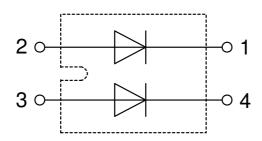


HiPerFRED

400 V V_{RRM} = 2x 120 A

High Performance Fast Recovery Diode Low Loss and Soft Recovery Parallel legs

Part number


DPF240X400NA

Backside: isolated

30 ns

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- · Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~ • Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Terms _Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

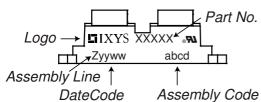
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments; the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified

20160217b



Fast Diode					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse blocki	ing voltage	$T_{VJ} = 25^{\circ}C$			400	V	
V _{RRM}	max. repetitive reverse blocking v	oltage	$T_{VJ} = 25^{\circ}C$			400	V	
I _R	reverse current, drain current	$V_R = 400 \text{ V}$	$T_{VJ} = 25^{\circ}C$			10	μΑ	
		$V_R = 400 \text{ V}$	$T_{VJ} = 150$ °C			0.5	mΑ	
V _F	forward voltage drop	I _F = 120 A	$T_{VJ} = 25^{\circ}C$			1.25	V	
		$I_F = 240 A$				1.54	٧	
		I _F = 120 A	T _{vJ} = 150°C			1.06	٧	
		$I_F = 240 A$				1.42	٧	
I _{FAV}	average forward current	$T_c = 70$ °C	T _{vJ} = 150°C			120	Α	
		rectangular d = 0.5						
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.71	٧	
r _F	slope resistance	oss calculation only				2.9	mΩ	
R _{thJC}	thermal resistance junction to case	e				0.5	K/W	
R _{thCH}	thermal resistance case to heatsir	nk			0.10		K/W	
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			250	W	
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			1.20	kA	
C	junction capacitance	$V_R = 200 \text{V}$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		187		pF	
I _{RM}	max. reverse recovery current	\	$T_{VJ} = 25 ^{\circ}\text{C}$		7		Α	
		$I_F = 120 \text{ A}; V = 240 \text{ V}$	$T_{VJ} = 125$ °C		18		Α	
t _{rr}	reverse recovery time	$\begin{cases} I_F = 120 \text{ A}; V = 240 \text{ V} \\ -d_F/dt = 200 \text{ A}/\mu\text{s} \end{cases}$	$T_{VJ} = 25 ^{\circ}\text{C}$		30		ns	
)	T _{vJ} = 125°C		140		ns	

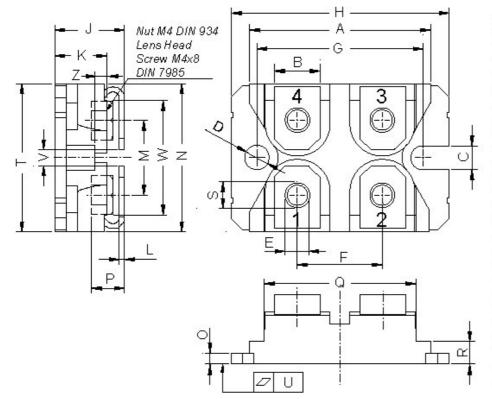
Package SOT-227B (minibloc)			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					150	Α
T _{VJ}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
$\mathbf{M}_{_{T}}$	terminal torque				1.1		1.5	Nm
d _{Spp/App}	oroonago distance on surfa	ce striking distance through air	terminal to terminal	10.5	3.2			mm
$d_{Spb/Apb}$	creepage distance on surra	ce striking distance through an	terminal to backside	8.6	6.8			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 LL 5040 L		3000			٧
.002		t = 1 minute	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		2500			٧

Product Marking

Part description

D = Diode P = HiPerFRED F = ultra fast

240 = Current Rating [A]


X = Parallel legs 400 = Reverse Voltage [V] NA = SOT-227B (minibloc)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DPF240X400NA	DPF240X400NA	Tube	10	499554

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$
$I \rightarrow V_0$	R _o -	Fast Diode		
V _{0 max}	threshold voltage	0.71		V
$R_{\text{0 max}}$	slope resistance *	1.01		$m\Omega$

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches		
Dilli.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
Κ	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
M	12.50	13.10	0.492	0.516	
N	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Р	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
٧	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Z	2.50	2.70	0.098	0.106	

Fast Diode

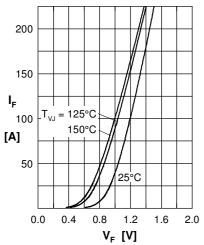


Fig. 1 Forward current I_F vs. V_F

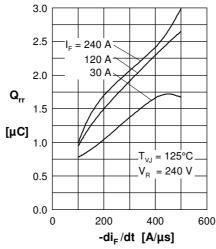


Fig. 2 Typ. reverse recovery charge Q_{rr} vs. $-di_F/dt$

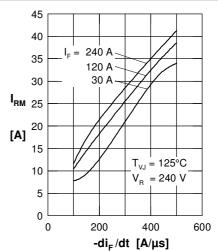


Fig. 3 Typ. reverse recovery current I_{RM} vs. $-di_{\text{F}}/dt$

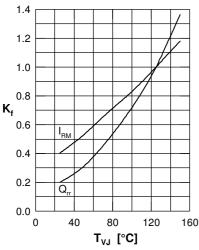


Fig. 4 Typ. dynamic parameters Q_{rr} , I_{RM} vs. T_{VJ}

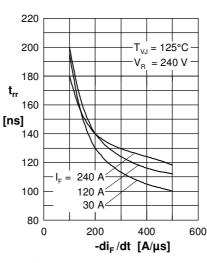


Fig. 5 Typ. reverse recovery time t_{rr} vs. $-di_{F}/dt$

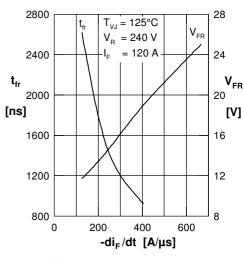


Fig. 6 Typ. forward recovery voltage $V_{FR} \& t_{fr} \text{ vs. } di_F/dt$

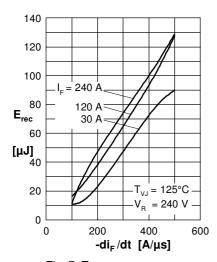


Fig. 7 Typ. recovery energy E_{rec} vs. $-di_F/dt$

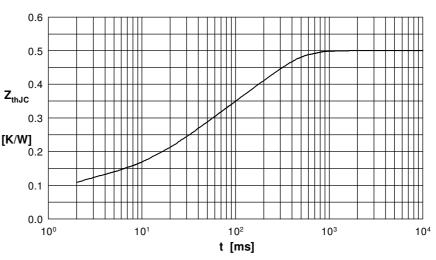


Fig. 8 Transient thermal impedance junction to case