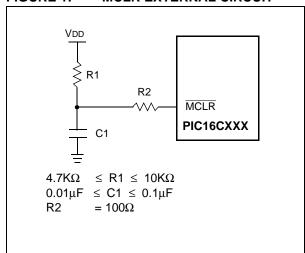
PIC16C773

PIC16C773 Rev. A Silicon Errata Sheet

The PIC16C773 (Rev. A) parts you have received conform functionally to the Device Data Sheet (DS30275**A**), except for the anomalies described below.

All the problems listed here will be addressed in future revisions of the PIC16C773 silicon.

1. Module: RESET


The minimum specification for the MCLR must be met in order to RESET the PIC16CXXX. If a MCLR pulse occurs that is less that the minimum specification (parameter #30), improper device operation can occur.

If the minimum specification cannot be met, then an external circuit must be used to insure that any pulse width less than the specification will be filtered before it reaches the $\overline{\text{MCLR}}$ pin.

Work Around

A possible circuit is shown in Figure 1. Proper design validation needs to be done to ensure desire operation over the applications operating conditions.

FIGURE 1: MCLR EXTERNAL CIRCUIT

Note: As with any windowed EPROM device, please cover the window at all times, except when erasing.

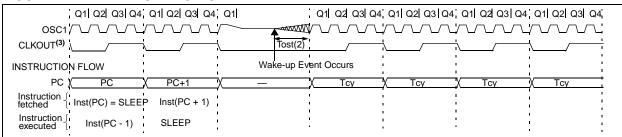
PIC16C773

2. Module: OSCILLATOR

The Oscillator Start-up Timer (Tost) delay may not occur when the device wakes-up from sleep.

Figure 2 shows the start-up of the crystal after the event that causes the device to wake up from sleep mode (as specified in device data sheet). The start-up time (Tost) may not occur.

The events that wake-up the device from sleep are:


- An interrupt
- A WDT overflow (wake-up)
- · A Brown-out Reset
- A MCLR reset

In applications where time based measurements are started immediately after wake-up from sleep, the suggested work around should be implemented.

Work Around

After the SLEEP instruction, do a software delay of 256 Tcy (same as 1024 Tosc). At the Reset and Interrupt vector addresses, test to see if the device woke from sleep (the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits), and if the device did wake from sleep, ensure that the total cycle delay is 256 Tcy.

FIGURE 2: WAKE-UP FROM SLEEP

- Note 1: For Tost delay to be enabled, the XT, HS or LP oscillator mode must be selected.
 - 2: Tost = 1024Tosc. This delay may not occur and every valid clock edge will generate internal device clocks.
 - **3:** CLKOUT is not available in these osc modes, but shown here for timing reference.

Module: TMR1

When operating in external clock mode (TMR1CS is set), reading either of the timer 1 registers (TMR1H or TMR1L) may cause the timer not to increment as expected. This occurs for both synchronous and asynchronous inputs.

The scenarios which display this are:

- When a read operation of the TMR1H register occurs, the TMR1L register may not increment.
- When a read operation of the TMR1L register occurs, the TMR1H register may not increment. This improper operation is only an issue when the TMR1L register increments from FFh to 00h (FFh → 00H) during the read of the TMR1L register

Work Around

Do not read either the TMR1H or the TMR1L registers when operating in external clock mode (TMR1CS is set). If the application needs to read the 16-bit counter, evaluate if this function can be moved to the TMR0 or one of the other timer resources on the device.

4. Module: MSSP- SPI™ Mode

The SDI pin cannot be used as a general purpose output by clearing the TRIS bit when the MSSP module is in SPI mode.

Work Around

None for current silicon revision.

5. Module: VREF

a. The operating voltage range for VRL is VDD \geq 3.0V. (See parameter D400)

Work Around

None.

b. The maximum output voltage for VRL is 2.25V. The minimum output voltage for VRL is 1.8V. The maximum output voltage for VRH is 4.5V. The minimum output voltage for VRH is 3.7V. (See parameter D400)

Work Around

None.

 The VRH and VRL outputs may have an output voltage fluctuation that is typically 50mV p-p.

Work Around

Connecting a $1\mu F$ capacitor to each voltage reference pin that is used will reduce the fluctuations, if present.

6. Module: 12-bit A/D Converter

The maximum integral error specification for the A/D converter (parameter A03) is +/-3 LSb.

The maximum offset error specification for the A/D converter (parameter A06) is +/-5 LSb.

The maximum integral error specification (parameter A03) may be exceeded when either of the VREF module outputs is used as a reference for the A/D converter.

The operating voltage range for the A/D converter is $3.5V \le VDD \le 5.5V$.

Work Around

None.

7. Module: PORTD, PORTE

The internal operation of the PIC16C773, Rev. A device is equivalent to a PIC16C774 device. That is, these devices include PORTD, PORTE and the Parallel Slave Port module.

Work Around

The application source code should set the TRISD and TRISE registers to 00h.

8. Module: LVD

The minimum levels (parameter D420) specified for the LVD module differ from the Device Data Sheet as

follows:

Work Around

None.

TABLE 15-3 ELECTRICAL CHARACTERISTICS: LVD

Standard Operating Conditions (unless otherwise stated)									
DC CHVI	RACTERISTICS	Operating temperature -40°C ≤ TA ≤ +85°C for industrial and							
DC CHAI	NACTERISTICS		0° C $\leq TA \leq +70^{\circ}$ C for commercial						
		Operating voltage	e VDD range	as des	cribed i	n DC s	pec Secti	on 15.1 and Section 15.2.	
Param No.	Characteristic		Symbol	Min	Тур†	Max	Units	Conditions	
D420	LVD Voltage	LVV = 0100		2.25	2.58	2.66	V		
		LVV = 0101		2.44	2.78	2.86	V		
		LVV = 0110		2.55	2.89	2.98	V		
		LVV = 0111		2.76	3.1	3.2	V		
		LVV = 1000		3.04	3.41	3.52	V		
		LVV = 1001		3.25	3.61	3.72	V		
		LVV = 1010		3.35	3.72	3.84	V		
		LVV = 1011		3.53	3.92	4.04	V		
		LVV = 1100		3.72	4.13	4.26	V		
		LVV = 1101		3.89	4.33	4.46	V		
		LVV = 1110		4.17	4.64	4.78	V		
D421	Supply Current		Δ llvd	_	10	20	μΑ		
D422*	LVD Voltage Drift Temperature		TCVout	_	15	50	ppm/°C		
	coefficient								
D423*	LVD Voltage Drift with respect to		ΔVLVD/	_	_	50	μV/V		
	VDD Regulation		ΔVDD						
D424*	Low-voltage Detec	t Hysteresis	VLHYS	TBD	_	100	mV		

^{*} These parameters are characterized but not tested.

Note 1: Production tested at Tamb = 25°C. Specifications over temperature limits ensured by characterization.

9. Module: BOR Work Around

The maximum levels specified (parameter D005) for the BOR module differ from the Device Data Sheet as follows: None.

TABLE 15-4 ELECTRICAL CHARACTERISTICS: BOR

Standard Opera Operating tempe DC CHARACTERISTICS Operating voltage			erature -	40°C ` ≤ 1°C ≤	≤ TA ≤ +8 ≤ TA ≤ +7	5°C for i	ndustrial a commercia	ıl
	1	Section 15.2.	, ,	1	1	· 1	1	
Param No.	Characteristic		Symbol	Min	Тур	Max	Units	Conditions
D005	BOR Voltage	BORV1:0 = 11		1.8	2.58	2.8		
		BORV1:0 = 10	VBOR	2.0	2.78	2.9	V	
		BORV1:0 = 01	VBOR	3.6	4.33	4.45	v	
		BORV1:0 = 00		4.0	4.64	4.85		
D006*	BOR Voltage Drift Temperature coefficient		TCVout	_	15	50	ppm/°C	
D006A*	BOR Voltage Drift with respect to VDD Regulation		ΔVBOR/ ΔVDD	_	_	50	μV/V	
D007	Brown-out Hysteresis	S	VBHYS	TBD	_	100	mV	
D022A	Supply Current		Δlbor	_	10	TBD	μΑ	

^{*} These parameters are characterized but not tested.

Note 1: Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS30275A), the following clarifications and corrections should be noted.

The typical A/D converter supply current (parameter D026) should be the value indicated in Table 15-1 and Table 15-2 below.

15.1 DC Characteristics: PIC16C77X (Commercial, Industrial)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C $\leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial and 0°C $\leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001 D001A	Supply Voltage	VDD	4.0 4.5		5.5 5.5	V	XT, RC and LP osc configuration HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	VDR	_	1.5	_	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	_	Vss	_	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	_	_	V/ms	See section on Power-on Reset for details. PWRT_enabled		
D010	Supply Current (Note 2)	IDD		2.7	30	mA mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V		
D020 D020A	Power-down Current (Note 3)	TPD	7	1.5	16 19	μA μA	VDD = 4.0V, -0°C to +70°C VDD = 4.0V, -40°C to +85°C		
	Module Differential Current (Note 5)								
D021	Watchdog Timer	Δ lwdt	_	6.0	20	μΑ	VDD = 4.0V		
D023B*	Bandgap voltage generator	ΔIBG^6	_	40μΑ	TBD	μΑ			
D025*	Timer1 oscillator	ΔIT1osc	_	5	9	μΑ	VDD = 4.0V		
D026*	A/D Converter	ΔIAD	_	70		μΑ	VDD = 5.5V, A/D on, not converting		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD.
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
 - **4:** For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: The Δ current is the additional current consumed when the peripheral is enabled. This current should be added to the base (IPD or IDD) current.
 - 6: The bandgap voltage reference provides 1.22V to the VRL, VRH, LVD and BOR circuits. When calculating current consumption, use the following formula: $\Delta IVRL + \Delta IVRH + \Delta ILVD + \Delta IBOR + \Delta IBOR$. Any of the $\Delta IVRL$, $\Delta IVRH$, $\Delta ILVD$ or $\Delta IBOR$ can be 0.

15.2 <u>DC Characteristics:PIC16LC77X-04 (Commercial, Industrial)</u>

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	VDD	2.5	_	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	VDR	_	1.5	_	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	_	Vss	_	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	_	_	V/ms	See section on Power on Reset for details. PWRT enabled		
D010	Supply Current (Note 2)	IDD	_	2.0	3.8	mX	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)		
D010A			\ \ \	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D020 D020A	Power-down Current (Note 3)	1PD	17	0.9	5 5	μA μA	VDD = 3.0V, 0°C to +70°C VDD = 3.0V, -40°C to +85°C		
	Module Differential Cur- rent (note5)								
D021	Watchdog Timer	ΔłWDT	_	6	20	μΑ	VDD = 3.0V		
D025*	Timer1 osdillator	ΔIT1osc	_	1.5	3	μΑ	VDD = 3.0V		
D026*	A/D Converter	ΔIAD	_	70	_	μΑ	VDD = 5.5V, A/D on, not converting		

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD.

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
- **4:** For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when the peripheral is enabled. This current should be added to the base (IPD or IDD) current.

The typical Vref line regulation should be the value specified in Table 15-2 below.

TABLE 15-2 ELECTRICAL CHARACTERISTICS: VREF

Standard Operating Conditions (unless otherwise stated)											
DC CHAB	DC CHARACTERISTICS Operating temperature -40°C ≤ TA ≤ +85°C for industrial and										
DC CHAR	ACTERISTICS		0°C	≤ TA :	≤ +70°C	for comme	ercial				
	Operating voltage VDD range as described in DC spec Section 15.1 and Section 15.2.										
Param No.	Characteristic	Symbol	Min	Тур†	Max	Units	Conditions				
D400	Output Voltage	VRL	2.0	2.048	2.1	V	VDD ≥ 2.5V				
		VRH	4.0	4.096	4.2	V	VDD ≥ 4.5V				
D401A	VRL Quiescent Supply Current	ΔIV RL	_	70/	ŢBD	μΑ	No load on VRL.				
D401B	VRH Quiescent Supply Current	ΔIVRH	l – ,	70	TBD	μΑ	No load on VRH.				
D402	Ouput Voltage Drift	TCVout	7	15*\	50*	ppm/°C	Note 1				
D404	External Load Source	IVREFSO	///	$\langle \mathcal{A} \rangle$	5*	mA					
D405	External Load Sink	IVREESI	1		-5*	mA					
D406	Load Regulation	11	//	1	TBD*		Isource = 0 mA to				
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\triangleright			mV/mA	5 mA				
		Alout	-	1	TBD*	1117/11174	Isink = 0 mA to				
							5 mA				
D407	Line Regulation	ΔVOUT/		1	_	mV/V					

^{*} These parameters are characterized but not tested.

Note 1: Production tested at TAMB = 25°C. Specifications over temp limits ensured by characterization.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

The maximum LVD supply current (parameter D421) should be the value indicated in Table 15-3 below.

TABLE 15-3 ELECTRICAL CHARACTERISTICS: LVD

	Standard Operating Co.	nditions (unless otherwise stated)
DC CHARACTERISTICS	Operating temperature	-40°C ≤ TA ≤ +85°C for industrial and
	O 16 17	0° C \leq TA \leq +70°C for commercial

Operating voltage VDD range as described in DC spec Section 15.1 and Section 15.2. Param **Units** Characteristic **Symbol** Min Typ† Max **Conditions** No. D420 LVV = 0100 ٧ 2.5 2.58 2.66 LVD Voltage 2.78 LVV = 0101 2.7 2.86 Ŋ LVV = 0110 2.8 \$ 89 2,98 ٧ LVV = 0111 1/8/ **3**.2 ٧ 3.Q LVV = 1000 3:41 ٧ 3.3 3.52 LVV = 1001 3.61 ٧ 3.5 3.72 LVV = 1010 3.72 3.84 V 3.6 LVV = 1011 3.92 V 3.8 4.04 LVV = 1100 ٧ 4.0 4.13 4.26 101(4 VVJ 4.2 4.33 4.46 ٧ LVV=1110 4.5 4.64 4.78 ٧ D421 Supply Current Δ ILVD 10 TBD μΑ LVD Voltage Drift Temperature **TCV**OUT D422* 15 50 ppm/°C coefficient LVD Voltage Drift with respect to D423* ΔVLVD/ 50 $\mu V/V$ **VDD** Regulation ΔV DD

Low-voltage Detect Hysteresis

D424*

Note 1: Production tested at Tamb = 25°C. Specifications over temperature limits ensured by characterization.

VLHYS

TBD

100

m۷

^{*} These parameters are characterized but not tested.

The maximum BOR supply current (parameter D022A) should be the value indicated in Table 15-4 below.

TABLE 15-4 ELECTRICAL CHARACTERISTICS: BOR

	Standard Operating Conditions (unless otherwise stated)						
	Operating temperature	-40°C	≤ TA ≤ +85°C for industrial and				
DC CHARACTERISTICS		0°C	≤ TA ≤ +70°C for commercial				
	Operating voltage VDD range as described in DC spec Section 15.1 and						

Section 15.2.

0601011 10.2.								
Param No.	Characteristic		Symbol	Min	Тур	Max	Units	Conditions
D005	BOR Voltage	BORV1:0 = 11		2.5	2.58	2.66		
		BORV1:0 = 10	VBOR	2.7	2.78	2.86	V	
		BORV1:0 = 01	VBOR	4.2	4.33	4.46	V	
		BORV1:0 = 00		4.5	4.64	4.78		
D006*	BOR Voltage Drift Temperature coefficient		TCVout	_	15	50	ppm/°C	
D006A*	BOR Voltage Drift with respect to		ΔVBOR/	_	_	50	μV/V	
	VDD Regulation		ΔVDD					
D007	Brown-out Hysteresis		VBHYS	TBD	_	100	mV	
D022A	Supply Current		$\Delta IBOR$		10	TBD	μΑ	

^{*} These parameters are characterized but not tested.

Note 1: Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

IC1	6	C7	77	2
	יסו	L		J

NOTES:

Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELO© code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Microchip Technology Consulting (Shanghai)

Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg.

No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd.

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086

Hong Kong

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divvasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980

Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02