Sleep mode

Bit 5 - WERR LCD Write Failed Error bit

1	Value	Description
	1	LCDDATA register is written while WA (LCDPS[4]) = 0 (must be cleared in software)
	0	No LCD write error

Bits 4:3 - CS[1:0] Clock Source Select bits

Value	Description
1x	SOSC
01	LPRC
00	FRC

Bits 2:0 - LMUX[2:0] LCD Commons Select bits

LMUX[2:0]	Multiplex	Bias
111	1/8 MUX (COM[7:0])	1/3
110	1/7 MUX (COM[6:0])	1/3
101	1/6 MUX (COM[5:0])	1/3
100	1/5 MUX (COM[4:0])	1/3
011	1/4 MUX (COM[3:0])	1/3
010	1/3 MUX (COM[2:0])	1/2 or 1/3
001	1/2 MUX (COM[1:0])	1/2 or 1/3
000	Static (COM0)	Static

Liquid Crystal Display (LCD) Controller

18.1.2 LCD Reference Ladder Control Register

Name: LCDREF Offset: 0x542

Bit	15	14	13	12	11	10	9	8
	LCDIRE			LCDCST[2:0]		VLCD3PE	VLCD2PE	VLCD1PE
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	LRLA	.P[1:0]	LRLB	P[1:0]			LRLAT[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0

Bit 15 - LCDIRE LCD Internal Reference Enable bit

Value	Description
1	Internal LCD reference is enabled and connected to the internal contrast control circuit
0	Internal LCD reference is disabled

Bits 13:11 - LCDCST[2:0] LCD Contrast Control bits

Selects the resistance of the LCD contrast control resistor ladder.

Value	Description
111	Resistor ladder is at maximum resistance (minimum contrast)
110	Resistor ladder is at 6/7th of maximum resistance
101	Resistor ladder is at 5/7th of maximum resistance
100	Resistor ladder is at 4/7th of maximum resistance
011	Resistor ladder is at 3/7th of maximum resistance
010	Resistor ladder is at 2/7th of maximum resistance
001	Resistor ladder is at 1/7th of maximum resistance
000	Minimum resistance (maximum contrast); contrast resistor is shorted

Bit 10 - VLCD3PE LCD Bias 3 Pin Enable bit

Value Description		Description
	1	Bias 3 level is connected to the external pin, LCDBIAS3
	0	Bias 3 level is internal (internal resistor ladder)

Bit 9 - VLCD2PE LCD Bias 2 Pin Enable bit

Value	Description
1	Bias 2 level is connected to the external pin, LCDBIAS2
0	Bias 2 level is internal (internal resistor ladder)

Bit 8 - VLCD1PE LCD Bias 1 Pin Enable bit

Value Description	
1	Bias 1 level is connected to the external pin, LCDBIAS1
0	Bias 1 level is internal (internal resistor ladder)

Bits 7:6 - LRLAP[1:0] LCD Reference Ladder A Time Power Control bits

During A Time Interval:

Value	Description
11	Internal LCD reference ladder is powered in High-Power mode
10	Internal LCD reference ladder is powered in Medium Power mode
01	Internal LCD reference ladder is powered in Low-Power mode
00	Internal LCD reference ladder is powered down and unconnected

Liquid Crystal Display (LCD) Controller

Bits 5:4 – LRLBP[1:0] LCD Reference Ladder B Time Power Control bits <u>During B Time Interval:</u>

Value	Description
11	Internal LCD reference ladder is powered in High-Power mode
10	Internal LCD reference ladder is powered in Medium Power mode
01	Internal LCD reference ladder is powered in Low-Power mode
00	Internal LCD reference ladder is powered down and unconnected

Bits 2:0 – LRLAT[2:0] LCD Reference Ladder A Time Interval Control bits Sets the number of 32 clock counts when the A Time Interval Power mode is active. For Type-A Waveforms (WFT = 0):

Value	Description
111	Internal LCD reference ladder is in A Power mode for 7 clocks and B Power mode for 9 clocks
110	Internal LCD reference ladder is in A Power mode for 6 clocks and B Power mode for 10 clocks
101	Internal LCD reference ladder is in A Power mode for 5 clocks and B Power mode for 11 clocks
100	Internal LCD reference ladder is in A Power mode for 4 clocks and B Power mode for 12 clocks
011	Internal LCD reference ladder is in A Power mode for 3 clocks and B Power mode for 13 clocks
010	Internal LCD reference ladder is in A Power mode for 2 clocks and B Power mode for 14 clocks
001	Internal LCD reference ladder is in A Power mode for 1 clock and B Power mode for 15 clocks
000	Internal LCD reference ladder is always in B Power mode

For Type-B Waveforms (WFT = 1):

Value	Description
111	Internal LCD reference ladder is in A Power mode for 7 clocks and B Power mode for 25 clocks
110	Internal LCD reference ladder is in A Power mode for 6 clocks and B Power mode for 26 clocks
101	Internal LCD reference ladder is in A Power mode for 5 clocks and B Power mode for 27 clocks
100	Internal LCD reference ladder is in A Power mode for 4 clocks and B Power mode for 28 clocks
011	Internal LCD reference ladder is in A Power mode for 3 clocks and B Power mode for 29 clocks
010	Internal LCD reference ladder is in A Power mode for 2 clocks and B Power mode for 30 clocks
001	Internal LCD reference ladder is in A Power mode for 1 clock and B Power mode for 31 clocks
000	Internal LCD reference ladder is always in B Power mode

Liquid Crystal Display (LCD) Controller

18.1.3 LCD Phase Register

Name: LCDPS Offset: 0x544

Bit	15	14	13	12	11	10	9	8

Access

Reset

Bit	7	6	5	4	3	2	1	0
	WFT	BIASMD	LCDA	WA		LP[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 - WFT Waveform Type Select bit

Value	Description
1	Type-B waveform (phase changes on each frame boundary)
0	Type-A waveform (phase changes within each Common type)

Bit 6 - BIASMD Bias Mode Select bit

When LMUX[2:0] = 000 or 011 through 111:

0 = Static Bias mode (do not set this bit to '1')

When LMUX[2:0] = 001 or 010:

Value	Description
1	1/2 Bias mode
0	1/3 Bias mode

Bit 5 - LCDA LCD Active Status bit

Value Description						
1	LCD driver module is active					
0	LCD driver module is inactive					

Bit 4 - WA LCD Write Allow Status bit

	V alue	Description
-	1	Write into the LCDDATAx registers is allowed
()	Write into the LCDDATAx registers is not allowed

Bits 3:0 - LP[3:0] LCD Prescaler Select bits

Value	Description
1111	1:16
1110	1:15
1101	1:14
1100	1:13
1011	1:12
1010	1:11
1001	1:10
1000	1:9
0111	1:8
0110	1:7
0101	1:6
0100	1:5
0011	1:4
0010	1:3
0001	1:2

Liquid Crystal Display (LCD) Controller

Value	Description
	200011511011
0000	1.1
0000	1-1

Liquid Crystal Display (LCD) Controller

18.1.4 LCD Data0 Register

Name: LCDDATA0 Offset: 0x546

Bit	15	14	13	12	11	10	9	8
	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C0 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S14C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S13C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S12C0 Segment Enable bit

Dit iz	Bit 12 - 01200 deginent Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 11 - S11C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S10C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S09C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S08C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Datasheet

Liquid Crystal Display (LCD) Controller

Bit 7 - S07C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S06C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 5 - S05C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S04C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S03C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S02C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S01C0 Segment Enable bit

	Die 1 Gotto Goginori Eriasio si	
Value	e Description	
1	Pixel is on	
0	Pixel is off	

Bit 0 - S00C0 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.5 LCD Data1 Register

Name: LCDDATA1 Offset: 0x548

Bit	15	14	13	12	11	10	9	8
	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C0 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S30C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S29C0 Segment Enable bit

Value Description		Description
	1	Pixel is on
	0	Pixel is off

Bit 12 - S28C0 Segment Enable bit

Dit iz	bit 12 - 02000 deginent Enable bit	
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 11 - S27C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S26C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S25C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S24C0 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S23C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S22C0 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S21C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S20C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S19C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S18C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S17C0 Segment Enable bit

Dit i Girot cogmon Linabio bit	
Value	Description
1	Pixel is on
0	Pixel is off

Bit 0 - S16C0 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.6 LCD Data2 Register

Name: LCDDATA2 Offset: 0x54A

Bit	15	14	13	12	11	10	9	8
	S47C0	S46C0	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C0	S38C0	S37C0	S36C0	S35C0	S34C0	S33C0	S32C0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C0 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S46C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S45C0 Segment Enable bit

Valu	ue Description	
1	Pixel is on	
0	Pixel is off	

Bit 12 - S44C0 Segment Enable bit

D.C 12	CTTCC Cognionic Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - \$43C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S42C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S41C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S40C0 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S39C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S38C0 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S37C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S36C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S35C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S34C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S33C0 Segment Enable bit

	21. 1 Court Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 0 - S32C0 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.7 LCD Data3 Register

Name: LCDDATA3 Offset: 0x54C

Bit	15	14	13	12	11	10	9	8
	S63C0	S62C0	S61C0	S60C0	S59C0	S58C0	S57C0	S56C0
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C0	S54C0	S53C0	S52C0	S51C0	S50C0	S49C0	S48C0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C0 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S62C0 Segment Enable bit

Value Description	
1	Pixel is on
0	Pixel is off

Bit 13 - S61C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S60C0 Segment Enable bit

Dit iz C	Bit 12 - 00000 Cogment Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 11 - S59C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S58C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S57C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S56C0 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S55C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S54C0 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S53C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S52C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S51C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S50C0 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S49C0 Segment Enable bit

	Die 1 Group Cogmon Englis bit				
Value	Description				
1	Pixel is on				
0	Pixel is off				

Bit 0 - S48C0 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.8 LCD Data4 Register

Name: LCDDATA4 Offset: 0x54E

Bit	15	14	13	12	11	10	9	8
	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 14 - S14C1 Segment Enable bit

	o. oogon =name m
Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S13C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S12C1 Segment Enable bit

Dit iz	bit 12 - 01201 deginent Enable bit	
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 11 - S11C1 Segment Enable bit

Valu	ue	Description
1		Pixel is on
0		Pixel is off

Bit 10 - S10C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S09C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S08C1 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S07C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S06C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 5 - S05C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S04C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S03C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S02C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S01C1 Segment Enable bit

D.C. 00	Dit 1 Color Cogmont Enable bit				
Value	Description				
1	Pixel is on				
0	Pixel is off				

Bit 0 - S00C1 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.9 LCD Data5 Register

Name: LCDDATA5 Offset: 0x550

Bit	15	14	13	12	11	10	9	8
	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C1	S22C1	S21C1	S20C1	S19C1	S18C1	S17C1	S16C1
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C1 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S30C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S29C1 Segment Enable bit

Valu	ue Description	
1	Pixel is on	
0	Pixel is off	

Bit 12 - S28C1 Segment Enable bit

D.C. 12	62001 Cogmon Endolo Sit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S27C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S26C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S25C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S24C1 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S23C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S22C1 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S21C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S20C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S19C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S18C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S17C1 Segment Enable bit

	Dit 1 Off Orginalit Enable bit	
Va	alue	Description
1		Pixel is on
0		Pixel is off

Bit 0 - S16C1 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.10 LCD Data6 Register

Name: LCDDATA6 Offset: 0x552

Bit	15	14	13	12	11	10	9	8
	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C1	S38C1	S37C1	S36C1	S35C1	S34C1	S33C1	S32C1
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C1 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S46C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S45C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S44C1 Segment Enable bit

Bit 12 04701 Cogmont Enable bit	
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - \$43C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S42C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S41C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S40C1 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S39C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S38C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 5 - S37C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S36C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S35C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S34C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S33C1 Segment Enable bit

Die 1 Obgen Cogmon Enable bit	
Value	Description
1	Pixel is on
0	Pixel is off

Bit 0 - S32C1 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.11 LCD Data7 Register

Name: LCDDATA7 Offset: 0x554

Bit	15	14	13	12	11	10	9	8
	S63C1	S62C1	S61C1	S60C1	S59C1	S58C1	S57C1	S56C1
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C1	S54C1	S53C1	S52C1	S51C1	S50C1	S49C1	S48C1
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C1 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S62C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S61C1 Segment Enable bit

Valu	ue Description	
1	Pixel is on	
0	Pixel is off	

Bit 12 - S60C1 Segment Enable bit

D.C	Cogmon Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S59C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S58C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S57C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S56C1 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S55C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S54C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 5 - S53C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S52C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S51C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S50C1 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S49C1 Segment Enable bit

	Sit 1 04001 Cogmon Enable bit		
V	alue	Description	
1		Pixel is on	
0		Pixel is off	

Bit 0 - S48C1 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.12 LCD Data8 Register

Name: LCDDATA8 Offset: 0x556

Bit	15	14	13	12	11	10	9	8
	S15C2	S14C2	S13C2	S12C2	S11C2	S10C2	S09C2	S08C2
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C2	S06C2	S05C2	S04C2	S03C2	S02C2	S01C2	S00C2
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 14 - S14C2 Segment Enable bit

zit i ti di i di		
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 13 - S13C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S12C2 Segment Enable bit

DIC 12 - C	Bit 12 - 01202 Geginent Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 11 - S11C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S10C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S09C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S08C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S07C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S06C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 5 - S05C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S04C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S03C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S02C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S01C2 Segment Enable bit

	Die 1 Out of State of the State					
Value	Description					
1	Pixel is on					
0	Pixel is off					

Bit 0 - S00C2 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.13 LCD Data9 Register

Name: LCDDATA9 Offset: 0x558

Bit	15	14	13	12	11	10	9	8
	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					•	_		
	S23C2	S22C2	S21C2	S20C2	S19C2	S18C2	S17C2	S16C2
Access	S23C2 R/W	S22C2 R/W	S21C2 R/W	S20C2 R/W	S19C2 R/W	S18C2 R/W	S17C2 R/W	S16C2 R/W

Bit 15 - S31C2 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S30C2 Segment Enable bit

-	Value	Description
	1	Pixel is on
	0	Pixel is off

Bit 13 - S29C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S28C2 Segment Enable bit

D.C. 12	OLOGE Cogmon Endologic
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S27C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S26C2 Segment Enable bit

Bit 10 - 02002 Geginent Enable bit	
Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S25C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S24C2 Segment Enable bit

	<u> </u>
Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S23C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S22C2 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S21C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S20C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S19C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S18C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S17C2 Segment Enable bit

	Zit i Wil W Zi Goginent Zhabie bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 0 - S16C2 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.14 LCD Data10 Register

Name: LCDDATA10 Offset: 0x55A

Bit	15	14	13	12	11	10	9	8
	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C2	S38C2	S37C2	S36C2	S35C2	S34C2	S33C2	S32C2
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C2 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S46C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S45C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S44C2 Segment Enable bit

D.C. 12	GTTGE Cogmon Endblo bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S43C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S42C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S41C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S40C2 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S39C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S38C2 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S37C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S36C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S35C2 Segment Enable bit

Value Description		Description
	1	Pixel is on
	0	Pixel is off

Bit 2 - S34C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S33C2 Segment Enable bit

	Cogment Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 0 - S32C2 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.15 LCD Data11 Register

Name: LCDDATA11 Offset: 0x55C

Bit	15	14	13	12	11	10	9	8
	S63C2	S62C2	S61C2	S60C2	S59C2	S58C2	S57C2	S56C2
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C2	S54C2	S53C2	S52C2	S51C2	S50C2	S49C2	S48C2
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C2 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S62C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S61C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S60C2 Segment Enable bit

Dit iz 0	Bit 12 - 00002 Ceginent Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 11 - S59C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S58C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S57C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S56C2 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S55C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S54C2 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S53C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S52C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S51C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S50C2 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S49C2 Segment Enable bit

D.C. 0-1	BR 1 0-1002 dogmant Endblo bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 0 - S48C2 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.16 LCD Data12 Register

Name: LCDDATA12 Offset: 0x55E

Bit	15	14	13	12	11	10	9	8
	S15C3	S14C3	S13C3	S12C3	S11C3	S10C3	S09C3	S08C3
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C3	S06C3	S05C3	S04C3	S03C3	S02C3	S01C3	S00C3
Access	R/W							
Reset	Λ	Ω	Λ	0	0	0	Λ	Ω

Bit 15 - S15C3 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S14C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S13C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S12C3 Segment Enable bit

D.C	G1200 Cogmont Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S11C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S10C3 Segment Enable bit

D.C. 10	C1000 Cogmon Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S09C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S08C3 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S07C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S06C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 5 - S05C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S04C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S03C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S02C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S01C3 Segment Enable bit

D.C. 00	Dit 1 GO TOO COGMON ENGINEER	
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 0 - S00C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.17 LCD Data13 Register

Name: LCDDATA13 Offset: 0x560

Bit	15	14	13	12	11	10	9	8
	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C3	S22C3	S21C3	S20C3	S19C3	S18C3	S17C3	S16C3
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 14 - S30C3 Segment Enable bit

Value Description		Description
	1	Pixel is on
	0	Pixel is off

Bit 13 - S29C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S28C3 Segment Enable bit

Dit iz 0	Bit 12 - 02000 Geginent Enable bit		
Value	e Description		
1	Pixel is on		
0	Pixel is off		

Bit 11 - S27C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S26C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S25C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S24C3 Segment Enable bit

	<u> </u>
Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S23C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S22C3 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S21C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S20C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S19C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S18C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S17C3 Segment Enable bit

	11 GO COGITION Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 0 - S16C3 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.18 LCD Data14 Register

Name: LCDDATA14 Offset: 0x562

Bit	15	14	13	12	11	10	9	8
	S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C3	S38C3	S37C3	S36C3	S35C3	S34C3	S33C3	S32C3
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 14 - S46C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S45C3 Segment Enable bit

Valu	ue Description	
1	Pixel is on	
0	Pixel is off	

Bit 12 - S44C3 Segment Enable bit

D.C	Cogmont Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S43C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S42C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S41C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S40C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S39C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S38C3 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S37C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S36C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S35C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S34C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S33C3 Segment Enable bit

	e i Good Cognicità Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 0 - S32C3 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.19 LCD Data15 Register

Name: LCDDATA15 Offset: 0x564

Bit	15	14	13	12	11	10	9	8
	S63C3	S62C3	S61C3	S60C3	S59C3	S58C3	S57C3	S56C3
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C3	S54C3	S53C3	S52C3	S51C3	S50C3	S49C3	S48C3
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C3 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S62C3 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 13 - S61C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S60C3 Segment Enable bit

D.C	Cogmon Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S59C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S58C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S57C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S56C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S55C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S54C3 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S53C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S52C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S51C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S50C3 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S49C3 Segment Enable bit

	Et 1 9 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
Value	Description				
1	Pixel is on				
0	Pixel is off				

Bit 0 - S48C3 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.20 LCD Data16 Register

Name: LCDDATA16 Offset: 0x566

Bit	15	14	13	12	11	10	9	8
	S15C4	S14C4	S13C4	S12C4	S11C4	S10C4	S09C4	S08C4
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C4	S06C4	S05C4	S04C4	S03C4	S02C4	S01C4	S00C4
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C4 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S14C4 Segment Enable bit

	or organism Entable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S13C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S12C4 Segment Enable bit

Bit 12 - 01204 Cogment Enable bit		
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 11 - S11C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S10C4 Segment Enable bit

D	DR 10 01004 Cogmon Enable bit	
Valu	Description	
1	Pixel is on	
0	Pixel is off	

Bit 9 - S09C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S08C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S07C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S06C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 5 - S05C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S04C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S03C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S02C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S01C4 Segment Enable bit

D.C	Bit 1 CO 104 Cogmont Endsto Sit				
Value	Description				
1	Pixel is on				
0	Pixel is off				

Bit 0 - S00C4 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.21 LCD Data17 Register

Name: LCDDATA17 Offset: 0x568

Bit	15	14	13	12	11	10	9	8
	S31C4	S30C4	S29C4	S28C4	S27C4	S26C4	S25C4	S24C4
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C4	S22C4	S21C4	S20C4	S19C4	S18C4	S17C4	S16C4
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C4 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S30C4 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 13 - S29C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S28C4 Segment Enable bit

D.C. 12	OLOG Cogmon Lindsic Sit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S27C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S26C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S25C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S24C4 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S23C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S22C4 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S21C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S20C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S19C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S18C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S17C4 Segment Enable bit

Die 1 Cognione Enable bit		
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 0 - S16C4 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.22 LCD Data18 Register

Name: LCDDATA18 Offset: 0x56A

Bit	15	14	13	12	11	10	9	8
	S47C4	S46C4	S45C4	S44C4	S43C4	S42C4	S41C4	S40C4
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C4	S38C4	S37C4	S36C4	S35C4	S34C4	S33C4	S32C4
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C4 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S46C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S45C4 Segment Enable bit

Value		Description
	1	Pixel is on
	0	Pixel is off

Bit 12 - S44C4 Segment Enable bit

Bit 12 - 04404 Geginent Enable bit		
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 11 - S43C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S42C4 Segment Enable bit

Dit 10 04204 Cogmont Enable bit	
Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S41C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S40C4 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S39C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S38C4 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S37C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S36C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S35C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S34C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S33C4 Segment Enable bit

Dit 1 00004 Cogmon Enable bit	
Value	Description
1	Pixel is on
0	Pixel is off

Bit 0 - S32C4 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.23 LCD Data19 Register

Name: LCDDATA19 Offset: 0x56C

Bit	15	14	13	12	11	10	9	8
	S63C4	S62C4	S61C4	S60C4	S59C4	S58C4	S57C4	S56C4
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C4	S54C4	S53C4	S52C4	S51C4	S50C4	S49C4	S48C4
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C4 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S62C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S61C4 Segment Enable bit

Valu	ue Description	
1	Pixel is on	
0	Pixel is off	

Bit 12 - S60C4 Segment Enable bit

Dit iz C	Sit 12 - 30004 Geginent Enable bit	
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 11 - S59C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S58C4 Segment Enable bit

D.C. 10	50004 Cogmont Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S57C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S56C4 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S55C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S54C4 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S53C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S52C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S51C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S50C4 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S49C4 Segment Enable bit

Bit 1 04004 Cogmont Enable bit		- Cognion Enable bit
V	alue	Description
1		Pixel is on
0		Pixel is off

Bit 0 - S48C4 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.24 LCD Data20 Register

Name: LCDDATA20 Offset: 0x56E

Bit	15	14	13	12	11	10	9	8
	S15C5	S14C5	S13C5	S12C5	S11C5	S10C5	S09C5	S08C5
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C5	S06C5	S05C5	S04C5	S03C5	S02C5	S01C5	S00C5
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C5 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S14C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S13C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S12C5 Segment Enable bit

DIC 12	Bit 12 - 61266 deginent Enable bit	
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 11 - S11C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S10C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S09C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S08C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S07C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S06C5 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S05C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S04C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S03C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S02C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S01C5 Segment Enable bit

D.C	DR 1 CO TOO COGMON Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 0 - S00C5 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Datasheet

Liquid Crystal Display (LCD) Controller

18.1.25 LCD Data21 Register

Name: LCDDATA21 Offset: 0x570

Bit	15	14	13	12	11	10	9	8
	S31C5	S30C5	S29C5	S28C5	S27C5	S26C5	S25C5	S24C5
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C5	S22C5	S21C5	S20C5	S19C5	S18C5	S17C5	S16C5
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C5 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S30C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S29C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S28C5 Segment Enable bit

D.C. 12	OZOGO Cogmon Znasio sit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S27C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S26C5 Segment Enable bit

Bit 10 C2000 Cogmont Endsic Sit	
Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S25C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S24C5 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S23C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S22C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 5 - S21C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S20C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S19C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S18C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S17C5 Segment Enable bit

D.C	Sk 1 01700 Cogmon Enable bit				
Value	Description				
1	Pixel is on				
0	Pixel is off				

Bit 0 - S16C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.26 LCD Data22 Register

Name: LCDDATA22 Offset: 0x572

Bit	15	14	13	12	11	10	9	8
	S47C5	S46C5	S45C5	S44C5	S43C5	S42C5	S41C5	S40C5
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C5	S38C5	S37C5	S36C5	S35C5	S34C5	S33C5	S32C5
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C5 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S46C5 Segment Enable bit

	Value	Description
	1	Pixel is on
	0	Pixel is off

Bit 13 - S45C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S44C5 Segment Enable bit

D.C. 12	St 12 04400 Cogmont Enable bit	
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 11 - S43C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S42C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S41C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S40C5 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S39C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S38C5 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S37C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S36C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S35C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S34C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S33C5 Segment Enable bit

•	At 1 Cooc Cognion Endsic Sit			
	Value	Description		
	1	Pixel is on		
	0	Pixel is off		

Bit 0 - S32C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.27 LCD Data23 Register

Name: LCDDATA23 Offset: 0x574

Bit	15	14	13	12	11	10	9	8
	S63C5	S62C5	S61C5	S60C5	S59C5	S58C5	S57C5	S56C5
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C5	S54C5	S53C5	S52C5	S51C5	S50C5	S49C5	S48C5
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C5 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S62C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S61C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S60C5 Segment Enable bit

Dit iz	Sit 12 - 600 0 deginent Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 11 - S59C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S58C5 Segment Enable bit

Bit 10 - 00000 Cegiment Enable bit			
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 9 - S57C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S56C5 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S55C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S54C5 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S53C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S52C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S51C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S50C5 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S49C5 Segment Enable bit

Dit 1 04000 Cogmont Enable bit		
	/alue	Description
	L	Pixel is on
()	Pixel is off

Bit 0 - S48C5 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.28 LCD Data24 Register

Name: LCDDATA24 Offset: 0x576

Bit	15	14	13	12	11	10	9	8
	S15C6	S14C6	S13C6	S12C6	S11C6	S10C6	S09C6	S08C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C6	S06C6	S05C6	S04C6	S03C6	S02C6	S01C6	S00C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C6 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S14C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S13C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S12C6 Segment Enable bit

D.C. 12	GIZGG Cogmont Endsic Sit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S11C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S10C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S09C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S08C6 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S07C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S06C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 5 - S05C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S04C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S03C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S02C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S01C6 Segment Enable bit

D.C. 00	100 Cogmon Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 0 - S00C6 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.29 LCD Data25 Register

Name: LCDDATA25 Offset: 0x578

Bit	15	14	13	12	11	10	9	8
	S31C6	S30C6	S29C6	S28C6	S27C6	S26C6	S25C6	S24C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C6	S22C6	S21C6	S20C6	S19C6	S18C6	S17C6	S16C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C6 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S30C6 Segment Enable bit

ziti. Ottov orginom znazio zn		
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 13 - S29C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S28C6 Segment Enable bit

D.C. 12	62000 cogmon Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S27C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S26C6 Segment Enable bit

Dit 10 02000 Cogmon Enable bit		oogmont Enable bit
	Value	Description
	1	Pixel is on
	0	Pixel is off

Bit 9 - S25C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S24C6 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S23C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S22C6 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S21C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S20C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S19C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S18C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S17C6 Segment Enable bit

_		True Cogmon Enable Sit		
١	/alue	Description		
1	_	Pixel is on		
C)	Pixel is off		

Bit 0 - S16C6 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.30 LCD Data26 Register

Name: LCDDATA26 Offset: 0x57A

Bit	15	14	13	12	11	10	9	8
	S47C6	S46C6	S45C6	S44C6	S43C6	S42C6	S41C6	S40C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C6	S38C6	S37C6	S36C6	S35C6	S34C6	S33C6	S32C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C6 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S46C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S45C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S44C6 Segment Enable bit

D.C	Cogmon Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S43C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S42C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S41C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S40C6 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S39C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S38C6 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S37C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S36C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S35C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S34C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S33C6 Segment Enable bit

D.C	Dit i Cocco Cogmont Enable bit					
Value	Description					
1	Pixel is on					
0	Pixel is off					

Bit 0 - S32C6 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.31 LCD Data27 Register

Name: LCDDATA27 Offset: 0x57C

Bit	15	14	13	12	11	10	9	8
	S63C6	S62C6	S61C6	S60C6	S59C6	S58C6	S57C6	S56C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C6	S54C6	S53C6	S52C6	S51C6	S50C6	S49C6	S48C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C6 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S62C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S61C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S60C6 Segment Enable bit

Dit iz 0	Bit 12 - 30000 Cegiment Enable bit	
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 11 - S59C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S58C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S57C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S56C6 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S55C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S54C6 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S53C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S52C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S51C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S50C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S49C6 Segment Enable bit

D.C. 1	Sk 1 04000 Cogmon Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 0 - S48C6 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.32 LCD Data28 Register

Name: LCDDATA28 Offset: 0x57E

Bit	15	14	13	12	11	10	9	8
	S15C7	S14C7	S13C7	S12C7	S11C7	S10C7	S09C7	S08C7
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C7	S06C7	S05C7	S04C7	S03C7	S02C7	S01C7	S00C7
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C7 Segment Enable bit

1	Value	Description
ſ	1	Pixel is on
	0	Pixel is off

Bit 14 - S14C7 Segment Enable bit

zit i ti		
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 13 - S13C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S12C7 Segment Enable bit

DIC 12 - C	Bit 12 - 01201 Geginent Enable bit		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 11 - S11C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S10C7 Segment Enable bit

٠.	Dit 10 01001 Cogmont Enable bit		
V	alue	Description	
1		Pixel is on	
0		Pixel is off	

Bit 9 - S09C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S08C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S07C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S06C7 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S05C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S04C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S03C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S02C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S01C7 Segment Enable bit

_	Dit i Goror cogment Enable bit			
١	/alue	Description		
1	_	Pixel is on		
()	Pixel is off		

Bit 0 - S00C7 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.33 LCD Data29 Register

Name: LCDDATA29 Offset: 0x580

Bit	15	14	13	12	11	10	9	8
	S31C7	S30C7	S29C7	S28C7	S27C7	S26C7	S25C7	S24C7
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C7	S22C7	S21C7	S20C7	S19C7	S18C7	S17C7	S16C7
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 14 - S30C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S29C7 Segment Enable bit

Valu	ue Description	
1	Pixel is on	
0	Pixel is off	

Bit 12 - S28C7 Segment Enable bit

D.C. 12	Sk 12 G2GG Cogmont Endsic Sk	
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 11 - S27C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S26C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S25C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S24C7 Segment Enable bit

Value	Description	
1	Pixel is on	
0	Pixel is off	

Liquid Crystal Display (LCD) Controller

Bit 7 - S23C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S22C7 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S21C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S20C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S19C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S18C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S17C7 Segment Enable bit

Dit i Giffer Cognicit Enable bit	
Value	Description
1	Pixel is on
0	Pixel is off

Bit 0 - S16C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.34 LCD Data30 Register

Name: LCDDATA30 Offset: 0x582

Bit	15	14	13	12	11	10	9	8
	S47C7	S46C7	S45C7	S44C7	S43C7	S42C7	S41C7	S40C7
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C7	S38C7	S37C7	S36C7	S35C7	S34C7	S33C7	S32C7
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C7 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S46C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S45C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 12 - S44C7 Segment Enable bit

,	Die 12 G 11G1 G G 11G1 G K		
Value	Description		
1	Pixel is on		
0	Pixel is off		

Bit 11 - \$43C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S42C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 9 - S41C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S40C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S39C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S38C7 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S37C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S36C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 3 - S35C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S34C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S33C7 Segment Enable bit

 Die 1 Goginalie Eliabia bit		
Value	Description	
1	Pixel is on	
0	Pixel is off	

Bit 0 - S32C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.35 LCD Data31 Register

Name: LCDDATA31 Offset: 0x584

Bit	15	14	13	12	11	10	9	8
	S63C7	S62C7	S61C7	S60C7	S59C7	S58C7	S57C7	S56C7
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C7	S54C7	S53C7	S52C7	S51C7	S50C7	S49C7	S48C7
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C7 Segment Enable bit

٧	'alue	Description
1		Pixel is on
0		Pixel is off

Bit 14 - S62C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 13 - S61C7 Segment Enable bit

Valu	ue Description	
1	Pixel is on	
0	Pixel is off	

Bit 12 - S60C7 Segment Enable bit

D.C	Cognon Enable bit
Value	Description
1	Pixel is on
0	Pixel is off

Bit 11 - S59C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 10 - S58C7 Segment Enable bit

Bit 10 - 00007 Geginent Enable bit		er eegment Enable bit
	Value	Description
	1	Pixel is on
	0	Pixel is off

Bit 9 - S57C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 8 - S56C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Liquid Crystal Display (LCD) Controller

Bit 7 - S55C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 6 - S54C7 Segment Enable bit

Valu	ıe	Description
1		Pixel is on
0		Pixel is off

Bit 5 - S53C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 4 - S52C7 Segment Enable bit

zit i eeze eegiiieni ziidaa an		or organism Emalia an
	Value	Description
	1	Pixel is on
	0	Pixel is off

Bit 3 - S51C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 2 - S50C7 Segment Enable bit

Value	Description
1	Pixel is on
0	Pixel is off

Bit 1 - S49C7 Segment Enable bit

Bit i Cacor Cognicit English bit		27 Cognion Enable bit
Val	lue	Description
1		Pixel is on
0		Pixel is off

Bit 0 - S48C7 Segment Enable bit

١	/alue	Description
1		Pixel is on
C)	Pixel is off

Liquid Crystal Display (LCD) Controller

18.1.36 LCD Segment Enable Register 0

Name: LCDSE0 Offset: 0x586

Bit	15	14	13	12	11	10	9	8
	SE15	SE14	SE13	SE12	SE11	SE10	SE09	SE08
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SE07	SE06	SE05	SE04	SE03	SE02	SE01	SE00
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - SE15 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 14 - SE14 Segment Enable bit

	<u> </u>
Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 13 - SE13 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 12 - SE12 Segment Enable bit

	TE GUITE GOGINER Eliable Sit	
Value	Description	
1	Segment function of the pin is enabled, digital I/O is disabled	
0	Segment function of the pin is disabled, digital I/O is enabled	

Bit 11 - SE11 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 10 - SE10 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 9 - SE09 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 8 - SE08 Segment Enable bit

	··· J
Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Liquid Crystal Display (LCD) Controller

Bit 7 - SE07 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 6 - SE06 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 5 - SE05 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 4 - SE04 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 3 - SE03 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 2 - SE02 Segment Enable bit

Val	lue	Description
1		Segment function of the pin is enabled, digital I/O is disabled
0		Segment function of the pin is disabled, digital I/O is enabled

Bit 1 - SE01 Segment Enable bit

Value	Description	
1	Segment function of the pin is enabled, digital I/O is disabled	
0	Segment function of the pin is disabled, digital I/O is enabled	

Bit 0 - SE00 Segment Enable bit

Vá	alue	Description
1		Segment function of the pin is enabled, digital I/O is disabled
0		Segment function of the pin is disabled, digital I/O is enabled

Liquid Crystal Display (LCD) Controller

18.1.37 LCD Segment Enable Register 1

Name: LCDSE1 Offset: 0x588

Bit	15	14	13	12	11	10	9	8
	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - SE31 Segment Enable bit

Valu	e Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 14 - SE30 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 13 - SE29 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 12 - SE28 Segment Enable bit

D.C	CLIC Cognicit Enable bit
Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 11 - SE27 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 10 - SE26 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 9 - SE25 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 8 - SE24 Segment Enable bit

	<u> </u>
Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Liquid Crystal Display (LCD) Controller

Bit 7 - SE23 Segment Enable bit

Value	Description				
1	Segment function of the pin is enabled, digital I/O is disabled				
0	Segment function of the pin is disabled, digital I/O is enabled				

Bit 6 - SE22 Segment Enable bit

Value	Description				
1	Segment function of the pin is enabled, digital I/O is disabled				
0	Segment function of the pin is disabled, digital I/O is enabled				

Bit 5 - SE21 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 4 - SE20 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 3 - SE19 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 2 - SE18 Segment Enable bit

Val	lue	Description
1		Segment function of the pin is enabled, digital I/O is disabled
0		Segment function of the pin is disabled, digital I/O is enabled

Bit 1 - SE17 Segment Enable bit

	zit i dan daginan andara an				
Value	alue Description				
1	Segment function of the pin is enabled, digital I/O is disabled				
0	Segment function of the pin is disabled, digital I/O is enabled				

Bit 0 - SE16 Segment Enable bit

Vá	alue	Description
1		Segment function of the pin is enabled, digital I/O is disabled
0		Segment function of the pin is disabled, digital I/O is enabled

Liquid Crystal Display (LCD) Controller

18.1.38 LCD Segment Enable Register 2

Name: LCDSE2 Offset: 0x58A

Bit	15	14	13	12	11	10	9	8
	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32
Access	R/W							
Reset	Λ	Ω	0	Λ	0	0	Λ	Ω

Bit 15 - SE47 Segment Enable bit

Value	Description				
1	Segment function of the pin is enabled, digital I/O is disabled				
0	Segment function of the pin is disabled, digital I/O is enabled				

Bit 14 - SE46 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 13 - SE45 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 12 - SE44 Segment Enable bit

Dit 12 Galli Cognicit Endolo Sit	
Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 11 - SE43 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 10 - SE42 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 9 - SE41 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 8 - SE40 Segment Enable bit

	<u> </u>
Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Liquid Crystal Display (LCD) Controller

Bit 7 - SE39 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 6 - SE38 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 5 - SE37 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 4 - SE36 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 3 - SE35 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 2 - SE34 Segment Enable bit

Val	lue	Description
1		Segment function of the pin is enabled, digital I/O is disabled
0		Segment function of the pin is disabled, digital I/O is enabled

Bit 1 - SE33 Segment Enable bit

	-oo oogon =
Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 0 - SE32 Segment Enable bit

Vá	alue	Description
1		Segment function of the pin is enabled, digital I/O is disabled
0		Segment function of the pin is disabled, digital I/O is enabled

Liquid Crystal Display (LCD) Controller

18.1.39 LCD Segment Enable Register 3

Name: LCDSE3 Offset: 0x58C

Bit	15	14	13	12	11	10	9	8
	SE63	SE62	SE61	SE60	SE59	SE58	SE57	SE56
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SE55	SE54	SE53	SE52	SE51	SE50	SE49	SE48
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - SE63 Segment Enable bit

Valu	e Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 14 - SE62 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 13 - SE61 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 12 - SE60 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 11 - SE59 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 10 - SE58 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 9 - SE57 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 8 - SE56 Segment Enable bit

	<u> </u>
Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Liquid Crystal Display (LCD) Controller

Bit 7 - SE55 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 6 - SE54 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 5 - SE53 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 4 - SE52 Segment Enable bit

Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 3 - SE51 Segment Enable bit

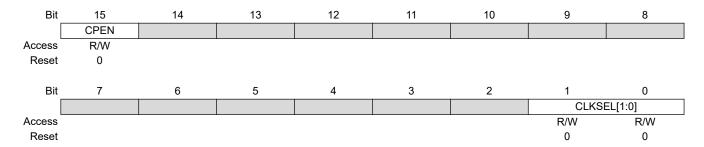
Value	Description
1	Segment function of the pin is enabled, digital I/O is disabled
0	Segment function of the pin is disabled, digital I/O is enabled

Bit 2 - SE50 Segment Enable bit

Val	lue	Description
1		Segment function of the pin is enabled, digital I/O is disabled
0		Segment function of the pin is disabled, digital I/O is enabled

Bit 1 - SE49 Segment Enable bit

Value	Description		
1	Segment function of the pin is enabled, digital I/O is disabled		
0	Segment function of the pin is disabled, digital I/O is enabled		


Bit 0 - SE48 Segment Enable bit

Vá	alue	Description
1		Segment function of the pin is enabled, digital I/O is disabled
0		Segment function of the pin is disabled, digital I/O is enabled

Liquid Crystal Display (LCD) Controller

18.1.40 LCD Charge Pump Control Register

Name: LCDREG Offset: 0x58E

Bit 15 - CPEN 3.6V Charge Pump Enable bit

Value	Description
1	The regulator generates the highest (3.6V) voltage
0	Highest voltage in the system is supplied externally (AV _{DD})

Bits 1:0 - CLKSEL[1:0] Regulator Clock Select Control bits

Value	Description
11	SOSC
10	8 MHz FRC
01	32 kHz LPRC
00	Disables regulator and floats regulator voltage output

Liquid Crystal Display (LCD) Controller

18.1.41 LCD Automatic Control Register

Name: LCDACTRL Offset: 0x590

Note:

- 1. Secondary memory is selected for pixel enable to Blink or Blank when BLINKMODE[1:0] = 01 | BLANKMODE[1:0] = 01.
- 2. Secondary memory is used to store data to display or select the pixel to Blink or Blank.
- 3. The FC1 is used when Blink mode is not selected (i.e., BLINKMODE[1:0] = 00 | 11).
- 4. The FC2 is used when Blank mode is not selected (i.e., BLANKMODE[1:0] = 00 | 11).
- 5. Frame counter selection switchover based on time event.
- 6. Pixel will alternate between ON and OFF state at the frequency given by the selected frame counter.
- The FC0 is used when secondary memory is not selected with switchover function (i.e., DMSEL[1:0] = 00 or 01).
- 8. Blink mode ON state is effective to the pixel when Blank mode is off.
- 9. Blink mode OFF state drives '0' to the pixel.
- 10. One-time Blank continues to Blank until a user changes the Blank mode to enable or disable the enhanced LCD feature (clears ELCDEN), or SBLANK is clear.
- 11. In One-Time Blank Configuration mode, the pixel continues to Blink (to alternate between on and off) until the timer event happens.

Legend: C = Clearable bit

Bit	15	14	13	12	11	10	9	8
		SMFCS[2:0]		BLINKFCS[2:0]			BLINKMODE[1:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		BLANKFCS[2:0]		BLANKM	ODE[1:0]	FCC	S[1:0]	ELCDEN
Access	R/C	R/C	R/C	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:13 – SMFCS[2:0] Frame Counter Selection for Data Memory Selection bits $^{(1,2,3,4,5)}$ When DMSEL[1:0] = 10 (one-time switchover from current display memory to another memory):

	Value	Description			
	001	Selects Frame Counter 0 (FC0)			
000 Reserved		Reserved			

When DMSEL[1:0] = 11 (continues to switch over from one memory to another memory):

Value	Description
011	Reserved
010	Selects Frame Counter 0 (FC0), then continues with Frame Counter 1 (FC1) at the frequency given by the time event
001	Selects Frame Counter 0 (FC0)
010	Reserved

When DMSEL[1:0] = 11 (continues to switch over from one memory to another with a repeated pattern):

Value	Description
111	Reserved
110	Reserved

Liquid Crystal Display (LCD) Controller

continued	continued				
Value	Description				
101	Reserved				
100	Alternates between FC0 and FC1 at the frequency given by the time event				

Bits 12:10 – BLINKFCS[2:0] Frame Counter Selection for Blink Selection bits (BLINKMODE = 01 or 10)(4,5,6,7)

Value	Description
111	Reserved
110	Reserved
101	Reserved
100	Alternates between FC0 and FC1 at the frequency given by the time event (repeated pattern)
011	Reserved
010	Selects Frame Counter 0 (FC0), then continues with Frame Counter 1 (FC1) at the frequency given by
	the time event
001	Selects Frame Counter 1 (FC1)
000	Reserved

Bits 9:8 - BLINKMODE[1:0] Blink Mode bits(8,9)

	Dank time Dali Trej Dinik time de Dite
Value	Description
11	Reserved
10	Blink mode is enabled with all pixels
01	Blink mode is enabled with selected pixels (when DMSEL[1:0] = 00)
00	Blink mode is disabled

Bits 7:5 – BLANKFCS[2:0] Blank Operation Selection from Frame Counter Selection bits(3,5,6,7,10,11) (when BLANKMODE[1:0] = 01 or 10)

Value	Description
111	Reserved
110	One-time Blank selects Frame Counter 2 (FC2) by the time event ^(10,11)
101	Reserved
100	Alternates between FC0 and FC1 at the frequency given by the time event (repeated pattern)
011	Reserved
010	Selects Frame Counter 0 (FC0), then continues with Frame Counter 1 (FC1) at the frequency given by
	the time event
001	Selects Frame Counter 2 (FC2)
000	Reserved

Bits 4:3 - BLANKMODE[1:0] Blank Mode bits

Value	Description
11	Reserved
10	Blank mode is enabled with all pixels
01	Blank mode is enabled with selected pixels (when DMSEL[1:0] = 00)
00	Blank mode is disabled

Bits 2:1 - FCCS[1:0] Clock Source bits

Value	Description
11	CLC2
10	CLC1
01	RTCC
00	LCD clock

Bit 0 - ELCDEN Enhancement LCD Enable bit

Value	Description
1	Enhancement function is enabled
0	Enhancement function is disabled

Liquid Crystal Display (LCD) Controller

18.1.42 LCD Automatic Status Register

Name: LCDASTAT Offset: 0x592

Note:

- 1. Reflects BLANKFCS[2:0] = 110 status.
- 2. It is the user's responsibility to clear the bit to make LCD active.
- 3. This bit is cleared by hardware when user changes Blank mode = 0 or clears the ELCDEN bit.
- 4. This flag bit is used to generate an enhanced feature interrupt.
- 5. This bit is effective when SMEMEN = 1; otherwise, the write follows the Write Allow bit, WA (LCDPS[4]).
- 6. When the PMLOCK bit is set, it does not allow the user to write to the primary memory.
- 7. When the SMLOCK bit is set, it does not allow user to write to the secondary memory.

Legend: C = Clearable bit

Bit	15	14	13	12	11	10	9	8
		SBLANK	SMEMACT	PMEMACT	TEVENTO	FC2O	FC1O	FC0O
Access		R/W	R/W	R/W	R/C	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SMLOCK	SMCLEAR	PMLOCK	PMCLEAR	SMEMEN	PMEMDIS	DMSE	L[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 14 - SBLANK Blank Status bit (1,2,3,4)

Value	Description
1	Pixels are in continuous Blank
0	Pixels are not in continuous Blank

Bit 13 - SMEMACT Secondary Memory Active bit

Value	Description
1	Data display is from secondary memory
0	Data display is not from secondary memory

Bit 12 - PMEMACT Primary Memory Active bit

Value	Description
1	Data display is from primary memory
0	Data display is not from primary memory

Bit 11 - TEVENTO Time Event Overflow bit

	Value	Description
	1	This flag is set when the time event overflows
-)	Time event does not overflow

Bit 10 - FC2O Frame Counter 2 Overflow bit

Value	Description
1	This flag is set when Frame Counter 2 overflows
0	Frame Counter 2 does not overflow

Bit 9 - FC10 Frame Counter 1 Overflow bit

Value	Description
1	This flag is set when Frame Counter 1 overflows
0	Frame Counter 1 does not overflow

Liquid Crystal Display (LCD) Controller

Bit 8 - FC00 Frame Counter 0 Overflow bit

Value	Description
1	This flag is set when Frame Counter 0 overflows
0	Frame Counter 0 does not overflow

Bit 7 - SMLOCK Secondary Memory Lock Enable bit⁽⁷⁾

Value	Description
1	Secondary memory is locked
0	Secondary memory is unlocked

Bit 6 - SMCLEAR Secondary Memory Clear Enable bit

Value	Description
1	Writing a '1' to this bit clears secondary memory immediately
0	Writing a '0' to this bit has no effect

Bit 5 - PMLOCK Primary Memory Lock Enable bit (5,6)

Value	Description
1	Primary memory is locked
0	Primary memory is unlocked

Bit 4 - PMCLEAR Primary Memory Clear Enable bit

Value	Description
1	Writing a '1' to this bit clears primary memory immediately
0	Writing a '0' to this bit has no effect

Bit 3 - SMEMEN Secondary Memory Clear Enable bit

Value	Description
1	Secondary memory is enabled
0	Secondary memory is disabled

Bit 2 - PMEMDIS Primary Memory Disable bit

Bit 2 — I MEMBIO I fillidiy Memory Bisable bit							
Value	Description						
1	Primary memory is disabled						
0	Primary memory is enabled						

Bits 1:0 - DMSEL[1:0] Data Memory Selection bits

Value	Description
11	Continues alternating selection between primary and secondary memories based on SMFCS[2:0]
10	Alternates selection between primary and secondary memories on SMFCS[2:0]
01	Selects secondary memory as display memory
00	Selects primary memory as display memory

Liquid Crystal Display (LCD) Controller

18.1.43 LCD Frame Counter 0 Register

Name: LCDFC0 Offset: 0x594

Note:

1. It is recommended to make the FCx values to be multiples of the frame frequency.

2. FCx value must be greater than two.

Bit	15	14	13	12	11	10	9	8
				FC0[[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FC0[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - FC0[15:0] Time Base Value bits^(1,2)

These bits define the overflow value.

Liquid Crystal Display (LCD) Controller

18.1.44 LCD Frame Counter 1 Register

Name: LCDFC1 Offset: 0x596

Note:

1. It is recommended to make the FCx values to be multiples of the frame frequency.

2. FCx value must be greater than two.

Bit	15	14	13	12	11	10	9	8
				FC1	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				FC1	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - FC1[15:0] Time Base Value bits(1,2)

These bits define the overflow value.

Liquid Crystal Display (LCD) Controller

18.1.45 LCD Frame Counter 2 Register

Name: LCDFC2 Offset: 0x598

Note:

1. It is recommended to make the FCx values to be multiples of the frame frequency.

2. FCx value must be greater than two.

Bit	15	14	13	12	11	10	9	8
				FC2[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				FC2	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - FC2[15:0] Time Base Value bits(1,2)

These bits define the overflow value.

Liquid Crystal Display (LCD) Controller

18.1.46 LCD Time Event Selection Register

Name: LCDEVNT Offset: 0x59A

Note:

- 1. The TEVENT value should be a multiple of the frame frequency.
- 2. The TEVENT value should be greater than the FCx value.

The overflow is (TEVENT * 16 ±1); the TEVENT overflow gets ±1 based on the TEVENT ratio with the FCx overflow.

Bit	15	14	13	12	11	10	9	8		
	TEVENT[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	TEVENT[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - TEVENT[15:0] Time Base Event Value bits(1,2,3)

These bits define the time event value.

Liquid Crystal Display (LCD) Controller

18.1.47 LCD SData Register 0

Name: LCDSDATA0 Offset: 0x59C

Bit	15	14	13	12	11	10	9	8
	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S14C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S13C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S12C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S11C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S10C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S09C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S08C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S07C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S06C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S05C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S04C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S03C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S02C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S01C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S00C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.48 LCD SData Register 1

Name: LCDSDATA1 Offset: 0x59E

Bit	15	14	13	12	11	10	9	8
	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S30C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S29C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S28C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S27C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S26C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S25C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S24C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S23C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 6 – S22C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S21C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S20C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S19C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S18C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S17C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S16C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.49 LCD SData Register 2

Name: LCDSDATA2 Offset: 0x5A0

Bit	15	14	13	12	11	10	9	8
	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
Access	R/W							

Bit 15 - S47C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S46C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S45C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S44C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S43C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S42C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S41C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S40C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S39C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S38C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S37C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S36C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S35C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S34C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S33C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

V	alue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 0 - S32C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.50 LCD SData Register 3

Name: LCDSDATA3 Offset: 0x5A2

Bit	15	14	13	12	11	10	9	8
	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S62C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S61C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Datasheet

Bit 12 - S60C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S59C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S58C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S57C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S56C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S55C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S54C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S53C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S52C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S51C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S50C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S49C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S48C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.51 LCD SData Register 4

Name: LCDSDATA4 Offset: 0x5A4

Bit	15	14	13	12	11	10	9	8
	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
Access	R/W							
Reset	Λ	0	0	0	0	0	Λ	0

Bit 15 - S15C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S14C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S13C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S12C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S11C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S10C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S09C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S08C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S07C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S06C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S05C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S04C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 - S03C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S02C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S01C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S00C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.52 LCD SData Register 5

Name: LCDSDATA5 Offset: 0x5A6

Bit	15	14	13	12	11	10	9	8
	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value Description		Description
	1	Pixel on (dark)
	0	Pixel off (clear)

Bit 14 - S30C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S29C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S28C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S27C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S26C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S25C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S24C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S23C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S22C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S21C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S20C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 - S19C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S18C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

1	/alue	Description
	L	Pixel is selected for Blink or Blank
-)	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S17C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S16C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Datasheet

Liquid Crystal Display (LCD) Controller

18.1.53 LCD SData Register 6

Name: LCDSDATA6 Offset: 0x5A8

Bit	15	14	13	12	11	10	9	8
	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S46C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S45C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S44C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S43C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S42C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S41C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S40C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S39C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value Description

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S38C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S37C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S36C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S35C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S34C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S33C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 – S32C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.54 LCD SData Register 7

Name: LCDSDATA7 Offset: 0x5AA

Bit	15	14	13	12	11	10	9	8
	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S62C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S61C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S60C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S59C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

١	/alue	Description
	L	Pixel is selected for Blink or Blank
()	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S58C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S57C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S56C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S55C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S54C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S53C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S52C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S51C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 2 – \$50C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 1 – S49C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 0 – S48C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Liquid Crystal Display (LCD) Controller

18.1.55 LCD SData Register 8

Name: LCDSDATA8 Offset: 0x5AC

Bit	15	14	13	12	11	10	9	8
	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S14C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S13C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S12C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S11C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S10C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S09C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S08C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S07C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S06C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S05C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S04C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – \$03C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S02C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 1 - S01C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 0 - S00C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Liquid Crystal Display (LCD) Controller

18.1.56 LCD SData Register 9

Name: LCDSDATA9 Offset: 0x5AE

Bit	15	14	13	12	11	10	9	8
	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 14 - S30C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 13 - S29C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 12 - S28C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S27C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

١	/alue	Description
1	-	Pixel is selected for Blink or Blank
()	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S26C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S25C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S24C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S23C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S22C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S21C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S20C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 - S19C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S18C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S17C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

V	alue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 0 - S16C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.57 LCD SData Register 10

Name: LCDSDATA10

Offset: 0x5B0

Bit	15	14	13	12	11	10	9	8
	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S46C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S45C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S44C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S43C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S42C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S41C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S40C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S39C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S38C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S37C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S36C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S35C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description					
1	Pixel is selected for Blink or Blank					
0	Pixel is not selected for Blink or Blank					

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S34C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S33C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description					
1	Pixel is selected for Blink or Blank					
0	Pixel is not selected for Blink or Blank					

Else

V	alue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 0 - S32C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.58 LCD SData Register 11

Name: LCDSDATA11 Offset: 0x5B2

Bit	15	14	13	12	11	10	9	8
	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S62C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S61C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S60C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S59C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S58C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S57C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S56C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S55C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – \$54C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S53C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S52C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

ı	Value	Description
	1	Pixel is selected for Blink or Blank
	0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S51C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 2 – \$50C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 1 – S49C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 0 – S48C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Liquid Crystal Display (LCD) Controller

18.1.59 LCD SData Register 12

Name: LCDSDATA12

Offset: 0x5B4

Bit	15	14	13	12	11	10	9	8
	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
Access	R/W							
Reset	Λ	Λ	0	0	0	0	Λ	Λ

Bit 15 - S15C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S14C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S13C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S12C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S11C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S10C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S09C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S08C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S07C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 6 – S06C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S05C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S04C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S03C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S02C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S01C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 – S00C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.60 LCD SData Register 13

Name: LCDSDATA13

Offset: 0x5B6

Bit	15	14	13	12	11	10	9	8
	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S30C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S29C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S28C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S27C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S26C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S25C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S24C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S23C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S22C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S21C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S20C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S19C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S18C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S17C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

V	alue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 0 - S16C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.61 LCD SData Register 14

Name: LCDSDATA14

Offset: 0x5B8

Bit	15	14	13	12	11	10	9	8
	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
Access	R/W							
Reset	Λ	0	0	Λ	Ο	0	Λ	Λ

Bit 15 - S47C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 14 - S46C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S45C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S44C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

1	Value	Description
	1	Pixel on (dark)
	0	Pixel off (clear)

Bit 11 – S43C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S42C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S41C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S40C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S39C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S38C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S37C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S36C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S35C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S34C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S33C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S32C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.62 LCD SData Register 15

Name: LCDSDATA15

Offset: 0x5BA

Bit	15	14	13	12	11	10	9	8
	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S62C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S61C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S60C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S59C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S58C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S57C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S56C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S55C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S54C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S53C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S52C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S51C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S50C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S49C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 – S48C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

0

18.1.63 LCD SData Register 16

Name: LCDSDATA16 Offset: 0x5BC

Bit 15 14 13 12 11 10 9 8 S15C S14C S13C S12C S11C S10C S09C S08C Access R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 Reset 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 S07C S06C S05C S04C S03C S02C S01C S00C R/W R/W R/W R/W Access R/W R/W R/W R/W

Bit 15 - S15C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

0

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

0

Else

Reset

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S14C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S13C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S12C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S11C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S10C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S09C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S08C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S07C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Valu	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Bl	ank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S06C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S05C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S04C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – \$03C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S02C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 1 - S01C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 0 - S00C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Liquid Crystal Display (LCD) Controller

18.1.64 LCD SData Register 17

Name: LCDSDATA17 Offset: 0x5BE

Bit	15	14	13	12	11	10	9	8
	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	ue Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S30C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1 Pixel is selected for Blink or Blank		
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S29C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S28C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S27C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S26C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S25C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S24C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S23C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S22C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S21C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S20C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S19C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S18C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S17C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

٧	alue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 0 - S16C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.65 LCD SData Register 18

Name: LCDSDATA18

Offset: 0x5C0

Bit	15	14	13	12	11	10	9	8
	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S46C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S45C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S44C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

1	Value	Description
	1	Pixel on (dark)
	0	Pixel off (clear)

Bit 11 – S43C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S42C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S41C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S40C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S39C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 6 – S38C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S37C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S36C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S35C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S34C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S33C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 – S32C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.66 LCD SData Register 19

Name: LCDSDATA19

Offset: 0x5C2

Bit	15	14	13	12	11	10	9	8
	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S62C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S61C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S60C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

1	Value	Description
	1	Pixel on (dark)
	0	Pixel off (clear)

Bit 11 – S59C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S58C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S57C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S56C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S55C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S54C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S53C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description				
1	Pixel on (dark)				
0	Pixel off (clear)				

Bit 4 – S52C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Value	Description					
1	Pixel on (dark)					
0	Pixel off (clear)					

Liquid Crystal Display (LCD) Controller

Bit 3 – S51C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description					
1	Pixel is selected for Blink or Blank					
0	Pixel is not selected for Blink or Blank					

Else

Value	Description					
1	Pixel on (dark)					
0	Pixel off (clear)					

Bit 2 - S50C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Else

Value	Description				
1	Pixel on (dark)				
0	Pixel off (clear)				

Bit 1 - S49C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description					
1	Pixel is selected for Blink or Blank					
0	Pixel is not selected for Blink or Blank					

Else

Value	Description				
1	Pixel on (dark)				
0	Pixel off (clear)				

Bit 0 - S48C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Else

Value	Description					
1	Pixel on (dark)					
0	Pixel off (clear)					

Datasheet

Liquid Crystal Display (LCD) Controller

18.1.67 LCD SData Register 20

Name: LCDSDATA20

Offset: 0x5C4

Bit	15	14	13	12	11	10	9	8
	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S14C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S13C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S12C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S11C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S10C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S09C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S08C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S07C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S06C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S05C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S04C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S03C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 2 – S02C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 1 – S01C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 0 – S00C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Liquid Crystal Display (LCD) Controller

18.1.68 LCD SData Register 21

Name: LCDSDATA21

Offset: 0x5C6

15	14	13	12	11	10	9	8
S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
	\$31C R/W 0 7 \$23C R/W	S31C S30C R/W R/W 0 0 7 6 S23C S22C R/W R/W	S31C S30C S29C R/W R/W R/W 0 0 0 7 6 5 S23C S22C S21C R/W R/W R/W	S31C S30C S29C S28C R/W R/W R/W R/W 0 0 0 0 7 6 5 4 S23C S22C S21C S20C R/W R/W R/W R/W	S31C S30C S29C S28C S27C R/W R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 S23C S22C S21C S20C S19C R/W R/W R/W R/W R/W	S31C S30C S29C S28C S27C S26C R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 7 6 5 4 3 2 S23C S22C S21C S20C S19C S18C R/W R/W R/W R/W R/W R/W	S31C S30C S29C S28C S27C S26C S25C R/W R/

Bit 15 - S31C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 14 - S30C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S29C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S28C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S27C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S26C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S25C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S24C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S23C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S22C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S21C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S20C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 - S19C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S18C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S17C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S16C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.69 LCD SData Register 22

Name: LCDSDATA22

Offset: 0x5C8

Bit	15	14	13	12	11	10	9	8
	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S46C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S45C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S44C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S43C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 - S42C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S41C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S40C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S39C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S38C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S37C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S36C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S35C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S34C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S33C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S32C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.70 LCD SData Register 23

Name: LCDSDATA23 Offset: 0x5CA

Bit	15	14	13	12	11	10	9	8
	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S62C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S61C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S60C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S59C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S58C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S57C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S56C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S55C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S54C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S53C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description				
1	Pixel on (dark)				
0	Pixel off (clear)				

Bit 4 – S52C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Value	Description				
1	Pixel on (dark)				
0	Pixel off (clear)				

Liquid Crystal Display (LCD) Controller

Bit 3 – S51C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Else

Value	Description					
1	Pixel on (dark)					
0	Pixel off (clear)					

Bit 2 – \$50C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Else

Value	Description				
1	Pixel on (dark)				
0	Pixel off (clear)				

Bit 1 – S49C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 – S48C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description				
1	Pixel is selected for Blink or Blank				
0	Pixel is not selected for Blink or Blank				

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.71 LCD SData Register 24

Name: LCDSDATA24

Offset: 0x5CC

Bit	15	14	13	12	11	10	9	8
	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S15C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S14C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S13C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S12C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S11C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S10C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S09C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S08C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S07C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S06C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S05C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S04C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S03C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 2 – S02C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 1 – S01C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 0 – S00C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Liquid Crystal Display (LCD) Controller

18.1.72 LCD SData Register 25

Name: LCDSDATA25

Offset: 0x5CE

Bit	15	14	13	12	11	10	9	8
	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	e Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S30C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S29C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S28C Pixel Blink/Blank Enable bit

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S27C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S26C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S25C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S24C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S23C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S22C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S21C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S20C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S19C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 2 - S18C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Va	lue	Description	
1		Pixel on (dark)	
0		Pixel off (clear)	

Bit 1 - S17C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 0 - S16C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Liquid Crystal Display (LCD) Controller

18.1.73 LCD SData26 Register

Name: LCDDATA26 Offset: 0x5D0

Bit	15	14	13	12	11	10	9	8
	S47C6	S46C6	S45C6	S44C6	S43C6	S42C6	S41C6	S40C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C6	S38C6	S37C6	S36C6	S35C6	S34C6	S33C6	S32C6
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C6 Pixel Blink/Blank Enable bit

If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 14 - S46C6 Pixel Blink/Blank Enable bit

If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 13 - S45C6 Pixel Blink/Blank Enable bits

If BLINKMODE = 01 or BLANKMODE = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	
	Else	

Bit 12 - \$44C6 Pixel Blink/Blank Enable bit

If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 11 - S43C6 Pixel Blink/Blank Enable bit

If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 10 - S42C6 Pixel Blink/Blank Enable bit

If BLINKMODE = 01 or BLANKMODE = 01

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 9 – S41C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 8 – S40C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 7 – S39C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 6 – S38C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 5 – S37C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 4 – S36C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 3 – S35C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Liquid Crystal Display (LCD) Controller

Bit 2 – S34C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 1 – S33C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Bit 0 – \$32C6 Pixel Blink/Blank Enable bit If BLINKMODE = 01 or BLANKMODE = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank
	Else

Liquid Crystal Display (LCD) Controller

18.1.74 LCD SData Register 27

Name: LCDSDATA27 Offset: 0x5D2

Bit	15	14	13	12	11	10	9	8
	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S62C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S61C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S60C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S59C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S58C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S57C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S56C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S55C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 6 – S54C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S53C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S52C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S51C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description			
1	Pixel is selected for Blink or Blank			
0	Pixel is not selected for Blink or Blank			

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S50C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description			
1	Pixel is selected for Blink or Blank			
0	Pixel is not selected for Blink or Blank			

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S49C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 – S48C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description			
1	Pixel is selected for Blink or Blank			
0	Pixel is not selected for Blink or Blank			

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.75 LCD SData Register 28

Name: LCDSDATA28 Offset: 0x5D4

Bit	15	14	13	12	11	10	9	8
	S15C	S14C	S13C	S12C	S11C	S10C	S09C	S08C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S07C	S06C	S05C	S04C	S03C	S02C	S01C	S00C
Access	R/W							
Reset	Λ	0	0	0	0	0	0	0

Bit 15 - S15C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description			
1	Pixel is selected for Blink or Blank			
0	Pixel is not selected for Blink or Blank			

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S14C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S13C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S12C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S11C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S10C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S09C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S08C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S07C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 6 – S06C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S05C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S04C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 - S03C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S02C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S01C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S00C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.76 LCD SData Register 29

Name: LCDSDATA29

Offset: 0x5D6

Bit	15	14	13	12	11	10	9	8
	S31C	S30C	S29C	S28C	S27C	S26C	S25C	S24C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S23C	S22C	S21C	S20C	S19C	S18C	S17C	S16C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S31C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0 Pixel is not selected for Blink or Blank		

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S30C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S29C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S28C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S27C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S26C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S25C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S24C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S23C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S22C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S21C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S20C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S19C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 - S18C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 - S17C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description		
1	Pixel is selected for Blink or Blank		
0	Pixel is not selected for Blink or Blank		

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 0 - S16C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description		
1	Pixel is selected for Blink or Blank		
0	Pixel is not selected for Blink or Blank		

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Liquid Crystal Display (LCD) Controller

18.1.77 LCD SData Register 30

Name: LCDSDATA30

Offset: 0x5D8

Bit	15	14	13	12	11	10	9	8
	S47C	S46C	S45C	S44C	S43C	S42C	S41C	S40C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S39C	S38C	S37C	S36C	S35C	S34C	S33C	S32C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S47C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description		
1	Pixel on (dark)		
0	Pixel off (clear)		

Bit 14 - S46C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description	
1	Pixel on (dark)	
0	Pixel off (clear)	

Bit 13 - S45C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S44C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Liquid Crystal Display (LCD) Controller

Value	Description	
1	Pixel is selected for Blink or Blank	
0	Pixel is not selected for Blink or Blank	

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S43C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S42C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S41C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 8 – S40C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S39C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S38C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S37C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S36C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S35C Pixel Blink/Blank Enable bit
If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – S34C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S33C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 0 - S32C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

18.1.78 LCD SData Register 31

Name: LCDSDATA31 Offset: 0x5DA

Bit	15	14	13	12	11	10	9	8
	S63C	S62C	S61C	S60C	S59C	S58C	S57C	S56C
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	S55C	S54C	S53C	S52C	S51C	S50C	S49C	S48C
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - S63C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 14 - S62C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 13 - S61C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 12 - S60C Pixel Blink/Blank Enable bit

If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 11 – S59C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 10 – S58C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 9 – S57C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Val	lue	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 8 – S56C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Liquid Crystal Display (LCD) Controller

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 7 – S55C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Valu	ıe	Description
1		Pixel on (dark)
0		Pixel off (clear)

Bit 6 – S54C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 5 – S53C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 4 – S52C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Liquid Crystal Display (LCD) Controller

Bit 3 – S51C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 2 – \$50C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Bit 1 – S49C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description					
1	Pixel is selected for Blink or Blank					
0	Pixel is not selected for Blink or Blank					

Else

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

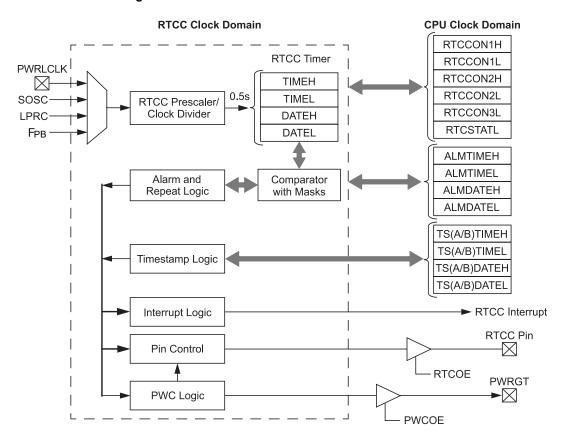
Bit 0 - S48C Pixel Blink/Blank Enable bit If BLINKMODE[1:0] = 01 or BLANKMODE[1:0] = 01

Value	Description
1	Pixel is selected for Blink or Blank
0	Pixel is not selected for Blink or Blank

Value	Description
1	Pixel on (dark)
0	Pixel off (clear)

Real-Time Clock and Calendar (RTCC) with Tim...

19. Real-Time Clock and Calendar (RTCC) with Timestamp


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to "RTCC with Timestamp" (www.microchip.com/DS70005193) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.

Key features of the RTCC module are:

- · Selectable Clock Source
- · Provides Hours, Minutes and Seconds Using 24-Hour Format
- · Visibility of One Half Second Period
- Provides Calendar Weekday, Date, Month and Year
- Alarm-Configurable for Half a Second, 1 Second, 10 Seconds, 1 Minute, 10 Minutes, 1 Hour, 1 Day, 1 Week, 1 Month or 1 Year
- · Alarm Repeat with Decrementing Counter
- Alarm with Indefinite Repeat Chime
- Year 2000 to 2099 Leap Year Correction
- · BCD Format for Smaller Software Overhead
- Optimized for Long-Term Battery Operation
- User Calibration of the 32.768 kHz Clock Crystal/32 kHz LPRC Frequency with Periodic Auto-Adjust
- · Fractional Second Synchronization
- · Calibration to within ±2.64 Seconds Error per Month
- · Calibrates Up to 260 ppm of Crystal Error
- · Ability to Periodically Wake-up External Devices without CPU Intervention (external power control)
- Power Control Output for External Circuit Control
- · Calibration takes Effect Every 15 Seconds
- · Timestamp Capture register for Time and Date
- Programmable Prescaler and Clock Divider Circuit allows Operation with Any Clock Source
 Up to 32 MHz, Including 32.768 kHz Crystal, 50/60 Hz Powerline Clock, External Real-Time Clock (RTC) or
 32 kHz LPRC Clock

Figure 19-1. RTCC Block Diagram

19.1 RTCC Source Clock

The RTCC clock divider block converts the incoming oscillator source into accurate 1/2 and 1 second clocks for the RTCC. The clock divider is optimized to work with three different oscillator sources:

- · 32.768 kHz Crystal Oscillator
- 32 kHz Low-Power RC Oscillator (LPRC)
- External 50 Hz or 60 Hz Powerline Frequency

An asynchronous prescaler, PS[1:0] (RTCCON2L[5:4]), is provided that allows the RTCC to work with higher speed clock sources, such as the peripheral clock. Divide ratios of 1:16, 1:64 or 1:256 may be selected, allowing sources of up to 16 MHz to clock the RTCC.

19.1.1 Coarse Frequency Division

The clock divider block has a 16-bit counter used to divide the input clock frequency. The divide ratio is set by the DIV[15:0] register bits (RTCCON2H[15:0]). The DIV[15:0] bits should be programmed with a value to produce a nominal 1/2 second clock divider count period.

19.1.2 Fine Frequency Division

The fine frequency division is set using the FDIV[4:0] bits (RTCCON2L[15:11]). Increasing the FDIVx value will lengthen the overall clock divider period.

If FDIV[4:0] = 00000, the fine frequency division circuit is effectively disabled. Otherwise, it will optionally remove a clock pulse from the input of the clock divider every 1/2 second. This functionality will allow the user to remove up to 31 pulses over a fixed period of 16 seconds, depending on the value of FDIVx.

The value for DIV[15:0] is calculated as shown in Equation 19-1. The fractional remainder of the DIV[15:0] calculation result can be used to calculate the value for FDIV[4:0].

Real-Time Clock and Calendar (RTCC) with Tim...

Equation 19-1. RTCC Clock Divider Output Frequency

$$FOUT = \frac{FIN}{2 \cdot (PS[1:0] Prescaler) \cdot (DIV[15:0] + 1) + \left(\frac{FDIV[4:0]}{32}\right)}$$

The DIV[15:0] value is the integer part of this calculation:

$$DIV[15:0] = \frac{FIN}{2 \cdot (PS[1:0] Prescaler)} - 1$$

The FDIV[4:0] value is the fractional part of the DIV[15:0] calculation, multiplied by 32.

19.2 RTCC Module Registers

The RTCC module registers are organized into four categories:

- RTCC Control Registers
- · RTCC Value Registers
- · Alarm Value Registers
- · Timestamp Registers

19.2.1 Register Mapping

Previous RTCC implementations used a Register Pointer to access the RTCC Time and Date registers, as well as the Alarm Time and Date registers. These Registers are now mapped to memory and are individually addressable.

19.2.2 Write Lock

To prevent spurious changes to the Time Control or Time Value registers, the WRLOCK bit (RTCCON1L1[11]) must be cleared ('0'). The POR default state is when the WRLOCK bit is '0' and is cleared on any device Reset (POR, BOR, MCLR). It is recommended that the WRLOCK bit be set to '1' after the Date and Time registers are properly initialized, and after the RTCEN bit (RTCCON1L[15]) has been set.

Any attempt to write to the RTCEN bit, the RTCCON2L/H registers, or the Date or Time registers, will be ignored as long as WRLOCK is '1'. The Alarm, Power Control and Timestamp registers can be changed when WRLOCK is '1'.

Clearing the WRLOCK bit requires an unlock sequence after it has been written to a '1', writing two bytes consecutively to the NVMKEY register. A sample assembly sequence is shown in Example 19-1. If WRLOCK is already cleared, it can be set to '1' without using the unlock sequence.

Note: To avoid accidental writes to the timer, it is recommended that the WRLOCK bit (RTCCON1L[11]) is kept clear at any other time. For the WRLOCK bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of WRLOCK; therefore, it is recommended that code follow the procedure in Example 19-1.

```
Example 19-1. Setting the WRLOCK Bit
                            ; disable interrupts for 6 instructions
 DISI #6
     #NVKEY, W1
 VOM
 VOM
     #0x55, W2
                            ; first unlock code
     W2, [W1]
                            ; write first unlock code
 VOM
     #0xAA, W3
 MOV
                            ; second unlock sequence
 MOV W3, [W1]
                            ; write second unlock sequence
 BCLR RTCCON1L, #WRLOCK
                            ; clear the WRLOCK bit
```

19.2.3 Selecting RTCC Clock Source

The clock source for the RTCC module can be selected using the CLKSEL[1:0] bits in the RTCCON2L register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When CLKSEL[1:0] = 10, the external powerline (50 Hz and 60 Hz) is used as the clock source. When CLKSEL[1:0] = 11, the system clock is used as the clock source.

Real-Time Clock and Calendar (RTCC) with Tim...

19.3 Calibration

19.3.1 Clock Source Calibration

A crystal oscillator that is connected to the RTCC may be calibrated to provide an accurate one second clock in two ways. First, coarse frequency adjustment is performed by adjusting the value written to the DIV[15:0] bits. Secondly, a 5-bit value can be written to the FDIV[4:0] control bits to perform a fine clock division.

The DIVx and FDIVx values can be concatenated and considered as a 21-bit prescaler value. If the oscillator source is slightly faster than ideal, the FDIV[4:0] value can be increased to make a small decrease in the RTC frequency. The value of DIV[15:0] should be increased to make larger decreases in the RTC frequency. If the oscillator source is slower than ideal, FDIV[4:0] may be decreased for small calibration changes and DIV[15:0] may need to be decreased to make larger calibration changes.

Before calibration, the user must determine the error of the crystal. This should be done using another timer resource on the device or an external timing reference. It is up to the user to include in the error value, the initial error of the crystal, drift due to temperature and drift due to crystal aging.

19.4 Alarm

- · Configurable from half second to one year
- Enabled using the ALRMEN bit (RTCCON1H[15])
- · One-time alarm and repeat alarm options are available

19.4.1 Configuring the Alarm

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to the Alarm Value registers should only take place when ALRMEN = 0.

As shown in Figure 19-2, the interval selection of the alarm is configured through the AMASK[3:0] bits (RTCCON1H[11:8]). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

Figure 19-2. Alarm Mask Settings

Alarm Mask Setting (AMASK[3:0])	Day of the Week	Month Day	Hours Minutes Seconds
0000 - Every half second 0001 - Every second			
0010 - Every 10 seconds			• s
0011 - Every minute			
0100 - Every 10 minutes			
0101 - Every hour			
0110 - Every day			h h : m m : s s
0111 - Every week	d		h h : m m : s s
1000 - Every month			h h : m m : s s
1001 - Every year ⁽¹⁾		$ \boxed{m} \boxed{m} / \boxed{d} \boxed{d} $	h h : m m : s s

Real-Time Clock and Calendar (RTCC) with Tim...

Note:

1. Annually, except when configured for February 29.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ALMRPT[7:0] bits (RTCCON1H[7:0]). When the value of the ALMRPTx bits equals 00h and the CHIME bit (RTCCON1H[14]) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated, up to 255 times, by loading ALMRPT[7:0] with FFh.

After each alarm is issued, the value of the ALMRPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ALMRPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.4.2 Alarm Interrupt

At every alarm event, an interrupt is generated. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to the other peripherals.

Note: Changing any of the register bits, other than the RTCOE bit (RTCCON1L[7]), the ALMRPT[7:0] bits (RTCCON1H[7:0] and the CHIME bit, while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0).

19.5 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake-up from the current lower power mode.

To use this feature:

- 1. Enable the RTCC (RTCEN = 1).
- 2. Set the PWCEN bit (RTCCON1L[10]).
- 3. Configure the RTCC pin to drive the PWC control signal (RTCOE = 1 and OUTSEL[2:0] = 011).

The polarity of the PWC control signal may be chosen using the PWCPOL bit (RTCCON1L[9]). An active-low or active-high signal may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin, in order to drive the ground pin(s) of the external device directly (with the appropriate external V_{DD} pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

Once the RTCC and PWC are enabled and running, the PWC logic will generate a control output and a sample gate output. The control output is driven out on the RTCC pin (when RTCOE = 1 and OUTSEL[2:0] = 011) and is used to power up or down the device, as described above.

Once the control output is asserted, the stability window begins, in which the external device is given enough time to power up and provide a stable output.

Once the output is stable, the RTCC provides a sample gate during the sample window. The use of this sample gate depends on the external device being used, but typically, it is used to mask out one or more wake-up signals from the external device.

Finally, both the stability and the sample windows close after the expiration of the sample window and the external device is powered down.

Real-Time Clock and Calendar (RTCC) with Tim...

19.5.1 Power Control Clock Source

The stability and sample windows are controlled by the PWCSAMPx and PWCSTABx bit fields in the RTCCON3L register (RTCCON3L[15:8] and [7:0], respectively). As both the stability and sample windows are defined in terms of the RTCC clock, their absolute values vary by the value of the PWC clock base period (T_{PWCCLK}). For example, using a 32.768 kHz SOSC input clock would produce a T_{PWCCLK} of 1/32768 = 30.518 µs. The 8-bit magnitude of PWCSTABx and PWCSAMPx allows for a window size of 0 to 255 T_{PWCCLK}. The period of the PWC clock can also be adjusted with a 1:1, 1:16, 1:64 or 1:256 prescaler, determined by the PWCPS[1:0] bits (RTCCON2L[7:6]).

In addition, certain values for the PWCSTABx and PWCSAMPx fields have specific control meanings in determining power control operations. If either bit field is 00h, the corresponding window is inactive. In addition, if the PWCSTABx field is FFh, the stability window remains active continuously, even if power control is disabled.

19.6 Event Timestamping

The RTCC includes a set of Timestamp registers that may be used for the capture of Time and Date register values when an external input signal is received. The RTCC will trigger a timestamp event when a low pulse occurs on the TMPRN pin.

19.6.1 Timestamp Operation

The event input is enabled for timestamping using the TSAEN bit (RTCCON1L[0]). When the timestamp event occurs, the present time and date values will be stored in the TSATIMEL/H and TSADATEL/H registers, the TSAEVT status bit (RTCSTATL[3]) will be set and an RTCC interrupt will occur. A new timestamp capture event cannot occur until the user clears the TSAEVT status bit.

The TSATIMEL/H and TSADATEL/H register pairs can be used for data storage when TSAEN = 0. The values of TSATIMEL/H and TSADATEL/H will be maintained throughout all types of non-Power-on Resets (MCLR. WDT. etc.).

19.6.2 Manual Timestamp Operation

The current time and date may be captured in the TSATIMEL/H and TSADATEL/H registers by writing a '1' to the TSAEVT bit location while the timestamp functionality is enabled (TSAEN = 1). This write will not set the TSAEVT bit, but it will initiate a timestamp capture. The TSAEVT bit will be set when the capture operation is complete. The user must poll the TSAEVT bit to determine when the capture operation is complete.

Datasheet

After the Timestamp registers have been read, the TSAEVT bit should be cleared to allow further hardware or software timestamp capture events.

DS30010203C-page 1002

Real-Time Clock and Calendar (RTCC) with Tim...

19.7 RTCC Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x00											
 0x01CB	Reserved										
0x01CC	RTCCON1L	7:0	RTCOE		OUTSEL[2:0]					TSAEN	
0,0100	TOOONIE	15:8	RTCEN				WRLOCK	PWCEN	PWCPOL	PWCPOE	
0x01CE	RTCCON1H	7:0				ALMRI	PT[7:0]				
		15:8	ALRMEN	CHIME	DO	14.01		AMAS	SK[3:0]	E1 [4 0]	
0x01D0	RTCCON2L	7:0 15:8	PWCF	PS[1:0]	FDIV[4:0]	[1:0]			CLKS	EL[1:0]	
		7:0			FDIV[4:0]	DIV	[7:0]				
0x01D2	RTCCON2H	15:8					15:8]				
		7:0				PWCS1					
0x01D4	RTCCON3L	15:8					MP[7:0]				
0x01D6		10.0				1 11007	tivii [7.0]				
 0x01D7	Reserved										
0x01D8	RTCSTATL	7:0			ALMEVT		TSAEVT	SYNC	ALMSYNC	HALFSEC	
UXUTD6	RICSIAIL	15:8									
0x01DA											
 0x01DB	Reserved										
0x01DC	TIMEL	7:0									
0,0100	THVILL	15:8		SECTEN[2:0]				SECONE[3:0]			
0x01DE	TIMEH	7:0			MINTEN[2:0]		MINONE[3:0]				
0.00.22		15:8			HRTE	:N[1:0]		HRON	NE[3:0]		
0x01E0	DATEL	7:0							WDAY[2:0]		
		15:8			DAYTI	EN[1:0]			NE[3:0]		
0x01E2	DATEH	7:0				MTHTEN			NE[3:0]		
		15:8		YRIE	EN[3:0]			YRON	NE[3:0]		
0x01E4	ALMTIMEL	7:0 15:8			OF OTENIO, OL			0500	NIETO-OI		
		7:0			SECTEN[2:0] MINTEN[2:0]				NE[3:0] NE[3:0]		
0x01E6	ALMTIMEH	15:8				:N[1:0]			NE[3:0]		
		7:0			TIIXIE	.14[1.0]		TIIXOI	WDAY[2:0]		
0x01E8	ALMDATEL	15:8			DAYTI	EN[1:0]		DAYO	NE[3:0]		
		7:0			271.11	MTHTEN			NE[3:0]		
0x01EA	ALMDATEH	15:8		YRTE	EN[3:0]				NE[3:0]		
		7:0			1 1						
0x01EC	TSATIMEL(1)	15:8			SECTEN[2:0]			SECO	NE[3:0]		
0.0455	TOATINATULA	7:0			MINTEN[2:0]				NE[3:0]		
0x01EE	TSATIMEH(1)	15:8			HRTE	:N[1:0]		HRON	NE[3:0]		
0.0450	TOADATEL (4)	7:0							WDAY[2:0]		
0x01F0	TSADATEL(1)	15:8			DAYTI	EN[1:0]		DAYO	NE[3:0]		
0,0150	TSADATEH(1)	7:0				MTHTEN		MTHO	NE[3:0]		
0x01F2	IOADAIED(I)	15:8		YRTE	EN[3:0]			YRON	NE[3:0]		

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.1 RTCC Control Register 1 Low

Name: RTCCON1L Offset: 0x1CC

Bit	15	14	13	12	11	10	9	8
	RTCEN				WRLOCK	PWCEN	PWCPOL	PWCPOE
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0
Bit	7	6	5	4	3	2	1	0
	RTCOE		OUTSEL[2:0]					TSAEN
Access	R/W	R/W	R/W	R/W				R/W
Reset	0	0	0	0				0

Bit 15 - RTCEN RTCC Enable bit

Value	Description
1	RTCC is enabled and counts from selected clock source
0	RTCC is not enabled

Bit 11 - WRLOCK RTCC Register Write Lock bit

Value	Description
1	RTCC registers are locked
0	RTCC registers may be written to by user

Bit 10 - PWCEN Power Control Enable bit

Value	Description
1	Power control is enabled
0	Power control is disabled

Bit 9 - PWCPOL Power Control Polarity bit

D	it of the control control of the con					
Value	Description					
1	Power control output is active-high					
0	Power control output is active-low					

Bit 8 - PWCPOE Power Control Output Enable bit

Value	Description
1	Power control output pin is enabled
0	Power control output pin is disabled

Bit 7 - RTCOE RTCC Output Enable bit

Bit 1 11100 Culput Enable bit					
Value	Description				
1	RTCC output is enabled				
0	RTCC output is disabled				

Bits 6:4 - OUTSEL[2:0] RTCC Output Signal Selection bits

Value	Description
111	Unused
110	Unused
101	Unused
100	Timestamp A event
011	Power control
010	RTCC input clock
001	Second clock
000	Alarm event

Real-Time Clock and Calendar (RTCC) with Tim...

Bit 0 - TSAEN Timestamp A Enable bit

V	alue	Description
1		Timestamp event will occur when a low pulse is detected on the TMPRN pin
0		Timestamp is disabled

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.2 RTCC Control Register 1 High

Name: RTCCON1H Offset: 0x1CE

Bit	15	14	13	12	11	10	9	8
	ALRMEN CHIME AMASK[3:0]							
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0
Bit	7	6	5	4	3	2	1	0
	<u> </u>			ALMR	RPT[7:0]	<u> </u>	· ·	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - ALRMEN Alarm Enable bit

Value	Description
1	Alarm is enabled (cleared automatically after an alarm event whenever ALMRPT[7:0] = 00h and
	CHIME = 0)
0	Alarm is disabled

Bit 14 - CHIME Chime Enable bit

Value	Description
1	Chime is enabled; ALMRPT[7:0] bits roll over from 00h to FFh
0	Chime is disabled; ALMRPT[7:0] bits stop once they reach 00h

Bits 11:8 - AMASK[3:0] Alarm Mask Configuration bits

Value	Description
11xx	Reserved – do not use
101x	Reserved – do not use
1001	Once a year (except when configured for February 29th, once every four years)
1000	Once a month
0111	Once a week
0110	Once a day
0101	Every hour
0100	Every ten minutes
0011	Every minute
0010	Every ten seconds
0001	Every second
0000	Every half second

Bits 7:0 - ALMRPT[7:0] Alarm Repeat Counter Value bits

Value	Description
11111111	Alarm will repeat 255 more times
00000000	Alarm will repeat 0 more times
	The counter decrements on any alarm event. The counter is prevented from rolling over from '00' to 'FF' unless CHIME = 1 .

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.3 RTCC Control Register 2 Low

Name: RTCCON2L Offset: 0x1D0

Bit	15	14	13	12	11	10	9	8
	FDIV[4:0]							
Access	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0
	PWCPS[1:0]		PS[1:0]				CLKS	EL[1:0]
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0

Bits 15:11 - FDIV[4:0] Fractional Clock Divide bits

Value	Description
11111	Increase period by 31 RTCC input clock cycles every 16 seconds
11101	Increase period by 30 RTCC input clock cycles every 16 seconds
00010	Increase period by 2 RTCC input clock cycles every 16 seconds
00001	Increase period by 1 RTCC input clock cycle every 16 seconds
00000	No fractional clock division

Bits 7:6 - PWCPS[1:0] Power Control Prescale Select bits

Value	Description
11	1:256
10	1:64
01	1:16
00	1:1

Bits 5:4 - PS[1:0] Prescale Select bits

Dita 0.4 - 1 O[1.0] 1 Tescale delect bits					
Value	Description				
11	1:256				
10	1:64				
01	1:16				
00	1:1				

Bits 1:0 - CLKSEL[1:0] Clock Select bits

Value	Description
11	Peripheral clock
10	PWRLCLK pin
01	LPRC
00	SOSC

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.4 RTCC Control Register 2 High

Name: RTCCON2H Offset: 0x1D2

Note:

1. A write to this register is only allowed when WRLOCK = 1.

Bit	15	14	13	12	11	10	9	8	
	DIV[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	DIV[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - DIV[15:0] Clock Divide bits(1)

Sets the period of the clock divider counter; value should cause a nominal 1/2 second underflow.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.5 RTCC Control Register 3 Low

Name: RTCCON3L Offset: 0x1D4

Note:

1. The sample window always starts when the stability window timer expires, except when its initial value is 00h.

Bit	15	14	13	12	11	10	9	8		
	PWCSAMP[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	PWCSTAB[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - PWCSAMP[7:0] Power Control Sample Window Timer bits

Value	Description
11111111	Sample window is always enabled, even when PWCEN = 0
11111110	Sample window is 254 T _{PWCCLK} clock periods
00000001	Sample window is 1 T _{PWCCLK} clock period
00000000	No sample window

Bits 7:0 - PWCSTAB[7:0] Power Control Stability Window Timer bits⁽¹⁾

Value	Description
11111111	Stability window is 255 T _{PWCCLK} clock periods
11111110	Stability window is 254 T _{PWCCLK} clock periods
00000001	Stability window is 1 T _{PWCCLK} clock period
0000000	No stability window; sample window starts when the alarm event triggers

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.6 RTCC Status Register Low

Name: RTCSTATL Offset: 0x1D8

Notes:

- 1. User software may write a '1' to this location to initiate a Timestamp A event; timestamp capture is not valid until TSAEVT reads as '1'.
- 2. This bit is read-only; it is cleared to '0' on a write to the SECONE[3:0] bits.

Bit	15	14	13	12	11	10	9	8
Access				,				
Reset								
Bit	7	6	5	4	3	2	1	0
			ALMEVT		TSAEVT	SYNC	ALMSYNC	HALFSEC
Access			R/W		R/W	R/W	R/W	R/W
Reset			0		0	0	0	0

Bit 5 - ALMEVT Alarm Event bit

Value	Description
1	An alarm event has occurred
0	An alarm event has not occurred

Bit 3 – TSAEVT Timestamp A Event bit(1)

Value	Description
1	A timestamp event has occurred
0	A timestamp event has not occurred

Bit 2 - SYNC Synchronization Status bit

	Zit Zitito Synonia in Zitito zit					
Value	Description					
1	TIME registers may change during software read					
0	TIME registers may be read safely					

Bit 1 - ALMSYNC Alarm Synchronization Status bit

Value	Description
1	Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK[3:0]) should not be modified, and
	Alarm Control bits (ALRMEN, ALMRPT[7:0]) may change during software read
0	Alarm registers and Alarm Control bits may be written/modified safely

Bit 0 - HALFSEC Half Second Status bit(2)

Value	Description
1	Second half period of a second
0	First half period of a second

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.7 RTCC Time Register Low

Name: TIMEL Ox1DC

Bit	15	14	13	12	11	10	9	8
			SECTEN[2:0]			SECO	VE[3:0]	
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0

Access Reset

Bits 14:12 – SECTEN[2:0] Binary Coded Decimal Value of Seconds '10' Digit bits Contains a value from 0 to 5.

Bits 11:8 – SECONE[3:0] Binary Coded Decimal Value of Seconds '1' Digit bits Contains a value from 0 to 9.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.8 RTCC Time Register High

Name: TIMEH Offset: 0x1DE

Bit	15	14	13	12	11	10	9	8	
			HRTE	HRTEN[1:0]		HRONE[3:0]			
Access			R/W	R/W	R/W	R/W	R/W	R/W	
Reset			0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			MINTEN[2:0]			MINO	NE[3:0]		
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 13:12 – HRTEN[1:0] Binary Coded Decimal Value of Hours '10' Digit bits Contains a value from 0 to 2.

Bits 11:8 – HRONE[3:0] Binary Coded Decimal Value of Hours '1' Digit bits Contains a value from 0 to 9.

Bits 6:4 – MINTEN[2:0] Binary Coded Decimal Value of Minutes '10' Digit bits Contains a value from 0 to 5.

Bits 3:0 – MINONE[3:0] Binary Coded Decimal Value of Minutes '1' Digit bits Contains a value from 0 to 9.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.9 RTCC Date Register Low

Name: DATEL Offset: 0x1E0

Bit	15	14	13	12	11	10	9	8
			DAYTE	DAYTEN[1:0]		DAYO		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
							WDAY[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 13:12 – DAYTEN[1:0] Binary Coded Decimal Value of Days '10' Digit bits Contains a value from 0 to 3.

Bits 11:8 – DAYONE[3:0] Binary Coded Decimal Value of Days '1' Digit bits Contains a value from 0 to 9.

Bits 2:0 – WDAY[2:0] Binary Coded Decimal Value of Weekdays '1' Digit bits Contains a value from 0 to 6.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.10 RTCC Date Register High

Name: DATEH Offset: 0x1E2

Bit	15	14	13	12	11	10	9	8	
		YRTE	N[3:0]		YRONE[3:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	X	
Bit	7	6	5	4	3	2	1	0	
				MTHTEN		MTHO	NE[3:0]		
Access			•	R/W	R/W	R/W	R/W	R/W	
Reset				Х	0	0	0	Х	

Bits 15:12 - YRTEN[3:0] Binary Coded Decimal Value of Years '10' Digit bits

Bits 11:8 - YRONE[3:0] Binary Coded Decimal Value of Years '1' Digit bits

Bit 4 – MTHTEN Binary Coded Decimal Value of Months '10' Digit bits Contains a value from 0 to 1.

Bits 3:0 – MTHONE[3:0] Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.11 RTCC Alarm Time Register Low

Name: ALMTIMEL Offset: 0x1E4

Bit	15	14	13	12	11	10	9	8	
			SECTEN[2:0]		SECONE[3:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	. 5	. 4	3	2	1	0	

Access Reset

Bits 14:12 – SECTEN[2:0] Binary Coded Decimal Value of Seconds '10' Digit bits Contains a value from 0 to 5.

Bits 11:8 – SECONE[3:0] Binary Coded Decimal Value of Seconds '1' Digit bits Contains a value from 0 to 9.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.12 RTCC Alarm Time Register High

Name: ALMTIMEH Offset: 0x1E6

Bit	15	14	13	12	11	10	9	8
			HRTE	HRTEN[1:0]		HRONE[3:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			MINTEN[2:0]			MINO	NE[3:0]	
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bits 13:12 – HRTEN[1:0] Binary Coded Decimal Value of Hours '10' Digit bits Contains a value from 0 to 2.

Bits 11:8 – HRONE[3:0] Binary Coded Decimal Value of Hours '1' Digit bits Contains a value from 0 to 9.

Bits 6:4 – MINTEN[2:0] Binary Coded Decimal Value of Minutes '10' Digit bits Contains a value from 0 to 5.

Bits 3:0 – MINONE[3:0] Binary Coded Decimal Value of Minutes '1' Digit bits Contains a value from 0 to 9.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.13 RTCC Alarm Date Register Low

Name: ALMDATEL Offset: 0x1E8

Bit	15	14	13	12	11	10	9	8
			DAYTE	EN[1:0]				
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
							WDAY[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 13:12 – DAYTEN[1:0] Binary Coded Decimal Value of Days '10' Digit bits Contains a value from 0 to 3.

Bits 11:8 – DAYONE[3:0] Binary Coded Decimal Value of Days '1' Digit bits Contains a value from 0 to 9.

Bits 2:0 – WDAY[2:0] Binary Coded Decimal Value of Weekdays '1' Digit bits Contains a value from 0 to 6.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.14 RTCC Alarm Date Register High

Name: ALMDATEH Offset: 0x1EA

Bit	15	14	13	12	11	10	9	8	
		YRTE	N[3:0]		YRONE[3:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				MTHTEN		MTHO	NE[3:0]		
Access				R/W	R/W	R/W	R/W	R/W	
Reset				0	0	0	0	0	

Bits 15:12 - YRTEN[3:0] Binary Coded Decimal Value of Years '10' Digit bits

Bits 11:8 - YRONE[3:0] Binary Coded Decimal Value of Years '1' Digit bits

Bit 4 – MTHTEN Binary Coded Decimal Value of Months '10' Digit bits Contains a value from 0 to 1.

Bits 3:0 – MTHONE[3:0] Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.15 RTCC Timestamp A Time Register Low

Name: TSATIMEL⁽¹⁾
Offset: 0x1EC

Note:

1. If TSAEN = 0, bits[15:0] can be used for persistent storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

Bit	15	14	13	12	11	10	9	8	
			SECTEN[2:0]		SECONE[3:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	

Access

Reset

Bits 14:12 – SECTEN[2:0] Binary Coded Decimal Value of Seconds '10' Digit bits Contains a value from 0 to 5.

Bits 11:8 – SECONE[3:0] Binary Coded Decimal Value of Seconds '1' Digit bits Contains a value from 0 to 9.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.16 RTCC Timestamp A Time Register High

Name: TSATIMEH⁽¹⁾
Offset: 0x1EE

Note:

1. If TSAEN = 0, bits[15:0] can be used for persistent storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

Bit	15	14	13	12	11	10	9	8
			HRTE	N[1:0]				
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			MINTEN[2:0]			MINON	NE[3:0]	
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0

Bits 13:12 – HRTEN[1:0] Binary Coded Decimal Value of Hours '10' Digit bits Contains a value from 0 to 2.

Bits 11:8 – HRONE[3:0] Binary Coded Decimal Value of Hours '1' Digit bits Contains a value from 0 to 9.

Bits 6:4 – MINTEN[2:0] Binary Coded Decimal Value of Minutes '10' Digit bits Contains a value from 0 to 5.

Bits 3:0 – MINONE[3:0] Binary Coded Decimal Value of Minutes '1' Digit bits Contains a value from 0 to 9.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.17 RTCC Timestamp A Date Register Low

Name: TSADATEL⁽¹⁾ Offset: 0x1F0

Note:

1. If TSAEN = 0, bits[15:0] can be used for persistent storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

Bit	15	14	13	12	11	10	9	8
			DAYTE	EN[1:0]				
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
							WDAY[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 13:12 – DAYTEN[1:0] Binary Coded Decimal Value of Days '10' Digit bits Contains a value from 0 to 3.

Bits 11:8 – DAYONE[3:0] Binary Coded Decimal Value of Days '1' Digit bits Contains a value from 0 to 9.

Bits 2:0 – WDAY[2:0] Binary Coded Decimal Value of Weekdays '1' Digit bits Contains a value from 0 to 6.

Real-Time Clock and Calendar (RTCC) with Tim...

19.7.18 RTCC Timestamp A Date Register High

Name: TSADATEH⁽¹⁾
Offset: 0x1F2

Note:

1. If TSAEN = 0, bits[15:0] can be used for persistent storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

Bit	15	14	13	12	11	10	9	8	
		YRTE	N[3:0]		YRONE[3:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				MTHTEN		MTHO	NE[3:0]		
Access				R/W	R/W	R/W	R/W	R/W	
Reset				0	0	0	0	0	

Bits 15:12 - YRTEN[3:0] Binary Coded Decimal Value of Years '10' Digit bits

Bits 11:8 - YRONE[3:0] Binary Coded Decimal Value of Years '1' Digit bits

Bit 4 – MTHTEN Binary Coded Decimal Value of Months '10' Digit bits Contains a value from 0 to 1.

Bits 3:0 – MTHONE[3:0] Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.

20. 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "32-Bit Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/DS30009729) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- · User-Programmable CRC Polynomial Equation, Up to 32 Bits
- · Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- · Configurable Interrupt Output
- Data FIFO

Figure 20-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 20-2.

Figure 20-1. CRC Block Diagram

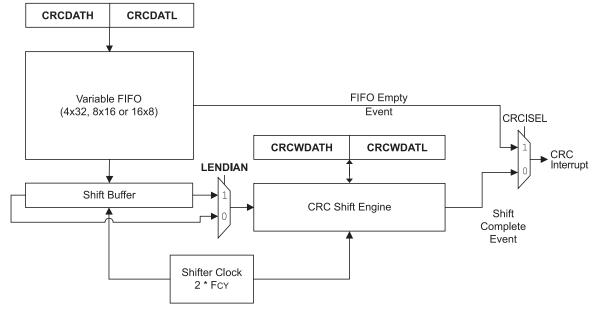
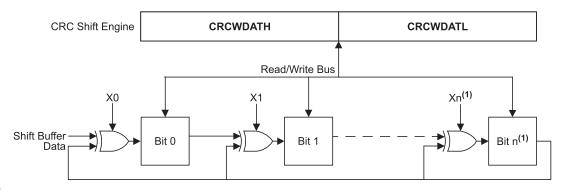



Figure 20-2. CRC Shift Engine Detail

Note:

1. n = PLEN[4:1] + 1.

32-Bit Programmable Cyclic Redundancy Check ...

20.1 User Interface

20.1.1 Polynomial Interface

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits.

Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN[4:0] bits (CRCCON2[4:0]).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit and the other a 32-bit equation. $X^{16} + X^{12} + X^5 + 1$

$$X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$$

To program these polynomials into the CRC generator, set the register bits, as shown in Table 20-1.

Table 20-1. CRC Setup Examples for 16 and 32-Bit Polynomials

CRC Control Bits	Bit Values						
CRC Control Bits	16-Bit Polynomial	32-Bit Polynomial					
PLEN[4:0]	01111	11111					
X[31:16]	0000 0000 0000 0001	0000 0100 1100 0001					
X[15:1]	0001 0000 0010 000	0001 1101 1011 011					

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The '0' bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length 32, it is assumed that the 32nd bit will be used; therefore, the X[31:1] bits do not have the 32nd bit.

20.1.2 Data Interface

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value, between 1 and 32 bits, using the DWIDTH[4:0] bits (CRCCON2[12:8]). When the data width is greater than 15, the FIFO is four words deep. When the DWIDTHx bits are between 15 and 8, the FIFO is eight words deep. When the DWIDTHx bits are less than eight, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than eight, the smallest data element that can be written into the FIFO is 1 byte. For example, if the DWIDTHx bits are five, then the size of the data is DWIDTH[4:0] + 1 or 6. The data are written as a whole byte; the two unused upper bits are ignored by the module.

Once data are written into the MSb of the CRCDAT registers (that is, the MSb as defined by the data width), the value of the VWORD[4:0] bits (CRCCON1[12:8]) increments by one. For example, if the DWIDTHx bits are 24, the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written to before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit (CRCCON1[4]) is set and the value of the VWORDx bits is greater than zero.

Each word is copied out of the FIFO into a buffer register, which decrements the VWORDx bits. The data are then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORDx bits reach zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When the VWORDx bits reach the maximum value for the configured value of the DWIDTHx bits (4, 8 or 16), the CRCFUL bit (CRCCON1[7]) becomes set. When the VWORDx bits reach zero, the CRCMPT bit (CRCCON1[6]) becomes set. The FIFO is emptied and the VWORD[4:0] bits are set to '00000' whenever CRCEN is '0'.

heet DS30010203C-page 1024

32-Bit Programmable Cyclic Redundancy Check ...

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

20.1.3 Data Shift Direction

The LENDIAN bit (CRCCON1[3]) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data are shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

20.1.4 Interrupt Operation

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD[4:0] bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLENx + 1)/2 clock cycles after the interrupt is generated until the CRC calculation is finished.

20.1.5 Typical Operation

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for the desired operation.
 - 2.1. Program the desired polynomial using the CRCXOR registers and PLEN[4:0] bits.
 - 2.2. Configure the data width and shift direction using the DWIDTH[4:0] and LENDIAN bits.
- 3. Set the CRCGO bit to start the calculations.
- 4. Set the desired CRC non-direct initial value by writing to the CRCWDAT registers.
- Load all data into the FIFO by writing to the CRCDAT registers as space becomes available (the CRCFUL bit must be zero before the next data loading).
- 6. Wait until the data FIFO is empty (CRCMPT bit is set).
- 7. Read the result:

If the data width (DWIDTH[4:0] bits) is more than the polynomial length (PLEN[4:0] bits):

- 7.1. Wait (DWIDTH[4:0] + 1)/2 instruction cycles to make sure that shifts from the shift buffer are finished.
- 7.2. Change the data width to the polynomial length (DWIDTH[4:0] = PLEN[4:0]).
- 7.3. Write one dummy data word to the CRCDAT registers.
- 7.4. Wait two instruction cycles to move the data from the FIFO to the shift buffer and (PLEN[4:0] + 1)/2 instruction cycles to shift out the result.

Or, if the data width (DWIDTH[4:0] bits) is less than the polynomial length (PLEN[4:0] bits):

- 1. Clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are done. Clear the CRC interrupt flag. Write dummy data in the CRCDAT registers and wait until the CRC interrupt flag is set.
- 2. Read the final CRC result from the CRCWDAT registers.
- 3. Restore the data width (DWIDTH[4:0] bits) for further calculations (Optional). If the data width (DWIDTH[4:0] bits) is equal to, or less than, the polynomial length (PLEN[4:0] bits):
 - 3.1. Clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are done.
 - 3.2. Suspend the calculation by setting CRCGO = 0.
 - 3.3. Clear the CRC interrupt flag.
 - 3.4. Write the dummy data with the total data length equal to the polynomial length in the CRCDAT registers.
 - 3.5. Resume the calculation by setting CRCGO = 1.
 - 3.6. Wait until the CRC interrupt flag is set.
 - 3.7. Read the final CRC result from the CRCWDAT registers.

32-Bit Programmable Cyclic Redundancy Check ...

20.2 CRC Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x00 0x0157	Reserved										
0x0158	CRCCON1	7:0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN				
0,10100	J.1.555111	15:8	CRCEN		CSIDL			VWORD[4:0]			
0x015A	CRCCON2	7:0						PLEN[4:0]			
UXUTSA	CINCCONZ	15:8						DWIDTH[4:0]			
0x015C	CRCXORL	7:0				X[6:0]					
000130	CNOXONE	15:8				X[1	4:7]				
0x015E	CRCXORH	7:0	X[23:16]								
UXUISE	CRCAURH	15:8	X[31:24]								
0x0160	CRCDATL	7:0				CRCD	ATL[7:0]				
000100	CRODAIL	15:8				CRCDA	TL[15:8]				
00400	CRCDATH	7:0				CRCDA	ATH[7:0]				
0x0162	CRODAIN	15:8				CRCDA	TH[15:8]				
0.0164	CDCM/DATI	7:0				CRCWDATL[7:0]					
0x0164	CRCWDATL	15:8				CRCWDATL[15:8]					
0,0166	CDCMDATU	7:0				CRCWD	ATH[7:0]				
0x0166	CRCWDATH	15:8				CRCWD	ATH[15:8]				

32-Bit Programmable Cyclic Redundancy Check ...

20.2.1 CRC Control 1 Register

Name: CRCCON1 Offset: 0x158

Bit	15	14	13	12	11	10	9	8		
	CRCEN		CSIDL	VWORD[4:0]						
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0		0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN					
Access	R/W	R/W	R/W	R/W	R/W					
Reset	0	0	0	0	0					

Bit 15 - CRCEN CRC Enable bit

Value	Description
1	Enables module
0	Disables module; all state machines, pointers and CRCWDAT/CRCDAT registers reset; other SFRs are
	NOT reset

Bit 13 - CSIDL CRC Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bits 12:8 - VWORD[4:0] Pointer Value bits

Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN[4:0] \geq 7 or 16 when PLEN[4:0] \leq 7.

Bit 7 - CRCFUL CRC FIFO Full bit

Value	Description						
1	FIFO is full						
0	FIFO is not full						

Bit 6 - CRCMPT CRC FIFO Empty bit

DIL 0 -	Bit 6 - CRCWIPT CRC FIFO Ellipty bit						
Value	Description						
1	FIFO is empty						
0	FIFO is not empty						

Bit 5 - CRCISEL CRC Interrupt Selection bit

Value	Description
1	Interrupt on FIFO is empty; the final word of data is still shifting through the CRC
0	Interrupt on shift is complete and results are ready

Bit 4 - CRCGO Start CRC bit

Value	Description
1	Starts CRC serial shifter
0	CRC serial shifter is turned off

Bit 3 - LENDIAN Data Shift Direction Select bit

V alue	Description
1	Data word is shifted into the CRC, starting with the LSb (little-endian)
)	Data word is shifted into the CRC, starting with the MSb (big-endian)

32-Bit Programmable Cyclic Redundancy Check ...

20.2.2 CRC Control 2 Register

Name: CRCCON2 Offset: 0x15A

Bit	15	14	13	12	11	10	9	8	
				DWIDTH[4:0]					
Access				R/W	R/W	R/W	R/W	R/W	
Reset				0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
						PLEN[4:0]			
Access				R/W	R/W	R/W	R/W	R/W	
Reset				0	0	0	0	0	

Bits 12:8 – DWIDTH[4:0] CRC Data Word Width Configuration bits Configures the width of the data word (Data Word Width -1).

Bits 4:0 – PLEN[4:0] Polynomial Length Configuration bits Configures the length of the polynomial (Polynomial Length -1).

32-Bit Programmable Cyclic Redundancy Check ...

20.2.3 CRC XOR Polynomial Register Low

Name: CRCXORL Offset: 0x15C

Bit	15	14	13	12	11	10	9	8		
	X[14:7]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				X[6:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0			

Bits 15:1 – X[14:0] XOR of Polynomial Term Xⁿ Enable bits

32-Bit Programmable Cyclic Redundancy Check ...

20.2.4 CRC XOR Polynomial Register High

Name: CRCXORH Offset: 0x15E

Bit	15	14	13	12	11	10	9	8		
	X[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	X[23:16]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 – X[31:24] XOR of Polynomial Term Xⁿ Enable bits

Bits 7:0 - X[23:16] XOR of Polynomial Term Xⁿ Enable bits

32-Bit Programmable Cyclic Redundancy Check ...

20.2.5 CRC Data Register Low

Name: CRCDATL Offset: 0x160

Bit	15	14	13	12	11	10	9	8		
	CRCDATL[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	CRCDATL[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - CRCDATL[15:0] CRC Data Low bits

32-Bit Programmable Cyclic Redundancy Check ...

20.2.6 CRC Data Register High

Name: CRCDATH Offset: 0x162

Bit	15	14	13	12	11	10	9	8		
	CRCDATH[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	CRCDATH[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - CRCDATH[15:0] CRC Data High bits

32-Bit Programmable Cyclic Redundancy Check ...

20.2.7 CRC Result Register Low

Name: CRCWDATL Offset: 0x164

Bit	15	14	13	12	11	10	9	8
				CRCWD	ATL[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CRCWD	ATL[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - CRCWDATL[15:0] CRC Result Low bits

32-Bit Programmable Cyclic Redundancy Check ...

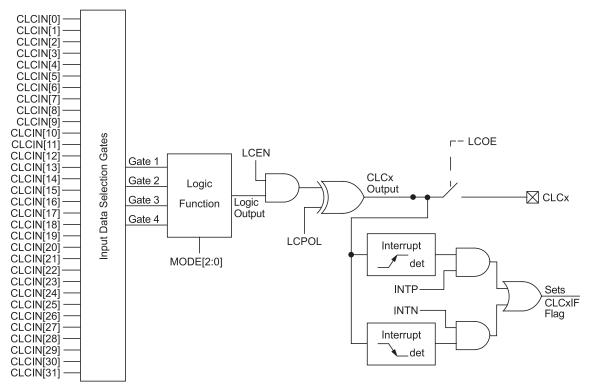
20.2.8 CRC Result Register High

Name: CRCWDATH

Offset: 0x166

Bit	15	14	13	12	11	10	9	8
				CRCWD	ATH[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CRCWD	ATH[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - CRCWDATH[15:0] CRC Result High bits


21. Configurable Logic Cell (CLC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "Configurable Logic Cell (CLC)" (www.microchip.com/DS70005298) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 21-1 shows an overview of the module. Figure 21-3 shows the details of the data source multiplexers and logic input gate connections.

Figure 21-1. CLC Module

Note: All register bits shown in this figure can be found in the CLCxCONL register.

Figure 21-2. CLC Logic Function Combinatorial Options

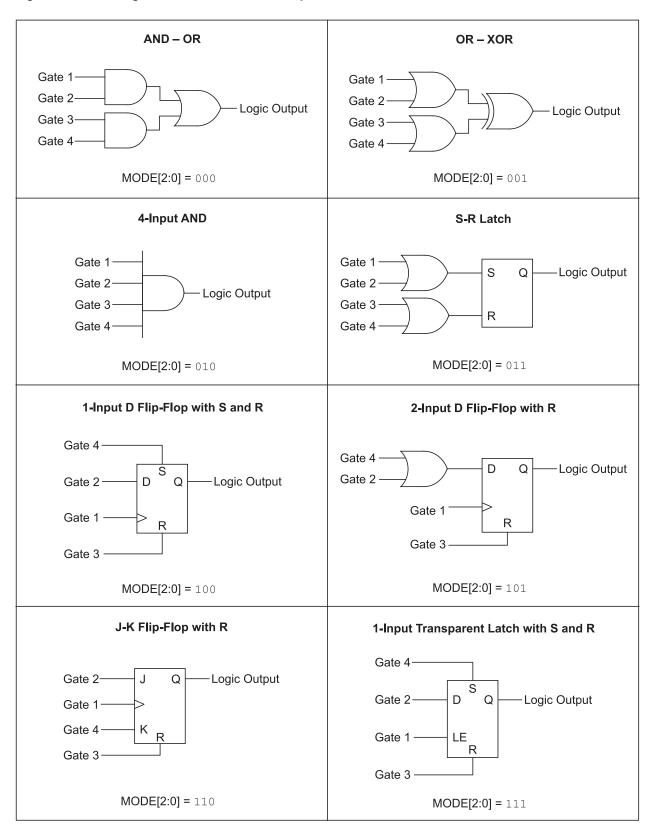
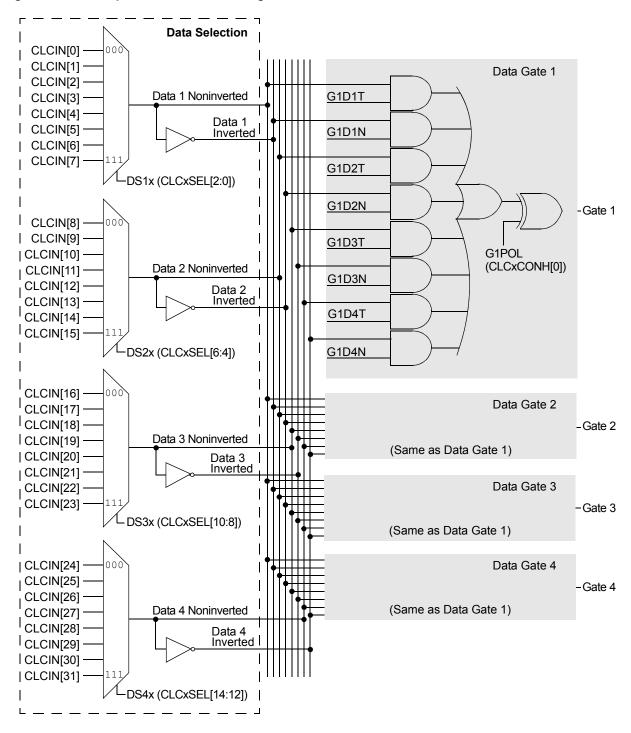



Figure 21-3. CLC Input Source Selection Diagram

Note: All controls are undefined at power-up.

Configurable Logic Cell (CLC)

21.1 CLC Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x0463										
0x0464	CLC1CONL	7:0	LCOE	LCOUT	LCPOL				MODE[2:0]	
		15:8	LCEN				INTP	INTN	00001	0.4504
0x0466	CLC1CONH	7:0					G4POL	G3POL	G2POL	G1POL
		15:8 7:0			D63[3-0]				DC4[2:0]	
0x0468	CLC1SEL	15:8			DS2[2:0] DS4[2:0]				DS1[2:0] DS3[2:0]	
0x046A		13.0			D34[2.0]				D33[2.0]	
0.040.4	Reserved									
0x046B	110001704									
		7:0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N
0x046C	CLC1GLSL	15:8	G2D4T	G2D4N	G2D3T	G2D3N	G2D3N	G2D2N	G2D1T	G2D1N
0.0405	01 04 01 011	7:0	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
0x046E	CLC1GLSH	15:8	G4D4T	G4D4N	G4D3T	G4D3N	G4D2N	G4D2N	G4D1T	G4D1N
00470	01.000.0111	7:0	LCOE	LCOUT	LCPOL				MODE[2:0]	
0x0470	CLC2CONL	15:8	LCEN				INTP	INTN		
0.0470	01.000.00111	7:0					G4POL	G3POL	G2POL	G1POL
0x0472	CLC2CONH	15:8								
00474	01.00051	7:0			DS2[2:0]				DS1[2:0]	
0x0474	CLC2SEL	15:8			DS4[2:0]				DS3[2:0]	
0x0476										
 0x0477	Reserved									
		7:0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N
0x0478	CLC2GLSL	15:8	G2D4T	G2D4N	G2D3T	G2D3N	G2D3N	G2D2N	G2D1T	G2D1N
0.0474	01.0001.011	7:0	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
0x047A	CLC2GLSH	15:8	G4D4T	G4D4N	G4D3T	G4D3N	G4D2N	G4D2N	G4D1T	G4D1N
0.0470	01.000.0011	7:0	LCOE	LCOUT	LCPOL				MODE[2:0]	
0x047C	CLC3CONL	15:8	LCEN				INTP	INTN		
0,0475	CLC2CONU	7:0					G4POL	G3POL	G2POL	G1POL
0x047E	CLC3CONH	15:8								
0x0480										
	Reserved									
0x0483										
0x0484	CLC3SEL	7:0			DS2[2:0]				DS1[2:0]	
0,10.10.1		15:8			DS4[2:0]				DS3[2:0]	
0x0484	CLC3GLSL	7:0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N
		15:8	G2D4T	G2D4N	G2D3T	G2D3N	G2D3N	G2D2N	G2D1T	G2D1N
0x0486	CLC3GLSH	7:0	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
		15:8	G4D4T	G4D4N	G4D3T	G4D3N	G4D2N	G4D2N	G4D1T	G4D1N
0x0488	CLC4CONL	7:0	LCOE	LCOUT	LCPOL		=		MODE[2:0]	
		15:8	LCEN				INTP	INTN	00501	04501
0x048A	CLC4CONH	7:0					G4POL	G3POL	G2POL	G1POL
		15:8			D00'0 01				D0450.01	
0x048C	CLC4SEL	7:0			DS2[2:0]				DS1[2:0]	
0.040		15:8			DS4[2:0]				DS3[2:0]	
0x048E	Posserved									
 0x048F	Reserved									
3AU-10I		7:0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N
0x0490	CLC4GLSL	15:8	G2D4T	G2D4N	G2D3T	G2D3N	G1D21	G2D2N	G2D1T	G2D1N
0.00100		10.0	O_D-1	OLD-11	02001	025014	025014	ULD ZIV	02011	OLD III
0x0492	CLC4GLSH	7:0	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N

Configurable Logic Cell (CLC)

21.1.1 Control Registers Overview

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables.

The CLCx Input MUX Select register (CLCxSEL) allows the user to select up to four data input sources using the four data input selection multiplexers. Each multiplexer has a list of eight data sources available.

The CLCx Gate Logic Input Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these eight signals are enabled, ORed together by the logic cell input gates.

Configurable Logic Cell (CLC)

21.1.2 CLC1 Control Register Low

Name: CLC1CONL Offset: 0x464

Bit	15	14	13	12	11	10	9	8
	LCEN				INTP	INTN		
Access	R/W			•	R/W	R/W		
Reset	0				0	0		
Bit	7	6	5	4	3	2	1	0
	LCOE	LCOUT	LCPOL				MODE[2:0]	
Access	R/W	R	R/W	•		R/W	R/W	R/W
Reset	0	0	0			0	0	0

Bit 15 - LCEN CLC Enable bit

-1	Value	Description
	1	CLC is enabled and mixing input signals
	0	CLC is disabled and has logic zero outputs

Bit 11 - INTP CLC Positive Edge Interrupt Enable bit

	V alue	Description
-	1	Interrupt will be generated when a rising edge occurs on LCOUT
()	Interrupt will not be generated

Bit 10 - INTN CLC Negative Edge Interrupt Enable bit

Value	Description
1	Interrupt will be generated when a falling edge occurs on LCOUT
0	Interrupt will not be generated

Bit 7 - LCOE CLC Port Fnable bit

D.C	LI LOGE GEOT OIL ENGBIO BIL				
Value	Description				
1	CLC port pin output is enabled				
0	CLC port pin output is disabled				

Bit 6 - LCOUT CLC Data Output Status bit

Value	Description
1	CLC output high
0	CLC output low

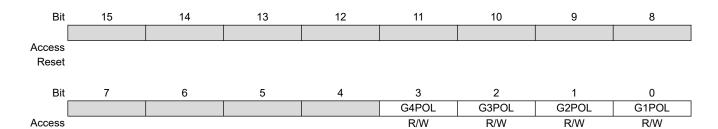
Bit 5 - LCPOL CLC Output Polarity Control bit

Value	Description
1	The output of the module is inverted
0	The output of the module is not inverted

Bits 2:0 - MODE[2:0] CLC Mode bits

Value	Description
111	Cell is a 1-input transparent latch with S and R
110	Cell is a JK flip-flop with R
101	Cell is a 2-input D flip-flop with R
100	Cell is a 1-input D flip-flop with S and R
011	Cell is an SR latch
010	Cell is a 4-input AND
001	Cell is an OR-XOR
000	Cell is an AND-OR

0


Configurable Logic Cell (CLC)

0

21.1.3 CLC1 Control Register High

Reset

Name: CLC1CONH Offset: 0x466

Bit 3 - G4POL Gate 4 Polarity Control bit

Val	lue	Description
1		The output of Channel 4 logic is inverted when applied to the logic cell
0		The output of Channel 4 logic is not inverted

0

Bit 2 - G3POL Gate 3 Polarity Control bit

Value	Description
1	The output of Channel 3 logic is inverted when applied to the logic cell
0	The output of Channel 3 logic is not inverted

Bit 1 - G2POL Gate 2 Polarity Control bit

Value	Description
1	The output of Channel 2 logic is inverted when applied to the logic cell
0	The output of Channel 2 logic is not inverted

Bit 0 - G1POL Gate 1 Polarity Control bit

Value	Description
1	The output of Channel 1 logic is inverted when applied to the logic cell
0	The output of Channel 1 logic is not inverted

Configurable Logic Cell (CLC)

21.1.4 CLC1 Input MUX Select Register

Name: CLC1SEL Offset: 0x468

Bit	15	14	13	12	11	10	9	8
			DS4[2:0]				DS3[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			DS2[2:0]				DS1[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bits 14:12 - DS4[2:0] Data Selection MUX 4 Signal Selection bits

	<u> </u>
Value	Description
111	MCCP3 output
110	MCCP1 output
101	Unimplemented
100	LCD automation timer
011	SPI1 Input (SDI1)
010	Comparator 3 output
001	CLC2 output
000	CLCIND pin

Bits 10:8 - DS3[2:0] Data Selection MUX 3 Signal Selection bits

Value Description 111 MCCP3 output 110 MCCP2 output 101 DMA Channel 1 100 UART1 Input (U1RX) 011 SPI1 Output (SDO1) 010 Comparator 2 output 001 CLC1 output 000 CLCINIC pip		200[210] 2 and concentration to congress concentration
110 MCCP2 output 101 DMA Channel 1 100 UART1 Input (U1RX) 011 SPI1 Output (SDO1) 010 Comparator 2 output 001 CLC1 output	Value	Description
101 DMA Channel 1 100 UART1 Input (U1RX) 011 SPI1 Output (SDO1) 010 Comparator 2 output 001 CLC1 output	111	MCCP3 output
100 UART1 Input (U1RX) 011 SPI1 Output (SDO1) 010 Comparator 2 output 001 CLC1 output	110	MCCP2 output
011 SPI1 Output (SDO1) 010 Comparator 2 output 001 CLC1 output	101	DMA Channel 1
010 Comparator 2 output 001 CLC1 output	100	UART1 Input (U1RX)
001 CLC1 output	011	SPI1 Output (SDO1)
•	010	Comparator 2 output
000 CI CINC pip	001	CLC1 output
GLOING PIII	000	CLCINC pin

Bits 6:4 - DS2[2:0] Data Selection MUX 2 Signal Selection bits

Dito U.T	DOZ[Z:0] Data Colocion MOX Z Cignal Colocion Sito
Value	Description
111	MCCP2 output
110	MCCP1 output
101	DMA Channel 0
100	A/D conversion done
011	UART1 Output (U1TX)
010	Comparator 1 output
001	CLC2 output
000	CLCINB pin

Bits 2:0 - DS1[2:0] Data Selection MUX 1 Signal Selection bits

	<u> </u>
Value	Description
111	Timer3 match event
110	Timer2 match event
101	Unimplemented
100	Reference Clock Output (REFO)
011	LPRC

Datasheet

Configurable Logic Cell (CLC)

Value	Description
010	SOSC
001	Peripheral clock (F _{PB})
000	CLCINA pin

Configurable Logic Cell (CLC)

21.1.5 **CLC1 Gate Logic Input Select Low Register**

CLC1GLSL Name: Offset: 0x46C

Bit	15	14	13	12	11	10	9	8
	G2D4T	G2D4N	G2D3T	G2D3N	G2D3N	G2D2N	G2D1T	G2D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - G2D4T Gate 2 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 2
0	The Data Source 4 signal is disabled for Gate 2

Bit 14 - G2D4N Gate 2 Data Source 4 Negated Enable bit

	J
Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 2
0	The Data Source 4 inverted signal is disabled for Gate 2

Bit 13 - G2D3T Gate 2 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 2
0	The Data Source 3 signal is disabled for Gate 2

Bit 12 - G2D3N Gate 2 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 2
0	The Data Source 3 inverted signal is disabled for Gate 2

Bit 11 - G2D3N Gate 2 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 2
0	The Data Source 2 signal is disabled for Gate 2

Bit 10 - G2D2N Gate 2 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 2
0	The Data Source 2 inverted signal is disabled for Gate 2

Bit 9 - G2D1T Gate 2 Data Source 1 True Enable bit

Value	Description
1	The Data Source 1 signal is enabled for Gate 2
0	The Data Source 1 signal is disabled for Gate 2

Bit 8 - G2D1N Gate 2 Data Source 1 Negated Enable bit

	_
Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 2
0	The Data Source 1 inverted signal is disabled for Gate 2

Configurable Logic Cell (CLC)

Bit 7 - G1D4T Gate 1 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 1
0	The Data Source 4 signal is disabled for Gate 1

Bit 6 - G1D4N Gate 1 Data Source 4 Negated Enable bit

Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 1
0	The Data Source 4 inverted signal is disabled for Gate 1

Bit 5 - G1D3T Gate 1 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 1
0	The Data Source 3 signal is disabled for Gate 1

Bit 4 - G1D3N Gate 1 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 1
0	The Data Source 3 inverted signal is disabled for Gate 1

Bit 3 - G1D2T Gate 1 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 1
0	The Data Source 2 signal is disabled for Gate 1

Bit 2 - G1D2N Gate 1 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 1
0	The Data Source 2 inverted signal is disabled for Gate 1

Bit 1 - G1D1T Gate 1 Data Source 1 True Enable bit

	Ell Cate Bata Couloc Hao Ellable Bit			
Value	Description			
1	The Data Source 1 signal is enabled for Gate 1			
0	The Data Source 1 signal is disabled for Gate 1			

Bit 0 - G1D1N Gate 1 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 1
0	The Data Source 1 inverted signal is disabled for Gate 1

Configurable Logic Cell (CLC)

21.1.6 CLC1 Gate Logic Input Select High Register

Name: CLC1GLSH Offset: 0x46E

Bit	15	14	13	12	11	10	9	8
	G4D4T	G4D4N	G4D3T	G4D3N	G4D2N	G4D2N	G4D1T	G4D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - G4D4T Gate 4 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 4
0	The Data Source 4 signal is disabled for Gate 4

Bit 14 - G4D4N Gate 4 Data Source 4 Negated Enable bit

	<u> </u>
Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 4
0	The Data Source 4 inverted signal is disabled for Gate 4

Bit 13 - G4D3T Gate 4 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 4
0	The Data Source 3 signal is disabled for Gate 4

Bit 12 - G4D3N Gate 4 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 4
0	The Data Source 3 inverted signal is disabled for Gate 4

Bit 11 - G4D2N Gate 4 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 4
0	The Data Source 2 signal is disabled for Gate 4

Bit 10 - G4D2N Gate 4 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 4
0	The Data Source 2 inverted signal is disabled for Gate 4

Bit 9 - G4D1T Gate 4 Data Source 1 True Enable bit

Value	Description
1	The Data Source 1 signal is enabled for Gate 4
0	The Data Source 1 signal is disabled for Gate 4

Bit 8 - G4D1N Gate 4 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 4
0	The Data Source 1 inverted signal is disabled for Gate 4

Configurable Logic Cell (CLC)

Bit 7 - G3D4T Gate 3 Data Source 4 True Enable bit

Va	lue	Description
1		The Data Source 4 signal is enabled for Gate 3
0		The Data Source 4 signal is disabled for Gate 3

Bit 6 - G3D4N Gate 3 Data Source 4 Negated Enable bit

Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 3
0	The Data Source 4 inverted signal is disabled for Gate 3

Bit 5 - G3D3T Gate 3 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 3
0	The Data Source 3 signal is disabled for Gate 3

Bit 4 - G3D3N Gate 3 Data Source 3 Negated Enable bit

Valu	ıe	Description
1		The Data Source 3 inverted signal is enabled for Gate 3
0		The Data Source 3 inverted signal is disabled for Gate 3

Bit 3 - G3D2T Gate 3 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 3
0	The Data Source 2 signal is disabled for Gate 3

Bit 2 - G3D2N Gate 3 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 3
0	The Data Source 2 inverted signal is disabled for Gate 3

Bit 1 - G3D1T Gate 3 Data Source 1 True Enable bit

	21. Outo C Data Country 1 may 2 manie bit
Value	Description
1	The Data Source 1 signal is enabled for Gate 3
0	The Data Source 1 signal is disabled for Gate 3

Bit 0 - G3D1N Gate 3 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 3
0	The Data Source 1 inverted signal is disabled for Gate 3

Datasheet DS30010203C-page 1047

Configurable Logic Cell (CLC)

21.1.7 CLC2 Control Register Low

Name: CLC2CONL Offset: 0x470

Bit	15	14	13	12	11	10	9	8
	LCEN				INTP	INTN		
Access	R/W			•	R/W	R/W		
Reset	0				0	0		
Bit	7	6	5	4	3	2	1	0
	LCOE	LCOUT	LCPOL				MODE[2:0]	
Access	R/W	R	R/W			R/W	R/W	R/W
Reset	0	0	0			0	0	0

Bit 15 - LCEN CLC Enable bit

-1	Value	Description
	1	CLC is enabled and mixing input signals
	0	CLC is disabled and has logic zero outputs

Bit 11 - INTP CLC Positive Edge Interrupt Enable bit

Value	Description
1	Interrupt will be generated when a rising edge occurs on LCOUT
0	Interrupt will not be generated

Bit 10 - INTN CLC Negative Edge Interrupt Enable bit

Malara	Described in the second
Value	Description
1	Interrupt will be generated when a falling edge occurs on LCOUT
0	Interrupt will not be generated

Bit 7 - LCOE CLC Port Fnable bit

Dit / L	Bit I - EGGE GEG I Git Eliable bit		
Value	Description		
1	CLC port pin output is enabled		
0	CLC port pin output is disabled		

Bit 6 - LCOUT CLC Data Output Status bit

Value	Description
1	CLC output high
0	CLC output low

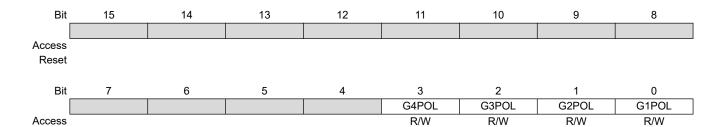
Bit 5 - LCPOL CLC Output Polarity Control bit

Value	Description
1	The output of the module is inverted
0	The output of the module is not inverted

Bits 2:0 - MODE[2:0] CLC Mode bits

Value	Description
111	Cell is a 1-input transparent latch with S and R
110	Cell is a JK flip-flop with R
101	Cell is a 2-input D flip-flop with R
100	Cell is a 1-input D flip-flop with S and R
011	Cell is an SR latch
010	Cell is a 4-input AND
001	Cell is an OR-XOR
000	Cell is an AND-OR

0


Configurable Logic Cell (CLC)

0

21.1.8 CLC2 Control Register High

Reset

Name: CLC2CONH Offset: 0x472

Bit 3 - G4POL Gate 4 Polarity Control bit

Value	Description
1	The output of Channel 4 logic is inverted when applied to the logic cell
0	The output of Channel 4 logic is not inverted

0

Bit 2 - G3POL Gate 3 Polarity Control bit

Value	Description
1	The output of Channel 3 logic is inverted when applied to the logic cell
0	The output of Channel 3 logic is not inverted

Bit 1 - G2POL Gate 2 Polarity Control bit

Value	Description
1	The output of Channel 2 logic is inverted when applied to the logic cell
0	The output of Channel 2 logic is not inverted

Bit 0 - G1POL Gate 1 Polarity Control bit

Value	Description
1	The output of Channel 1 logic is inverted when applied to the logic cell
0	The output of Channel 1 logic is not inverted

Configurable Logic Cell (CLC)

21.1.9 CLC2 Input MUX Select Register

Name: CLC2SEL Offset: 0x474

Bit	15	14	13	12	11	10	9	8
			DS4[2:0]				DS3[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			DS2[2:0]				DS1[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bits 14:12 - DS4[2:0] Data Selection MUX 4 Signal Selection bits

Value	Description
111	MCCP3 output
110	MCCP1 output
101	Unimplemented
100	LCD automation timer
011	SPI2 Input (SDI1)
010	Comparator 3 output
001	CLC1 output
000	CLCIND pin

Bits 10:8 - DS3[2:0] Data Selection MUX 3 Signal Selection bits

	200[210] 2ddd 20100dd 1107 (0 0.1511dd 20100d0 11 dd
Value	Description
111	MCCP3 output
110	MCCP2 output
101	DMA Channel 1
100	UART2 Input (U2RX)
011	SPI2 Output (SDO2)
010	Comparator 2 output
001	CLC2 output
000	CLCINC pin

Bits 6:4 - DS2[2:0] Data Selection MUX 2 Signal Selection bits

	Dellie Bala colocien Mox 2 cignal colocien bla
Value	Description
111	MCCP2 output
110	MCCP1 output
101	DMA Channel 0
100	A/D conversion done
011	UART2 Output (U2TX)
010	Comparator 1 output
001	CLC1 output
000	CLCINB pin

Bits 2:0 - DS1[2:0] Data Selection MUX 1 Signal Selection bits

	<u> </u>
Value	Description
111	Timer3 match event
110	Timer2 match event
101	Unimplemented
100	Reference Clock Output (REFO)
011	LPRC

Configurable Logic Cell (CLC)

Value	Description
010	SOSC
001	Peripheral clock (F _{PB})
000	CLCINA pin

Configurable Logic Cell (CLC)

21.1.10 CLC2 Gate Logic Input Select Low Register

Name: CLC2GLSL Offset: 0x478

Bit	15	14	13	12	11	10	9	8
	G2D4T	G2D4N	G2D3T	G2D3N	G2D3N	G2D2N	G2D1T	G2D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - G2D4T Gate 2 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 2
0	The Data Source 4 signal is disabled for Gate 2

Bit 14 - G2D4N Gate 2 Data Source 4 Negated Enable bit

	J
Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 2
0	The Data Source 4 inverted signal is disabled for Gate 2

Bit 13 - G2D3T Gate 2 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 2
0	The Data Source 3 signal is disabled for Gate 2

Bit 12 - G2D3N Gate 2 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 2
0	The Data Source 3 inverted signal is disabled for Gate 2

Bit 11 - G2D3N Gate 2 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 2
0	The Data Source 2 signal is disabled for Gate 2

Bit 10 - G2D2N Gate 2 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 2
0	The Data Source 2 inverted signal is disabled for Gate 2

Bit 9 - G2D1T Gate 2 Data Source 1 True Enable bit

Value	Description
1	The Data Source 1 signal is enabled for Gate 2
0	The Data Source 1 signal is disabled for Gate 2

Bit 8 - G2D1N Gate 2 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 2
0	The Data Source 1 inverted signal is disabled for Gate 2

Configurable Logic Cell (CLC)

Bit 7 - G1D4T Gate 1 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 1
0	The Data Source 4 signal is disabled for Gate 1

Bit 6 - G1D4N Gate 1 Data Source 4 Negated Enable bit

Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 1
0	The Data Source 4 inverted signal is disabled for Gate 1

Bit 5 - G1D3T Gate 1 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 1
0	The Data Source 3 signal is disabled for Gate 1

Bit 4 - G1D3N Gate 1 Data Source 3 Negated Enable bit

	· · · · · · · · · · · · · · · · · · ·
Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 1
0	The Data Source 3 inverted signal is disabled for Gate 1

Bit 3 - G1D2T Gate 1 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 1
0	The Data Source 2 signal is disabled for Gate 1

Bit 2 - G1D2N Gate 1 Data Source 2 Negated Enable bit

1	Value	Description
	1	The Data Source 2 inverted signal is enabled for Gate 1
	0	The Data Source 2 inverted signal is disabled for Gate 1

Bit 1 - G1D1T Gate 1 Data Source 1 True Enable bit

Dit i Gib i Gata Codico i ilabio bit	
Value	Description
1	The Data Source 1 signal is enabled for Gate 1
0	The Data Source 1 signal is disabled for Gate 1

Bit 0 - G1D1N Gate 1 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 1
0	The Data Source 1 inverted signal is disabled for Gate 1

Datasheet DS30010203C-page 1053

Configurable Logic Cell (CLC)

21.1.11 CLC2 Gate Logic Input Select High Register

Name: CLC2GLSH Offset: 0x47A

Bit	15	14	13	12	11	10	9	8
	G4D4T	G4D4N	G4D3T	G4D3N	G4D2N	G4D2N	G4D1T	G4D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - G4D4T Gate 4 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 4
0	The Data Source 4 signal is disabled for Gate 4

Bit 14 - G4D4N Gate 4 Data Source 4 Negated Enable bit

Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 4
0	The Data Source 4 inverted signal is disabled for Gate 4

Bit 13 - G4D3T Gate 4 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 4
0	The Data Source 3 signal is disabled for Gate 4

Bit 12 - G4D3N Gate 4 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 4
0	The Data Source 3 inverted signal is disabled for Gate 4

Bit 11 - G4D2N Gate 4 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 4
0	The Data Source 2 signal is disabled for Gate 4

Bit 10 - G4D2N Gate 4 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 4
0	The Data Source 2 inverted signal is disabled for Gate 4

Bit 9 - G4D1T Gate 4 Data Source 1 True Enable bit

Value	Description
1	The Data Source 1 signal is enabled for Gate 4
0	The Data Source 1 signal is disabled for Gate 4

Bit 8 - G4D1N Gate 4 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 4
0	The Data Source 1 inverted signal is disabled for Gate 4

Configurable Logic Cell (CLC)

Bit 7 - G3D4T Gate 3 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 3
0	The Data Source 4 signal is disabled for Gate 3

Bit 6 - G3D4N Gate 3 Data Source 4 Negated Enable bit

Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 3
0	The Data Source 4 inverted signal is disabled for Gate 3

Bit 5 - G3D3T Gate 3 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 3
0	The Data Source 3 signal is disabled for Gate 3

Bit 4 - G3D3N Gate 3 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 3
0	The Data Source 3 inverted signal is disabled for Gate 3

Bit 3 - G3D2T Gate 3 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 3
0	The Data Source 2 signal is disabled for Gate 3

Bit 2 - G3D2N Gate 3 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 3
0	The Data Source 2 inverted signal is disabled for Gate 3

Bit 1 - G3D1T Gate 3 Data Source 1 True Enable bit

	21. Outo C Data Country 1 may 2 manie bit
Value	Description
1	The Data Source 1 signal is enabled for Gate 3
0	The Data Source 1 signal is disabled for Gate 3

Bit 0 - G3D1N Gate 3 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 3
0	The Data Source 1 inverted signal is disabled for Gate 3

Datasheet DS30010203C-page 1055

Configurable Logic Cell (CLC)

21.1.12 CLC3 Control Register Low

Name: CLC3CONL Offset: 0x47C

Bit	15	14	13	12	11	10	9	8
	LCEN				INTP	INTN		
Access	R/W			•	R/W	R/W		
Reset	0				0	0		
Bit	7	6	5	4	3	2	1	0
	LCOE	LCOUT	LCPOL				MODE[2:0]	
Access	R/W	R	R/W	•		R/W	R/W	R/W
Reset	0	0	0			0	0	0

Bit 15 - LCEN CLC Enable bit

-1	Value	Description
	1	CLC is enabled and mixing input signals
	0	CLC is disabled and has logic zero outputs

Bit 11 - INTP CLC Positive Edge Interrupt Enable bit

	V alue	Description
-	1	Interrupt will be generated when a rising edge occurs on LCOUT
()	Interrupt will not be generated

Bit 10 - INTN CLC Negative Edge Interrupt Enable bit

Value	Description
1	Interrupt will be generated when a falling edge occurs on LCOUT
0	Interrupt will not be generated

Bit 7 - LCOE CLC Port Fnable bit

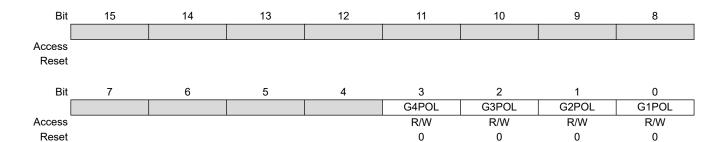
Dit 1	Bit 1 - LOOL OLO I OIT Eliable bit		
Value	Description		
1	CLC port pin output is enabled		
0	CLC port pin output is disabled		

Bit 6 - LCOUT CLC Data Output Status bit

Value	Description
1	CLC output high
0	CLC output low

Bit 5 - LCPOL CLC Output Polarity Control bit

Value	Description
1	The output of the module is inverted
0	The output of the module is not inverted


Bits 2:0 - MODE[2:0] CLC Mode bits

Value	Description
111	Cell is a 1-input transparent latch with S and R
110	Cell is a JK flip-flop with R
101	Cell is a 2-input D flip-flop with R
100	Cell is a 1-input D flip-flop with S and R
011	Cell is an SR latch
010	Cell is a 4-input AND
001	Cell is an OR-XOR
000	Cell is an AND-OR

Configurable Logic Cell (CLC)

21.1.13 CLC3 Control Register High

Name: CLC3CONH Offset: 0x47E

Bit 3 - G4POL Gate 4 Polarity Control bit

Val	lue	Description
1		The output of Channel 4 logic is inverted when applied to the logic cell
0		The output of Channel 4 logic is not inverted

Bit 2 - G3POL Gate 3 Polarity Control bit

Value	Description
1	The output of Channel 3 logic is inverted when applied to the logic cell
0	The output of Channel 3 logic is not inverted

Bit 1 - G2POL Gate 2 Polarity Control bit

Value	Description
1	The output of Channel 2 logic is inverted when applied to the logic cell
0	The output of Channel 2 logic is not inverted

Bit 0 - G1POL Gate 1 Polarity Control bit

Value	Description
1	The output of Channel 1 logic is inverted when applied to the logic cell
0	The output of Channel 1 logic is not inverted

Configurable Logic Cell (CLC)

21.1.14 CLC3 Input MUX Select Register

Name: CLC3SEL Offset: 0x484

Bit	15	14	13	12	11	10	9	8
		DS4[2:0]				DS3[2:0]		
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
		DS2[2:0]				DS1[2:0]		
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bits 14:12 - DS4[2:0] Data Selection MUX 4 Signal Selection bits

Value	Description
111	MCCP3 output
110	MCCP1 output
101	Unimplemented
100	LCD automation timer
011	SPI3 Input (SDI3)
010	Comparator 3 output
001	CLC4 output
000	CLCIND pin

Bits 10:8 - DS3[2:0] Data Selection MUX 3 Signal Selection bits

Description
MCCP3 output
MCCP2 output
DMA Channel 1
UART3 Input (U3RX)
SPI3 Output (SDO3)
Comparator 2 output
CLC1 output
CLCINC pin

Bits 6:4 - DS2[2:0] Data Selection MUX 2 Signal Selection bits

Value	Description
111	MCCP2 output
110	MCCP1 output
101	DMA Channel 0
100	A/D conversion done
011	UART3 Output (U3TX)
010	Comparator 1 output
001	CLC2 output
000	CLCINB pin

Bits 2:0 - DS1[2:0] Data Selection MUX 1 Signal Selection bits

	<u> </u>
Value	Description
111	Timer3 match event
110	Timer2 match event
101	Unimplemented
100	Reference Clock Output (REFO)
011	LPRC

Datasheet

Configurable Logic Cell (CLC)

Value	Description
010	SOSC
001	Peripheral clock (F _{PB})
000	CLCINA pin

Configurable Logic Cell (CLC)

21.1.15 CLC3 Gate Logic Input Select Low Register

Name: CLC3GLSL Offset: 0x484

Bit	15	14	13	12	11	10	9	8
	G2D4T	G2D4N	G2D3T	G2D3N	G2D3N	G2D2N	G2D1T	G2D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - G2D4T Gate 2 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 2
0	The Data Source 4 signal is disabled for Gate 2

Bit 14 - G2D4N Gate 2 Data Source 4 Negated Enable bit

	<u> </u>
Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 2
0	The Data Source 4 inverted signal is disabled for Gate 2

Bit 13 - G2D3T Gate 2 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 2
0	The Data Source 3 signal is disabled for Gate 2

Bit 12 - G2D3N Gate 2 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 2
0	The Data Source 3 inverted signal is disabled for Gate 2

Bit 11 - G2D3N Gate 2 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 2
0	The Data Source 2 signal is disabled for Gate 2

Bit 10 - G2D2N Gate 2 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 2
0	The Data Source 2 inverted signal is disabled for Gate 2

Bit 9 - G2D1T Gate 2 Data Source 1 True Enable bit

Value	Description
1	The Data Source 1 signal is enabled for Gate 2
0	The Data Source 1 signal is disabled for Gate 2

Bit 8 - G2D1N Gate 2 Data Source 1 Negated Enable bit

	_
Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 2
0	The Data Source 1 inverted signal is disabled for Gate 2

Configurable Logic Cell (CLC)

Bit 7 - G1D4T Gate 1 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 1
0	The Data Source 4 signal is disabled for Gate 1

Bit 6 - G1D4N Gate 1 Data Source 4 Negated Enable bit

Valu	е	Description
1		The Data Source 4 inverted signal is enabled for Gate 1
0		The Data Source 4 inverted signal is disabled for Gate 1

Bit 5 - G1D3T Gate 1 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 1
0	The Data Source 3 signal is disabled for Gate 1

Bit 4 - G1D3N Gate 1 Data Source 3 Negated Enable bit

	· · · · · · · · · · · · · · · · · · ·
Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 1
0	The Data Source 3 inverted signal is disabled for Gate 1

Bit 3 - G1D2T Gate 1 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 1
0	The Data Source 2 signal is disabled for Gate 1

Bit 2 - G1D2N Gate 1 Data Source 2 Negated Enable bit

	<u> </u>
Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 1
0	The Data Source 2 inverted signal is disabled for Gate 1

Bit 1 - G1D1T Gate 1 Data Source 1 True Enable bit

	ID I Cate I Data Coulos I II de Eliable Dit
Value	Description
1	The Data Source 1 signal is enabled for Gate 1
0	The Data Source 1 signal is disabled for Gate 1

Bit 0 - G1D1N Gate 1 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 1
0	The Data Source 1 inverted signal is disabled for Gate 1

Configurable Logic Cell (CLC)

21.1.16 CLC3 Gate Logic Input Select High Register

Name: CLC3GLSH Offset: 0x486

Bit	15	14	13	12	11	10	9	8
	G4D4T	G4D4N	G4D3T	G4D3N	G4D2N	G4D2N	G4D1T	G4D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - G4D4T Gate 4 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 4
0	The Data Source 4 signal is disabled for Gate 4

Bit 14 - G4D4N Gate 4 Data Source 4 Negated Enable bit

	<u> </u>
Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 4
0	The Data Source 4 inverted signal is disabled for Gate 4

Bit 13 - G4D3T Gate 4 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 4
0	The Data Source 3 signal is disabled for Gate 4

Bit 12 - G4D3N Gate 4 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 4
0	The Data Source 3 inverted signal is disabled for Gate 4

Bit 11 - G4D2N Gate 4 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 4
0	The Data Source 2 signal is disabled for Gate 4

Bit 10 - G4D2N Gate 4 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 4
0	The Data Source 2 inverted signal is disabled for Gate 4

Bit 9 - G4D1T Gate 4 Data Source 1 True Enable bit

Value	Description
1	The Data Source 1 signal is enabled for Gate 4
0	The Data Source 1 signal is disabled for Gate 4

Bit 8 - G4D1N Gate 4 Data Source 1 Negated Enable bit

	3
Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 4
0	The Data Source 1 inverted signal is disabled for Gate 4

Configurable Logic Cell (CLC)

Bit 7 - G3D4T Gate 3 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 3
0	The Data Source 4 signal is disabled for Gate 3

Bit 6 - G3D4N Gate 3 Data Source 4 Negated Enable bit

Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 3
0	The Data Source 4 inverted signal is disabled for Gate 3

Bit 5 - G3D3T Gate 3 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 3
0	The Data Source 3 signal is disabled for Gate 3

Bit 4 - G3D3N Gate 3 Data Source 3 Negated Enable bit

Valu	ıe	Description
1		The Data Source 3 inverted signal is enabled for Gate 3
0		The Data Source 3 inverted signal is disabled for Gate 3

Bit 3 - G3D2T Gate 3 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 3
0	The Data Source 2 signal is disabled for Gate 3

Bit 2 - G3D2N Gate 3 Data Source 2 Negated Enable bit

ı	Value	Description
	1	The Data Source 2 inverted signal is enabled for Gate 3
	0	The Data Source 2 inverted signal is disabled for Gate 3

Bit 1 - G3D1T Gate 3 Data Source 1 True Enable bit

Value Description				
1	The Data Source 1 signal is enabled for Gate 3			
0	The Data Source 1 signal is disabled for Gate 3			

Bit 0 - G3D1N Gate 3 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 3
0	The Data Source 1 inverted signal is disabled for Gate 3

Datasheet DS30010203C-page 1063

Configurable Logic Cell (CLC)

21.1.17 CLC4 Control Register Low

Name: CLC4CONL Offset: 0x488

Bit	15	14	13	12	11	10	9	8
	LCEN				INTP	INTN		
Access	R/W			•	R/W	R/W		
Reset	0				0	0		
Bit	7	6	5	4	3	2	1	0
	LCOE	LCOUT	LCPOL				MODE[2:0]	
Access	R/W	R	R/W	•		R/W	R/W	R/W
Reset	0	0	0			0	0	0

Bit 15 - LCEN CLC Enable bit

-1	Value	Description
	1	CLC is enabled and mixing input signals
	0	CLC is disabled and has logic zero outputs

Bit 11 - INTP CLC Positive Edge Interrupt Enable bit

Value	Description
1	Interrupt will be generated when a rising edge occurs on LCOUT
0	Interrupt will not be generated

Bit 10 - INTN CLC Negative Edge Interrupt Enable bit

Value	Description
1	Interrupt will be generated when a falling edge occurs on LCOUT
0	Interrupt will not be generated

Bit 7 - LCOE CLC Port Fnable bit

Dit / L	Bit I - EGGE GEG I Git Eliable bit			
Value	Description			
1	CLC port pin output is enabled			
0	CLC port pin output is disabled			

Bit 6 - LCOUT CLC Data Output Status bit

Value	Description
1	CLC output high
0	CLC output low

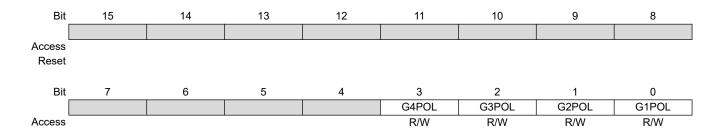
Bit 5 - LCPOL CLC Output Polarity Control bit

Value	Description		
1	The output of the module is inverted		
0	The output of the module is not inverted		

Bits 2:0 - MODE[2:0] CLC Mode bits

Value	Description
111	Cell is a 1-input transparent latch with S and R
110	Cell is a JK flip-flop with R
101	Cell is a 2-input D flip-flop with R
100	Cell is a 1-input D flip-flop with S and R
011	Cell is an SR latch
010	Cell is a 4-input AND
001	Cell is an OR-XOR
000	Cell is an AND-OR

0


Configurable Logic Cell (CLC)

0

21.1.18 CLC4 Control Register High

Reset

Name: CLC4CONH Offset: 0x48A

Bit 3 - G4POL Gate 4 Polarity Control bit

Val	lue	Description
1		The output of Channel 4 logic is inverted when applied to the logic cell
0		The output of Channel 4 logic is not inverted

0

Bit 2 - G3POL Gate 3 Polarity Control bit

Value	Description
1	The output of Channel 3 logic is inverted when applied to the logic cell
0	The output of Channel 3 logic is not inverted

Bit 1 - G2POL Gate 2 Polarity Control bit

Value	Description				
1	The output of Channel 2 logic is inverted when applied to the logic cell				
0	The output of Channel 2 logic is not inverted				

Bit 0 - G1POL Gate 1 Polarity Control bit

Value	Description
1	The output of Channel 1 logic is inverted when applied to the logic cell
0	The output of Channel 1 logic is not inverted

Configurable Logic Cell (CLC)

21.1.19 CLC4 Input MUX Select Register

Name: CLC4SEL Offset: 0x48C

Bit	15	14	13	12	11	10	9	8
			DS4[2:0]				DS3[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
			DS2[2:0]				DS1[2:0]	
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bits 14:12 - DS4[2:0] Data Selection MUX 4 Signal Selection bits

Value	Description
111	MCCP3 output
110	MCCP1 output
101	Unimplemented
100	LCD automation timer
011	SPI4 Input (SDI4)
010	Comparator 3 output
001	CLC3 output
000	CLCIND pin

Bits 10:8 - DS3[2:0] Data Selection MUX 3 Signal Selection bits

	Detail Data Colocation More Congress Colocation Site
Value	Description
111	MCCP3 output
110	MCCP2 output
101	DMA Channel 1
100	UART4 Input (U4RX)
011	SPI4 Output (SDO4)
010	Comparator 2 output
001	CLC2 output
000	CLCINC pin

Bits 6:4 - DS2[2:0] Data Selection MUX 2 Signal Selection bits

	201[10] Bata Colocion Mox 2 digital Colocion Site
Value	Description
111	MCCP2 output
110	MCCP1 output
101	DMA Channel 0
100	A/D conversion done
011	UART4 Output (U4TX)
010	Comparator 1 output
001	CLC1 output
000	CLCINB pin

Bits 2:0 - DS1[2:0] Data Selection MUX 1 Signal Selection bits

	<u> </u>
Value	Description
111	Timer3 match event
110	Timer2 match event
101	Unimplemented
100	Reference Clock Output (REFO)
011	LPRC

Datasheet

Configurable Logic Cell (CLC)

Value	Description
010	SOSC
001	Peripheral clock (F _{PB})
000	CLCINA pin

Configurable Logic Cell (CLC)

21.1.20 CLC4 Gate Logic Input Select Low Register

Name: CLC4GLSL Offset: 0x490

Bit	15	14	13	12	11	10	9	8
	G2D4T	G2D4N	G2D3T	G2D3N	G2D3N	G2D2N	G2D1T	G2D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - G2D4T Gate 2 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 2
0	The Data Source 4 signal is disabled for Gate 2

Bit 14 - G2D4N Gate 2 Data Source 4 Negated Enable bit

	<u> </u>
Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 2
0	The Data Source 4 inverted signal is disabled for Gate 2

Bit 13 - G2D3T Gate 2 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 2
0	The Data Source 3 signal is disabled for Gate 2

Bit 12 - G2D3N Gate 2 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 2
0	The Data Source 3 inverted signal is disabled for Gate 2

Bit 11 - G2D3N Gate 2 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 2
0	The Data Source 2 signal is disabled for Gate 2

Bit 10 - G2D2N Gate 2 Data Source 2 Negated Enable bit

D	SEDENT Cate 2 Data Course 2 Nogator Enable bit
Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 2
0	The Data Source 2 inverted signal is disabled for Gate 2

Bit 9 - G2D1T Gate 2 Data Source 1 True Enable bit

Value	Description
1	The Data Source 1 signal is enabled for Gate 2
0	The Data Source 1 signal is disabled for Gate 2

Bit 8 - G2D1N Gate 2 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 2
0	The Data Source 1 inverted signal is disabled for Gate 2

Configurable Logic Cell (CLC)

Bit 7 - G1D4T Gate 1 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 1
0	The Data Source 4 signal is disabled for Gate 1

Bit 6 - G1D4N Gate 1 Data Source 4 Negated Enable bit

Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 1
0	The Data Source 4 inverted signal is disabled for Gate 1

Bit 5 - G1D3T Gate 1 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 1
0	The Data Source 3 signal is disabled for Gate 1

Bit 4 - G1D3N Gate 1 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 1
0	The Data Source 3 inverted signal is disabled for Gate 1

Bit 3 - G1D2T Gate 1 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 1
0	The Data Source 2 signal is disabled for Gate 1

Bit 2 - G1D2N Gate 1 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 1
0	The Data Source 2 inverted signal is disabled for Gate 1

Bit 1 - G1D1T Gate 1 Data Source 1 True Enable bit

Value	Description
1	The Data Source 1 signal is enabled for Gate 1
0	The Data Source 1 signal is disabled for Gate 1

Bit 0 - G1D1N Gate 1 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 1
0	The Data Source 1 inverted signal is disabled for Gate 1

Configurable Logic Cell (CLC)

21.1.21 CLC4 Gate Logic Input Select High Register

Name: CLC4GLSH Offset: 0x492

Bit	15	14	13	12	11	10	9	8
	G4D4T	G4D4N	G4D3T	G4D3N	G4D2N	G4D2N	G4D1T	G4D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - G4D4T Gate 4 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 4
0	The Data Source 4 signal is disabled for Gate 4

Bit 14 - G4D4N Gate 4 Data Source 4 Negated Enable bit

	<u> </u>
Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 4
0	The Data Source 4 inverted signal is disabled for Gate 4

Bit 13 - G4D3T Gate 4 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 4
0	The Data Source 3 signal is disabled for Gate 4

Bit 12 - G4D3N Gate 4 Data Source 3 Negated Enable bit

Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 4
0	The Data Source 3 inverted signal is disabled for Gate 4

Bit 11 - G4D2N Gate 4 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 4
0	The Data Source 2 signal is disabled for Gate 4

Bit 10 - G4D2N Gate 4 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 4
0	The Data Source 2 inverted signal is disabled for Gate 4

Bit 9 - G4D1T Gate 4 Data Source 1 True Enable bit

Value	Description
1	The Data Source 1 signal is enabled for Gate 4
0	The Data Source 1 signal is disabled for Gate 4

Bit 8 - G4D1N Gate 4 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 4
0	The Data Source 1 inverted signal is disabled for Gate 4

Configurable Logic Cell (CLC)

Bit 7 - G3D4T Gate 3 Data Source 4 True Enable bit

Value	Description
1	The Data Source 4 signal is enabled for Gate 3
0	The Data Source 4 signal is disabled for Gate 3

Bit 6 - G3D4N Gate 3 Data Source 4 Negated Enable bit

Value	Description
1	The Data Source 4 inverted signal is enabled for Gate 3
0	The Data Source 4 inverted signal is disabled for Gate 3

Bit 5 - G3D3T Gate 3 Data Source 3 True Enable bit

Value	Description
1	The Data Source 3 signal is enabled for Gate 3
0	The Data Source 3 signal is disabled for Gate 3

Bit 4 - G3D3N Gate 3 Data Source 3 Negated Enable bit

	_
Value	Description
1	The Data Source 3 inverted signal is enabled for Gate 3
0	The Data Source 3 inverted signal is disabled for Gate 3

Bit 3 - G3D2T Gate 3 Data Source 2 True Enable bit

Value	Description
1	The Data Source 2 signal is enabled for Gate 3
0	The Data Source 2 signal is disabled for Gate 3

Bit 2 - G3D2N Gate 3 Data Source 2 Negated Enable bit

Value	Description
1	The Data Source 2 inverted signal is enabled for Gate 3
0	The Data Source 2 inverted signal is disabled for Gate 3

Bit 1 - G3D1T Gate 3 Data Source 1 True Enable bit

	2 002 0440 0 2444 0 04470 1	
Value	Description	
1	The Data Source 1 signal is enabled for Gate 3	
0	The Data Source 1 signal is disabled for Gate 3	

Bit 0 - G3D1N Gate 3 Data Source 1 Negated Enable bit

Value	Description
1	The Data Source 1 inverted signal is enabled for Gate 3
0	The Data Source 1 inverted signal is disabled for Gate 3

neet DS30010203C-page 1071

12-Bit A/D Converter with Threshold Detect

22. 12-Bit A/D Converter with Threshold Detect

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter, refer to "12-Bit A/D Converter with Threshold Detect" (DS39739) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The A/D Converter has the following key features:

- Successive Approximation Register (SAR) Conversion
- · Selectable 10-Bit or 12-Bit (default) Conversion Resolution
- Up to 28 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- · External Voltage Reference Input Pins
- · Unipolar Differential Sample-and-Hold (S/H) Amplifier
- Automated Threshold Scan and Compare Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- · Fixed Length (one word per channel), Configurable Conversion Result Buffer
- · Four Options for Results Alignment
- · Configurable Interrupt Generation
- · Enhanced DMA Operations with Indirect Address Generation
- · Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.

It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results, and enhanced operation with the DMA Controller through Peripheral Indirect Addressing (PIA).

A simplified block diagram for the module is shown in Figure 22-1.

12-Bit A/D Converter with Threshold Detect

Internal Data Bus VR+ AVDD Select **AVss** $\frac{1}{2}$ VR-VREF+ VR+ VR-VINH VINL AN0⁽¹⁾ ⊠ SAR AN1⁽¹⁾ AN2⁽¹⁾ VINH **Data Formatting** MUXA Extended DMA Data VINL ADC1BUF0: ADC1BUF23 AD1CON1 AD1CON2 AN23⁽¹⁾ AD1CON3 AD1CON4 VBG AD1CON5 VINH AVDD AD1CHS MUX **AD1CHITL AVss AD1CHITH** VINL AD1CSSL AD1CSSH AD1DMBUF Sample Control Control Logic Conversion Control 16 Input MUX Control DMA Data Bus

Figure 22-1. 12-Bit A/D Converter Block Diagram (PIC24FJ512GU410 Family)

Note:

1. Available ANx pins are package-dependent.

12-Bit A/D Converter with Threshold Detect

22.1 Basic Operation

To perform a standard A/D conversion:

- 1. Configure the module:
 - 1.1. Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see 11.2 Configuring Analog Port Pins for more information).
 - 1.2. Select the voltage reference source to match the expected range on analog inputs (AD1CON2[15:13]).
 - 1.3. Select the positive and negative multiplexer inputs for each channel (AD1CHS[15:0]).
 - 1.4. Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3[7:0]).
 - 1.5. Select the appropriate sample/conversion sequence (AD1CON1[7:4] and AD1CON3[12:8]).
 - 1.6. For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
 - 1.7. Select how conversion results are presented in the buffer (AD1CON1[9:8] and AD1CON5 register).
 - 1.8. Select the interrupt rate (AD1CON2[6:2]).
 - 1.9. Turn on A/D module (AD1CON1[15]).
- 2. Configure the A/D interrupt (if required):
 - 2.1. Clear the AD1IF bit (IFS0[13]).
 - 2.2. Enable the AD1IE interrupt (IEC0[13]).
 - 2.3. Select the A/D interrupt priority (IPC3[6:4]).
- 3. If the module is configured for manual sampling, set the SAMP bit (AD1CON1[1]) to begin sampling.

22.2 Extended DMA Operations

In addition to the standard features available on all 12-bit A/D Converters, PIC24FJ512GU410 family devices implement a limited extension of DMA functionality. This extension adds features that work with the device's DMA Controller to expand the A/D module's data storage abilities beyond the module's built-in buffer.

The Extended DMA functionality is controlled by the DMAEN bit (AD1CON1[11]); setting this bit enables the functionality. The DMABM bit (AD1CON1[12]) configures how the DMA feature operates.

22.2.1 Extended Buffer Mode

Extended Buffer mode (DMABM = 1) maps the A/D Data Buffer registers and data from all channels, above 13, into a user-specified area of data RAM. This allows users to read the conversion results of channels above 13, which do not have their own memory-mapped A/D buffer locations, from data memory.

To accomplish this, the DMA must be configured in Peripheral Indirect Addressing mode and the DMA destination address must point to the beginning of the buffer. The DMA count must be set to generate an interrupt after the desired number of conversions.

In Extended Buffer mode, the A/D control bits will function similarly to non-DMA modes. The BUFREGEN bit will still select between FIFO mode and Channel-Aligned mode, but the number of words in the destination FIFO will be determined by the SMPI[4:0] bits in DMA mode. In FIFO mode, the BUFM bit will still split the output FIFO into two sets of 13 results (the SMPIx bits should be set accordingly) and the BUFS bit will still indicate which set of results is being written to and which can be read.

22.2.2 PIA Mode

When DMABM = 0, the A/D module is configured to function with the DMA Controller for Peripheral Indirect Addressing (PIA) mode operations. In this mode, the A/D module generates an 11-bit Indirect Address (IA). This is ORed with the destination address in the DMA Controller to define where the A/D conversion data will be stored.

In PIA mode, the buffer space is created as a series of contiguous smaller buffers, one per analog channel. The size of the channel buffer determines how many analog channels can be accommodated. The size of the buffer is selected by the DMABL[2:0] bits (AD1CON4[2:0]). The size options range from a single word per buffer to 128 words.

12-Bit A/D Converter with Threshold Detect

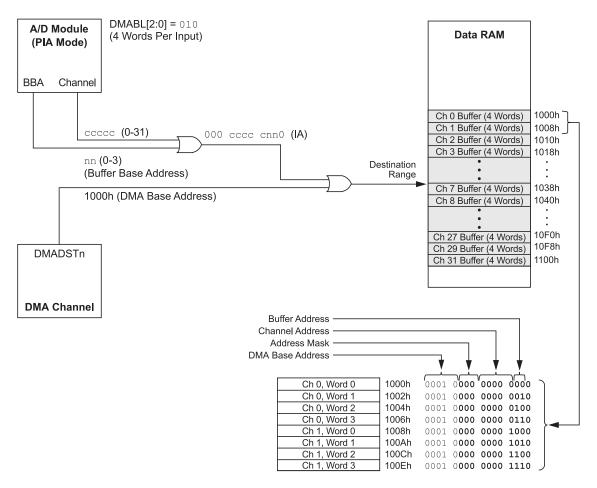
Each channel is allocated a buffer of this size, regardless of whether or not the channel will actually have conversion data.

The IA is created by combining the base address within a channel buffer with three to five bits (depending on the buffer size) to identify the channel. The base address ranges from zero to seven bits wide, depending on the buffer size. The address is right-padded with a '0' in order to maintain address alignment in the Data Space. The concatenated channel and base address bits are then left-padded with zeros, as necessary, to complete the 11-bit IA.

The IA is configured to auto-increment which channel is written in each analog input's sub-buffer, during write operations, by using the SMPIx bits (AD1CON2[6:2]).

As with PIA operations for any DMA-enabled module, the base destination address in the DMADSTn register must be masked properly to accommodate the IA. Table 22-1 shows how complete addresses are formed. Note that the address masking varies for each buffer size option. Because of masking requirements, some address ranges may not be available for certain buffer sizes. Users should verify that the DMA base address is compatible with the buffer size selected.

Table 22-1. Indirect Address Generation in PIA Mode

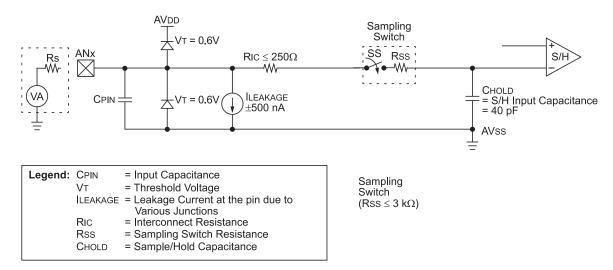

DMABL[2:0]	Buffer Size per Channel (words)	Generated Offset Address (lower 11 bits)	Available Input Channels	Allowable DMADSTn Addresses			
000	1	000 00cc ccc0	32	xxxx xxxx xx00 0000			
001	2	000 0ccc ccn0	32	xxxx xxxx x000 0000			
010	4	000 cccc cnn0	32	xxxx xxxx 0000 0000			
011	8	00c cccc nnn0	32	xxxx xxx0 0000 0000			
100	16	Occ cccn nnnO	32	xxxx xx00 0000 0000			
101	32	ccc ccnn nnn0	32	xxxx x000 0000 0000			
110	64	ccc cnnn nnn0	16	xxxx x000 0000 0000			
111	128	ccc nnnn nnn0	8	xxxx x000 0000 0000			

Legend: ccc = Channel number (three to five bits), n = Base buffer address (zero to seven bits), x = User-definable range of DMADSTn for base address, 0 = Masked bits of DMADSTn for IA.

Figure 22-2 shows how the parts of the address define the buffer locations in data memory. In this case, the module "allocates" 256 bytes of data RAM (1000h to 1100h) for 32 buffers of four words each. However, this is not a hard allocation and nothing prevents these locations from being used for other purposes. For example, in the current case, if Analog Channels 1, 3 and 8 are being sampled and converted, conversion data will only be written to the channel buffers, starting at 1008h, 1018h and 1040h. The holes in the PIA buffer space can be used for any other purpose. It is the user's responsibility to keep track of buffer locations and prevent data overwrites.

12-Bit A/D Converter with Threshold Detect

Figure 22-2. Example of Buffer Address Generation in PIA Mode (4-Word Buffers per Channel)



22.3 Sampling Time Requirements

The analog input model of the 12-Bit High-Speed, Multiple SARs ADC is illustrated in Figure 22-3. The total acquisition time for the Analog-to-Digital conversion is a function of the Holding Capacitor (C_{HOLD}) charge time. For the ADC module to meet its specified accuracy, the Holding Capacitor (C_{HOLD}) must be allowed to fully charge to the voltage level on the analog input pin. The analog output Source Impedance (R_S), the Interconnect Impedance (R_{IC}) and the internal Sampling Switch Impedance (R_{SS}) combine to directly affect the time required to charge the C_{HOLD} . The combined impedance of the analog sources must, therefore, be small enough to fully charge the Holding Capacitor within the selected sample time.

12-Bit A/D Converter with Threshold Detect

Figure 22-3. 12-Bit A/D Converter Analog Input Model

Note: The C_{PIN} value depends on the device package and is not tested. The effect of C_{PIN} is negligible if Rs \leq 2.5 k Ω .

To charge this capacitor to the input signal level with precision 0.5 LSB, the following sampling time is required:

 $T_{SAMPLE} = R_{TOTAL} \times C_{HOLD} \times In(2_{Number Bits + 1})$ or

 $T_{SAMPLE} = R_{TOTAL} x C_{HOLD} x In(2048) = 7.6 x 40 pF x R_{TOTAL}$ for 10-bit mode and

T_{SAMPLE} = R_{TOTAL} x C_{HOLD} x ln(8192) = 9 x 40 pF x R_{TOTAL} for 12-bit mode,

where $R_{TOTAL} = R_S + R_{IC} + R_{SS}$

12-Bit A/D Converter with Threshold Detect

22.4 12-Bit A/D Converter Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x00											
 0x06FF	Reserved										
		7:0		ADC1BUF0[7:0]							
0x0700	ADC1BUF0	15:8		ADC18UF0[7:0] ADC1BUF0[15:8]							
00700	ADO4DUE4	7:0		ADC1BUF1[7:0]							
0x0702	ADC1BUF1	15:8		ADC1BUF1[15:8]							
0x0704	ADC1BUF2	7:0		ADC1BUF2[7:0]							
000704	ADC IBOI 2	15:8					JF2[15:8]				
0x0706	ADC1BUF3	7:0					UF3[7:0]				
0,101.00	7.50.50.0	15:8					JF3[15:8]				
0x0708	ADC1BUF4	7:0					UF4[7:0]				
		15:8					JF4[15:8]				
0x070A	ADC1BUF5	7:0					UF5[7:0]				
		15:8					JF5[15:8]				
0x070C	ADC1BUF6	7:0					UF6[7:0]				
		15:8 7:0					UF7[7:0]				
0x070E	ADC1BUF7	15:8					JF7[15:8]				
		7:0					UF8[7:0]				
0x0710	ADC1BUF8	15:8					JF8[15:8]				
		7:0					UF9[7:0]				
0x0712	712 ADC1BUF9	15:8					JF9[15:8]				
		7:0					JF10[7:0]				
0x0714	ADC1BUF10	15:8					JF10[15:8]				
0.0740		7:0					UF11[7:0]				
0x0716	ADC1BUF11	15:8				ADC1BL	JF11[15:8]				
0x0718	ADC1BUF12	7:0		ADC1BUF12[7:0]							
UXU7 16		15:8				ADC1BL	JF12[15:8]				
0x071A	ADC1BUF13	7:0					JF13[7:0]				
0.07 171	ADC1BUF13	15:8					JF13[15:8]				
0x071C	ADC1BUF14	7:0					JF14[7:0]				
	ADCIDUF14	15:8					JF14[15:8]				
0x071E	ADC1BUF15	7:0					JF15[7:0]				
	7.50150110	15:8					JF15[15:8]				
0x0720	ADC1BUF16	7:0	ADC1BUF16[7:0] ADC1BUF16[15:8]								
		15:8 7:0									
0x0722	ADC1BUF17	15:8		ADC1BUF17[7:0] ADC1BUF17[15:8]							
		7:0									
0x0724	ADC1BUF18	15:8		ADC1BUF18[7:0] ADC1BUF18[15:8]							
		7:0	ADC1BUF19[7:0]								
0x0726	ADC1BUF19	15:8		ADC180F19[7.0] ADC18UF19[15:8]							
0.0700	ADOABUEOO	7:0					JF20[7:0]				
0x0728	28 ADC1BUF20	15:8					JF20[15:8]				
0.0704	2A ADC1BUF21	7:0				ADC1BI	JF21[7:0]				
0x072A		15:8				ADC1BL	JF21[15:8]				
0x072C		7:0	ADC1BUF22[7:0]								
0,0120		15:8					JF22[15:8]				
0x072E		7:0					JF23[7:0]				
		15:8				ADC1BL	JF23[15:8]				
0x0730	Reserved										
 0x0733	Neserveu										
		7:0		SSR	C[3:0]			ASAM	SAMP	DONE	
0x0734	AD1CON1	15:8	ADON		ADSIDL	DMABM	DMAEN	MODE12		RM[1:0]	

12-Bit A/D Converter with Threshold Detect

continued											
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0	
0x0736	AD1CON2	7:0	BUFS			SMPI[4:0]			BUFM	ALTS	
0x0730	ADTOONZ	15:8	PVCF	G[1:0]	NVCFG0	Reserved	BUFREGEN	CSCNA			
0x0738	AD1CON3	7:0	ADCS[7:0]								
0.07.30	AD ICONS	15:8	ADRC	EXTSAM	PUMPEN			SAMC[4:0]			
0x073A	AD1CHS	7:0		CH0NA[2:0]				CH0SA[4:0]			
UXU/3A	AD ICHS	15:8		CH0NB[2:0]				CH0SB[2:0]			
0.0720	073C AD1CSSH	7:0		CSS[23:16]							
UXU/3C		15:8			CSS[30:28]						
0x073E	AD4000L	7:0	CSS[7:0]								
UXU/3E	AD1CSSL	15:8	CSS[15:8]								
0x0740	AD1CON4	7:0	DMABL					DMABL[2:0]	[2:0]		
UXU740	AD ICON4	15:8									
0x0742	742 AD1CON5	7:0					WM	[1:0]	CM	1:0]	
UXU/42		15:8	ASEN	LPEN		BGREQ			ASIN'	Γ[1:0]	
0x0744	744 AD1CHITH	7:0	CHH[23:16]								
UXU/44		15:8									
0x0746	AD4CUITI	7:0	CHH[7:0]								
UXU/46	AD1CHITL	15:8	CHH[15:8]								
0x0748	Reserved										
0x074B											
0x074C	AD1DMBUF	7:0	AD1DMBUF[7:0]								
0.0740	ADIDINIDO	15:8				AD1DMI	BUF[15:8]				

12-Bit A/D Converter with Threshold Detect

22.4.1 ADC1 Buffer 0 Register

Name: ADC1BUF0 Offset: 0x700

Bit	15	14	13	12	11	10	9	8	
	ADC1BUF0[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	ADC1BUF0[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - ADC1BUF0[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.2 ADC1 Buffer 1 Register

Name: ADC1BUF1 Offset: 0x702

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF1[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BI	JF1[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF1[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.3 ADC1 Buffer 2 Register

Name: ADC1BUF2 Offset: 0x704

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF2[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BI	JF2[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF2[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.4 ADC1 Buffer 3 Register

Name: ADC1BUF3 Offset: 0x706

Bit	15	14	13	12	11	10	9	8			
		ADC1BUF3[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				ADC1BI	JF3[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - ADC1BUF3[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.5 ADC1 Buffer 4 Register

Name: ADC1BUF4 Offset: 0x708

Bit	15	14	13	12	11	10	9	8			
		ADC1BUF4[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				ADC1BI	UF4[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - ADC1BUF4[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.6 ADC1 Buffer 5 Register

Name: ADC1BUF5 Offset: 0x70A

Bit	15	14	13	12	11	10	9	8
				ADC1BL	JF5[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADC1BI	JF5[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - ADC1BUF5[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.7 ADC1 Buffer 6 Register

Name: ADC1BUF6 Offset: 0x70C

Bit	15	14	13	12	11	10	9	8	
	ADC1BUF6[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				ADC1BI	JF6[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - ADC1BUF6[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.8 ADC1 Buffer 7 Register

Name: ADC1BUF7 Offset: 0x70E

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF7[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BI	UF7[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF7[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.9 ADC1 Buffer 8 Register

Name: ADC1BUF8 Offset: 0x710

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF8[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BI	JF8[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF8[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.10 ADC1 Buffer 9 Register

Name: ADC1BUF9 Offset: 0x712

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF9[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BI	JF9[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF9[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.11 ADC1 Buffer 10 Register

Name: ADC1BUF10 Offset: 0x714

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF10[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF10[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF10[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.12 ADC1 Buffer 11 Register

Name: ADC1BUF11 Offset: 0x716

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF11[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF11[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF11[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.13 ADC1 Buffer 12 Register

Name: ADC1BUF12 Offset: 0x718

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF12[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF12[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF12[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.14 ADC1 Buffer 13 Register

Name: ADC1BUF13 Offset: 0x71A

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF13[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF13[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF13[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.15 ADC1 Buffer 14 Register

Name: ADC1BUF14 Offset: 0x71C

Bit	15	14	13	12	11	10	9	8			
	ADC1BUF14[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				ADC1BL	JF14[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - ADC1BUF14[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.16 ADC1 Buffer 15 Register

Name: ADC1BUF15 Offset: 0x71E

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF15[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF15[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF15[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.17 ADC1 Buffer 16 Register

Name: ADC1BUF16 Offset: 0x720

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF16[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF16[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF16[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.18 ADC1 Buffer 17 Register

Name: ADC1BUF17 Offset: 0x722

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF17[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF17[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF17[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.19 ADC1 Buffer 18 Register

Name: ADC1BUF18 Offset: 0x724

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF18[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF18[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF18[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.20 ADC1 Buffer 19 Register

Name: ADC1BUF19 Offset: 0x726

Bit	15	14	13	12	11	10	9	8			
	ADC1BUF19[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				ADC1BL	JF19[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - ADC1BUF19[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.21 ADC1 Buffer 20 Register

Name: ADC1BUF20 Offset: 0x728

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF20[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF20[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF20[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.22 ADC1 Buffer 21 Register

Name: ADC1BUF21 Offset: 0x72A

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF21[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF21[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF21[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.23 ADC1 Buffer 22 Register

Name: ADC1BUF22 Offset: 0x72C

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF22[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF22[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF22[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.24 ADC1 Buffer 23 Register

Name: ADC1BUF23 Offset: 0x72E

Bit	15	14	13	12	11	10	9	8		
	ADC1BUF23[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				ADC1BL	JF23[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:0 - ADC1BUF23[15:0] Buffer Data bits

12-Bit A/D Converter with Threshold Detect

22.4.25 A/D Control Register 1

Name: AD1CON1 Offset: 0x734

Note:

1. This bit is only available when Extended DMA and buffer features are available (DMAEN = 1).

Bit	15	14	13	12	11	10	9	8
	ADON		ADSIDL	DMABM	DMAEN	MODE12	FORM[1:0]	
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		SSR	C[3:0]			ASAM	SAMP	DONE
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0

Bit 15 - ADON A/D Operating Mode bit

Value	Description					
1	A/D Converter is operating					
0	A/D Converter is off					

Bit 13 - ADSIDL A/D Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - DMABM Extended DMA Buffer Mode Select bit(1)

Value	Description
1	Extended Buffer mode: Buffer address is defined by the DMADSTn register
0	PIA mode: Buffer addresses are defined by the DMA Controller and AD1CON4[2:0]

Bit 11 - DMAEN Extended DMA/Buffer Enable bit

Value	Description
1	Extended DMA and buffer features are enabled
0	Extended features are disabled

Bit 10 - MODE12 A/D 12-Bit Operation Mode bit

Value	Description
1	12-bit A/D operation
0	10-bit A/D operation

Bits 9:8 - FORMI1:01 Data Output Format bits (see following formats)

Value	Description
11	Fractional result, signed, left-justified
10	Absolute fractional result, unsigned, left-justified
01	Decimal result, signed, right-justified
00	Absolute decimal result, unsigned, right-justified

Bits 7:4 - SSRC[3:0] Sample Clock Source Select bits

Value	Description
0111	Auto-Convert mode
0110	Timer1 (may trigger during Sleep mode)
0101	Timer1 (will not trigger during Sleep mode)
0011	Timer5

12-Bit A/D Converter with Threshold Detect

Value	Description
0010	Timer3
0001	INTO
0000	SAMP is cleared by software

Bit 2 - ASAM A/D Sample Auto-Start bit

Value	Description
1	Sampling begins immediately after last conversion; SAMP bit is auto-set
0	Sampling begins when SAMP bit is manually set

Bit 1 - SAMP A/D Sample Enable bit

٧	'alue	Description
1		A/D Sample-and-Hold amplifiers are sampling
0		A/D Sample-and-Hold amplifiers are holding

Bit 0 - DONE A/D Conversion Status bit

Value	Description
1	A/D conversion cycle has completed
0	A/D conversion cycle has not started or is in progress

12-Bit A/D Converter with Threshold Detect

22.4.26 A/D Control Register 2

Name: AD1CON2 Offset: 0x736

Legend: r = Reserved bit

Bit	15	14	13	12	11	10	9	8
	PVCFG[1:0]		NVCFG0	Reserved	BUFREGEN	CSCNA		
Access	R/W	R/W	R/W	r	R/W	R/W	•	
Reset	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0
	BUFS			SMPI[4:0]			BUFM	ALTS
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:14 - PVCFG[1:0] A/D Converter Positive Voltage Reference Configuration bits

Value	Description
1x	Unimplemented, do not use
01	External V _{REF} +
00	AV_{DD}

Bit 13 - NVCFG0 A/D Converter Negative Voltage Reference Configuration bit

		 0	<u> </u>
Value	Description		
1	AV _{SS}		
0	AV _{SS}		

Bit 12 - Reserved Maintain as '0'

Bit 11 - BUFREGEN A/D Buffer Register Enable bit

Valu	e Description
1	Conversion result is loaded into the buffer location determined by the converted channel
0	A/D result buffer is treated as a FIFO

Bit 10 - CSCNA Scan Input Selections for CH0+ During Sample A bit

V	/alue	Description
1	•	Scans inputs
C)	Does not scan inputs

Bit 7 – BUFS Buffer Fill Status bit When DMAEN = 1 and DMABM = 1:

Value	Description
1	A/D is currently filling the destination buffer from [buffer start + (buffer size/2)] to [buffer start + (buffer size – 1)]. User should access data located from [buffer start] to [buffer start + (buffer size/2) – 1].
0	A/D is currently filling the destination buffer from [buffer start] to [buffer start + (buffer size/2) – 1]. User should access data located from [buffer start + (buffer size/2)] to [buffer start + (buffer size – 1)].

When DMAEN = 0:

Value	Description
1	A/D is currently filling ADC1BUF12-ADC1BUF23; user should access data in ADC1BUF0-ADC1BUF11
0	A/D is currently filling ADC1BUF0-ADC1BUF11; user should access data in ADC1BUF12-ADC1BUF23

Bits 6:2 – SMPI[4:0] Interrupt Sample/DMA Increment Rate Select bits When DMAEN = 1 and DMABM = 0:

12-Bit A/D Converter with Threshold Detect

Value	Description
11111	Increments the DMA address after completion of the 32nd sample/conversion operation
11110	Increments the DMA address after completion of the 31st sample/conversion operation
00001	Increments the DMA address after completion of the 2nd sample/conversion operation
00000	Increments the DMA address after completion of each sample/conversion operation

When DMAEN = 1 and DMABM = 1:

Value	Description
11111	Resets the DMA offset after completion of the 32nd sample/conversion operation
11110	Resets the DMA offset after completion of the 31st sample/conversion operation
00001	Resets the DMA offset after completion of the 2nd sample/conversion operation
00000	Resets the DMA offset after completion of every sample/conversion operation

When DMAEN = 0:

Value	Description
11111	Interrupts at the completion of the conversion for each 32nd sample
11110	Interrupts at the completion of the conversion for each 31st sample
00001	Interrupts at the completion of the conversion for every other sample
00000	Interrupts at the completion of the conversion for each sample

Bit 1 - BUFM Buffer Fill Mode Select bit

Value	Description
1	Starts buffer filling at ADC1BUF0 on first interrupt and ADC1BUF12 on next interrupt
0	Always starts filling buffer at ADC1BUF0

Bit 0 - ALTS Alternate Input Sample Mode Select bit

Value	Description
1	Uses channel input selects for Sample A on first sample and Sample B on next sample
0	Always uses channel input selects for Sample A

12-Bit A/D Converter with Threshold Detect

22.4.27 A/D Control Register 3

Name: AD1CON3 Offset: 0x738

Notes:

- 1. Selecting the internal ADC RC clock requires that the ADCSx bits be '1' or greater. Setting ADCSx = 0 when ADRC = 1 will violate the T_{AD} (min) specification.
- 2. The user should enable the charge pump if AV_{DD} is < 2.7V. Longer sample times are required due to the increase of the internal resistance of the MUX if the charge pump is disabled.

Bit	15	14	13	12	11	10	9	8		
	ADRC	EXTSAM	PUMPEN		SAMC[4:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	ADCS[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bit 15 - ADRC A/D Conversion Clock Source bit(1)

Value	Description
1	Dedicated ADC RC clock generator (4 MHz nominal)
0	Clock derived from system clock

Bit 14 - EXTSAM Extended Sampling Time bit

Die 11 Exterior Exterior Camping Time Die					
Value	Description				
1	A/D is still sampling after SAMP = 0				
0	A/D is finished sampling				

Bit 13 - PUMPEN Charge Pump Enable bit(2)

Value	Description
1	Charge pump for switches is enabled
0	Charge pump for switches is disabled

Bits 12:8 - SAMC[4:0] Auto-Sample Time Select bits

Value	Description
11111	31 T _{AD}
00001	1 T _{AD}
00000	0 T _{AD}

Bits 7:0 - ADCS[7:0] A/D Conversion Clock Select bits

Value	Description
11111111	256 * T _{PB} = T _{AD}
0000001	2 * T _{PB} = T _{AD}
0000000	$T_{PB} = T_{AD}$

12-Bit A/D Converter with Threshold Detect

22.4.28 A/D Sample Select Register

Name: AD1CHS Offset: 0x73A

Note:

1. These input channels do not have corresponding memory-mapped result buffers.

Bit	15	14	13	12	11	10	9	8	
	CH0NB[2:0]			CH0SB[2:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	CH0NA[2:0]					CH0SA[4:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:13 - CH0NB[2:0] Sample B Channel 0 Negative Input Select bits

Value	Description
7-3	Unimplemented
2	AN1
1	Unimplemented
0	AV _{SS}

Bits 12:8 - CH0SB[2:0] Sample B Channel 0 Positive Input Select bits

Value	Description
31	Reserved
30	AV _{DD} (1)
29	AV _{SS} ⁽¹⁾
28	Band Gap Reference (1.2V)
27-24	Reserved
23	AN23
22	AN22
21	AN21
20	AN20
19	AN19
18	AN18
17	AN17
16	AN16
15	AN15
14	AN14
13	AN13
12	AN12
11	AN11
10	AN10
9	AN9
8	AN8
7	AN7
6	AN6
5	AN5
4	AN4
3	AN3
2	AN2
1	AN1
0	AN0

12-Bit A/D Converter with Threshold Detect

Bits 7:5 – CH0NA[2:0] Sample A Channel 0 Negative Input Select bits Same definitions as for CHONB[2:0].

Bits 4:0 – CH0SA[4:0] Sample A Channel 0 Negative Input Select bits Same definitions as for CHOSB[2:0].

12-Bit A/D Converter with Threshold Detect

22.4.29 A/D Input Scan Select Register High

Name: AD1CSSH Offset: 0x73C

Bit	15	14	13	12	11	10	9	8	
			CSS[30:28]						
Access		R/W	R/W	R/W	•				
Reset		0	0	0					
Bit	7	6	5	4	3	2	1	0	
			CSS[23:16]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 14:12 - CSS[30:28] A/D Input Scan Selection bits

Value	Description
1	Includes corresponding channel for input scan
0	Skips channel for input scan

Bits 7:0 - CSS[23:16] A/D Input Scan Selection bits

Value	Description
1	Includes corresponding channel for input scan
0	Skips channel for input scan

12-Bit A/D Converter with Threshold Detect

22.4.30 A/D Input Scan Select Register Low

Name: AD1CSSL Offset: 0x73E

Bit	15	14	13	12	11	10	9	8	
	CSS[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	CSS[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - CSS[15:0] A/D Input Scan Selection bits

П	Value	Description
	1	Includes corresponding channel for input scan
	0	Skips channel for input scan

12-Bit A/D Converter with Threshold Detect

22.4.31 A/D Control Register 4

Name: AD1CON4 Offset: 0x740

Note:

1. The DMABL[2:0] bits are only used when AD1CON1[11] = 1 and AD1CON1[12] = 0; otherwise, their value is ignored.

Bit	15	14	13	12	11	10	9	8
Access Reset								
Reset								
Bit	7	6	5	4	3	2	1	0
							DMABL[2:0]	
Access					•	R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 - DMABL[2:0] DMA Buffer Size Select bits(1)

Dita 2.0 - DiffADE[2.0] DiffA Dalier Gize Ociot bits				
Value	Description			
111	Allocates 128 words of buffer to each analog input			
110	Allocates 64 words of buffer to each analog input			
101	Allocates 32 words of buffer to each analog input			
100	Allocates 16 words of buffer to each analog input			
011	Allocates 8 words of buffer to each analog input			
010	Allocates 4 words of buffer to each analog input			
001	Allocates 2 words of buffer to each analog input			
000	Allocates 1 word of buffer to each analog input			

12-Bit A/D Converter with Threshold Detect

22.4.32 A/D Control Register 5

Name: AD1CON5 Offset: 0x742

Bit	15	14	13	12	11	10	9	8
	ASEN	LPEN		BGREQ			ASIN'	T[1:0]
Access	R/W	R/W		R/W			R/W	R/W
Reset	0	0		0			0	0
Bit	7	6	5	4	3	2	1	0
					WM	I[1:0]	CM[[1:0]
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bit 15 - ASEN Auto-Scan Enable bit

Value	Description
1	Auto-scan is enabled
0	Auto-scan is disabled

Bit 14 - LPEN Low-Power Enable bit

Value	Description		
1	Low power is enabled after scan		
0	Full power is enabled after scan		

Bit 12 - BGREQ Band Gap Request bit

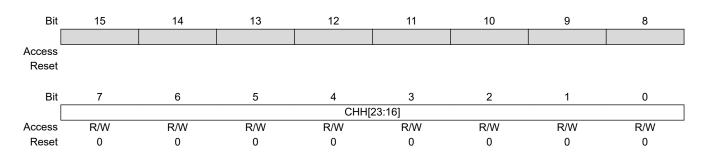
Value	Description
1	Band gap is enabled when the A/D is enabled and active
0	Band gap is not enabled by the A/D

Bits 9:8 - ASINT[1:0] Auto-Scan (Threshold Detect) Interrupt Mode bits

Value	Description
11	Interrupt after Threshold Detect sequence has completed and valid compare has occurred
10	Interrupt after valid compare has occurred
01	Interrupt after Threshold Detect sequence has completed
00	No interrupt

Bits 3:2 - WM[1:0] Write Mode bits

Value	Description
11	Reserved
10	Auto-compare only (conversion results are not saved, but interrupts are generated when a valid match occurs, as defined by the CMx and ASINTx bits)
01	Convert and save (conversion results are saved to locations as determined by the register bits when a match occurs, as defined by the CMx bits)
00	Legacy operation (conversion data are saved to a location determined by the Buffer register bits)


Bits 1:0 - CM[1:0] Compare Mode bits

Value	Description
11	Outside Window mode: Valid match occurs if the conversion result is outside of the window defined by the corresponding buffer pair
10	Inside Window mode: Valid match occurs if the conversion result is inside the window defined by the corresponding buffer pair
01	Greater Than mode: Valid match occurs if the result is greater than the value in the corresponding Buffer register
00	Less Than mode: Valid match occurs if the result is less than the value in the corresponding Buffer register

12-Bit A/D Converter with Threshold Detect

22.4.33 A/D Scan Compare Hit Register High

Name: AD1CHITH Offset: 0x744

Bits 7:0 - CHH[23:16] Compare Hit bits

If CM[1:0] = 11:

Value	Description
1	A/D Result Buffer n has been written with data or a match has occurred
0	A/D Result Buffer n has not been written with data

For All Other Values of CM[1:0]:

Value	Description
1	A match has occurred on A/D Result Channel n
0	No match has occurred on A/D Result Channel n

12-Bit A/D Converter with Threshold Detect

22.4.34 A/D Scan Compare Hit Register Low

Name: AD1CHITL Offset: 0x746

Bit	15	14	13	12	11	10	9	8
	CHH[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CHH[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - CHH[15:0] Compare Hit bits

If CM[1:0] = 11:

Value	Description	
1	A/D Result Buffer n has been written with data or a match has occurred	
0	A/D Result Buffer n has not been written with data	

For All Other Values of CM[1:0]:

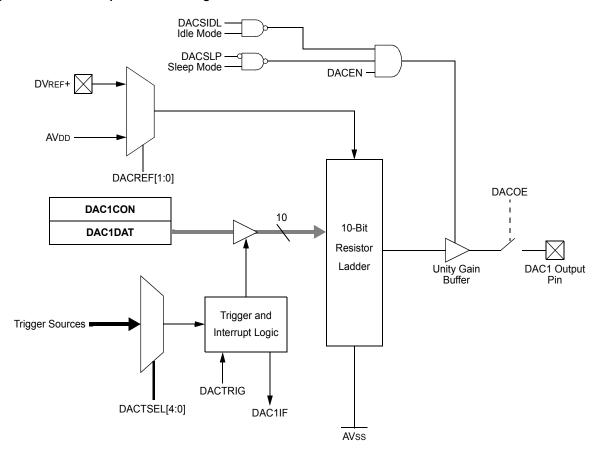
Val	lue	Description
1		A match has occurred on A/D Result Channel n
0		No match has occurred on A/D Result Channel n

12-Bit A/D Converter with Threshold Detect

22.4.35 A/D Conversion Result Register (for DMA PIA mode)

Name: AD1DMBUF Offset: 0x74C

Bit	15	14	13	12	11	10	9	8
				AD1DME	BUF[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				AD1DMI	BUF[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0


Bits 15:0 - AD1DMBUF[15:0] ADC Conversion Result bits

23. 10-Bit Digital-to-Analog Converter (DAC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "10-Bit Digital-to-Analog Converter (DAC)" (DS39615) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

PIC24FJ512GU410 family devices include 10-bit Digital-to-Analog Converters (DACs) for generating analog outputs from digital data. A simplified block diagram for the DAC is shown in Figure 23-1.

Figure 23-1. DAC Simplified Block Diagram

The DAC includes these features:

- Precision 10-Bit Resistor Ladder for High Accuracy
- Fast Settling Time, Supporting 1 Msps Effective Sampling Rates
- · Buffered Output Voltage
- · Three User-Selectable Voltage Reference Options
- Multiple Conversion Trigger Options, Plus a Manual Convert-on-Write Option
- · Left and Right Justified Input Data Options
- · User-Selectable Sleep and Idle mode Operation

When using the DAC, it is required to set the ANSx and TRISx bits for the DACx output pin to configure it as an analog output. See 11.2 Configuring Analog Port Pins for more information.

10-Bit Digital-to-Analog Converter (DAC)

The DAC generates an analog output voltage based on the digital input code, according to the formula:

$$V_{DAC} = \frac{V_{DACREF} \times DACxDAT}{1024}$$

where V_{DAC} is the analog output voltage and V_{DACREF} is the reference voltage selected by the DACREF[1:0] bits.

10-Bit Digital-to-Analog Converter (DAC)

23.1 DAC Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x02F7										
0x02F8	DAC1CON	7:0	DACOE	DACTSEL[4:0]				DACREF[1:0]		
0x02F6	DACTOON	15:8	DACEN		DACSIDL	DACSLP	DACFM			DACTRIG
0x02FA	DAC1DAT	7:0				DACD	AT[7:0]		-	
UXUZFA	DACIDAI	15:8	DACDAT[15:8]							

10-Bit Digital-to-Analog Converter (DAC)

23.1.1 DAC Control Register

Name: DAC1CON Offset: 0x2F8

Note:

1. The internal band gap reference is automatically enabled whenever the DAC is enabled.

Bit	15	14	13	12	11	10	9	8
	DACEN		DACSIDL	DACSLP	DACFM			DACTRIG
Access	R/W		R/W	R/W	R/W			R/W
Reset	0		0	0	0			0
Bit	7	6	5	4	3	2	1	0
	DACOE			DACTSEL[4:0]			DACRE	EF[1:0]
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - DACEN DAC Enable bit(1)

Val	lue	Description
1		Module is enabled
0		Module is disabled

Bit 13 - DACSIDL DAC Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 12 - DACSLP DAC Enable During Sleep bit

Value	Description
1	DAC continues to output the most recent value of DAC1DAT during Sleep mode
0	DAC is powered down in Sleep mode; DAC output pin is controlled by the TRIS and LAT bits

Bit 11 - DACFM DAC Data Format Select bit

Value	Description
1	Data are left justified (data stored in DAC1DAT[15:6])
0	Data are right justified (data stored in DAC1DAT[9:0])

Bit 8 - DACTRIG DAC Trigger Input Enable bit

Vá	alue	Description
1		Analog output value updates when the event selected by DACTSEL[4:0] occurs
0		Analog output value updates as soon as DAC1DAT is written (DAC trigger is ignored)

Bit 7 - DACOE DAC Output Enable bit

	01 27 to 04 par 27 and 27 to				
Value	Description				
1	Analog output voltage is driven to the DACOUT pin				
0	Analog output voltage is not available at the pin (voltage at pin floats)				

Bits 6:2 - DACTSEL[4:0] DAC Trigger Source Selection bits

Value	Description
31-19	Reserved
18	External Interrupt 1 (INT1)
17	MCCP8
16	MCCP7
15	MCCP6

10-Bit Digital-to-Analog Converter (DAC)

Value	Description
14	MCCP5
13	MCCP4
12	MCCP3
11	MCCP2
10	MCCP1
9	Reserved
8	Timer5
7	Timer4
6	Timer3
5	Timer2
4	Timer1
3	ADC conversion done
2	Comparator 3
1	Comparator 2
0	Comparator 1

Bits 1:0 - DACREF[1:0] DAC Reference Source Select bits

Value	Description
11	Reserved
10	AV_{DD}
01	DV _{REF} +
00	Reference is not connected (lowest power but no DAC functionality)

10-Bit Digital-to-Analog Converter (DAC)

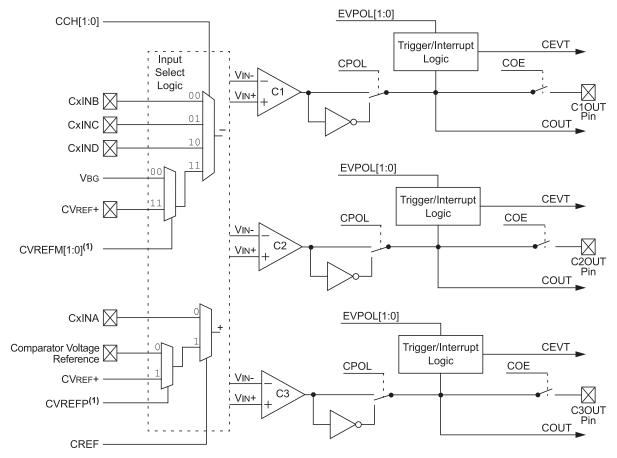
23.1.2 DAC Data Register

Name: DAC1DAT Offset: 0x2FA

Bit	15	14	13	12	11	10	9	8
				DACDA	AT[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DACD	AT[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - DACDAT[15:0] DAC Data bits

24. Triple Comparator Module


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "**Scalable Comparator Module**" (www.microchip.com/DS39734) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The triple comparator module provides three dual input comparators. A simplified block diagram of the module in shown in Figure 24-1.

The comparator has the following features:

- · Differential, Rail-to-Rail Inputs
- · Power-Down mode for Power Savings
- · Integrated Results Register
- · Software-Selectable Comparator Output Polarity
- Software-Selectable Edge for Trigger/Interrupt Generation
- Software-Selectable Comparator Power mode

Figure 24-1. Triple Comparator Module Block Diagram

Note:

1. Refer to the CVRCON register (25.1.1 CVRCON) for bit details.

The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and CV_{REF} +) and a voltage reference input from one of the internal band gap references or the comparator voltage reference generator (V_{BG} and CV_{REF}).

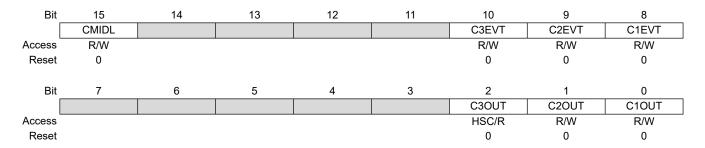
Triple Comparator Module

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

Each comparator has its own control register, CMxCON, for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register.

Triple Comparator Module

24.1 Triple Comparator Module Registers


Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
•••	Reserved									
0x02E5										
0x02E6	CMSTAT	7:0						C3OUT	C2OUT	C1OUT
UXUZLU	CWSTAT	15:8	CMIDL					C3EVT	C2EVT	C1EVT
0x02E8										
	Reserved									
0x02E9										
0x02EA	CM1CON	7:0	EVPC	L[1:0]		CREF			CCF	I[1:0]
UXUZEA	ZEA CIVITCON	15:8	CON	COE	CPOL				CEVT	COUT
0x02EC	CM2CON	7:0	EVPC	L[1:0]		CREF			CCF	I[1:0]
UXUZEC	CIVIZCON	15:8	CON	COE	CPOL				CEVT	COUT
0x02EE	CM2CON	7:0	EVPC	L[1:0]		CREF			CCF	I[1:0]
UXUZEE	CM3CON	15:8	CON	COE	CPOL				CEVT	COUT

Triple Comparator Module

24.1.1 Comparator Module Status Register

Name: CMSTAT Offset: 0x2E6

Legend: HSC = Hardware Settable/Clearable bit

Bit 15 - CMIDL Comparator Stop in Idle Mode bit

Value	Description
1	Discontinues operation of all comparators when device enters Idle mode
0	Continues operation of all enabled comparators in Idle mode

Bit 10 – C3EVT Comparator 3 Event Status bit (read-only) Shows the current event status of Comparator 3 (CM3CON[9]).

Bit 9 – C2EVT Comparator 2 Event Status bit (read-only) Shows the current event status of Comparator 2 (CM2CON[9]).

Bit 8 – C1EVT Comparator 1 Event Status bit (read-only) Shows the current event status of Comparator 1 (CM1CON[9]).

Bit 2 – C3OUT Comparator 3 Output Status bit (read-only) Shows the current output of Comparator 3 (CM3CON[8]).

Bit 1 – C2OUT Comparator 2 Output Status bit (read-only) Shows the current output of Comparator 2 (CM2CON[8]).

Bit 0 – C1OUT Comparator 1 Output Status bit (read-only) Shows the current output of Comparator 1 (CM1CON[8]).

24.1.2 Comparator 1 Control Register

Name: CM1CON Offset: 0x2EA

Legend: HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8
	CON	COE	CPOL				CEVT	COUT
Access	R/W	R/W	R/W				R/W	HSC/R
Reset	0	0	0				0	0
Bit	7	6	5	4	3	2	1	0
	EVPC)L[1:0]		CREF			CCH	[1:0]
Access	R/W	R/W		R/W			R/W	R/W
Reset	0	0		0			0	0

Bit 15 - CON Comparator Enable bit

Value	Description
1	Comparator is enabled
0	Comparator is disabled

Bit 14 - COE Comparator Output Enable bit

Value	Description
1	Comparator output is present on the C10UT pin
0	Comparator output is internal only

Bit 13 - CPOL Comparator Output Polarity Select bit

Value	Description
1	Comparator output is inverted
0	Comparator output is not inverted

Bit 9 - CEVT Comparator Event bit

Value	Description
1	Comparator event that is defined by EVPOL[1:0] has occurred; subsequent triggers and interrupts are disabled until the bit is cleared
0	Comparator event has not occurred

Bit 8 - COUT Comparator Output bit

When CPOL = 1:

Value	Description
1	V_{IN} + < V_{IN} -
0	V_{IN} + > V_{IN} -

When CPOL = 0:

Value	Description
1	V_{IN} + > V_{IN} -
0	V_{IN} + < V_{IN} -

Bits 7:6 - EVPOL[1:0] Trigger/Event/Interrupt Polarity Select bits

Value	Description
11	Trigger/event/interrupt is generated on any change of the comparator output
	(while CEVT = 0)

Triple Comparator Module

Value	Description
10	Trigger/event/interrupt is generated on transition of the comparator output:
	If CPOL = 1 (inverted polarity):
	Low-to-high transition only.
	If CPOL = 0 (noninverted polarity):
	High-to-low transition only.
01	Trigger/event/interrupt is generated on transition of comparator output:
	If CPOL = 1 (inverted polarity):
	High-to-low transition only.
	If CPOL = 0 (noninverted polarity):
	Low-to-high transition only.
00	Trigger/event/interrupt generation is disabled

Bit 4 - CREF DAC Reference Source Select bit

Value	Description
1	Noninverting input connects to the internal CV _{REF} voltage
0	Noninverting input connects to the C1INA pin

Bits 1:0 - CCH[1:0] Comparator Channel Select bits

Value	Description
11	Inverting input of the comparator connects to the internal selectable reference voltage specified by the
	CVREFM[1:0] bits in the CVRCON register
10	Inverting input of the comparator connects to the C1IND pin
01	Inverting input of the comparator connects to the C1INC pin
00	Inverting input of the comparator connects to the C1INB pin

Triple Comparator Module

24.1.3 Comparator 2 Control Register

Name: CM2CON Offset: 0x2EC

Legend: HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8
	CON	COE	CPOL				CEVT	COUT
Access	R/W	R/W	R/W				R/W	HSC/R
Reset	0	0	0				0	0
Bit	7	6	5	4	3	2	1	0
	EVPC)L[1:0]		CREF			CCH	H[1:0]
Access	R/W	R/W	•	R/W			R/W	R/W
Reset	0	0		0			Λ	0

Bit 15 - CON Comparator Enable bit

Value	Description
1	Comparator is enabled
0	Comparator is disabled

Bit 14 - COE Comparator Output Enable bit

Value	Description
1	Comparator output is present on the C2OUT pin
0	Comparator output is internal only

Bit 13 - CPOL Comparator Output Polarity Select bit

Value	Description
1	Comparator output is inverted
0	Comparator output is not inverted

Bit 9 - CEVT Comparator Event bit

Value	Description
1	Comparator event that is defined by EVPOL[1:0] has occurred; subsequent triggers and interrupts are disabled until the bit is cleared
0	Comparator event has not occurred

Bit 8 - COUT Comparator Output bit

When CPOL = 1:

Value	Description
1	V_{IN} + < V_{IN} -
0	V_{IN} + > V_{IN} -

When CPOL = 0:

Value	Description
1	V_{IN} + > V_{IN} -
0	V_{IN} + < V_{IN} -

Bits 7:6 - EVPOL[1:0] Trigger/Event/Interrupt Polarity Select bits

Value	Description
11	Trigger/event/interrupt is generated on any change of the comparator output
	(while CEVT = 0)

Triple Comparator Module

Value	Description
10	Trigger/event/interrupt is generated on transition of the comparator output:
	If CPOL = 1 (inverted polarity):
	Low-to-high transition only.
	If CPOL = 0 (noninverted polarity):
	High-to-low transition only.
01	Trigger/event/interrupt is generated on transition of comparator output: If CPOL = 1 (inverted polarity):
	High-to-low transition only.
	If CPOL = 0 (noninverted polarity):
	Low-to-high transition only.
00	Trigger/event/interrupt generation is disabled

Bit 4 - CREF DAC Reference Source Select bit

Value	Description
1	Noninverting input connects to the internal CV _{REF} voltage
0	Noninverting input connects to the C2INA pin

Bits 1:0 - CCH[1:0] Comparator Channel Select bits

	Territor Comparator Charmer Coloct Site
Value	Description
11	Inverting input of the comparator connects to the internal selectable reference voltage specified by the
	CVREFM[1:0] bits in the CVRCON register
10	Inverting input of the comparator connects to the C2IND pin
01	Inverting input of the comparator connects to the C2INC pin
00	Inverting input of the comparator connects to the C2INB pin

24.1.4 Comparator 3 Control Register

Name: CM3CON Offset: 0x2EE

Legend: HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8
	CON	COE	CPOL				CEVT	COUT
Access	R/W	R/W	R/W				R/W	HSC/R
Reset	0	0	0				0	0
Bit	7	6	5	4	3	2	1	0
	EVPC)L[1:0]		CREF			CCH	[1:0]
Access	R/W	R/W		R/W			R/W	R/W
Reset	0	0		0			0	0

Bit 15 - CON Comparator Enable bit

Value	Description
1	Comparator is enabled
0	Comparator is disabled

Bit 14 - COE Comparator Output Enable bit

Val	ue	Description
1		Comparator output is present on the C3OUT pin
0		Comparator output is internal only

Bit 13 - CPOL Comparator Output Polarity Select bit

Value	Description
1	Comparator output is inverted
0	Comparator output is not inverted

Bit 9 - CEVT Comparator Event bit

Value	Description
1	Comparator event that is defined by EVPOL[1:0] has occurred; subsequent triggers and interrupts are disabled until the bit is cleared
0	Comparator event has not occurred

Bit 8 - COUT Comparator Output bit

When CPOL = 1:

Value	Description
1	V_{IN} + < V_{IN} -
0	V_{IN} + > V_{IN} -

When CPOL = 0:

Value	Description
1	V_{IN} + > V_{IN} -
0	V_{IN} + < V_{IN} -

Bits 7:6 - EVPOL[1:0] Trigger/Event/Interrupt Polarity Select bits

ı	Value	Description
	11	Trigger/event/interrupt is generated on any change of the comparator output
		(while CEVT = 0)

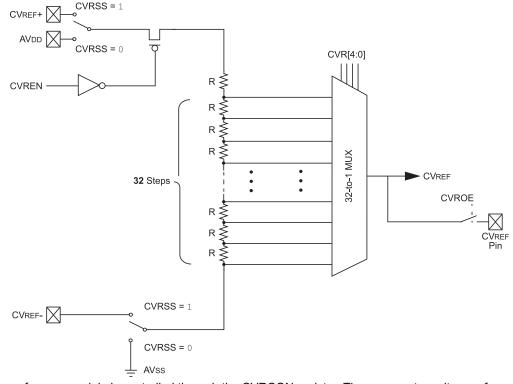
Triple Comparator Module

Value	Description
10	Trigger/event/interrupt is generated on transition of the comparator output:
	If CPOL = 1 (inverted polarity):
	Low-to-high transition only.
	If CPOL = 0 (noninverted polarity):
	High-to-low transition only.
01	Trigger/event/interrupt is generated on transition of comparator output:
	If CPOL = 1 (inverted polarity):
	High-to-low transition only.
	If CPOL = 0 (noninverted polarity):
	Low-to-high transition only.
00	Trigger/event/interrupt generation is disabled

Bit 4 - CREF DAC Reference Source Select bit

Value	Description
1	Noninverting input connects to the internal CV _{REF} voltage
0	Noninverting input connects to the C3INA pin

Bits 1:0 - CCH[1:0] Comparator Channel Select bits


Value	Description
11	Inverting input of the comparator connects to the internal selectable reference voltage specified by the
	CVREFM[1:0] bits in the CVRCON register
10	Inverting input of the comparator connects to the C3IND pin
01	Inverting input of the comparator connects to the C3INC pin
00	Inverting input of the comparator connects to the C3INB pin

25. Comparator Voltage Reference

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "**Dual Comparator Module**" (www.microchip.com/DS39710) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The comparator voltage reference diagram is shown in Figure 25-1.

Figure 25-1. Comparator Voltage Reference Block Diagram

The voltage reference module is controlled through the CVRCON register. The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The primary difference between the ranges is the size of the steps selected by the CV_{REF} Value Selection bits (CVR[4:0]), with one range offering finer resolution.

The comparator reference supply voltage can come from either AV_{DD} and AV_{SS} , or the external CV_{REF} + and CV_{REF} -pins. The voltage source is selected by the CVRSS bit (CVRCON[5]).

The settling time of the comparator voltage reference must be considered when changing the CV_{REF} output.

Comparator Voltage Reference

25.1 Comparator Voltage Reference Register

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x02E7										
0x02E8	CVRCON	7:0	CVREN	CVROE	CVRSS			CVR[4:0]		
UNUZEO	CVICON	15:8						CVREFP	CVREI	-M[1:0]

Comparator Voltage Reference

25.1.1 Comparator Voltage Reference Control Register

Name: CVRCON Offset: 0x2E8

Bit	15	14	13	12	11	10	9	8
						CVREFP	CVRE	FM[1:0]
Access						R/W	R/W	R/W
Reset						0	0	0
Bit	7	6	5	4	3	2	1	0
	CVREN	CVROE	CVRSS			CVR[4:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 10 - CVREFP Comparator Voltage Reference Select bit (valid only when CREF is '1')

Value	Description
1	CV _{REF} + is used as a reference voltage to the comparators
0	The CVR[4:0] bits (5-bit DAC) within this module provide the reference voltage to the comparators

Bits 9:8 - CVREFM[1:0] Comparator Band Gap Reference Source Select bits(valid only when CCH[1:0] = 11)

Value	Description
11	CV _{REF} + is provided as an input to the comparators
10	Reserved
01	Reserved
00	Band gap voltage is provided as an input to the comparators

Bit 7 - CVREN Comparator Voltage Reference Enable bit

Value	Description
1	CV _{REF} circuit is powered on
0	CV _{REF} circuit is powered down

Bit 6 - CVROE Comparator V_{REF} Output Enable bit

	THE Comparator VREF Carpar Enable bit
Value	Description
1	CV _{REF} voltage level is output on the CV _{REF} pin
0	CV _{RFF} voltage level is disconnected from the CV _{RFF} pin

Bit 5 – CVRSS Comparator V_{REF} Source Selection bit

Value	Description
1	Comparator reference source, CV _{RSRC} = CV _{REF} + – CV _{REF} -
0	Comparator reference source, CV _{RSRC} = AV _{DD} – AV _{SS}

Bits 4:0 – CVR[4:0] Comparator V_{REF} Value Selection bits $(0 \le CVR[4:0] \le 31)$

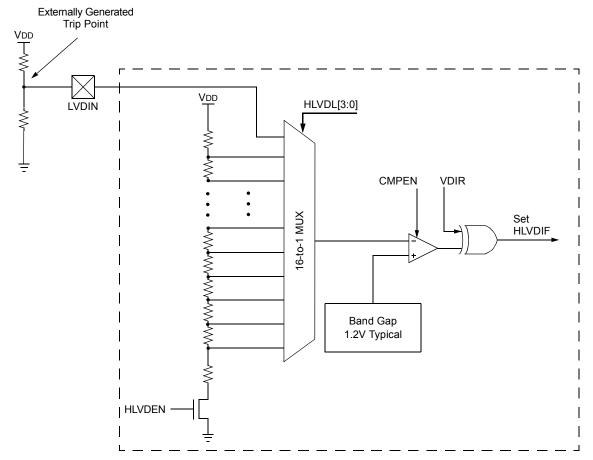
When CVRSS = 1:

 $CV_{REF} = (CV_{REF}-) + (CVR[4:0]/32) \times (CV_{REF}+ - CV_{REF}-)$

When CVRSS = 0:

 $CV_{REF} = (AV_{SS}) + (CVR[4:0]/32) \times (AV_{DD} - AV_{SS})$

26. High/Low-Voltage Detect (HLVD)


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to "**High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)**" (www.microchip.com/DS39725) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM.

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change. The module block diagram is shown in Figure 26-1.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The HLVDIF flag may be set during a POR or BOR event. The firmware should clear the flag before the application uses it for the first time, even if the interrupt was disabled.

The HLVDCON register completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device. To enable the High/Low-Voltage Detect, the HLVDEN (HLVDCON[15]) and CMPEN (HLVDCON[7]) bits must be set.

Figure 26-1. High/Low-Voltage Detect (HLVD) Module Block Diagram

High/Low-Voltage Detect (HLVD)

26.1 High/Low-Voltage Detect (HLVD) Register

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x0113										
0x0114	HLVDCON	7:0	CMPEN					HLVD	L[3:0]	
000114	HLVDCON	15:8	HLVDEN		LSIDL		VDIR	BGVST	IRVST	HLVDEVT

High/Low-Voltage Detect (HLVD)

26.1.1 High/Low-Voltage Detect Control Register

Name: HLVDCON Offset: 0x114

Notes:

- 1. For the actual trip point, see 32. Electrical Characteristics.
- 2. The HLVDIF flag cannot be cleared by software unless HLVDEVT = 0. The voltage must be monitored so that the HLVD condition (as set by VDIR and HLVDL[3:0]) is not asserted.

Bit	15	14	13	12	11	10	9	8
	HLVDEN		LSIDL		VDIR	BGVST	IRVST	HLVDEVT
Access	R/W		R/W		R/W	R/W	R/W	R/W
Reset	0		0		0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CMPEN					HLVD	L[3:0]	
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

Bit 15 - HLVDEN High/Low-Voltage Detect Power Enable bit

		_
Value	Description	
1	HLVD is enabled	
0	HLVD is disabled	

Bit 13 - LSIDL HLVD Stop in Idle Mode bit

Value	Description
1	Discontinues module operation when device enters Idle mode
0	Continues module operation in Idle mode

Bit 11 - VDIR Voltage Change Direction Select bit

Value	Description
1	Event occurs when voltage equals or exceeds the trip point (HLVDL[3:0])
0	Event occurs when voltage equals or falls below the trip point (HLVDL[3:0])

Bit 10 - BGVST Band Gap Voltage Stable Flag bit

Value	Description
1	Indicates that the band gap voltage is stable
0	Indicates that the band gap voltage is unstable

Bit 9 - IRVST Internal Reference Voltage Stable Flag bit

Value	Description
1	Internal reference voltage is stable; the High-Voltage Detect logic generates the interrupt flag at the specified voltage range
0	Internal reference voltage is unstable; the High-Voltage Detect logic will not generate the interrupt flag at the specified voltage range and the HLVD interrupt should not be enabled

Bit 8 - HLVDEVT High or Low-Voltage Event Status bit(2)

	zarrangna ranaga aram atata an
Value	Description
1	HLVD event is true during current instruction cycle
0	HLVD event is not true during current instruction cycle

Bit 7 - CMPFN High/Low-Voltage Detect Comparator Enable bit

DIL 1 - OI	Bit 7 - Oill Ell Tilgil/Low-Voltage Detect Comparator Enable bit								
Value	Description								
1	HLVD comparator is enabled								
0	HLVD comparator is disabled								

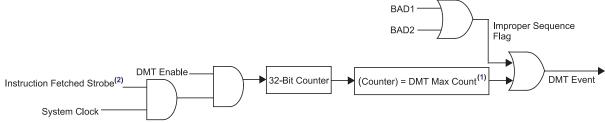
High/Low-Voltage Detect (HLVD)

Bits 3:0 - HLVDL[3:0] High/Low-Voltage Detection Limit bits⁽¹⁾

Value	Description
15	Voltage on external LVDIN pin is compared with band gap (1.2V)
14	2.1V
13	2.2V
12	2.3V
11	2.4V
10	2.5V
9	2.6V
8	2.8V
7	2.9V
6	3.1V
5	3.4V
4-0	Reserved

27. Deadman Timer (DMT)

Note: This data sheet summarizes the features of the PIC24FJ512GU410 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "**Deadman Timer** (**DMT**)" (DS70005155) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.


The primary function of the Deadman Timer (DMT) is to interrupt the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical and safety-critical applications, where any single failure of software functionality and sequencing must be detected.

Figure 27-1 shows a block diagram of the Deadman Timer module.

Figure 27-1. Deadman Timer Block Diagram

Notes:

- 1. DMT Max Count is controlled by the initial value of the FDMTCNTL and FDMTCNTH Configuration registers.
- 2. DMT window interval is controlled by the value of the FDMTIVTL and FDMTIVTH Configuration registers.

Deadman Timer (DMT)

27.1 Deadman Timer (DMT) Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00 0x5B	Reserved									
0x5C	DMTCON	7:0 15:8	ON							
0x5E 0x5F	Reserved	13.6	ON							
0x60	DMTPRECLR	7:0								
0x62 0x63	Reserved	15:8				STEF	P1[7:0]			
0x64	DMTCLR	7:0				STEP	2[7:0]			
0x66 0x67	Reserved	15:8								
0x68	DMTSTAT	7:0	BAD1	BAD2	DMTEVENT					WINOPN
0x6A 0x6B	Reserved	15:8								
0x6C	DMTCNTL	7:0 15:8				COUNT	ER[7:0] ER[15:8]	1		
0x6E	DMTCNTH	7:0 15:8				COUNTE	ER[23:16] ER[31:24]			
0x70	DMTHOLDREG(1)	7:0 15:8				UPRC				
0x72 0x73	Reserved									
0x74	DMTPSCNTL	7:0 15:8					IT[7:0]			
0x76	DMTPSCNTH	7:0 15:8		PSCNT[15:8] PSCNT[23:16] PSCNT[31:24]						
0x78	DMTPSINTVL	7:0 15:8					ΓV[7:0]			
0x7A	DMTPSINTVH	7:0 15:8				PSINT\				

Deadman Timer (DMT)

27.1.1 Deadman Timer Control Register

Name: DMTCON Offset: 0x5C

Note:

1. This bit has control only when DMTDIS = 0 in the FDMT Configuration Word.

Bit	15	14	13	12	11	10	9	8
	ON							
Access	R/W							
Access Reset	0							
Bit	7	6	5	4	3	2	1	0

Access Reset

Bit 15 - ON DMT Module Enable bit(1)

Value	Description
1	Deadman Timer module is enabled
0	Deadman Timer module is not enabled

Deadman Timer (DMT)

27.1.2 Deadman Timer Preclear Register

Name: DMTPRECLR

Offset: 0x60

Bit	15	14	13	12	11	10	9	8
				STEP	1[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0

Access Reset

Bits 15:8 - STEP1[7:0] DMT Preclear Enable bits

These bits must be set to 40h to enable the Deadman Timer prescaler. All other values (improper sequence) generate the DMT event and set the BAD1 flag. These bits are cleared when a DMT Reset event occurs. STEP1[7:0] bits are also cleared if the STEP2[7:0] bits are loaded with the correct value in the correct sequence.

Deadman Timer (DMT)

27.1.3 Deadman Timer Clear Register

Name: DMTCLR Offset: 0x64

Bit	15	14	13	12	11	10	9	8	
Access Reset									
Bit	7	6	5	4	3	2	1	0	
	STEP2[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - STEP2[7:0] DMT Clear Enable bits

If the correct (40h) value was loaded in the STEP1[7:0] bits, the 04h value written into the STEP2[7:0] bits resets the Deadman Timer and clears the STEP1[7:0] bits. All other values (improper sequence) generate the DMT event and set the BAD2 flag.

Deadman Timer (DMT)

27.1.4 Deadman Timer Status Register

Name: DMTSTAT Offset: 0x68

Legend: HC = Hardware Clearable bit

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
	BAD1	BAD2	DMTEVENT					WINOPN
Access	HC/R	HC/R	HC/R			•		R
Pocot	0	0	0					0

Bit 7 - BAD1 Deadman Timer Bad STEP1[7:0] Value Detect bit

Value	e Description
1	Incorrect STEP1[7:0] value was detected
0	Incorrect STEP1[7:0] value was not detected

Bit 6 - BAD2 Deadman Timer Bad STEP2[7:0] Value Detect bit

Value	Description
1	Incorrect STEP2[7:0] value was detected
0	Incorrect STEP2[7:0] value was not detected

Bit 5 - DMTEVENT Deadman Timer Event bit

V	alue	Description
1		Deadman Timer event was detected (counter expired or improper Reset sequence)
0		Deadman Timer event was not detected

Bit 0 - WINOPN Deadman Timer Clear Window bit

Value	Description
1	Deadman Timer clear window is open
0	Deadman Timer clear window is not open

Deadman Timer (DMT)

27.1.5 Deadman Timer Count Register Low

Name: DMTCNTL Offset: 0x6C

Bit	15	14	13	12	11	10	9	8	
	COUNTER[15:8]								
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	COUNTER[7:0]								
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - COUNTER[15:0] Read Current Contents of Lower DMT Counter bits

Deadman Timer (DMT)

27.1.6 Deadman Timer Count Register High

Name: DMTCNTH Ox6E

Bit	15	14	13	12	11	10	9	8	
	COUNTER[31:24]								
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
			COUNTER[23:16]						
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	

Bits 15:8 - COUNTER[31:24] Read Current Contents of Higher DMT Counter bits

Bits 7:0 - COUNTER[23:16] Read Current Contents of Higher DMT Counter bits

Deadman Timer (DMT)

27.1.7 DMT Post-Configure Count Status Register Low

Name: DMTPSCNTL

Offset: 0x74

Legend: y = Value from Configuration bit on POR

Bit	15	14	13	12	11	10	9	8			
	PSCNT[15:8]										
Access Reset	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y			
Bit _	7	6	5	4	3	2	1	0			
	PSCNT[7:0]										
Access Reset	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y			

Bits 15:0 – PSCNT[15:0] Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

Deadman Timer (DMT)

27.1.8 DMT Post-Configure Count Status Register High

Name: DMTPSCNTH

Offset: 0x76

Legend: y = Value from Configuration bit on POR

Bit	15	14	13	12	11	10	9	8		
	PSCNT[31:24]									
Access Reset	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y		
Bit	7	6	5	4	3	2	1	0		
	PSCNT[23:16]									
Access Reset	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y		

Bits 15:8 – PSCNT[31:24] Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

Bits 7:0 – PSCNT[23:16] Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

Deadman Timer (DMT)

27.1.9 DMT Post-Configure Interval Status Register Low

Name: DMTPSINTVL

Offset: 0x78

Legend: y = Value from Configuration bit on POR

Bit	15	14	13	12	11	10	9	8		
	PSINTV[15:8]									
Access Reset	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y		
Bit	7	6	5	4	3	2	1	0		
	PSINTV[7:0]									
Access Reset	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y		

Bits 15:0 – PSINTV[15:0] Lower DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTL Configuration register.

Deadman Timer (DMT)

27.1.10 DMT Post-Configure Interval Status Register High

Name: DMTPSINTVH

Offset: 0x7A

Legend: y = Value from Configuration bit on POR

Bit	15	14	13	12	11	10	9	8		
	PSINTV[31:24]									
Access	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	PSINTV[23:16]									
Access	R-y	R-y	R-y	R-y	R-y	R-y	R-y	R-y		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 – PSINTV[31:24] Higher DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTH Configuration register.

Bits 7:0 – PSINTV[23:16] Higher DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTH Configuration register.

Deadman Timer (DMT)

27.1.11 DMT Hold Register

Name: DMTHOLDREG⁽¹⁾

Offset: 0x70

Note:

1. The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.

Bit	15	14	13	12	11	10	9	8
				UPRC	NT[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				UPRC	NT[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - UPRCNT[15:0] DMTCNTH Register Value When DMTCNTL or DMTCNTH were Last Read bits

USB with On-The-Go (USB OTG) Support

28. USB with On-The-Go (USB OTG) Support

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to "USB On-The-Go (OTG)" (DS39721) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

PIC24FJ512GU410 family devices contain a full-speed and low-speed compatible, On-The-Go (OTG) USB Serial Interface Engine (SIE). The OTG capability allows the device to act as either a USB peripheral device or as a USB embedded host with limited host capabilities. The OTG capability allows the device to dynamically switch from device to host operation using OTG's Host Negotiation Protocol (HNP).

For more details on OTG operation, refer to the "On-The-Go Supplement" to the "USB 2.0 Specification" published by the USB-IF. For more details on USB operation, refer to the "Universal Serial Bus Specification, v2.0".

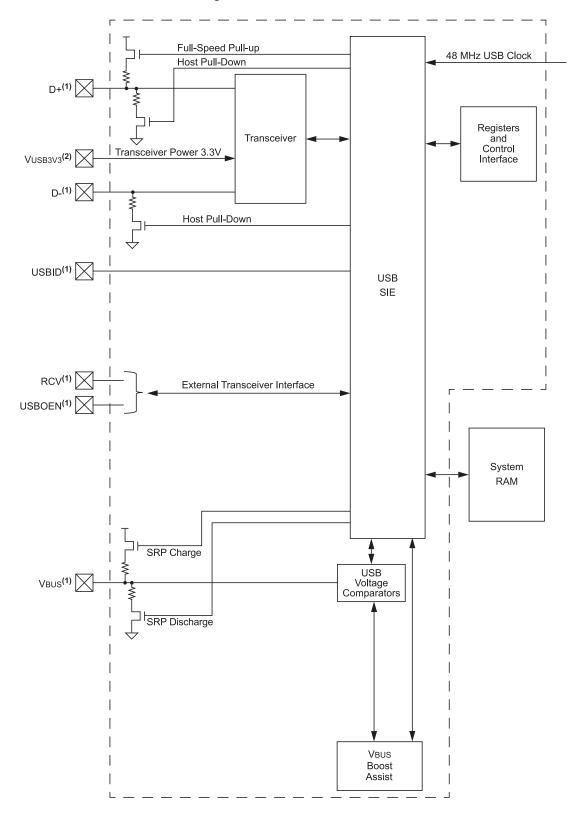
The USB OTG module offers these features:

- · USB Functionality in Device and Host modes, and OTG Capabilities for Application-Controlled mode Switching
- Software-Selectable module Speeds of Full Speed (12 Mbps) or Low Speed (1.5 Mbps available in Host mode only)
- Support for All Four USB Transfer Types: Control, Interrupt, Bulk and Isochronous
- 16 Bidirectional Endpoints for a Total of 32 Unique Endpoints
- · DMA Interface for Data RAM Access
- Queues Up to 16 Unique Endpoint Transfers without Servicing
- · Integrated, On-Chip USB Transceiver with Support for Off-Chip Transceivers via a Digital Interface
- Integrated V_{BUS} Generation with On-Chip Comparators and Boost Generation, and Support of External V_{BUS}
 Comparators and Regulators through a Digital Interface
- · Configurations for On-Chip Bus Pull-up and Pull-Down Resistors

A simplified block diagram of the USB OTG module is shown in Figure 28-1.

The USB OTG module can function as a USB peripheral device or as a USB host, and may dynamically switch between Device and Host modes under software control. In either mode, the same data paths and Buffer Descriptors (BDs) are used for the transmission and reception of data.

In discussing USB operation, this section will use a controller-centric nomenclature for describing the direction of the data transfer between the microcontroller and the USB. RX (Receive) will be used to describe transfers that move data from the USB to the microcontroller and TX (Transmit) will be used to describe transfers that move data from the microcontroller to the USB. Table 28-1 shows the relationship between data direction in this nomenclature and the USB tokens exchanged.


Table 28-1. Controller-Centric Data Direction for USB Host or Target

USB Mode	Direction				
USB WIDGE	RX	тх			
Device	OUT or SETUP	IN			
Host	IN	OUT or SETUP			

This chapter presents the most basic operations needed to implement USB OTG functionality in an application. A complete and detailed discussion of the USB protocol and its OTG supplement are beyond the scope of this data sheet. It is assumed that the user already has a basic understanding of USB architecture and the latest version of the protocol.

Not all steps for proper USB operation (such as device enumeration) are presented here. It is recommended that application developers use an appropriate device driver to implement all of the necessary features. Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to www.microchip.com/usb for the latest firmware and driver support.

Figure 28-1. USB OTG Module Block Diagram

USB with On-The-Go (USB OTG) Support

Notes:

- 1. Pins are multiplexed with digital I/Os and other device features.
- 2. Connecting V_{BUS3V3} to V_{DD} is highly recommended, as floating this input can cause increased I_{PD} currents. The pin should be tied to V_{DD} when the USB functions are not used.

28.1 Hardware Configuration

28.1.1 Device Mode

28.1.1.1 D+ Pull-up Resistor

PIC24FJ512GU410 family devices have a built-in 1.5 k Ω resistor on the D+ line that is available when the microcontroller is operating in Device mode. This is used to signal an external host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit (U1CON[0]) and powering up the USB module (USBPWR = 1). If the OTGEN bit (U1OTGCON[2]) is set, then the D+ pull-up is enabled through the DPPULUP bit (U1OTGCON[7]).

28.1.1.2 The V_{BUS} Pin

In order to meet the "USB 2.0 Specification" requirement, relating to the back drive voltage on the D+/D- pins, the USB module incorporates V_{BUS} -level sensing comparators. When the comparators detect the V_{BUS} level below the $V_{A_SESS_}V_{LD}$ level, the hardware will automatically disable the D+ pull-up resistor described in 28.1.1.1 D+ Pull-up Resistor. This allows the device to automatically meet the back drive requirement for D+ and D-, even if the application firmware does not explicitly monitor the V_{BUS} level. Therefore, the V_{BUS} microcontroller pin should not be left floating in USB Device mode application designs and should normally be connected to the V_{BUS} pin on the USB connector/cable (either directly or through a small resistance \leq 100 ohms).

28.1.1.3 **Power Modes**

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are:

- · Bus Power Only mode
- Self-Power Only mode
- · Suspend mode
- · Dual Power with Self-Power Dominance mode

Bus Power Only mode (Figure 28-2) is effectively the simplest method. All power for the application is drawn from the USB.

To meet the inrush current requirements of the "USB 2.0 Specification", the total effective capacitance, appearing across V_{BUS} and ground, must be no more than 10 μ F.

In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V V_{BUS} line of the USB cable. During the USB Suspend mode, the D+ or D- pull-up resistor must remain active, which will consume some of the allowed suspend current.

In Self-Power Only mode (Figure 28-3), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering V_{BUS}.

To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives V_{BUS} high. One of the 5.5V tolerant I/O pins may be used for this purpose.

The application should never source any current onto the 5V V_{BUS} pin of the USB cable when the USB module is operated in USB Device mode.

The Dual Power with Self-Power Dominance mode (Figure 28-4) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until V_{BUS} is driven high.

Figure 28-2. Bus-Powered Interface Example

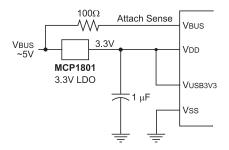


Figure 28-3. Self-Power Only

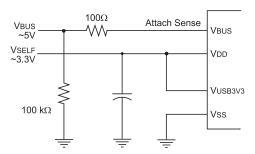
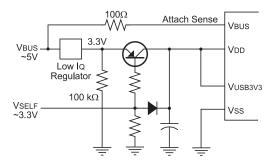



Figure 28-4. Dual Power Example

28.1.2 Host and OTG Modes

28.1.2.1 D+ and D- Pull-Down Resistors

PIC24FJ512GU410 family devices have built-in 15 k Ω pull-down resistors on the D+ and D- lines. These resistors are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON[3]). If the OTGEN bit (U1OTGCON[2]) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON[5:4]).

28.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-The-Go operation, the "USB 2.0 Specification" requires that the host application should supply power on V_{BUS} . Since the microcontroller is running below V_{BUS} , and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply V_{BUS} and regulate current on the bus (Figure 28-5). For OTG operation, it is necessary to be able to turn V_{BUS} on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 28-6.

Figure 28-5. Host Interface Example

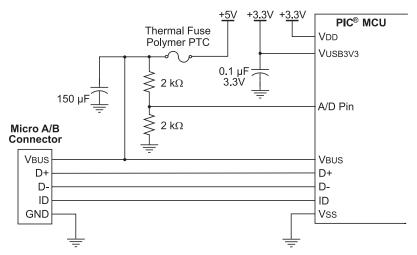
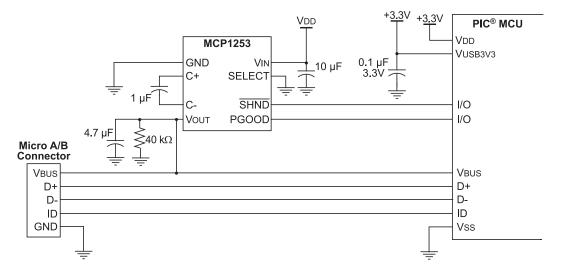



Figure 28-6. OTG Interface Example

28.1.3 Calculating Transceiver Power Requirements

The USB transceiver consumes a variable amount of current depending on the characteristic impedance of the USB cable, the length of the cable, the V_{USB} supply voltage and the actual data patterns moving across the USB cable. Longer cables have larger capacitances and consume more total energy when switching output states. The total transceiver current consumption will be application-specific. Equation 28-1 can help estimate how much current actually may be required in full-speed applications.

Refer to "USB On-The-Go (OTG)" (www.microchip.com/DS39721) in the "dsPIC33/PIC24 Family Reference Manual" for a complete discussion on transceiver power consumption.

USB with On-The-Go (USB OTG) Support

Equation 28-1. Estimating USB Transceiver Current Consumption

$$IXCVR = \frac{40 \text{ mA} \cdot \text{Vusb} \cdot \text{Pzero} \cdot \text{Pin} \cdot \text{Lcable}}{3.3V \cdot 5m} + IPULLUP$$

Legend: VUSB – Voltage applied to the VUSB3V3 pin in volts (3.0V to 3.6V).

PZERO – Percentage (in decimal) of the IN traffic bits sent by the PIC® microcontroller that are a value of '0'.

PIN - Percentage (in decimal) of total bus bandwidth that is used for IN traffic.

LCABLE – Length (in meters) of the USB cable. The "USB 2.0 Specification" requires that full-speed applications use cables no longer than 5m.

IPULLUP – Current which the nominal, 1.5 k Ω pull-up resistor (when enabled) must supply to the USB cable.

28.2 USB Buffer Descriptors and the BDT

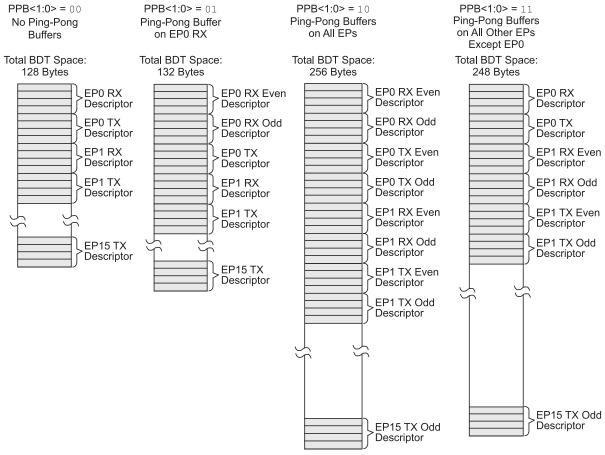
Endpoint buffer control is handled through a structure called the Buffer Descriptor Table (BDT). This provides a flexible method for users to construct and control endpoint buffers of various lengths and configurations.

The BDT can be located in any available 512-byte, aligned block of data RAM. The BDT Pointer (U1BDTP1) contains the upper address byte of the BDT and sets the location of the BDT in RAM. The user must set this pointer to indicate the table's location.

The BDT is composed of Buffer Descriptors (BDs), which are used to define and control the actual buffers in the USB RAM space. Each BD consists of two 16-bit, "soft" (non-fixed address) registers, BDnSTAT and BDnADR, where n represents one of the 64 possible BDs (range of 0 to 63). BDnSTAT is the status register for BDn, while BDnADR specifies the starting address for the buffer associated with BDn.

Note: Since BDnADR is a 16-bit register, only the first 64 Kbytes of RAM can be accessed by the USB module.

Depending on the endpoint buffering configuration used, there are up to 64 sets of Buffer Descriptors, for a total of 256 bytes. At a minimum, the BDT must be at least eight bytes long. This is because the "USB 2.0 Specification" mandates that every device must have Endpoint 0 with both input and output for initial setup.


Endpoint mapping in the BDT is dependent on three variables:

- Endpoint number (0 to 15)
- Endpoint direction (RX or TX)
- Ping-pong settings (U1CNFG1[1:0])

Figure 28-7 illustrates how these variables are used to map endpoints in the BDT.

In Host mode, only Endpoint 0 Buffer Descriptors are used. All transfers utilize the Endpoint 0 Buffer Descriptor and Endpoint Control register (U1EP0). For received packets, the attached device's source endpoint is indicated by the value of ENDPT[3:0] in the USB Status register (U1STAT[7:4]). For transmitted packets, the attached device's destination endpoint is indicated by the value written to the USB Token register (U1TOK).

Figure 28-7. BDT Mapping for Endpoint Buffering Modes

Note: Memory area is not shown to scale.

BDs have a fixed relationship to a particular endpoint, depending on the buffering configuration. Table 28-2 provides the mapping of BDs to endpoints. This relationship also means that gaps may occur in the BDT if endpoints are not enabled contiguously. This, theoretically, means that the BDs for disabled endpoints could be used as buffer space. In practice, users should avoid using such spaces in the BDT unless a method of validating BD addresses is implemented.

Table 28-2. Assignment of Buffer Descriptors for the Different Buffering Modes

		BDs Assigned to Endpoint									
Endpoint	Mode 0 (No Ping-Pong)		Mode (Ping-Po EP0 I	ng on	Mod (Ping-Pong	de 2 on All EPs)	(Ping-Pong on	de 3 All Other EPs, ot EP0)			
	RX	TX	RX	TX	RX	TX	RX	TX			
0	0	1	0 (E), 1 (O)	2	0 (E), 1 (O)	2 (E), 3 (O)	0	1			
1	2	3	3	4	4 (E), 5 (O)	6 (E), 7 (O)	2 (E), 3 (O)	4 (E), 5 (O)			
2	4	5	5	6	8 (E), 9 (O)	10 (E), 11 (O)	6 (E), 7 (O)	8 (E), 9 (O)			
3	6	7	7	8	12 (E), 13 (O)	14 (E), 15 (O)	10 (E), 11 (O)	12 (E), 13 (O)			
4	8	9	9	10	16 (E), 17 (O)	18 (E), 19 (O)	14 (E), 15 (O)	16 (E), 17 (O)			
5	10	11	11	12	20 (E), 21 (O)	22 (E), 23 (O)	18 (E), 19 (O)	20 (E), 21 (O)			

USB with On-The-Go (USB OTG) Support

con	tinued							
					BDs Assigned	to Endpoint		
Endpoint	Mode 0 (No Ping-Pong)		Mode (Ping-Po EP0 I	ng on	Mode 2 (Ping-Pong on All EPs) Mode 3 (Ping-Pong on All C		All Other EPs,	
	RX	TX	RX	TX	RX	TX	RX	TX
6	12	13	13	14	24 (E), 25 (O)	26 (E), 27 (O)	22 (E), 23 (O)	24 (E), 25 (O)
7	14	15	15	16	28 (E), 29 (O)	30 (E), 31 (O)	26 (E), 27 (O)	28 (E), 29 (O)
8	16	17	17	18	32 (E), 33 (O)	34 (E), 35 (O)	30 (E), 31 (O)	32 (E), 33 (O)
9	18	19	19	20	36 (E), 37 (O)	38 (E), 39 (O)	34 (E), 35 (O)	36 (E), 37 (O)
10	20	21	21	22	40 (E), 41 (O)	42 (E), 43 (O)	38 (E), 39 (O)	40 (E), 41 (O)
11	22	23	23	24	44 (E), 45 (O)	46 (E), 47 (O)	42 (E), 43 (O)	44 (E), 45 (O)
12	24	25	25	26	48 (E), 49 (O)	50 (E), 51 (O)	46 (E), 47 (O)	48 (E), 49 (O)
13	26	27	27	28	52 (E), 53 (O)	54 (E), 55 (O)	50 (E), 51 (O)	52 (E), 53 (O)
14	28	29	29	30	56 (E), 57 (O)	58 (E), 59 (O)	54 (E), 55 (O)	56 (E), 57 (O)
15	30	31	31	32	60 (E), 61 (O)	62 (E), 63 (O)	58 (E), 59 (O)	60 (E), 61 (O)

Legend: (E) = Even transaction buffer, (O) = Odd transaction buffer

28.2.1 Buffer Ownership

Because the buffers and their BDs are shared between the CPU and the USB module, a simple semaphore mechanism is used to distinguish which is allowed to update the BD and associated buffers in memory. This is done by using the UOWN bit as a semaphore to distinguish which is allowed to update the BD and associated buffers in memory. UOWN is the only bit that is shared between the two configurations of BDnSTAT.

When UOWN is clear, the BD entry is "owned" by the microcontroller core. When the UOWN bit is set, the BD entry and the buffer memory are "owned" by the USB peripheral. The core should not modify the BD or its corresponding data buffer during this time. Note that the microcontroller core can still read BDnSTAT while the SIE owns the buffer and vice versa.

The Buffer Descriptors have a different meaning based on the source of the register update. 28.3.1 BDnSTAT and 28.3.2 BDnSTAT show the differences in BDnSTAT depending on its current "ownership".

When UOWN is set, the user can no longer depend on the values that were written to the BDs. From this point, the USB module updates the BDs as necessary, overwriting the original BD values. The BDnSTAT register is updated by the SIE with the token PID and the transfer count is updated.

28.2.2 DMA Interface

The USB OTG module uses a dedicated DMA to access both the BDT and the endpoint data buffers. Since part of the address space of the DMA is dedicated to the Buffer Descriptors, a portion of the memory connected to the DMA must comprise a contiguous address space, properly mapped for the access by the module.

DS30010203C-page 1161

28.3 USB On-The-Go Registers

Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
00										
	Reserved									
05FF										
0x0600	U1OTGIR(2)	7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF		VBUSVDIF
		15:8	IDIE	TAMOFOLE	LOTATELE	A O.T. (15	0E0\/DIE	OFOENDIE) (DL10) (DIE
0x0602	U10TGIE	7:0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE
		15:8 7:0	ID		LSTATE		SESVD	SESEND		VBUSVD
0x0604	U1OTGSTAT	15:8	ID		LOIAIL		SLSVD	SESEND		VBOSVD
		7:0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	Reserved	OTGEN	Reserved	VBUSDIS
0x0606	U1OTGCON	15:8	2020.	2 323.	D. 1 0251111	51111 0251111	. 1000.700	0.02.1	710007704	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		7:0	UACTPND			USLPGRD			USUSPND	USBPWR
0x0608	U1PWRC	15:8								
0000	LIAID(A)	7:0	STALLIF		RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
0x060A	U1IR(1)	15:8								
0x060A	U1IR(1)	7:0	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF
UXUUUA	O IIIX(1)	15:8								
0x060C	U1IE	7:0	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE or DETACHIE
		15:8								
0x060E	U1EIR(1)	7:0	BTSEF		DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF or EOFEE	PIDEF
		15:8								
0x0610	U1EIE	7:0	BTSEE		DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE or EOFEE	PIDEE
		15:8								
0x0612	U1STAT	7:0		ENDF	PT[3:0]		DIR	PPBI		
0.0012		15:8								
0x0614	U1CON	7:0		SE0	PKTDIS		HOSTEN	RESUME	PPBRST	USBEN
		15:8	ICTATE	SE0	TOKBUSY	LICDDOT	LICETEN	DECLIME	DDDDCT	COLLIN
0x0614	U1CON	7:0 15:8	JSTATE	SE0	TORBUST	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
		7:0	LSPDEN				DEVADDR[6:0]		
0x0616	U1ADDR	15:8	ESI BEIT				DE 17 (DB) ([0:0]			
		7:0				BDTPTRL[6:0]				
0x0618	U1BDTP1	15:8								
0,0644	LIAEDMI	7:0				FRM	[7:0]			
0x061A	U1FRML	15:8								
0x061C	U1FRMH	7:0							FRM[10:8]	
0,0010	O II TAWIT	15:8								
0x061E	U1TOK	7:0		PID	[3:0]			EP	[3:0]	
		15:8					17.01			
0x0620	U1SOF	7:0				CNT	[7:0]			
		15:8				DUTUT	DU[7:0]			
0x0622	U1BDTP2	7:0 15:8				BDTPT	[U.1] INTER			
		7:0				BDTPT	RU[7:0]			
0x0624	U1BDTP3	15:8				551111	1.0[7.0]			
		7:0	UTEYE	UOEMON		USBSIDL			PPB	[1:0]
0x0626	U1CNFG1	15:8								
0,,000	LIAONEGO	7:0				PUVBUS	EXTI2CEN			
0x0628	U1CNFG2	15:8								
0x062A	U1EP0	7:0	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
UAUUZA	U1EFU	15:8								
0x062C	U1EP1	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
		15:8								

USB with On-The-Go (USB OTG) Support

contii	nued									
Offset	Name	Bit Pos.	7	6	5	4	3	2	1	0
0000	LUEDO	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
0x062E	U1EP2	15:8								
0x0630	U1EP3	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
0x0030	UIEFS	15:8								
0x0632	U1EP4	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
0,0002	OILI 4	15:8								
0x0634	U1EP5	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
0,0004	O I E I O	15:8								
0x0636	U1EP6	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
ОХОООО		15:8								
0x0638	U1EP7	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
ОХОООО		15:8								
0x063A	U1EP8	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
0,1000,1		15:8								
0x063C	U1EP9	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
UNUUUU		15:8								
0x063E	U1EP10	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
0.0002		15:8								
0x0640	U1EP11	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
		15:8								
0x0642	U1EP12	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
*****		15:8								
0x0644	U1EP13	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
		15:8								
0x0646	U1EP14	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
		15:8								
0x0648	U1EP15	7:0				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
UXU046 UTEP 15		15:8								

USB with On-The-Go (USB OTG) Support

28.3.1 Buffer Descriptor n Status Register Prototype, USB Mode (BD0STAT through BD63STAT)

Name: BDnSTAT
Offset: User Defined

Legend: HSC = Hardware Settable/Clearable bit; x = Bit state is unknown

Bit	15	14	13	12	11	10	9	8
	UOWN	DTS		PID	[3:0]		BC[9:8]
Access	HSC/R/W							
Reset	x	X	x	x	X	x	X	x
Bit	7	6	5	4	3	2	1	0
				BC[7:0]			
Access	HSC/R/W							
Reset	Х	X	X	X	X	X	X	Х

Bit 15 - UOWN USB Own bit

Value	Description
1	The USB module owns the BD and its corresponding buffer; the CPU must not modify the BD or the
	buffer

Bit 14 - DTS Data Toggle Packet bit

Value	Description
1	Data 1 packet
0	Data 0 packet

Bits 13:10 - PID[3:0] Packet Identifier bits (written by the USB module)

In Device mode:

Represents the PID of the received token during the last transfer.

In Host mode:

Represents the last returned PID or the transfer status indicator.

Bits 9:0 - BC[9:0] Byte Count bits

This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

USB with On-The-Go (USB OTG) Support

28.3.2 Buffer Descriptor n Status Register Prototype, CPU Mode (BD0STAT through BD63STAT)

Name: BDnSTAT
Offset: User Defined

Note:

This bit is ignored unless DTSEN = 1.

Legend: HSC = Hardware Settable/Clearable bit; x = Bit state is unknown

Bit	15	14	13	12	11	10	9	8
	UOWN	DTS			DTSEN	BSTALL	BC[9:8]
Access	HSC/R/W	HSC/R/W			HSC/R/W	HSC/R/W	HSC/R/W	HSC/R/W
Reset	X	X			X	X	X	X
Bit	7	6	5	4	3	2	1	0
				BC[7:0]			
Access	HSC/R/W							
Reset	X	X	X	х	X	X	X	Х

Bit 15 - UOWN USB Own bit

Value	Description
1	The microcontroller core owns the BD and its corresponding buffer; the USB module ignores all other
	fields in the BD

Bit 14 - DTS Data Toggle Packet bit(1)

Value	Description
1	Data 1 packet
0	Data 0 packet

Bit 11 - DTSEN Data Toggle Synchronization Enable bit

Value	Description
1	Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored
0	No data toggle synchronization is performed

Bit 10 - BSTALL Buffer Stall Enable bit

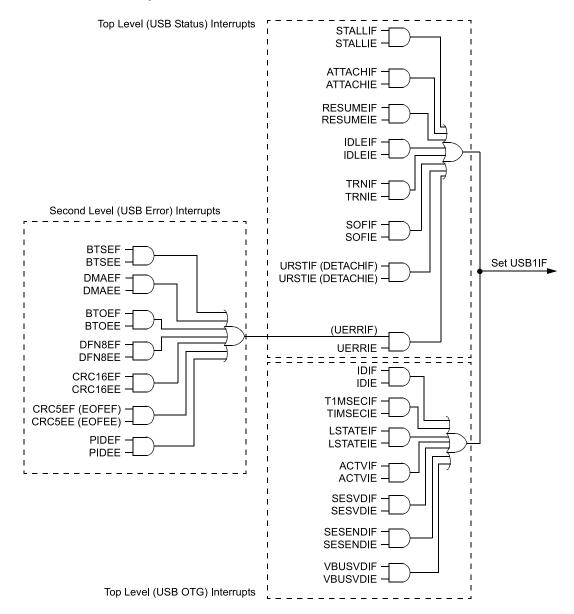
Value	Description
1	Buffer STALL is enabled; STALL handshake issued if a token is received that would use the BD in the
	given location (UOWN bit remains set, BD value is unchanged), corresponding EPSTALL bit will get set on any STALL handshake
0	Buffer STALL is disabled

Bits 9:0 - BC[9:0] Byte Count bits

This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

28.4 USB Interrupts

The USB OTG module has many conditions that can be configured to cause an interrupt. All interrupt sources use the same interrupt vector.

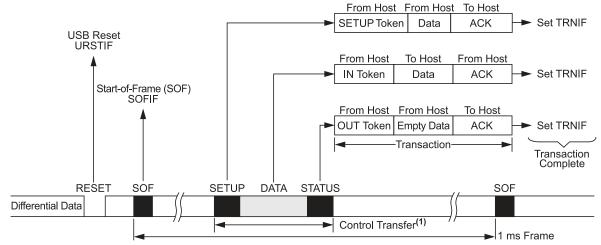

Figure 28-8 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the U1IE and U1IR registers, respectively. The second level consists of USB error conditions, which are enabled and flagged in the U1EIR and U1EIE registers. An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the

USB with On-The-Go (USB OTG) Support

top level. Unlike the device-level interrupt flags in the IFSx registers, USB interrupt flags in the U1IR registers can only be cleared by writing a '1' to the bit position.

Interrupts may be used to trap routine events in a USB transaction. Figure 28-8 provides some common events within a USB frame and their corresponding interrupts.

Figure 28-8. USB OTG Interrupt Funnel



28.4.1 Clearing USB OTG Interrupts

Unlike device-level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set only bits. Additionally, these bits can only be cleared in software by writing a '1' to their locations (i.e., performing a MOV type instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this data sheet, a bit that can only be cleared by writing a '1' to its location is referred to as "Write '1' to Clear". In register descriptions; this function is indicated by the descriptor, "K".

Figure 28-9. Example of a USB Transaction and Interrupt Events

Note:

1. The control transfer shown here is only an example showing events that can occur for every transaction. Typical control transfers will spread across multiple frames.

28.5 Device Mode Operation

The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.

28.5.1 Enabling Device Mode

- Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit, PPBRST (U1CON[1]).
- 2. Disable all interrupts (U1IE and U1EIE = 00h).
- 3. Clear any existing interrupt flags by writing FFh to U1IR and U1EIR.
- 4. Verify that V_{BUS} is present (non-OTG devices only).
- 5. Enable the USB module by setting the USBEN bit (U1CON[0]).
- 6. Set the OTGEN bit (U1OTGCON[2]) to enable OTG operation.
- 7. Enable the Endpoint 0 buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0[3,0] = 1).
- 8. Power up the USB module by setting the USBPWR bit (U1PWRC[0]).
- 9. Enable the D+ pull-up resistor to signal an attach by setting the DPPULUP bit (U10TGCON[7]).

28.5.2 Receiving an IN Token in Device Mode

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the "USB 2.0 Specification".
- 2. Create a data buffer and populate it with the data to send to the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - 3.1. Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - 3.2. Set up the address register (BDnADR) with the starting address of the data buffer.
 - 3.3. Set the UOWN bit of the status register to '1'.
- 4. When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Processing Complete Interrupt Flag, TRNIF (U1IR[3]).

USB with On-The-Go (USB OTG) Support

28.5.3 Receiving an OUT Token in Device Mode

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the "USB 2.0 Specification".
- 2. Create a data buffer with the amount of data you are expecting from the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - 3.1. Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - 3.2. Set up the address register (BDnADR) with the starting address of the data buffer.
 - 3.3. Set the UOWN bit of the status register to '1'.
- 4. When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Processing Complete Interrupt Flag, TRNIF (U1IR[3]).

28.6 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

28.6.1 Enable Host Mode and Discover a Connected Device

- Enable Host mode by setting the HOSTEN bit (U1CON[3]). This causes the Host mode control bits in other USB OTG registers to become available.
- Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U10TGCON[5:4]). Disable the D+ and D- pull-up resistors by clearing the DPPULUP and DMPULUP bits (U10TGCON[7:6]).
- 3. At this point, SOF generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON[0]) to disable Start-of-Frame (SOF) packet generation.
- 4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE[6]).
- 5. Wait for the device attached interrupt (U1IR[6] = 1). This is signaled by the USB device changing the state of D + or D- from '0' to '1' (SE0 to J-state). After it occurs, wait 100 ms for the device power to stabilize.
- 6. Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON[7]) is '0', the connecting device is low speed. If the connecting device is low speed, set the LSPDEN and LSPD bits (U1ADDR[7] and U1EP0[7]) to enable low-speed operation.
- 7. Reset the USB device by setting the USBRST bit (U1CON[4]) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST.
- 8. In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
- 9. Wait 10 ms for the device to recover from Reset.
- 10. Perform enumeration as described by Chapter 9 of the "USB 2.0 Specification".

28.6.2 Complete a Control Transaction to a Connected Device

- Follow the procedure described in 28.6.1 Enable Host Mode and Discover a Connected Device to discover a device.
- 2. Set up the Endpoint Control register for bidirectional control transfers by writing 0Dh to U1EP0 (this sets the EPCONDIS, EPTXEN and EPHSHK bits).
- 3. Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the "USB 2.0 Specification" for information on the device framework command set.
- 4. Initialize the Buffer Descriptor (BD) for the current (even or odd) TX EP0 to transfer the eight bytes of command data for a device framework command (i.e., GET DEVICE DESCRIPTOR):
 - 4.1. Set the BD Data Buffer Address (BD0ADR) to the starting address of the 8-byte memory buffer containing the command.
 - 4.2. Write 8008h to BD0STAT (this sets the UOWN bit and sets a byte count of eight).

USB with On-The-Go (USB OTG) Support

- Set the USB device address of the target device in the USB Address register (U1ADDR[6:0]). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value between 1 and 127
- 6. Write D0h to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BD0STAT after the packets are complete. When the USB module updates BD0STAT, a Token Processing Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification".
- 7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory to store the received data.
- 8. Initialize the current (even or odd) RX or TX (RX for IN, TX for OUT) EP0 BD to transfer the data:
 - 8.1. Write C040h to BD0STAT. This sets the UOWN bit, configures the Data Toggle Packet bit (DTS) to DATA1 and sets the byte count to the length of the data buffer (64 or 40h in this case).
 - 8.2. Set BD0ADR to the starting address of the data buffer.
- 9. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus, followed by a data packet from the device to the host. When the data packet completes, the BDOSTAT is written and a Token Processing Complete Interrupt Flag is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification". If more data need to be transferred, return to Step 8.
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current (even or odd) TX EP0 BD to transfer the status data:
 - 11.1. Set the BDT buffer address field to the start address of the data buffer.
 - 11.2. Write 8000h to BD0STAT (set UOWN bit, configure DTS to DATA0 and set byte count to 0).
- 12. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus, followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the handshake from the device and a Token Processing Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction, as described in Chapter 9 of the "USB 2.0 Specification".

Note: Only one control transaction can be performed per frame.

28.6.3 Send a Full-Speed Bulk Data Transfer to a Target Device

- 1. Follow the procedure described in 28.6.1 Enable Host Mode and Discover a Connected Device and 28.6.2 Complete a Control Transaction to a Connected Device to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD (U1EP0[7]) bit. If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0[6]).
- 3. Set up the BD for the current (even or odd) TX EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (U1ADDR[6:0]).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Token Processing Complete Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor and the transfer has completed. If the Retry Disable bit (RETRYDIS) is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 μs), then the target has detached (U1IR[0] is set).
- 7. Once the Token Processing Complete Interrupt Flag occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to Step 2.

Note: USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

USB with On-The-Go (USB OTG) Support

28.7 OTG Operation

28.7.1 Session Request Protocol (SRP)

An OTG A-device may decide to power down the V_{BUS} supply when it is not using the USB link through the Session Request Protocol (SRP). SRP can only be initiated at full speed. Software may do this by configuring a GPIO pin to disable an external power transistor, or voltage regulator enable signal, which controls the V_{BUS} supply. When the V_{BUS} supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or embedded host may repower the V_{BUS} supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the V_{BUS} supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

- V_{BUS} supply is below the session valid voltage.
- · Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of Condition 1 by the SESENDIF (U1OTGIR[2]) interrupt. Software will have to manually check for Condition 2.

Note: When the A-device powers down the V_{BUS} supply, the B-device must disconnect its pull-up resistor from power. If the device is self-powered, it can do this by clearing DPPULUP (U10TGCON[7]) and DMPULUP (U10TGCON[6]).

The B-device may aid in achieving Condition 1 by discharging the V_{BUS} supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON[0]).

After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON[7]). The data line should be held high for 5 to 10 ms.

The B-device then proceeds by pulsing the V_{BUS} supply. Software should do this by setting PUVBUS (U1CNFG2[4]). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR[6]) interrupt or via the SESVDIF (U1OTGIR[3]) interrupt), the A-device must restore the V_{BUS} supply by properly configuring the general purpose I/O port pin controlling the external power source.

The B-device should not monitor the state of the V_{BUS} supply while performing V_{BUS} supply pulsing. When the B-device does detect that the V_{BUS} supply has been restored (via the SESVDIF (U1OTGIR[3]) interrupt), the B-device must reconnect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP bit).

The A-device must complete the SRP by driving USB Reset signaling.

28.7.2 Host Negotiation Protocol (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the "On-The-Go Supplement" to the "USB 2.0 Specification" for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in the suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR[0]) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF, U1IR[6]), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

DS30010203C-page 1170

USB with On-The-Go (USB OTG) Support

When the B-device has finished in its role as host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power down the V_{BUS} supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

28.8 USB OTG Module Registers

The USB OTG module registers can be divided into four general categories:

- · USB OTG Module Control
- USB Interrupt
- · USB Endpoint Management
- USB V_{BUS} Power Control

This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in 28.3.1 BDnSTAT and 28.3.2 BDnSTAT, are shown separately in 28.2 USB Buffer Descriptors and the BDT.

All USB OTG registers are implemented in the Least Significant Byte (LSB) of the register. Bits in the upper byte are unimplemented and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.

The registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only:

- U1BDTP1, U1BDTP2 and U1BDTP3: Specify the 256-word page in data RAM used for the BDT; 8-bit value with bit 0 fixed as '0' for boundary alignment.
- U1FRML and U1FRMH: Contain the 11-bit byte counter for the current data frame.

28.9 USB Interrupt Registers

USB with On-The-Go (USB OTG) Support

28.9.1 USB OTG Interrupt Status Register (Host Mode Only)

Name: U1OTGIR⁽²⁾ Offset: 0x600

Notes:

V_{BUS} threshold crossings may either be rising or falling.

2. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

Legend: HS = Hardware Settable bit; K = Write '1' to Clear bit

Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF		VBUSVDIF
Access	HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K		HS/R/K
Reset	0	0	0	0	0	0		0

Bit 7 - IDIF ID State Change Indicator bit

Value	Description
1	Change in ID state is detected
0	No ID state change is detected

Bit 6 - T1MSECIF 1 Millisecond Timer bit

Value	Description
1	The 1 millisecond timer has expired
0	The 1 millisecond timer has not expired

Bit 5 - LSTATEIF Line State Stable Indicator bit

Value	Description
1	USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from
	the last time
0	USB line state has not been stable for 1 ms

Bit 4 - ACTVIF Bus Activity Indicator bit

Value	Description
1	Activity on the D+/D- lines or V _{BUS} is detected
0	No activity on the D+/D- lines or V _{BUS} is detected

Bit 3 - SESVDIF Session Valid Change Indicator bit

Value	Description
1	V _{BUS} has crossed V _{A_SESS_END} (as defined in the "USB 2.0 Specification") ⁽¹⁾
0	V _{BUS} has not crossed V _{A_SESS_END}

Bit 2 - SESENDIF B-Device V_{BUS} Change Indicator bit

Value	Description
1	V _{BUS} change on B-device is detected; V _{BUS} has crossed V _{B_SESS_END} (as defined in the "USB 2.0 Specification") ⁽¹⁾
0	V _{BUS} has not crossed V _{B_SESS_END}

Bit 0 - VBUSVDIF A-Device V_{BUS} Change Indicator bit

USB with On-The-Go (USB OTG) Support

Value	Description
1	V _{BUS} change on A-device is detected; V _{BUS} has crossed V _{A_VBUS_} V _{LD} (as defined in the "USB 2.0 Specification") ⁽¹⁾
0	No V _{BUS} change on A-device is detected

USB with On-The-Go (USB OTG) Support

28.9.2 USB OTG Interrupt Enable Register (Host Mode Only)

Name: U1OTGIE Offset: 0x602

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE
Access	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0		0

Bit 7 - IDIE ID Interrupt Enable bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 6 - T1MSECIE 1 Millisecond Timer Interrupt Enable bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 5 - LSTATEIE Line State Stable Interrupt Enable bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 4 - ACTVIE Bus Activity Interrupt Enable bit

	Die 1 110 Bus / tourity interrupt Enable bit		
Value	Description		
1	Interrupt is enabled		
0	Interrupt is disabled		

Bit 3 - SESVDIE Session Valid Interrupt Enable bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 2 - SESENDIE B-Device Session End Interrupt Enable bit

Die Geriebie B Bottoe Goodien End Interrupt Endole bit		
Value	Description	
1	Interrupt is enabled	
0	Interrupt is disabled	

Bit 0 - VBUSVDIE A-Device V_{BUS} Valid Interrupt Enable bit

Valu	ue	Description
1		Interrupt is enabled
0		Interrupt is disabled

USB with On-The-Go (USB OTG) Support

28.9.3 USB Interrupt Status Register (Device Mode Only)

Name: U1IR⁽¹⁾ **Offset:** 0x60A

Note:

1. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

Legend: HS = Hardware Settable bit; K = Write '1' to Clear bit

BIL	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	STALLIF		RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
Access	HS/R/K		HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K
Reset	0		0	0	0	0	0	0

Bit 7 - STALLIF STALL Handshake Interrupt bit

Value	Description			
1	A STALL handshake was sent by the peripheral during the handshake phase of the transaction in			
	Device mode			
0	A STALL handshake has not been sent			

Bit 5 - RESUMEIF Resume Interrupt bit

Value	Description
1	A K-state is observed on the D+ or D- pin for 2.5 µs (differential '1' for low speed, differential '0' for full
	speed)
0	No K-state is observed

Bit 4 - IDLEIF Idle Detect Interrupt bit

Value	Description
1	Idle condition is detected (constant Idle state of 3 ms or more)
0	No Idle condition is detected

Bit 3 - TRNIF Token Processing Complete Interrupt bit

	<u> </u>
Value	Description
1	Processing of the current token is complete; read the U1STAT register for endpoint information
0	Processing of the current token is not complete; clear the U1STAT register or load the next token from
	STAT (clearing this bit causes the STAT FIFO to advance)

Bit 2 - SOFIF Start-of-Frame Token Interrupt bit

Value	Description
1	A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the
	host
0	No Start-of-Frame token is received or threshold reached

Bit 1 - UERRIF USB Error Condition Interrupt bit

Value	Description
1	An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this
	bit
0	No unmasked error condition has occurred

USB with On-The-Go (USB OTG) Support

Bit 0 - URSTIF USB Reset Interrupt bit

Value	Description
1	Valid USB Reset has occurred for at least 2.5 μs; Reset state must be cleared before this bit can be reasserted
0	No USB Reset has occurred; individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

USB with On-The-Go (USB OTG) Support

28.9.4 USB Interrupt Status Register (Host Mode Only)

Name: U1IR⁽¹⁾ Offset: 0x60A

Note:

1. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

Legend: HS = Hardware Settable bit; K = Write '1' to Clear bit

Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF
Access	HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K
Reset	0	0	0	0	0	0	0	0

Bit 7 - STALLIF STALL Handshake Interrupt bit

Value	Description
1	A STALL handshake was sent by the peripheral during the handshake phase of the transaction in
	Device mode
0	A STALL handshake has not been sent

Bit 6 - ATTACHIF Peripheral Attach Interrupt bit

Value	Description
1	A peripheral attachment has been detected by the module; it is set if the bus state is not SE0 and there
	has been no bus activity for 2.5 μs
0	No peripheral attachment has been detected

Bit 5 - RESUMEIF Resume Interrupt bit

Value	Description
1	A K-state is observed on the D+ or D- pin for 2.5 µs (differential '1' for low speed, differential '0' for full
	speed)
0	No K-state is observed

Bit 4 - IDLEIF Idle Detect Interrupt bit

Value	Description
1	Idle condition is detected (constant Idle state of 3 ms or more)
0	No Idle condition is detected

Bit 3 - TRNIF Token Processing Complete Interrupt bit

Value	Description
1	Processing of the current token is complete; read the U1STAT register for endpoint information
0	Processing of the current token is not complete; clear the U1STAT register or load the next token from
	STAT (clearing this bit causes the STAT FIFO to advance)

Bit 2 - SOFIF Start-of-Frame Token Interrupt bit

Value	Description
1	A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the
	host
0	No Start-of-Frame token is received or threshold reached

USB with On-The-Go (USB OTG) Support

Bit 1 - UERRIF USB Error Condition Interrupt bit

Value	Description
1	An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this
	bit
0	No unmasked error condition has occurred

Bit 0 - DETACHIF Detach Interrupt bit

Value	Description
1	A peripheral detachment has been detected by the module; Reset state must be cleared before this bit can be reasserted
0	No peripheral detachment is detected. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

USB with On-The-Go (USB OTG) Support

28.9.5 USB Interrupt Enable Register (All USB Modes)

Name: U1IE Offset: 0x60C

Note:

1. This bit is unimplemented in Device mode, read as '0'.

Bit .	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE or
								DETACHIE
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 - STALLIE STALL Handshake Interrupt Enable bit

Value	Description				
1	Interrupt is enabled				
0	Interrupt is disabled				

Bit 6 - ATTACHIE Peripheral Attach Interrupt bit (Host mode only)(1)

Valu	е	Description
1		Interrupt is enabled
0		Interrupt is disabled

Bit 5 - RESUMEIE Resume Interrupt bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 4 - IDLEIE Idle Detect Interrupt bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 3 - TRNIE Token Processing Complete Interrupt bit

	Trail Token't reducing complete interrupt by			
Value	Description			
1	Interrupt is enabled			
0	Interrupt is disabled			

Bit 2 - SOFIE Start-of-Frame Token Interrupt bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 1 - UERRIE USB Error Condition Interrupt bit

	The state of the s
Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 0 - URSTIE or DETACHIE USB Reset Interrupt (Device mode) or USB Detach Interrupt (Host mode) Enable bit

USB with On-The-Go (USB OTG) Support

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

USB with On-The-Go (USB OTG) Support

28.9.6 USB Error Interrupt Status Register

Name: U1EIR⁽¹⁾ Offset: 0x60E

Note:

1. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

Legend: K = Write '1' to Clear bit; HS = Hardware Settable bit

Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	BTSEF		DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF or	PIDEF
							EOFEE	
Access	HS/R/K		HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K	HS/R/K
Reset	0		0	0	0	0	0	0

Bit 7 - BTSEF Bit Stuff Error Flag bit

Value	Description
1	Bit stuff error has been detected
0	No bit stuff error has been detected

Bit 5 - DMAEF DMA Error Flag bit

Value	Description
1	A USB DMA error condition is detected; the data size indicated by the BD byte count field is less than
	the number of received bytes, the received data are truncated
0	No DMA error

Bit 4 - BTOEF Bus Turnaround Time-out Error Flag bit

Value	Description
1	Bus turnaround time-out has occurred
0	No bus turnaround time-out has occurred

Bit 3 - DFN8EF Data Field Size Error Flag bit

Value	Description
1	Data field was not an integral number of bytes
0	Data field was an integral number of bytes

Bit 2 - CRC16EF CRC16 Failure Flag bit

Value	Description
1	CRC16 failed
0	CRC16 passed

Bit 1 - CRC5EF or EOFEE CRC5 Host Error Flag bit (For Device Mode Only)

Value	Description
1	Token packet is rejected due to CRC5 error
0	Token packet is accepted (no CRC5 error)

Bit 1 - EOFEF End-of-Frame (EOF) Error Flag bit (For Host Mode Only)

Value	Description
1	End-of-Frame error has occurred

USB with On-The-Go (USB OTG) Support

Value	Description
0	End-of-Frame interrupt is disabled

Bit 0 - PIDEF PID Check Failure Flag bit

Value	Description
1	PID check failed
0	PID check passed

USB with On-The-Go (USB OTG) Support

28.9.7 USB Error Interrupt Enable Register

Name: U1EIE Offset: 0x610

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
	BTSEE		DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE or	PIDEE
							EOFEE	
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

Bit 7 - BTSEE Bit Stuff Error Interrupt Enable bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 5 - DMAEE DMA Error Interrupt Enable bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 4 - BTOEE Bus Turnaround Time-out Error Interrupt Enable bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 3 - DFN8EE Data Field Size Error Interrupt Enable bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 2 - CRC16EE CRC16 Failure Interrupt Enable bit

Value	Description
1	Interrupt is enabled
0	Interrupt is disabled

Bit 1 - CRC5EE or EOFEE CRC5 Host Error Interrupt Enable bit (For Device Mode Only)

Value	Description		
1	Interrupt is enabled		
0	Interrupt is disabled		

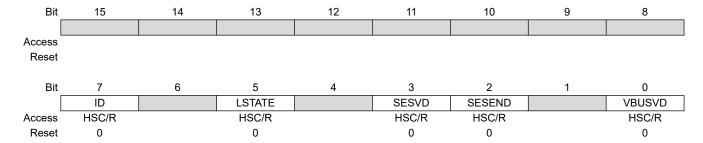
Bit 1 - EOFEE End-of-Frame (EOF) Error interrupt Enable bit (For Host Mode Only)

Value	Description					
1	Interrupt is enabled					
0	Interrupt is disabled					

Bit 0 - PIDEE PID Check Failure Interrupt Enable bit

Dit 0 - I IDEE I ID Oncek I alidic litterrupt Eriable bit					
Value	alue Description				
1	Interrupt is enabled				
0	Interrupt is disabled				

USB with On-The-Go (USB OTG) Support


28.10	USB	OTG	Register	S
-------	-----	------------	----------	---

USB with On-The-Go (USB OTG) Support

28.10.1 USB OTG Status Register (Host Mode Only)

Name: U1OTGSTAT Offset: 0x604

Legend: HSC = Hardware Settable/Clearable bit

Bit 7 - ID ID Pin State Indicator bit

1	Value	Description
ſ	1	No plug is attached or a Type B cable has been plugged into the USB receptacle
	0	A Type A plug has been plugged into the USB receptacle

Bit 5 - LSTATE Line State Stable Indicator bit

Value	Description
1	The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms
0	The USB line state has not been stable for the previous 1 ms

Bit 3 - SESVD Session Valid Indicator bit

Value	Description
1	The V _{BUS} voltage is above V _{A SESS} V _{LD} (as defined in the "USB 2.0 Specification") on the A or B-
	device
0	The V _{BUS} voltage is below V _{A_SESS} V _{LD} on the A or B-device

Bit 2 - SESEND B Session End Indicator bit

Value	Description
1	The V _{BUS} voltage is below V _{B_SESS_END} (as defined in the "USB 2.0 Specification") on the B-device
0	The V _{BUS} voltage is above V _{B_SESS_END} on the B-device

$\textbf{Bit 0-VBUSVD} \quad \text{A V}_{\text{BUS}} \text{ Valid Indicator bit}$

1	Value	Description
	1	The V _{BUS} voltage is above V _{A_VBUS} _V _{LD} (as defined in the "USB 2.0 Specification") on the A-device
	0	The V_{BUS} voltage is below $V_{A_VBUS_}V_{LD}$ on the A-device

Datasheet

USB with On-The-Go (USB OTG) Support

28.10.2 USB On-The-Go Control Register

Name: U1OTGCON Offset: 0x606

Note:

1. These bits are only used in Host mode; do not use in Device mode.

Legend: r = Reserved bit

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	Reserved	OTGEN	Reserved	VBUSDIS
Access	R/W	R/W	R/W	R/W	r	R/W	r	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 - DPPULUP D+ Pull-up Enable bit

Value	Description
1	D+ data line pull-up resistor is enabled
0	D+ data line pull-up resistor is disabled

Bit 6 - DMPULUP D- Pull-up Enable bit

Value	e Description
1	D- data line pull-up resistor is enabled
0	D- data line pull-up resistor is disabled

Bit 5 - DPPULDWN D+ Pull-Down Enable bit(1)

Valu	Description	
1	D+ data line pull-down resistor is enabled	
0	D+ data line pull-down resistor is disabled	

Bit 4 - DMPULDWN D- Pull-Down Enable bit(1)

	The state of the s
Value	Description
1	D- data line pull-down resistor is enabled
0	D- data line pull-down resistor is disabled

Bit 3 - Reserved Maintain as '0'

Bit 2 - OTGEN OTG Features Enable bit(1)

Value	Description
1	USB OTG is enabled; all D+/D- pull-up and pull-down bits are enabled
0	USB OTG is disabled; D+/D- pull-up and pull-down bits are controlled in hardware by the settings of the HOSTEN and USBEN (U1CON[3:0]) bits

Bit 1 - Reserved Maintain as '0'

Bit 0 - VBUSDIS V_{BUS} Discharge Enable bit⁽¹⁾

Value	Description	
1	V _{BUS} line is discharged through a resistor	
0	V _{BUS} line is not discharged	

USB with On-The-Go (USB OTG) Support

28.10.3 USB Power Control Register

Name: U1PWRC Offset: 0x608

Note:

 Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON[3,0] and U1OTGCON[2]) are all cleared.

Legend: HC = Hardware Clearable bit; HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	UACTPND			USLPGRD			USUSPND	USBPWR
Access	HSC/R			R/W			HC/R/W	R/W
Reset	Y			0			0	0

Bit 7 - UACTPND USB Activity Pending bit

1	Value	Description
	1	Module should not be suspended at the moment (requires the USLPGRD bit to be set)
	0	Module may be suspended or powered down

Bit 4 - USLPGRD USB Sleep/Suspend Guard bit

Value	Description
1	Indicates to the USB module that it is about to be suspended or powered down
0	No suspend

Bit 1 - USUSPND USB Suspend Mode Enable bit

Value	Description	
1	USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-	
	power state	
0	Normal USB OTG operation	

Bit 0 - USBPWR USB Operation Enable bit

Value	Description
1	USB OTG module is enabled
0	USB OTG module is disabled ⁽¹⁾

USB with On-The-Go (USB OTG) Support

28.10.4 USB Status Register

Name: U1STAT Offset: 0x612

Note:

1. This bit is only valid for endpoints with available even and odd BD registers.

Legend: HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	ENDPT[3:0]			DIR	PPBI			
Access	HSC/R	HSC/R	HSC/R	HSC/R	HSC/R	HSC/R		
Reset	0	0	0	0	0	0		

Bits 7:4 - ENDPT[3:0] USB Activity Pending bits

Number of the last endpoint activity bits.

(Represents the number of the BDT updated by the last USB transfer.)

Value	Description
1111	Endpoint 15
1110	Endpoint 14
0001	Endpoint 1
0000	Endpoint 0

Bit 3 - DIR Last BD Direction Indicator bit

Value	Description	
1	The last transaction was a transmit transfer (TX)	
0	The last transaction was a receive transfer (RX)	

Bit 2 - PPBI Ping-Pong BD Pointer Indicator bit(1)

ı	Value	Description
	1	The last transaction was to the odd BD bank
	0	The last transaction was to the even BD bank

USB with On-The-Go (USB OTG) Support

28.10.5 USB Control Register (Device Mode)

Name: U1CON Offset: 0x614

Legend: HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8

Access

Reset

Bit	7	6	5	4	3	2	1	0
		SE0	PKTDIS		HOSTEN	RESUME	PPBRST	USBEN
Access		HSC/R	R/W		R/W	R/W	R/W	R/W
Reset		x	0		0	0	0	0

Bit 6 - SE0 Live Single-Ended Zero Flag bit

	Value	Description
ſ	1	Single-ended zero is active on the USB bus
	0	No single-ended zero is detected

Bit 5 - PKTDIS Packet Transfer Disable bit

Value	Description
1	SIE token and packet processing are disabled; automatically set when a SETUP token is received
0	SIE token and packet processing are enabled

Bit 3 - HOSTEN Host Mode Enable bit

Value	Description
1	USB host capability is enabled; pull-downs on D+ and D- are activated in hardware
0	USB host capability is disabled

Bit 2 - RESUME Resume Signaling Enable bit

Value	Description
1	Resume signaling is activated
0	Resume signaling is disabled

Bit 1 - PPBRST Ping-Pong Buffers Reset bit

Value	Description
1	Resets all Ping-Pong Buffer Pointers to the even BD banks
0	Ping-Pong Buffer Pointers are not reset

Bit 0 - USBEN USB Module Enable bit

Value	Description
1	USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in
	hardware
0	USB module and supporting circuitry are disabled (device detached)

USB with On-The-Go (USB OTG) Support

28.10.6 USB Control Register (Host Mode Only)

Name: U1CON Offset: 0x614

Legend: HSC = Hardware Settable/Clearable bit

Bit	15	14	13	12	11	10	9	8

Access

Reset

Bit	7	6	5	4	3	2	1	0
	JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
Access	HSC/R	HSC/R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	X	X	0	0	0	0	0	0

Bit 7 - JSTATE Live Differential Receiver J-State Flag bit

Value	Description
1	J-state (differential '0' in low speed, differential '1' in full speed) is detected on the USB
0	No J-state is detected

Bit 6 - SE0 Live Single-Ended Zero Flag bit

Val	ue	Description
1		Single-ended zero is active on the USB bus
0		No single-ended zero is detected

Bit 5 - TOKBUSY Token Busy Status bit

Value	Description
1	Token is being executed by the USB module in On-The-Go state
0	No token is being executed

Bit 4 - USBRST USB Module Reset bit

Value	Description
1	USB Reset has been generated for a software Reset; application must set this bit for 50 ms, then clear
	it
0	USB Reset is terminated

Bit 3 - HOSTEN Host Mode Enable bit

Value Description				
1 USB host capability is enabled; pull-downs on D+ and D- are activated in hardware				
0	USB host capability is disabled			

Bit 2 - RESUME Resume Signaling Enable bit

Value	Description				
1	Resume signaling is activated; software must set bit for 10 ms and then clear to enable remote wake				
	up				
0	Resume signaling is disabled				

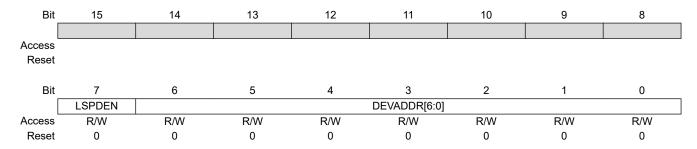
Bit 1 - PPBRST Ping-Pong Buffers Reset bit

	Die 1 11 Die 1 1 mg 1 ong Banoro 1 toost bit					
Value	Description					
1	Resets all Ping-Pong Buffer Pointers to the even BD banks					
0	Ping-Pong Buffer Pointers are not reset					

Bit 0 - SOFEN Start-of-Frame Enable bit

USB with On-The-Go (USB OTG) Support

Value	Description			
1 Start-of-Frame token is sent every one 1 ms				
0	Start-of-Frame token is disabled			


USB with On-The-Go (USB OTG) Support

28.10.7 USB Address Register

Name: U1ADDR Offset: 0x616

Note:

1. Host mode only. In Device mode, this bit is unimplemented and read as '0'.

Bit 7 - LSPDEN Low-Speed Enable Indicator bit(1)

Va	Value Description				
1 USB module operates at low speed					
0	0 USB module operates at full speed				

Bits 6:0 - DEVADDR[6:0] USB Device Address bits

USB with On-The-Go (USB OTG) Support

28.10.8 BDT Address Low Bits Register

Name: U1BDTP1 Offset: 0x618

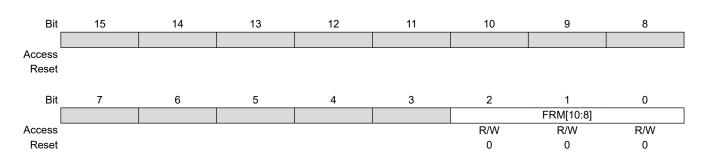
Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
				BDTPTRL[6:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	

Bits 7:1 - BDTPTRL[6:0] BDT Address Low bits

USB with On-The-Go (USB OTG) Support

28.10.9 Current Data Frame Counter Register Low

Name: U1FRML Offset: 0x61A


Bit	15	14	13	12	11	10	9	8	
Access Reset									
Bit	7	6	5	4	3	2	1	0	
	FRM[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

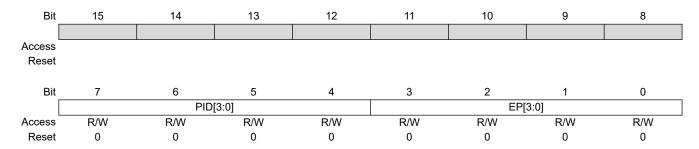
Bits 7:0 - FRM[7:0] Data Frame Counter bits

USB with On-The-Go (USB OTG) Support

28.10.10 Current Data Frame Counter Register High

Name: U1FRMH Offset: 0x61C

Bits 2:0 - FRM[10:8] Data Frame Counter bits


USB with On-The-Go (USB OTG) Support

28.10.11 USB Token Register (Host Mode Only)

Name: U1TOK Offset: 0x61E

Note:

1. All other combinations are reserved and are not to be used.

Bits 7:4 - PID[3:0] Token Type Identifier bits

Value	Description			
1101	SETUP (TX) token type transaction ⁽¹⁾			
1001	IN (RX) token type transaction ⁽¹⁾			
0001	OUT (TX) token type transaction ⁽¹⁾			

Bits 3:0 – EP[3:0] Token Command Endpoint Address bits This value must specify a valid endpoint on the attached device.

USB with On-The-Go (USB OTG) Support

28.10.12 USB OTG Start of Token Threshold Register (Host Mode Only)

Name: U1SOF Offset: 0x620

Bit	15	14	13	12	11	10	9	8	
A									
Access Reset									
Bit	7	6	5	4	3	2	1	0	
	CNT[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - CNT[7:0] Start-of-Frame Size bits

Value represents 10 + (packet size of n bytes). For example:

Value	Description
01001010	64-byte packet
00101010	32-byte packet
00010010	8-byte packet

USB with On-The-Go (USB OTG) Support

28.10.13 BDT Address High Bits Register

Name: U1BDTP2 Offset: 0x622

Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
				BDTPT	RH[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - BDTPTRH[7:0] BDT Address High bits

USB with On-The-Go (USB OTG) Support

28.10.14 BDT Address Upper Bits Register

Name: U1BDTP3 Offset: 0x624

Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
				BDTPT	RU[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - BDTPTRU[7:0] BDT Address Upper bits

USB with On-The-Go (USB OTG) Support

28.10.15 USB Configuration Register 1

Name: U1CNFG1 Offset: 0x626

Note:

1. This bit is only active when the UTRDIS bit (U1CNFG2[0]) is set.

Access Reset

Bit	7	6	5	4	3	2	1	0
	UTEYE	UOEMON		USBSIDL			PPE	3[1:0]
Access	R/W	R/W		R/W			R/W	R/W
Recet	Λ	0		Λ			Λ	0

Bit 7 - UTEYE USB Eye Pattern Test Enable bit

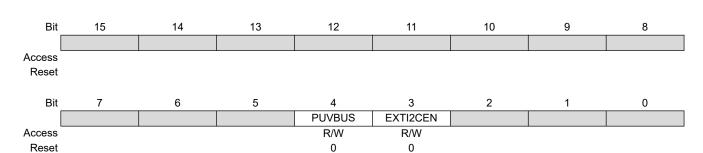
Value	Description
1	Eye pattern test is enabled
0	Eye pattern test is disabled

Bit 6 - UOEMON USB OE Monitor Enable bit(1)

П	Value	Description
	1	OE signal is active; it indicates intervals during which the D+/D- lines are driving
	0	OE signal is inactive

Bit 4 - USBSIDL USB OTG Stop in Idle Mode bit

Value	Description			
1	Discontinues module operation when the device enters Idle mode			
0	Continues module operation in Idle mode			


Bits 1:0 - PPB[1:0] Ping-Pong Buffers Configuration bits

Value	Description
11	Even/Odd Ping-Pong Buffers are enabled for Endpoints 1 to 15
10	Even/Odd Ping-Pong Buffers are enabled for all endpoints
01	Even/Odd Ping-Pong Buffers are enabled for RX Endpoint 0
00	Even/Odd Ping-Pong Buffers are disabled

USB with On-The-Go (USB OTG) Support

28.10.16 USB Configuration Register 2

Name: U1CNFG2 Offset: 0x628

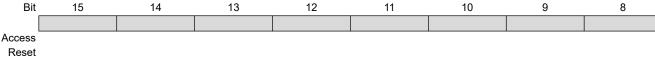
Bit 4 – PUVBUS V_{BUS} Pull-up Enable bit

Value	Description
1	Pull-up on V _{BUS} pin is enabled
0	Pull-up on V _{BUS} pin is disabled

Bit 3 - EXTI2CEN I²C Interface for External Module Control Enable bit

Value	Description
1	External module(s) is controlled via the I ² C interface
0	External module(s) is controlled via the dedicated pins

28.11 USB Endpoint Management Registers


USB with On-The-Go (USB OTG) Support

28.11.1 USB Endpoint 0 Control Register

Name: U1EP0 Offset: 0x62A

Note:

These bits are available only for U1EP0 and only in Host mode. For all other U1EPn registers, these bits are always unimplemented and read as '0'.

Reset

Bit	7	6	5	4	3	2	1	0
	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 7 - LSPD Low-Speed Direct Connection Enable bit (U1EP0 only)(1)

- 3					
	Value Description				
	1	Direct connection to a low-speed device is enabled			
	0	Direct connection to a low-speed device is disabled			

Bit 6 - RETRYDIS Retry Disable bit (U1EP0 only)(1)

Valu	ue	Description
1		Retry NAK transactions are disabled
0		Retry NAK transactions are enabled; retry is done in hardware

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Value	Description
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed

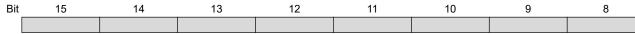
Bit 3 - EPRXEN Endpoint Receive Enable bit

Value	Description
1	Endpoint n receive is enabled
0	Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit


Value	Description
1	Endpoint n was stalled
0	Endpoint n was not stalled

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.2 USB Endpoint 1 Control Register

Name: U1EP1 Offset: 0x62C

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

1	Value	Description
	1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed
	0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed

Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit

D.C	Dit I DIALE Enapoint of the dialage bit					
Value	Description					
1	Endpoint n was stalled					
0	Endpoint n was not stalled					

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.3 USB Endpoint 2 Control Register

Name: U1EP2 Offset: 0x62E

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

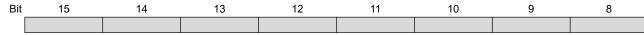
Bit 3 - EPRXEN Endpoint Receive Enable bit

Value	Description
1	Endpoint n receive is enabled
0	Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit


D.C	STALL Endpoint of the ottata bit
Value	Description
1	Endpoint n was stalled
0	Endpoint n was not stalled

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.4 USB Endpoint 3 Control Register

Name: U1EP3 Offset: 0x630

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

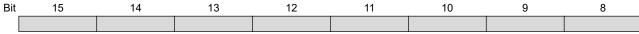
Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit


D.C	STALL Endpoint of the ottata bit
Value	Description
1	Endpoint n was stalled
0	Endpoint n was not stalled

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.5 USB Endpoint 4 Control Register

Name: U1EP4 Offset: 0x632

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 – EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Value	Description
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed

Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit

 D.C	TEL CIALL ENGPOINT OF THE CIALGO BIL		
Value	Description		
1	Endpoint n was stalled		
0	Endpoint n was not stalled		

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.6 USB Endpoint 5 Control Register

Name: U1EP5 Offset: 0x634

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit

BR 1 - El GIACE Enapoint GIACE Glatas BR		
Value	Description	
1	Endpoint n was stalled	
0	Endpoint n was not stalled	

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.7 USB Endpoint 6 Control Register

Name: U1EP6 Offset: 0x636

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

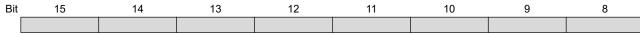
Bit 3 - EPRXEN Endpoint Receive Enable bit

Value	Description
1	Endpoint n receive is enabled
0	Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

ı	Value	Description
	1	Endpoint n transmit is enabled
	0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit


 DIC I CIALL Endpoint of ALL otatao bit		
Value	Description	
1	Endpoint n was stalled	
0	Endpoint n was not stalled	

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.8 USB Endpoint 7 Control Register

Name: U1EP7 Offset: 0x638

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

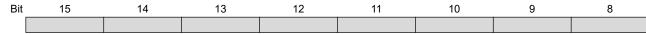
Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit


D.C	Dit I DIALE Endpoint of the otatao bit		
Value	Description		
1	Endpoint n was stalled		
0	Endpoint n was not stalled		

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.9 USB Endpoint 8 Control Register

Name: U1EP8 Offset: 0x63A

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

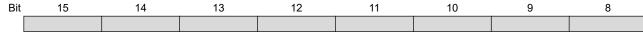
Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

ı	Value	Description
	1	Endpoint n transmit is enabled
	0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit


	D.C	TEL GIALE ENGPOINT OF THE OLDER DIE		
Value Description		Description		
	1	Endpoint n was stalled		
	0	Endpoint n was not stalled		

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.10 USB Endpoint 9 Control Register

Name: U1EP9 Offset: 0x63C

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit

	D.C	TEL GIALE ENGPOINT OF THE OLDER DIE		
Value Description		Description		
	1	Endpoint n was stalled		
	0	Endpoint n was not stalled		

Value	Description	
1	Endpoint handshake is enabled	
0	Endpoint handshake is disabled (typically used for isochronous endpoints)	

USB with On-The-Go (USB OTG) Support

28.11.11 USB Endpoint 10 Control Register

Name: U1EP10 Offset: 0x63E

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 – EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit

	BR 1 - El GIALE Eliapoliti GIALE Glatas BR		
Value	Description		
1	Endpoint n was stalled		
0	Endpoint n was not stalled		

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.12 USB Endpoint 11 Control Register

Name: U1EP11 Offset: 0x640

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

1	Value	Description
	1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed
	0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed

Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit

	BR 1 - El GIALE Eliapoliti GIALE Glatas BR		
Value	Description		
1	Endpoint n was stalled		
0	Endpoint n was not stalled		

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.13 USB Endpoint 12 Control Register

Name: U1EP12 Offset: 0x642

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

Bit 3 - EPRXEN Endpoint Receive Enable bit

V	alue	Description
1		Endpoint n receive is enabled
0		Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit

	Bit I - El GIALE Eliapoliti GIALE Giatas bit		
Value	Description		
1	Endpoint n was stalled		
0	Endpoint n was not stalled		

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.14 USB Endpoint 13 Control Register

Name: U1EP13 Offset: 0x644

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Valu	e Description	
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed	
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed	

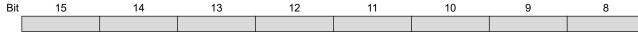
Bit 3 - EPRXEN Endpoint Receive Enable bit

Value	Description
1	Endpoint n receive is enabled
0	Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit


	Bit I - El GIALE Eliapoliti GIALE Giatas bit		
Value	Description		
1	Endpoint n was stalled		
0	Endpoint n was not stalled		

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.15 USB Endpoint 14 Control Register

Name: U1EP14 Offset: 0x646

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

1	Value	Description
	1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed
	0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed

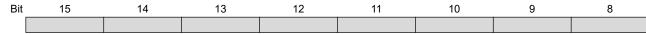
Bit 3 - EPRXEN Endpoint Receive Enable bit

Value	Description
1	Endpoint n receive is enabled
0	Endpoint n receive is disabled

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit


D.C	Sit I LI GIALL Enapoint GIALL Glatagost		
Value	Description		
1	Endpoint n was stalled		
0	Endpoint n was not stalled		

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

USB with On-The-Go (USB OTG) Support

28.11.16 USB Endpoint 15 Control Register

Name: U1EP15 Offset: 0x648

Access Reset

Bit	7	6	5	4	3	2	1	0
				EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 - EPCONDIS Bidirectional Endpoint Control bit

For All Other Combinations of EPTXEN and EPRXEN:

This bit is ignored.

If EPTXEN and EPRXEN = 1:

Value	Description
1	Disables Endpoint n from control transfers; only TX and RX transfers are allowed
0	Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed

Bit 3 - EPRXEN Endpoint Receive Enable bit

	2.1.0 2.1.0 2.1.1		
Value	Description		
1	Endpoint n receive is enabled		
0	Endpoint n receive is disabled		

Bit 2 - EPTXEN Endpoint Transmit Enable bit

Value	Description
1	Endpoint n transmit is enabled
0	Endpoint n transmit is disabled

Bit 1 - EPSTALL Endpoint STALL Status bit

	Bit I - El GIALE Eliapoliti GIALE Giatas bit		
Value	Description		
1	Endpoint n was stalled		
0	Endpoint n was not stalled		

Value	Description
1	Endpoint handshake is enabled
0	Endpoint handshake is disabled (typically used for isochronous endpoints)

Special Features

29. Special Features

Notes: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip website (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

- "Watchdog Timer (WDT)" (DS39697)
- "High-Level Device Integration" (DS39719)
- "Programming and Diagnostics" (DS39716)

PIC24FJ512GU410 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- · Flexible Configuration
- Watchdog Timer (WDT)
- · Code Protection
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™]
- · In-Circuit Emulation

29.1 Configuration Bits

The Configuration bits are stored in the last page location of implemented program memory. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.

29.1.1 Considerations for Configuring PIC24FJ512GU410 Family Devices

In PIC24FJ512GU410 family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data are stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 29-1. The configuration data are automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note: Configuration data are reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

Special Features

Table 29-1. Configuration Words Addresses

Register	Single Partition			Du	al Partition, Act	ive	Dual Partition, Inactive		
Name	512k	256k	128k	512k	256k	128k	512k	256k	128k
FSEC(2)	0x055F00	0x02BF00	0x015F00	0x02AF00	0x015F00	0x00AF00	0x42AF00	0x415F00	0x40AF00
FBSLIM(2)	0x055F10	0x02BF10	0x015F10	0x02AF10	0x015F10	0x00AF10	0x42AF10	0x415F10	0x40AF10
FSIGN(2)	0x055F14	0x02BF14	0x015F14	0x02AF14	0x015F14	0x00AF14	0x42AF14	0x415F14	0x40AF14
FOSCSEL	0x055F18	0x02BF18	0x015F18	0x02AF18	0x015F18	0x00AF18	0x42AF18	0x415F18	0x40AF18
FOSC	0x055F1C	0x02BF1C	0x015F1C	0x02AF1C	0x015F1C	0x00AF1C	0x42AF1C	0x415F1C	0x40AF1C
FWDT	0x055F20	0x02BF20	0x015F20	0x02AF20	0x015F20	0x00AF20	0x42AF20	0x415F20	0x40AF20
FPOR	0x055F24	0x02BF24	0x015F24	0x02AF24	0x015F24	0x00AF24	0x42AF24	0x415F24	0x40AF24
FICD	0x055F28	0x02BF28	0x015F28	0x02AF28	0x015F28	0x00AF28	0x42AF28	0x415F28	0x40AF28
FDMTIVTL	0x055F2C	0x02BF2C	0x015F2C	0x02AF2C	0x015F2C	0x00AF2C	0x42AF2C	0x415F2C	0x40AF2C
FDMTIVTH	0x055F30	0x02BF30	0x015F30	0x02AF30	0x015F30	0x00AF30	0x42AF30	0x415F30	0x40AF30
FDMTCNTL	0x055F34	0x02BF34	0x015F34	0x02AF34	0x015F34	0x00AF34	0x42AF34	0x415F34	0x40AF34
FDMTCNTH	0x055F38	0x02BF38	0x015F38	0x02AF38	0x015F38	0x00AF38	0x42AF38	0x415F38	0x40AF38
FDMT	0x055F3C	0x02BF3C	0x015F3C	0x02AF3C	0x015F3C	0x00AF3C	0x42AF3C	0x415F3C	0x40AF3C
FDEVOPT1	0x055F40	0x02BF40	0x015F40	0x02AF40	0x015F40	0x00AF40	0x42AF40	0x415F40	0x40AF40
FALTREG	0x055F44	0x02BF44	0x015F44	0x02AF44	0x015F44	0x00AF44	0x42AF44	0x415F44	0x40AF44
FBTSEQ	0x055FFC	0x02BFFC	0x015FFC	0x02AFFC	0x015FFC	0x00AFFC	0x42AFFC	0x415FFC	0x40AFFC
FBOOT(1)					0x801800				

Notes:

- 1. FBOOT resides in calibration memory space.
- Changes to the Inactive Partition Configuration Words affect how the Active Partition accesses the Inactive Partition.

29.1.2 FSEC Configuration Register

Name: FSEC

Legend: PO = Program Once bit

Bit	15	14	13	12	11	10	9	8
	AIVTDIS					CSS[2:0]		CWRP
Access	R/PO				R/PO	R/PO	R/PO	R/PO
Reset	1				1	1	1	1
Bit	7	6	5	4	3	2	1	0
	GSS[1:0]		GWRP		BSEN	BSS	[1:0]	BWRP
Access	R/PO	R/PO	R/PO		R/PO	R/PO	R/PO	R/PO
Reset	1	1	1		1	1	1	1

Bit 15 - AIVTDIS Alternate Interrupt Vector Table Disable bit

Value	Description
1	Disables AIVT; INTCON2[8] (AIVTEN) bit is not available
0	Enables AIVT; INTCON2[8] (AIVTEN) bit is available

Bits 11:9 - CSS[2:0] Configuration Segment (CS) Code Protection Level bits

Value	Description
111	No protection (other than CWRP)
110	Standard security
10x	Enhanced security
0xx	High security

Bit 8 - CWRP Configuration Segment Program Write Protection bit

Value	Description
1	Configuration Segment is not write-protected
0	Configuration Segment is write-protected

Bits 7:6 - GSS[1:0] General Segment (GS) Code Protection Level bits

Value	Description
11	No protection (other than GWRP)
10	Standard security
0 x	High security

Bit 5 - GWRP General Segment Program Write Protection bit

Value	Description
1	General Segment is not write-protected
0	General Segment is write-protected

Bit 3 - BSEN Boot Segment (BS) Control bit

Value	Description
1	No Boot Segment is enabled
0	Boot Segment size is determined by BSLIM[12:0]

Bits 2:1 - BSS[1:0] Boot Segment Code Protection Level bits

Value	Description
11	No protection (other than BWRP)
10	Standard security
0x	High security

Bit 0 - BWRP Boot Segment Program Write Protection bit

Special Features

Value	Description
1	Boot Segment can be written
0	Boot Segment is write-protected

Special Features

29.1.3 FBSLIM Configuration Register

Name: FBSLIM

Note:

1. The BSLIMx bits are a 'write-once' element. If, after the Reset sequence, they are not erased (all '1's), then programming of the FBSLIM bits is prohibited. An attempt to do so will fail to set the WR bit (NVMCON[15]), and consequently, have no effect.

Legend: PO = Program Once bit

PO = Program Once bit

Bit	15	14	13	12	11	10	9	8			
						BSLIM[12:8]					
Access			•	R/PO	R/PO	R/PO	R/PO	R/PO			
Reset				1	1	1	1	1			
Bit	7	6	5	4	3	2	1	0			
		BSLIM[7:0]									
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO			
Reset	1	1	1	1	1	1	1	1			

Bits 12:0 – BSLIM[12:0] Active Boot Segment Code Flash Page Address Limit (Inverted) bits⁽¹⁾ This bit field contains the last active Boot Segment Page + 1 (i.e., first page address of GS). The value is stored as an inverted page address, such that programming additional '0's can only increase the size of BS. If BSLIM[12:0] is set to all '1's (unprogrammed default), the active Boot Segment size is zero.

Special Features

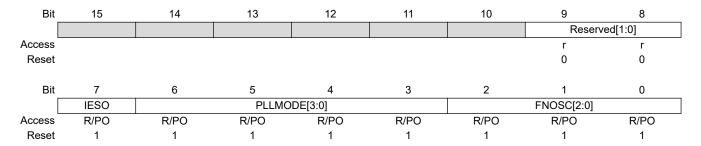
29.1.4 FSIGN Configuration Register

Name: FSIGN

Legend: PO = Program Once bit

Bit	15	14	13	12	11	10	9	8
	SIGN							
Access Reset	R/PO							
Reset	0							
D:4	-	0	-		0	0	4	0
Bit	/	<u> </u>	5	4	3	2	1	0

Access Reset


Bit 15 – SIGN Valid Configuration bit

This bit must be maintained as '0'.

29.1.5 FOSCSEL Configuration Register

Name: FOSCSEL

Legend: PO = Program Once bit; r = Reserved bit

Bits 9:8 - Reserved[1:0] Maintain as '0'

Bit 7 - IESO Two-Speed Oscillator Start-up Enable bit

V	alue	Description
1		Starts up the device with FRC, then automatically switches to the user-selected oscillator when ready
0		Starts up the device with the user-selected oscillator source

Bits 6:3 - PLLMODE[3:0] Frequency Multiplier Select bits

Value Description No PLL is used (PLLEN bit is unavailable) Sx PLL is selected Cx PLL is selected Mx PLL is selected (Input Frequency = 48 MHz) Mx PLL is selected (Input Frequency = 32 MHz) Mx PLL is selected (Input Frequency = 32 MHz) Mx PLL is selected (Input Frequency = 24 MHz) Mx PLL is selected (Input Frequency = 20 MHz) Mx PLL is selected (Input Frequency = 16 MHz) Mx PLL is selected (Input Frequency = 12 MHz) Mx PLL is selected (Input Frequency = 12 MHz) Mx PLL is selected (Input Frequency = 8 MHz) Mx PLL is selected (Input Frequency = 8 MHz) Mx PLL is selected (Input Frequency = 4 MHz)		
1110 8x PLL is selected 1101 6x PLL is selected 1100 4x PLL is selected 0111 96 MHz PLL is selected (Input Frequency = 48 MHz) 0110 96 MHz PLL is selected (Input Frequency = 32 MHz) 0101 96 MHz PLL is selected (Input Frequency = 24 MHz) 0100 96 MHz PLL is selected (Input Frequency = 20 MHz) 0101 96 MHz PLL is selected (Input Frequency = 16 MHz) 0010 96 MHz PLL is selected (Input Frequency = 12 MHz) 0010 96 MHz PLL is selected (Input Frequency = 8 MHz) 0001 96 MHz PLL is selected (Input Frequency = 8 MHz)	Value	Description
1101 6x PLL is selected 1100 4x PLL is selected 0111 96 MHz PLL is selected (Input Frequency = 48 MHz) 0110 96 MHz PLL is selected (Input Frequency = 32 MHz) 0101 96 MHz PLL is selected (Input Frequency = 24 MHz) 0100 96 MHz PLL is selected (Input Frequency = 20 MHz) 0101 96 MHz PLL is selected (Input Frequency = 16 MHz) 0010 96 MHz PLL is selected (Input Frequency = 12 MHz) 0010 96 MHz PLL is selected (Input Frequency = 8 MHz) 0001 96 MHz PLL is selected (Input Frequency = 8 MHz)	1111	No PLL is used (PLLEN bit is unavailable)
1100 4x PLL is selected 0111 96 MHz PLL is selected (Input Frequency = 48 MHz) 0110 96 MHz PLL is selected (Input Frequency = 32 MHz) 0101 96 MHz PLL is selected (Input Frequency = 24 MHz) 0100 96 MHz PLL is selected (Input Frequency = 20 MHz) 0011 96 MHz PLL is selected (Input Frequency = 16 MHz) 0010 96 MHz PLL is selected (Input Frequency = 12 MHz) 0010 96 MHz PLL is selected (Input Frequency = 8 MHz)	1110	8x PLL is selected
96 MHz PLL is selected (Input Frequency = 48 MHz) 96 MHz PLL is selected (Input Frequency = 32 MHz) 96 MHz PLL is selected (Input Frequency = 24 MHz) 96 MHz PLL is selected (Input Frequency = 20 MHz) 96 MHz PLL is selected (Input Frequency = 16 MHz) 96 MHz PLL is selected (Input Frequency = 16 MHz) 96 MHz PLL is selected (Input Frequency = 12 MHz) 96 MHz PLL is selected (Input Frequency = 8 MHz)	1101	6x PLL is selected
96 MHz PLL is selected (Input Frequency = 32 MHz) 96 MHz PLL is selected (Input Frequency = 24 MHz) 96 MHz PLL is selected (Input Frequency = 20 MHz) 96 MHz PLL is selected (Input Frequency = 16 MHz) 96 MHz PLL is selected (Input Frequency = 16 MHz) 96 MHz PLL is selected (Input Frequency = 12 MHz) 96 MHz PLL is selected (Input Frequency = 8 MHz)	1100	4x PLL is selected
96 MHz PLL is selected (Input Frequency = 24 MHz) 96 MHz PLL is selected (Input Frequency = 20 MHz) 96 MHz PLL is selected (Input Frequency = 16 MHz) 96 MHz PLL is selected (Input Frequency = 12 MHz) 96 MHz PLL is selected (Input Frequency = 8 MHz) 96 MHz PLL is selected (Input Frequency = 8 MHz)	0111	96 MHz PLL is selected (Input Frequency = 48 MHz)
96 MHz PLL is selected (Input Frequency = 20 MHz) 96 MHz PLL is selected (Input Frequency = 16 MHz) 96 MHz PLL is selected (Input Frequency = 12 MHz) 96 MHz PLL is selected (Input Frequency = 8 MHz)	0110	96 MHz PLL is selected (Input Frequency = 32 MHz)
96 MHz PLL is selected (Input Frequency = 16 MHz) 96 MHz PLL is selected (Input Frequency = 12 MHz) 96 MHz PLL is selected (Input Frequency = 8 MHz)	0101	96 MHz PLL is selected (Input Frequency = 24 MHz)
96 MHz PLL is selected (Input Frequency = 12 MHz) 96 MHz PLL is selected (Input Frequency = 8 MHz)	0100	96 MHz PLL is selected (Input Frequency = 20 MHz)
96 MHz PLL is selected (Input Frequency = 8 MHz)	0011	96 MHz PLL is selected (Input Frequency = 16 MHz)
, , , , , , , , , , , , , , , , , , ,	0010	96 MHz PLL is selected (Input Frequency = 12 MHz)
96 MHz PLL is selected (Input Frequency = 4 MHz)	0001	96 MHz PLL is selected (Input Frequency = 8 MHz)
	0000	96 MHz PLL is selected (Input Frequency = 4 MHz)

Bits 2:0 - FNOSC[2:0] Oscillator Selection bits

Value	Description
111	Oscillator with Frequency Divider (OSCFDIV)
110	Reserved
101	Low-Power RC Oscillator (LPRC)
100	Secondary Oscillator (SOSC)
011	Primary Oscillator with PLL (XTPLL, HSPLL, ECPLL)
010	Primary Oscillator (XT, HS, EC)
001	Fast RC Oscillator with PLL (FRCPLL)
000	Fast RC Oscillator (FRC)

Special Features

29.1.6 FOSC Configuration Register

Name: FOSC

Legend: PO = Program Once bit

Bit	15	14	13	12	11	10	9	8

Access Reset

Bit	7	6	5	4	3	2	1	0
	FCKS	M[1:0]	IOL1WAY	PLLSS	SOSCSEL	OSCIOFCN	POSC	ИD[1:0]
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO
Reset	1	1	1	1	1	1	1	1

Bits 7:6 - FCKSM[1:0] Clock Switching and Monitor Selection bits

	- 6 - 4
Value	Description
1x	Clock switching and the Fail-Safe Clock Monitor are disabled
01	Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00	Clock switching and the Fail-Safe Clock Monitor are enabled

Bit 5 - IOL1WAY Peripheral Pin Select Configuration bit

Value	Description
1	The IOLOCK bit can be set only once (with unlock sequence)
0	The IOLOCK bit can be set and cleared as needed (with unlock sequence)

Bit 4 - PLLSS PLL Secondary Selection Configuration bit

This Configuration bit only takes effect when the PLL is NOT being used by the system (i.e., not selected as part of the system clock source). Used to generate an independent clock out of REFO.

Value	Description
1	PLL is fed by the Primary Oscillator
0	PLL is fed by the on-chip Fast RC (FRC) Oscillator

Bit 3 - SOSCSEL SOSC Selection Configuration bit

D.C 0 000	COCCULIN Commiguration bit					
Value	Description					
1	Crystal (SOSCI/SOSCO) mode					
0	Digital (SCLKI) Externally Supplied Clock mode					

Bit 2 - OSCIOFCN CLKO Enable Configuration bit

Value	Description				
1	CLKO output signal is active on the OSCO pin (when the Primary Oscillator is disabled or configu				
	for EC mode)				
0	CLKO output is disabled				

Bits 1:0 - POSCMD[1:0] Primary Oscillator Configuration bits

	1 Complited 1 Timery Communication Site
Value	Description
11	Primary Oscillator mode is disabled
10	HS Oscillator mode is selected (10 MHz-32 MHz)
01	XT Oscillator mode is selected (1.5 MHz-10 MHz)
00	External Clock mode is selected

29.1.7 FWDT Configuration Register

Name: FWDT

Legend: PO = Program Once bit

Bit	15	14	13	12	11	10	9	8
		WDTC	LK[1:0]		WDTCMX		WDTW	/IN[1:0]
Access		R/PO	R/PO	•	R/PO		R/PO	R/PO
Reset		1	1		1		1	1
Bit	7	6	5	4	3	2	1	0
	WINDIS	FWDT	EN[1:0]	FWPSA		WDTF	PS[3:0]	
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO
Reset	1	1	1	1	1	1	1	1

Bits 14:13 – WDTCLK[1:0] Watchdog Timer Clock Select bits (when WDTCMX = 1)

Value	Description
11	Always uses LPRC
10	Uses FRC when WINDIS = 0, system clock is not LPRC and device is not in Sleep; otherwise, uses LPRC
01	Always uses SOSC
00	Uses peripheral clock when system clock is not LPRC and device is not in Sleep; otherwise, uses LPRC

Bit 11 - WDTCMX WDT Clock MUX Control bit

Vá	alue	Description
1		Enables WDT clock MUX, WDT clock is selected by WDTCLK[1:0]
0		WDT clock is LPRC

Bits 9:8 - WDTWIN[1:0] Watchdog Timer Window Width bits

Value	Description
11	WDT window is 25% of the WDT period
10	WDT window is 37.5% of the WDT period
01	WDT window is 50% of the WDT period
00	WDT window is 75% of the WDT period

Bit 7 - WINDIS Windowed Watchdog Timer Disable bit

Value	Description
1	Windowed WDT is disabled
0	Windowed WDT is enabled

Bits 6:5 - FWDTEN[1:0] Watchdog Timer Enable bits

Value	Description
11	WDT is enabled
10	WDT is disabled (control is placed on the SWDTEN bit)
01	WDT is enabled only while device is active and disabled in Sleep; SWDTEN bit is disabled
00	WDT and SWDTEN are disabled

Bit 4 - FWPSA Watchdog Timer Prescaler bit

Value	Description
1	WDT prescaler ratio of 1:128
0	WDT prescaler ratio of 1:32

Bits 3:0 - WDTPS[3:0] Watchdog Timer Postscale Select bits

Special Features

Value	Description
1111	1:32,768
1110	1:16,384
1101	1:8,192
1100	1:4,096
1011	1:2,048
1010	1:1,024
1001	1:512
1000	1:256
0111	1:128
0110	1:64
0101	1:32
0100	1:16
0011	1:8
0010	1:4
0001	1:2
0000	1:1

Special Features

29.1.8 FPOR Configuration Register

Name: FPOR

Legend: PO = Program Once bit

Access Reset

Bit	7	6	5	4	3	2	1	0
					LPBOREN	LPREGEN	BORE	N[1:0]
Access					R/PO	R/PO	R/PO	R/PO
Reset					1	1	1	1

Bit 3 - LPBOREN Low-Power Brown-out Reset Enable bit

1	Value	Description
	1	Low-power BOR is enabled and active when main BOR is inactive
	0	Low-power BOR is disabled

Bit 2 – LPREGEN Low-Voltage Regulator Control bit

Value	Description
1	Low-voltage and low-power regulator are not available
0	Low-voltage and low-power regulator are available and controlled by the RETEN bit during Sleep mode

Bits 1:0 - BOREN[1:0] Brown-out Reset Enable bits

Value	Description
11	Brown-out Reset is enabled in hardware; SBOREN bit is disabled
10	Brown-out Reset is enabled only while device is active and is disabled in Sleep; SBOREN bit is disabled
01	Brown-out Reset is controlled with the SBOREN bit setting
00	Brown-out Reset is disabled in hardware; SBOREN bit is disabled

Special Features

29.1.9 FICD Configuration Register

Name: FICD

Legend: PO = Program Once bit; r = Reserved bit

Bit	15	14	13	12	11	10	9	8
	BTSWP							
Access	R/PO							
Reset	1							
Bit	7	6	5	4	3	2	1	0
	Reserved		JTAGEN				ICS	[1:0]
Access	r		R/PO				R/PO	R/PO
Reset	1		1				1	1

Bit 15 - BTSWP BOOTSWP Instruction Enable bit

Value	Description	
1	BOOTSWP instruction is disabled	
0	BOOTSWP instruction is enabled	

Bit 7 - Reserved Maintain as '1'

Bit 5 - JTAGEN JTAG Port Enable bit

Value	Description	
1	JTAG port is enabled	
0	JTAG port is disabled	

Bits 1:0 - ICS[1:0] ICD Communication Channel Select bits

Value	Description
11	Communicates on PGC1/PGD1
10	Communicates on PGC2/PGD2
01	Communicates on PGC3/PGD3
00	Reserved; do not use

Special Features

29.1.10 FDMTIVTL Configuration Register

Name: FDMTIVTL

Legend: PO = Program Once bit

Bit	15	14	13	12	11	10	9	8
				DMTIV	ΓL[15:8]			
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				DMTIV	TL[7:0]			
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO
Reset	1	1	1	1	1	1	1	1

Bits 15:0 - DMTIVTL[15:0] DMT Window Interval Lower 16 bits

Special Features

29.1.11 FDMTIVTH Configuration Register

Name: FDMTIVTH

Legend: PO = Program Once bit

Bit	23	22	21	20	19	18	17	16
Access Reset								
Bit	15	14	13	12	11	10	9	8
				DMTIVT	H[31:24]			
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				DMTIVT	H[23:16]			
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO
Reset	1	1	1	1	1	1	1	1

Bits 15:8 - DMTIVTH[31:24] DMT Window Interval Higher 16 bits

Bits 7:0 - DMTIVTH[23:16] DMT Window Interval Higher 16 bits

Special Features

29.1.12 FDMTCNTL Configuration Register

Name: FDMTCNTL

Reset

Legend: PO = Program Once bit

			•		40	40		40
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				DMTCN	ITL[15:8]			
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				DMTC	NTL[7:0]			
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO

Bits 15:0 - DMTCNTL[15:0] DMT Instruction Count Time-out Value Lower 16 bits

Special Features

29.1.13 FDMTCNTH Configuration Register

Name: FDMTCNTH

Legend: PO = Program Once bit

Bit	23	22	21	20	19	18	17	16
Access			•					•
Reset								
Bit	15	14	13	12	11	10	9	8
				DMTCN	ГН[31:24]			
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				DMTCN	ΓH[23:16]			
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO
Reset	1	1	1	1	1	1	1	1

Bits 15:8 - DMTCNTH[31:24] DMT Instruction Count Time-out Value Higher 16 bits

Bits 7:0 - DMTCNTH[23:16] DMT Instruction Count Time-out Value Higher 16 bits

Special Features

29.1.14 FDMT Configuration Register

Name: FDMT

Legend: PO = Program Once bit

Bit	23	22	21	20	19	18	17	16
Access		•						•
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								DMTDIS
Access								R/PO

Bit 0 - DMTDIS DMT Disable bit

Reset

Value	Description			
1	DMT is disabled			
0	DMT is enabled			

29.1.15 FDEVOPT1 Configuration Register

Name: FDEVOPT1

Note:

1. SMBus mode is enabled by the SMEN bit (I2CxCONL[8]).

Legend: PO = Program Once bit

Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
						SMB3EN		
Access						R/PO		
Reset						1		
Bit	7	6	5	4	3	2	1	0
				ALTI2C1	SOSCHP	TMPRPIN	ALTCMPI	
Access				R/PO	R/PO	R/PO	R/PO	
Reset				1	1	1	1	

Bit 10 - SMB3EN SMBus 3.0 Levels Enable bit(1)

Value	Description
1	SMBus 3.0 input levels
0	Normal SMBus input levels

Bit 4 - ALTI2C1 Alternate I2C1 bit

V	/alue	Description
1	=	SDA1 and SCL1 are on RG2 and RG3
0)	ASDA1 and ASCL1 are on RB5 and RB4

Bit 3 – SOSCHP SOSC High-Power Enable bit (valid only when SOSCSEL = 1)

		•	,	,
Value	Description			
1	SOSC High-Power mode is enable	ed		
0	SOSC Low-Power mode is enable	d (see 9.7	.3 Low-Power Operat	tion for more information)

Bit 2 - TMPRPIN Tamper Pin Enable bit

١	/alue	Description
1	-	TMPRN pin function is disabled
C)	TMPRN pin function is enabled

Bit 1 - ALTCMPI Alternate Comparator Input Enable bit

V	'alue	Description
1		C2INC and C3INC are on RG9 and RD11
0		AC2INC and AC3INC are on RG7

Special Features

29.1.16 FBTSEQ Configuration Register

Name: FBTSEQ

Legend: PO = Program Once bit

Bit	23	22	21	20	19	18	17	16			
		IBSEQ[11:4]									
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
		IBSE	Q[3:0]		BSEQ[11:8]						
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	BSEQ[7:0]										
Access	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO	R/PO			
Reset	0	0	0	0	0	0	0	0			

Bits 23:16 - IBSEQ[11:4] Inverse Boot Sequence Number bits (Dual Partition modes only)

The one's complement of BSEQ[11:0]; must be calculated by the user and written into device programming.

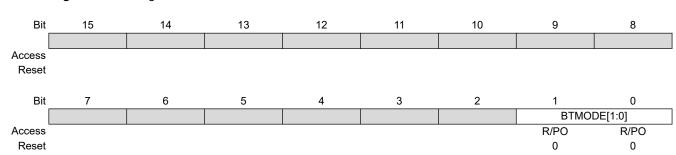
Bits 15:12 – IBSEQ[3:0] Inverse Boot Sequence Number bits (Dual Partition modes only)

The one's complement of BSEQ[11:0]; must be calculated by the user and written into device programming.

Bits 11:8 - BSEQ[11:8] Boot Sequence Number bits

Relative value defining which partition will be active after a device Reset; the partition containing a lower boot number will be active.

Bits 7:0 - BSEQ[7:0] Boot Sequence Number bits


Relative value defining which partition will be active after a device Reset; the partition containing a lower boot number will be active.

Special Features

29.1.17 FBOOT Configuration Register

Name: FBOOT

Legend: PO = Program Once bit

Bits 1:0 - BTMODE[1:0] Device Partition Mode Configuration Status bits

Value	Description
11	Single Partition mode
10	Dual Partition mode
01	Protected Dual Partition mode (Partition 1 is write-protected when inactive)
00	Reserved; do not use

29.2 Device Identification

The PIC24FJ512GU410 devices have two Identification registers near the end of configuration memory space that store the Device ID (DEVID) and Device Revision (DEVREV). These registers are used to determine the variant and manufacturing information about the device. These registers are read-only and are shown in 29.2.2 DEVID and 29.2.1 DEVREV.

Special Features

29.2.1 Device Revision Register

Name: DEVREV

Bit	15	14	13	12	11	10	9	8		
Access										
Reset										
Bit	7	6	. 5	4	3	2	1	0		
					DEVREV[3:0]					
Access	·				R/W	R/W	R/W	R/W		
Reset					0	0	0	0		

Bits 3:0 - DEVREV[3:0] Device Revision bits

29.2.2 DEVID Device ID Register

Name: DEVID

Note:

1. See Table 29-2 for the list of Device Identifier bits.

Bit	15	14	13	12	11	10	9	8		
				FAMI	D[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	DEV[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 – FAMID[7:0] Device Family Identifier bits (23h = PIC24FJ512GU410 family)

Bits 7:0 - DEV[7:0] Individual Device Identifier bits⁽¹⁾

29.2.3 Device IDs

Table 29-2. Device IDs

Device	DEVID	Device	DEVID
PIC24FJ512GL405	2320	PIC24FJ512GU405	2321
PIC24FJ256GL405	2310	PIC24FJ256GU405	2311
PIC24FJ128GL405	2300	PIC24FJ128GU405	2301
PIC24FJ512GL406	2324	PIC24FJ512GU406	2325
PIC24FJ256GL406	2314	PIC24FJ256GU406	2315
PIC24FJ128GL406	2304	PIC24FJ128GU406	2305
PIC24FJ512GL408	2328	PIC24FJ512GU408	2329
PIC24FJ256GL408	2318	PIC24FJ256GU408	2319
PIC24FJ128GL408	2308	PIC24FJ128GU408	2309
PIC24FJ512GL410	232C	PIC24FJ512GU410	232D
PIC24FJ256GL410	231C	PIC24FJ256GU410	231D
PIC24FJ128GL410	230C	PIC24FJ128GU410	230D

29.3 Unique Device Identifier (UDID)

All PIC24FJ512GU410 family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. The UDID cannot be erased by a bulk erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- · Tracking the device
- Unique serial number

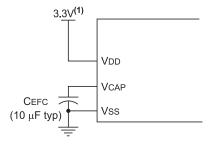
Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 0x801600 and 0x801608 in the device Configuration space. Table 29-3 lists the addresses of the Identifier Words and shows their contents.

Table 29-3. UDID Addresses

UDID	Address	Description
UDID1	0x80 1600	UDID Word 1
UDID2	0x80 1602	UDID Word 2
UDID3	0x80 1604	UDID Word 3
UDID4	0x80 1606	UDID Word 4
UDID5	0x80 1608	UDID Word 5


29.4 On-Chip Voltage Regulator

All PIC24FJ512GU410 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ512GU410 family incorporate an on-chip regulator that allows the device to run its core logic from V_{DD}.

This regulator is always enabled. It provides a constant voltage (1.8V nominal) to the digital core logic, from a V_{DD} of 2.0V, all the way up to the device's V_{DDMAX} . It does not have the capability to boost V_{DD} levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then, the regulator output follows V_{DD} with a typical voltage drop of 200 mV.

A low-ESR capacitor (such as ceramic) must be connected to the V_{CAP} pin (Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the Filter Capacitor (C_{EFC}) is provided in 32. Electrical Characteristics.

Figure 29-1. Connections for the On-Chip Regulator

Note:

1. This is a typical operating voltage. Refer to 32. Electrical Characteristics for the full operating ranges of V_{DD}.

29.4.1 On-Chip Regulator and POR

The voltage regulator takes approximately 10 μ s for it to generate output. During this time, designated as T_{VREG}, code execution is disabled. T_{VREG} is applied every time the device resumes operation after any power-down, including Sleep mode. T_{VREG} is determined by the status of the VREGS bit (RCON[8]) and the WDTWIN[1:0] Configuration bits (FWDT[9:8]).

29.4.2 Voltage Regulator Standby Mode

The on-chip regulator always consumes a small incremental amount of current over I_{DD}/I_{PD} , including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode, on its own, whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit (RCON[8]). Clearing the

Special Features

VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for T_{VREG} to expire before wake-up.

29.4.3 Low-Voltage Regulator

When in Sleep mode, PIC24FJ512GU410 family devices may use a separate low-power, low-voltage regulator to power critical circuits. This regulator, which operates from 0.9V to 1.2V, maintains power to data RAM and the RTCC while all other core digital logic is powered down. The low-voltage regulator is described in more detail in 10.2.4 Low-Voltage Regulator Mode and Band Gap Power.

29.5 Watchdog Timer (WDT)

For PIC24FJ512GU410 family devices, the WDT is driven by the LPRC Oscillator, the Secondary Oscillator (SOSC) or the system timer. When the device is in Sleep mode, the LPRC Oscillator will be used. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT Time-out (T_{WDT}) period of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS[3:0] Configuration bits (FWDT[3:0]), which allows the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- · When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

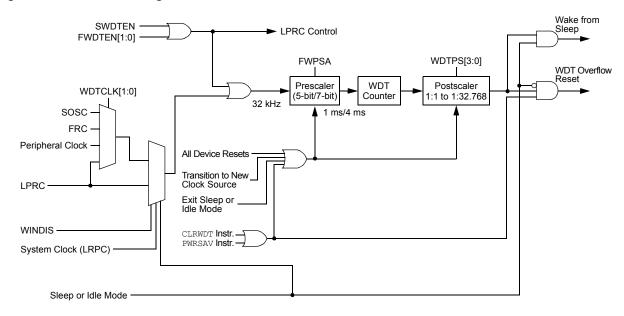
If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake-up and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE (RCON[3:2]) bits will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON[4]), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

29.5.1 Windowed Operation

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.


Windowed WDT mode is enabled by programming the WINDIS Configuration bit (FWDT[7]) to '0'.

29.5.2 Control Register

The WDT is enabled or disabled by the FWDTEN[1:0] Configuration bits (FWDT[6:5]). When the Configuration bits, FWDTEN[1:0] = 11, the WDT is always enabled.

The WDT can be optionally controlled in software when the Configuration bits, FWDTEN[1:0] = 10. When FWDTEN[1:0] = 00, the Watchdog Timer is always disabled. The WDT is enabled in software by setting the SWDTEN control bit (RCON[5]). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical code segments for maximum power savings.

Figure 29-2. WDT Block Diagram

29.6 Program Verification and Code Protection

PIC24FJ512GU410 family devices offer basic implementation of CodeGuard[™] Security that supports General Segment (GS) security and Boot Segment (BS) security. This feature helps protect individual intellectual property.

Note: For more information on usage, configuration and operation, refer to "CodeGuard™ Intermediate Security" (DS70005182) in the "dsPIC33/PIC24 Family Reference Manual".

29.7 JTAG Interface

PIC24FJ512GU410 family devices implement a JTAG interface, which supports boundary scan device testing.

29.8 In-Circuit Serial Programming[™] (ICSP)[™]

PIC24FJ512GU410 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (V_{DD}), ground (V_{SS}) and \overline{MCLR} . This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Special Features

29.9 Customer OTP Memory

PIC24FJ512GU410 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- · Application checksums
- · Code revision information
- Product information
- · Serial numbers
- System manufacturing dates
- · Manufacturing lot numbers

Customer OTP memory may be programmed in any mode, including user RTSP mode, but it cannot be erased. Data are not cleared by a chip erase.

Note: Do not write the OTP memory more than once. Writing to the OTP memory more than once may result in an ECC Double-Bit Error (ECCDBE).

29.10 In-Circuit Debugger

This function allows simple debugging functions when used with MPLAB[®] IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , V_{DD} , V_{SS} and the PGECx/PGEDx pin pair, designated by the ICS[1:0] Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

Development Support

30. Development Support

Move a design from concept to production in record time with Microchip's award-winning development tools. Microchip tools work together to provide state of the art debugging for any project with easy-to-use Graphical User Interfaces (GUIs) in our free MPLAB® X and Atmel Studio Integrated Development Environments (IDEs), and our code generation tools. Providing the ultimate ease-of-use experience, Microchip's line of programmers, debuggers and emulators work seamlessly with our software tools. Microchip development boards help evaluate the best silicon device for an application, while our line of third party tools round out our comprehensive development tool solutions.

Microchip's MPLAB X and Atmel Studio ecosystems provide a variety of embedded design tools to consider, which support multiple devices, such as PIC[®] MCUs, AVR[®] MCUs, SAM MCUs and dsPIC[®] DSCs. MPLAB X tools are compatible with Windows[®], Linux[®] and Mac[®] operating systems while Atmel Studio tools are compatible with Windows.

Go to the following website for more information and details:

https://www.microchip.com/development-tools/

Instruction Set Summary

31. Instruction Set Summary

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- Control operations

Table 31-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 31-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- · The first source operand, which is typically a register, 'Wb', without any address modifier
- The second source operand, which is typically a register, 'Ws', with or without an address modifier
- The destination of the result, which is typically a register, 'Wd', with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- · A literal value to be loaded into a W register or file register (specified by the value of 'k')
- · The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- · The first source operand, which is a register, 'Wb', without any address modifier
- · The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register, 'Wd', with or without an address modifier

The control instructions may use some of the following operands:

- A program memory address
- · The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the eight MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are singleword instructions but take two or three cycles.

Instruction Set Summary

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Table 31-1. Symbols Used In Opcode Descriptions

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
[n:m]	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
bit4	4-bit Bit Selection field (used in word-addressed instructions) ∈ {015}
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {01023} for Word mode
lit14	14-bit unsigned literal ∈ {016383}
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal ∈ {08388607}; LSb must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wn	One of 16 Working registers ∈ {W0W15}

continued	
Field	Description
Wnd	One of 16 destination Working registers ∈ {W0W15}
Wns	One of 16 source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

Table 31-2. Instruction Set Overview

Assembly Mnemonic	Asse	mbly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb, Ws, Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb, Ws, Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb, Wns, Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None

conti	nued					
Assembly Mnemonic	Asse	embly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BRA	BRA	C, Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater Than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater Than or Equal	1	1 (2)	None
	BRA	GT, Expr	Branch if Greater Than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater Than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less Than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less Than or Equal	1	1 (2)	None
	BRA	LT, Expr	Branch if Less Than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less Than	1	1 (2)	None
	BRA	N, Expr	Branch if Negative	1	1 (2)	None
	BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ, Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV, Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws[Wb]	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws[Wb]	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None

continued								
Assembly Mnemonic	Assei	mbly Syntax	Description	# of Words	# of Cycles	Status Flags Affected		
BTST	BTST	f,#bit4	Bit Test f	1	1	Z		
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С		
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z		
	BTST.C	Ws,Wb	Bit Test Ws[Wb] to C	1	1	С		
	BTST.Z	Ws,Wb	Bit Test Ws[Wb] to Z	1	1	Z		
BTSTS	BTSTS	f,#bit4	Bit Test, then Set f	1	1	Z		
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С		
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z		
CALL	CALL	lit23	Call Subroutine	2	2	None		
	CALL	Wn	Call Indirect Subroutine	1	2	None		
CLR	CLR	f	f = 0x0000	1	1	None		
	CLR	WREG	WREG = 0x0000	1	1	None		
	CLR	Ws	Ws = 0x0000	1	1	None		
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep		
COM	COM	f	f = Ī	1	1	N, Z		
	COM	f,WREG	WREG = f	1	1	N, Z		
	COM	Ws,Wd	Wd = Ws	1	1	N, Z		
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z		
	СР	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z		
	СР	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z		
CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z		
	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z		
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z		
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z		
	СРВ	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – $\overline{\mathbb{C}}$)	1	1	C, DC, N, OV, Z		
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None		
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None		
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None		

continued								
Assembly Mnemonic	Asse	mbly Syntax	Description	# of Words	# of Cycles	Status Flags Affected		
CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None		
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С		
DEC	DEC	f	f = f - 1	1	1	C, DC, N, OV, Z		
	DEC	f,WREG	WREG = f – 1	1	1	C, DC, N, OV, Z		
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z		
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z		
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z		
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z		
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None		
DIV	DIV.SW	Wm, Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV		
	DIV.SD	Wm, Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV		
	DIV.UW	Wm, Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV		
	DIV.UD	Wm, Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV		
EXCH	EXCH	Wns, Wnd	Swap Wns with Wnd	1	1	None		
FF1L	FF1L	Ws, Wnd	Find First One from Left (MSb) Side	1	1	С		
FF1R	FF1R	Ws, Wnd	Find First One from Right (LSb) Side	1	1	С		
GOTO	GOTO	Expr	Go to Address	2	2	None		
	GOTO	Wn	Go to Indirect	1	2	None		
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z		
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z		
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z		
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z		
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z		
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z		
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z		
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z		
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z		
	IOR	Wb, Ws, Wd	Wd = Wb .IOR. Ws	1	1	N, Z		
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z		

conti	nued					
Assembly Mnemonic	Asse	mbly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb, Wns, Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns +Slit10], Wnd	Move [Wns + Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-Bit Literal to Wn	1	1	None
MOV.b		#lit8,Wn	Move 8-Bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns, [Wns +Slit10]	Move Wns to [Wns + Slit10]	1	1	None
	MOV	Wso, Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
	MOV.D	Ws, Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
MUL	MUL.SS	Wb, Ws, Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb, Ws, Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb, Ws, Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb, Ws, Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None

conti	nued					
Assembly Mnemonic			Description	# of Words	# of Cycles	Status Flags Affected
NEG	NEG	f	$f = \bar{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S	,	Push Shadow Registers	1	1	None
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z

Assembly Name Nam	conti	nued					
RLNC		Asse	mbly Syntax	Description		# of Cycles	
RINC	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
RRC		RLNC	f,WREG	,	1	1	N, Z
RRC		RLNC	Ws,Wd		1	1	N, Z
### RRC Ws, wd Wd = Rotate Right through 1	RRC	RRC	f		1	1	C, N, Z
RRNC		RRC	f,WREG	_	1	1	C, N, Z
RRNC		RRC	Ws, Wd		1	1	C, N, Z
Carry) f RRNC Ws, Wd Wd = Rotate Right (No Carry) Ws 1	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
SE		RRNC	f,WREG		1	1	N, Z
SETM F		RRNC	Ws,Wd		1	1	N, Z
SETM WREG WREG = FFFFh 1	SE	SE	Ws, Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM Ws Ws = FFFFh 1	SETM	SETM	f	f = FFFFh	1	1	None
SL f f = Left Shift f 1 1 C, N, OV, Z SL f, WREG WREG = Left Shift Ws 1 1 C, N, OV, Z SL Ws, Wd Wd = Left Shift Ws 1 1 C, N, OV, Z SL Wb, Wns, Wnd Wnd = Left Shift Wb by Wns 1 1 N, Z SL Wb, #lit5, Wnd Wnd = Left Shift Wb by lit5 1 1 N, Z SUB f f = f - WREG 1 1 C, DC, N, OV, Z SUB f, WREG g - WREG = f - WREG 1 1 C, DC, N, OV, Z SUB Wb, Ws, Wd Wd = Wb - Ws 1 1 C, DC, N, OV, Z SUBB Mb, Ws, Wd Wd = Wb - lit5 1 1 C, DC, N, OV, Z SUBB f, WREG f - WREG - (C) 1 1 C, DC, N, OV, Z SUBB f, WREG WREG = f - WREG - (C) 1 1 C, DC, N, OV, Z SUBB #litlo, Wn Wn = Wn - litlo - (C) 1 1 C, DC, N, OV, Z SUBB Wb, Ws, Wd Wd = Wb - Ws - (C) 1 1 C, D		SETM	WREG	WREG = FFFFh	1	1	None
SL		SETM	Ws	Ws = FFFFh	1	1	None
SL Ws, Wd Wd = Left Shift Ws 1 1 C, N, OV, Z SL Wb, Wns, Wnd Wnd = Left Shift Wb by Wns 1 1 N, Z SL Wb, #lit5, Wnd Wnd = Left Shift Wb by lit5 1 1 N, Z SUB f f = f - WREG 1 1 C, DC, N, OV, Z SUB f, WREG WREG = f - WREG 1 1 C, DC, N, OV, Z SUB Wb, Ws, Wd Wd = Wb - Ws 1 1 C, DC, N, OV, Z SUBB Mb, #lit5, Wd Wd = Wb - lit5 1 1 C, DC, N, OV, Z SUBB f f = f - WREG - (C) 1 1 C, DC, N, OV, Z SUBB f, WREG WREG = f - WREG - (C) 1 1 C, DC, N, OV, Z SUBB #lit10, Wn Wn = Wn - lit10 - (C) 1 1 C, DC, N, OV, Z SUBB Wb, Ws, Wd Wd = Wb - Ws - (C) 1 1 C, DC, N, OV, Z	SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
SL Wb, Wns, Wnd Wnd = Left Shift Wb by Wns 1 1 N, Z SL Wb, #lit5, Wnd Wnd = Left Shift Wb by lit5 1 1 N, Z SUB f f = f - WREG 1 1 C, DC, N, OV, Z SUB f, WREG WREG = f - WREG 1 1 C, DC, N, OV, Z SUB #lit10, Wn Wn = Wn - lit10 1 1 C, DC, N, OV, Z SUB Wb, Ws, Wd Wd = Wb - Ws 1 1 C, DC, N, OV, Z SUBB f f = f - WREG - (C) 1 1 C, DC, N, OV, Z SUBB f, WREG WREG = f - WREG - (C) 1 1 C, DC, N, OV, Z SUBB #lit10, Wn Wn = Wn - lit10 - (C) 1 1 C, DC, N, OV, Z SUBB Wb, Ws, Wd Wd = Wb - Ws - (C) 1 1 C, DC, N, OV, Z		SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
$SL & Wb, \#lit5, Wnd & Wnd = Left Shift Wb by lit5 & 1 & 1 & N, Z \\ SUB & f & f = f - WREG & 1 & 1 & C, DC, N, OV, Z \\ SUB & f, WREG & WREG = f - WREG & 1 & 1 & C, DC, N, OV, Z \\ SUB & \#litl0, Wn & Wn = Wn - lit10 & 1 & 1 & C, DC, N, OV, Z \\ SUB & Wb, Ws, Wd & Wd = Wb - Ws & 1 & 1 & C, DC, N, OV, Z \\ SUB & Wb, \#lit5, Wd & Wd = Wb - lit5 & 1 & 1 & C, DC, N, OV, Z \\ SUBB & f & f = f - WREG - (\overline{C}) & 1 & 1 & C, DC, N, OV, Z \\ SUBB & \#litl0, Wn & Wn = Wn - lit10 - (\overline{C}) & 1 & 1 & C, DC, N, OV, Z \\ SUBB & Wb, Ws, Wd & Wd = Wb - Ws - (\overline{C}) & 1 & 1 & C, DC, N, OV, Z \\ SUBB & Wb, Ws, Wd & Wd = Wb - Ws - (\overline{C}) & 1 & 1 & C, DC, N, OV, Z$		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
SUB		SL	Wb, Wns, Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
SUB		SL	Wb, #lit5, Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
SUB		SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
SUB		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SUB	Wb, Ws, Wd	Wd = Wb - Ws	1	1	C, DC, N, OV, Z
SUBB f, WREG WREG = $f - WREG - (\overline{C})$ 1 1 C, DC, N, OV, Z SUBB #lit10, Wn Wn = Wn - lit10 - (\overline{C}) 1 1 C, DC, N, OV, Z SUBB Wb, Ws, Wd Wd = Wb - Ws - (\overline{C}) 1 1 C, DC, N, OV, Z		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, Z
SUBB #lit10, Wn Wn = Wn - lit10 - (\overline{C}) 1 1 C, DC, N, OV, Z SUBB Wb, Ws, Wd Wd = Wb - Ws - (\overline{C}) 1 1 C, DC, N, OV, Z	SUBB	SUBB f		$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
SUBB \mathbb{W} b, \mathbb{W} s, \mathbb{W} d \mathbb{W} d = \mathbb{W} b - \mathbb{W} s - \mathbb{C}) 1 1 C, DC, N, OV, Z		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, Z
SUBB Wb, #lit5, Wd Wd = Wb - lit5 - (\overline{C}) 1 1 C, DC, N, OV, Z		SUBB	Wb, Ws, Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, Z

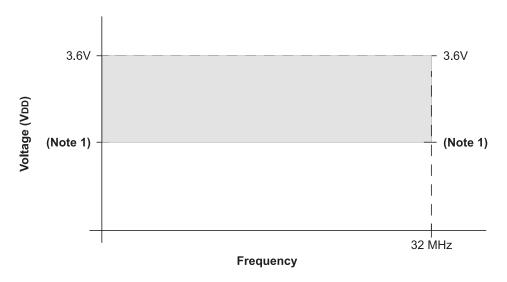
conti	nued					
Assembly Mnemonic	Asse	mbly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb, Ws, Wd	Wd = Ws - Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C, DC, N, OV, Z
	SUBBR	Wb, Ws, Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None
TBLRDH	TBLRDH	Ws,Wd	Read Prog[23:16] to Wd[7:0]	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog[15:0] to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws[7:0] to Prog[23:16]	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog[15:0]	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb, Ws, Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws, Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

Electrical Characteristics

32. Electrical Characteristics

This section provides an overview of the PIC24FJ512GU410 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FJ512GU410 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.


32.1 Absolute Maximum Ratings⁽¹⁾

Parameter	Rating
Ambient temperature under bias	-40°C to +125°C
Storage temperature	-65°C to +150°C
Voltage on V _{DD} with respect to V _{SS}	-0.3V to +4.0V
Voltage on any general purpose digital/analog pin (not 5.5V tolerant) with respect to	o V _{SS} -0.3V to (V _{DD} + 0.3V)
Voltage on any general purpose digital/ analog pin (5.5V tolerant, including $\overline{\text{MCLR}}$)	with respect to V _{SS} :
When $V_{DD} = 0V$:	-0.3V to +4.0V
When $V_{DD} \ge 2.0V$:	-0.3V to +6.0V
Voltage on AV _{DD} with respect to V _{SS}	$(V_{DD} - 0.3V)$ to (lesser of:
	$4.0V \text{ or } (V_{DD} + 0.3V))$
Voltage on AV _{SS} with respect to V _{SS}	-0.3V to +0.3V
Maximum current out of V _{SS} pin	300 mA
Maximum current into V _{DD} pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
 This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
- 2. Maximum allowable current is a function of device maximum power dissipation (see Table 32-1).

32.2 DC Characteristics

Figure 32-1. PIC24FJ512GU410 Family Voltage-Frequency Graph (Industrial)

Note:

 Lower operating boundary is 2.0V or V_{BOR} (when BOR is enabled), whichever is lower. For best analog performance, operate above 2.2V.

Table 32-1. Thermal Operating Conditions

Rating	Symbol	Min	Тур	Max	Unit
PIC24FJ128GU410:					
Operating Junction Temperature Range	T_J	-40	_	+135	°C
Operating Ambient Temperature Range	T _A	-40	_	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $P_{INT} = V_{DD} \times (I_{DD} - \Sigma I_{OH})$	P_D		P _{INT} + P	I/O	W
I/O Pin Power Dissipation: $P_{I/O} = \Sigma (\{V_{DD} - V_{OH}\} \times I_{OH}) + \Sigma (V_{OL} \times I_{OL})$					
Maximum Allowed Power Dissipation	P _{DMAX}	(7	$\Gamma_{\rm J} - \Gamma_{\rm A}$)/0	9 _{JA}	W

Table 32-2. Package Thermal Resistance

Characteristic ⁽¹⁾	Symbol	Тур	Unit
48-Pin UQFN	Θ_{JA}	28.3	°C/W
48-Pin TQFP	Θ _{JA}	71.0	°C/W
64-Pin QFN	Θ_{JA}	23.0	°C/W
64-Pin TQFP	Θ _{JA}	68.9	°C/W
80-Pin TQFP	Θ _{JA}	52.0	°C/W
100-Pin TQFP	Θ _{JA}	44.7	°C/W

Note:

1. Junction to ambient thermal resistance; Theta- $_{JA}$ (θ_{JA}) numbers are achieved by package simulations.

Electrical Characteristics

Table 32-3. Temperature and Voltage Specifications

Operating Conditions (unless otherwise stated): $2.0V \le V_{DD} \le 3.6V$ $-40^{\circ} \le T_{A} \le +85^{\circ}C$

Param No.	Symbol	Characteristic	Min	Тур	Max	Units
DC10	V_{DD}	Supply Voltage	2.0	_	3.6	V
DC16	V _{POR} ⁽¹⁾	V _{DD} Start Voltage to Ensure Internal Power-on Reset Signal	V _{SS}	_	_	V
DC17A	SV _{DD} (1,3)	Recommended V _{DD} Rise Rate to Ensure Internal Power-on Reset Signal	1V/20 ms	_	1V/10 μS	sec
DC17B	V _{BOR} (2)	Brown-out Reset Voltage on V _{DD} Transition, High-to-Low	2.0	2.1	2.2	V

- If the V_{POR} or SV_{DD} parameters are not met, or the application experiences slow power-down V_{DD} ramp rates, it is recommended to enable and use BOR.
- 2. On a rising V_{DD} power-up sequence, application firmware execution begins at the higher of the V_{PORREL} or V_{BOR} level (when BOREN = 1).
- 3. V_{DD} rise times outside this window may not internally reset the processor and are not parametrically tested.

Table 32-4. Operating Current (I_{DD})

Operating Conditions (unless otherwise stated): -40° ≤ T _A ≤ +125°C								
Param No.	Тур	Max	Units	V _{DD}	Conditions ⁽²⁾			
DC19	225	400	μA	2.0V	0.5 MIPS,			
	230	400	μA	3.3V	F _{OSC} = 1 MHz			
DC20	410	625	μA	2.0V	1 MIPS,			
	415	625	μA	3.3V	F _{OSC} = 2 MHz			
DC23	1.5	2.5	mA	2.0V	4 MIPS,			
	1.6	2.5	mA	3.3V	F _{OSC} = 8 MHz			
DC24	6.4	9	mA	2.0V	16 MIPS,			
	6.5	9	mA	3.3V	F _{OSC} = 32 MHz			
DC31	70	350	μA	2.0V	LPRC (16 KIPS),			
	80	350	μA	3.3V	F _{OSC} = 32 kHz			
DC32	1.55	2.5	mA	2.0V	FRC (4 MIPS),			
	1.6	2.5	mA	3.3V	F _{OSC} = 8 MHz			

- 1. Data in the "Typ" column are at +25°C. Typical parameters are for design guidance only and are not tested.
- Base I_{DD} current is measured with:
 - Oscillator is configured in EC mode without PLL (FNOSC[2:0] (FOSCSEL[2:0]) = 010, PLLMODE[3:0] (FOSCSEL[6:3]) = 1111 and POSCMOD[1:0] (FOSC[1:0]) = 00)
 - OSC1 pin is driven with external square wave with levels from 0.3V to $V_{DD} 0.3V$
 - OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC[2]) = 0)
 - FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 11)
 - Secondary Oscillator circuit is disabled (SOSCSEL (FOSC[3]) = 0)
 - Main and low-power BOR circuits are disabled (BOREN[1:0] (FPOR[1:0]) = 00 and LPBOREN (FPOR[3]) = 0)
 - Watchdog Timer is disabled (FWDTEN[1:0] (FWDT[6:5]) = 00)
 - · All I/O pins (except OSC1) are configured as outputs and driving low
 - · No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
 - JTAG is disabled (JTAGEN (FICD[5]) = 0)
 - NOP instructions are executed

Table 32-5. Idle Current (I_{IDLE})

Operating Conditions (unless otherwise stated): $ -40^{\circ} \leq T_{A} \leq +125^{\circ}C $								
Param No.	Тур	Max	Units	V _{DD}	Conditions ⁽²⁾			
DC40	150	350	μA	2.0V	1 MIPS, F _{OSC} = 2 MHz			
	160	350	μA	3.3V				
DC43	500	850	μA	2.0V	4 MIPS, F _{OSC} = 8 MHz			
	520	850	μA	3.3V				
DC47	2.1	3.5	mA	2.0V	16 MIPS, F _{OSC} = 32 MHz			
	2.2	3.5	mA	3.3V				
DC50	530	800	μA	2.0V	FRC (4 MIPS), F _{OSC} = 8 MHz			
	530	800	μA	3.0V				
DC51	60	300	μA	2.0V	LPRC (16 KIPS), F _{OSC} = 32 kHz			
	70	300	μA	3.3V				

- 1. Data in the "Typ" column are at +25°C. Parameters are for design guidance only and are not tested.
- 2. Base I_{IDLE} current is measured with:
 - Oscillator is configured in EC mode without PLL (FNOSC[2:0] (FOSCSEL[2:0]) = 010, PLLMODE[3:0] (FOSCSEL[6:3]) = 1111 and POSCMOD[1:0] (FOSC[1:0]) = 00)
 - OSC1 pin is driven with external square wave with levels from 0.3V to V_{DD} 0.3V
 - OSC2 is configured as an I/O in Configuration Words (OSCIOFCN (FOSC[2]) = 0)
 - FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 11)
 - Secondary Oscillator circuit is disabled (SOSCSEL (FOSC[3]) = 0)
 - Main and low-power BOR circuits are disabled (BOREN[1:0] (FPOR[1:0]) = 00 and LPBOREN (FPOR[3]) = 0)
 - Watchdog Timer is disabled (FWDTEN[1:0] (FWDT[6:5]) = 00)
 - · All I/O pins (except OSC1) are configured as outputs and driving low
 - No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
 - JTAG is disabled (JTAGEN (FICD[5]) = 0)
 - pwrsav #1 (IDLE) instruction is executed

Table 32-6. Power-Down Current (IPD)

Param No.	Тур	Max	Units	Operating Temperature	V _{DD}	Conditions ⁽²⁾
DC60	5	15	μA	-40°C	2.0V	, , , , , , , , , , , , , , , , , , , ,
	5	15	μA	+25°C		(VREGS (RCON[8]) = 0, RETEN (RCON[12]) = 0, LPREGEN (FPOR[2]) = 1)
	12	25	μA	+85°C		, , ,
	60	150	μΑ	+125°C		
	6	15	μA	-40°C	3.3V	
	6	15	μA	+25°C		
	15	25	μΑ	+85°C		
	70	150	μΑ	+125°C		
DC61	425	_	nA	-40°C	2.0V	3
	625	_	nA	+25°C		(VREGS (RCON[8]) = 0, RETEN (RCON[12]) = 1, LPREGEN (FPOR[2]) = 0)
	10	_	μΑ	+85°C		,,
	40	_	μA	+125°C	3.3V	
	450	_	nA	-40°C		
	650	_	nA	+25°C		
	12	_	μΑ	+85°C		
	45	_	μΑ	+125°C		

- 1. Data in the "Typ" column are at +25°C. Parameters are for design guidance only and are not tested.
- 2. Base I_{PD} current is measured with:
 - Oscillator is configured in FRC mode without PLL (FNOSC[2:0] (FOSCSEL[2:0]) = 000, PLLMODE[3:0] (FOSCSEL[6:3]) = 1111 and POSCMOD[1:0] (FOSC[1:0]) = 11)
 - OSC2 is configured as an I/O in Configuration Words (OSCIOFCN (FOSC[2]) = 0)
 - FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 11)
 - Secondary Oscillator circuit is disabled (SOSCSEL (FOSC[3]) = 0)
 - Main and low-power BOR circuits are disabled (BOREN[1:0] (FPOR[1:0]) = 00 and LPBOREN (FPOR[3]) = 0)
 - Watchdog Timer is disabled (FWDTEN[1:0] (FWDT[6:5]) = 00)
 - All I/O pins are configured as outputs and driving low
 - No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
 - JTAG is disabled (JTAGEN (FICD[5]) = 0)
 - The currents are measured on the device containing the most memory in this family
 - pwrsav #0 (SLEEP) instruction is executed.

Table 32-7. Incremental Peripheral △ Current

-40°C ≤ T _A						
Param No.				Operating Temperature	V _{DD}	Conditions
Incrementa	I Curre	ent Bro	own-ou	t Reset (ΔBOR) ⁽²⁾		
DC25	2.4	7	μA	-40°C to +85°C	2.0V	ΔBOR
	2.8	7	μA	-40°C to +85°C	3.3V	
	6	15	μA	-40°C to +125°C	2.0V	
	7	15	μA	-40°C to +125°C	3.3V	
Incrementa	l Curre	ent Wa	tchdog	Timer (ΔWDT) ⁽²⁾		
DC71	0.8	1.5	μA	-40°C to +85°C	2.0V	ΔWDT
	8.0	1.5	μA	-40°C to +85°C	3.3V	
	1.3	7	μA	-40°C to +125°C	2.0V	
	2.2	7	μA	-40°C to +125°C	3.3V	
Incrementa	l Curre	ent Hig	gh/Low-	-Voltage Detect (ΔHLVD) ⁽²⁾		
DC75	2	7	μA	-40°C to +85°C	2.0V	ΔΗLVD
	3	7	μA	-40°C to +85°C	3.3V	
	5	15	μA	-40°C to +125°C	2.0V	
	6	15	μA	-40°C to +125°C	3.3V	
Incrementa	l Curre	ent An	alog-to	-Digital Converter (ΔADC) ⁽	2)	
	0.5	1.5	mA	-40°C to +85°C	2.0V	ΔΑDC
	0.6	1.5	mA	-40°C to +85°C	3.3V	
	0.6	2	mA	-40°C to +125°C	2.0V	
	0.8	2	mA	-40°C to +125°C	3.3V	
Incrementa	l Curre	ent Liq	uid Cry	rstal Display (ΔLCD) ⁽²⁾		
DC82	3	6	μΑ	-40°C to +85°C	2.0V	3 1 1, ,
	4	6	μA	-40°C to +85°C	3.3V	1/3 Bias, LCD is enabled and running, no glass is connected, the low-power resistor ladder current is
	10	15	μA	-40°C to +125°C	2.0V	included
	12	20	μA	-40°C to +125°C	3.3V	
DC90	5	10	μA	-40°C to +85°C	2.0V	External LCD charge pump, 1/8 MUX, 1/3 Bias,
	6	10	μA	-40°C to +85°C	3.3V	LCD is enabled and running, no glass is connected, the resistor ladder current is not
	15	25	μA	-40°C to +125°C	2.0V	included
	20	30	μA	-40°C to +125°C	3.3V	

Electrical Characteristics

conti	continued										
	Operating Conditions (unless otherwise stated): -40°C ≤ T _A ≤ +125°C										
Param No.	Тур	Max	Units	Operating Temperature	V _{DD}	Conditions					
	1	3	μA	-40°C to +85°C	2.0V	ΔDMT ⁽²⁾					
	1	3	μA	-40°C to +85°C	3.3V						
	3	8	μA	-40°C to +125°C	2.0V						
	4	8	μA	-40°C to +125°C	3.3V						
Incremental	Curre	ent Re	al-Time	e Clock and Calendar (ΔRT	CC) ⁽²⁾						
DC77	2.5	4	μA	-40°C to +85°C	2.0V	With SOSC enabled in Low-Power mode					
	2.6	4	μA	-40°C to +85°C	3.3V						
	2.8	6	μA	-40°C to +125°C	2.0V						
	3.5	6	μA	-40°C to +125°C	3.3V						
DC77A	0.7	2	μA	-40°C to +85°C	2.0V	With LPRC enabled					
	0.8	2	μA	-40°C to +85°C	3.3V						
	1.2	4	μA	-40°C to +125°C	2.0V						
	1.3	4	μA	-40°C to +125°C	3.3V						

Notes:

- 1. Data in the "Typ" column are at +25°C. Parameters are for design guidance only and are not tested.
- 2. Incremental current while the module is enabled and running. This current should be added to the base I_{PD} current.

Table 32-8. I/O Pin Input Specifications

Operating Conditions (unless otherwise stated):

 $2.0V < V_{DD} < 3.6V$

 $-40^{\circ}\mathrm{C} < \mathrm{T_A} < +85^{\circ}\mathrm{C}$

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
	V _{IL}	Input Low Voltage ⁽²⁾				
DI10		I/O Pins with ST Buffer	V _{SS}	0.2 V _{DD}	V	
DI11		I/O Pins with TTL Buffer	V _{SS}	0.15 V _{DD}	V	
DI15		MCLR	V _{SS}	0.2 V _{DD}	V	
DI16		OSCI (XT mode)	V _{SS}	0.2 V _{DD}	V	
DI17		OSCI (HS mode)	V _{SS}	0.2 V _{DD}	V	
DI18		I/O Pins with I ² C Buffer	V _{SS}	0.3 V _{DD}	V	
DI19		I/O Pins with SMBus Buffer		0.8	V	SMBus is enabled
	V _{IH}	Input High Voltage ⁽³⁾				
DI20	20	I/O Pins with ST Buffer: with Analog Functions,	0.8 V _{DD}	V_{DD}	V	
		Digital Only	0.8 V _{DD}	5.5	V	
DI21		I/O Pins with TTL Buffer: with Analog Functions,	0.25 V _{DD} + 0.8	V _{DD}	V	
		Digital Only	0.25 V _{DD} + 0.8	5.5	V	
DI25		MCLR	0.8 V _{DD}	V_{DD}	V	
DI26		OSCI (XT mode)	0.7 V _{DD}	V_{DD}	V	
DI27		OSCI (HS mode)	0.7 V _{DD}	V_{DD}	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions,	0.7 V _{DD}	V_{DD}	V	
		Digital Only	0.7 V _{DD}	5.5	V	
DI29		I/O Pins with SMBus Buffer: with Analog Functions, Digital Only	1.35	_	V	$2.5V \le V_{PIN} \le V_{DD}$
DI30	I _{CNPU}	CNx Pull-up Current	100	450	μA	V_{DD} = 3.3V, V_{PIN} = V_{SS}
DI30A	I _{CNPD}	CNx Pull-Down Current	150	550	μA	$V_{DD} = 3.3V$, $V_{PIN} = V_{DD}$

Electrical Characteristics

cc	continued									
Operating Conditions (unless otherwise stated):										
2.0V < V _{DD} < 3.6V										
-40°C < T _A < +85°C										
Param No.	Symbol Characteristic Min Max Units Conditions									
	I _{IL}	Input Leakage Current ⁽¹⁾								
DI50		I/O Ports	_	±1	μA	V _{SS} ≤ V _{PIN} ≤ V _{DD} , pin at high-impedance				
DI51		Analog Input Pins	_	±1	μA	V _{SS} ≤ V _{PIN} ≤ V _{DD} , pin at high-impedance				
DI55		MCLR	_	±1	μA	$V_{SS} \le V_{PIN} \le V_{DD}$				
DI56		OSCI/CLKI	_	±1	μA	V _{SS} ≤ V _{PIN} ≤ V _{DD} , EC, XT and HS modes				

Notes:

- 1. Negative current is defined as current sourced by the pin.
- 2. Refer to Table 1-1 for I/O pin buffer types.

Electrical Characteristics

Table 32-9. I/O Pin Output Specifications

Operating Conditions (unless otherwise stated): -40°C < T _A < +85°C									
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions			
	V _{OL}	Output Low Voltage							
DO10		I/O Ports	_	0.4	V	$I_{OL} = 3 \text{ mA}, V_{DD} = 3.6 \text{V}$			
				0.8	V	$I_{OL} = 6 \text{ mA}, V_{DD} = 3.6 \text{V}$			
DO16		OSCO/CLKO	_	0.18	V	$I_{OL} = 3 \text{ mA}, V_{DD} = 3.6 \text{V}$			
				0.2	V	I _{OL} = 6 mA, V _{DD} = 3.6V			
	V _{OH}	Output High Voltage							
DO20		I/O Ports	3.4		V	$I_{OL} = -3.0 \text{ mA}, V_{DD} = 3.6 \text{V}$			
			3.25	_	V	$I_{OL} = -6.0 \text{ mA}, V_{DD} = 3.6 \text{V}$			
DO26		OSCO/CLKO	3.3	_	V	I _{OL} = -3 mA, V _{DD} = 3.6V			
			1.85	_	V	I _{OL} = -6 mA, V _{DD} = 3.6V			

Table 32-10. Program Memory

Operating Conditions (unless otherwise stated):

 $2.0V < V_{DD} < 3.6V$

-40°C < T_A < +85°C

Param No.	Symbol	Characteristic	Min	Max	Units
		Program Flash Memory			
D130	E _P	Cell Endurance	10000	_	E/W
D133A	T _{IW}	Self-Timed Double-Word Write Cycle Time	_	30	μs
		Self-Timed Row Write Cycle Time	_	2	ms
D133B	T _{IE}	Self-Timed Page Erase Time	_	40	ms
D134	T _{RETD}	Characteristic Retention	20	_	Year

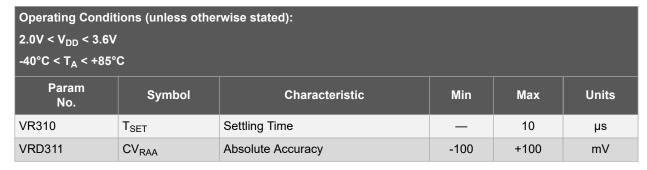
Table 32-11. Internal Voltage Regulator Specifications

	Operating Conditions (unless otherwise stated): -40°C< T _A < +85°C										
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments				
DVR	T _{VREG}	Voltage Regulator Start-up Time	_	10	_	μs	VREGS = 0 with any POR or BOR				
DVR10	V _{BG}	Internal Band Gap Reference	1.14	1.2	1.26	V					
DVR11	T _{BG}	Band Gap Reference Start-up Time		1		ms					
DVR20	V _{RGOUT}	Regulator Output Voltage	_	1.8	_	V	V _{DD} > 1.9V				
DVR21	C _{EFC}	External Filter Capacitor Value	10			μF	Series resistance $< 3\Omega$ recommended; $< 5\Omega$ required				
DVR30	V _{LVR}	Low-Voltage Regulator Output Voltage	0.9	_	1.2	V	RETEN = 1, <u>IPREGEN</u> = 0				

Electrical Characteristics

Table 32-12. High/Low-Voltage Detect Characteristics

	Operating Conditions (unless otherwise stated): -40°C < T _A < +85°C									
Param No.	Symbol	Characteristic	;	Min	Тур	Max	Units			
DC18	V_{HLVD}	HLVD Voltage on V _{DD} Transition	HLVDL[3:0] = 0110	2.93	_	3.39	V			
			HLVDL[3:0] = 0111	2.73	_	3.17	V			
			HLVDL[3:0] = 1000	2.62	_	3.06	V			
			HLVDL[3:0] = 1001	2.39	_	2.8	V			
			HLVDL[3:0] = 1010	2.29	_	2.68	V			
			HLVDL[3:0] = 1011	2.18	_	2.56	V			
			HLVDL[3:0] = 1100	2.08	_	2.45	V			
			HLVDL[3:0] = 1101	1.98	_	2.34	V			
			HLVDL[3:0] = 1110	1.88	_	2.23	V			
DC101	V _{THL}	HLVD Voltage on LVDIN Pin Transition	HLVDL[3:0] = 1111	_	1.20	_	V			
DC105	T _{ONLVD}	HLVD Module Enable Time		_	5	_	μs			


Table 32-13. Comparator DC Specifications

2.0V < V _{DI}	Operating Conditions (unless otherwise stated): 2.0V < V _{DD} < 3.6V -40°C < T _A < +85°C										
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units					
D300	V _{IOFF}	Input Offset Voltage	_	12	50	mV					
D301	V _{ICM}	Input Common-Mode Voltage	0	_	V_{DD}	V					
D302	CMRR	Common-Mode Rejection Ratio	55	_	_	dB					
D306	I _{QCMP}	AV _{DD} Quiescent Current per Comparator	_	27	_	μA					
D307	T _{RESP}	Response Time ⁽²⁾	_	300	_	ns					
D308	T _{MC2OV}	Comparator Mode Change to Valid Output	_	_	10	μs					
D309	I _{DD}	Operating Supply Current	_	30	_	μA					

Notes:

- 1. Parameters are characterized but not tested.
- 2. Measured with one input at $V_{DD}/2$ and the other transitioning from V_{SS} to V_{DD} , 40 mV step, 15 mV overdrive.

Table 32-14. Comparator Voltage Reference DC Specifications

32.3 AC Characteristics and Timing Parameters

Figure 32-2. Load Conditions for I/O Specifications

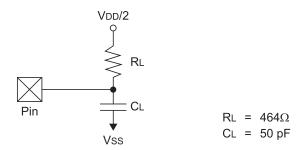


Figure 32-3. CLKO and I/O Timing Characteristics

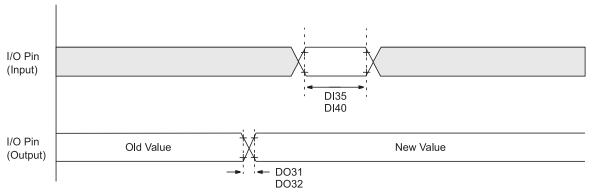
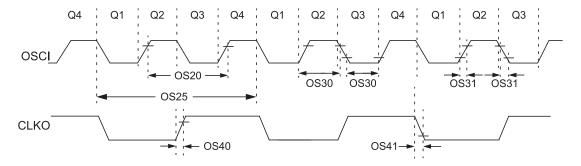



Table 32-15. I/O Timing Requirements

Figure 32-4. External Clock Timing

Electrical Characteristics

Table 32-16. External Clock Timing Requirements

Operating Conditions (unless otherwise stated):

 $2.0V < V_{DD} < 3.6V$

-40°C < T_A < +85°C

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS10	F _{OSC}	External CLKI Frequency (External clocks allowed only in EC mode) ⁽²⁾	4			MHz MHz	EC
		Oscillator Frequency	3.5	_	10	MHz	XT
			4	_	8	MHz	XTPLL
			10	_	32	MHz	HS
			12	_	24	MHz	HSPLL
			31	_	33	kHz	sosc
OS25	T _{CY}	Instruction Cycle Time ⁽³⁾	62.5		DC	ns	
OS30	T _{OS} L, T _{OS} H	External Clock in (OSCI) High or Low Time	0.45 x T _{OSC}	_	_	ns	EC
OS31	T _{OS} R, T _{OS} F	External Clock in (OSCI) Rise or Fall Time	_		20	ns	EC
OS40	T _{CK} R	CLKO Rise Time ⁽⁴⁾	_	15	30	ns	
OS41	T _{CK} F	CLKO Fall Time ⁽⁴⁾	<u> </u>	15	30	ns	

Notes:

- 1. Data in the "Typ" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 2. Represents input to the system clock prescaler. PLL dividers and postscalers must still be configured so that the system clock frequency does not exceed the maximum frequency shown in Figure 32-1.
- 3. Instruction cycle period (T_{CY}) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- 4. Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period ($1/2 T_{CY}$) and high for the Q3-Q4 period ($1/2 T_{CY}$).

Electrical Characteristics

Table 32-17. PLL Clock Timing Specifications

Operating Conditions 2.0V to 3.6V (unless otherwise stated):

 $2.0V < V_{DD} < 3.6V$

 -40° C < T_A < $+85^{\circ}$ C

Sym	Characteristic	Min	Max	Units	Conditions
F _{IN}	Input Frequency Range	2	24	MHz	
F _{MIN}	Minimum Output Frequency from the Frequency Multiplier		16	MHz	4 MHz F_{IN} with 4x feedback ratio, 2 MHz F_{IN} with 8x feedback ratio
F _{MAX}	Maximum Output Frequency from the Frequency Multiplier	96	_	MHz	4 MHz F _{IN} with 24x net multiplication ratio, 24 MHz F _{IN} with 4x net multiplication ratio
F _{SLEW}	Maximum Step Function of F _{IN} at which the PLL will be Ensured to Maintain Lock	-4	+4	%	Full input range of F _{IN}
T _{LOCK}	Lock Time for VCO	_	24	μs	With the specified minimum, T _{REF} , and a lock timer count of one cycle, this is the maximum VCO lock time supported
J _{FM8}	Cumulative Jitter of Frequency Multiplier Over Voltage and Temperature during Any Eight Consecutive Cycles of the PLL Output	_	±0.12	%	4 MHz F _{IN} with 4x feedback ratio

Electrical Characteristics

Table 32-18. FRC Oscillator Specifications

2.0V < V _{DD}	Operating Conditions (unless otherwise stated): 2.0V < V _{DD} < 3.6V -40°C < T _A < +85°C									
Param No.	Symbol	Characteristic	Min	Typ ⁽³⁾	Max	Units	Conditions			
F20	A _{FRC}	FRC Accuracy @ 8 MHz ⁽¹⁾	-1.5	+0.15	1.5	%	-20°C ≤ T _A ≤ +85°C			
			-2.5	_	2.5	%	-40°C ≤ T _A ≤ -20 °C			
			-2.5	_	2.5	%	85°C ≤ T _A ≤ +125°C			
F20A	A _{FRCTUNE}	FRC Accuracy @ 8 MHz with Enabled Self-Tune Feature	-0.20	+0.05	-0.20	%	$0^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$			
FR0	T _{FRC}	FRC Oscillator Start-up Time		2	_	μS				
F22	S _{TUNE}	OSCTUN Step-Size	_	0.05	_	%/bit				
F23	T _{LOCK}	FRC Self-Tune Lock Time ⁽²⁾	_	5	8	ms				

Notes:

- 1. To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.
- 2. Time from reference clock stable, and in range, to FRC tuned with range specified by F20 (with self-tune).
- 3. Data in the "Typ" column are 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

Electrical Characteristics

Table 32-19. LPRC Oscillator Specifications

2.0V < V _{DD} < 3	Operating Conditions (unless otherwise stated): $ 2.0 V < V_{DD} < 3.6 V \\ -40 ^{\circ} C < T_{A} < +85 ^{\circ} C $								
Param No. Symbol Characteristic Min Typ ⁽¹⁾ Max Units									
FR21 A _{LPRC} LPRC Accuracy @ 32 kHz -20 — 20 %									
FR1	T _{LPRC}	Low-Power RC Oscillator Start-up Time	_	50	_	μs			

Note:

1. Data in the "Typ" column are 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

Table 32-20. Reset and Brown-out Reset Requirements

Operating Conditions (unless otherwise stated): 2.0V < V_{DD} < 3.6V -40°C < TA < +85°C Param No. Symbol Characteristic Min Тур Max Units Conditions SY10 **TMCL** MCLR Pulse Width (Low) 2 μs SY12 **TPOR** Power-on Reset Delay 2 μs SY13 TIOZ I/O High-Impedance from MCLR Low or Lesser of: (3 TCY μs Watchdog Timer Reset $(3 T_{CY} + 2)$ + 2) or 700 SY25 **TBOR** Brown-out Reset Pulse Width 1 V_{DD} ≤ V_{BOR} SY45 Internal State Reset Time 50 **TRST** μs SY71 ТРМ **Program Memory** 20 Sleep wake-up with μs Wake-up Time VREGS = 0 1 Sleep wake-up with VREGS = 1 SY72 **TLVR** Low-Voltage Regulator Wake-up Time 90 Sleep wake-up with VREGS = 0 70 Sleep wake-up with VREGS = 1

Figure 32-5. Timer1 External Clock Timing Characteristics

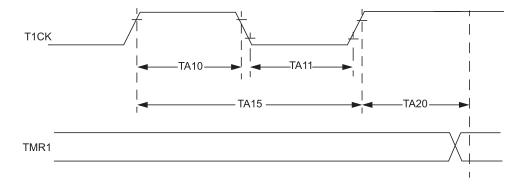


Table 32-21. Timer1 External Clock Timing Characteristics

Operating Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$ -40°C < T_A < +85°C Param No. Symbol Characteristics⁽¹⁾ Min Max Units **Conditions** TA10 T1CK High Time Synchronous 1 Must also meet T_{CKH} T_{CY} Parameter TA15 Asynchronous 10 ns TA11 T_{CKL} T1CK Low Time Synchronous 1 T_{CY} Must also meet Parameter TA15 10 Asynchronous ns TA15 T1CK Input Period Synchronous 2 T_{CKP} T_{CY} Asynchronous 20 ns **TA20** Delay from External T1CK Clock Edge to Timer 3 T_{CKEXTMRL} Synchronous mode T_{CY}

Note:

1. These parameters are characterized but not tested in manufacturing.

Figure 32-6. MCCP Timer Mode External Clock Timing Characteristics

Increment

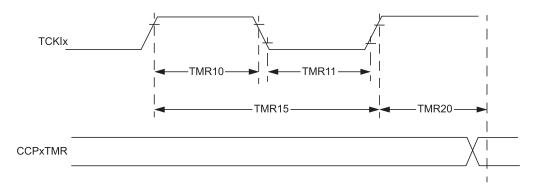


Table 32-22. MCCP Timer Mode Timing Requirements

Operation Conditions (unless otherwise stated): 2.0V < V _{DD} < 3.6V -40°C < T _A < +85°C									
Param No.	Symbol	Charac	teristics ⁽¹⁾	Min	Max	Units	Conditions		
TMR10	ТСКН	TCKIx High Time	Synchronous	1	_	TCY	Must also meet Parameter TMR15		
			Asynchronous	10	_	ns			
TMR11	TCKL	TCKIx Low Time	Synchronous	1	_	T _C Y	Must also meet Parameter TMR15		
			Asynchronous	10	_	ns			

continued									
Operation Conditions (unless otherwise stated):									
2.0V < V _{DE}) < 3.6V								
-40°C < T _A	-40°C < T _A < +85°C								
TMR15	T _{CKP}	TCKIx Input Period	Synchronous	2	_	T _C Y			
			Asynchronous	20	_	ns			
TMR20	TCKEXTMRL	Delay from External TCKIx	Clock Edge to Timer Increment	_	1	T _C Y			

Note:

1. These parameters are characterized but not tested in manufacturing.

Figure 32-7. MCCP Input Capture Mode Timing Characteristics

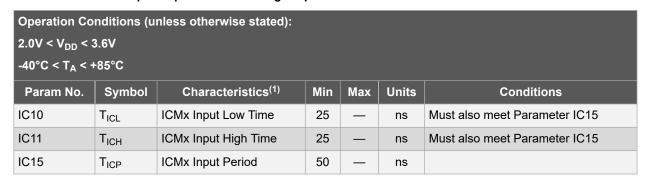



Table 32-23. MCCP Input Capture Mode Timing Requirements

Note:

Figure 32-8. MCCP PWM Mode Timing Characteristics

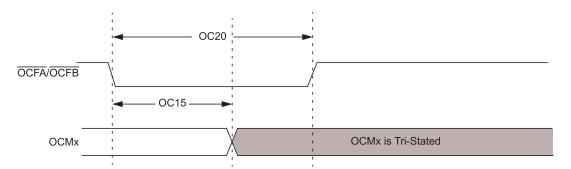


Table 32-24. MCCP PWM Mode Timing Requirements

Operation Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$ -40°C < T_A < +85°C Param Characteristics⁽¹⁾ **Symbol** Units Min Max No. OC15 Fault Input to PWM I/O Change T_{FD} 30 ns OC20 Fault Input Pulse Width T_{FLT} 10 ns

Note:

Figure 32-9. SPI Module Master Mode (CKE = 0) Timing Characteristics

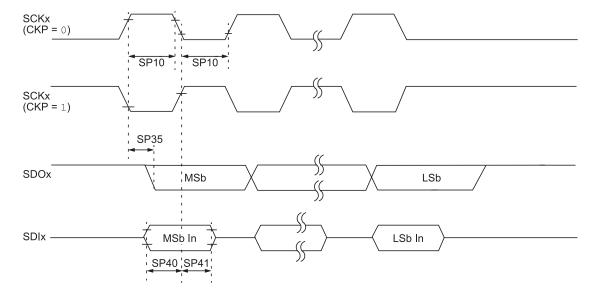


Figure 32-10. SPI Module Master Mode (CKE = 1) Timing Characteristics

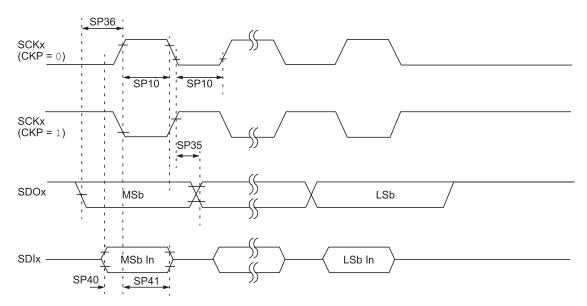


Table 32-25. SPI Module Master Mode Timing Requirements

Operation Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$ -40°C < T_A < +85°C Param No. Characteristics⁽¹⁾ Min Units **Symbol** Max SP10 T_{SC}L, TscH SCKx Output Low or High Time 20 ns SP35 T_{SCH2DO}V, T_{SCL2DO}V SDOx Data Output Valid after SCKx Edge 7 ns SP36 $T_{DO}V2_{SC}$, $T_{DO}V2_{SC}L$ SDOx Data Output Setup to First SCKx Edge 7 SP40 T_{DI}V2_{SC}H, T_{DI}V2_{SC}L Setup Time of SDIx Data Input to SCKx Edge 7 ns SP41 7 $\mathsf{T}_{\mathsf{SC}}\mathsf{H2}_{\mathsf{DI}}\mathsf{L},\,\mathsf{T}_{\mathsf{SC}}\mathsf{L2}_{\mathsf{DI}}\mathsf{L}$ Hold Time of SDIx Data Input to SCKx Edge ns

Note:

Figure 32-11. SPI Module Slave Mode (CKE = 0) Timing Characteristics

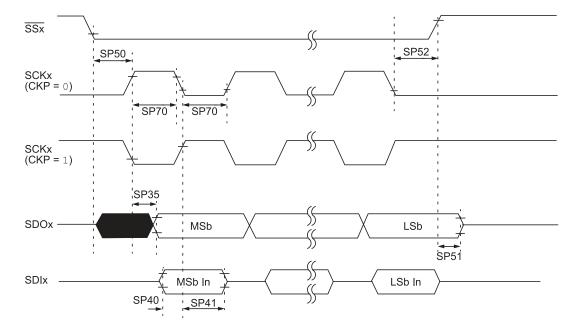


Figure 32-12. SPI Module Slave Mode (CKE = 1) Timing Characteristics

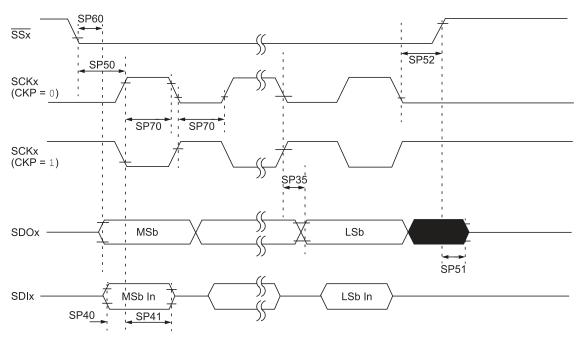


Table 32-26. SPI Module Slave Mode Timing Requirements

Operation Co	Operation Conditions (unless otherwise stated):										
2.0V < V _{DD} < 3.6V											
-40°C < T _A < +85°C											
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Max	Units						
SP70	T _{SC} L, T _{SC} H	SCKx Input Low Time or High Time	20	_	ns						
SP35	T _{SC} H2 _{DO} V, T _{SC} L2 _{DO} V	SDOx Data Output Valid after SCKx Edge	_	10	ns						
SP40	T _{DI} V2 _{SC} H, T _{DI} V2 _{SC} L	Setup Time of SDIx Data Input to SCKx Edge	0	_	ns						
SP41	T _{SC} H2 _{DI} L, T _{SC} L2 _{DI} L	Hold Time of SDIx Data Input to SCKx Edge	7	_	ns						
SP50	T _{SS} L2 _{SC} H, T _{SS} L2 _{SC} L	SSx ↓ to SCKx ↓ or SCKx ↑ Input	40	_	ns						
SP51	T _{SS} H2S _{DO} Z	SSx ↑ to SDOx Output High-Impedance	2.5	12	ns						
SP52	T _{SC} H2 _{SS} H, T _{SC} L2 _{SS} H	SSx ↑ after SCKx Edge	10	_	ns						
SP60	T _{SS} L2 _{DO} V	SDOx Data Output Valid after SSx Edge	_	12.5	ns						

Note:

Figure 32-13. I²C Bus Start/Stop Bits Timing Characteristics (Master Mode)

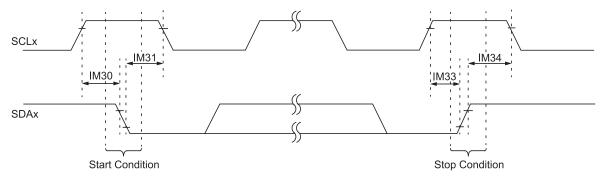


Figure 32-14. I²C Bus Data Timing Characteristics (Master Mode)

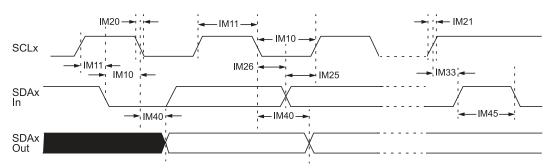


Table 32-27. I²C Bus Data Timing Requirements (Master Mode)

	Operation Conditions (unless otherwise stated): 2.0V < V _{DD} < 3.6V										
-40°C < T _A < +85°C											
Param No.	Symbol	Characterist	tics ⁽¹⁾	Min.	Max.	Units	Conditions				
IM10	T _{LO:SCL}	Clock Low Time	100 kHz mode	T _{CY} * (BRG + 2)	_	μs					
			400 kHz mode	T _{CY} * (BRG + 2)	_	μs					
			1 MHz mode	T _{CY} * (BRG + 2)	_	μs					
IM11	T _{HI:SCL}	Clock High Time	100 kHz mode	T _{CY} * (BRG + 2)	_	μs					
			400 kHz mode	T _{CY} * (BRG + 2)	_	μs					
			1 MHz mode	T _{CY} * (BRG + 2)	_	μs					
IM20	T _{F:SCL}	SDAx and SCLx	100 kHz mode	_	300	ns					
		Fall Time	400 kHz mode	20 + 0.1 C _B	300	ns					
			1 MHz mode	_	100	ns					
IM21	T _{R:SCL}	SDAx and SCLx	100 kHz mode	_	1000	ns					
		Rise Time	400 kHz mode	20 + 0.1 C _B	300	ns					
			1 MHz mode	_	300	ns					
IM25	T _{SU:DAT}	Data Input	100 kHz mode	250	_	ns					
		Setup Time	400 kHz mode	100	_	ns					
			1 MHz mode	100	_	ns					

Electrical Characteristics

conti		/ "	()								
2.0V < V _{DD}		s (unless otherwise sta	ated):								
-40°C < T _A < +85°C											
Param No.	Symbol	Characterist	ics ⁽¹⁾	Min.	Max.	Units	Conditions				
IM26	T _{HD:DAT}	Data Input	100 kHz mode	0	_	μs					
		Hold Time	400 kHz mode	0	0.9	μs					
			1 MHz mode	0	0.3	μs					
IM30	T _{SU:STA}	Start Condition	100 kHz mode	T _{CY} * (BRG + 2)	_	μs	Only relevant for				
		Setup Time	400 kHz mode	T _{CY} * (BRG + 2)	_	μs	Repeated Start condition				
			1 MHz mode	T _{CY} * (BRG + 2)	_	μs					
IM31	T _{HD:STA}	Start Condition Hold	100 kHz mode	T _{CY} * (BRG + 2)	_	μs	After this period, the				
		Time	400 kHz mode	T _{CY} * (BRG + 2)	_	μs	first clock pulse is generated				
			1 MHz mode	T _{CY} * (BRG + 2)	_	μs					
IM33	T _{SU:STO}	Stop Condition Setup	100 kHz mode	T _{CY} * (BRG + 2)	_	μs					
		Time	400 kHz mode	T _{CY} * (BRG + 2)	_	μs					
			1 MHz mode	T _{CY} * (BRG + 2)	_	μs					
IM34	T _{HD:STO}	Stop Condition	100 kHz mode	T _{CY} * (BRG + 2)	_	ns					
		Hold Time	400 kHz mode	T _{CY} * (BRG + 2)	_	ns					
			1 MHz mode	T _{CY} * (BRG + 2)	_	ns					
IM40	T _{AA:SCL}	Output Valid from	100 kHz mode		3500	ns					
		Clock	400 kHz mode	_	1000	ns					
			1 MHz mode		350	ns					
IM45	T _{BF:SDA}	Bus Free Time	100 kHz mode	4.7	_	μs	The amount of time				
			400 kHz mode	1.3	_	μs	the bus must be free before a new				
			1 MHz mode	0.5	_	μs	transmission can start				
IM50	C _B	Bus Capacitive	100 kHz mode	_	400	pF					
		Loading	400 kHz mode	_	400	pF					
			1 MHz mode	_	10	pF					
IM51	T _{PGD}	Pulse Gobbler Delay		52	312	ns					

Note:

Figure 32-15. I²C Bus Start/Stop Bits Timing Characteristics (Slave Mode)

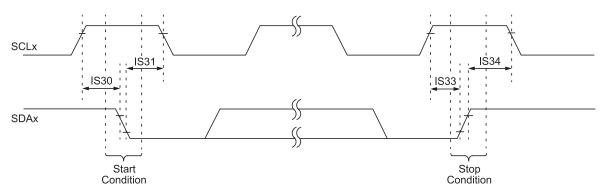


Figure 32-16. I²C Bus Data Timing Characteristics (Slave Mode)

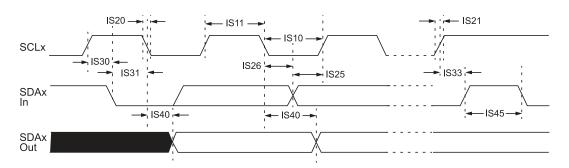


Table 32-28. I²C Bus Data Timing Requirements (Slave Mode)

2.0V < V _{DD} < 3.6V -40°C < T _A < +85°C											
Param No.	Symbol	Characteristi	ics	Min.	Max.	Units	Conditions				
IS10	T _{LO:SCL}	Clock Low Time	100 kHz mode	4.7	_	μs	CPU clock must be a minimum of 800 kHz				
			400 kHz mode	1.3	_	μs	CPU clock must be a minimum of 3.2 MHz				
			1 MHz mode	0.5	_	μs					
IS11	T _{HI:SCL}	Clock High Time	100 kHz mode	4.0	_	μs	CPU clock must be a minimum of 800 kHz				
			400 kHz mode	0.6	_	μs	CPU clock must be a minimum of 3.2 MHz				
			1 MHz mode	0.5	_	μs					
IS20	T _{F:SCL}	SDAx and SCLx Fall	100 kHz mode	_	300	ns					
		Time	400 kHz mode	20 + 0.1 C _B	300	ns					
			1 MHz mode	_	100	ns					

Electrical Characteristics

Operation Conditions (unless otherwise stated): 2.0V < V _{DD} < 3.6V -40°C < T _A < +85°C										
Param No.	Symbol	Characteristi	cs	Min.	Max.	Units	Conditions			
IS21	T _{R:SCL}	SDAx and SCLx Rise	100 kHz mode	_	1000	ns				
		Time	400 kHz mode	20 + 0.1 C _B	300	ns				
			1 MHz mode	_	300	ns				
IS25	T _{SU:DAT}	Data Input	100 kHz mode	250	_	ns				
		Setup Time	400 kHz mode	100	_	ns				
			1 MHz mode	100	_	ns				
IS26	T _{HD:DAT}	Data Input	100 kHz mode	0	_	ns				
		Hold Time	400 kHz mode	0	0.9	μs				
			1 MHz mode	0	0.3	μs				
IS30	T _{SU:STA}	Start Condition	100 kHz mode	4700	_	ns	Only relevant for			
		Setup Time	400 kHz mode	600	_	ns	Repeated Start condition			
			1 MHz mode	250	_	ns				
IS31	T _{HD:STA}	Start Condition Hold Time	100 kHz mode	4000	_	ns	After this period, the first			
			400 kHz mode	600	_	ns	clock pulse is generated			
			1 MHz mode	250	_	ns				
IS33	T _{SU:STO}	Stop Condition Setup	100 kHz mode	4000	_	ns				
		Time	400 kHz mode	600	_	ns				
			1 MHz mode	600	_	ns				
IS34	T _{HD:STO}	Stop Condition	100 kHz mode	4000	_	ns				
		Hold Time	400 kHz mode	600	_	ns				
			1 MHz mode	250	_	ns				
IS40	T _{AA:SCL}	Output Valid from Clock	100 kHz mode	0	3500	ns				
			400 kHz mode	0	1000	ns				
			1 MHz mode	0	350	ns				
IS45	T _{BF:SDA}	Bus Free Time	100 kHz mode	4.7	_	μs	The amount of time the			
			400 kHz mode	1.3	_	μs	bus must be free before a new transmission can			
			1 MHz mode	0.5	_	μs	start			
IS50	C _B	Bus Capacitive Loading	100 kHz mode	_	400	pF				
			400 kHz mode	_	400	pF				
			1 MHz mode	_	10	pF				

Table 32-29. A/D Module Specifications

Operation	Conditions	(unless otherwise stated	i):				
2.0V < V _{DD}							
-40°C < T _A	< +85°C						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
Device Sup	pply						
AD01	AV _{DD}	Module V _{DD} Supply	Greater of: V _{DD} – 0.3 or 2.2	_	Lesser of: V _{DD} + 0.3 or 3.6	V	
AD02	AV _{SS}	Module V _{SS} Supply	V _{SS} – 0.3	_	V _{SS} + 0.3	V	
Reference		33					
AD05	V_{REFH}	Reference Voltage High	AV _{SS} + 1.7		AV_{DD}	V	
AD06	V _{REFL}	Reference Voltage Low	AV _{SS}	_	AV _{DD} – 1.7	V	
AD07	V _{REF}	Absolute Reference Voltage	AV _{SS} - 0.3	_	AV _{DD} + 0.3	V	
Analog Inp	uts	'	'				
AD10	V _{INH} -V _{INL}	Full-Scale Input Span	V _{REFL}	_	V _{REFH}	V	(Note 2)
AD11	V _{IN}	Absolute Input Voltage	AV _{SS} - 0.3		AV _{DD} + 0.3	V	
AD12	V _{INL}	Absolute V _{INL} Input Voltage	AV _{SS} - 0.3	_	AV _{DD} /3	V	
AD13		Leakage Current	_	±1.0	±610	nA	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ $AV_{DD} = V_{REFH} = 3V,$ Source Impedance = 2.5 k Ω
AD17	R _{IN}	Recommended Impedance of Analog Voltage Source	_	_	2.5k	Ω	10-bit
A/D Accura	асу		'				
AD20B	N _R	Resolution	_	12	_	bits	
AD21B	INL	Integral Nonlinearity	_	±1	< ±2	LSb	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ $AV_{DD} = V_{REFH} = 3V$
AD22B	DNL	Differential Nonlinearity	_	_	< ±1 ⁽³⁾	LSb	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ $AV_{DD} = V_{REFH} = 3V$
AD23B	G _{ERR}	Gain Error	-2	±1	+4	LSb	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ $AV_{DD} = V_{REFH} = 3V$
AD24B	E _{OFF}	Offset Error	-2	±1	+5	LSb	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ $AV_{DD} = V_{REFH} = 3V$
AD25B		Monotonicity ⁽¹⁾	_	_	_	_	Guaranteed

Notes:

- 1. The A/D conversion result never decreases with an increase in the input voltage.
- 2. Measurements are taken with the external V_{REF}+ and V_{REF}- used as the A/D voltage reference.
- Code 2047 can have a DNL error of ≥ ±1 LSb to < ±1.5 LSb and code 3071 can have a DNL error of ≥ ±1 LSb to < ±2.5 LSb.

Table 32-30. A/D Conversion Timing Requirements⁽¹⁾

Operation Co	Operation Conditions (unless otherwise stated):									
2.0V < V _{DD} < 3.6V										
-40°C < T _A < +85°C										
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions			
Clock Parame	eters									
AD50	T _{AD}	A/D Clock Period	278	_	_	ns				
AD51	t _{RC}	A/D Internal RC Oscillator Period	_	250	_	ns				
Conversion F	Rate		-	'		-				
AD55	t _{CONV}	SAR Conversion Time, 12-Bit Mode	_	14	_	T _{AD}				
AD55A		SAR Conversion Time, 10-Bit Mode is Typical 12 T _{AD}	_	12	_	T _{AD}				
AD56	F _{CNV}	Throughput Rate	_	_	400	ksps	$AV_{DD} > 2.7V^{(2)}$			
AD57	t _{SAMP}	Sample Time	_	1	_	T _{AD}				
Clock Synchronization										
AD61	t _{PSS}	Sample Start Delay from Setting Sample bit (SAMP)	1.5	_	2.5	T _{AD}				

Notes:

- Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.
- 2. Throughput rate is based on AD55 + AD57 + AD61 and the period of T_{AD} .

Table 32-31. 10-Bit DAC Specifications⁽¹⁾

$V_{DD} = AV_{DD}$ 3 k Ω Load	Operation Conditions (unless otherwise stated): $V_{DD} = AV_{DD} = DV_{REF} + = 3.3V,$ $3 \text{ k}\Omega \text{ Load to } V_{SS},$ $-40^{\circ}\text{C} < T_A < +85^{\circ}\text{C}$									
Param No.	Symbol	Characteristic ⁽³⁾	Min.	Тур.	Max.	Units	Comments			
DAC01		Resolution	10	—	_	bits				
DAC02		DV _{REF} + Input Voltage Range	_	_	AV_{DD}	V				
DAC03	DNL	Differential Linearity Error	-1	_	+1	LSb				
DAC04	INL	Integral Linearity Error	-3.0	_	+3.0	LSb				

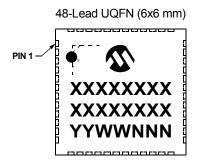
Electrical Characteristics

conti	nued											
Operation	Condition	s (unless otherwise sta	ted):									
$V_{DD} = AV_{DD} = DV_{REF} + = 3.3V,$												
3 kΩ Load to V _{SS} ,												
-40°C < T _A < +85°C												
Param No.	Symbol	Characteristic ⁽³⁾	Min.	Тур.	Max.	Units	Comments					
DAC05		Offset Error	-20	_	+20	mV						
DAC06		Gain Error	-3.0	_	+3.0	LSb						
DAC07		Monotonicity	ı	Note 2		_						
DAC08		Maximum Output Voltage Swing	AV _{SS} + 20	_	AV _{DD} – 20	mV	No output load					
DAC09		Slew Rate	_	3.8	_	V/µs						
DAC10		Settling Time	_	0.9	_	μs	Within ½ LSb of final value, transition from ¼ to ¾ full-scale range					
DAC11		Maximum Continuous Output Current Rating (DC or AC RMS)	_	_	6	mA	This value is not tested in production					
DAC12		AV _{DD} Quiescent Current	_	700	_	μA	Module enabled, DAC Reference = AV _{DD} , no output load					
DAC13		DV _{REF} + Quiescent Current	_	330	_	μA	Module enabled, DAC Reference = DV _{REF} +					

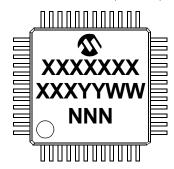
Notes:

- 1. Unless otherwise stated, test conditions are with V_{DD} = AV_{DD} = DV_{REF} + = 3.3V, 3 k Ω load to V_{SS} .
- 2. DAC output voltage never decreases with an increase in the data code.
- 3. These parameters are characterized but not tested in manufacturing.

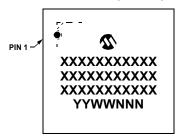
Electrical Characteristics

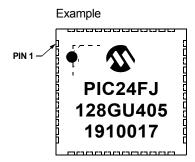

Table 32-32. USB OTG Electrical Specifications

Operation Conditions (unless otherwise stated): $2.0V < V_{DD} < 3.6V$ -40°C < T_A < +85°C Param No. Symbol Characteristics⁽¹⁾ Min. Max. Units Conditions USB313 **USB** Voltage 3.6 V Voltage on V_{USB3V3} must be in this V_{USB3V3} 3.0 range for proper USB operation **USB315** ٧ V_{ILUSB} Input Low Voltage for USB Buffer 0.8 USB316 V_{IHUSB} Input High Voltage for USB Buffer 2.0 V **USB318** Differential Input Sensitivity 0.2 ٧ The difference between D+ and D- V_{DIFS} must exceed this value while VCM is USB319 VCM Differential Common-Mode Range 8.0 2.5 ٧ USB320 Z_{OUT} **Driver Output Impedance** 28.0 44.0 Ω USB321 V_{OI} V 14.25 kΩ load connected to 3.6V Voltage Output Low 0.3 0.0 **USB322** 2.8 ٧ V_{OH} Voltage Output High 3.6 14.25 kΩ load connected to ground

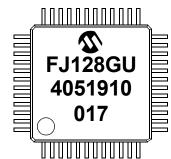

Note:

33. **Package Information**

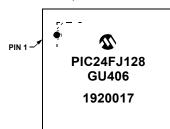

33.1 **Package Marking Information**



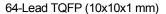
48-Lead TQFP (7x7 mm)

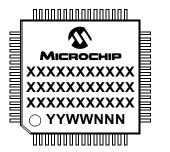


64-Lead QFN (9x9 mm)

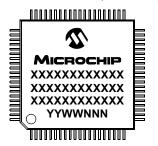


Example


Legend: XX...X Customer-specific information


Year code (last digit of calendar year) Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN

Alphanumeric traceability code

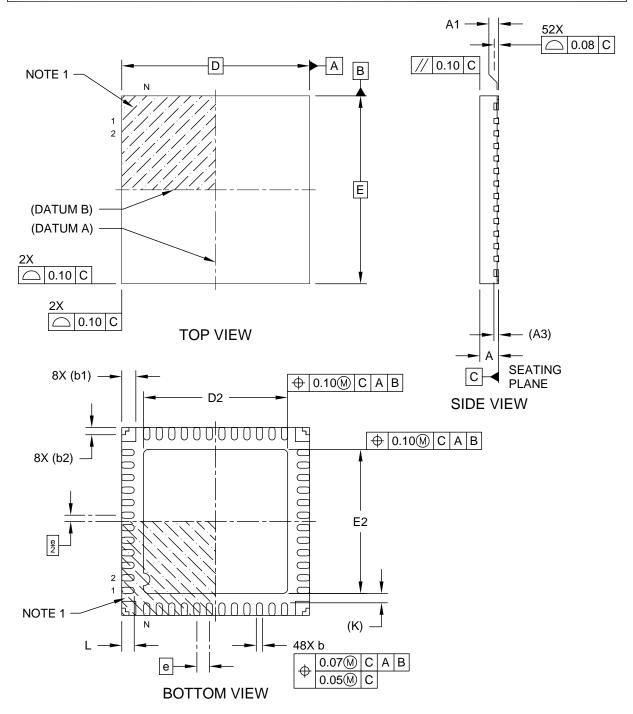

In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

33.2 Package Marking Information (Continued)

80-Lead TQFP (12x12 mm)

100-Lead TQFP (12x12 mm)

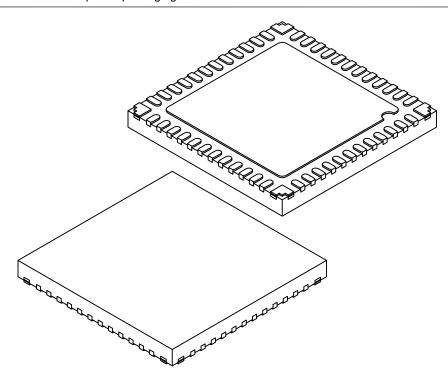
Example



33.3 Package Details

The following sections give the technical details of the packages.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (PTX) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-442A-PTX Sheet 1 of 2

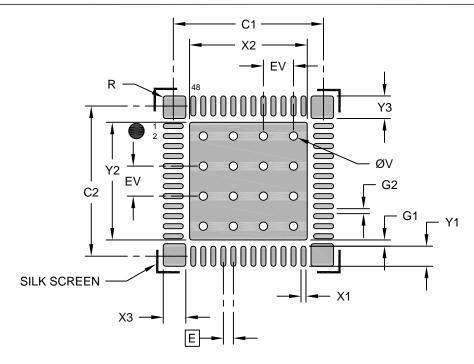
48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (PTX) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N	48		
Pitch	е	0.40 BSC		
Overall Height	Α	0.50	0.55	0.60
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.15 REF		
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	4.50	4.60	4.70
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	4.50	4.60	4.70
Terminal Width	b	0.15	0.20	0.25
Corner Anchor Pad	b1	0.45 REF		
Corner Anchor Pad, Metal-free Zone	b2	0.23 REF		
Terminal Length	L	0.35	0.40	0.45
Terminal-to-Exposed-Pad	K	0.30 REF		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

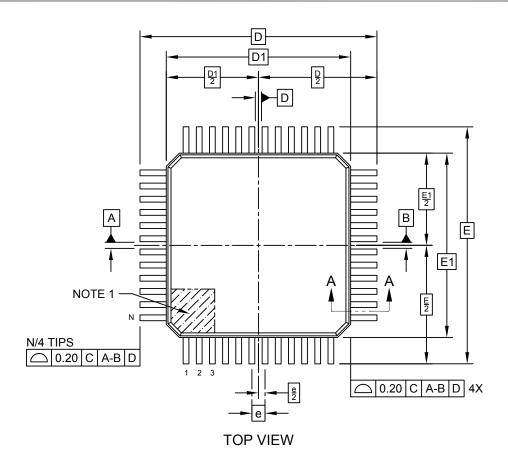
Microchip Technology Drawing C04-442A-PTX Sheet 2 of 2

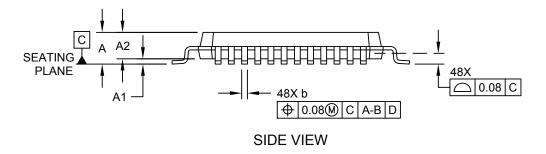
48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (PTX) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.40 BSC		
Center Pad Width	X2			4.70
Center Pad Length	Y2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X48)	X1			0.20
Contact Pad Length (X48)	Y1			0.80
Corner Anchor Pad Width (X4)	Х3			0.90
Corner Anchor Pad Length (X4)	Y3			0.90
Pad Corner Radius (X 20)	R			0.10
Contact Pad to Center Pad (X48)	G1	0.25		
Contact Pad to Contact Pad	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

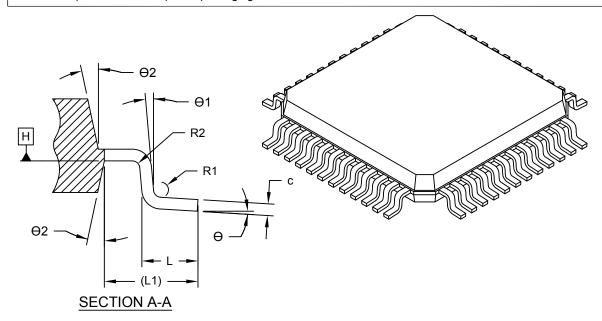

Notes:


- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2442A-PTX

48-Lead Plastic Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-300-Y8 Rev D Sheet 1 of 2

48-Lead Plastic Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Terminals	N	48		
Pitch	е	0.50 BSC		
Overall Height	А	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Length	D	9.00 BSC		
Molded Package Length	D1	7.00 BSC		
Overall Width	E	9.00 BSC		
Molded Package Width	E1	7.00 BSC		
Terminal Width	b	0.17	0.22	0.27
Terminal Thickness	С	0.09	-	0.16
Terminal Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Lead Bend Radius	R1	0.08	-	-
Lead Bend Radius	R2	0.08	-	0.20
Foot Angle	θ	0°	3.5°	7°
Lead Angle	θ1	0°	-	-
Mold Draft Angle	θ2	11°	12°	13°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

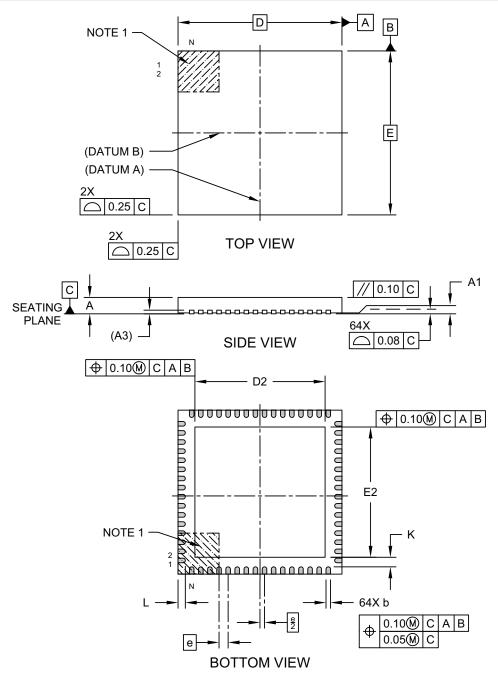
Microchip Technology Drawing C04-300-Y8 Rev D Sheet 2 of 2

48-Lead Plastic Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

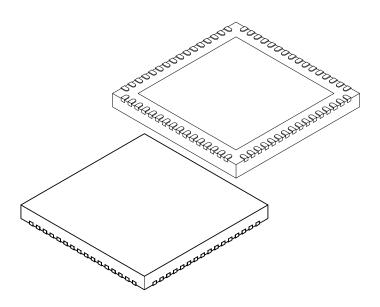
	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Contact Pad Spacing	C1		8.40	
Contact Pad Spacing	C2		8.40	
Contact Pad Width (X48)	X1			0.30
Contact Pad Length (X48)	Y1			1.50
Distance Between Pads	G	0.20		


Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2300-Y8 Rev D

64-Lead Very Thin Plastic Quad Flat, No Lead Package (R4X) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149 [R4X] Rev E Sheet 1 of 2

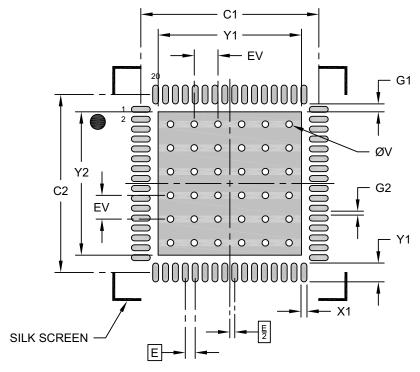
64-Lead Very Thin Plastic Quad Flat, No Lead Package (R4X) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.25
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	7.05	7.15	7.25
Contact Width	b	0.18	0.25	0.30
Contact Length	Ĺ	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

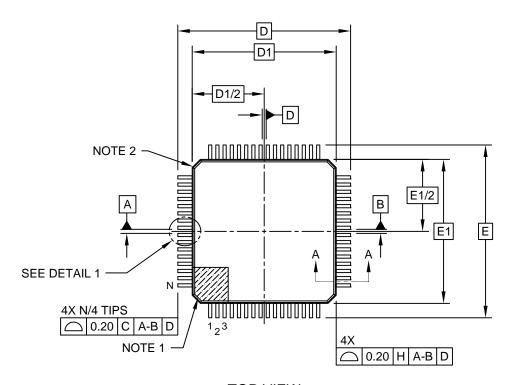
Microchip Technology Drawing C04-149 [R4X] Rev E Sheet 2 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (R4X) – 9x9x0.9 mm Body [VQFN] With 7.15 x 7.15 Exposed Pad [Also called QFN]

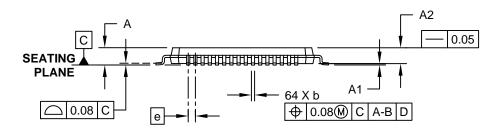
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	/ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Optional Center Pad Width	X2			7.25
Optional Center Pad Length	Y2			7.25
Contact Pad Spacing	C1		9.00	
Contact Pad Spacing	C2		9.00	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.95
Contact Pad to Center Pad (X64)	G1	0.40		
Spacing Between Contact Pads (X60)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	


Notes:

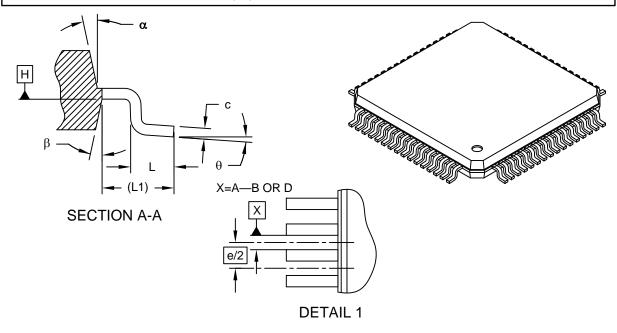
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing C04-149 [R4X] Rev E

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW



SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

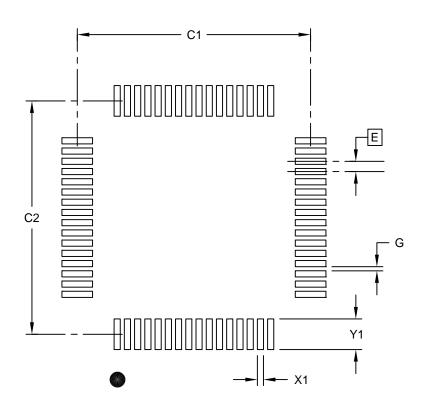
64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Number of Leads	N		64	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	Г	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	Е		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

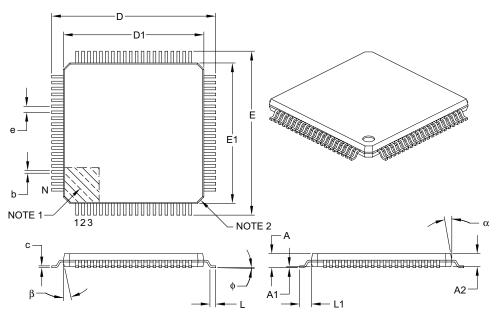
64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

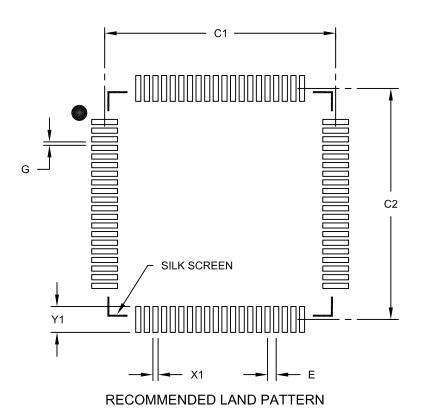
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1

80-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
D	imension Limits	MIN	NOM	MAX
Number of Leads	N		80	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0° 3.5° 7°		
Overall Width	E		14.00 BSC	
Overall Length	D		14.00 BSC	
Molded Package Width	E1		12.00 BSC	
Molded Package Length	D1		12.00 BSC	
Lead Thickness	С	0.09 – 0.20		0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11° 12° 13°		13°
Mold Draft Angle Bottom	β	11°	12°	13°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

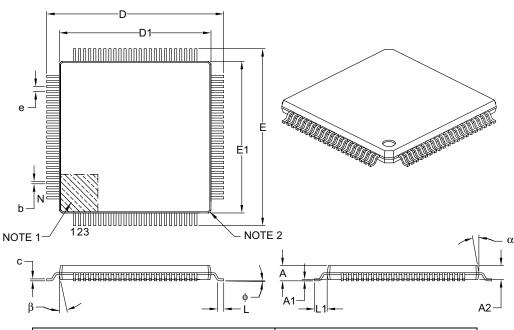
Microchip Technology Drawing C04-092B

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

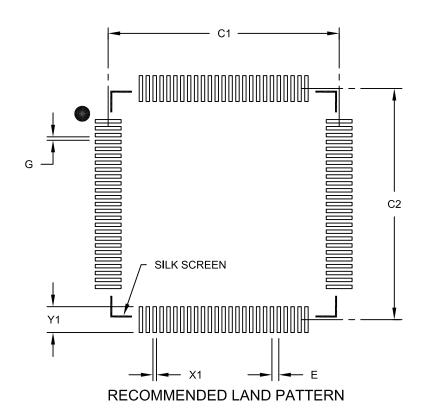
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

100-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
С	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		100	
Lead Pitch	е		0.40 BSC	
Overall Height	А	_	_	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E	14.00 BSC		
Overall Length	D		14.00 BSC	
Molded Package Width	E1		12.00 BSC	
Molded Package Length	D1		12.00 BSC	
Lead Thickness	С	0.09 – 0.20		0.20
Lead Width	b	0.13	0.18	0.23
Mold Draft Angle Top	α	11° 12° 13°		
Mold Draft Angle Bottom	β	11°	12°	13°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

PIC24FJ512GU410 Family Data Sheet

Revision History

34. Revision History

34.1 Revision A (August 2019)

This is the initial version of the document.

34.2 Revision B (December 2019)

Updates Analog Features, eXtreme Low-Power Features, Functional Safety and Security Peripherals, Special Microcontroller Features, PIC24FJ512GU410 Family, Figure 1-1, 4.8 Flash OTP by ICSP™ Write Inhibit, 14. Capture/Compare/PWM/Timer Modules (MCCP), 15. Serial Peripheral Interface (SPI), Equation 16-1, Table 32-4, Table 32-5, Table 32-6, Table 32-7, Table 32-8, Table 32-12, Table 32-16, Table 32-17, Table 32-18, Table 32-29 and Table 32-30.

34.3 Revision C (May 2020)

Updates Peripheral Features, Table 1, 6.4.1 DMACON, 7.6.1 RCON(1,6), all Interrupt Request Flag and Interrupt Enable registers, 18.1.1 LCDCON, Table 32-6, Table 32-18 and Table 32-31.

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

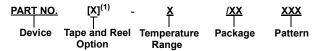
Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Embedded Solutions Engineer (ESE)
- · Technical Support


Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

© 2019-2020 Microchip Technology Inc. Datasheet DS30010203C-page 1308

Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Device:	PIC16F18313, PIC16LF18313, PIC16F18323, PIC16LF18323				
Tape and Reel Option:	Blank	= Standard packaging (tube or tray)			
	Т	= Tape and Reel ⁽¹⁾			
Temperature Range:	1	= -40°C to +85°C (Industrial)			
	E	= -40°C to +125°C (Extended)			
Package:(2)	JQ	= UQFN			
	P	= PDIP			
	ST	= TSSOP			
	SL	= SOIC-14			
	SN	= SOIC-8			
	RF	= UDFN			
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)				

Examples:

- PIC16LF18313- I/P Industrial temperature, PDIP package
- PIC16F18313- E/SS Extended temperature, SSOP package

Notes:

- Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
- 2. Small form-factor packaging options may be available. Please check www.microchip.com/packaging for small-form factor package availability, or contact your local Sales Office.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
 methods, to our knowledge, require using the Microchip products in a manner outside the operating
 specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of
 intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

© 2019-2020 Microchip Technology Inc. Datasheet DS30010203C-page 1309

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLog, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019-2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6160-9

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Datasheet DS30010203C-page 1310 © 2019-2020 Microchip Technology Inc.

Worldwide Sales and Service

AMERICAS ASJAR/ACIFIC ASJAR/ACIFIC EUROPE 2355 West Chandler Blud Tel: 61-2-9868-6733 India - Bangalore Tel: 43-7242-2244-39 Chandler, AZ 55/24-6199 China - Beijing India - New Delhi Fex: 43-7242-2244-39 Fax: 480-792-7200 Tel: 86-10-8669-7000 Tel: 91-10-160-8331 Dommark - Copenhagen Fax: 480-792-7272 China - Chengdu India - Pune Tel: 91-12-01-141 Fex: 48-4485-5910 Fax: 480-792-7272 China - Chengdu India - Pune Tel: 91-20-412-10-141 Fex: 45-4485-229 Fax: 697-8614 Tel: 86-22-3890-596 Tel: 81-2-3680-9580 Tel: 81-3-6880-3770 Tel: 338-9-43-90-79 Fax: 678-987-9614 Tel: 68-867-87892-815 China - Hangshou Korea - Daegu Fex: 331-89-39-90-79 Fax: 678-987-1455 China - Hangshou Korea - Seoul Tel: 428-931-700 Tel: 428-931-700 Mestborough, Mo China - Hong Kong SAR Tel: 582-248-7200 Tel: 428-274-4301 Tel: 49-721-72600 Fex: 774-700-0087 Tel: 68-25-2808-3500 Tel: 69-27-28770 Tel: 49-227-18770 Tel: 49-227-18770 Fax: 690-285-0075 Tel: 6				
2355 West Chandler Blvd. Chandler, AZ 82224-199 China - Beigling Tel: 480-792-7270 Tel: 480-792-7270 Tel: 86-10-8568-7000 Tel: 86-10-85	AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Chandler, AZ 85224-8199 Tell: 480-792-7277 Tell: 480-898-9809 Tell: 882-88696-8511 Tell: 91-20-4121-0141 Tell: 454-485-5910 Tell: 48-485-5910 Tell: 48-48-5910 Tell: 48-48-5910 Tell: 48-485-5910 Tell: 48-48-5910 Tell: 48-48-480-8229 Tell: 48-48-480-8220 Tell: 48-48-8200 Tell: 48-48-8200 Tell: 48-8-890-978 Tell: 48-48-8200 Tell: 48-8-890-978 Tell: 48-48-8200 Tell: 48-8-890-978 Tell: 48-8-890-979 Tell: 48-89-890-979	Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
Tel: 48-07-92-7200	2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Fax: 480-792-7277	Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Technical Support	Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
New Microchip cond Sepo	Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Web Address:	Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
Atlanta	www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Atlanta	Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
Duluth, CA	www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Tel: 68-08-79-614	Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Fax: 678-957-1455	Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Austin, TX Tel: 86-571-8792-8115 Tel: 82-2554-7200 Germany - Haam Boston Tel: 852-2943-5100 Tel: 682-2551-7906 Tel: 682-2948-5100 Tel: 60-3-7651-7906 Tel: 49-2129-3766400 Tel: 49-2129-3766400 Tel: 49-2129-3766400 Tel: 49-2129-3766400 Tel: 49-2129-3766400 Tel: 49-721-66400 Tel: 60-3-7651-7906 Malaysia - Kuala Lumpur Tel: 49-721-67200 Tel: 49-721-67200 Tel: 49-721-67200 Tel: 49-721-672400 Tel: 49-721-672400 Tel: 49-721-672400 Tel: 49-721-672570 Tel: 49-721-172400 Tel: 49-721-672570 Tel: 49-721-172400 Tel: 49-721-172400 Tel: 49-721-172400 Tel: 49-721-172570 Tel: 49-721-172570 Tel: 49-721-172570 Tel: 49-721-172570 Tel: 49-721-1725774 Tel: 49-721-1725774 Tel: 49-721-1725774 Tel: 49-721-1725774 Tel: 49-721-1725774 Tel: 49-72-1725774	Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Tel: 512-257-3370	Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Boston	Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Westborough, MA	Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Tel: 774-760-0087	Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Tel: 774-76-0087	Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 86-532-8502-7355	-	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Itasca, IL	Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Itasca, IL	Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Tel: 630-285-0071 Fax: 630-285-0075 China - Shenyang Dallas Tel: 86-24-233-28-29 Addison, TX China - Shenyang Taiwan - Hsin Chu Tel: 86-24-233-4-2829 Addison, TX China - Shenyang Tel: 86-27-78-3666 Tel: 86-24-233-4-2829 Addison, TX China - Shenyang Tel: 886-377-83866 Tel: 886-377-83866 Tel: 972-818-7423 Tel: 86-755-8864-2200 Tel: 886-75-13-7830 Tel: 972-9-744-7705 Tel: 98-72-818-2924 China - Suzhou Taiwan - Taipei Tel: 48-88-7-213-7830 Tel: 972-9-744-7705 Tel: 98-78-866-7-213-7830 Tel: 972-9-744-7705 Tel: 88-6-755-8864-2200 Tel: 88-6-7-213-7830 Tel: 972-9-744-7705 Tel: 98-8-18-6923-1526 Tel: 88-8-2508-8600 Tel: 39-9-31-742611 Tel: 48-88-8-4000 Tel: 86-18-6233-1526 Tel: 88-25-8803-7525 Tel: 88-25-8803-7525 Tel: 88-29-8833-7525 Tel: 88-29-8833-7525 Tel: 88-29-8833-7525 Tel: 317-773-8323 China - Xiamen Noblesville, IN Tel: 31-773-8323 Tel: 317-538-2380 Los Angeles Los Angeles Los Angeles Los Angeles Rais-94-94-9608 Tel: 919-844-7510 New York, NY Tel: 919-844-7510 New York, NY Tel: 63-13-78-00 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 68-735-9110 Tel: 408-735-9110 Tel: 408-735-9110 Tel: 408-735-9110 Tel: 408-735-9110 Tel: 408-735-9110 Tel: 408-735-9180	_	China - Shanghai	Singapore	-
Dallas	Tel: 630-285-0071	Tel: 86-21-3326-8000		Fax: 49-89-627-144-44
Dallas	Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Tel: 972-818-7423 Tel: 86-755-8864-2200 China - Suzhou Tel: 86-86-2-2508-8600 Tel: 86-86-2-2508-8600 Tel: 39-0331-742611 Tel: 39-0331-742611 Tel: 248-848-4000 Tel: 86-27-5980-5300 Tel: 66-2-694-1351 Tel: 86-28-2-8833-7252 Tel: 86-29-8833-7252 Tel: 86-39-2388138 Tel: 317-773-8323 China - Zhuhai Tel: 317-773-8323 Tel: 86-756-3210040 Tel: 86-756-3210040 Tel: 86-756-3210040 Tel: 86-756-3210040 Tel: 86-756-3210040 Tel: 99-844-7510 New York, NY Tel: 918-844-7510 New York, NY Tel: 68-28-8648-200 Tel: 905-695-1980 Tel: 905-695-1980 Tel: 905-695-1980 Tel: 905-695-1980 Tel: 905-695-1980 Tel: 918-86-72-13-7830 Tel: 86-72-213-7830 Tel: 86-72-213-7830 Tel: 86-72-2508-8600 Tel: 86-72-2508-8600 Tel: 86-2-694-1351 Tel: 86-2-694-1351 Vietnam - Ho Chi Minh Tel: 39-049-7625286 Tel: 81-28-5448-2100 Netherlands - Drunen Tel: 84-28-5448-2100 Netherlands - Drunen Tel: 84-28-5448-2100 Netherlands - Drunen Tel: 84-28-5448-2100 Netherlands - Prunen Tel: 40-21-407-87-50 Spain - Madrid Tel: 46-81-704-60-40 Sweden - Stockholm Tel: 46-81-704-60-40 Tel: 408-73-9110 Tel: 408-73-9110 Tel: 408-73-9110 Tel: 408-73-9180	Dallas		Tel: 886-3-577-8366	-
Tel: 972-818-7423 Tel: 972-818-7423 Tel: 86-755-8864-2200 China - Suzhou Tel: 86-86-32-31-526 Tel: 86-86-32-31-526 Tel: 86-86-2-2508-8600 Tel: 39-0331-742611 Tel: 39-0331-742611 Tel: 248-848-4000 Tel: 36-27-5980-5300 Tel: 36-2-598-330 Tel: 86-2-598-3500 Tel: 66-2-694-1351 Tel: 89-39-331-466781 Tel: 39-0331-466781 Tel: 39-0331-466781 Tel: 281-894-5983 Tel: 86-29-8833-7252 Tel: 86-29-8833-7252 Tel: 86-2-694-1351 Tel: 84-28-5448-2100 Netherlands - Drunen Indianapolis Noblesville, IN Tel: 86-592-2388138 Tel: 317-773-8323 China - Zhuhai Tel: 317-773-8323 China - Zhuhai Tel: 86-756-3210040 Tel: 86-756-3210040 Tel: 99-844-7510 Tel: 99-844-7510 Tel: 99-844-7510 Tel: 99-844-7510 Tel: 408-735-9110 Tel: 408-735-9110 Tel: 408-735-9110 Tel: 408-735-9110 Tel: 408-735-9110 Tel: 905-695-1980	Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Detroit	Tel: 972-818-7423	Tel: 86-755-8864-2200		Tel: 972-9-744-7705
Detroit	Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Tel: 248-848-4000 Houston, TX China - Xian Tel: 281-894-5983 Tel: 86-29-8833-7252 Tel: 86-29-8833-7252 Tel: 84-28-5448-2100 Netherlands - Drunen Tel: 31-416-690399 Noblesville, IN Tel: 86-592-2388138 Tel: 86-592-2388138 Tel: 86-592-2388138 Tel: 86-756-3210040 Tel: 317-773-8453 Tel: 86-756-3210040 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Tel: 949-462-9608 Tel: 941-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-336-4270 Canada - Toronto Tel: 905-695-1980 Tel: 905-695-1980 Tel: 905-695-1980 Tel: 905-695-1980 Tel: 66-2-694-1351 Tel: 39-049-7625286 Tel: 39-049-7625286 Tel: 39-049-7625286 Tel: 34-1416-690399 Netherlands - Drunen Tel: 31-416-690399 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-69039 Fax: 41-16-9019	Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Houston, TX	Novi, MI	China - Wuhan		Fax: 39-0331-466781
Houston, TX	Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Indianapolis	Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Noblesville, IN Tel: 86-592-2388138 China - Zhuhai Tel: 317-773-8323 Tel: 317-773-5453 Tel: 86-756-3210040 Tel: 47-72884388 Tel: 47-72884388 Tel: 48-22-3325737 Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Tel: 905-695-1980 Tel: 86-756-3210040 Tel: 46-31-704-60-40 Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5820	Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Tel: 317-773-8323	Indianapolis	China - Xiamen		Tel: 31-416-690399
Fax: 317-773-5453 Tel: 86-756-3210040 Tel: 47-72884388 Poland - Warsaw Tel: 48-22-3325737 Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 40-8-735-9110 Tel: 40-8-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Tel: 86-756-3210040 Tel: 47-72884388 Poland - Warsaw Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 408-735-9110 Tel: 408-436-4270 Fax: 44-118-921-5800 Fax: 44-118-921-5820	Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Fax: 317-773-5453 Tel: 86-756-3210040 Tel: 47-72884388 Tel: 317-536-2380 Poland - Warsaw Los Angeles Tel: 48-22-3325737 Mission Viejo, CA Romania - Bucharest Tel: 949-462-9523 Tel: 40-21-407-87-50 Fax: 949-462-9608 Spain - Madrid Tel: 951-273-7800 Tel: 34-91-708-08-90 Raleigh, NC Fax: 34-91-708-08-91 Tel: 919-844-7510 Sweden - Gothenberg New York, NY Tel: 46-31-704-60-40 Tel: 631-435-6000 Sweden - Stockholm Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 44-118-921-5800 Tel: 905-695-1980 Fax: 44-118-921-5820	Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Los Angeles Tel: 48-22-3325737 Mission Viejo, CA Romania - Bucharest Tel: 949-462-9523 Tel: 40-21-407-87-50 Fax: 949-462-9608 Spain - Madrid Tel: 951-273-7800 Tel: 34-91-708-08-90 Raleigh, NC Fax: 34-91-708-08-91 Tel: 919-844-7510 Sweden - Gothenberg New York, NY Tel: 46-31-704-60-40 Tel: 631-435-6000 Sweden - Stockholm San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 UK - Wokingham Tel: 408-436-4270 Fax: 44-118-921-5800 Canada - Toronto Fax: 44-118-921-5820	Fax: 317-773-5453	Tel: 86-756-3210040		
Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 Sweden - Gothenberg New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980	Tel: 317-536-2380			Poland - Warsaw
Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820	Los Angeles			Tel: 48-22-3325737
Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820	Mission Viejo, CA			Romania - Bucharest
Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Tel: 951-273-7800 Fax: 34-91-708-08-90 Fax: 34-91-708-08-90 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820	=			Tel: 40-21-407-87-50
Raleigh, NC Fax: 34-91-708-08-91 Tel: 919-844-7510 Sweden - Gothenberg New York, NY Tel: 46-31-704-60-40 Tel: 631-435-6000 Sweden - Stockholm San Jose, CA Tel: 46-8-5090-4654 Tel: 408-735-9110 UK - Wokingham Tel: 408-436-4270 Tel: 44-118-921-5800 Canada - Toronto Fax: 44-118-921-5820 Tel: 905-695-1980 Tel: 44-118-921-5820	Fax: 949-462-9608			Spain - Madrid
Raleigh, NC Fax: 34-91-708-08-91 Tel: 919-844-7510 Sweden - Gothenberg New York, NY Tel: 46-31-704-60-40 Seeden - Stockholm Sweden - Stockholm San Jose, CA Tel: 46-8-5090-4654 Tel: 408-735-9110 UK - Wokingham Tel: 408-436-4270 Tel: 44-118-921-5800 Canada - Toronto Fax: 44-118-921-5820 Tel: 905-695-1980 Tel: 44-118-921-5820	Tel: 951-273-7800			Tel: 34-91-708-08-90
New York, NY Tel: 46-31-704-60-40 Tel: 631-435-6000 Sweden - Stockholm San Jose, CA Tel: 46-8-5090-4654 Tel: 408-735-9110 UK - Wokingham Tel: 408-436-4270 Tel: 44-118-921-5800 Canada - Toronto Fax: 44-118-921-5820 Tel: 905-695-1980 Fax: 44-118-921-5820				Fax: 34-91-708-08-91
Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820	Tel: 919-844-7510			Sweden - Gothenberg
Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820	New York, NY			_
Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820	·			Sweden - Stockholm
Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820	San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-436-4270 Tel: 44-118-921-5800 Canada - Toronto Tel: 905-695-1980 Tel: 905-695-1980				UK - Wokingham
Canada - Toronto Fax: 44-118-921-5820 Tel: 905-695-1980 Fax: 44-118-921-5820				_
Tel: 905-695-1980				
Fax. 900-090-2010	Fax: 905-695-2078			