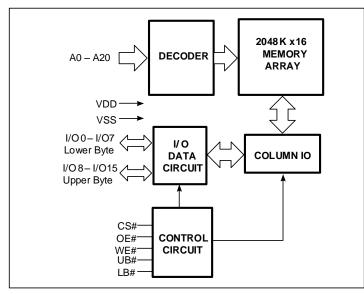


AUGUST 2019

2Mx16 HIGH-SPEED ASYNCHRONOUS CMOS STATIC RAM WITH 3.3V/1.8V SUPPLY

FEATURES

- High-speed access time: 10ns, 12ns
- High- performance, low power CMOS process
- Multiple center power and ground pins for greater noise immunity
- Easy memory expansion with CS# and OE#
- TTL compatible inputs and outputs
- Single power supply
 - 1.65V-2.2V VDD (IS61/64WV204816ALL)
 - 2.4V-3.6V VDD (IS61/64WV204816BLL)
- Packages available :
 - 48 ball mini BGA (6mm x 8mm)
- 48 pin TSOP (Type I)
- Industrial and Automotive temperature support
- Lead-free available
- Data Control for upper and lower bytes


DESCRIPTION The ISSI IS61/64

The *ISSI* IS61/64WV204816ALL/BLL are high-speed, 32M bit static RAMs organized as 2048K words by 16 bits. It is fabricated using *ISSI*'s high-performance CMOS technology.

This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices.

When CS# is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels. Easy memory expansion is provided by using Chip Enable and Output Enable inputs. The active LOW Write Enable (WE#) controls both writing and reading of the memory. A data byte allows Upper Byte (UB#) and Lower Byte (LB#) access.

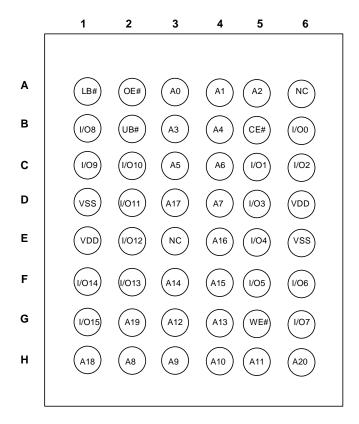
The device is packaged in the JEDEC standard 48-Pin TSOP (TYPE I) and 48-pin mini BGA (6mm x 8mm).

FUNCTIONAL BLOCK DIAGRAM

Copyright © 2019 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;


b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

PIN CONFIGURATIONS

48-Pin mini BGA (6mm x 8mm)

PIN DESCRIPTIONS

A0-A20	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CS#	Chip Enable Input
OE#	Output Enable Input
WE#	Write Enable Input
LB#	Lower-byte Control (I/O0-I/O7)
UB#	Upper-byte Control (I/O8-I/O15)
NC	No Connection
Vdd	Power
VSS	Ground

48-Pin TSOP ,TYPE I (12mm x 20mm)

A4 1 1 • • · · · · · · · · · · · · · · · ·	48 A5 47 A6 46 A7 45 A8 44 OE# 43 UE# 42 LE# 41 WO14 39 WO12 37 VSS 36 VDD 35 WO11 34 W010 35 WO12 37 VSS 36 VDD 35 WO10 35 WO10 35 WO10 36 A9 20 A10
A3 2 A2 3 A1 4 A0 5 NC 6 CS# 7 V00 8 V01 9 V02 10 V03 11 VDD 12 VSS 13 V04 14 V05 15 V06 16 V07 17 WE# 18 NC 19 A19 20 A18 21 A16 23	47 A6 47 A6 47 A5 48 A7 45 A8 44 OE# 43 UB# 42 LB# 41 V/015 40 V/014 38 V/012 37 VSS 36 V/D1 38 V/012 37 VSS 36 V/D1 34 V/010 33 V/03 32 V/08 31 A20 30 A 9 22 A10
A2 3 A1 4 A0 5 NC 6 CS# 7 V00 8 V01 9 V02 10 V03 11 VDD 12 VSS 13 V04 14 V05 15 V06 16 V07 17 WE# 18 NC 19 A19 20 A18 21 A17 22	46 A7 45 A8 44 OE# 43 UB# 42 LB# 41 VO15 40 VO15 40 VO13 38 VO12 37 VSS 36 VDD 35 VO11 34 VO10 33 VO9 32 VO8 31 A20 30 A9 22 A10
A1 4 A0 5 NC 6 CS# 7 VO0 8 VO1 9 VO2 10 VO3 11 VDD 12 VSS 13 VO4 14 VO5 15 VO6 16 VO7 17 WE# 18 NC 19 A19 20 A18 21 A17 22	45 A8 44 OE# 43 UB# 42 LB# 41 VO15 40 VO14 39 VO13 38 VO12 37 VSS 36 VDD 35 VDD 35 VD01 34 VO10 33 VO9 32 VO8 31 A29 30 A9 32 A9 32 A10
A0 5 NC 6 CS# 7 VO0 8 VO1 9 VO2 10 VO3 11 VOD 12 VSS 13 VO4 14 VO5 15 VO6 16 VO7 17 WE# 19 A19 20 A18 21 A17 22	44 OE# 43 UB# 42 LB# 41 VO15 40 VO14 39 VO13 37 VO12 37 VS2 36 VDD 35 VO12 37 US1 36 VDD 35 VO12 37 VO2 37 VO2 37 VO2 37 VO2 37 VO2 30 VO12 37 VO2 30 VO2
NC 6 CS# 7 V00 8 V01 9 V02 10 V03 11 VDD 12 VSS 13 V04 14 V05 15 V06 16 V07 17 WE# 18 NC 19 A19 20 A18 21 A16 23	43 UB# 42 LB# 41 V/015 40 V/014 38 V/012 37 VSS 36 V/DD 35 V/DD 35 V/011 34 V/010 33 V/09 32 V/08 31 A20 30 A 9 22 A10
CS# 7 VO0 8 VO1 9 VO2 10 VO2 10 VO3 11 VDD 12 VSS 13 VO4 14 VO5 15 VO6 16 VO7 17 WEF 18 NC 19 A19 20 A18 21 A17 22 A16 23	42 LB# 44 VO15 40 VO13 38 VO13 38 VO13 37 VSS 36 VDD 35 VO11 34 VO10 33 VO9 32 VO8 31 A29 30 A9 30 A9 32 A10
V00 8 V01 9 V02 10 V03 11 VDD 12 VSS 13 V04 14 V05 15 V06 16 V07 17 WE# 19 A19 20 A18 21 A17 22 A16 23	41 V015 40 V014 39 V013 38 V013 37 VSS 36 VDD 35 V01 33 V09 32 V08 31 A20 30 A9 22 A10
V01 9 V02 10 V03 11 VDD 12 VSS 13 V04 14 V05 15 V06 16 V07 17 WE# 18 NC 19 A19 20 A18 21 A16 23	40 VO14 39 VO13 38 VO12 37 VSS 36 VDD 35 VO10 33 VO10 33 VO10 33 VO9 32 VO8 31 A20 30 A9 29 A10
VO2 10 VO3 11 VDD 12 VSS 13 VO4 14 VO5 15 VO6 16 VO7 17 WE# 18 NC 19 A19 20 A18 21 A16 23	39 V013 38 V012 37 VSS 36 VDD 35 V011 34 V010 33 V09 32 V08 31 A20 30 A 9 29 A10
VO3 11 VDD 12 VSS 13 VO4 14 VO5 15 VO6 16 VO7 17 WE# 18 NC 19 A19 20 A18 21 A17 22 A16 23	38 VO12 37 VSS 36 VDD 35 V01 34 V010 33 V09 32 V09 32 V08 31 A20 30 A9 29 A10
VDD 12 VSS 13 VO4 14 VO5 15 VO6 16 VO7 17 WE# 18 NC 19 A19 20 A18 21 A17 22 A16 23	37 VSS 36 VDD 35 V011 34 V010 33 V09 32 V08 31 A20 30 A9 22 A10
VSS 13 VC4 14 VO5 15 VC6 16 VC7 17 WE# 18 NC 19 A19 20 A18 21 A17 22 A16 23	36 VDD 35 VO11 34 VO10 33 VO9 32 VO9 32 VO9 31 A20 30 A9 29 A10
V04 14 V05 15 V06 16 V07 17 WE# 18 NC 19 A19 20 A18 21 A16 23	35 V011 34 V010 33 V09 32 V08 31 A20 30 A9 29 A10
VOS 15 VO6 16 VO7 17 WE# 18 NC 19 A19 20 A18 21 A17 22 A16 23	34 VO10 33 VO9 32 VO8 31 A20 30 A9 23 A10
VO6 16 VO7 17 WE# 18 NC 19 A19 20 A18 21 A17 22 A16 23	33 VO9 32 VO8 31 A20 30 A 9 29 A10
VO7 17 WE# 18 NC 19 A19 20 A18 21 A17 22 A16 23	32 // VO8 31 A20 30 A 9 29 A10
WE# 18 NC 19 A19 20 A18 21 A17 22 A16 23	31 A20 30 A 9 29 A10
NC 19 A19 20 A18 21 A17 22 A16 23	30 A 9 29 A10
A19 20 A18 21 A17 22 A16 23	29 A10
A18 21 A17 22 A16 23	
A17 22 A16 23	28 A11
A16 23	
	27 A12
	26 A13
A15 24	25A14

FUNCTION DESCRIPTION

SRAM is one of random access memories. Each byte or word has an address and can be accessed randomly. SRAM has three different modes supported. Each function is described below with Truth Table.

STANDBY MODE

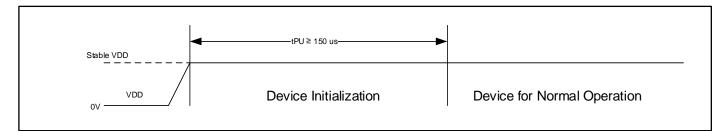
Device enters standby mode when deselected (CS# HIGH). The input and output pins (I/O0-15) are placed in a high impedance state. CMOS input in this mode will maximize saving power.

WRITE MODE

Write operation issues with Chip selected (CS#) and Write Enable (WE#) input LOW. The input and output pins (I/O0-15) are in data input mode. Output buffers are closed during this time even if OE# is LOW. UB# and LB# enables a byte write feature. By enabling LB# LOW, data from I/O pins (I/O0 through I/O7) are written into the location specified on the address pins. And with UB# being LOW, data from I/O pins (I/O8 through I/O15) are written into the location.

READ MODE

Read operation issues with Chip selected (CS# LOW) and Write Enable (WE#) input HIGH. When OE# is LOW, output buffer turns on to make data output. Any input to I/O pins during READ mode is not permitted. UB# and LB# enables a byte read feature. By enabling LB# LOW, data from memory appears on I/O0-7. And with UB# being LOW, data from memory appears on I/O8-15.


In the READ mode, output buffers can be turned off by pulling OE# HIGH. In this mode, internal device operates as READ but I/Os are in a high impedance state. Since device is in READ mode, active current is used.

POWER UP INITIALIZATION

The device includes on-chip voltage sensor used to launch POWER-UP initialization process.

When VDD reaches stable level, the device requires 150us of tPU (Power-Up Time) to complete its self-initialization process.

When initialization is complete, the device is ready for normal operation.

TRUTH TABLE

Mode	CS#	WE#	OE#	LB#	UB#	I/O0-I/O7	I/O8-I/O15	VDD Current
Not Selected	Н	Х	Х	Х	Х	High-Z	High-Z	ISB1, ISB2
Output Dischlod	L	Н	Н	L	L	High-Z	High-Z	ICC
Output Disabled	L	Н	Н	Н	L	High-Z	High-Z	
	L	Н	L	L	Н	DOUT	High-Z	
Read	L	Н	L	Н	L	High-Z	DOUT	ICC
	L	Н	L	L	L	DOUT	DOUT	
	L	L	Х	L	Н	DIN	High-Z	
Write	L	L	Х	Н	L	High-Z	DIN	ICC
	L	L	Х	L	L	DIN	DIN	

IS61/64WV204816ALL IS61/64WV204816BLL

ABSOLUTE MAXIMUM RATINGS AND Operating Range

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value	Unit
Vterm	Terminal Voltage with Respect to VSS	–0.5 to V _{DD} + 0.5V	V
Vdd	VDD Related to VSS	-0.3 to 4.0	V
tStg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN CAPACITANCE (1)

Parameter	Symbol	Test Condition	Max	Units
Input capacitance	CIN	$T_{1} = 25^{\circ}C_{1} f = 1 MH_{7} (1 - 1) (1 $	6	pF
DQ capacitance (IO0–IO15)	CI/O	$T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = V_{DD}(typ)$	8	pF

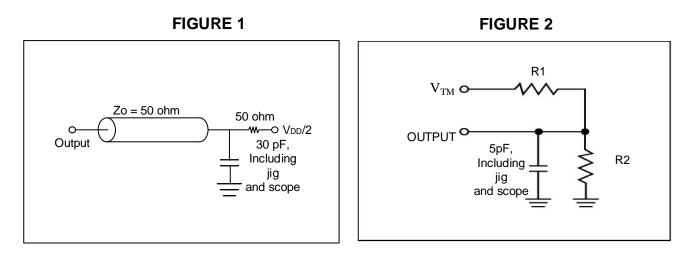
Note:

1. These parameters are guaranteed by design and tested by a sample basis only.

OPERATING RANGE

Range	Ambient Temperature		VDD	SPEED (MAX)
Commoraial	0°C to 170°C	IS61WV204816ALL	1.65V – 2.2V	12 ns ⁽¹⁾
Commercial	0°C to +70°C	IS61WV204816BLL	2.4V – 3.6V	10ns
Industrial	40°C to 105°C	IS61WV204816ALL	1.65V – 2.2V	12 ns ⁽¹⁾
	-40°C to +85°C	IS61WV204816BLL	2.4V – 3.6V	10ns
Automotive (A3)	40°C to 1425°C	IS64WV204816ALL	1.65V – 2.2V	12 ns
	-40°C to +125°C	IS64WV204816BLL	2.4V – 3.6V	12 115

Note:


1. Contact ISSI MKT for 1.8V 10ns device.

AC TEST CONDITIONS (OVER THE OPERATING RANGE)

Parameter	Unit (1.65V~2.2V)	Unit (2.4V~3.6V)
Input Pulse Level	0V to V _{DD}	0V to V _{DD}
Input Rise and Fall Time	1.5 ns	1.5 ns
Output Timing Reference Level	1/2 V _{DD}	1/2 V _{DD}
R1 (ohm)	13500	319
R2 (ohm)	10800	353
V _{TM} (V)	1.8V	3.3V
Output Load Conditions	Refer to Figur	re 1 and 2

AC TEST LOADS

DC ELECTRICAL CHARACTERISTICS

DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE)

VDD = 1.65V - 2.2V

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = -0.1 mA	1.4	—	V
Vol	Output LOW Voltage	I _{OL} = 0.1 mA	—	0.2	V
V _{IH} ⁽¹⁾	Input HIGH Voltage		1.4	V _{DD} + 0.2	V
V _{IL} (1)	Input LOW Voltage		-0.2	0.4	V
ILI	Input Leakage	$GND < V_{IN} < V_{DD}$	-1	1	μA
ILO	Output Leakage	$GND < V_{IN} < V_{DD}$, Output Disabled	-1	1	μA

Note:

1. VILL(min) = -1.0V AC (pulse width < 10ns). Not 100% tested.

VIHH (MAX) = VDD + 1.0V AC (PULSE WIDTH < 10NS). NOT 100% TESTED.

VDD = 2.4V - 3.6V

Symbol	Parame	eter	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH	2.4V ~ 2.7V	$V_{DD} = Min., I_{OH} = -1.0 mA$	2.0		V
	Voltage	2.7V ~ 3.6V	V _{DD} = Min., I _{OH} = -4.0 mA	2.2		
Vol	Output LOW	2.4V ~ 2.7V	$V_{DD} = Min., I_{OL} = 2.0 \text{ mA}$	_	0.4	V
	Voltage	2.7V ~ 3.6V	$V_{DD} = Min., I_{OL} = 8.0 \text{ mA}$	—	0.4	
V _{IH} ⁽¹⁾	Input HIGH Voltage	2.4V ~ 2.7V		2.0	V _{DD} + 0.3	V
		2.7V ~ 3.6V		2.0	VDD + 0.3	
V _{IL} ⁽¹⁾	Input LOW Voltage	2.4V ~ 2.7V		-0.3	0.6	V
		2.7V ~ 3.6V		-0.3	0.8	
ILI	Input Leakage		$VSS < V_{IN} < V_{DD}$	-2	2	μA
ILO	Output Leakage		VSS < V_{IN} < V_{DD} , Output Disabled	-2	2	μA

Note:

1. VIL(min) = -0.3V DC ; VIL(min) = -2.0V AC (pulse width 2.0ns). Not 100% tested.

VIH (max) = VDD + 0.3V DC; VIH(max) = VDD + 2.0V AC (pulse width 2.0ns). Not 100% tested.

POWER SUPPLY CHARACTERISTICS-II FOR POWER (1, 2) (OVER THE OPERATING RANGE)

IS61/64WV204816ALL (VDD = 1.65V - 2.2V) & IS61/64WV204816BLL (VDD = 2.4V - 3.6V)

Symbol	Parameter	Test Conditions	Grade	-10 Max.	-12 Max.	Unit
	V Dypamic Operating		Com.	90	85	
ICC	V _{DD} Dynamic Operating Supply Current	$V_{DD} = MAX$, $I_{OUT} = 0 mA$, $f = f_{MAX}$	Ind.	100	95	mA
	Supply Current		Auto.	140	135	
			Com.	80	80	
ICC1	ICC1 Operating Supply Current	$V_{DD} = MAX,$ $I_{OUT} = 0 mA, f = 0$	Ind.	90	90	mA
		1001 = 0 IIIA, 1 = 0	Auto.	110	110	
		$V_{DD} = MAX,$	Com.	60	60	
ISB1	TTL Standby Current (TTL Inputs)	VIN = VIH OF VIL	Ind.	70	70	mA
	(TTE inputs)	$CS # \geq V_{IH}, f = 0$	Auto.	110	110	
		V _{DD} = MAX.	Com.	50	50	
ISB2	CMOS Standby Current (CMOS Inputs)	$CS\# \ge V_{DD} - 0.2V$	Ind.	60	60	m۸
		$V_{IN} \ge V_{DD} - 0.2V$, or $V_{IN} \le 0.2V$	Auto.	100	100	mA
		, f = 0	Тур. (2)	1	0	

Notes:

1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input line change.

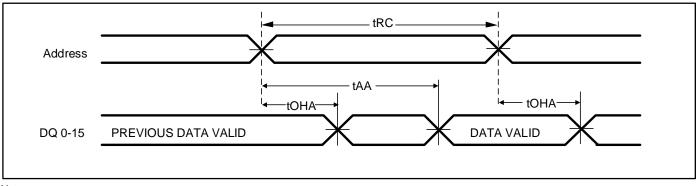
2. Typical values are measured at VDD = 3.0V/1.8V, $T_A = 25$ °C and not 100% tested.

AC CHARACTERISTICS (OVER OPERATING RANGE)

READ CYCLE AC CHARACTERISTICS

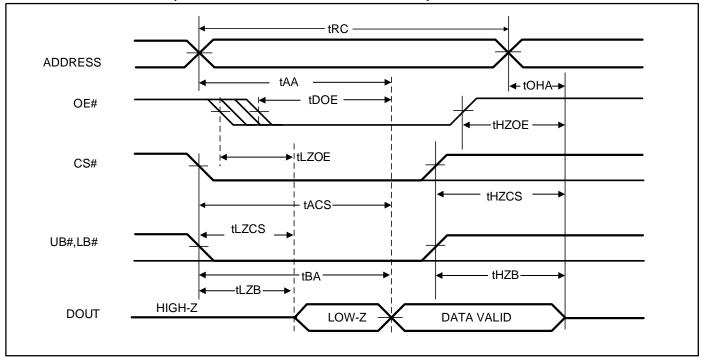
Deremeter	Symbol	-10	(1)	-1	2 ⁽¹⁾		notoo
Parameter	Symbol	Min	Max	Min	Max	unit	notes
Read Cycle Time	tRC	10	-	12	-	ns	
Address Access Time	tAA	-	10	-	12	ns	
Output Hold Time	tOHA	2.5	-	2.5	-	ns	
CS# Access Time	tACE	-	10	-	12	ns	
OE# Access Time	tDOE	-	6	-	7	ns	
OE# to High-Z Output	tHZOE	0	5	0	6	ns	2
OE# to Low-Z Output	tLZOE	0	-	0	-	ns	2
CS# to High-Z Output	tHZCE	0	5	0	6	ns	2
CS# to Low-Z Output	tLZCE	3	-	3	-	ns	2
UB#, LB# Access Time	tBA	-	6	-	7	ns	
UB#, LB# to High-Z Output	tHZB	0	5	0	6	ns	2
UB#, LB# to Low-Z Output	tLZB	0	-	0	-	ns	2

Notes:


1. Test conditions assume signal transition times of 1.5 ns or less, timing reference levels of $V_{DD}/2$, input pulse levels of 0V to V_{DD} and output loading specified in Figure 1.

2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS


READ CYCLE NO. 1⁽¹⁾ (Address Controlled, CS# = OE# = UB# = LB# = LOW, WE# = HIGH)

Note:

1. The device is continuously selected.

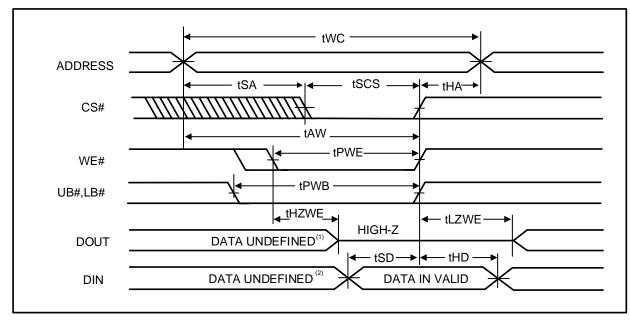
READ CYCLE NO. 2⁽¹⁾ (OE# CONTROLLED, WE# = HIGH)

Note:

1. Address is valid prior to or coincident with CS# LOW transition.

WRITE CYCLE AC CHARACTERISTICS

Peromotor	Symbol	-10	0 ⁽¹⁾	-12 ⁽¹⁾			notoo
Parameter	Symbol	Min	Max	Min	Max	unit	notes
Write Cycle Time	tWC	10	-	12	-	ns	
CS# to Write End	tSCS	8	-	9	-	ns	
Address Setup Time to Write End	tAW	8	-	9	-	ns	
UB#,LB# to Write End	tPWB	8	-	9	-	ns	
Address Hold from Write End	tHA	0	-	0	-	ns	
Address Setup Time	tSA	0	-	0	-	ns	
WE# Pulse Width	tPWE1	8	-	9	-	ns	
WE# Pulse Width (OE# = LOW)	tPWE2	10	-	12	-	ns	2
Data Setup to Write End	tSD	6	-	7	-	ns	
Data Hold from Write End	tHD	0	-	0	-	ns	
WE# LOW to High-Z Output	tHZWE	-	4	-	5	ns	
WE# HIGH to Low-Z Output	tLZWE	2	-	2	-	ns	

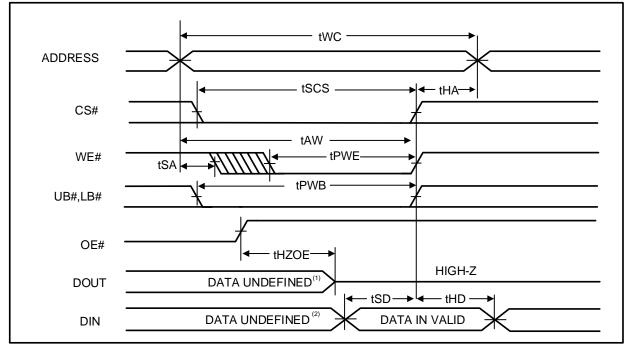

Notes:

1 The internal write time is defined by the overlap of CS# = LOW, UB# or LB# = LOW, and WE# = LOW. All conditions must be in valid states to initiate a Write, but any condition can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

2 Tested tPWE > tHZWE + tSD when OE# is LOW.

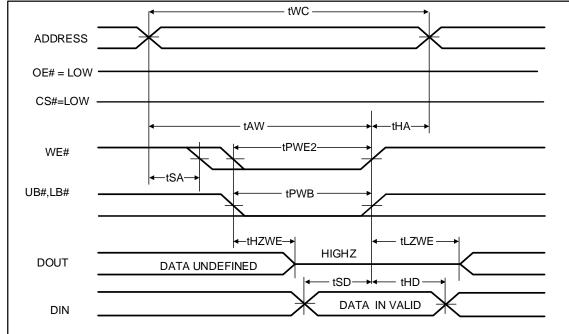
AC WAVEFORMS

WRITE CYCLE NO. 1 (CS# CONTROLLED, OE# = HIGH OR LOW)



Note:

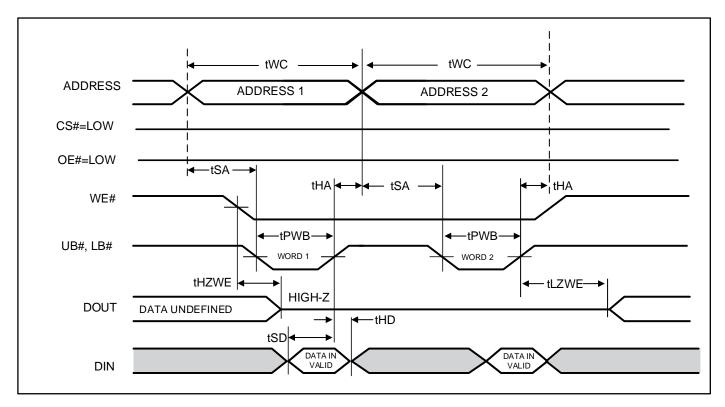
^{1.} tHZWE is is based on the assumption when tSA=0nS after READ operation. Actual DOUT for tHZWE may not appear if OE# goes high before Write Cycle.


WRITE CYCLE NO. 2^(1,2) (WE# CONTROLLED: OE# IS HIGH DURING WRITE CYCLE)

Notes:

2. During this period the I/Os are in output state. Do not apply input signals.

WRITE CYCLE NO. 3⁽¹⁾ (WE# CONTROLLED: OE# IS LOW DURING WRITE CYCLE)


Note:

1. If OE# is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS.

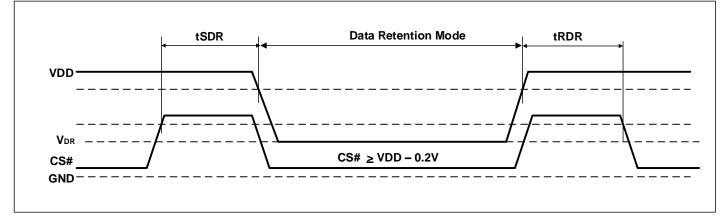
^{1.} tHZOE is the time DOUT goes to High-Z after OE# goes high.

WRITE CYCLE NO. 4^(1, 2, 3) (UB# & LB# Controlled, CS# = OE# = LOW)

Notes:

- 1. If OE# is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS.
- 2. Due to the restriction of note1, OE# is recommended to be HIGH during write period.
- 3. WE# stays LOW in this example. If WE# toggles,, tPWE and tHZWE must be considered.

DATA RETENTION CHARACTERISTICS


Symbol	Parameter	Test Condition	OPTION	Min.	Typ. ⁽²⁾	Max.	Unit
V _{DR}	V _{DD} for Data Retention	See Data Retention Waveform	$V_{DD} = 2.4 V$ to 3.6V	2.0		3.6	- V
		See Data Retention wavelorm	$V_{DD} = 1.65V$ to 2.2V	1.2		3.6	
I _{DR}	Data Retention Current	$V_{DD} = V_{DR}(min),$ CS# $\geq V_{DD} - 0.2V$	Com.	-	10	50	
			Ind.	-	-	60	mA
			Auto	-	-	100	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	-	-	ns
t _{RDR}	Recovery Time	See Data Retention Waveform		tRC	-	-	ns

Notes:

1. If $CS# \ge VDD-0.2V$, all other inputs including UB# and LB# must meet this condition.

2. Typical values are measured at $V_{DD} = V_{DR}$ (Min), $T_A = 25$ °C and not 100% tested.

DATA RETENTION WAVEFORM (CS# CONTROLLED)

ORDERING INFORMATION

IS61/64WV204816ALL (1.65V - 2.2V)

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
10	Contact ISSI MKT for 10ns	
12	IS61WV204816ALL-12B	mini BGA (6mm x 8mm)
12	IS61WV204816ALL-12BL	mini BGA (6mm x 8mm), Lead-free
12	IS61WV204816ALL-12TL	TSOP (Type I), Lead-free

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
10	Contact ISSI MKT for 10ns	
12	IS61WV204816ALL-12BI	mini BGA (6mm x 8mm)
12	IS61WV204816ALL-12BLI	mini BGA (6mm x 8mm), Lead-free
12	IS61WV204816ALL-12TLI	TSOP (Type I), Lead-free

Automotive (A3) Range: -40°C to +125°C

Speed (ns)	Order Part No.	Package
12	IS64WV204816ALL-12BA3	mini BGA (6mm x 8mm)
12	IS64WV204816ALL-12BLA3	mini BGA (6mm x 8mm), Lead-free
12	IS64WV204816ALL-12CTLA3	TSOP (Type I), Copper Lead-frame, Lead-free

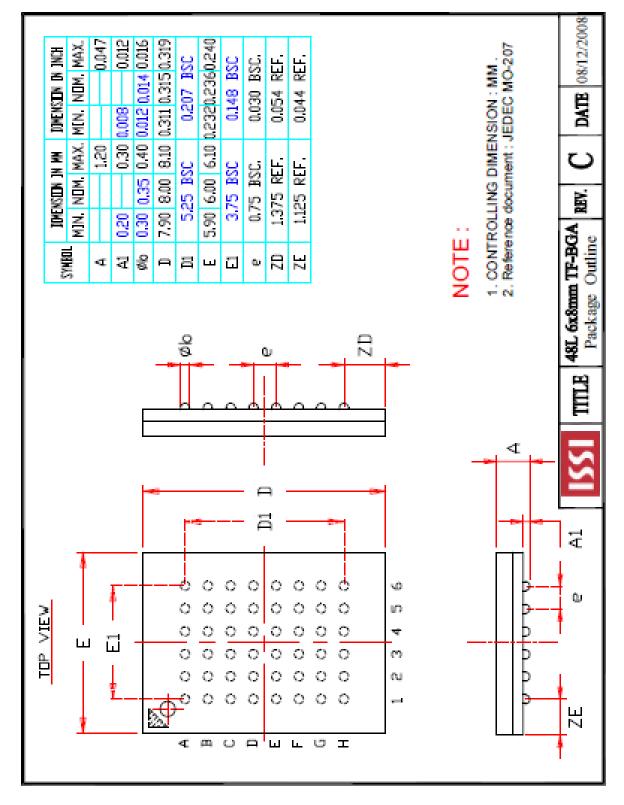
IS61/64WV204816BLL (2.2V - 3.6V)

Commercial Range: 0°C to +70°C

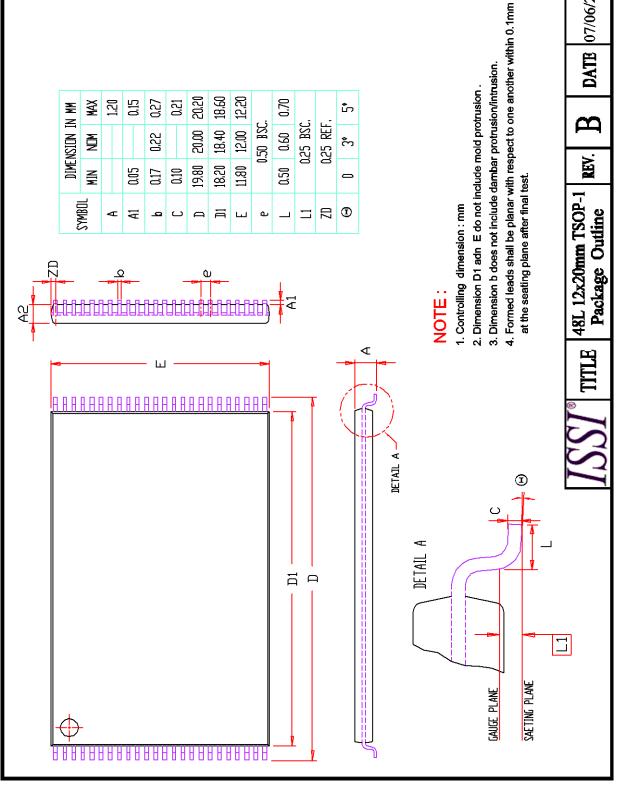
Speed (ns)	Order Part No.	Package
10	IS61WV204816BLL-10B	mini BGA (6mm x 8mm)
10	IS61WV204816BLL-10BL	mini BGA (6mm x 8mm), Lead-free
10	IS61WV204816BLL-10TL	TSOP (Type I), Lead-free

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package	
10	IS61WV204816BLL-10BI	mini BGA (6mm x 8mm)	
10	IS61WV204816BLL-10BLI	mini BGA (6mm x 8mm), Lead-free	
10	IS61WV204816BLL-10TLI	TSOP (Type I), Lead-free	


Automotive (A3) Range: -40°C to +125°C

Speed (ns)	Order Part No.	Package
12	IS64WV204816BLL-12BA3	mini BGA (6mm x 8mm)
12	IS64WV204816BLL-12BLA3	mini BGA (6mm x 8mm), Lead-free
12	IS64WV204816BLL-12CTLA3	TSOP (Type I), Copper Lead-frame, Lead-free


IS61/64WV204816ALL IS61/64WV204816BLL

PACKAGE INFORMATION

18,60 20,20 0,15 MAX 1.20 0.21 0.27

IS61/64WV204816ALL IS61/64WV204816BLL

07/06/2006

DATE