

MicroPower, Single-Supply OPERATIONAL AMPLIFIERS MicroAmplifier ${ }^{\text {T" }}$ Series

FEATURES

- MicroSIZE PACKAGES OPA244 (Single): SOT-23-5 OPA2244 (Dual): MSOP-8 OPA4244 (Quad): TSSOP-14
- MicroPOWER: $I_{Q}=50 \mu \mathrm{~A} /$ channel
- SINGLE SUPPLY OPERATION
- WIDE BANDWIDTH: 430kHz
- WIDE SUPPLY RANGE:

Single Supply: 2.2 V to 36 V
Dual Supply: $\pm 1.1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

APPLICATIONS

- BATTERY POWERED SYSTEMS
- PORTABLE EQUIPMENT
- PCMCIA CARDS
- BATTERY PACKS AND POWER SUPPLIES
- CONSUMER PRODUCTS

DESCRIPTION

The OPA244 (single), OPA2244 (dual), and OPA4244 (quad) op amps are designed for very low quiescent current $(50 \mu \mathrm{~A} / c h a n n e l)$, yet achieve excellent bandwidth. Ideal for battery powered and portable instrumentation, all versions are offered in micro packages for space-limited applications. The dual and quad versions feature completely independent circuitry for lowest crosstalk and freedom from interaction, even when overdriven or overloaded.
The OPA244 series is easy to use and free from phase inversion and overload problems found in some other op amps. These amplifiers are stable in unity gain and excellent performance is maintained as they swing to their specified limits. They can be operated from single $(+2.2 \mathrm{~V}$ to $+36 \mathrm{~V})$ or dual supplies ($\pm 1.1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$). The input common-mode voltage range includes ground-ideal for many single supply applications. All versions have similar performance. However, there are some differences, such as common-mode rejection. All versions are interchangeable in most applications.
All versions are offered in miniature, surface-mount packages. OPA244 (single version) comes in the tiny 5-lead SOT-23-5 surface mount, SO-8 surface mount, and 8-pin DIP. OPA2244 (dual version) is available in the MSOP-8 surface mount, SO-8 surface-mount, and 8-pin DIP. The OPA4244 (quad) comes in the TSSOP-14 surface mount. They are fully specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and operate from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. A SPICE Macromodel is available for design analysis.
 Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}=+\mathbf{+ 2 . 6} \mathrm{V}$ to $\mathbf{+ 3 6 \mathrm { V }}$

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0 ^ { \circ }} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
At $T_{A}=+25^{\circ} \mathrm{C}, R_{\mathrm{L}}=20 \mathrm{k} \Omega$ connected to ground, unless otherwise noted.

PARAMETER	CONDITION	OPA244NA, PA, UA			UNITS		
		MIN	TYP(1)	MAX			
OFFSET VOLTAGE Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ vs Temperature $\mathrm{dV}_{\mathrm{OS}} / \mathrm{dT}$ vs Power Supply $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+2.6 \mathrm{~V} \text { to }+36 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+2.6 \mathrm{~V} \text { to }+36 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 0.7 \\ \pm 4 \\ 5 \end{gathered}$	$\begin{gathered} \pm 1.5 \\ \pm 2 \\ \\ 50 \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \end{gathered}$		
INPUT BIAS CURRENT Input Bias Current Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$		$\begin{gathered} -10 \\ \pm 1 \end{gathered}$	$\begin{aligned} & -25 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$		
NOISE Input Voltage Noise, $\mathrm{f}=0.1 \mathrm{kHz}$ to 10 kHz Input Voltage Noise Density, $f=1 \mathrm{kHz}$ Current Noise Density, $f=1 \mathrm{kHz}$			$\begin{aligned} & 0.4 \\ & 22 \\ & 40 \end{aligned}$		$\mu \mathrm{Vp}$-p $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{fA} / \sqrt{\mathrm{Hz}}$		
INPUT VOLTAGE RANGE Common-Mode Voltage Range $\quad \mathrm{V}_{\mathrm{CM}}$ Common-Mode Rejection CMRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=-18 \mathrm{~V} \text { to }+17.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=-18 \mathrm{~V} \text { to }+17.1 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \\ 84 \\ 84 \end{gathered}$	98	$(\mathrm{V}+)-0.9$	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$		
INPUT IMPEDANCE Differential Common-Mode			$\begin{aligned} & 10^{6}\| \| 2 \\ & 10^{9}\| \| 2 \\ & \hline \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
OPEN-LOOP GAIN Open-Loop Voltage Gain $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to }(\mathrm{V}+)-0.9 \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to }(\mathrm{V}+)-0.9 \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \end{aligned}$	106		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time 0.01\% Overload Recovery Time	$\begin{gathered} \mathrm{G}=1 \\ 10 \mathrm{~V} \text { Step } \\ \mathrm{V}_{\mathrm{IN}} \cdot \text { Gain }=\mathrm{V}_{\mathrm{S}} \end{gathered}$		$\begin{gathered} 430 \\ -0.1 /+0.16 \\ 150 \\ 8 \\ \hline \end{gathered}$		kHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$		
OUTPUT Voltage Output, Positive $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Voltage Output, Negative $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Voltage Output, Positive $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Voltage Output, Negative $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Short-Circuit Current Capacitive Load Drive	$\begin{array}{r} \mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ \mathrm{~A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ \mathrm{~A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ \mathrm{~A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ \mathrm{~A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to Ground } \\ \mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to Ground } \\ \mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to Ground } \\ \mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to Ground } \end{array}$	$\begin{gathered} (\mathrm{V}+)-0.9 \\ (\mathrm{~V}+)-0.9 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-0.75 \\ (\mathrm{~V}+)-0.75 \\ 0.2 \\ 0.2 \\ (\mathrm{~V}+)-0.75 \\ (\mathrm{~V}+)-0.75 \\ 0.1 \\ \mathbf{0 . 1} \\ -25 /+12 \\ \text { e Typical Cu } \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$		
POWER SUPPLY Specified Voltage Range Minimum Operating Voltage Quiescent Current $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{O}}=0 \\ \mathrm{I}_{\mathrm{O}}=0 \end{gathered}$	+2.6	$\begin{gathered} +2.2 \\ 50 \end{gathered}$	$\begin{gathered} +36 \\ \\ 60 \\ 70 \end{gathered}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$		
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT-23-5 Surface-Mount SO-8 Surface-Mount 8-Pin DIP		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 100 \end{aligned}$	$\begin{gathered} 85 \\ 125 \\ 150 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$		

NOTE: (1) $\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}=+2.6 \mathrm{~V}$ to $+\mathbf{3 6} \mathrm{V}$
Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ connected to ground, unless otherwise noted.

PARAMETER	CONDITION	OPA2244EA, PA, UA			UNITS		
		MIN	TYP(1)	MAX			
OFFSET VOLTAGE Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ vs Temperature $\mathrm{dV}_{\mathrm{OS}} / \mathrm{dT}$ vs Power Supply $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Channel Separation	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+2.6 \mathrm{~V} \text { to }+36 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+2.6 \mathrm{~V} \text { to }+36 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 0.7 \\ \pm 4 \\ 5 \\ 140 \end{gathered}$	$\begin{gathered} \pm 1.5 \\ \pm 2 \\ \\ 50 \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \end{gathered}$		
INPUT BIAS CURRENT Input Bias Current Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$		$\begin{gathered} -10 \\ \pm 1 \end{gathered}$	$\begin{aligned} & -25 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$		
NOISE Input Voltage Noise, $\mathrm{f}=0.1 \mathrm{kHz}$ to 10 kHz Input Voltage Noise Density, $f=1 \mathrm{kHz}$ Current Noise Density, $f=1 \mathrm{kHz}$			$\begin{aligned} & 0.4 \\ & 22 \\ & 40 \end{aligned}$		$\mu \vee p-p$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{fA} / \sqrt{\mathrm{Hz}}$		
INPUT VOLTAGE RANGE	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=-18 \mathrm{~V} \text { to }+17.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=-18 \mathrm{~V} \text { to }+17.1 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \\ 72 \\ 72 \end{gathered}$	98	(V+) - 0.9	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$		
INPUT IMPEDANCE Differential Common-Mode			$\begin{aligned} & 10^{6}\| \| 2 \\ & 10^{9}\| \| \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
OPEN-LOOP GAIN Open-Loop Voltage Gain $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to }(\mathrm{V}+)-0.9 \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to }(\mathrm{V}+)-0.9 \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \end{aligned}$	106		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		
FREQUENCY RESPONSE Gain-Bandwidth Product GBW Slew Rate Settling Time 0.01\% Overload Recovery Time	$\begin{gathered} \mathrm{G}=1 \\ 10 \mathrm{~V} \text { Step } \\ \mathrm{V}_{\mathrm{IN}} \cdot \text { Gain }=\mathrm{V}_{\mathrm{S}} \end{gathered}$		$\begin{gathered} 430 \\ -0.1 /+0.16 \\ 150 \\ 8 \end{gathered}$		kHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$		
OUTPUT Voltage Output, Positive $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Voltage Output, Negative $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Voltage Output, Positive $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Voltage Output, Negative $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Short-Circuit Current Capacitive Load Drive	$\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$ $A_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$ $\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$ $\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$ $A_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to Ground $A_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to Ground $\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to Ground $A_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to Ground	$\begin{gathered} (\mathrm{V}+)-0.9 \\ (\mathrm{~V}+)-0.9 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-0.75 \\ (\mathrm{~V}+)-0.75 \\ 0.2 \\ 0.2 \\ (\mathrm{~V}+)-0.75 \\ (\mathrm{~V}+)-0.75 \\ 0.1 \\ 0.1 \\ -25 /+12 \\ \text { Typical Cur } \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$		
POWER SUPPLY Specified Voltage Range Minimum Operating Voltage Quiescent Current (per amplifier) $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{O}}=0 \\ \mathrm{I}_{\mathrm{O}}=0 \end{gathered}$	+2.6	$\begin{gathered} +2.2 \\ 40 \end{gathered}$	$\begin{array}{r} +36 \\ \\ 50 \\ 63 \end{array}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$		
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance MSOP-8 Surface-Mount SO-8 Surface-Mount 8-Pin DIP		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 100 \end{aligned}$	$\begin{gathered} 85 \\ 125 \\ 150 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$		

NOTE: (1) $\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$.

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}=+2.6 \mathrm{~V}$ to +36 V

Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
At $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=20 \mathrm{k} \Omega$ connected to ground, unless otherwise noted.

PARAMETER	CONDITION	OPA4244EA			UNITS		
		MIN	TYP(1)	MAX			
OFFSET VOLTAGE Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ vs Temperature $\mathrm{dV}_{\mathrm{OS}} / \mathrm{dT}$ vs Power Supply $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Channel Separation	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+2.6 \mathrm{~V} \text { to }+36 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+2.6 \mathrm{~V} \text { to }+36 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 0.7 \\ \pm 4 \\ 5 \\ \\ 140 \end{gathered}$	$\begin{gathered} \pm 1.5 \\ \pm 2 \\ \\ 50 \\ 50 \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mathrm{~dB} \end{gathered}$		
INPUT BIAS CURRENT Input Bias Current Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$		$\begin{gathered} -10 \\ \pm 1 \end{gathered}$	$\begin{aligned} & -25 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$		
NOISE Input Voltage Noise, $\mathrm{f}=0.1 \mathrm{kHz}$ to 10 kHz Input Voltage Noise Density, $\mathrm{f}=1 \mathrm{kHz}$ Current Noise Density, $f=1 \mathrm{kHz}$			$\begin{aligned} & 0.4 \\ & 22 \\ & 40 \end{aligned}$		$\mu \vee p-p$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{fA} / \sqrt{\mathrm{Hz}}$		
INPUT VOLTAGE RANGE	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=-18 \mathrm{~V} \text { to }+17.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=-18 \mathrm{~V} \text { to }+17.1 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \\ 82 \\ 82 \end{gathered}$	104	(V+) - 0.9	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$		
INPUT IMPEDANCE Differential Common-Mode			$\begin{aligned} & 10^{6}\| \| 2 \\ & 10^{9}\| \| \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
OPEN-LOOP GAIN Open-Loop Voltage Gain $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to }(\mathrm{V}+)-0.9 \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to }(\mathrm{V}+)-0.9 \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \end{aligned}$	106		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		
FREQUENCY RESPONSE Gain-Bandwidth Product GBW Slew Rate Settling Time 0.01\% Overload Recovery Time	$\begin{gathered} \mathrm{G}=1 \\ 10 \mathrm{~V} \text { Step } \\ \mathrm{V}_{\mathrm{IN}} \cdot \text { Gain }=\mathrm{V}_{\mathrm{S}} \end{gathered}$		$\begin{gathered} 430 \\ -0.1 /+0.16 \\ 150 \\ 8 \end{gathered}$		kHz $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$		
OUTPUT Voltage Output, Positive $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Voltage Output, Negative $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Voltage Output, Positive $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Voltage Output, Negative $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ Short-Circuit Current Capacitive Load Drive	$\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$ $\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$ $\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$ $\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2$ $A_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to Ground $\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to Ground $\mathrm{A}_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to Ground $A_{\mathrm{OL}} \geq 80 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ to Ground	$\begin{gathered} (\mathrm{V}+)-0.9 \\ (\mathrm{~V}+)-0.9 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-0.75 \\ (\mathrm{~V}+)-0.75 \\ 0.2 \\ 0.2 \\ (\mathrm{~V}+)-0.75 \\ (\mathrm{~V}+)-0.75 \\ 0.1 \\ 0.1 \\ -25 /+12 \\ \text { ee Typical Cur } \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$		
POWER SUPPLY Specified Voltage Range Minimum Operating Voltage Quiescent Current (per amplifier) $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{O}}=0 \\ \mathrm{I}_{\mathrm{O}}=0 \end{gathered}$	+2.6	$\begin{gathered} +2.2 \\ 40 \end{gathered}$	$\begin{gathered} +36 \\ \\ 60 \\ 70 \end{gathered}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$		
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance $\quad \theta_{\mathrm{JA}}$ TSSOP-14 Surface Mount		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	100	$\begin{gathered} 85 \\ 125 \\ 150 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$		

NOTE: (1) $\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

NOTES: (1) Stresses above these ratings may cause permanent damage Exposure to absolute maximum conditions for extended periods may degrade device reliability. (2) Inputs are diode-clamped to the supply rails and should be current-limited to 10 mA or less if input voltages can exceed rails by more than 0.3 V . (3) Short-circuit to ground, one amplifier per package.

ELECTROSTATIC (UN DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ${ }^{(1)}$	TRANSPORT MEDIA	
Single OPA244NA OPA244PA OPA244UA	SOT-23-5 Surface-Mount 8-Pin DIP SO-8 Surface-Mount	$\begin{gathered} 331 \\ " \\ 006 \\ 182 \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { " } \\ & -40^{\circ} \mathrm{Co}+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	A44 $"$ OPA244PA OPA244UA $\\|$	OPA244NA/250 OPA244NA/3K OPA244PA OPA244UA OPA244UA/2K5	Tape and Reel Tape and Reel Rails Rails Tape and Reel	
Dual OPA2244EA OPA2244PA OPA2244UA	MSOP-8 Surface-Mount 8-Pin DIP SO-8 Surface-Mount	$\begin{gathered} 337 \\ " \\ 006 \\ 182 \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { " } \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { A44 } \\ " \\ \text { OPA2244PA } \\ \text { OPA2244UA } \\ \hline " \end{gathered}$	OPA2244EA/250 OPA2244EA/2K5 OPA2244PA OPA2244UA OPA2244UA/2K5	Tape and Reel Tape and Reel Rails Rails Tape and Reel	
Quad OPA4244EA	TSSOP-14 Surface-Mount	357 1	$-40^{\circ} \mathrm{C}$ to ${ }_{\text {" }}+85^{\circ} \mathrm{C}$	OPA4244EA	OPA4244EA/250 OPA4244EA/2K5	Tape and Reel Tape and Reel	

NOTE: (1) Products followed by a slash (/) are only available in Tape and Reel in the quantities indicated (e.g., /250 indicates 250 devices per reel). Ordering 3000 pieces of "OPA244NA/3K" will get a single 3000 piece Tape and Reel.

TYPICAL PERFORMANCE CURVES

At $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ connected to Ground, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ connected to Ground, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ connected to Ground, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ connected to Ground, unless otherwise noted.

SMALL-SIGNAL STEP RESPONSE, $G=1, C_{L}=100 \mathrm{pF}$

$10 \mu \mathrm{~s} / \mathrm{div}$

$10 \mu \mathrm{~s} / \mathrm{div}$

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$ connected to Ground, unless otherwise noted.

APPLICATIONS INFORMATION

The OPA244 is unity-gain stable and suitable for a wide range of general purpose applications. Power supply pins should be bypassed with $0.01 \mu \mathrm{~F}$ ceramic capacitors.

OPERATING VOLTAGE

The OPA244 can operate from single supply (+2.2 V to +36 V) or dual supplies (± 1.1 to $\pm 18 \mathrm{~V}$) with excellent performance. Unlike most op amps which are specified at only one supply voltage, the OPA244 is specified for real world applications; a single set of specifications applies throughout the +2.6 V to $+36 \mathrm{~V}(\pm 1.3$ to $\pm 18 \mathrm{~V})$ supply range.

This allows a designer to have the same assured performance at any supply voltage within this range. In addition, many key parameters are guaranteed over the specified temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage or temperature are shown in typical performance curves.

Useful information on solder pad design for printed circuit boards can be found in Burr-Brown's Application Bulletin AB-132B, "Solder Pad Recommendations for SurfaceMount Devices," easily found at Burr-Brown's web site (http://www.burr-brown.com).

NOTE: Low and high-side sensing circuits can be used independently.

FIGURE 1. Low and High-Side Battery Current Sensing. INSTRUMENTS

6-Feb-2020
www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
OPA2244EA/250	ACTIVE	VSSOP	DGK	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU \| NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	A44	Samples
OPA2244EA/250G4	ACTIVE	VSSOP	DGK	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	A44	Samples
OPA2244EA/2K5	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS \& no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A44	Samples
OPA2244EA/2K5G4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A44	Samples
OPA2244PA	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br)	NIPDAU	N / A for Pkg Type		OPA2244PA	Samples
OPA2244UA	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	NIPDAU	Level-3-260C-168 HR		$\begin{aligned} & \text { OPA } \\ & 2244 \mathrm{UA} \end{aligned}$	Samples
OPA2244UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-3-260C-168 HR		$\begin{aligned} & \hline \text { OPA } \\ & 2244 \cup A \\ & \hline \end{aligned}$	Samples
OPA2244UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-3-260C-168 HR		$\begin{aligned} & \text { OPA } \\ & 2244 \mathrm{UA} \end{aligned}$	Samples
OPA244NA/250	ACTIVE	SOT-23	DBV	5	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A44	Samples
OPA244NA/250G4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A44	Samples
OPA244NA/3K	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A44	Samples
OPA244NA/3KG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A44	Samples
OPA244UA	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { OPA } \\ & 244 \cup A \end{aligned}$	Samples
OPA244UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \hline \text { OPA } \\ & 244 \cup A \\ & \hline \end{aligned}$	Samples
OPA4244EA/250	ACTIVE	TSSOP	PW	14	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { OPA } \\ & \text { 4244EA } \end{aligned}$	Samples
OPA4244EA/250E4	ACTIVE	TSSOP	PW	14	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-3-260C-168 HR	-40 to 85	OPA 4244EA	Samples
OPA4244EA/2K5	ACTIVE	TSSOP	PW	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-3-260C-168 HR	-40 to 85	OPA 4244EA	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	$\begin{array}{\|c\|} \hline \text { Reel } \\ \text { Diameter } \\ (\mathrm{mm}) \end{array}$		$\begin{gathered} \mathrm{AD} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{K} 0 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{W}}$	Pin1 Quadrant
OPA2244EA/250	VSSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2244EA/2K5	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2244UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA244NA/250	SOT-23	DBV	5	250	178.0	8.4	3.3	3.2	1.4	4.0	8.0	Q3
OPA244NA/3K	SOT-23	DBV	5	3000	178.0	8.4	3.3	3.2	1.4	4.0	8.0	Q3
OPA244UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA4244EA/250	TSSOP	PW	14	250	180.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
OPA4244EA/2K5	TSSOP	PW	14	2500	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2244EA/250	VSSOP	DGK	8	250	210.0	185.0	35.0
OPA2244EA/2K5	VSSOP	DGK	8	2500	367.0	367.0	35.0
OPA2244UA/2K5	SOIC	D	8	2500	367.0	367.0	35.0
OPA244NA/250	SOT-23	DBV	5	250	565.0	140.0	75.0
OPA244NA/3K	SOT-23	DBV	5	3000	565.0	140.0	75.0
OPA244UA/2K5	SOIC	D	8	2500	367.0	367.0	35.0
OPA4244EA/250	TSSOP	PW	14	250	210.0	185.0	35.0
OPA4244EA/2K5	TSSOP	PW	14	2500	367.0	367.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Refernce JEDEC MO-178.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.

SOLDER MASK DETAILS

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed . 006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

SOLDER MASK DETAILS

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
$P(R-P D I P-T 8)$
PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLAStic SmALL OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

