
Features
• High Performance, Low Power AVR®32 32-Bit Microcontroller

– 210 DMIPS throughput at 150 MHz
– 16 KB instruction cache and 16 KB data caches
– Memory Management Unit enabling use of operating systems
– Single-cycle RISC instruction set including SIMD and DSP instructions
– Java Hardware Acceleration

• Pixel Co-Processor
– Pixel Co-Processor for video acceleration through color-space conversion

(YUV<->RGB), image scaling and filtering, quarter pixel motion compensation
• Multi-hierarchy bus system

– High-performance data transfers on separate buses for increased performance
• Data Memories

– 32KBytes SRAM
• External Memory Interface

– SDRAM, DataFlash™, SRAM, Multi Media Card (MMC), Secure Digital (SD),
– Compact Flash, Smart Media, NAND Flash

• Direct Memory Access Controller
– External Memory access without CPU intervention

• Interrupt Controller
– Individually maskable Interrupts
– Each interrupt request has a programmable priority and autovector address

• System Functions
– Power and Clock Manager
– Crystal Oscillator with Phase-Lock-Loop (PLL)
– Watchdog Timer
– Real-time Clock

• 6 Multifunction timer/counters
– Three external clock inputs, I/O pins, PWM, capture and various counting

capabilities
• 4 Universal Synchronous/Asynchronous Receiver/Transmitters (USART)

– 115.2 kbps IrDA Modulation and Demodulation
– Hardware and software handshaking

• 3 Synchronous Serial Protocol controllers
– Supports I2S, SPI and generic frame-based protocols

• Two-Wire Interface
– Sequential Read/Write Operations, Philips’ I2C© compatible

• Image Sensor Interface
– 12-bit Data Interface for CMOS cameras

• Universal Serial Bus (USB) 2.0 High Speed (480 Mbps) Device
– On-chip Transceivers with physical interface

• 16-bit stereo audio bitstream DAC
– Sample rates up to 50 kHz

• On-Chip Debug System
– Nexus Class 3
– Full speed, non-intrusive data and program trace
– Runtime control and JTAG interface

• Package/Pins
– AT32AP7001: 208-pin QFP/ 90 GPIO pins

• Power supplies
– 1.65V to1.95V VDDCORE
– 3.0V to 3.6V VDDIO

32015G-AVR32-09/09

AVR®32 32-bit
Microcontroller

AT32AP7001

Preliminary

2
32015G–AVR32–09/09

AT32AP7001

1. Part Description

The AT32AP7001 is a complete System-on-chip application processor with an AVR32 RISC
processor achieving 210 DMIPS running at 150 MHz. AVR32 is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high application performance.

AT32AP7001 implements a Memory Management Unit (MMU) and a flexible interrupt controller
supporting modern operating systems and real-time operating systems. The processor also
includes a rich set of DSP and SIMD instructions, specially designed for multimedia and telecom
applications.

AT32AP7001 incorporates SRAM memories on-chip for fast and secure access. For applica-
tions requiring additional memory, external 16-bit SRAM is accessible. Additionally, an SDRAM
controller provides off-chip volatile memory access as well as controllers for all industry standard
off-chip non-volatile memories, like Compact Flash, Multi Media Card (MMC), Secure Digital
(SD)-card, SmartCard, NAND Flash and Atmel DataFlash™.

The Direct Memory Access controller for all the serial peripherals enables data transfer between
memories without processor intervention. This reduces the processor overhead when transfer-
ring continuous and large data streams between modules in the MCU.

The Timer/Counters includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform a wide range of functions including frequency measure-
ment, event counting, interval measurement, pulse generation, delay timing and pulse width
modulation.

A pixel co-processor provides color space conversions for images and video, in addition to a
wide variety of hardware filter support

Synchronous Serial Controllers provide easy access to serial communication protocols, audio
standards like I2S and frame-based protocols.

The Java hardware acceleration implementation in AVR32 allows for a very high-speed Java
byte-code execution. AVR32 implements Java instructions in hardware, reusing the existing
RISC data path, which allows for a near-zero hardware overhead and cost with a very high
performance.

The Image Sensor Interface supports cameras with up to 12-bit data buses.

PS2 connectivity is provided for standard input devices like mice and keyboards.

AT32AP7001 integrates a class 3 Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control.

The C-compiler is closely linked to the architecture and is able to utilize code optimization fea-
tures, both for size and speed.

3
32015G–AVR32–09/09

AT32AP7001

2. Signals Description

The following table gives details on the signal name classified by peripheral. The pinout multi-
plexing of these signals is given in the Peripheral Muxing table in the Peripherals chapter.

Table 2-1. Signal Description List

Signal Name Function Type
Active
Level Comments

Power

AVDDPLL PLL Power Supply Power 1.65 to 1.95 V

AVDDUSB USB Power Supply Power 1.65 to 1.95 V

AVDDOSC Oscillator Power Supply Power 1.65 to 1.95 V

VDDCORE Core Power Supply Power 1.65 to 1.95 V

VDDIO I/O Power Supply Power 3.0 to 3.6V

AGNDPLL PLL Ground Ground

AGNDUSB USB Ground Ground

AGNDOSC Oscillator Ground Ground

GND Ground Ground

Clocks, Oscillators, and PLL’s

XIN0, XIN1, XIN32 Crystal 0, 1, 32 Input Analog

XOUT0, XOUT1,
XOUT32

Crystal 0, 1, 32 Output Analog

PLL0, PLL1 PLL 0,1 Filter Pin Analog

JTAG

TCK Test Clock Input

TDI Test Data In Input

TDO Test Data Out Output

TMS Test Mode Select Input

TRST_N Test Reset Input Low

Auxiliary Port - AUX

MCKO Trace Data Output Clock Output

MDO0 - MDO5 Trace Data Output Output

MSEO0 - MSEO1 Trace Frame Control Output

EVTI_N Event In Input Low

4
32015G–AVR32–09/09

AT32AP7001

EVTO_N Event Out Output Low

Power Manager - PM

GCLK0 - GCLK4 Generic Clock Pins Output

OSCEN_N Oscillator Enable Input Low

RESET_N Reset Pin Input Low

WAKE_N Wake Pin Input Low

External Interrupt Controller - EIC

EXTINT0 - EXTINT3 External Interrupt Pins Input

NMI_N Non-Maskable Interrupt Pin Input Low

AC97 Controller - AC97C

SCLK AC97 Clock Signal Input

SDI AC97 Receive Signal Output

SDO AC97 Transmit Signal Output

SYNC AC97 Frame Synchronization Signal Input

Audio Bitstream DAC - ABDAC

DATA0 - DATA1 D/A Data Out Output

DATAN0 - DATAN1 D/A Inverted Data Out Output

External Bus Interface - EBI

PX0 - PX53 I/O Controlled by EBI I/O

ADDR0 - ADDR25 Address Bus Output

CAS Column Signal Output Low

CFCE1 Compact Flash 1 Chip Enable Output Low

CFCE2 Compact Flash 2 Chip Enable Output Low

CFRNW Compact Flash Read Not Write Output

DATA0 - DATA31 Data Bus I/O

NANDOE NAND Flash Output Enable Output Low

NANDWE NAND Flash Write Enable Output Low

NCS0 - NCS5 Chip Select Output Low

Table 2-1. Signal Description List

Signal Name Function Type
Active
Level Comments

5
32015G–AVR32–09/09

AT32AP7001

NRD Read Signal Output Low

NWAIT External Wait Signal Input Low

NWE0 Write Enable 0 Output Low

NWE1 Write Enable 1 Output Low

NWE3 Write Enable 3 Output Low

RAS Row Signal Output Low

SDA10 SDRAM Address 10 Line Output

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output

SDWE SDRAM Write Enable Output Low

Image Sensor Interface - ISI

DATA0 - DATA11 Image Sensor Data Input

HSYNC Horizontal Synchronization Input

PCLK Image Sensor Data Clock Input

VSYNC Vertical Synchronization Input

MultiMedia Card Interface - MCI

CLK Multimedia Card Clock Output

CMD0 - CMD1 Multimedia Card Command I/O

DATA0 - DATA7 Multimedia Card Data I/O

Parallel Input/Output - PIOA, PIOB, PIOC, PIOD, PIOE

PA0 - PA31 Parallel I/O Controller PIOA I/O

PB0 - PB30 Parallel I/O Controller PIOB I/O

PD0 - PD17 Parallel I/O Controller PIOD I/O

PE0 - PE26 Parallel I/O Controller PIOE I/O

PS2 Interface - PSIF

CLOCK0 - CLOCK1 PS2 Clock Input

DATA0 - DATA1 PS2 Data I/O

Serial Peripheral Interface - SPI0, SPI1

Table 2-1. Signal Description List

Signal Name Function Type
Active
Level Comments

6
32015G–AVR32–09/09

AT32AP7001

MISO Master In Slave Out I/O

MOSI Master Out Slave In I/O

NPCS0 - NPCS3 SPI Peripheral Chip Select I/O Low

SCK Clock Output

Synchronous Serial Controller - SSC0, SSC1, SSC2

RX_CLOCK SSC Receive Clock I/O

RX_DATA SSC Receive Data Input

RX_FRAME_SYNC SSC Receive Frame Sync I/O

TX_CLOCK SSC Transmit Clock I/O

TX_DATA SSC Transmit Data Output

TX_FRAME_SYNC SSC Transmit Frame Sync I/O

DMA Controller - DMACA

DMARQ0 - DMARQ3 DMA Requests Input

Timer/Counter - TIMER0, TIMER1

A0 Channel 0 Line A I/O

A1 Channel 1 Line A I/O

A2 Channel 2 Line A I/O

B0 Channel 0 Line B I/O

B1 Channel 1 Line B I/O

B2 Channel 2 Line B I/O

CLK0 Channel 0 External Clock Input Input

CLK1 Channel 1 External Clock Input Input

CLK2 Channel 2 External Clock Input Input

Two-wire Interface - TWI

SCL Serial Clock I/O

SDA Serial Data I/O

Universal Synchronous Asynchronous Receiver Transmitter - USART0, USART1, USART2, USART3

CLK Clock I/O

Table 2-1. Signal Description List

Signal Name Function Type
Active
Level Comments

7
32015G–AVR32–09/09

AT32AP7001

CTS Clear To Send Input

RTS Request To Send Output

RXD Receive Data Input

TXD Transmit Data Output

Pulse Width Modulator - PWM

PWM0 - PWM3 PWM Output Pins Output

USB Interface - USBA

HSDM High Speed USB Interface Data - Analog

FSDM Full Speed USB Interface Data - Analog

HSDP High Speed USB Interface Data + Analog

FSDP Full Speed USB Interface Data + Analog

VBG USB bandgap Analog
Connected to a 6810 Ohm ± 0.5%
resistor to gound and a 10 pF
capacitor to ground.

Table 2-1. Signal Description List

Signal Name Function Type
Active
Level Comments

8
32015G–AVR32–09/09

AT32AP7001

3. Power Considerations

3.1 Power Supplies

The AT32AP7001 has several types of power supply pins:

• VDDCORE pins: Power the core, memories, and peripherals. Voltage is 1.8V nominal.
• VDDIO pins: Power I/O lines. Voltage is 3.3V nominal.
• VDDPLL pin: Powers the PLL. Voltage is 1.8V nominal.
• VDDUSB pin: Powers the USB. Voltage is 1.8V nominal.
• VDDOSC pin: Powers the oscillators. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE and VDDIO. The ground pin for VDDPLL is
GNDPLL, and the GND pin for VDDOSC is GNDOSC.

See ”Electrical Characteristics” on page 796 for power consumption on the various supply pins.

3.2 Power Supply Connections

Special considerations should be made when connecting the power and ground pins on a PCB.
Figure 3-1 shows how this should be done.

Figure 3-1. Connecting analog power supplies

AVDDUSB
AVDDPLL
AVDDOSC

AGNDUSB
AGNDPLL
AGNDOSC

VDDCORE VCC_1V8

3.3uH

C54
0.10u

C55
0.10u

C56
0.10u

9
32015G–AVR32–09/09

AT32AP7001

4. Package and Pinout

4.1 AVR32AP7001

Figure 4-1. 208 QFP Pinout.

1 52

53

104

105156

157

208

Table 4-1. QFP-208 Package Pinout

1 GND 53 GND 105 GND 157 GND

2 PE17 54 PA23 106 PX13 158 PB10

3 PE18 55 PA24 107 PX14 159 PB11

4 PX47 56 XIN1 108 PX15 160 PB12

5 PX48 57 XOUT1 109 PX16 161 PB13

6 PX49 58 AVDDUSB 110 PX17 162 PB14

7 PX50 59 AGNDUSB 111 PX34 163 PB15

8 PX51 60 VDDIO 112 PX35 164 PB16

9 VDDIO 61 FSDM 113 PX36 165 PB17

10 PX32 62 FSDP 114 PX37 166 PB18

11 PX33 63 GND 115 PX38 167 PB19

12 PX00 64 GND 116 PX18 168 PB20

13 PX01 65 HSDM 117 PX19 169 PB21

14 PX02 66 HSDP 118 PX20 170 PB22

15 PX03 67 VDDCORE 119 PX21 171 PB23

16 PX04 68 GND 120 PX22 172 VDDCORE

17 PX05 69 GND 121 PX23 173 GND

18 VDDCORE 70 VBG 122 PX24 174 GND

19 GND 71 VDDIO 123 PX25 175 PA06

20 TDO 72 PA25 124 PX26 176 PA07

21 TCK 73 PA26 125 VDDIO 177 VDDIO

10
32015G–AVR32–09/09

AT32AP7001

22 TMS 74 PA27 126 PX27 178 VDDIO

23 TDI 75 PA28 127 PX28 179 OSCEN_N

24 TRST_N 76 PA29 128 PX29 180 XIN32

25 EVTI_N 77 PA30 129 PX30 181 XOUT32

26 RESET_N 78 PA31 130 PX31 182 AGNDOSC

27 PA00 79 WAKE_N 131 VDDCORE 183 AVDDOSC

28 PA01 80 PB26 132 GND 184 PLL1

29 PA02 81 PB27 133 GND 185 XIN0

30 PA03 82 PB28 134 PE26 186 XOUT0

31 PA04 83 PX53 135 PX39 187 AGNDPLL

32 PA05 84 PX52 136 VDDCORE 188 AVDDPLL

33 PB24 85 PX41 137 GND 189 PLL0

34 PB25 86 GND 138 PX40 190 PE00

35 PA08 87 PE25 139 PX42 191 PE01

36 VDDIO 88 PE24 140 PX43 192 PE02

37 GND 89 PE23 141 PX44 193 PE03

38 PA09 90 PE22 142 PX45 194 PE04

39 PA10 91 PE21 143 PX46 195 PE05

40 PA11 92 PE20 144 PB00 196 PE06

41 PA12 93 PE19 145 PB01 197 PE07

42 PA13 94 PX06 146 PB02 198 PE08

43 PA14 95 PX07 147 PB03 199 PE09

44 PA15 96 PX08 148 PB04 200 PE10

45 PA16 97 PX09 149 PB05 201 PE11

46 PA17 98 PX10 150 PB06 202 PE12

47 PA18 99 PX11 151 PB07 203 PE13

48 PA19 100 PB29 152 PB08 204 PE14

49 PA20 101 PB30 153 PB09 205 PE15

50 PA21 102 PX12 154 PC16 206 PE16

51 PA22 103 PC00 155 PC17 207 No Connect

52 VDDIO 104 VDDIO 156 VDDIO 208 VDDIO

Table 4-1. QFP-208 Package Pinout (Continued)

11
32015G–AVR32–09/09

AT32AP7001

5. Blockdiagram

Figure 5-1. Blockdiagram

DATA[11..0]
HSYNC
VSYNC
PCLK

AP CPUNEXUS
CLASS 3

OCD
INSTR
CACHE

DATA
CACHE

TIMER/COUNTER 0/1
INTERRUPT

CONTROLLER

REAL TIME
COUNTER

PERIPHERAL
DMA

CONTROLLER

INTRAM0
INTRAM1

HSB-PB
BRIDGE

B

HSB-PB
BRIDGE A

S

M M M

S

S
S

M

EXTERNAL
INTERRUPT

CONTROLLER

HIGH SPEED
BUS MATRIX

Pa
ra

lle
l I

np
ut

/O
ut

pu
t C

on
tro

lle
rs

PIXEL COPROCESSOR

P
ar

al
le

l I
np

ut
/O

ut
pu

t C
on

tro
lle

rs

RESET_N

PA
PB
PC
PD
PE

A[2..0]
B[2..0]

CLK[2..0]

EXTINT[7..0]
KPS[7..0]
NMI_N

GCLK[3..0]

XIN32
XOUT32

XIN0

XOUT0

PA
PB
PC
PD
PE

EX
TE

R
N

AL
 B

U
S

IN
TE

R
FA

C
E

(S
D

R
AM

 &
 S

TA
TI

C
 M

EM
O

R
Y

C
O

N
TR

O
LL

ER
 &

 E
C

C
)

RAS,
CAS,

SDWE,
NANDOE,
NANDWE,

SDCK,
SDCKE,
NWE3,
NWE1,
NWE0,
NRD,

NCS[3,1,0],
ADDR[22..0]

NCS[5,4,2]
CFRNW,
CFCE1,
CFCE2,

ADDR[23..25]

NWAIT

DATA[15..0]

USB
INTERFACE

DMA

D-
D+

32 KHz
OSC

OSC0

PLL0

PS2 INTERFACE

SERIAL
PERIPHERAL

INTERFACE 0/1

TWO-WIRE
INTERFACE

PD
C MISO, MOSI

NPCS[3..1]

SCL

SDA

USART0
USART1
USART2
USART3

PD
C

RXD
TXD
CLK

RTS, CTS

SYNCHRONOUS
SERIAL

CONTROLLER 0/1/2

PD
C

TX_CLOCK, TX_FRAME_SYNC

RX_DATA

TX_DATA

RX_CLOCK, RX_FRAME_SYNC

WATCHDOG
TIMER

XIN1

XOUT1
OSC1

PLL1

SCK

JTAG
INTERFACE

MCKO
MDO[5..0]

MSEO[1..0]
EVTI_N

EVTO_N

TCK
TDO
TDI
TMS

POWER
MANAGER

RESET
CONTROLLER

SLEEP
CONTROLLER

CLOCK
CONTROLLER

CLOCK
GENERATOR

CONFIGURATION REGISTERS BUS

MEMORY MANAGEMENT UNIT

PB

PB

HSBHS
B

PB
A

P
B
B

NPCS0

M
S

CLOCK[1..0]

DATA[1..0]

HSB-HSB BRIDGE

TRST_N

DATA[31..16]

OSCEN_N

PLL0

PLL1

DMA CONTROLLER

SMM

AUDIO BITSTREAM
DAC D

M
A

MULTIMEDIA CARD
INTERFACE D

M
A

AC97 CONTROLLER

D
M

A

SCLK
SDI

SSYNC
SDO

CLK
CMD

DATA[7..0]

DATA0
DATA1

DATA0N
DATA1N

PULSE WIDTH
MODULATION
CONTROLLER

PWM0

PWM1

PWM2

PWM3

IMAGE
SENSOR

INTERFACE

M

12
32015G–AVR32–09/09

AT32AP7001

5.0.1 AVR32AP CPU

• 32-bit load/store AVR32B RISC architecture.
– Up to 15 general-purpose 32-bit registers.
– 32-bit Stack Pointer, Program Counter and Link Register reside in register file.
– Fully orthogonal instruction set.
– Privileged and unprivileged modes enabling efficient and secure Operating Systems.
– Innovative instruction set together with variable instruction length ensuring industry leading

code density.
– DSP extention with saturating arithmetic, and a wide variety of multiply instructions.
– SIMD extention for media applications.

• 7 stage pipeline allows one instruction per clock cycle for most instructions.
– Java Hardware Acceleration.
– Byte, half-word, word and double word memory access.
– Unaligned memory access.
– Shadowed interrupt context for INT3 and multiple interrupt priority levels.
– Dynamic branch prediction and return address stack for fast change-of-flow.
– Coprocessor interface.

• Full MMU allows for operating systems with memory protection.
• 16Kbyte Instruction and 16Kbyte data caches.

– Virtually indexed, physically tagged.
– 4-way associative.
– Write-through or write-back.

• Nexus Class 3 On-Chip Debug system.
– Low-cost NanoTrace supported.

5.0.2 Pixel Coprocessor (PICO)

• Coprocessor coupled to the AVR32 CPU Core through the TCB Bus.
– Coprocessor number one on the TCB bus.

• Three parallel Vector Multiplication Units (VMU) where each unit can:
– Multiply three pixel components with three coefficients.
– Add the products from the multiplications together.
– Accumulate the result or add an offset to the sum of the products.

• Can be used for accelerating:
– Image Color Space Conversion.

• Configurable Conversion Coefficients.
• Supports packed and planar input and output formats.
• Supports subsampled input color spaces (i.e 4:2:2, 4:2:0).

– Image filtering/scaling.
• Configurable Filter Coefficients.
• Throughput of one sample per cycle for a 9-tap FIR filter.
• Can use the built-in accumulator to extend the FIR filter to more than 9-taps.
• Can be used for bilinear/bicubic interpolations.

– MPEG-4/H.264 Quarter Pixel Motion Compensation.
• Flexible input Pixel Selector.

– Can operate on numerous different image storage formats.
• Flexible Output Pixel Inserter.

– Scales and saturates the results back to 8-bit pixel values.
– Supports packed and planar output formats.

13
32015G–AVR32–09/09

AT32AP7001

• Configurable coefficients with flexible fixed-point representation.

5.0.3 Debug and Test system

• IEEE1149.1 compliant JTAG and boundary scan
• Direct memory access and programming capabilities through JTAG interface
• Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 3
• Auxiliary port for high-speed trace information
• Hardware support for 6 Program and 2 data breakpoints
• Unlimited number of software breakpoints supported
• Advanced Program, Data, Ownership, and Watchpoint trace supported

5.0.4 DMA Controller

• 2 HSB Master Interfaces
• 3 Channels
• Software and Hardware Handshaking Interfaces

– 11 Hardware Handshaking Interfaces
• Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
• Single-block DMA Transfer
• Multi-block DMA Transfer

– Linked Lists
– Auto-Reloading
– Contiguous Blocks

• DMA Controller is Always the Flow Controller
• Additional Features

– Scatter and Gather Operations
– Channel Locking

– Bus Locking
– FIFO Mode
– Pseudo Fly-by Operation

5.0.5 Peripheral DMA Controller

• Transfers from/to peripheral to/from any memory space without intervention of the processor.
• Next Pointer Support, forbids strong real-time constraints on buffer management.
• Eighteen channels

– Two for each USART
– Two for each Serial Synchronous Controller
– Two for each Serial Peripheral Interface

5.0.6 Bus system

• HSB bus matrix with 10 Masters and 8 Slaves handled
– Handles Requests from the CPU Icache, CPU Dcache, HSB bridge, HISI, USB 2.0 Controller,

DMA Controller 0, DMA Controller 1, and to internal SRAM 0, internal SRAM 1, PB A, PB B,
EBI and, USB.

14
32015G–AVR32–09/09

AT32AP7001

– Round-Robin Arbitration (three modes supported: no default master, last accessed default
master, fixed default master)

– Burst Breaking with Slot Cycle Limit
– One Address Decoder Provided per Master

• 2 Peripheral buses allowing each bus to run on different bus speeds.
– PB A intended to run on low clock speeds, with peripherals connected to the PDC.
– PB B intended to run on higher clock speeds, with peripherals connected to the DMACA.

• HSB-HSB Bridge providing a low-speed HSB bus running at the same speed as PBA
– Allows PDC transfers between a low-speed PB bus and a bus matrix of higher clock speeds

An overview of the bus system is given in Figure 4-1 on page 1. All modules connected to the
same bus use the same clock, but the clock to each module can be individually shut off by the
Power Manager. The figure identifies the number of master and slave interfaces of each module
connected to the HSB bus, and which DMA controller is connected to which peripheral.

15
32015G–AVR32–09/09

AT32AP7001

6. I/O Line Considerations

6.1 JTAG pins

The TMS, TDI and TCK pins have pull-up resistors. TDO is an output, driven at up to VDDIO,
and have no pull-up resistor. The TRST_N pin is used to initialize the embedded JTAG TAP
Controller when asserted at a low level. It is a schmitt input and integrates permanent pull-up
resistor to VDDIO, so that it can be left unconnected for normal operations.

6.2 WAKE_N pin

The WAKE_N pin is a schmitt trigger input integrating a permanent pull-up resistor to VDDIO.

6.3 RESET_N pin

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

6.4 EVTI_N pin

The EVTI_N pin is a schmitt input and integrates a non-programmable pull-up resistor to VDDIO.

6.5 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the
pins have the same characteristics as PIO pins.

6.6 PIO pins

All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each I/O line through the PIO Controllers. After reset, I/O lines
default as inputs with pull-up resistors enabled, except when indicated otherwise in the column
“Reset State” of the PIO Controller multiplexing tables.

16
32015G–AVR32–09/09

AT32AP7001

7. AVR32 AP CPU

Rev.: 1.0.0.0

This chapter gives an overview of the AVR32 AP CPU. AVR32 AP is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set, caches and MMU is
presented. For further details, see the AVR32 Architecture Manual and the AVR32 AP Technical
Reference Manual.

7.1 AVR32 Architecture
AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and half-word data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, half-word, word and double word data
with automatic sign- or zero extension of half-word and byte data.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

7.2 The AVR32 AP CPU
AVR32 AP targets high-performance applications, and provides an advanced OCD system, effi-
cient data and instruction caches, and a full MMU. Figure 7-1 on page 17 displays the contents
of AVR32 AP.

17
32015G–AVR32–09/09

AT32AP7001

Figure 7-1. Overview of the AVR32 AP CPU

7.2.1 Pipeline Overview
AVR32 AP is a pipelined processor with seven pipeline stages. The pipeline has three subpipes,
namely the Multiply pipe, the Execute pipe and the Data pipe. These pipelines may execute dif-
ferent instructions in parallel. Instructions are issued in order, but may complete out of order
(OOO) since the subpipes may be stalled individually, and certain operations may use a subpipe
for several clock cycles.

Figure 7-2 on page 18 shows an overview of the AVR32 AP pipeline stages.

AVR32 CPU pipeline with Java accelerator

Dcache
controller

HSB
master

Icache
controller

HSB
master

32
-e

nt
ry

 T
LB

8-
en

try
 u

TL
B

4-
en

try
 u

TL
B

MMU
H

ig
h

Sp
ee

d
Bu

s

H
ig

h
Sp

ee
d

Bu
s

Cache RAM interfaceCache RAM interface

BTB RAM interfaceTightly Coupled Bus

OCD
system

O
C

D
 in

te
rfa

ce

Reset
control

R
es

et
 in

te
rfa

ce

In
te

rru
pt

 c
on

tro
lle

r i
nt

er
fa

ce

JTAG
control

JT
A

G
 in

te
rfa

ce

18
32015G–AVR32–09/09

AT32AP7001

Figure 7-2. The AVR32 AP Pipeline

.The follwing abbreviations are used in the figure:

•IF1, IF2 - Instruction Fetch stage 1 and 2

•ID - Instruction Decode

•IS - Instruction Issue

•A1, A2 - ALU stage 1 and 2

•M1, M2 - Multiply stage 1 and 2

•DA - Data Address calculation stage

•D - Data cache access

•WB - Writeback

7.2.2 AVR32B Microarchitecture Compliance

AVR32 AP implements an AVR32B microarchitecture. The AVR32B microarchitecture is tar-
geted at applications where interrupt latency is important. The AVR32B therefore implements
dedicated registers to hold the status register and return address for interrupts, exceptions and
supervisor calls. This information does not need to be written to the stack, and latency is there-
fore reduced. Additionally, AVR32B allows hardware shadowing of the registers in the register
file.

The scall, rete and rets instructions use the dedicated return status registers and return address
registers in their operation. No stack accesses are performed by these instructions.

7.2.3 Java Support
AVR32 AP provides Java hardware acceleration in the form of a Java Virtual Machine hardware
implementation. Refer to the AVR32 Java Technical Reference Manual for details.

7.2.4 Memory management
AVR32 AP implements a full MMU as specified by the AVR32 architecture. The page sizes pro-
vided are 1K, 4K, 64K and 1M. A 32-entry fully-associative common TLB is implemented, as well
as a 4-entry micro-ITLB and 8-entry micro-DTLB. Instruction and data accesses perform lookups
in the micro-TLBs. If the access misses in the micro-TLBs, an access in the common TLB is per-
formed. If this access misses, a page miss exception is issued.

IF2 ID IS A1

M1 M2

D

WB

Prefetch unit Decode unit

ALU pipe

Multiply pipe

Load-store
pipeDA

A2IF1

19
32015G–AVR32–09/09

AT32AP7001

7.2.5 Caches and write buffer
AVR32 AP implements 16K data and 16K instruction caches. The caches are 4-way set asso-
ciative. Each cache has a 32-bit System Bus master interface connecting it to the bus. The
instruction cache has a 32-bit interface to the fetch pipeline stage, and the data cache has a 64-
bit interface to the load-store pipeline. The caches use a least recently used allocate-on-read-
miss replacement policy. The caches are virtually tagged, physically indexed, avoiding the need
to flush them on task switch.

The caches provide locking on a per-line basis, allowing code and data to be permanently
locked in the caches for timing-critical code. The data cache also allows prefetching of data
using the pref instruction.

Accesses to the instruction and data caches are tagged as cacheable or uncacheable on a per-
page basis by the MMU. Data cache writes are tagged as write-through or writeback on a per-
page basis by the MMU.

The data cache has a 32-byte combining write buffer, to avoid stalling the CPU when writing to
external memory. Writes are tagged as bufferable or unbufferable on a per-page basis by the
MMU. Bufferable writes to sequential addresses are placed in the buffer, allowing for example a
sequence of byte writes from the CPU to be combined into word transfers on the bus. A sync
instruction is provided to explicitly flush the write buffer.

7.2.6 Unaligned reference handling
AVR32 AP has hardware support for performing unaligned memory accesses. This will reduce
the memory footprint needed by some applications, as well as speed up other applications oper-
ating on unaligned data.

AVR32 AP is able to perform certain word-sized load and store instructions of any alignment,
and word-aligned st.d and ld.d. Any other unaligned memory access will cause an MMU address
exception. All coprocessor memory access instructions require word-aligned pointers. Double-
word-sized accesses with word-aligned pointers will automatically be performed as two word-
sized accesses.

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses. Accessing an unaligned address may require several
clock cycles, refer to the AVR32 AP Technical Reference Manual for details.

Table 7-1. Instructions with unaligned reference support

Instruction Supported alignment

ld.w Any

st.w Any

lddsp Any

lddpc Any

stdsp Any

ld.d Word

st.d Word

All coprocessor memory access instruction Word

20
32015G–AVR32–09/09

AT32AP7001

7.2.7 Unimplemented instructions
The following instructions are unimplemented in AVR32 AP, and will cause an Unimplemented
Instruction Exception if executed:

•mems

•memc

•memt

7.2.8 Exceptions and Interrupts
AVR32 AP incorporates a powerful exception handling scheme. The different exception
sources, like Illegal Op-code and external interrupt requests, have different priority levels, ensur-
ing a well-defined behavior when multiple exceptions are received simultaneously. Additionally,
pending exceptions of a higher priority class may preempt handling of ongoing exceptions of a
lower priority class. Each priority class has dedicated registers to keep the return address and
status register thereby removing the need to perform time-consuming memory operations to
save this information.

There are four levels of external interrupt requests, all executing in their own context. The INT3
context provides dedicated shadow registers ensuring low latency for these interrupts. An inter-
rupt controller does the priority handling of the external interrupts and provides the autovector
offset to the CPU.

The addresses and priority of simultaneous events are shown in Table 7-2 on page 21.

21
32015G–AVR32–09/09

AT32AP7001

Table 7-2. Priority and handler addresses for events

Priority Handler Address Name Event source Stored Return Address

1 0xA000_0000 Reset External input Undefined

2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction

3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction

4 EVBA+0x04 TLB multiple hit Internal signal PC of offending instruction

5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction

6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction

7 EVBA+0x10 NMI External input First non-completed instruction

8 Autovectored Interrupt 3 request External input First non-completed instruction

9 Autovectored Interrupt 2 request External input First non-completed instruction

10 Autovectored Interrupt 1 request External input First non-completed instruction

11 Autovectored Interrupt 0 request External input First non-completed instruction

12 EVBA+0x14 Instruction Address ITLB PC of offending instruction

13 EVBA+0x50 ITLB Miss ITLB PC of offending instruction

14 EVBA+0x18 ITLB Protection ITLB PC of offending instruction

15 EVBA+0x1C Breakpoint OCD system First non-completed instruction

16 EVBA+0x20 Illegal Opcode Instruction PC of offending instruction

17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction

18 EVBA+0x28 Privilege violation Instruction PC of offending instruction

19 EVBA+0x2C Floating-point FP Hardware PC of offending instruction

20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction

21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2

22 EVBA+0x34 Data Address (Read) DTLB PC of offending instruction

23 EVBA+0x38 Data Address (Write) DTLB PC of offending instruction

24 EVBA+0x60 DTLB Miss (Read) DTLB PC of offending instruction

25 EVBA+0x70 DTLB Miss (Write) DTLB PC of offending instruction

26 EVBA+0x3C DTLB Protection (Read) DTLB PC of offending instruction

27 EVBA+0x40 DTLB Protection (Write) DTLB PC of offending instruction

28 EVBA+0x44 DTLB Modified DTLB PC of offending instruction

22
32015G–AVR32–09/09

AT32AP7001

7.3 Programming Model

7.3.1 Register file configuration
The AVR32B architecture specifies that the exception contexts may have a different number of
shadowed registers in different implementations. Figure 7-3 on page 22 shows the model used
in AVR32 AP.

Figure 7-3. The AVR32 AP Register File

7.3.2 Status register configuration
The Status Register (SR) is splitted into two halfwords, one upper and one lower, see Figure 7-4
on page 22 and Figure 7-5 on page 23. The lower word contains the C, Z, N, V and Q condition
code flags and the R, T and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 7-4. The Status Register High Halfword

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

RSR_INT0
SR

RSR_EX
SR

SP_APP SP_SYS

RSR_NMI
SR

R12
R11

R9
R10

R8

Bit 0Bit 31

PC

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

FINTPC
SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC
LR_INT3

R12_INT3
R11_INT3

R9_INT3
R10_INT3

R8_INT3

SP_SYS SP_SYS SP_SYS
R12
R11

R9
R10

R8

Bit 0Bit 31

PC

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

SP_SYS
R12
R11

R9
R10

R8

Bit 0Bit 31

PC

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

SP_SYS
R12
R11

R9
R10

R8

Bit 0Bit 31

PC

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

SP_SYS
R12
R11

R9
R10

R8

RSR_INT1
SR

RSR_INT2
SR

RSR_INT3
SR

INT0 INT1 INT2 INT3 Exception NMI

FINTPC
SMPC

R7

R5
R6

R4
R3

R1
R2

R0

R12
R11

R9
R10

R8

LR LR LR LR LR LR LR

RSR_SUP
RAR_INT0 RAR_EX RAR_NMIRAR_INT1 RAR_INT2 RAR_INT3RAR_SUP

Bit 31

0 0 0

Bit 16

Interrupt Level 0 Mask
Interrupt Level 1 Mask

Interrupt Level 3 Mask
Interrupt Level 2 Mask

10 0 0 0 1 1 0 0 0 00 0

Reserved

FE I0M GMM1J D M0 EM I2MDM - M2LC
1-

Initial value

Bit nameI1M

Mode Bit 0
Mode Bit 1

H

Mode Bit 2
Reserved
Debug State

- I3M

Java State

Exception Mask

Global Interrupt Mask

Debug State Mask

Java Handle
Reserved

23
32015G–AVR32–09/09

AT32AP7001

Figure 7-5. The Status Register Low Halfword

7.3.3 Processor States

7.3.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 7-3 on
page 23.

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

7.3.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

Bit 15 Bit 0

Reserved

Carry
Zero
Sign

0 0 0 00000000000

- - --TR Bit name

Initial value0 0

L Q V N Z C-

Overflow
Saturation

- - -

Lock

Register Remap Enable
Scratch

Table 7-3. Overview of execution modes, their priorities and privilege levels.

Priority Mode Security Description

1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode

2 Exception Privileged Execute exceptions

3 Interrupt 3 Privileged General purpose interrupt mode

4 Interrupt 2 Privileged General purpose interrupt mode

5 Interrupt 1 Privileged General purpose interrupt mode

6 Interrupt 0 Privileged General purpose interrupt mode

N/A Supervisor Privileged Runs supervisor calls

N/A Application Unprivileged Normal program execution mode

24
32015G–AVR32–09/09

AT32AP7001

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32 AP Technical Reference Manual.

Debug state is exited by the retd instruction.

7.3.3.3 Java State
AVR32 AP implements a Java Extension Module (JEM). The processor can be set in a Java
State where normal RISC operations are suspended. Refer to the AVR32 Java Technical Refer-
ence Manual for details.

25
32015G–AVR32–09/09

AT32AP7001

8. Pixel Coprocessor (PICO)

Rev.: 1.0.0.0

8.1 Features

• Coprocessor coupled to the AVR32 CPU Core through the TCB Bus.
• Three parallel Vector Multiplication Units (VMU) where each unit can:

– Multiply three pixel components with three coefficients.
– Add the products from the multiplications together.
– Accumulate the result or add an offset to the sum of the products.

• Can be used for accelerating:
– Image Color Space Conversion.

• Configurable Conversion Coefficients.
• Supports packed and planar input and output formats.
• Supports subsampled input color spaces (i.e 4:2:2, 4:2:0).

– Image filtering/scaling.
• Configurable Filter Coefficients.
• Throughput of one sample per cycle for a 9-tap FIR filter.
• Can use the built-in accumulator to extend the FIR filter to more than 9-taps.
• Can be used for bilinear/bicubic interpolations.

– MPEG-4/H.264 Quarter Pixel Motion Compensation.
• Flexible input Pixel Selector.

– Can operate on numerous different image storage formats.
• Flexible Output Pixel Inserter.

– Scales and saturates the results back to 8-bit pixel values.
– Supports packed and planar output formats.

• Configurable coefficients with flexible fixed-point representation.

8.2 Description

The Pixel Coprocessor (PICO) is a coprocessor coupled to the AVR32 CPU through the TCB
(Tightly Coupled Bus) interface. The PICO consists of three Vector Multiplication Units (VMU0,
VMU1, VMU2), an Input Pixel Selector and an Output Pixel Inserter. Each VMU can perform a
vector multiplication of a 1x3 12-bit coefficient vector with a 3x1 8-bit pixel vector. In addition a
12-bit offset can be added to the result of this vector multiplication.

The PICO can be used for transforming the pixel components in a given color space (i.e. RGB,
YCrCb, YUV) to any other color space as long as the transformation is linear. The flexibility of
the Input Pixel Selector and Output Pixel Insertion logic makes it easy to efficiently support dif-
ferent pixel storage formats with regards to issues such as byte ordering of the color
components, if the color components constituting an image are packed/interleaved or stored as
separate images or if any of the color components are subsampled.

The three Vector Multiplication Units can also be connected together to form one large vector
multiplier which can perform a vector multiplication of a 1x9 12-bit coefficient vector with a 9x1 8-
bit pixel vector. This can be used to implement FIR filters, bilinear interpolations filters for
smoothing/scaling images etc. By allowing the outputs from the Vector Multiplication units to
accumulate it is also possible to extend the order of the filter to more than 9-taps.

The results from the VMUs are scaled and saturated back to unsigned 8-bit pixel values in the
Output Pixel Inserter.

26
32015G–AVR32–09/09

AT32AP7001

The PICO is divided into three pipeline stages with a throughput of one operation per cpu clock
cycle.

8.3 Block Diagram

Figure 8-1. Pixel Coprocessor Block Diagram

INPIX0

VMU0_OUT

Input Pixel Selector

VMU0

ADD

VMU0_IN0 VMU0_IN1 VMU0_IN2

INPIX1 INPIX2

COEFF0_0

COEFF0_1

COEFF0_2

OFFSET0

VMU1_OUT

VMU1

VMU1_IN0 VMU1_IN1 VMU1_IN2

COEFF1_0

COEFF1_1

COEFF1_2

OFFSET1

VMU2_OUT

VMU2

VMU2_IN0 VMU2_IN1 VMU2_IN2

COEFF2_0

COEFF2_1

COEFF2_2

OFFSET2

OUTPIX0 OUTPIX1 OUTPIX2

Output Pixel Inserter

Pipeline Stage 1

Pipeline Stage 2

Pipeline Stage 3

27
32015G–AVR32–09/09

AT32AP7001

8.4 Vector Multiplication Unit (VMU)

Each VMU consists of three multipliers used for multiplying unsigned 8-bit pixel components with
signed 12-bit coefficients.The result from each multiplication is a 20-bit signed number that is
input to a 22-bit vector adder along with an offset as shown in Figure 8-2 on page 27. The oper-
ation is equal to the offsetted vector multiplication given in the following equation:

Figure 8-2. Inside VMUn (n ∈ {0,1,2})

8.5 Input Pixel Selector

The Input Pixel Selector uses the ISM (Input Selection Mode) field in the CONFIG register and
the three input pixel source addresses given in the PICO operation instructions to decide which
pixels to select for inputs to the VMUs.

8.5.1 Transformation Mode
When the Input Selection Mode is set to Transformation Mode the input pixel source addresses
INx, INy and INz directly maps to three pixels in the INPIXn registers. These three pixels are
then input to each of the VMUs. The following expression then represents what is computed by
the VMUs in Transformation Mode:

8.5.2 Horizontal Filter Mode
In Horizontal Filter Mode the input pixel source addresses INx, INy and INz represents the base
pixel address of a pixel triplet. The pixel triplet {IN(x), IN(x+1), IN(x+2)} is input to VMU0, the
pixel triplet {IN(y), IN(y+1), IN(y+2)} is input to VMU1 and the pixel triplet {IN(z), IN(z+1), IN(z+2)}

vmu_out coeff0 coeff1 coeff2
vmu_in0
vmu_in1
vmu_in2

offset+=

Multiply

Vector Adder

Multiply Multiply

VMUn

offsetn

coeffn_1 coeffn_2coeffn_0 vmun_in0 vmun_in1 vmun_in2

vmun_out

VMU0_OUT
VMU1_OUT
VMU2_OUT

COEFF0_0 COEFF0_1 COEFF0_2
COEFF1_0 COEFF1_1 COEFF1_2
COEFF2_0 COEFF2_1 COEFF2_2

INx
INy
INz

OFFSET0 or VMU0_OUT
OFFSET1 or VMU1_OUT
OFFSET2 or VMU2_OUT

+=

28
32015G–AVR32–09/09

AT32AP7001

is input to VMU2. Figure 8-3 on page 28 shows how the pixel triplet is found by taking the pixel
addressed by the base address and following the arrow to find the next two pixels which makes
up the triplet.

Figure 8-3. Horizontal Filter Mode Pixel Addressing

The following expression represents what is computed by the VMUs in Horizontal Filter Mode:

8.5.3 Vertical Filter Mode
In Vertical Filter Mode the input pixel source addresses INx, INy and INz represent the base of a
pixel triplet found by following the vertical arrow shown in Figure 8-4 on page 28. The pixel triplet
{IN(x), IN((x+4)%11), IN((x+8)%11)} is input to VMU0, the pixel triplet {IN(y), IN((y+4)%11),
IN((y+8)%11)} is input to VMU1 and the pixel triplet {IN(z), IN((z+4)%11), IN((z+8)%11)} is input
to VMU2.

Figure 8-4. Vertical Filter Mode Pixel Addressing

INPIX0 IN0 IN1 IN2 IN3

IN4 IN5 IN6 IN7

IN8 IN9 IN10 IN11

INPIX1

INPIX2

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN(x+0)
IN(x+1)
IN(x+2)

OFFSET0 or VMU0_OUT()+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN(y+0)
IN(y+1)
IN(y+2)

OFFSET1 or VMU1_OUT()+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN(z+0)
IN(z+1)
IN(z+2)

OFFSET2 or VMU2_OUT()+=

INPIX0 IN0 IN1 IN2 IN3

IN4 IN5 IN6 IN7

IN8 IN9 IN10 IN11

INPIX1

INPIX2

29
32015G–AVR32–09/09

AT32AP7001

The following expression represents what is computed by the VMUs in Vertical Filter Mode:

8.6 Output Pixel Inserter

The Output Pixel Inserter uses the OIM (Output Insertion Mode) field in the CONFIG register and
the destination pixel address given in the PICO operation instructions to decide which three of
the twelve possible OUTn pixels to write back the scaled and saturated results from the VMUs
to. The 22-bit results from each VMU is first scaled by performing an arithmetical right shift by
COEFF_FRAC_BITS in order to remove the fractional part of the results and obtain the integer
part. The integer part is then saturated to an unsigned 8-bit number in the range 0 to 255.

8.6.1 Planar Insertion Mode
In Planar Insertion Mode the destination pixel address OUTd specifies which pixel in each of the
registers OUTPIX0, OUTPIX1 and OUTPIX2 will be updated. VMUn writes to OUTPIXn. This
can be seen in Figure 8-5 on page 29 and Table 8-2 on page 47. This mode is useful when
transforming from one color space to another where the resulting color components should be
stored in separate images.

Figure 8-5. Planar Pixel Insertion

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN((x+0)%11)
IN((x+4)%11)
IN((x+8)%11)

OFFSET0 or VMU0_OUT()+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN((y+0)%11)
IN((y+4)%11)
IN((y+8)%11)

OFFSET1 or VMU1_OUT()+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN((z+0)%11)
IN((z+4)%11)
IN((z+8)%11)

OFFSET2 or VMU2_OUT()+=

OUTPIX0 OUT0 OUT1 OUT2 OUT3

OUT4 OUT5 OUT6 OUT7

OUT8 OUT9 OUT10 OUT11

OUTPIX1

OUTPIX2

d = 0 d = 2d = 1 d = 3

= VMU0

= VMU1

= VMU2

30
32015G–AVR32–09/09

AT32AP7001

8.6.2 Packed Insertion Mode
In Packed Insertion Mode the three output registers OUTPIX0, OUTPIX1 and OUTPIX2 are
divided into four pixel triplets as seen in Figure 8-6 on page 30 and Table 8-2 on page 47. The
destination pixel address is then the address of the pixel triplet. VMUn writes to pixel n of the
pixel triplet.This mode is useful when transforming from one color space to another where the
resulting color components should be packed together.

Figure 8-6. Packed Pixel Insertion.

OUTPIX0

OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 OUT9 OUT10 OUT11

d = 0 d = 1 d = 2 d = 3

OUTPIX1 OUTPIX2

= VMU0

= VMU1

= VMU2

31
32015G–AVR32–09/09

AT32AP7001

8.7 User Interface

The PICO uses the TCB interface to communicate with the CPU and the user can read from or
write to the PICO Register File by using the PICO load/store/move instructions which maps to
generic coprocessor instructions.

8.7.1 Register File
The PICO register file can be accessed from the CPU by using the picomv.x, picold.x, picost.x,
picoldm and picostm instructions.

Table 8-1. PICO Register File

Cp Reg # Register Name Access

cr0 Input Pixel Register 2 INPIX2 Read/Write

cr1 Input Pixel Register 1 INPIX1 Read/Write

cr2 Input Pixel Register 0 INPIX0 Read/Write

cr3 Output Pixel Register 2 OUTPIX2 Read Only

cr4 Output Pixel Register 1 OUTPIX1 Read Only

cr5 Output Pixel Register 0 OUTPIX0 Read Only

cr6 Coefficient Register A for VMU0 COEFF0_A Read/Write

cr7 Coefficient Register B for VMU0 COEFF0_B Read/Write

cr8 Coefficient Register A for VMU1 COEFF1_A Read/Write

cr9 Coefficient Register B for VMU1 COEFF1_B Read/Write

cr10 Coefficient Register A for VMU2 COEFF2_A Read/Write

cr11 Coefficient Register B for VMU2 COEFF2_B Read/Write

cr12 Output from VMU0 VMU0_OUT Read/Write

cr13 Output from VMU1 VMU1_OUT Read/Write

cr14 Output from VMU2 VMU2_OUT Read/Write

cr15 PICO Configuration Register CONFIG Read/Write

32
32015G–AVR32–09/09

AT32AP7001

8.7.1.1 Input Pixel Register 0
Register Name: INPIX0

Access Type: Read/Write

• IN0: Input Pixel 0
Input Pixel number 0 to the Input Pixel Selector Unit.

• IN1: Input Pixel 1
Input Pixel number 1 to the Input Pixel Selector Unit.

• IN2: Input Pixel 2
Input Pixel number 2 to the Input Pixel Selector Unit.

• IN3: Input Pixel 3
Input Pixel number 3 to the Input Pixel Selector Unit.

31 30 29 28 27 26 25 24
IN0

23 22 21 20 19 18 17 16

IN1

15 14 13 12 11 10 9 8

IN2

7 6 5 4 3 2 1 0

IN3

33
32015G–AVR32–09/09

AT32AP7001

8.7.1.2 Input Pixel Register 1
Register Name: INPIX1

Access Type: Read/Write

• IN0: Input Pixel 4
Input Pixel number 4 to the Input Pixel Selector Unit.

• IN1: Input Pixel 5
Input Pixel number 5 to the Input Pixel Selector Unit.

• IN2: Input Pixel 6
Input Pixel number 6 to the Input Pixel Selector Unit.

• IN3: Input Pixel 7
Input Pixel number 7 to the Input Pixel Selector Unit.

31 30 29 28 27 26 25 24

IN4

23 22 21 20 19 18 17 16
IN5

15 14 13 12 11 10 9 8
IN6

7 6 5 4 3 2 1 0
IN7

34
32015G–AVR32–09/09

AT32AP7001

8.7.1.3 Input Pixel Register 2
Register Name: INPIX2

Access Type: Read/Write

• IN0: Input Pixel 8
Input Pixel number 8 to the Input Pixel Selector Unit.

• IN1: Input Pixel 9
Input Pixel number 9 to the Input Pixel Selector Unit.

• IN2: Input Pixel 10
Input Pixel number 10 to the Input Pixel Selector Unit.

• IN3: Input Pixel 11
Input Pixel number 11 to the Input Pixel Selector Unit.

31 30 29 28 27 26 25 24

IN8

23 22 21 20 19 18 17 16
IN9

15 14 13 12 11 10 9 8
IN10

7 6 5 4 3 2 1 0
IN11

35
32015G–AVR32–09/09

AT32AP7001

8.7.1.4 Output Pixel Register 0
Register Name: OUTPIX0

Access Type: Read

• OUT0: Output Pixel 0
Output Pixel number 0 from the Output Pixel Inserter Unit.

• OUT1: Output Pixel 1
Output Pixel number 1 from the Output Pixel Inserter Unit.

• OUT2: Output Pixel 2
Output Pixel number 2 from the Output Pixel Inserter Unit.

• OUT3: Output Pixel 3
Output Pixel number 3 from the Output Pixel Inserter Unit.

31 30 29 28 27 26 25 24

OUT0

23 22 21 20 19 18 17 16
OUT1

15 14 13 12 11 10 9 8
OUT2

7 6 5 4 3 2 1 0
OUT3

36
32015G–AVR32–09/09

AT32AP7001

8.7.1.5 Output Pixel Register 1
Register Name: OUTPIX1

Access Type: Read

• OUT4: Output Pixel 4
Output Pixel number 4 from the Output Pixel Inserter Unit.

• OUT5: Output Pixel 5
Output Pixel number 5 from the Output Pixel Inserter Unit.

• OUT6: Output Pixel 6
Output Pixel number 6 from the Output Pixel Inserter Unit.

• OUT7: Output Pixel 7
Output Pixel number 7 from the Output Pixel Inserter Unit.

31 30 29 28 27 26 25 24

OUT4

23 22 21 20 19 18 17 16
OUT5

15 14 13 12 11 10 9 8
OUT6

7 6 5 4 3 2 1 0
OUT7

37
32015G–AVR32–09/09

AT32AP7001

8.7.1.6 Output Pixel Register 2
Register Name: OUTPIX2

Access Type: Read

• OUT8: Output Pixel 8
Output Pixel number 8 from the Output Pixel Inserter Unit.

• OUT9: Output Pixel 9
Output Pixel number 9 from the Output Pixel Inserter Unit.

• OUT10: Output Pixel 10
Output Pixel number 10 from the Output Pixel Inserter Unit.

• OUT11: Output Pixel 11
Output Pixel number 11 from the Output Pixel Inserter Unit.

31 30 29 28 27 26 25 24

OUT8

23 22 21 20 19 18 17 16
OUT9

15 14 13 12 11 10 9 8
OUT10

7 6 5 4 3 2 1 0
OUT11

38
32015G–AVR32–09/09

AT32AP7001

8.7.1.7 Coefficient Register A for VMU0
Register Name: COEFF0_A

Access Type: Read/Write

• COEFF0_0: Coefficient 0 for VMU0
Coefficient 0 input to VMU0. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to ,
where the COEFF0_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF0_0 is sign-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

• COEFF0_1: Coefficient 1 for VMU0
Coefficient 1 input to VMU0. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to ,
where the COEFF0_1 value is interpreted as a 2’s complement integer. When reading this register, COEFF0_1 is sign-
extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

31 30 29 28 27 26 25 24

- - - - COEFF0_0

23 22 21 20 19 18 17 16
COEFF0_0

15 14 13 12 11 10 9 8
- - - - COEFF0_1

7 6 5 4 3 2 1 0
COEFF0_1

COEFF0_0 2COEFF_FRAC_BITS⁄

COEFF0_1 2COEFF_FRAC_BITS⁄

39
32015G–AVR32–09/09

AT32AP7001

8.7.1.8 Coefficient Register B for VMU0
Register Name: COEFF0_B

Access Type: Read/Write

• COEFF0_2: Coefficient 2 for VMU0
Coefficient 2 input to VMU0. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to ,
where the COEFF0_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF0_2 is sign-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

• OFFSET0: Offset for VMU0
Offset input to VMU0 in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to

, where the OFFSET0 value is interpreted as a 2’s complement integer. When reading this reg-
ister, OFFSET0 is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

31 30 29 28 27 26 25 24

- - - - COEFF0_2

23 22 21 20 19 18 17 16
COEFF0_2

15 14 13 12 11 10 9 8
- - - - OFFSET0

7 6 5 4 3 2 1 0
OFFSET0

COEFF0_2 2COEFF_FRAC_BITS⁄

OFFSET0 2OFFSET_FRAC_BITS⁄

40
32015G–AVR32–09/09

AT32AP7001

8.7.1.9 Coefficient Register A for VMU1
Register Name: COEFF1_A

Access Type: Read/Write

• COEFF1_0: Coefficient 0 for VMU1
Coefficient 0 input to VMU1. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to ,
where the COEFF1_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_0 is sign-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

• COEFF1_1: Coefficient 1 for VMU1
Coefficient 1 input to VMU0. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to ,
where the COEFF1_1 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_1 is sign-
extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

31 30 29 28 27 26 25 24

- - - - COEFF1_0

23 22 21 20 19 18 17 16
COEFF1_0

15 14 13 12 11 10 9 8
- - - - COEFF1_1

7 6 5 4 3 2 1 0
COEFF1_1

COEFF1_0 2COEFF_FRAC_BITS⁄

COEFF1_1 2COEFF_FRAC_BITS⁄

41
32015G–AVR32–09/09

AT32AP7001

8.7.1.10 Coefficient Register B for VMU1
Register Name: COEFF1_B

Access Type: Read/Write

• COEFF1_2: Coefficient 2 for VMU1
Coefficient 2 input to VMU1. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to ,
where the COEFF1_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_2 is sign-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

• OFFSET1: Offset for VMU1
Offset input to VMU1 in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to

, where the OFFSET1 value is interpreted as a 2’s complement integer. When reading this reg-
ister, OFFSET1 is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

31 30 29 28 27 26 25 24

- - - - COEFF1_2

23 22 21 20 19 18 17 16
COEFF1_2

15 14 13 12 11 10 9 8
- - - - OFFSET1

7 6 5 4 3 2 1 0
OFFSET1

COEFF1_2 2COEFF_FRAC_BITS⁄

OFFSET1 2OFFSET_FRAC_BITS⁄

42
32015G–AVR32–09/09

AT32AP7001

8.7.1.11 Coefficient Register A for VMU2
Register Name: COEFF2_A

Access Type: Read/Write

• COEFF2_0: Coefficient 0 for VMU2
Coefficient 0 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to ,
where the COEFF2_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_0 is sign-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

• COEFF2_1: Coefficient 1 for VMU2
Coefficient 1 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to ,
where the COEFF2_1 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_1 is sign-
extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

31 30 29 28 27 26 25 24

- - - - COEFF2_0

23 22 21 20 19 18 17 16
COEFF2_0

15 14 13 12 11 10 9 8
- - - - COEFF2_1

7 6 5 4 3 2 1 0
COEFF2_1

COEFF2_0 2COEFF_FRAC_BITS⁄

COEFF2_1 2COEFF_FRAC_BITS⁄

43
32015G–AVR32–09/09

AT32AP7001

8.7.1.12 Coefficient Register B for VMU2
Register Name: COEFF2_B

Access Type: Read/Write

• COEFF2_2: Coefficient 2 for VMU2
Coefficient 2 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to ,
where the COEFF2_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_2 is sign-
extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

• OFFSET2: Offset for VMU2
Offset input to VMU2 in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to

, where the OFFSET2 value is interpreted as a 2’s complement integer. When reading this reg-
ister, OFFSET2 is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

31 30 29 28 27 26 25 24

- - - - COEFF2_2

23 22 21 20 19 18 17 16
COEFF2_2

15 14 13 12 11 10 9 8
- - - - OFFSET2

7 6 5 4 3 2 1 0
OFFSET2

COEFF2_2 2COEFF_FRAC_BITS⁄

OFFSET2 2OFFSET_FRAC_BITS⁄

44
32015G–AVR32–09/09

AT32AP7001

8.7.1.13 VMU0 Output Register
Register Name: VMU0_OUT

Access Type: Read/Write

• VMU0_OUT: Output from VMU0
This register is used for directly accessing the output from VMU0 or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMU0 is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16
- - VMU0_OUT

15 14 13 12 11 10 9 8
VMU0_OUT

7 6 5 4 3 2 1 0
VMU0_OUT

45
32015G–AVR32–09/09

AT32AP7001

8.7.1.14 VMU1 Output Register
Register Name: VMU1_OUT

Access Type: Read/Write

• VMU1_OUT: Output from VMU1
This register is used for directly accessing the output from VMU1 or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMU1 is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16
- - VMU1_OUT

15 14 13 12 11 10 9 8
VMU1_OUT

7 6 5 4 3 2 1 0
VMU1_OUT

46
32015G–AVR32–09/09

AT32AP7001

8.7.1.15 VMU2 Output Register
Register Name: VMU2_OUT

Access Type: Read/Write

• VMU2_OUT: Output from VMU2
This register is used for directly accessing the output from VMU2 or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMU2 is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16
- - VMU2_OUT

15 14 13 12 11 10 9 8
VMU2_OUT

7 6 5 4 3 2 1 0
VMU2_OUT

47
32015G–AVR32–09/09

AT32AP7001

8.7.1.16 PICO Configuration Register
Register Name: CONFIG

Access Type: Read/Write

• OIM: Output Insertion Mode
The OIM bit specifies the semantics of the OUTd output pixel address parameter to the pico(s)v(mul/mac) instructions. The
OIM together with the output pixel address parameter specify which of the 12 output bytes (OUTn) of the OUTPIXn regis-
ters will be updated with the results from the VMUs. Table 8-2 on page 47 describes the different Output Insertion Modes.
See Section 8.6 ”Output Pixel Inserter” on page 29 for a description of the Output Pixel Inserter.

• ISM: Input Selection Mode
The ISM f ie ld speci f ies the semant ics of the input p ixe l address parameters INx, INy and INz to the
pico(s)v(mul/mac) instructions. Together with the three input pixel addresses the ISM field specifies to the Input Pixel
Selector which of the input pixels (INn) that should be selected as inputs to the VMUs.Table 8-3 on page 48 describes the

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - OIM ISM

7 6 5 4 3 2 1 0
OFFSET_FRAC_BITS COEFF_FRAC_BITS

Table 8-2. Output Insertion Modes

OIM Mode Description

0 Packed Insertion Mode

{OUTPIX0, OUTPIX1, OUTPIX2} is treated as one large register containing 4 sequential 24-
bit pixel triplets. The DST_ADR field specifies which of the sequential triplets will be updated.

OUT(d*3 + 0) ← Scaled and saturated output from VMU0
OUT(d*3 + 1) ← Scaled and saturated output from VMU1

OUT(d*3 + 2) ← Scaled and saturated output from VMU2

1 Planar Insertion Mode

Each of the OUTPIXn registers will get one of the resulting pixels. The triplet address
specifies what byte in each of the OUTPIXn registers the results will be written to.

OUT(d + 0) ← Scaled and saturated output from VMU0

OUT(d+ 4) ← Scaled and saturated output from VMU1
OUT(d + 8) ← Scaled and saturated output from VMU2

48
32015G–AVR32–09/09

AT32AP7001

different Input Selection Modes. See Section 8.5 ”Input Pixel Selector” on page 27 for a description of the Input Pixel

Selector.

• OFFSET_FRAC_BITS: Offset Fractional Bits
Specifies the number of fractional bits in the fixed-point offsets input to each VMU. Must be in the range from 0 to
COEFF_FRAC_BITS. Other values gives undefined results.This value is used for scaling the OFFSETn values before
being input to VMUn so that the offset will have the same fixed-point format as the outputs from the multiplication stages
before performing the vector addition in the VMU.

• COEFF_FRAC_BITS: Coefficient Fractional Bits
Specifies the number of fractional bits in the fixed-point coefficients input to each VMU. Must be in the range from 0 to 11,
since at least one bit of the coefficient must be used for the sign. Other values gives undefined results.
COEFF_FRAC_BITS is used in the Output Pixel Inserter to scale the fixed-point results from the VMUs back to unsigned 8-
bit integers.

Table 8-3. Input Selection Modes

ISM Mode

0 0 Transformation Mode
VMU0, VMU1 and VMU2 get the same pixel inputs. These three pixels can be
freely selected from the INPIXn registers.

0 1 Horizontal Filter Mode
Pixel triplets are selected for input to each of the VMUs by addressing
horizontal pixel triplets from the INPIXn registers.

1 0 Vertical Filter Mode
Pixel triplets are selected for input to each of the VMUs by addressing vertical
pixel triplets from the INPIXn registers.

1 1 Reserved N.A

49
32015G–AVR32–09/09

AT32AP7001

8.8 PICO Instructions

8.8.1 PICO Instructions Nomenclature

8.8.1.1 Registers and Operands
R{d, s, …} The uppercase ‘R’ denotes a 32-bit (word) register.

Rd The lowercase ‘d’ denotes the destination register number.

Rs The lowercase ‘s’ denotes the source register number.

Rb The lowercase ‘b’ denotes the base register number for indexed addressing modes.

Ri The lowercase ‘i’ denotes the index register number for indexed addressing modes.

Rp The lowercase ‘p’ denotes the pointer register number.

IN{x, y, z} The uppercase ‘IN’ denotes a pixel in the INPIXn registers.

INx The lowercase ‘x’ denotes the first input pixel number for the PICO operation instructions.

INy The lowercase ‘y’ denotes the second input pixel number for the PICO operation instructions.

INz The lowercase ‘z’ denotes the third input pixel number for the PICO operation instructions.

OUTd The uppercase ‘OUT’ denotes a pixel in the OUTPIXn registers.

OUTd The lowercase ‘d’ denotes the destination pixel number for the PICO operation instructions.

Pr PICO register. See Section 8.7.1 ”Register File” on page 31 for a complete list of registers.

PrHi:PrLo PICO register pair. Only register pairs corresponding to valid coprocessor double registers are valid.
E.g. INPIX1:INPIX2 (cr1:cr0). The low part must correspond to an even coprocessor register number
n and the high part must then correspond to coprocessor register n+1. See Table 8-1 on page 31
for a mapping between PICO register names and coprocessor register numbers.

PC Program Counter, equal to R15

LR Link Register, equal to R14

SP Stack Pointer, equal to R13

PICORegList Register List used in the picoldm and picostm instructions. See instruction description for which
register combinations are allowed in the register list.

disp Displacement

sa Shift amount

[i] Denotes bit i in a immediate value. Example: imm6[4] denotes bit 4 in an 6-bit immediate value.

[i:j] Denotes bit i to j in an immediate value.

Some instructions access or use doubleword operands. These operands must be placed in two consecutive register
addresses where the first register must be an even register. The even register contains the least significant part and
the odd register contains the most significant part. This ordering is reversed in comparison with how data is
organized in memory (where the most significant part would receive the lowest address) and is intentional.

50
32015G–AVR32–09/09

AT32AP7001

The programmer is responsible for placing these operands in properly aligned register pairs. This is also specified in
the "Operands" section in the detailed description of each instruction. Failure to do so will result in an undefined
behavior.

8.8.1.2 Operations
ASR(x, n) SE(x, Bits(x) + n) >> n

SATSU(x, n) Signed to Unsigned Saturation (x is treated as a signed value):

If (x > (2n-1)) then (2n-1-1); elseif (x < 0) then 0; else x;

SE(x, n) Sign Extend x to an n-bit value

8.8.1.3 Data Type Extensions
.d Double (64-bit) operation.

.w Word (32-bit) operation.

51
32015G–AVR32–09/09

AT32AP7001

8.8.2 PICO Instruction Summary
Table 8-4. PICO instruction summary

Mnemonics Operands / Syntax Description Operation

picosvmac E OUTd, INx, INy, INz
PICO single vector multiplication and
accumulation.

See PICO instruction set reference

picosvmul E OUTd, INx, INy, INz PICO single vector multiplication See PICO instruction set reference

picovmac E OUTd, INx, INy, INz
PICO vector multiplications and
accumulations.

See PICO instruction set reference

picovmul E OUTd, INx, INy, INz PICO vector multiplications. See PICO instruction set reference

picold.d

E PrHi:PrLo, Rp[disp] Load PICO register pair PrHi:PrLo ← *(Rp+ZE(disp8<<2))

E PrHi:PrLo, --Rp Load PICO register pair with pre-decrement PrHi:PrLo ← *(--Rp)

E
PrHi:PrLo,
Rb[Ri<<sa]

Load PICO register pair with indexed
addressing

PrHi:PrLo ← *(Rb+(Ri << sa2))

picold.w

E Pr, Rp[disp] Load PICO register Pr ← *(Rp+ZE(disp8<<2))

E Pr, --Rp Load PICO register with pre-decrement Pr ← *(--Rp)

E Pr, Rb[Ri<<sa] Load PICO register with indexed addressing Pr ← *(Rb+(Ri << sa2))

picoldm E Rp{++}, PICORegList Load multiple PICO registers See PICO instruction set reference

picomv.d

E Rd, PrHi:PrLo
Move from PICO register pair to CPU register
pair

Rd+1:Rd ← PrHi:PrLo

E PrHi:PrLo, Rd
Move from CPU register pair to PICO register
pair

PrHi:PrLo ← Rd+1:Rd

picomv.w
E Rd, Pr Move from PICO register to CPU register Rd ← Pr

E Pr, Rd Move from CPU register to PICO register Pr ← Rd

picost.d

E Rp[disp], PrHi:PrLo Store PICO register pair *(Rp+ZE(disp8<<2)) ← PrHi:PrLo

E Rp++, PrHi:PrLo Store PICO register pair with post-increment *(Rp--) ← PrHi:PrLo

E
Rb[Ri<<sa],
PrHi:PrLo

Store PICO register pair with indexed
addressing

*(Rb+(Ri << sa2)) ← PrHi:PrLo

picost.w

E Rp[disp], Pr Store PICO register *(Rp+ZE(disp8<<2)) ← Pr

E Rp++, Pr Store PICO register with post-increment *(Rp--) ← Pr

E Rb[Ri<<sa], Pr Store PICO register with indexed addressing *(Rb+(Ri << sa2)) ← Pr

picostm E {--}Rp, PICORegList Store multiple PICO registers See PICO instruction set reference

52
32015G–AVR32–09/09

AT32AP7001

PICOSVMAC – PICO Single Vector Multiplication and Accumulation
Description
Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The values in the VMUn_OUT registers are then accumulated
with the new results from the vector multiplications. The results from each Vector Multiplication Unit (VMU) are then added
together for one of the outputs to the Output Pixels Inserter to form the result of a single vector multiplication of two 9-ele-
ment vectors. The results from the VMUs are then scaled and saturated to unsigned 8-bit values before being inserted into
the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend upon the Output Insertion Mode and the
output pixel address given in the instruction.

Operation:
I. if (Input Selection Mode == Horizontal Filter Mode) then

else if (Input Selection Mode == Vertical Filter Mode) then

else if (Input Selection Mode == Transformation Mode) then

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) ← SATSU(ASR(VMU0_OUT + VMU1_OUT + VMU2_OUT, COEFF_FRAC_BITS) , 8);
OUT(d*3 + 1) ← SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) ← SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) ← SATSU(ASR(VMU0_OUT + VMU1_OUT+ VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) ← SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) ← SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN(x+0)
IN(x+1)
IN(x+2)

VMU0_OUT+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN(y+0)
IN(y+1)
IN(y+2)

VMU1_OUT+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN(z+0)
IN(z+1)
IN(z+2)

VMU2_OUT+=

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN((x+0)%11)
IN((x+4)%11)
IN((x+8)%11)

VMU0_OUT+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN((y+0)%11)
IN((y+4)%11)
IN((y+8)%11)

VMU1_OUT+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN((z+0)%11)
IN((z+4)%11)
IN((z+8)%11)

VMU2_OUT+=

VMU0_OUT
VMU1_OUT
VMU2_OUT

COEFF0_0 COEFF0_1 COEFF0_2
COEFF1_0 COEFF1_1 COEFF1_2
COEFF2_0 COEFF2_1 COEFF2_2

INx
INy
INz

VMU0_OUT
VMU1_OUT
VMU2_OUT

+=

53
32015G–AVR32–09/09

AT32AP7001

Syntax:
I. picosvmac OUTd, INx, INy, INz

Operands:
I. d ∈ {0, 1, 2, 3}

x, y, z ∈ {0, 1, ..., 11}

Opcode:

Example:
/*

Inner loop of a 16-tap symmetric FIR filter with coefficients {c0, c1, c2, c3, c4, c5, c6, c7, c7, ..., c0} set to filter the
pixels pointed to by r12 storing the result to the memory pointed to by r11. The coefficients in the PICO are already
set to the following values: COEFF0_0 = c0, COEFF0_1 = c1, COEFF0_2 = c2, COEFF1_0 = c3, COEFF1_1 = c4,
COEFF1_2 = c5, COEFF2_0 = c6, COEFF2_1 = c7, COEFF2_2 = 0, OFFSET0 = 0.5 (For rounding the result),
OFFSET1 = 0, OFFSET2 = 0.

The Input Selection Mode is set to Horizontal Filter Mode while the Output Insertion Mode is set to Planar Insertion
Mode.
The input image pointer might be unaligned, hence the use of ld.w instead of picold.w.

*/
...
ld.w r1, r12[0] /* r1 = *((int *)src) */
ld.w r0, r12[4] /* r0 = *(((int *)src) + 1) */
ld.w r2, r12[8] /* r2 = *(((int *)src) + 2) */
ld.w r3, r12[12] /* r3 = *(((int *)src) + 3) */
picomv.d INPIX1:INPIX2, r0 /* INPIX1={src[0],src[1],src[2],src[3]}, INPIX2={src[4],src[5],src[6],src[7]}*/
swap.b r2 /* r2 = {src[11],src[10],src[9],src[8]}*/
swap.b r3 /* r3 = {src[15],src[14],src[13],src[12]}*/
picosvmul OUT3, IN4, IN7, IN10 /* VMU0_OUT = c0*src[0]+c1*src[1]+c2*src[2] + 0.5

 VMU1_OUT = c3*src[3]+c4*src[4]+c5*src[5]
VMU2_OUT = c6*src[6]+c7*src[7] */

picomv.d INPIX1:INPIX2, r2 /* INPIX1={src[15],src[14],src[13],src[12]},
INPIX2 ={src[11],src[10],src[9],src[8]} */

picosvmac OUT3, IN4, IN7, IN10 /* VMU0_OUT += c0*src[15]+c1*src[14]+c2*src[13]
 VMU1_OUT += c3*src[12]+c4*src[11]+c5*src[10]

VMU2_OUT += c6*src[9]+c7*src[8]
OUT3 = satscaled(VMU0_OUT+VMU1_OUT+VMU2_OUT)*/

sub r12, -1 /* src++ */
picomv.w r4, OUTPIX0 /* r4 = { OUT0, OUT1, OUT2, OUT3 }
st.b r11++, r4 /* *dst = OUT3 */
...

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 0 0 0 1 1 0 1 0 0 1 1
OUT
d[1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP#
OUT
d[0]

INx INy INz

54
32015G–AVR32–09/09

AT32AP7001

PICOSVMUL – PICO Single Vector Multiplication

Description
Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The results from each Vector Multiplication Unit (VMU) are then
added together for one of the outputs to the Output Pixels Inserter to form the result of a single vector multiplication of two
9-element vectors. The results from the VMUs are then scaled and saturated to unsigned 8-bit values before being inserted
into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend upon the Output Insertion Mode and
the output pixel address given in the instruction.

Operation:
I. OFFSET_SCALE = COEFF_FRAC_BITS - OFFSET_FRAC_BITS

if (Input Selection Mode == Horizontal Filter Mode) then

else if (Input Selection Mode == Vertical Filter Mode) then

else if (Input Selection Mode == Transformation Mode) then

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) ← SATSU(ASR(VMU0_OUT + VMU1_OUT + VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) ← SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) ← SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) ← SATSU(ASR(VMU0_OUT + VMU1_OUT+ VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) ← SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) ← SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN(x+0)
IN(x+1)
IN(x+2)

OFFSET0 << OFFSET_SCALE+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN(y+0)
IN(y+1)
IN(y+2)

OFFSET1 << OFFSET_SCALE+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN(z+0)
IN(z+1)
IN(z+2)

OFFSET2 << OFFSET_SCALE+=

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN((x+0)%11)
IN((x+4)%11)
IN((x+8)%11)

OFFSET0 << OFFSET_SCALE+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN((y+0)%11)
IN((y+4)%11)
IN((y+8)%11)

OFFSET1 << OFFSET_SCALE+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN((z+0)%11)
IN((z+4)%11)
IN((z+8)%11)

OFFSET2 << OFFSET_SCALE+=

VMU0_OUT
VMU1_OUT
VMU2_OUT

COEFF0_0 COEFF0_1 COEFF0_2
COEFF1_0 COEFF1_1 COEFF1_2
COEFF2_0 COEFF2_1 COEFF2_2

INx
INy
INz

OFFSET0 << OFFSET_SCALE
OFFSET1 << OFFSET_SCALE
OFFSE20 << OFFSET_SCALE

+=

55
32015G–AVR32–09/09

AT32AP7001

Syntax:
I. picosvmul OUTd, INx, INy, INz

Operands:
I. d ∈ {0, 1, 2, 3}

x, y, z ∈ {0, 1, ... , 11}

Opcode:

Example:
/*

Excerpt from inner loop of bilinear interpolation filter operating on image component stored in an array pointed to by
r12. The width of the image is stored in r11 while the resulting filtered image is pointed to by r10. The coefficients of
the filter: A, B, C, D are already set before this code is executed. COEFF0_0 = A, COEFF0_1 = B, COEFF0_2 = 0,
COEFF1_0 = C, COEFF1_1 = D, COEFF1_2 = 0, COEFF2_0 = 0, COEFF2_1 = 0, COEFF2_2 = 0, OFFSET0 = 0.5
(For rounding the result), OFFSET1 = 0, OFFSET2 = 0.

The Input Selection Mode is set to Horizontal Filter Mode while the Output Insertion Mode is set to Planar Insertion
Mode.

The input image pointer might be unaligned, hence the use of ld.w instead of picold.w, while the output image pointer
is word aligned.

Four output pixels are computed in this example which show an example of a bilinear interpolation filter found in
the Motion Compensation used in the H.264 Video Standard.

*/
...
ld.w r1, r12[0] /* r1 = *((int *)src) */
ld.w r0, r12[r11] /* r0 = *((int *)(src + width)) */
sub r12, -2 /* src+=2 */
ld.w r3, r12[0] /* r3 = *((int *)src) */
ld.w r2, r12[r11] /* r2 = *((int *)(src + width)) */
picomv.d INPIX1:INPIX2, r0 /* INPIX1 = r1, INPIX2 = r0 */
picosvmul OUT0, IN4, IN8, IN0 /* OUT0 = A*src[j][i+0] + B*src[j][i+1] C*src[j+1][i] + D*src[j+1][i+1] */
picosvmul OUT1, IN5, IN9, IN0 /* OUT1 = A*src[j][i+1] + B*src[j][i+2] C*src[j+1][i+1] + D*src[j+1][i+2] */
picomv.d INPIX1:INPIX2, r2 /* INPIX1 = r3, INPIX2 = r2 */
picosvmul OUT2, IN4, IN8, IN0 /* OUT2 = A*src[j][i+2] + B*src[j][i+3] C*src[j+1][i+2] + D*src[j+1][i+3] */
picosvmul OUT3, IN5, IN9, IN0 /* OUT3 = A*src[j][i+3] + B*src[j][i+4] C*src[j+1][i+3] + D*src[j+1][i+4] */
sub r12, -2 /* src+=2 */
picost.w r10++, OUTPIX0 /* *((int *)src) = { OUT0, OUT1, OUT2, OUT3 } */
...

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 0 0 0 1 1 0 1 0 0 1 0
OUT
d[1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP#
OUT
d[0]

INx INy INz

56
32015G–AVR32–09/09

AT32AP7001

PICOVMAC – PICO Vector Multiplication and Accumulation

Description
Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The values in the VMUn_OUT registers are then accumulated
with the new results from the vector multiplications. The results from the VMUs are then scaled and saturated to unsigned
8-bit values before being inserted into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend
upon the Output Insertion Mode and the output pixel address given in the instruction.

Operation:
I. if (Input Selection Mode == Horizontal Filter Mode) then

else if (Input Selection Mode == Vertical Filter Mode) then

else if (Input Selection Mode == Transformation Mode) then

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) ← SATSU(ASR(VMU0_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) ← SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) ← SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) ← SATSU(ASR(VMU0_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) ← SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) ← SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN(x+0)
IN(x+1)
IN(x+2)

VMU0_OUT+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN(y+0)
IN(y+1)
IN(y+2)

VMU1_OUT+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN(z+0)
IN(z+1)
IN(z+2)

VMU2_OUT+=

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN((x+0)%11)
IN((x+4)%11)
IN((x+8)%11)

VMU0_OUT+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN((y+0)%11)
IN((y+4)%11)
IN((y+8)%11)

VMU1_OUT+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN((z+0)%11)
IN((z+4)%11)
IN((z+8)%11)

VMU2_OUT+=

VMU0_OUT
VMU1_OUT
VMU2_OUT

COEFF0_0 COEFF0_1 COEFF0_2
COEFF1_0 COEFF1_1 COEFF1_2
COEFF2_0 COEFF2_1 COEFF2_2

INx
INy
INz

VMU0_OUT
VMU1_OUT
VMU2_OUT

+=

57
32015G–AVR32–09/09

AT32AP7001

Syntax:
I. picovmac OUTd, INx, INy, INz

Operands:
I. d ∈ {0, 1, 2, 3}

x, y, z ∈ {0, 1, ... , 11}

Opcode:

Example:
/*

Inner loop of a 6-tap symmetric FIR filter with coefficients {c0, c1, c2, c2, c1, c0 } set to filter in the vertical direction
of the image pointed to by r12 with the width of the image stored in r11 and the destination image stored in r10. The
coefficients in the PICO are already set to the following values: COEFF0_0 = c0, COEFF0_1 = c1, COEFF0_2 = c2,
COEFF1_0 = c0, COEFF1_1 = c1, COEFF1_2 = c2, COEFF2_0 = c0, COEFF2_1 = c1, COEFF2_2 = c2,
OFFSET0 = OFFSET1 = OFFSET2 = 0.5 (For rounding the result).
The Input Selection Mode is set to Vertical Filter Mode while the Output Insertion Mode is set to Packed Insertion
Mode.

The input image is assumed to be word aligned.
*/
...
picold.w INPIX0, r12[0] /* INPIX0 = {src[0][0], src[0][1], src[0][2], src[0][3] }*/
picold.w INPIX1, r12[r11] /* INPIX1 = {src[1][0], src[1][1], src[1][2], src[1][3] }*/
picold.w INPIX2, r12[r11 << 1] /* INPIX2 = {src[2][0], src[2][1], src[2][2], src[2][3] }*/
add r9, r12, r11 /* r9 = src + width */
picovmul OUT0, IN0, IN1, IN2 /* VMU0_OUT = c0*src[0][0]+c1*src[1][0]+c2*src[2][0] + 0.5

 VMU1_OUT = c0*src[0][1]+c1*src[1][1]+c2*src[2][1] + 0.5
VMU2_OUT = c0*src[0][2]+c1*src[1][2]+c2*src[2][2] + 0.5*/

picold.w INPIX2, r9[r11 << 1] /* INPIX2 = {src[3][0], src[3][1], src[3][2], src[3][3] }*/
picold.w INPIX1, r12[r11 << 2] /* INPIX1 = {src[4][0], src[4][1], src[4][2], src[4][3] }*/
picold.w INPIX0, r9[r11 << 2] /* INPIX0 = {src[5][0], src[5][1], src[5][2], src[5][3] }*/
picovmac OUT0, IN0, IN1, IN2 /* VMU0_OUT += c0*src[5][0]+c1*src[4][0]+c2*src[3][0]

 VMU1_OUT += c0*src[5][1]+c1*src[4][1]+c2*src[3][1]
VMU2_OUT += c0*src[5][2]+c1*src[4][2]+c2*src[3][2]
OUT0 = satscale(VMU0_OUT), OUT1 = satscale(VMU1_OUT),
OUT2 = satscale(VMU2_OUT) */

....

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 0 0 0 1 1 0 1 0 0 0 1
OUT
d[1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP#
OUT
d[0]

INx INy INz

58
32015G–AVR32–09/09

AT32AP7001

PICOVMUL – PICO Vector Multiplication

Description
Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The results from the VMUs are then scaled and saturated to
unsigned 8-bit values before being inserted into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers
depend upon the Output Insertion Mode and the output pixel address given in the instruction.

Operation:
I. OFFSET_SCALE = COEFF_FRAC_BITS - OFFSET_FRAC_BITS

if (Input Selection Mode == Horizontal Filter Mode) then

else if (Input Selection Mode == Vertical Filter Mode) then

else if (Input Selection Mode == Transformation Mode) then

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) ← SATSU(ASR(VMU0_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) ← SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) ← SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) ← SATSU(ASR(VMU0_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) ← SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) ← SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN(x+0)
IN(x+1)
IN(x+2)

OFFSET0 << OFFSET_SCALE+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN(y+0)
IN(y+1)
IN(y+2)

OFFSET1 << OFFSET_SCALE+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN(z+0)
IN(z+1)
IN(z+2)

OFFSET2 << OFFSET_SCALE+=

VMU0_OUT COEFF0_0 COEFF0_1 COEFF0_2
IN((x+0)%11)
IN((x+4)%11)
IN((x+8)%11)

OFFSET0 << OFFSET_SCALE+=

VMU1_OUT COEFF1_0 COEFF1_1 COEFF1_2
IN((y+0)%11)
IN((y+4)%11)
IN((y+8)%11)

OFFSET1 << OFFSET_SCALE+=

VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2
IN((z+0)%11)
IN((z+4)%11)
IN((z+8)%11)

OFFSET2 << OFFSET_SCALE+=

VMU0_OUT
VMU1_OUT
VMU2_OUT

COEFF0_0 COEFF0_1 COEFF0_2
COEFF1_0 COEFF1_1 COEFF1_2
COEFF2_0 COEFF2_1 COEFF2_2

INx
INy
INz

OFFSET0 << OFFSET_SCALE
OFFSET1 << OFFSET_SCALE
OFFSE20 << OFFSET_SCALE

+=

59
32015G–AVR32–09/09

AT32AP7001

Syntax:
I. picovmul OUTd, INx, INy, INz

Operands:
I. d ∈ {0, 1, 2, 3}

x, y, z ∈ {0, 1, ... , 11}

Opcode:

Example:
/*

Excerpt from inner loop of YCrCb 4:2:2 planar format to RGB packed format image color conversion. The
coefficients of the transform is already set before this code is executed. In transforms like this, the inputs Y, Cr and
Cb are often offsetted with a given amount. This offset can be factored out and included in the offsets like this:
1.164*(Y - 16) = 1.164*Y - 18.625.
The pointer to the Y component is in r12, the pointer to the Cr component in r11 and the pointer to the Cb component
in r10. The pointer to the RGB output image is in r9.

The Input Selection Mode is set to Transform Mode while the Output Insertion Mode is set to Packed Insertion
Mode.

It is assumed that all the input and output pointers are word aligned.

Four RGB triplets are computed in this example. */

...
picold.w INPIX0, r12++ /* INPIX0= { Y[0], Y[1], Y[2], Y[3] }*/
picold.w INPIX1, r11++ /* INPIX1= { Cr[0], Cr[1], Cr[2], Cr[3] }*/
picold.w INPIX2, r10++ /* INPIX2= { Cb[0], Cb[1], Cb[2], Cb[3] }*/
picovmul OUT0, IN0, IN4, IN8 /* OUT0 = r[0], OUT1 = g[0], OUT2 = b[0] */
picovmul OUT1, IN1, IN4, IN8 /* OUT3 = r[1], OUT4 = g[1], OUT5 = b[1] */
picovmul OUT2, IN2, IN5, IN9 /* OUT6 = r[2], OUT7 = g[2], OUT8 = b[2] */
picovmul OUT3, IN3, IN5, IN9 /* OUT9 = r[3], OUT10 = g[3], OUT11 = b[3] */
picostm r9, OUTPIX2, OUTPIX1, OUTPIX0/* RGB = {r[0],g[0],b[0],r[1],g[1],b[1],r[2],g[2],b[2],r[3],g[3],b[3]} */
...

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 0 0 0 1 1 0 1 0 0 0 0
OUT
d[1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP#
OUT
d[0]

INx INy INz

60
32015G–AVR32–09/09

AT32AP7001

PICOLD.{D,W} – Load PICO Register(s)

Description
Reads the memory location specified into the given coprocessor register(s).

Operation:
I. PrHi:PrLo ← *(Rp + (ZE(disp8) << 2));
II. Rp ← Rp-8;

PrHi:PrLo ← *(Rp);
III. PrHi:PrLo ← *(Rb + (Ri << sa2));
IV. Pr ← *(Rp + (ZE(disp8) << 2));
V. Rp ← Rp-4;

Pr ← *(Rp);
VI. Pr ← *(Rb + (Ri << sa2));

Syntax:
I. picold.d PrHi:PrLo, Rp[disp]
II. picold.d PrHi:PrLo, --Rp
III. picold.d PrHi:PrLo, Rb[Ri<<sa]
IV. picold.w Pr, Rp[disp]
V. picold.w Pr, --Rp
VI. picold.w Pr, Rb[Ri<<sa]

Operands:
I-III. PrHi:PrLo ∈ { INPIX1:INPIX2, COEFF0_B:COEFF0_A, COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A,

VMU1_OUT:VMU0_OUT, CONFIG:VMU2_OUT}
IV-VI. Pr ∈ { INPIX0, INPIX1, INPIX2, COEFF0_A, COEFF0_B, COEFF1_A, COEFF1_B, COEFF2_A,

COEFF2_B, VMU0_OUT, VMU1_OUT, VMU2_OUT, CONFIG}
I-II, IV-V.p ∈ {0, 1, …, 15}
I, IV. disp ∈ {0, 4, …, 1020}
III, VI. {b, i} ∈ {0, 1, …, 15}
III, VI. sa ∈ {0, 1, 2, 3}

Opcode
I.

II.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 0 0 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 1 PrLo[3:1] 0 disp8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 PrLo[3:1] 0 0 1 0 1 0 0 0 0

61
32015G–AVR32–09/09

AT32AP7001

III.

IV.

V.

VI.

Example:
picold.d COEFF0_B:COEFF0_A, r12[4]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 1 PrLo[3:1] 0 0 1 Shamt Ri

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 0 0 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 Pr disp8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 Pr 0 1 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 1 Pr 0 0 Shamt Ri

62
32015G–AVR32–09/09

AT32AP7001

PICOLDM – Load Multiple PICO Registers

Description
Reads the memory locations specified into the given PICO registers. The pointer register can optionally be updated after
the operation.

Operation:
I. II. III. Loadaddress ←Rp;

if (PICORegList contains CONFIG)
CONFIG ← *(Loadaddress++);

if (PICORegList contains VMU2_OUT)
VMU2_OUT ← *(Loadaddress++);

if (PICORegList contains VMU1_OUT)
VMU1_OUT ← *(Loadaddress++);

if (PICORegList contains VMU0_OUT)
VMU0_OUT ← *(Loadaddress++);

if (PICORegList contains COEFF2_B)
COEFF2_B ← *(Loadaddress++);

if (PICORegList contains COEFF2_A)
COEFF2_A ← *(Loadaddress++);

if (PICORegList contains COEFF1_B)
COEFF1_B ← *(Loadaddress++);

if (PICORegList contains COEFF1_A)
COEFF1_A ← *(Loadaddress++);

if (PICORegList contains COEFF0_B)
COEFF0_B ← *(Loadaddress++);

if (PICORegList contains COEFF0_A)
COEFF0_A ← *(Loadaddress++);

if (PICORegList contains OUTPIX0)
Loadaddress++;

if (PICORegList contains OUTPIX1)
Loadaddress++;

if (PICORegList contains OUTPIX2)
Loadaddress++;

if (PICORegList contains INPIX0)
INPIX0 ← *(Loadaddress++);

if (PICORegList contains INPIX1)
INPIX1 ← *(Loadaddress++);

if (PICORegList contains INPIX2)
INPIX2 ← *(Loadaddress++);

if Opcode[++] == 1 then
Rp ← Loadaddress;

Syntax:
I. picoldm Rp{++}, PICORegList
II. picoldm Rp{++}, PICORegList
III. picoldm Rp{++}, PICORegList

Operands:
I. PICORegList ∈ { {INPIX1, INPIX2}, {OUTPIX2, INPIX0}, {OUTPIX0, OUTPIX1}, {COEFF0_B, COEFF0_A},

{COEFF1_B, COEFF1_A}, {COEFF2_B, COEFF2_A}, {VMU1_OUT, VMU0_OUT},

63
32015G–AVR32–09/09

AT32AP7001

{CONFIG, VMU2_OUT} }
II. PICORegList ∈ { INPIX0, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFF0_A, COEFF0_B }
III. PICORegList ∈ { COEFF1_A, COEFF1_B, COEFF2_A,COEFF2_B, VMU0_OUT,VMU1_OUT,

VMU2_OUT, CONFIG, }
I-III. p ∈ {0, 1, …, 15}

Opcode
I.

II.

III.

Example:
I. picoldm r7++, COEFF0_A, COEFF0_B, COEFF1_A, COEFF1_B, COEFF2_A, COEFF2_B
II. picoldm r0, INPIX0, INPIX1, INPIX2
III. picoldm r12, VMU0_OUT, VMU1_OUT, VMU2_OUT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 0 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# W 0 1 0 0 CONFIG
VMU2_OUT

VMU1_OUT
VMU0_OUT

COEFF2_B
COEFF2_A

COEFF1_B
COEFF1_A

COEFF0_B
COEFF0_A

OUTPIX0
OUTPIX1

OUTPIX2
INPIX0

INPIX1
INPIX2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 0 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# W 0 0 0 0 COEFF0_B COEFF0_A OUTPIX0 OUTPIX1 OUTPIX2 INPIX0 INPIX1 INPIX2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 0 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# W 0 0 0 1 CONFIG VMU2_OUT VMU1_OUT VMU0_OUT COEFF2_B COEFF2_A COEFF1_B COEFF1_A

64
32015G–AVR32–09/09

AT32AP7001

PICOMV.{D,W} – Move between PICO Register(s) and Register File

Description
Move the specified PICO register(s) to register(s) in the Register File or move register(s) in the Register File to PICO regis-
ter(s).

Operation:
I. PrHi:PrLo ← (Rs+1:Rs);
II. Pr ← Rs;
III. (Rd+1:Rd) ← PrHi:PrLo;
IV. Rd ← Pr;

Syntax:
I. picomv.d PrHi:PrLo, Rs
II. picomv.w Pr, Rs
III. picomv.d Rd, PrHi:PrLo
IV. picomv.w Rd, Pr

Operands:
I, II. PrHi:PrLo ∈ { INPIX1:INPIX2, OUTPIX2:INPIX0, OUTPIX0:OUTPIX1, COEFF0_B:COEFF0_A,

COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A, VMU1_OUT:VMU0_OUT,
CONFIG:VMU2_OUT }

II, IV. Pr ∈ { INPIX0, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFF0_A, COEFF0_B, COEFF1_A,
COEFF1_B, COEFF2_A, COEFF2_B, VMU0_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

I. s ∈ {0, 2, 4, …, 14}
III. d ∈ {0, 2, 4, …, 14}
II. s ∈ {0, 1, …, 15}
IV. d ∈ {0, 1, …, 15}

Opcode
I.

II.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rs 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 PrLo[3:1] 0 0 0 1 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 Pr 0 0 1 0 0 0 0 0

65
32015G–AVR32–09/09

AT32AP7001

III.

IV.

Example:
picomv.d r2, OUTPIX0:OUTPIX1
picomv.w CONFIG, lr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rd 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 PrLo[3:1] 0 0 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 Pr 0 0 0 0 0 0 0 0

66
32015G–AVR32–09/09

AT32AP7001

PICOST.{D,W} – Store PICO Register(s)

Description
Stores the PICO register value(s) to the memory location specified by the addressing mode.

Operation:
I. *(Rp + (ZE(disp8) << 2)) ← PrHi:PrLo;
II. *(Rp) ← PrHi:PrLo;

Rp ← Rp+8;
III. *(Rb + (Ri << sa2)) ← PrHi:PrLo;
IV. *(Rp + (ZE(disp8) << 2)) ← Pr;
V. *(Rp) ← Pr;

Rp ← Rp-4;
VI. *(Rb + (Ri << sa2)) ← Pr;

Syntax:
I. picost.d Rp[disp], PrHi:PrLo
II. picost.d Rp++, PrHi:PrLo
III. picost.d Rb[Ri<<sa], PrHi:PrLo
IV. picost.w Rp[disp], Pr
V. picost.w Rp++, Pr
VI. picost.w Rb[Ri<<sa], Pr

Operands:
I-III. PrHi:PrLo ∈ { INPIX1:INPIX2, OUTPIX2:INPIX0, OUTPIX0:OUTPIX1, COEFF0_B:COEFF0_A,

COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A, VMU1_OUT:VMU0_OUT,
CONFIG:VMU2_OUT }

IV-VI. Pr ∈ { INPIX0, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFF0_A, COEFF0_B, COEFF1_A,
COEFF1_B, COEFF2_A, COEFF2_B, VMU0_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

I-II, IV-V.p ∈ {0, 1, …, 15}
I, IV. disp ∈ {0, 4, …, 1020}
III, VI. {b, i} ∈ {0, 1, …, 15}
III, VI. sa ∈ {0, 1, 2, 3}

Opcode
I.

II.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 0 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 1 PrLo[3:1] 0 disp8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 PrLo[3:1] 0 0 1 1 1 0 0 0 0

67
32015G–AVR32–09/09

AT32AP7001

III.

IV.

V.

VI.

Example:
picost.w r10++, OUTPIX0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 1 PrLo[3:1] 0 1 1 Shamt Ri

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 0 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 Pr disp8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 0 Pr 0 1 1 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 1 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# 1 Pr 1 0 Shamt Ri

68
32015G–AVR32–09/09

AT32AP7001

PICOSTM – Store Multiple PICO Registers

Description
Writes the PICO registers specified in the register list into the specified memory locations.

Operation:
I. II. III.

if Opcode[--] == 1 then
Rp ← Rp - 4*RegistersInList;

Storeaddress ←Rp;

if (PICORegList contains CONFIG)
*(Storeaddress++) ← CONFIG;

if (PICORegList contains VMU2_OUT)
*(Storeaddress++) ← VMU2_OUT;

if (PICORegList contains VMU1_OUT)
*(Storeaddress++) ← VMU1_OUT;

if (PICORegList contains VMU0_OUT)
*(Storeaddress++) ← VMU0_OUT;

if (PICORegList contains COEFF2_B)
*(Storeaddress++) ← COEFF2_B;

if (PICORegList contains COEFF2_A)
*(Storeaddress++) ← COEFF2_A;

if (PICORegList contains COEFF1_B)
*(Storeaddress++) ← COEFF1_B;

if (PICORegList contains COEFF1_A)
*(Storeaddress++) ← COEFF1_A;

if (PICORegList contains COEFF0_B)
*(Storeaddress++) ← COEFF0_B;

if (PICORegList contains COEFF0_A)
*(Storeaddress++) ← COEFF0_A;

if (PICORegList contains OUTPIX0)
*(Storeaddress++) ← OUTPIX0;

if (PICORegList contains OUTPIX1)
*(Storeaddress++) ← OUTPIX1;

if (PICORegList contains OUTPIX2)
*(Storeaddress++) ← OUTPIX2;

if (PICORegList contains INPIX0)
*(Storeaddress++) ←INPIX0 ;

if (PICORegList contains INPIX1)
*(Storeaddress++) ←INPIX1 ;

if (PICORegList contains INPIX2)
*(Storeaddress++) ←INPIX2 ;

Syntax:
I. picostm {--}Rp, PICORegList
II. picostm {--}Rp, PICORegList
III. picostm {--}Rp, PICORegList

Operands:
I. PICORegList ∈ { {INPIX1, INPIX2}, {OUTPIX2, INPIX0}, {OUTPIX0, OUTPIX1}, {COEFF0_B, COEFF0_A},

{COEFF1_B, COEFF1_A}, {COEFF2_B, COEFF2_A}, {VMU1_OUT, VMU0_OUT},

69
32015G–AVR32–09/09

AT32AP7001

{CONFIG, VMU2_OUT} }
II. PICORegList ∈ { INPIX0, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFF0_A, COEFF0_B }
III. PICORegList ∈ { COEFF1_A, COEFF1_B, COEFF2_A,COEFF2_B, VMU0_OUT,VMU1_OUT,

VMU2_OUT, CONFIG, }
I-III. p ∈ {0, 1, …, 15}

Opcode
I.

II.

III.

Example:
I. picostm --r7, COEFF0_A, COEFF0_B, COEFF1_A, COEFF1_B, COEFF2_A, COEFF2_B
II. picostm r2, OUTPIX0, OUTPIX1, OUTPIX2
III. picostm r11, VMU0_OUT, VMU1_OUT, VMU2_OUT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 0 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# W 0 1 0 1 CONFIG
VMU2_OUT

VMU1_OUT
VMU0_OUT

COEFF2_B
COEFF2_A

COEFF1_B
COEFF1_A

COEFF0_B
COEFF0_A

OUTPIX0
OUTPIX1

OUTPIX2
INPIX0

INPIX1
INPIX2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 0 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# W 0 0 1 0 COEFF0_B COEFF0_A OUTPIX0 OUTPIX1 OUTPIX2 INPIX0 INPIX1 INPIX2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 1 1 0 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PICO CP# W 0 0 1 1 CONFIG VMU2_OUT VMU1_OUT VMU0_OUT COEFF2_B COEFF2_A COEFF1_B COEFF1_A

70
32015G–AVR32–09/09

AT32AP7001

8.9 Data Hazards

Data hazards are caused by data dependencies between instructions which are in different
stages of the pipeline and reads/writes registers which are common to several pipeline stages.
Because of the 3-stage pipeline employed in the PICO data hazards might exist between
instructions. Data hazards are handled by hardware interlocks which can stall a new read com-
mand from or write command to the PICO register file.

Table 8-5. Data Hazards

Instruction
Next
Instruction Condition

Stall
Cycles

picovmul
picovmac
picosvmul
picosvmac

picomv.x Pr,...
picold.x
picoldm

Write-After-Read (WAR) or Write-After-Write (WAW)
Hazard will occur if writing COEFFn_A/B, VMUn_OUT
or CONFIG since these are accessed when the PICO
command is in Pipeline Stage 2 and Pipeline Stage 3.

1

Writes to INPIXn registers produces no hazard since
they are only accessed in Pipeline Stage 1.

0

picomv.x Rd,...
picost.x
picostm

Read-After-Write Hazard (RAW) will occur if reading
the PICO register file while a command is in the
pipeline.

2

71
32015G–AVR32–09/09

AT32AP7001

9. Memories

9.1 Embedded Memories

• 32 Kbyte SRAM
– Implemented as two 16Kbyte blocks
– Single cycle access at full bus speed

9.2 Physical Memory Map

The system bus is implemented as an HSB bus matrix. All system bus addresses are fixed, and
they are never remapped in any way, not even in boot. Note that AT32AP7001 by default uses
segment translation, as described in the AVR32 Architecture Manual. The 32 bit physical
address space is mapped as follows:

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, MCFG2 is associated
with the HSB-HSB bridge.

Table 9-1. AT32AP7001 Physical Memory Map

Start Address Size Device

0x0000_0000 64 Mbyte EBI SRAM CS0

0x0400_0000 64 Mbyte EBI SRAM CS4

0x0800_0000 64 Mbyte EBI SRAM CS2

0x0C00_0000 64 Mbyte EBI SRAM CS3

0x1000_0000 256 Mbyte EBI SRAM/SDRAM CS1

0x2000_0000 64 Mbyte EBI SRAM CS5

0x2400_0000 16 Kbyte Internal SRAM 0

0x2400_4000 16 Kbyte Internal SRAM1

0xFF20_0000 1 KByte DMACA configuration

0xFF30_0000 1 MByte USBA Data

0xFFE0_0000 1 MByte PBA

0xFFF0_0000 1 MByte PBB

72
32015G–AVR32–09/09

AT32AP7001

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number
in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is
associated with PBB.

Table 9-2. HSB masters

Master 0 CPU Dcache

Master 1 CPU Icache

Master 2 HSB-HSB Bridge

Master 3 ISI DMA

Master 4 USBA DMA

Master 8 DMAC Master Interface 0

Master 9 DMAC Master Interface 1

Table 9-3. HSB slaves

Slave 0 Internal SRAM 0

Slave 1 Internal SRAM1

Slave 2 PBA

Slave 3 PBB

Slave 4 EBI

Slave 5 USBA data

Slave 7 DMACA configuration

73
32015G–AVR32–09/09

AT32AP7001

10. Peripherals

10.1 Peripheral address map

Table 10-1. Peripheral Address Mapping

Address Peripheral Name Bus

0xFF200000
DMACA DMA Controller Slave Interface- DMACA HSB

0xFF300000
USBA USB Slave Interface - USBA HSB

0xFFE00000
SPI0 Serial Peripheral Interface - SPI0 PB A

0xFFE00400
SPI1 Serial Peripheral Interface - SPI1 PB A

0xFFE00800
TWI Two-wire Interface - TWI PB A

0xFFE00C00
USART0

Universal Synchronous Asynchronous Receiver
Transmitter - USART0

PB A

0xFFE01000
USART1

Universal Synchronous Asynchronous Receiver
Transmitter - USART1

PB A

0xFFE01400
USART2

Universal Synchronous Asynchronous Receiver
Transmitter - USART2

PB A

0xFFE01800
USART3

Universal Synchronous Asynchronous Receiver
Transmitter - USART3

PB A

0xFFE01C00
SSC0 Synchronous Serial Controller - SSC0 PB A

0xFFE02000
SSC1 Synchronous Serial Controller - SSC1 PB A

0xFFE02400
SSC2 Synchronous Serial Controller - SSC2 PB A

0xFFE02800
PIOA Parallel Input/Output 2 - PIOA PB A

0xFFE02C00
PIOB Parallel Input/Output 2 - PIOB PB A

0xFFE03000
PIOC Parallel Input/Output 2 - PIOC PB A

0xFFE03400
PIOD Parallel Input/Output 2 - PIOD PB A

0xFFE03800
PIOE Parallel Input/Output 2 - PIOE PB A

74
32015G–AVR32–09/09

AT32AP7001

0xFFE03C00
PSIF PS2 Interface - PSIF PB A

0xFFF00000
PM Power Manager - PM PB B

0xFFF00080
RTC Real Time Counter- RTC PB B

0xFFF000B0
WDT WatchDog Timer- WDT PB B

0xFFF00100
EIC External Interrupt Controller - EIC PB B

0xFFF00400
INTC Interrupt Controller - INTC PB B

0xFFF00800
HMATRIX HSB Matrix - HMATRIX PB B

0xFFF00C00
TC0 Timer/Counter - TC0 PB B

0xFFF01000
TC1 Timer/Counter - TC1 PB B

0xFFF01400
PWM Pulse Width Modulation Controller - PWM PB B

0xFFF02000
ABDAC Audio Bitstream DAC - ABDAC PB B

0xFFF02400
MCI MultiMedia Card Interface - MCI PB B

0xFFF02800
AC97C AC97 Controller - AC97C PB B

0xFFF02C00
ISI Image Sensor Interface - ISI PB B

0xFFF03000
USBA USB Configuration Interface - USBA PB B

0xFFF03400
SMC Static Memory Controller - SMC PB B

0xFFF03800
SDRAMC SDRAM Controller - SDRAMC PB B

0xFFF03C00
ECC Error Correcting Code Controller - ECC PB B

Table 10-1. Peripheral Address Mapping (Continued)

Address Peripheral Name Bus

75
32015G–AVR32–09/09

AT32AP7001

10.2 Interrupt Request Signal Map

The various modules may output interrupt request signals. These signals are routed to the Inter-
rupt Controller (INTC). The Interrupt Controller supports up to 64 groups of interrupt requests.
Each group can have up to 32 interrupt request signals. All interrupt signals in the same group
share the same autovector address and priority level. Refer to the documentation for the individ-
ual submodules for a description of the semantic of the different interrupt requests.

The interrupt request signals in AT32AP7001 are connected to the INTC as follows:

Table 10-2. Interrupt Request Signal Map

Group Line Signal

0 0 COUNT-COMPARE match

1 Performance Counter Overflow

2 0 DMACA BLOCK

1 DMACA DSTT

2 DMACA ERR

3 DMACA SRCT

4 DMACA TFR

3 0 SPI 0

4 0 SPI 1

5 0 TWI

6 0 USART0

7 0 USART1

8 0 USART2

9 0 USART3

10 0 SSC0

11 0 SSC1

12 0 SSC2

13 0 PIOA

14 0 PIOB

15 0 PIOC

16 0 PIOD

17 0 PIOE

18 0 PSIF

19 0 EIC0

1 EIC1

2 EIC2

3 EIC3

20 0 PM

21 0 RTC

76
32015G–AVR32–09/09

AT32AP7001

10.3 DMACA Handshake Interface Map

The following table details the hardware handshake map between the DMACA and the peripher-
als attached to it: :

22 0 TC00

1 TC01

2 TC02

23 0 TC10

1 TC11

2 TC12

24 0 PWM

27 0 ABDAC

28 0 MCI

29 0 AC97C

30 0 ISI

31 0 USBA

32 0 EBI

Table 10-2. Interrupt Request Signal Map

Group Line Signal

Table 10-3. Hardware Handshaking Connection

Request Hardware Handshaking Interface

MCI RX 0

MCI TX 1

ABDAC TX 2

AC97C CHANNEL A RX 3

AC97C CHANNEL A TX 4

AC97C CHANNEL B RX 5

AC97C CHANNEL B TX 6

EXTERNAL DMA REQUEST 0 7

EXTERNAL DMA REQUEST 1 8

EXTERNAL DMA REQUEST 2 9

EXTERNAL DMA REQUEST 3 10

77
32015G–AVR32–09/09

AT32AP7001

10.4 Clock Connections

10.4.1 Timer/Counters

Each Timer/Counter channel can independently select an internal or external clock source for its
counter:

10.4.2 USARTs

Each USART can be connected to an internally divided clock:

Table 10-4. Timer/Counter clock connections

Timer/Counter Source Name Connection

0 Internal TIMER_CLOCK1 clk_osc32

TIMER_CLOCK2 clk_pbb / 4

TIMER_CLOCK3 clk_pbb / 8

TIMER_CLOCK4 clk_pbb / 16

TIMER_CLOCK5 clk_pbb / 32

External XC0 See Section 10.7

XC1

XC2

1 Internal TIMER_CLOCK1 clk_osc32

TIMER_CLOCK2 clk_pbb / 4

TIMER_CLOCK3 clk_pbb / 8

TIMER_CLOCK4 clk_pbb / 16

TIMER_CLOCK5 clk_pbb / 32

External XC0 See Section 10.7

XC1

XC2

Table 10-5. USART clock connections

USART Source Name Connection

0 Internal CLK_DIV clk_pba / 8

1

2

3

78
32015G–AVR32–09/09

AT32AP7001

10.4.3 SPIs

Each SPI can be connected to an internally divided clock:

10.4.4 USBA

OSC1 is connected to the USB HS Phy and must be 12 MHz when using the USBA.

10.5 External Interrupt Pin Mapping

External interrupt requests are connected to the following pins::

10.6 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the PIO configuration. Two different OCD trace pin mappings are possible,
depending on the configuration of the OCD AXS register. For details, see the AVR32 AP Techni-
cal Reference Manual.

Table 10-6. SPI clock connections

SPI Source Name Connection

0 Internal CLK_DIV clk_pba / 32

1

Table 10-7. External Interrupt Pin Mapping

Source Connection

NMI_N PB24

EXTINT0 PB25

EXTINT1 PB26

EXTINT2 PB27

EXTINT3 PB28

Table 10-8. Nexus OCD AUX port connections

Pin AXS=0 AXS=1

EVTI_N EVTI_N EVTI_N

MDO[5] PB09 PC18

MDO[4] PB08 PC14

MDO[3] PB07 PC12

MDO[2] PB06 PC11

MDO[1] PB05 PC06

MDO[0] PB04 PC05

EVTO_N PB03 PB28

MCKO PB02 PC02

MSEO[1] PB01 PC01

MSEO[0] PB00 PC00

79
32015G–AVR32–09/09

AT32AP7001

10.7 Peripheral Multiplexing on IO lines

The AT32AP7001 features five PIO controllers, PIOA to PIOE, that multiplex the I/O lines of the
peripheral set. Each PIO Controller controls up to thirty-two lines.

Each line can be assigned to one of two peripheral functions, A or B. The tables in the following
pages define how the I/O lines of the peripherals A and B are multiplexed on the PIO
Controllers.

Note that some output only peripheral functions might be duplicated within the tables.

10.7.1 PIO Controller A Multiplexing

Table 10-9. PIO Controller A Multiplexing

QFP208 I/O Line Peripheral A Peripheral B

27 PA00 SPI0 - MISO SSC1 - RX_FRAME_SYNC

28 PA01 SPI0 - MOSI SSC1 - TX_FRAME_SYNC

29 PA02 SPI0 - SCK SSC1 - TX_CLOCK

30 PA03 SPI0 - NPCS[0] SSC1 - RX_CLOCK

31 PA04 SPI0 - NPCS[1] SSC1 - TX_DATA

32 PA05 SPI0 - NPCS[2] SSC1 - RX_DATA

175 PA06 TWI - SDA USART0 - RTS

176 PA07 TWI - SCL USART0 - CTS

35 PA08 PSIF - CLOCK USART0 - RXD

38 PA09 PSIF - DATA USART0 - TXD

39 PA10 MCI - CLK USART0 - CLK

40 PA11 MCI - CMD TC0 - CLK0

41 PA12 MCI - DATA[0] TC0 - A0

42 PA13 MCI - DATA[1] TC0 - A1

43 PA14 MCI - DATA[2] TC0 - A2

44 PA15 MCI - DATA[3] TC0 - B0

45 PA16 USART1 - CLK TC0 - B1

46 PA17 USART1 - RXD TC0 - B2

47 PA18 USART1 - TXD TC0 - CLK2

48 PA19 USART1 - RTS TC0 - CLK1

49 PA20 USART1 - CTS SPI0 - NPCS[3]

50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2]

51 PA22 SSC0 - RX_CLOCK PWM - PWM[3]

54 PA23 SSC0 - TX_CLOCK TC1 - A0

55 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1

72 PA25 SSC0 - TX_DATA TC1 - B0

73 PA26 SSC0 - RX_DATA TC1 - B1

74 PA27 SPI1 - NPCS[3] TC1 - CLK0

75 PA28 PWM - PWM[0] TC1 - A2

80
32015G–AVR32–09/09

AT32AP7001

10.7.2 PIO Controller B Multiplexing

76 PA29 PWM - PWM[1] TC1 - B2

77 PA30 PM - GCLK[0] TC1 - CLK1

78 PA31 PM - GCLK[1] TC1 - CLK2

Table 10-9. PIO Controller A Multiplexing

Table 10-10. PIO Controller B Multiplexing

QFP208 I/O Line Peripheral A Peripheral B

144 PB00 ISI - DATA[0] SPI1 - MISO

145 PB01 ISI - DATA[1] SPI1 - MOSI

146 PB02 ISI - DATA[2] SPI1 - NPCS[0]

147 PB03 ISI - DATA[3] SPI1 - NPCS[1]

148 PB04 ISI - DATA[4] SPI1 - NPCS[2]

149 PB05 ISI - DATA[5] SPI1 - SCK

150 PB06 ISI - DATA[6] MCI - CMD[1]

151 PB07 ISI - DATA[7] MCI - DATA[4]

152 PB08 ISI - HSYNC MCI - DATA[5]

153 PB09 ISI - VSYNC MCI - DATA[6]

158 PB10 ISI - PCLK MCI - DATA[7]

159 PB11 PSIF - CLOCK[1] ISI - DATA[8]

160 PB12 PSIF - DATA[1] ISI - DATA[9]

161 PB13 SSC2 - TX_DATA ISI - DATA[10]

162 PB14 SSC2 - RX_DATA ISI - DATA[11]

163 PB15 SSC2 - TX_CLOCK USART3 - CTS

164 PB16 SSC2 - TX_FRAME_SYNC USART3 - RTS

165 PB17 SSC2 - RX_FRAME_SYNC USART3 - TXD

166 PB18 SSC2 - RX_CLOCK USART3 - RXD

167 PB19 PM - GCLK[2] USART3 - CLK

168 PB20 ABDAC - DATA[1] AC97C - SDO

169 PB21 ABDAC - DATA[0] AC97C - SYNC

170 PB22 ABDAC - DATAN[1] AC97C - SCLK

171 PB23 ABDAC - DATAN[0] AC97C - SDI

33 PB24 NMI_N DMACA - DMARQ[0]

34 PB25 EXTINT0 DMACA - DMARQ[1]

80 PB26 EXTINT1 USART2 - RXD

81 PB27 EXTINT2 USART2 - TXD

82 PB28 EXTINT3 USART2 - CLK

100 PB29 PM - GCLK[3] USART2 - CTS

101 PB30 PM - GCLK[4] USART2 - RTS

81
32015G–AVR32–09/09

AT32AP7001

82
32015G–AVR32–09/09

AT32AP7001

10.7.3 PIO Controller E Multiplexing

Table 10-11. PIO Controller E Multiplexing

QFP208 I/O Line Peripheral A Peripheral B

190 PE00 EBI - DATA[16]

191 PE01 EBI - DATA[17]

192 PE02 EBI - DATA[18]

193 PE03 EBI - DATA[19]

194 PE04 EBI - DATA[20]

195 PE05 EBI - DATA[21]

196 PE06 EBI - DATA[22]

197 PE07 EBI - DATA[23]

198 PE08 EBI - DATA[24]

199 PE09 EBI - DATA[25]

200 PE10 EBI - DATA[26]

201 PE11 EBI - DATA[27]

202 PE12 EBI - DATA[28]

203 PE13 EBI - DATA[29]

204 PE14 EBI - DATA[30]

205 PE15 EBI - DATA[31]

206 PE16 EBI - ADDR[23]

2 PE17 EBI - ADDR[24]

3 PE18 EBI - ADDR[25]

93 PE19 EBI - CFCE1

92 PE20 EBI - CFCE2

91 PE21 EBI - NCS[4]

90 PE22 EBI - NCS[5]

89 PE23 EBI - CFRNW

88 PE24 EBI - NWAIT

87 PE25 EBI - NCS[2]

83
32015G–AVR32–09/09

AT32AP7001

10.7.4 IO Pins Without Multiplexing

Many of the external EBI pins are not controlled by the PIO modules, but directly driven by the
EBI. These pins have programmable pullup resistors. These resistors are controlled by Special
Function Register 4 (SFR4) in the HMATRIX. The pullup on the lines multiplexed with PIO is
controlled by the appropriate PIO control register.

This SFR can also control CompactFlash, SmartMedia or NandFlash Support, see the EBI chap-
ter for details

10.7.4.1 HMatrix SFR4 EBI Control Register

Name: HMATRIX_SFR4

Access Type: Read/Write

• CS1A: Chip Select 1 Assignment
0 = Chip Select 1 is assigned to the Static Memory Controller.

1 = Chip Select 1 is assigned to the SDRAM Controller.

• CS3A: Chip Select 3 Assignment
0 = Chip Select 3 is only assigned to the Static Memory Controller and NCS3 behaves as
defined by the SMC.

1 = Chip Select 3 is assigned to the Static Memory Controller and the NAND Flash/SmartMedia
Logic is activated.

• CS4A: Chip Select 4 Assignment
0 = Chip Select 4 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6
behave as defined by the SMC.

1 = Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic is
activated.

• CS5A: Chip Select 5 Assignment
0 = Chip Select 5 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6
behave as defined by the SMC.

1 = Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic is
activated.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – EBI_DBPUC

7 6 5 4 3 2 1 0

– – EBI_CS5A EBI_CS4A EBI_CS3A – EBI_CS1A -

84
32015G–AVR32–09/09

AT32AP7001

Accessing the address space reserved to NCS5 and NCS6 may lead to an unpredictable
outcome.

• EBI_DBPUC: EBI Data Bus Pull-up Control
0: EBI D[15:0] are internally pulled up to the VDDIO power supply. The pull-up resistors are
enabled after reset.
1: EBI D[15:0] are not internally pulled up.

Table 10-12. IO Pins without multiplexing

I/O Line Function

PX00 EBI - DATA[0]

PX01 EBI - DATA[1]

PX02 EBI - DATA[2]

PX03 EBI - DATA[3]

PX04 EBI - DATA[4]

PX05 EBI - DATA[5]

PX06 EBI - DATA[6]

PX07 EBI - DATA[7]

PX08 EBI - DATA[8]

PX09 EBI - DATA[9]

PX10 EBI - DATA[10]

PX11 EBI - DATA[11]

PX12 EBI - DATA[12]

PX13 EBI - DATA[13]

PX14 EBI - DATA[14]

PX15 EBI - DATA[15]

PX16 EBI - ADDR[0]

PX17 EBI - ADDR[1]

PX18 EBI - ADDR[2]

PX19 EBI - ADDR[3]

PX20 EBI - ADDR[4]

PX21 EBI - ADDR[5]

PX22 EBI - ADDR[6]

PX23 EBI - ADDR[7]

PX24 EBI - ADDR[8]

PX25 EBI - ADDR[9]

PX26 EBI - ADDR[10]

PX27 EBI - ADDR[11]

PX28 EBI - ADDR[12]

PX29 EBI - ADDR[13]

PX30 EBI - ADDR[14]

PX31 EBI - ADDR[15]

85
32015G–AVR32–09/09

AT32AP7001

PX32 EBI - ADDR[16]

PX33 EBI - ADDR[17]

PX34 EBI - ADDR[18]

PX35 EBI - ADDR[19]

PX36 EBI - ADDR[20]

PX37 EBI - ADDR[21]

PX38 EBI - ADDR[22]

PX39 EBI - NCS[0]

PX40 EBI - NCS[1]

PX41 EBI - NCS[3]

PX42 EBI - NRD

PX43 EBI - NWE0

PX44 EBI - NWE1

PX45 EBI - NWE3

PX46 EBI - SDCK

PX47 EBI - SDCKE

PX48 EBI - RAS

PX49 EBI - CAS

PX50 EBI - SDWE

PX51 EBI - SDA10

PX52 EBI - NANDOE

PX53 EBI - NANDWE

Table 10-12. IO Pins without multiplexing (Continued)

86
32015G–AVR32–09/09

AT32AP7001

10.8 Peripheral overview

10.8.1 External Bus Interface

• Optimized for Application Memory Space support
• Integrates Three External Memory Controllers:

– Static Memory Controller
– SDRAM Controller
– ECC Controller

• Additional Logic for NAND Flash/SmartMediaTM and CompactFlashTM Support
– SmartMedia support: 8-bit as well as 16-bit devices are supported
– CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are

supported but the signals _IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.

• Optimized External Bus:
– 16- or 32-bit Data Bus
– Up to 26-bit Address Bus, Up to 64-Mbytes Addressable
– Optimized pin multiplexing to reduce latencies on External Memories

• Up to 6 Chip Selects, Configurable Assignment:
– Static Memory Controller on NCS0
– SDRAM Controller or Static Memory Controller on NCS1
– Static Memory Controller on NCS2
– Static Memory Controller on NCS3, Optional NAND Flash/SmartMediaTM Support
– Static Memory Controller on NCS4 - NCS5, Optional CompactFlashTM Support

10.8.2 Static Memory Controller

• 6 Chip Selects Available
• 64-Mbyte Address Space per Chip Select
• 8-, 16- or 32-bit Data Bus
• Word, Halfword, Byte Transfers
• Byte Write or Byte Select Lines
• Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
• Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
• Programmable Data Float Time per Chip Select
• Compliant with LCD Module
• External Wait Request
• Automatic Switch to Slow Clock Mode
• Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes

10.8.3 SDRAM Controller

• Numerous Configurations Supported
– 2K, 4K, 8K Row Address Memory Parts
– SDRAM with Two or Four Internal Banks
– SDRAM with 16- or 32-bit Data Path

• Programming Facilities
– Word, Half-word, Byte Access
– Automatic Page Break When Memory Boundary Has Been Reached
– Multibank Ping-pong Access
– Timing Parameters Specified by Software
– Automatic Refresh Operation, Refresh Rate is Programmable

87
32015G–AVR32–09/09

AT32AP7001

• Energy-saving Capabilities
– Self-refresh, Power-down and Deep Power Modes Supported
– Supports Mobile SDRAM Devices

• Error Detection
– Refresh Error Interrupt

• SDRAM Power-up Initialization by Software
• CAS Latency of 1, 2, 3 Supported
• Auto Precharge Command Not Used

10.8.4 Error Corrected Code Controller

• Hardware Error Corrected Code (ECC) Generation
– Detection and Correction by Software

• Supports NAND Flash and SmartMedia™ Devices with 8- or 16-bit Data Path.
• Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes, Specified

by Software

10.8.5 Serial Peripheral Interface

• Supports communication with serial external devices
– Four chip selects with external decoder support allow communication with up to 15

peripherals
– Serial memories, such as DataFlash™ and 3-wire EEPROMs
– Serial peripherals, such as ADCs, DACs, CAN Controllers and Sensors
– External co-processors

• Master or slave serial peripheral bus interface
– 8- to 16-bit programmable data length per chip select
– Programmable phase and polarity per chip select
– Programmable transfer delays between consecutive transfers and between clock and data

per chip select
– Programmable delay between consecutive transfers
– Selectable mode fault detection

• Very fast transfers supported
– Transfers with baud rates up to MCK
– The chip select line may be left active to speed up transfers on the same device

10.8.6 Two-wire Interface

• Compatibility with standard two-wire serial memory
• One, two or three bytes for slave address
• Sequential read/write operations

88
32015G–AVR32–09/09

AT32AP7001

10.8.7 USART

• Programmable Baud Rate Generator
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications

– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
– Parity generation and error detection
– Framing error detection, overrun error detection
– MSB- or LSB-first
– Optional break generation and detection
– By 8 or by-16 over-sampling receiver frequency
– Hardware handshaking RTS-CTS
– Receiver time-out and transmitter timeguard
– Optional Multi-drop Mode with address generation and detection
– Optional Manchester Encoding

• RS485 with driver control signal
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards

– NACK handling, error counter with repetition and iteration limit
• IrDA modulation and demodulation

– Communication at up to 115.2 Kbps
• Test Modes 46

– Remote Loopback, Local Loopback, Automatic Echo

10.8.8 Serial Synchronous Controller

• Provides serial synchronous communication links used in audio and telecom applications (with
CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)

• Contains an independent receiver and transmitter and a common clock divider
• Offers a configurable frame sync and data length
• Receiver and transmitter can be programmed to start automatically or on detection of different

event on the frame sync signal
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

10.8.9 AC97 Controller

• Compatible with AC97 Component Specification V2.2
• Capable to Interface with a Single Analog Front end
• Three independent RX Channels and three independent TX Channels

– One RX and one TX channel dedicated to the AC97 Analog Front end control
– One RX and one TX channel for data transfers, connected to the DMACA
– One RX and one TX channel for data transfers, connected to the DMACA

• Time Slot Assigner allowing to assign up to 12 time slots to a channel
• Channels support mono or stereo up to 20 bit sample length - Variable sampling rate AC97 Codec

Interface (48KHz and below)

89
32015G–AVR32–09/09

AT32AP7001

10.8.10 Audio Bitstream DAC

• Digital Stereo DAC
• Oversampled D/A conversion architecture

– Oversampling ratio fixed 128x
– FIR equalization filter
– Digital interpolation filter: Comb4
– 3rd Order Sigma-Delta D/A converters

• Digital bitstream outputs
• Parallel interface
• Connected to DMA Controller for background transfer without CPU intervention

10.8.11 Timer Counter

• Three 16-bit Timer Counter Channels
• Wide range of functions including:

– Frequency Measurement
– Event Counting
– Interval Measurement
– Pulse Generation
– Delay Timing
– Pulse Width Modulation
– Up/down Capabilities

• Each channel is user-configurable and contains:
– Three external clock inputs
– Five internal clock inputs
– Two multi-purpose input/output signals

• Two global registers that act on all three TC Channels

10.8.12 Pulse Width Modulation Controller

• 4 channels, one 16-bit counter per channel
• Common clock generator, providing Thirteen Different Clocks

– A Modulo n counter providing eleven clocks
– Two independent Linear Dividers working on modulo n counter outputs

• Independent channel programming
– Independent Enable Disable Commands
– Independent Clock
– Independent Period and Duty Cycle, with Double Bufferization
– Programmable selection of the output waveform polarity
– Programmable center or left aligned output waveform

90
32015G–AVR32–09/09

AT32AP7001

10.8.13 MultiMedia Card Interface

• 2 double-channel MultiMedia Card Interface, allowing concurrent transfers with 2 cards
• Compatibility with MultiMedia Card Specification Version 2.2
• Compatibility with SD Memory Card Specification Version 1.0
• Compatibility with SDIO Specification Version V1.0.
• Cards clock rate up to Master Clock divided by 2
• Embedded power management to slow down clock rate when not used
• Each MCI has two slot, each supporting

– One slot for one MultiMediaCard bus (up to 30 cards) or
– One SD Memory Card

• Support for stream, block and multi-block data read and write

10.8.14 PS/2 Interface

• Peripheral Bus slave
• PS/2 Host
• Receive and transmit capability
• Parity generation and error detection
• Overrun error detection

10.8.15 USB Interface

• Supports Hi (480Mbps) and Full (12Mbps) speed communication
• Compatible with the USB 2.0 specification
• UTMI Compliant
• 7 Endpoints
• Embedded Dual-port RAM for Endpoints
• Suspend/Resume Logic (Command of UTMI)
• Up to Three Memory Banks for Endpoints (Not for Control Endpoint)
• 4 KBytes of DPRAM

•
10.8.16 Image Sensor Interface

• ITU-R BT. 601/656 8-bit mode external interface support
• Support for ITU-R BT.656-4 SAV and EAV synchronization
• Vertical and horizontal resolutions up to 2048 x 2048
• Preview Path up to 640*480
• Support for packed data formatting for YCbCr 4:2:2 formats
• Preview scaler to generate smaller size image 50
• Programmable frame capture rate

91
32015G–AVR32–09/09

AT32AP7001

11. Power Manager (PM)

Rev: 1.0.2.8

11.1 Features

• Controls oscillators and PLLs
• Generates clocks and resets for digital logic
• Supports 2 high-speed crystal oscillators
• Supports 2 PLLs
• Supports 32KHz ultra-low power oscillator
• On-the fly frequency change of CPU, HSB, and PB frequency
• Sleep modes allow simple disabling of logic clocks, PLL’s and oscillators
• Module-level clock gating through maskable peripheral clocks
• Wake-up from interrupts or external pin
• Generic clocks with wide frequency range provided
• Automatic identification of reset sources

11.2 Description

The Power Manager (PM) controls the oscillators, PLL’s, and generates the clocks and resets in
the device. The PM controls two fast crystal oscillators, as well as two PLL’s, which can multiply
the clock from either oscillator to provide higher frequencies. Additionally, a low-power 32KHz
oscillator is used to generate a slow clock for real-time counters.

The provided clocks are divided into synchronous and generic clocks. The synchronous clocks
are used to clock the main digital logic in the device, namely the CPU, and the modules and
peripherals connected to the HSB, PBA, and PBB buses. The generic clocks are asynchronous
clocks, which can be tuned precisely within a wide frequency range, which makes them suitable
for peripherals that require specific frequencies, such as timers and communication modules.

The PM also contains advanced power-saving features, allowing the user to optimize the power
consumption for an application. The synchronous clocks are divided into four clock domains, for
the CPU, and modules on the HSB, PBA, and PBB buses. The four clocks can run at different
speeds, so the user can save power by running peripherals at a relatively low clock, while main-
taining a high CPU performance. Additionally, the clocks can be independently changed on-the
fly, without halting any peripherals. This enables the user to adjust the speed of the CPU and
memories to the dynamic load of the application, without disturbing or re-configuring active
peripherals.

Each module also has a separate clock, enabling the user to switch off the clock for inactive
modules, to save further power. Additionally, clocks and oscillators can be automatically
swithced off during idle periods by using the sleep instruction on the CPU. The system will return
to normal on occurence of interrupts or an event on the WAKE_N pin.

The Power Manager also cointains a Reset Controller, which collects all possible reset sources,
generates hard and soft resets, and allows the reset source to be identifed by software.

92
32015G–AVR32–09/09

AT32AP7001

11.3 Block Diagram

Sleep Controller

Oscillator and
PLL Control

PLL0

PLL1

Synchronous
Clock Generator

Generic Clock
Generator

Reset Controller

Oscillator 0

Oscillator 1

32 KHz
Oscillator

Startup
Counter

Slow clock

Sleep
instruction

OSCEN_N

WAKE_N

RESET_N

Power-On
Detector

Soft reset
sources

resets

Generic clocks

Synchronous
clocks

OSC/PLL
Control signals

93
32015G–AVR32–09/09

AT32AP7001

11.4 Product Dependencies

11.4.1 I/O Lines

The PM provides a number of generic clock outputs, which can be connected to output pins,
multiplexed with PIO lines. The programmer must first program the PIO controller to assign
these pins to their peripheral function. If the I/O pins of the PM are not used by the application,
they can be used for other purposes by the PIO controller.

The PM also has a dedicated WAKE_N pin, as well as a number of pins for oscillators and
PLL’s, which do not require the PIO controller to be programmed.

11.4.2 Interrupt

The PM interrupt line is connected to one of the internal sources of the interrupt controller. Using
the PM interrupt requires the interrupt controller to be programmed first.

11.5 Functional Description

11.5.1 Oscillator 0 and 1 operation

The two main oscillators are designed to be used with an external high frequency crystal, as
shown in Figure 11-1. See Electrical Characteristics for the allowed frequency range. The main
oscillators are enabled by default after reset, and are only switched off in sleep modes, as
described in Section 11.5.6 on page 99. After a power-on reset, or when waking up from a sleep
mode that disabled the main oscillators, the oscillators need 128 slow clock cycles to stabilize on
the correct frequency. (1) The PM masks the main oscillator outputs during this start-up period, to
ensure that no unstable clocks propagate to the digital logic.

The oscillators can be bypassed by pulling the OSCEN_N pin high. This disables the oscillators,
and an external clock must be applied on XIN. No start-up time applies to this clock.

Figure 11-1. Oscillator connections

11.5.2 32 KHz oscillator operation

The 32 KHz oscillator operates similarly to Oscillator 0 and 1 described above, and is used to
generate the slow clock in the device. A 32768 Hz crystal must be connected between XIN32
and XOUT32 as shown in Figure 11-1. The 32 KHz oscillator is is an ultra-low power design, and
remains enabled in all sleep modes except static mode, as described in Section 11.5.6 on page

1. When waking up from Stop mode using external interrupts, the startup time is 32768 slow clock
cycles.

X IN

X O U T

C 2

C 1

T yp . va lues: C 2 = C 2 = 22 pF

94
32015G–AVR32–09/09

AT32AP7001

99. The oscillator has a rather long start-up time of 32768 clock cycles, and no clocks will be
generated in the device during this start-up time.

Note that in static sleep mode the startup counter will start at the negedge of reset and not at the
posedge.

Pulling OSCEN_N high will also disable the 32 KHz oscillator, and a 32 KHz clock must be
applied on the XIN32 pin. No start-up time applies to this clock.

11.5.3 PLL operation

The device contains two PLL’s, PLL0 and PLL1. These are disabled by default, but can be
enabled to provide high frequency source clocks for synchronous or generic clocks. The PLL’s
can take either Oscillator 0 or 1 as clock source. Each PLL has an input divider, which divides
the source clock, creating the reference clock for the PLL. The PLL output is divided by a user-
defined factor, and the PLL compares the resulting clock to the reference clock. The PLL will
adjust its output frequency until the two compared clocks are equal, thus locking the output fre-
quency to a multiple of the reference clock frequency.

When the PLL is switched on, or when changing the clock source or multiplication or division
factor for the PLL, the PLL is unlocked and the output frequency is undefined. The PLL clock for
the digital logic is automatically masked when the PLL is unlocked, to prevent connected digital
logic from receiving a too high frequency and thus become unstable.

95
32015G–AVR32–09/09

AT32AP7001

Figure 11-2. PLL with control logic and filters

11.5.3.1 Enabling the PLL

PLLn is enabled by writing the PLLEN bit in the PLLn register. PLLOSC selects Oscillator 0 or 1
as clock source. The PLLDIV and PLLMUL bitfields must be written with the division and multipli-
cation factor, respectively, creating the PLL frequency:

fPLL = (PLLMUL+1) / (PLLDIV+1) • fOSC

The LOCKn flag in ISR is set when PLLn becomes locked. The bit will stay high until cleared by
writing 1 to ICR:LOCKn. The Power Manager interrupt can be triggered by writing IER:LOCKn to
1.

Note that the input frequency for the PLL must be within the range inidicated in the Electrical
Characteristics chapter. The input frequency for the PLL relates to the oscillator frequency and
PLLDIV setting as follows:

fPLLIN = 2 • fOSC / (PLLDIV+1)•

PLL

Output
Divider

Input
Divider

LFT

0

1

Osc0 clock

Osc1 clock

PLLOSC
PLLEN

PLLOPT

PLLMUL

PLLDIV

Lock
Suppression

PLLCOUNT

LOCK

Mask PLL clock

C1

R1

C2

96
32015G–AVR32–09/09

AT32AP7001

11.5.3.2 Lock suppression

When using high division or multiplication factors, there is a possibility that the PLL can give
false lock indications while sweeping to the correct frequency. To prevent false lock indications
from setting the LOCKn flag, the lock indication can be suppressed for a number of slow clock
cycles indicated in the PLLn:COUNT field. Typical start-up times can be found using the Atmel
filter caluclator (see below).

11.5.3.3 Operating range selection

To use PLLn, a passive RC filter should be connected to the LFTn pin, as shown in Figure 11-2.
Filter values depend on the PLL reference and output frequency range. Atmel provides a tool
named “Atmel PLL LFT Filter Calculator AT91”. The PLL for AT32AP7001 can be selected in
this tool by selecting “AT91RM9200 (58A07F)” and leave “Icp = ‘1’” (default).

11.5.4 Synchronous clocks

Oscillator 0 (default) or PLL0 provides the source for the main clocks, which is the common root
for the synchronous clocks for the CPU, and HSB, PBA, and PBB modules. The main clock is
divided by an 8-bit prescaler, and each of these four synchronous clocks can run from any tap-
ping of this prescaler, or the undivided main clock, as long as fCPU � fHSB � fPBx and fPBB=fHSB.
The synchronous clock source can be changed on-the fly, responding to varying load in the
application. The clock domains can be shut down in sleep mode, as described in ”Sleep modes”
on page 99. Additionally, the clocks for each module in the four domains can be individually
masked, to avoid power consumption in inactive modules.

Figure 11-3. Synchronous clock generation

Mask

Prescaler
0

1

Osc0 clock

PLL0 clock

PLLSEL

0

1

CPUSEL

CPUDIV

Main clock

Sleep
Controller

CPUMASK

CPU clocks

HSB clocks

PBAclocks

PBB clocks

Sleep
instruction

97
32015G–AVR32–09/09

AT32AP7001

11.5.4.1 Selecting PLL or oscillator for the main clock

The common main clock can be connected to Oscillator 0 or PLL0. By default, the main clock will
be connected to the Oscillator 0 output. The user can connect the main clock to the PLL0 output
by writing the PLLSEL bit in the Main Clock Control Register (MCCTRL) to 1. This must only be
done after PLL0 has been enabled, otherwise a deadlock will occur. Care should also be taken
that the new frequency of the synchronous clocks does not exceed the maximum frequency for
each clock domain.

11.5.4.2 Selecting synchronous clock division ratio

The main clock feeds an 8-bit prescaler, which can be used to generate the synchronous clocks.
By default, the synchronous clocks run on the undivided main clock. The user can select a pres-
caler division for the CPU clock by writing CKSEL:CPUDIV to 1 and CPUSEL to the prescaling
value, resulting in a CPU clock frequency:

fCPU = fmain / 2
(CPUSEL+1)

Similarly, the clock for HSB, PBA, and PBB can be divided by writing their respective bitfields.
To ensure correct operation, frequencies must be selected so that fCPU � fHSB � fPBA,B. Also, fre-
quencies must never exceed the specified maximum frequency for each clock domain.

CKSEL can be written without halting or disabling peripheral modules. Writing CKSEL allows a
new clock setting to be written to all synchronous clocks at the same time. It is possible to keep
one or more clocks unchanged by writing the same value a before to the xxxDIV and xxxSEL bit-
fields. This way, it is possible to e.g. scale CPU and HSB speed according to the required
performance, while keeping the PBA and PBB frequency constant.

11.5.4.3 Clock Ready flag

There is a slight delay from CKSEL is written and the new clock setting becomes effective. Dur-
ing this interval, the Clock Ready (CKRDY) flag in ISR will read as 0. If IER:CKRDY is written to
1, the Power Manager interrupt can be triggered when the new clock setting is effective. CKSEL
must not be re-written while CKRDY is 0, or the system may become unstable or hang.

11.5.5 Peripheral clock masking

By default, the clock for all modules are enabled, regardless of which modules are actually being
used. It is possible to disable the clock for a module in the CPU, HSB, PBA, or PBB clock
domain by writing the corresponding bit in the Clock Mask register (CPU/HSB/PBA/PBB) to 0.
When a module is not clocked, it will cease operation, and its registers cannot be read or written.
The module can be re-enabled later by writing the corresponding mask bit to 1.

A module may be connected to several clock domains, in which case it will have several mask
bits.

Table 11-1 contains a list of implemented maskable clocks.

11.5.5.1 Cautionary note

Note that clocks should only be switched off if it is certain that the module will not be used.
Switching off the clock for the internal RAM will cause a problem if the stack is mapped there.
Switching off the clock to the Power Manager (PM), which contains the mask registers, or the
corresponding PB bridge, will make it impossible to write the mask registers again. In this case,
they can only be re-enabled by a system reset.

98
32015G–AVR32–09/09

AT32AP7001

11.5.5.2 Mask Ready flag

Due to synchronization in the clock generator, there is a slight delay from a mask register is writ-
ten until the new mask setting goes into effect. When clearing mask bits, this delay can usually
be ignored. However, when setting mask bits, the registers in the corresponding module must
not be written until the clock has actually be re-enabled. The status flag MSKRDY in ISR pro-
vides the required mask status information. When writing either mask register with any value,
this bit is cleared. The bit is set when the clocks have been enabled and disabled according to
the new mask setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in IER.

99
32015G–AVR32–09/09

AT32AP7001

11.5.6 Sleep modes

In normal operation, all clock domains are active, allowing software execution and peripheral
operation. When the CPU is idle, it is possible to switch off the CPU clock and optionally other
clock domains to save power. This is activated by the sleep instruction, which takes the sleep
mode index number as argument.

11.5.6.1 Entering and exiting sleep modes

The sleep instruction will halt the CPU and all modules belonging to the stopped clock domains.
The modules will be halted regardless of the bit settings of the mask registers.

Oscillators and PLL’s can also be switched off to save power. These modules have a relatively
long start-up time, and are only switched off when very low power consumption is required.

The CPU and affected modules are restarted when the sleep mode is exited. This occurs when
an interrupt triggers, or the WAKE_N pin is asserted. Note that even though an interrupt is
enabled in sleep mode, it may not trigger if the source module is not clocked.

Table 11-1. Maskable module clocks in AT32AP7001.

Bit CPUMASK HSBMASK PBAMASK PBBMASK

0 PICO EBI SPI0 PM/EIC/RTC/WDT

1 - PBA SPI1 INTC

2 - PBB TWI HMATRIX

3 - HRAMC USART0 TC0

4 - HSB-HSB Bridge USART1 TC1

5 - ISI USART2 PWM

6 - USB USART3

7 - SSC0

8 - SSC1 DAC

9 - SSC2 MCI

10 - DMA PIOA AC97C

11 - - PIOB ISI

12 - - PIOC USB

13 - - PIOD SMC

14 - - PIOE SDRAMC

15 - - PSIF ECC

16 - - PDC -

31:17 - - - -

100
32015G–AVR32–09/09

AT32AP7001

11.5.6.2 Supported sleep modes

The following sleep modes are supported. These are detailed in Table 11-2.

•Idle: The CPU is stopped, the rest of the chip is operating. Wake-up sources are any interrupt,
or WAKE_N pin.

•Frozen: The CPU and HSB modules are stopped, peripherals are operating. Wake-up sources
are any interrupt from PB modules, or WAKE_N pin.

•Standby: All synchronous clocks are stopped, but oscillators and PLL’s are running, allowing
quick wake-up to normal mode. Wake-up sources are RTC or external interrupt, or WAKE_N
pin.

•Stop: As Standby, but Oscillator 0 and 1, and the PLL’s are stopped. 32 KHz oscillator and
RTC/WDT still operates. Wake-up sources are RTC or external interrupt, or WAKE_N pin.

•Static: All oscillators and clocks are stopped. Wake-up sources are external interrupt or
WAKE_N pin.•

11.5.6.3 Precautions when entering sleep mode

Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This prevents erratic behavior when entering or
exiting sleep mode. Please refer to the relevant module documentation for recommended
actions.

Communication between the synchronous clock domains is disturbed when entering and exiting
sleep modes. This means that bus transactions are not allowed between clock domains affected
by the sleep mode. The system may hang if the bus clocks are stopped in the middle of a bus
transaction.

The CPU and caches are automatically stopped in a safe state to ensure that all CPU bus oper-
ations are complete when the sleep mode goes into effect. Thus, when entering Idle mode, no
further action is necessary.

When entering a deeper sleep mode than Idle mode, all other HSB masters must be stopped
before entering the sleep mode. Also, if there is a chance that any PB write operations are
incomplete, the CPU should perform a read operation from any register on the PB bus before
executing the sleep instruction. This will stall the CPU while waiting for any pending PB opera-
tions to complete.

The Power manager will normally turn of all debug related clocks in the system in the static sleep
mode, making i t impossible for a debugger to communicate with the system. If a

Table 11-2. Sleep modes

Index Sleep Mode CPU HSB
PBA,B +
GCLK

Osc0,1 +
PLL0,1

Osc32 +
RTC/WDT

0 Idle Off On On On On

1 Frozen Off Off On On On

2 Standby Off Off Off On On

3 Stop Off Off Off Off On

5 Static Off Off Off Off Off

101
32015G–AVR32–09/09

AT32AP7001

NEXUS_ACCESS or a MEMORY_ACCESS JTAG command is loaded into the instruction regis-
ter before entering sleep mode some clocks are left running to enable debugging of the system.
This will increase the power consumption of the device. If the part entered static mode without a
NEXUS_ACCESS ot MEMORY_ACCESS instruction loaded into the JTAG instruction register
an external reset is the only way for the debugger to get the part out of the sleep mode.

When not debugging a program and using sleep modes the JTAG should always have the
IDCODE instruction loaded into the JTAG instruction register and the OCD system should be
disabled. Otherwise some clocks may be left running, increasing the power consumption.

11.5.7 Generic clocks

Timers, communication modules, and other modules connected to external circuitry may require
specific clock frequencies to operate correctly. The Power Manager contains an implementation
defined number of generic clocks, that can provide a wide range of accurate clock frequencies.

Each generic clock module runs from either Oscillator 0 or 1, or PLL0 or 1. The selected source
can optionally be divided by any even integer up to 512. Each clock can be independently
enabled and disabled, and is also automatically disabled along with peripheral clocks by the
Sleep Controller.

Figure 11-4. Generic clock generation

11.5.7.1 Enabling a generic clock

A generic clock is enabled by writing the CEN bit in GCCTRL to 1. Each generic clock can use
either Oscillator 0 or 1 or PLL0 or 1 as source, as selected by the PLLSEL and OSCSEL bits.
The source clock can optionally be divided by writing DIVEN to 1 and the division factor to DIV,
resulting in the output frequency:

fGCLK = fSRC / (2*(DIV+1))

Divider
0

1

Osc0 clock

PLL0 clock

PLLSEL
OSCSEL

Osc1 clock

PLL1 clock

Generic Clock

DIV

0

1

DIVEN

Mask

CEN

Sleep
Controller

102
32015G–AVR32–09/09

AT32AP7001

11.5.7.2 Disabling a generic clock

The generic clock can be disabled by writing CEN to 0 or entering a sleep mode that disables
the PB clocks. In either case, the generic clock will be switched off on the first falling edge after
the disabling event, to ensure that no glitches occur. If CEN is written to 0, the bit will still read as
1 until the next falling edge occurs, and the clock is actually switched off. When writing CEN to 0,
the other bits in GCCTRL should not be changed until CEN reads as 0, to avoid glitches on the
generic clock.

When the clock is disabled, both the prescaler and output are reset.

11.5.7.3 Changing clock frequency

When changing generic clock frequency by writing GCCTRL, the clock should be switched off by
the procedure above, before being re-enabled with the new clock source or division setting. This
prevents glitches during the transition.

11.5.7.4 Generic clock implementation

In AT32AP7001, there are 8 generic clocks. These are allocated to different functions as shown
in Table 11-3.

11.5.8 Divided PB clocks

The clock generator in the Power Manager provides divided PBA and PBB clocks for use by
peripherals that require a prescaled PB clock. This is described in the documentation for the rel-
evant modules.

The divided clocks are not directly maskable, but are stopped in sleep modes where the PB
clocks are stopped.

11.5.9 Debug operation

During a debug session, the user may need to halt the system to inspect memory and CPU reg-
isters. The clocks normally keep running during this debug operation, but some peripherals may
require the clocks to be stopped, e.g. to prevent timer overflow, which would cause the program
to fail. For this reason, peripherals on the PBA and PBB buses may use “debug qualified” PB
clocks. This is described in the documentation for the relevant modules. The divided PB clocks
are always debug qualified clocks.

Table 11-3. Generic clock allocation

Clock number Function

0 GCLK0 pin

1 GCLK1 pin

2 GCLK2 pin

3 GCLK3 pin

4 GCLK4 pin

5 Reserved for internal use

6 DAC

103
32015G–AVR32–09/09

AT32AP7001

Debug qualified PB clocks are stopped during debug operation. The debug system can option-
ally keep these clocks running during the debug operation. This is described in the
documentation for the On-Chip Debug system.

104
32015G–AVR32–09/09

AT32AP7001

11.5.10 Reset Controller

The Reset Controller collects the various reset sources in the system and generates hard and
soft resets for the digital logic.

The device contains a Power-On Detector, which keeps the system reset until power is stable.
This eliminates the need for external reset circuitry to guarantee stable operation when powering
up the device.

It is also possible to reset the device by asserting the RESET_N pin. This pin has an internal pul-
lup, and does not need to be driven externally when negated.

Table 11-4 lists these and other reset sources supported by the Reset Controller.

Figure 11-5. Reset Controller block diagram

Reset sources are divided into hard and soft resets. Hard resets imply that the system could
have become unstable, and virtually all logic will be reset. The clock generator, which also con-
trols the oscillators, will also be reset. If the device is reset due to a power-on reset, or reset
occurred when the device was in a sleep mode that disabled the oscillators, the normal oscillator
startup time will apply.

A soft reset will reset most digital logic in the device, such as CPU, HSB, and PB modules, but
not the OCD system, clock generator, Watchdog Timer and RTC, allowing some functions,
including the oscillators, to remain active during the reset. The startup time from a soft reset is
thus negligible. Note that all PB registers are reset, except those in the RTC/WDT. The
MCCTRL and CKSEL registers are reset, and the device will restart using Oscillator 0 as clock
source for all synchronous clocks.

In addition to the listed reset types, the JTAG can keep parts of the device statically reset
through the JTAG Reset Register. See JTAG documentation for details.

NTAE

Reset
Controller

RESET_N

Power-On
Detector

DBR

Watchdog Reset

RC_RCAUSE

Hard Reset

Soft Reset
CPU, HSB,
PBA, PBB

OCD, RTC/WDT
Clock Generato

105
32015G–AVR32–09/09

AT32AP7001

The cause of the last reset can be read from the RC_RCAUSE register. This register contains
one bit for each reset source, and can be identified during the boot sequence of an application to
determine the proper action to be taken.

Table 11-4. Reset types

Reset source Description Type

Power-on Reset Supply voltage below the power-on reset detector threshold
voltage

Hard

External RESET_N pin asserted Hard

NanoTrace Access
Error

See On-Chip Debug documentation. Soft

Watchdog Timer See watchdog timer documentation. Soft

OCD See On-Chip Debug documentation Soft

106
32015G–AVR32–09/09

AT32AP7001

11.6 User Interface

Offset Register Register Name Access Reset

0x00 Main Clock Control MCCTRL Read/Write 0x0

0x04 Clock Select CKSEL Read/Write 0x0

0x08 CPU Clock Mask CPUMASK Read/Write Impl. defined

0x0C HSB Clock Mask HSBMASK Read/Write Impl. defined

0x10 PBA Clock Mask PBAMASK Read/Write Impl. defined

0x14 PBB Clock Mask PBBMASK Read/Write Impl. defined

0x20 PLL0 Control PLL0 Read/Write 0x0

0x24 PLL1 Control PLL1 Read/Write 0x0

0x40 Interrupt Enable IER Write-only 0x0

0x44 Interrupt Disable IDR Write-only 0x0

0x48 Interrupt Mask IMR Read-only 0x0

0x4C Interrupt Status ISR Read-only 0x0

0x50 Interrupt Clear ICR Write-only 0x0

0x60 Generic Clock Control 0 GCCTRL0 Read/Write 0x0

0x64 Generic Clock Control 1 GCCTRL1 Read/Write 0x0

0x68 Generic Clock Control 2 GCCTRL2 Read/Write 0x0

0x6C Generic Clock Control 3 GCCTRL3 Read/Write 0x0

0x70 Generic Clock Control 4 GCCTRL4 Read/Write 0x0

0x74 Generic Clock Control 5 GCCTRL5 Read/Write 0x0

0x78 Generic Clock Control 6 GCCTRL6 Read/Write 0x0

0x7C Generic Clock Control 7 GCCTRL7 Read/Write 0x0

0x80 - 0xBC Reserved

0xC0 Reset Cause RCAUSE Read

107
32015G–AVR32–09/09

AT32AP7001

11.6.1 Main Clock Control

Name: MCCTRL

Access Type: Read/Write

• PLLSEL: PLL Select
0: Oscillator 0 is source for the main clock
1: PLL0 is source for the main clock

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - PLLSEL -

108
32015G–AVR32–09/09

AT32AP7001

11.6.2 Clock Select

Name: CKSEL

Access Type: Read/Write

• PBBDIV, PBBSEL: PBB Division and Clock Select
PBBDIV = 0: PBB clock equals main clock.
PBBDIV = 1: PBB clock equals main clock divided by 2(PBBSEL+1).

• PBADIV, PBASEL: PBA Division and Clock Select
PBADIV = 0: PBA clock equals main clock.
PBADIV = 1: PBA clock equals main clock divided by 2(PBASEL+1).

• HSBDIV, HSBSEL: HSB Division and Clock Select
HSBDIV = 0: HSB clock equals main clock.
HSBDIV = 1: HSB clock equals main clock divided by 2(HSBSEL+1).

• CPUDIV, CPUSEL: CPU Division and Clock Select
CPUDIV = 0: CPU clock equals main clock.
CPUDIV = 1: CPUclock equals main clock divided by 2(CPUSEL+1).

Note that if xxxDIV is written to 0, xxxSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears ISR:CKRDY. The register must not be re-written until CKRDY goes high.

31 30 29 28 27 26 25 24

PBBDIV - - - - PBBSEL

23 22 21 20 19 18 17 16

PBADIV - - - - PBASEL

15 14 13 12 11 10 9 8

HSBDIV - - - - HSBSEL

7 6 5 4 3 2 1 0

CPUDIV - - - - CPUSEL

109
32015G–AVR32–09/09

AT32AP7001

11.6.3 Clock Mask

Name: CPU/HSB/PBA/PBBMASK

Access Type: Read/Write

• MASK: Clock Mask
If bit n is cleared, the clock for module n is stopped. If bit n is set, the clock for module n is enabled according to the current

power mode. The number of implemented bits in each mask register, as well as which module clock is controlled by each bit, is

implementation dependent.

31 30 29 28 27 26 25 24

MASK[31:24]

23 22 21 20 19 18 17 16

MASK[23:16]

15 14 13 12 11 10 9 8

MASK[15:8]

7 6 5 4 3 2 1 0

MASK[7:0]

110
32015G–AVR32–09/09

AT32AP7001

11.6.4 PLL Control

Name: PLL0,1

Access Type: Read/Write

• PLLTEST: PLL Test
Reserved for internal use. Always write to 0.

• PLLCOUNT: PLL Count
Specifies the number of slow clock cycles before ISR:LOCKn will be set after PLLn has been written, or after PLLn has been
automatically re-enabled after exiting a sleep mode.

• PLLMUL: PLL Multiply Factor
• PLLDIV: PLL Division Factor

These bitfields determine the ratio of the PLL output frequency to the source oscillator frequency:

fPLL = (PLLMUL+1)/(PLLDIV+1) • fOSC

• PLLOPT: PLL Option
This field should be written to 100.

Other values are reserved.

• PLLOSC: PLL Oscillator Select
0: Oscillator 0 is the source for the PLL.

1: Oscillator 1 is the source for the PLL.

• PLLEN: PLL Enable
0: PLL is disabled.

1: PLL is enabled.

31 30 29 28 27 26 25 24

PLLTEST - PLLCOUNT

23 22 21 20 19 18 17 16

PLLMUL

15 14 13 12 11 10 9 8

PLLDIV

7 6 5 4 3 2 1 0

- - - PLLOPT PLLOSC PLLEN

111
32015G–AVR32–09/09

AT32AP7001

11.6.5 Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR

Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

• MSKRDY: Mask Ready
0: Either xxxMASK register has been written, and clocks are not yet enabled or disabled according to the new mask value.

1: Clocks are enabled and disabled as indicated in the xxxMASK registers.
Note: Writing ICR:MSKRDY to 1 has no effect.

• CKRDY: Clock Ready
0: The CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the CKSEL register.

Note: Writing ICR:CKRDY to 1 has no effect.

• VMRDY, VOK
These bits are for internal use only. In ISR, the value of these bits is undefined. In IER, these bits should be written to 0.

• WAKE: Wake Pin Asserted
0: The WAKE_N pin is not asserted, or has been asserted for less than one PB clock period.
1: The WAKE_N pin is asserted for longer than one PB clock period.

• LOCK1: PLL1 locked
• LOCK0: PLL0 locked

0: The PLL is unlocked, and cannot be used as clock source.

1: The PLL is locked, and can be used as clock source.

The effect of writing or reading the bits listed above depends on which register is being accessed:

• IER (Write-only)
0: No effect

1: Enable Interrupt

• IDR (Write-only)
0: No effect

1: Disable Interrupt

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- MSKRDY CKRDY VMRDY VOK WAKE LOCK1 LOCK0

112
32015G–AVR32–09/09

AT32AP7001

• IMR (Read-only)
0: Interrupt is disabled

1: Interrupt is enabled

• ISR (Read-only)
0: An interrupt event has occurred

1: An interrupt even has not occurred

• ICR (Write-only)
0: No effect
1: Clear interrupt event

113
32015G–AVR32–09/09

AT32AP7001

11.6.6 Generic Clock Control

Name: GCCTRL0... GCCTRL7

Access Type: Read/Write

There is one GCCTRL register per generic clock in the design.

• DIV: Division Factor
• DIVEN: Divide Enable

0: The generic clock equals the undivided source clock.
1: The generic clock equals the source clock divided by 2*(DIV+1).

• CEN: Clock Enable
0: Clock is stopped.
1: Clock is running.

• PLLSEL: PLL Select
0: Oscillator is source for the generic clock.
1: PLL is source for the generic clock.

• OSCSEL: Oscillator Select
0: Oscillator (or PLL) 0 is source for the generic clock.
1: Oscillator (or PLL) 1is source for the generic clock.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

DIV[7:0]

7 6 5 4 3 2 1 0

- - - DIVEN - CEN PLLSEL OSCSEL

114
32015G–AVR32–09/09

AT32AP7001

11.6.7 Reset Cause

Name: RC_RCAUSE

Access Type: Read-only

• SERP: Serious Problem Error
This bit is set if a reset occured due to a serious problem in the CPU, like Nanotrace access error, for instance.

• JTAG: JTAG Reset
This bit is set if a reset occurred due to a JTAG reset.

• WDT: Watchdog Timer
This bit is set if a reset occurred due to a timeout of the Watchdog Timer.

• EXT: External Reset
This bit is set if a reset occurred due to assertion of the RESET_N pin.

• POR: Power-On Detector
This bit is set if a reset was caused by the Power-On Detector.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - SERP JTAG WDT EXT - POR

115
32015G–AVR32–09/09

AT32AP7001

12. Real Time Counter (RTC)

Rev: 1.0.1.1

12.1 Features

• 32-bit real-time counter with 16-bit prescaler
• Clocked from 32 kHz oscillator
• High resolution: Max count frequency 16KHz
• Long delays

– Max timeout 272 years
• Extremely low power consumption
• Available in all sleep modes except Deepdown
• Optional wrap at max value
• Interrupt on wrap

12.2 Description

The Real Time Counter (RTC) enables periodic interrupts at long intervals, or accurate mea-
surement of real-time sequences. The RTC is fed from a 16-bit prescaler, which is clocked from
the 32 kHz oscillator. Any tapping of the prescaler can be selected as clock source for the RTC,
enabling both high resolution and long timeouts. The prescaler cannot be written directly, but
can be cleared by the user.

The RTC can generate an interrupt when the counter wraps around the top value of
0xFFFFFFFF. Optionally, the RTC can wrap at a lower value, producing accurate periodic
interrupts.

12.3 Block Diagram

Figure 12-1. Real Time Counter module block diagram

12.4 Product Dependencies

12.4.1 I/O Lines

None.

16-bit Prescaler32 KHz 32-bit counter

RTC_VAL

RTC_TOP

TOPI IRQ

116
32015G–AVR32–09/09

AT32AP7001

12.4.2 Power Management

The RTC is continously clocked, and remains operating in all sleep modes except Static.

12.4.3 Interrupt

The RTC interrupt line is connected to one of the internal sources of the interrupt controller.
Using the RTC interrupt requires the interrupt controller to be programmed first.

12.4.4 Debug Operation

The RTC prescaler and watchdog timer are frozen during debug operation, unless the OCD sys-
tem keeps peripherals running in debug operation.

12.5 Functional Description

12.5.1 RTC operation

12.5.1.1 Source clock

The RTC is enabled by writing the EN bit in the CTRL register. This also enables the clock for
the prescaler. The PSEL bitfield in the same register selects the prescaler tapping, selecting the
source clock for the RTC:

fRTC = 2-(PSEL+1) * 32KHz

Note that if the RTC is used in stop mode, PSEL must be 2 or higher to ensure no ticks are
missed when entering or leaving sleep mode.

12.5.1.2 Counter operation

The RTC count value can be read from or written to the register VAL. The prescaler cannot be
written directly, but can be reset by writing the strobe PCLR in CTRL.

When enabled, the RTC will then up-count until it reaches 0xFFFFFFFF, and then wrap to 0x0.

Writing CTRL:TOPEN to one causes the RTC to wrap at the value written to TOP. The status bit
TOPI in ISR is set when this occurs.

12.5.1.3 RTC Interrupt

Writing the TOPI bit in IER enables the RTC interrupt, while writing the corresponding bit in IDR
disables the RTC interrupt. IMR can be read to see whether or not the interrupt is enabled. If
enabled, an interrupt will be generated if the TOPI flag in ISR is set. The flag can be cleared by
writing TOPI in ICR to one.

117
32015G–AVR32–09/09

AT32AP7001

12.6 User Interface

Offset Register Register Name Access Reset

0x00 RTC Control CTRL Read/Write 0x0

0x04 RTC Value VAL Read/Write 0x0

0x08 RTC Top TOP Read/Write 0x0

0x10 RTC Interrupt Enable IER Write-only 0x0

0x14 RTC Interrupt Disable IDR Write-only 0x0

0x18 RTC Interrupt Mask IMR Read-only 0x0

0x1C RTC Interrupt Status ISR Read-only 0x0

0x20 RTC Interrupt Clear ICR Write-only 0x0

118
32015G–AVR32–09/09

AT32AP7001

12.6.1 RTC Control

Name: CTRL

Access Type: Read/Write

• PSEL: Prescale Select
Selects prescaler bit PSEL as source clock for the RTC.

• TOPEN: Top Enable
0: RTC wraps at 0xFFFFFFFF

1: RTC wraps at RTC_TOP
• PCLR: Prescaler Clear

Writing this strobe clears the prescaler. Note that this also resets the watchdog timer.

• EN: Enable
0: RTC is disabled

1: RTC is enabled

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - PSEL[3:0]

7 6 5 4 3 2 1 0

- - - - - TOPEN PCLR EN

119
32015G–AVR32–09/09

AT32AP7001

12.6.2 RTC Value

Name: VAL

Access Type: Read/Write

• VAL: RTC Value
This value is incremented on every rising edge of the source clock.

31 30 29 28 27 26 25 24

VAL[31:24]

23 22 21 20 19 18 17 16

VAL[23:16]

15 14 13 12 11 10 9 8

VAL[15:8]

7 6 5 4 3 2 1 0

VAL[7:0]

120
32015G–AVR32–09/09

AT32AP7001

12.6.3 RTC Top

Name: TOP

Access Type: Read/Write

• TOP: RTC Top Value
VAL wraps at this value if CTRL:TOPEN is 1.

31 30 29 28 27 26 25 24

TOP[31:24]

23 22 21 20 19 18 17 16

TOP[23:16]

15 14 13 12 11 10 9 8

TOP[15:8]

7 6 5 4 3 2 1 0

TOP[7:0]

121
32015G–AVR32–09/09

AT32AP7001

12.6.4 RTC Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR

Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

• TOPI: Top Interrupt
VAL has wrapped at its TOP.

The effect of writing or reading this bit depends on which register is being accessed:

• IER (Write-only)
0: No effect

1: Enable Interrupt

• IDR (Write-only)
0: No effect

1: Disable Interrupt

• IMR (Read-only)
0: Interrupt is disabled

1: Interrupt is enabled

• ISR (Read-only)
0: An interrupt event has not occurred

1: An interrupt event has occurred. Note that this is only set when the RTC is configured to wrap at TOP.

• ICR (Write-only)
0: No effect

1: Clear interrupt event

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - TOPI

122
32015G–AVR32–09/09

AT32AP7001

13. Watchdog Timer (WDT)

Rev: 1.0.1

13.1 Features

• Watchdog timer with 16-bit prescaler

13.2 Description

The Watchdog Timer (WDT) is fed from a 16-bit prescaler, which is clocked from the 32 kHz
oscillator. Any tapping of the prescaler can be selected as clock source for the WDT.The watch-
dog timer must be periodically reset by software within the timeout period, ot herwise, the device
is reset and starts executing from the boot vector. This allows the device to recover from a con-
dition that has caused the system to be unstable.

13.3 Block Diagram

Figure 13-1. Real Time Counter module block diagram

13.4 Product Dependencies

13.4.1 I/O Lines

None

13.4.2 Power Management

The WDT is continously clocked, and remains operating in all sleep modes. However, if the
WDT is enabled and the user tries to enter a sleepmode where the 32 KHz oscillator is turned off
the system will enter the STOP sleepmode instead. This is to ensure the WDT is still running.

13.4.3 Debug Operation

The watchdog timer is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

1 6 -b it P re s c a le r3 2 K H z

W D T _ C L R

W a tc h d o g
D e te c to r

W D T _ C T R L

W a tc h d o g
re s e t

123
32015G–AVR32–09/09

AT32AP7001

13.5 Functional Description

13.5.1 Watchdog Timer

The WDT is enabled by writing the EN bit in the CTRL register. This also enables the clock for
the prescaler. The PSEL bitfield in the same register selects the watchdog timeout period:

TWDT = 2(PSEL+1) * 30.518μs

To avoid accidental disabling of the watchdog, the CTRL register must be written twice, first with
the KEY field set to 0x55, then 0xAA without changing the other bitfields. Failure to do so will
cause the write operation to be ignored, and CTRL does not change value.

The CLR register must be written with any value with regular intervals shorter than the watchdog
timeout period. Otherwise, the device will receive a soft reset, and the code will start executing
from the boot vector.

124
32015G–AVR32–09/09

AT32AP7001

13.6 User Interface

13.6.1 WDT Control

Name: CTRL

Access Type: Read/Write

• KEY
This bitfield must be written twice, first with key value 0x55, then 0xAA, for a write operation to be effective. This bitfield always
reads as zero.

• PSEL: Prescale Select
Prescaler bit PSEL is used as watchdog timeout period.

• EN: WDT Enable
0: WDT is disabled.

1: WDT is enabled.

Offset Register Register Name Access Reset

0x30 WDT Control CTRL Read/Write 0x0

0x34 WDT Clear CLR Write-only 0x0

31 30 29 28 27 26 25 24

KEY[7:0]

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - PSEL[3:0]

7 6 5 4 3 2 1 0

- - - - - - - EN

125
32015G–AVR32–09/09

AT32AP7001

13.6.2 WDT Clear

Name: CLR

Access Type: Write-only

When the watchdog timer is enabled, this register must be periodically written, with any value, within the watchdog timeout
period, to prevent a watchdog reset.

126
32015G–AVR32–09/09

AT32AP7001

14. Interrupt Controller (INTC)

Rev: 1.0.0.4

14.1 Features

• Autovectored low latency interrupt service with programmable priority
– 4 priority levels for regular, maskable interrupts
– One Non-Maskable Interrupt

• Up to 64 groups of interrupts with up to 32 interrupt requests in each group

14.2 Overview

The INTC collects interrupt requests from the peripherals, prioritizes them, and delivers an inter-
rupt request and an autovector to the CPU. The AVR32 architecture supports 4 priority levels for
regular, maskable interrupts, and a Non-Maskable Interrupt (NMI).

The INTC supports up to 64 groups of interrupts. Each group can have up to 32 interrupt request
lines, these lines are connected to the peripherals. Each group has an Interrupt Priority Register
(IPR) and an Interrupt Request Register (IRR). The IPRs are used to assign a priority level and
an autovector to each group, and the IRRs are used to identify the active interrupt request within
each group. If a group has only one interrupt request line, an active interrupt group uniquely
identifies the active interrupt request line, and the corresponding IRR is not needed. The INTC
also provides one Interrupt Cause Register (ICR) per priority level. These registers identify the
group that has a pending interrupt of the corresponding priority level. If several groups have a
pending interrupt of the same level, the group with the lowest number takes priority.

14.3 Block Diagram

Figure 14-1 gives an overview of the INTC. The grey boxes represent registers that can be
accessed via the user interface. The interrupt requests from the peripherals (IREQn) and the
NMI are input on the left side of the figure. Signals to and from the CPU are on the right side of
the figure.

127
32015G–AVR32–09/09

AT32AP7001

Figure 14-1. INTC Block Diagram

14.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

14.4.1 Power Management

If the CPU enters a sleep mode that disables clocks used by the INTC, the INTC will stop func-
tioning and resume operation after the system wakes up from sleep mode.

14.4.2 Clocks

The clock for the INTC bus interface (CLK_INTC) is generated by the Power Manager. This
clock is enabled at reset, and can be disabled in the Power Manager.

14.4.3 Debug Operation

When an external debugger forces the CPU into debug mode, the INTC continues normal
operation.

14.5 Functional Description

All of the incoming interrupt requests (IREQs) are sampled into the corresponding Interrupt
Request Register (IRR). The IRRs must be accessed to identify which IREQ within a group that
is active. If several IREQs within the same group are active, the interrupt service routine must
prioritize between them. All of the input lines in each group are logically ORed together to form
the GrpReqN lines, indicating if there is a pending interrupt in the corresponding group.

The Request Masking hardware maps each of the GrpReq lines to a priority level from INT0 to
INT3 by associating each group with the Interrupt Level (INTLEVEL) field in the corresponding
Interrupt Priority Register (IPR). The GrpReq inputs are then masked by the mask bits from the
CPU status register. Any interrupt group that has a pending interrupt of a priority level that is not
masked by the CPU status register, gets its corresponding ValReq line asserted.

Request
Masking

OR
IREQ0
IREQ1
IREQ2

IREQ31
GrpReq0

Masks SREG
Masks
I[3-0]M

GM

INTLEVEL

AUTOVECTOR

P
rioritizer

CPUInterrupt Controller

OR GrpReqN

NMIREQ

OR
IREQ32
IREQ33
IREQ34

IREQ63
GrpReq1

IRR Registers IPR Registers ICR Registers

INT_level,
offset

INT_level,
offset

INT_level,
offset

IPR0

IPR1

IPRn

IRR0

IRR1

IRRn

ValReq0

ValReq1

ValReqN

.

.

.
.
.
.

.

.

.

128
32015G–AVR32–09/09

AT32AP7001

Masking of the interrupt requests is done based on five interrupt mask bits of the CPU status
register, namely Interrupt Level 3 Mask (I3M) to Interrupt Level 0 Mask (I0M), and Global Inter-
rupt Mask (GM). An interrupt request is masked if either the GM or the corresponding interrupt
level mask bit is set.

The Prioritizer hardware uses the ValReq lines and the INTLEVEL field in the IPRs to select the
pending interrupt of the highest priority. If an NMI interrupt request is pending, it automatically
gets the highest priority of any pending interrupt. If several interrupt groups of the highest pend-
ing interrupt level have pending interrupts, the interrupt group with the highest number is
selected.

The INTLEVEL and handler autovector offset (AUTOVECTOR) of the selected interrupt are
transmitted to the CPU for interrupt handling and context switching. The CPU does not need to
know which interrupt is requesting handling, but only the level and the offset of the handler
address. The IRR registers contain the interrupt request lines of the groups and can be read via
user interface registers for checking which interrupts of the group are actually active.

14.5.1 Non-Maskable Interrupts

A NMI request has priority over all other interrupt requests. NMI has a dedicated exception vec-
tor address defined by the AVR32 architecture, so AUTOVECTOR is undefined when
INTLEVEL indicates that an NMI is pending.

14.5.2 CPU Response

When the CPU receives an interrupt request it checks if any other exceptions are pending. If no
exceptions of higher priority are pending, interrupt handling is initiated. When initiating interrupt
handling, the corresponding interrupt mask bit is set automatically for this and lower levels in sta-
tus register. E.g, if an interrupt of level 3 is approved for handling, the interrupt mask bits I3M,
I2M, I1M, and I0M are set in status register. If an interrupt of level 1 is approved, the masking
bits I1M and I0M are set in status register. The handler address is calculated by adding
AUTOVECTOR to the CPU system register Exception Vector Base Address (EVBA). The CPU
will then jump to the calculated address and start executing the interrupt handler.

Setting the interrupt mask bits prevents the interrupts from the same and lower levels to be
passed through the interrupt controller. Setting of the same level mask bit prevents also multiple
requests of the same interrupt to happen.

It is the responsibility of the handler software to clear the interrupt request that caused the inter-
rupt before returning from the interrupt handler. If the conditions that caused the interrupt are not
cleared, the interrupt request remains active.

14.5.3 Clearing an Interrupt Request

Clearing of the interrupt request is done by writing to registers in the corresponding peripheral
module, which then clears the corresponding NMIREQ/IREQ signal.

The recommended way of clearing an interrupt request is a store operation to the controlling
peripheral register, followed by a dummy load operation from the same register. This causes a
pipeline stall, which prevents the interrupt from accidentally re-triggering in case the handler is
exited and the interrupt mask is cleared before the interrupt request is cleared.

129
32015G–AVR32–09/09

AT32AP7001

14.6 User Interface

Table 14-1. INTC Register Memory Map

Offset Register Register Name Access Reset

0x000 Interrupt Priority Register 0 IPR0 Read/Write 0x00000000

0x004 Interrupt Priority Register 1 IPR1 Read/Write 0x00000000

...

0x0FC Interrupt Priority Register 63 IPR63 Read/Write 0x00000000

0x100 Interrupt Request Register 0 IRR0 Read-only N/A

0x104 Interrupt Request Register 1 IRR1 Read-only N/A

...

0x1FC Interrupt Request Register 63 IRR63 Read-only N/A

0x200 Interrupt Cause Register 3 ICR3 Read-only N/A

0x204 Interrupt Cause Register 2 ICR2 Read-only N/A

0x208 Interrupt Cause Register 1 ICR1 Read-only N/A

0x20C Interrupt Cause Register 0 ICR0 Read-only N/A

130
32015G–AVR32–09/09

AT32AP7001

14.6.1 Interrupt Priority Registers

Register Name: IPR0...IPR63

Access Type: Read/Write

Offset: 0x000 - 0x0FC

Reset Value: 0x00000000

• INTLEVEL: Interrupt Level
Indicates the EVBA-relative offset of the interrupt handler of the corresponding group:

00: INT0
01: INT1

10: INT2

11: INT3
• AUTOVECTOR: Autovector Address

Handler offset is used to give the address of the interrupt handler. The least significant bit should be written to zero to give
halfword alignment.

31 30 29 28 27 26 25 24
INTLEVEL[1:0] - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - AUTOVECTOR[13:8]

7 6 5 4 3 2 1 0
AUTOVECTOR[7:0]

131
32015G–AVR32–09/09

AT32AP7001

14.6.2 Interrupt Request Registers

Name: IRR0...IRR63

Access Type: Read-only

Offset: 0x0FF - 0x1FC

Reset Value: N/A

• IRR: Interrupt Request line
This bit is cleared when no interrupt request is pending on this input request line.

This bit is set when an interrupt request is pending on this input request line.
The are 64 IRRs, one for each group. Each IRR has 32 bits, one for each possible interrupt request, for a total of 2048 possible

input lines. The IRRs are read by the software interrupt handler in order to determine which interrupt request is pending. The

IRRs are sampled continuously, and are read-only.

31 30 29 28 27 26 25 24
IRR[32*x+31] IRR[32*x+30] IRR[32*x+29] IRR[32*x+28] IRR[32*x+27] IRR[32*x+26] IRR[32*x+25] IRR[32*x+24]

23 22 21 20 19 18 17 16

IRR[32*x+23] IRR[32*x+22] IRR[32*x+21] IRR[32*x+20] IRR[32*x+19] IRR[32*x+18] IRR[32*x+17] IRR[32*x+16]

15 14 13 12 11 10 9 8

IRR[32*x+15] IRR[32*x+14] IRR[32*x+13] IRR[32*x+12] IRR[32*x+11] IRR[32*x+10] IRR[32*x+9] IRR[32*x+8]

7 6 5 4 3 2 1 0
IRR[32*x+7] IRR[32*x+6] IRR[32*x+5] IRR[32*x+4] IRR[32*x+3] IRR[32*x+2] IRR[32*x+1] IRR[32*x+0]

132
32015G–AVR32–09/09

AT32AP7001

14.6.3 Interrupt Cause Registers

Register Name: ICR0...ICR3

Access Type: Read-only

Offset: 0x200 - 0x20C

Reset Value: N/A

• CAUSE: Interrupt Group Causing Interrupt of Priority n
ICRn identifies the group with the highest priority that has a pending interrupt of level n. This value is only defined when at least

one interrupt of level n is pending.

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0
- - CAUSE

133
32015G–AVR32–09/09

AT32AP7001

15. External Interrupt Controller (EIC)

Rev: 1.0.0.1

15.1 Features

• Dedicated interrupt requests for each interrupt
• Individually maskable interrupts
• Interrupt on rising or falling edge
• Interrupt on high or low level
• Maskable NMI interrupt

15.2 Description

The External Interrupt Controller allows 4 pins to be configured as external interrupts. Each pin
has its own interrupt request, and can be individually masked. Each pin can generate an inter-
rupt on rising or falling edge, or high or low level.

The module also masks the NMI_N pin, which generates the NMI interrupt for the CPU.

15.3 Block Diagram

Figure 15-1. External Interrupt Controller block diagram

15.4 Product Dependencies

15.4.1 I/O Lines

The External Interrupt and NMI pins are multiplexed with PIO lines. To act as external interrupts,
these pins must be configured as inputs pins by the PIO controller. It is also possible to trigger
the interrupt by driving these pins from registers in the PIO controller, or another peripheral out-
put connected to the same pin.

Sync Edge/Level
Detector Mask IRQnEXTINTn INTn

LEVEL
MODE

IER
IDRICR

ISR IMR

NMI_N Sync Mask NMI_IRQ

NMIC

134
32015G–AVR32–09/09

AT32AP7001

15.4.2 Power Management

Edge triggered interrupts are available in all sleep modes except Deepdown. Level triggered
interrupts and the NMI interrupt are available in all sleep modes.

15.4.3 Interrupt

The EIC interrupt lines are connected to internal sources of the interrupt controller. Using the
External Interrutps requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

15.5 Functional Description

15.5.1 External Interrupts

Each external interrupt pin EXTINTn can be configured to produce an interrupt on rising or fall-
ing edge, or high or low level. External interrupts are configured by the MODE, EDGE, and
LEVEL registers. Each interrupt n has a bit INTn in each of these registers.

Similarly, each interrupt has a corresponding bit in each of the interrupt control and status regis-
ters. Writing 1 to the INTn strobe in IER enables the external interrupt on pin EXTINTn, while
writing 1 to INTn in IDR disables the external interrupt. IMR can be read to check which inter-
rupts are enabled. When the interrupt triggers, the corresponding bit in ISR will be set. For edge
triggered interrupts, the flag remains set until the corresponding strobe bit in ICR is written to 1.
For level triggered interrupts, the flag remains set for as long as the interrupt condition is present
on the pin.

Writing INTn in MODE to 0 enables edge triggered interrupts, while writing the bit to 1 enables
level triggered interrupts.

If EXTINTn is configured as an edge triggered interrupt, writing INTn in EDGE to 0 will trigger the
interrupt on falling edge, while writing the bit to 1 will trigger the interrupt on rising edge.

If EXTINTn is configured as a level triggered interrupt, writing INTn in LEVEL to 0 will trigger the
interrupt on low level, while writing the bit to 1 will trigger the interrupt on high level.

15.5.1.1 Synchronization of external interrupts

The pin value of the EXTINTn pins is normally synchronized to the CPU clock, so spikes shorter
than a CPU clock cycle are not guaranteed to produce an interrupt. In Stop mode, spikes shorter
than a 32KHz clock cycle are not guaranteed to produce an interrupt. In Deepdown mode, only
unsynchronized level interrupts remain active, and any short spike on this interrupt will wake up
the device.

15.5.2 NMI Control

The Non-Maskable Interrupt of the CPU is connected to the NMI_N pin through masking logic in
the External Interrupt Controller. This masking ensures that the NMI will not trigger before the
CPU has been set up to handle interrupts. Writing the EN bit in the NMIC register enables the
NMI interrupt, while writing EN to 0 disables the NMI interrupt. When enabled, the interrupt trig-
gers whenever the NMI_N pin is negated.

The NMI_N pin is synchronized the same way as external level interrupts.

135
32015G–AVR32–09/09

AT32AP7001

15.6 User Interface

Offset Register Register Name Access Reset

0x00 EIC Interrupt Enable IER Write-only 0x0

0x04 EIC Interrupt Disable IDR Write-only 0x0

0x08 EIC Interrupt Mask IMR Read-only 0x0

0x0C EIC Interrupt Status ISR Read-only 0x0

0x10 EIC Interrupt Clear ICR Write-only 0x0

0x14 External Interrupt Mode MODE Read/Write 0x0

0x18 External Interrupt Edge EDGE Read/Write 0x0

0x1C External Interrupt Level LEVEL Read/Write 0x0

0x24 External Interrupt NMI Control NMIC Read/Write 0x0

136
32015G–AVR32–09/09

AT32AP7001

15.6.1 EIC Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR

Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

• INTn: External Interrupt n
0: External Interrupt has not triggered

1: External Interrupt has triggered

The effect of writing or reading the bits listed above depends on which register is being accessed:

• IER (Write-only)
0: No effect

1: Enable Interrupt

• IDR (Write-only)
0: No effect

1: Disable Interrupt

• IMR (Read-only)
0: Interrupt is disabled

1: Interrupt is enabled

• ISR (Read-only)
0: An interrupt event has occurred

1: An interrupt even has not occurred

• ICR (Write-only)
0: No effect

1: Clear interrupt event

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - INT3 INT2 INT1 INT0

137
32015G–AVR32–09/09

AT32AP7001

15.6.2 External Interrupt Mode/Edge/Level

Name: MODE/EDGE/LEVEL

Access Type: Read/Write

• INTn: External Interrupt n

The bit interpretation is register specific:

• MODE
0: Interrupt is edge triggered
1: Interrupt is level triggered

• EDGE
0: Interrupt triggers on falling edge
1: Interrupt triggers on rising edge

• LEVEL
0: Interrupt triggers on low level
1: Interrupt triggers on high level

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - INT3 INT2 INT1 INT0

138
32015G–AVR32–09/09

AT32AP7001

15.6.3 NMI Control

Name: NMIC

Access Type: Read/Write

• EN: Enable
0: NMI disabled. Asserting the NMI pin does not generate an NMI request.
1: NMI enabled. Asserting the NMI pin generate an NMI request.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - EN

139
32015G–AVR32–09/09

AT32AP7001

16. HSB Bus Matrix (HMATRIX)

Rev: 2.0.0.2

16.1 Features

• User Interface on peripheral bus
• Configurable Number of Masters (Up to sixteen)
• Configurable Number of Slaves (Up to sixteen)
• One Decoder for Each Master
• Three Different Memory Mappings for Each Master (Internal and External boot, Remap)
• One Remap Function for Each Master
• Programmable Arbitration for Each Slave

– Round-Robin
– Fixed Priority

• Programmable Default Master for Each Slave
– No Default Master
– Last Accessed Default Master
– Fixed Default Master

• One Cycle Latency for the First Access of a Burst
• Zero Cycle Latency for Default Master
• One Special Function Register for Each Slave (Not dedicated)

16.2 Overview

The Bus Matrix implements a multi-layer bus structure, that enables parallel access paths
between multiple High Speed Bus (HSB) masters and slaves in a system, thus increasing the
overall bandwidth. The Bus Matrix interconnects up to 16 HSB Masters to up to 16 HSB Slaves.
The normal latency to connect a master to a slave is one cycle except for the default master of
the accessed slave which is connected directly (zero cycle latency). The Bus Matrix provides 16
Special Function Registers (SFR) that allow the Bus Matrix to support application specific
features.

16.3 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

16.3.1 Clocks

The clock for the HMATRIX bus interface (CLK_HMATRIX) is generated by the Power Manager.
This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to
disable the HMATRIX before disabling the clock, to avoid freezing the HMATRIX in an undefined
state.

16.4 Functional Description

16.4.1 Memory Mapping

The Bus Matrix provides one decoder for every HSB Master Interface. The decoder offers each
HSB Master several memory mappings. In fact, depending on the product, each memory area

140
32015G–AVR32–09/09

AT32AP7001

may be assigned to several slaves. Booting at the same address while using different HSB
slaves (i.e. external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MRCR) that performs
remap action for every master independently.

16.4.2 Special Bus Granting Mechanism

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism reduces latency at first access of a burst or single
transfer. This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

16.4.2.1 No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

16.4.2.2 Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

16.4.2.3 Fixed Default Master

At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.

16.4.3 Arbitration

The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per HSB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)

2. Fixed Priority Arbitration

This choice is made via the field ARBT of the Slave Configuration Registers (SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

141
32015G–AVR32–09/09

AT32AP7001

When a re-arbitration must be done, specific conditions apply. See Section 16.4.3.1 ”Arbitration
Rules” on page 141.

16.4.3.1 Arbitration Rules

Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: When a slave is currently doing a single access.

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst. See Section “•” on page 141.

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken. See Section “•” on page 141.

• Undefined Length Burst Arbitration

In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected from among the following
five possibilities:

1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.

3. Four beat bursts: Predicted end of burst is generated at the end of each four beat bound-
ary inside INCR transfer.

4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.

5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.

This selection can be done through the field ULBT of the Master Configuration Registers
(MCFG).

• Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or word
transfer.

142
32015G–AVR32–09/09

AT32AP7001

16.4.3.2 Round-Robin Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

1. Round-Robin arbitration without default master

2. Round-Robin arbitration with last default master

3. Round-Robin arbitration with fixed default master

• Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

• Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performed the access. Other non privileged masters still get one latency cycle if
they want to access the same slave. This technique can be used for masters that mainly perform
single accesses.

• Round-Robin Arbitration with Fixed Default Master

This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

16.4.3.3 Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master requests are
active at the same time, the master with the highest priority number is serviced first. If two or
more master requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (PRAS and PRBS).

16.4.4 Slave and Master assignation

The index number assigned to Bus Matrix slaves and masters are described in Memories
chapter.

143
32015G–AVR32–09/09

AT32AP7001

16.5 User Interface

Table 16-1. HMATRIX Register Memory Map

Offset Register Name Access Reset Value

0x0000 Master Configuration Register 0 MCFG0 Read/Write 0x00000002

0x0004 Master Configuration Register 1 MCFG1 Read/Write 0x00000002

0x0008 Master Configuration Register 2 MCFG2 Read/Write 0x00000002

0x000C Master Configuration Register 3 MCFG3 Read/Write 0x00000002

0x0010 Master Configuration Register 4 MCFG4 Read/Write 0x00000002

0x0014 Master Configuration Register 5 MCFG5 Read/Write 0x00000002

0x0018 Master Configuration Register 6 MCFG6 Read/Write 0x00000002

0x001C Master Configuration Register 7 MCFG7 Read/Write 0x00000002

0x0020 Master Configuration Register 8 MCFG8 Read/Write 0x00000002

0x0024 Master Configuration Register 9 MCFG9 Read/Write 0x00000002

0x0028 Master Configuration Register 10 MCFG10 Read/Write 0x00000002

0x002C Master Configuration Register 11 MCFG11 Read/Write 0x00000002

0x0030 Master Configuration Register 12 MCFG12 Read/Write 0x00000002

0x0034 Master Configuration Register 13 MCFG13 Read/Write 0x00000002

0x0038 Master Configuration Register 14 MCFG14 Read/Write 0x00000002

0x003C Master Configuration Register 15 MCFG15 Read/Write 0x00000002

0x0040 Slave Configuration Register 0 SCFG0 Read/Write 0x00000010

0x0044 Slave Configuration Register 1 SCFG1 Read/Write 0x00000010

0x0048 Slave Configuration Register 2 SCFG2 Read/Write 0x00000010

0x004C Slave Configuration Register 3 SCFG3 Read/Write 0x00000010

0x0050 Slave Configuration Register 4 SCFG4 Read/Write 0x00000010

0x0054 Slave Configuration Register 5 SCFG5 Read/Write 0x00000010

0x0058 Slave Configuration Register 6 SCFG6 Read/Write 0x00000010

0x005C Slave Configuration Register 7 SCFG7 Read/Write 0x00000010

0x0060 Slave Configuration Register 8 SCFG8 Read/Write 0x00000010

0x0064 Slave Configuration Register 9 SCFG9 Read/Write 0x00000010

0x0068 Slave Configuration Register 10 SCFG10 Read/Write 0x00000010

0x006C Slave Configuration Register 11 SCFG11 Read/Write 0x00000010

0x0070 Slave Configuration Register 12 SCFG12 Read/Write 0x00000010

0x0074 Slave Configuration Register 13 SCFG13 Read/Write 0x00000010

0x0078 Slave Configuration Register 14 SCFG14 Read/Write 0x00000010

0x007C Slave Configuration Register 15 SCFG15 Read/Write 0x00000010

0x0080 Priority Register A for Slave 0 PRAS0 Read/Write 0x00000000

0x0084 Priority Register B for Slave 0 PRBS0 Read/Write 0x00000000

0x0088 Priority Register A for Slave 1 PRAS1 Read/Write 0x00000000

144
32015G–AVR32–09/09

AT32AP7001

0x008C Priority Register B for Slave 1 PRBS1 Read/Write 0x00000000

0x0090 Priority Register A for Slave 2 PRAS2 Read/Write 0x00000000

0x0094 Priority Register B for Slave 2 PRBS2 Read/Write 0x00000000

0x0098 Priority Register A for Slave 3 PRAS3 Read/Write 0x00000000

0x009C Priority Register B for Slave 3 PRBS3 Read/Write 0x00000000

0x00A0 Priority Register A for Slave 4 PRAS4 Read/Write 0x00000000

0x00A4 Priority Register B for Slave 4 PRBS4 Read/Write 0x00000000

0x00A8 Priority Register A for Slave 5 PRAS5 Read/Write 0x00000000

0x00AC Priority Register B for Slave 5 PRBS5 Read/Write 0x00000000

0x00B0 Priority Register A for Slave 6 PRAS6 Read/Write 0x00000000

0x00B4 Priority Register B for Slave 6 PRBS6 Read/Write 0x00000000

0x00B8 Priority Register A for Slave 7 PRAS7 Read/Write 0x00000000

0x00BC Priority Register B for Slave 7 PRBS7 Read/Write 0x00000000

0x00C0 Priority Register A for Slave 8 PRAS8 Read/Write 0x00000000

0x00C4 Priority Register B for Slave 8 PRBS8 Read/Write 0x00000000

0x00C8 Priority Register A for Slave 9 PRAS9 Read/Write 0x00000000

0x00CC Priority Register B for Slave 9 PRBS9 Read/Write 0x00000000

0x00D0 Priority Register A for Slave 10 PRAS10 Read/Write 0x00000000

0x00D4 Priority Register B for Slave 10 PRBS10 Read/Write 0x00000000

0x00D8 Priority Register A for Slave 11 PRAS11 Read/Write 0x00000000

0x00DC Priority Register B for Slave 11 PRBS11 Read/Write 0x00000000

0x00E0 Priority Register A for Slave 12 PRAS12 Read/Write 0x00000000

0x00E4 Priority Register B for Slave 12 PRBS12 Read/Write 0x00000000

0x00E8 Priority Register A for Slave 13 PRAS13 Read/Write 0x00000000

0x00EC Priority Register B for Slave 13 PRBS13 Read/Write 0x00000000

0x00F0 Priority Register A for Slave 14 PRAS14 Read/Write 0x00000000

0x00F4 Priority Register B for Slave 14 PRBS14 Read/Write 0x00000000

0x00F8 Priority Register A for Slave 15 PRAS15 Read/Write 0x00000000

0x00FC Priority Register B for Slave 15 PRBS15 Read/Write 0x00000000

0x0100 Master Remap Control Register MRCR Read/Write 0x00000000

0x0110 Special Function Register 0 SFR0 Read/Write –

0x0114 Special Function Register 1 SFR1 Read/Write –

0x0118 Special Function Register 2 SFR2 Read/Write –

0x011C Special Function Register 3 SFR3 Read/Write –

0x0120 Special Function Register 4 SFR4 Read/Write –

0x0124 Special Function Register 5 SFR5 Read/Write –

Table 16-1. HMATRIX Register Memory Map (Continued)

Offset Register Name Access Reset Value

145
32015G–AVR32–09/09

AT32AP7001

0x0128 Special Function Register 6 SFR6 Read/Write –

0x012C Special Function Register 7 SFR7 Read/Write –

0x0130 Special Function Register 8 SFR8 Read/Write –

0x0134 Special Function Register 9 SFR9 Read/Write –

0x0138 Special Function Register 10 SFR10 Read/Write –

0x013C Special Function Register 11 SFR11 Read/Write –

0x0140 Special Function Register 12 SFR12 Read/Write –

0x0144 Special Function Register 13 SFR13 Read/Write –

0x0148 Special Function Register 14 SFR14 Read/Write –

0x014C Special Function Register 15 SFR15 Read/Write –

Table 16-1. HMATRIX Register Memory Map (Continued)

Offset Register Name Access Reset Value

146
32015G–AVR32–09/09

AT32AP7001

16.5.1 Master Configuration Registers

Name: MCFG0...MCFG15

Access Type: Read/Write

Offset: 0x00 - 0x3C

Reset Value: 0x00000002

• ULBT: Undefined Length Burst Type
0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR burst.

2: Four Beat Burst
The undefined length burst is split into a four-beat burst, allowing re-arbitration at each four-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into an eight-beat burst, allowing re-arbitration at each eight-beat burst end.
4: Sixteen Beat Burst

The undefined length burst is split into a sixteen-beat burst, allowing re-arbitration at each sixteen-beat burst end.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – ULBT

147
32015G–AVR32–09/09

AT32AP7001

16.5.2 Slave Configuration Registers

Name: SCFG0...SCFG15

Access Type: Read/Write

Offset: 0x40 - 0x7C

Reset Value: 0x00000010

• ARBT: Arbitration Type
0: Round-Robin Arbitration

1: Fixed Priority Arbitration

• FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a master

which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

The size of this field depends on the number of masters. This size is log2(number of masters).
• DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master having
accessed it.

This results in not having one cycle latency when the last master tries to access the slave again.

2: Fixed Default Master
At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the number

that has been written in the FIXED_DEFMSTR field.

This results in not having one cycle latency when the fixed master tries to access the slave again.
• SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst

When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking a very slow slave when very long bursts are used.
This limit must not be very small. Unreasonably small values break every burst and the Bus Matrix arbitrates without performing

any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

31 30 29 28 27 26 25 24

– – – – – – – ARBT

23 22 21 20 19 18 17 16

– – FIXED_DEFMSTR DEFMSTR_TYPE

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SLOT_CYCLE

148
32015G–AVR32–09/09

AT32AP7001

16.5.3 Bus Matrix Priority Registers A For Slaves

Name: PRAS0...PRAS15

Access Type: Read/Write

Offset: -

Reset Value: 0x00000000

• MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

31 30 29 28 27 26 25 24

M7PR M6PR

23 22 21 20 19 18 17 16

M5PR M4PR

15 14 13 12 11 10 9 8

M3PR M2PR

7 6 5 4 3 2 1 0

M1PR M0PR

149
32015G–AVR32–09/09

AT32AP7001

16.5.4 Priority Registers B For Slaves

Name: PRBS0...PRBS15

Access Type: Read/Write

Offset: -

Reset Value: 0x00000000

• MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

31 30 29 28 27 26 25 24

M15PR M14PR

23 22 21 20 19 18 17 16

M13PR M12PR

15 14 13 12 11 10 9 8

M11PR M10PR

7 6 5 4 3 2 1 0

M9PR M8PR

150
32015G–AVR32–09/09

AT32AP7001

16.5.5 Master Remap Control Register

Name: MRCR

Access Type: Read/Write

Offset: 0x100

Reset Value: 0x00000000

• RCB: Remap Command Bit for Master x
0: Disable remapped address decoding for the selected Master

1: Enable remapped address decoding for the selected Master

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RCB15 RCB14 RCB13 RCB12 RCB11 RCB10 RCB9 RCB8

7 6 5 4 3 2 1 0

RCB7 RCB6 RCB5 RCB4 RCB3 RCB2 RCB1 RCB0

151
32015G–AVR32–09/09

AT32AP7001

16.5.6 Special Function Registers

Name: SFR0...SFR15

Access Type: Read/Write

Offset: 0x110 - 0x115

Reset Value: -

• SFR: Special Function Register Fields
Those registers are not a HMATRIX specific register. The field of those will be defined where they are used.

31 30 29 28 27 26 25 24

SFR

23 22 21 20 19 18 17 16

SFR

15 14 13 12 11 10 9 8

SFR

7 6 5 4 3 2 1 0

SFR

152
32015G–AVR32–09/09

AT32AP7001

17. External Bus Interface (EBI)

Rev: 1.0.1.2

17.1 Features

• Optimized for Application Memory Space support
• Integrates Three External Memory Controllers:

– Static Memory Controller
– SDRAM Controller
– ECC Controller

• Additional Logic for NAND Flash/SmartMediaTM and CompactFlashTM Support
– NAND Flash support: 8-bit as well as 16-bit devices are supported
– CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are

supported but the signals _IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.

• Optimized External Bus:
– 16- or 32-bit Data Bus
– Up to 26-bit Address Bus, Up to 64-Mbytes Addressable
– Optimized pin multiplexing to reduce latencies on External Memories

• Up to 6 Chip Selects, Configurable Assignment:
– Static Memory Controller on NCS0
– SDRAM Controller or Static Memory Controller on NCS1
– Static Memory Controller on NCS2
– Static Memory Controller on NCS3, Optional NAND Flash Support
– Static Memory Controller on NCS4 - NCS5, Optional CompactFlashTM Support

17.2 Description

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded Memory Controller of an AVR32 device. The Static
Memory, SDRAM and ECC Controllers are all featured external Memory Controllers on the EBI.
These external Memory Controllers are capable of handling several types of external memory
and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and SDRAM.

The EBI also supports the CompactFlash and the NAND Flash/SmartMedia protocols via inte-
grated circuitry that greatly reduces the requirements for external components. Furthermore, the
EBI handles data transfers with up to six external devices, each assigned to six address spaces
defined by the embedded Memory Controller. Data transfers are performed through a 16-bit or
32-bit data bus, an address bus of up to 26 bits, up to six chip select lines (NCS[5:0]) and sev-
eral control pins that are generally multiplexed between the different external Memory
Controllers.

153
32015G–AVR32–09/09

AT32AP7001

17.3 Block Diagram

17.3.1 External Bus Interface

Figure 17-1 shows the organization of the External Bus Interface.

Figure 17-1. Organization of the External Bus Interface

External Bus Interface 0

D[15:0]

A[15:2], A[22:18]

PIO

MUX
Logic

User Interface

Chip Select
 Assignor

Static
Memory

Controller

SDRAM
Controller

Bus Matrix

Peripheral Bus

HSB

Address Decoders

A16/BA0

A0/NBS0

A1/NWR2/NBS2

A17/BA1

NCS0

NCS3/NANDCS

NRD/NOE/CFOE

NCS1/SDCS

NWR0/NWE/CFWE

NWR1/NBS1/CFIO

NWR3/NBS3/CFIO

SDCK

SDCKE

RAS

CAS

SDWE

D[31:16]

A[25:23]

CFRNW

NCS4/CFCS0

NCS5/CFCS1

NCS2

CFCE1

CFCE2

NWAIT

SDA10

NANDOE

NANDWE

NAND Flash

SmartMedia
Logic

CompactFlash
Logic

ECC
Controller

154
32015G–AVR32–09/09

AT32AP7001

155
32015G–AVR32–09/09

AT32AP7001

17.4 I/O Lines Description

Table 17-1. EBI I/O Lines Description

Name Function Type Active Level

EBI

D0 - D31 Data Bus I/O

A0 - A25 Address Bus Output

NWAIT External Wait Signal Input Low

SMC

NCS0 - NCS5 Chip Select Lines Output Low

NWR0 - NWR3 Write Signals Output Low

NOE Output Enable Output Low

NRD Read Signal Output Low

NWE Write Enable Output Low

NBS0 - NBS3 Byte Mask Signals Output Low

EBI for CompactFlash Support

CFCE1 - CFCE2 CompactFlash Chip Enable Output Low

CFOE CompactFlash Output Enable Output Low

CFWE CompactFlash Write Enable Output Low

CFIOR CompactFlash I/O Read Signal Output Low

CFIOW CompactFlash I/O Write Signal Output Low

CFRNW CompactFlash Read Not Write Signal Output

CFCS0 - CFCS1 CompactFlash Chip Select Lines Output Low

EBI for NAND Flash/SmartMedia Support

NANDCS NAND Flash Chip Select Line Output Low

NANDOE NAND Flash Output Enable Output Low

NANDWE NAND Flash Write Enable Output Low

SDRAM Controller

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

SDCS SDRAM Controller Chip Select Line Output Low

BA0 - BA1 Bank Select Output

SDWE SDRAM Write Enable Output Low

RAS - CAS Row and Column Signal Output Low

NWR0 - NWR3 Write Signals Output Low

NBS0 - NBS3 Byte Mask Signals Output Low

SDA10 SDRAM Address 10 Line Output

156
32015G–AVR32–09/09

AT32AP7001

Depending on the Memory Controller in use, all signals are not connected directly through the
Mux Logic.

Table 17-2 on page 156 details the connections between the two Memory Controllers and the
EBI pins.

Table 17-2. EBI Pins and Memory Controllers I/O Lines Connections

EBI Pins SDRAMC I/O Lines SMC I/O Lines

NWR1/NBS1/CFIOR NBS1 NWR1/NUB

A0/NBS0 Not Supported SMC_A0/NLB

A1/NBS2/NWR2 Not Supported SMC_A1

A[11:2] SDRAMC_A[9:0] SMC_A[11:2]

SDA10 SDRAMC_A10 Not Supported

A12 Not Supported SMC_A12

A[14:13] SDRAMC_A[12:11] SMC_A[14:13]

A[22:15] Not Supported SMC_A[22:15]

D[31:0] D[31:0] D[31:0]

157
32015G–AVR32–09/09

AT32AP7001

17.5 Application Example

17.5.1 Hardware Interface

Table 17-3 on page 157 details the connections to be applied between the EBI pins and the
external devices for each Memory Controller.

Notes: 1. NWR1 enables upper byte writes. NWR0 enables lower byte writes.
2. NWRx enables corresponding byte x writes. (x = 0,1,2 or 3)
3. NBS0 and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.
4. NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.
5. BEx: Byte x Enable (x = 0,1,2 or 3)

Table 17-3. EBI Pins and External Static Devices Connections

Signals

Pins of the Interfaced Device

8-bit Static
Device

2 x 8-bit
Static

Devices

16-bit Static
Device

4 x 8-bit

Static
Devices

2 x 16-bit
Static

Devices

32-bit Static
Device

Controller SMC

D0 - D7 D0 - D7 D0 - D7 D0 - D7 D0 - D7 D0 - D7 D0 - D7

D8 - D15 – D8 - D15 D8 - D15 D8 - D15 D8 - 15 D8 - 15

D16 - D23 – – – D16 - D23 D16 - D23 D16 - D23

D24 - D31 – – – D24 - D31 D24 - D31 D24 - D31

A0/NBS0 A0 – NLB – NLB(3) BE0(5)

A1/NWR2/NBS2 A1 A0 A0 WE(2) NLB(4) BE2(5)

A2 - A22 A[2:22] A[1:21] A[1:21] A[0:20] A[0:20] A[0:20]

A23 - A25 A[23:25] A[22:24] A[22:24] A[21:23] A[21:23] A[21:23]

NCS0 CS CS CS CS CS CS

NCS1/SDCS CS CS CS CS CS CS

NCS2 CS CS CS CS CS CS

NCS3/NANDCS CS CS CS CS CS CS

NCS4/CFCS0 CS CS CS CS CS CS

NCS5/CFCS1 CS CS CS CS CS CS

NRD/NOE/CFOE OE OE OE OE OE OE

NWR0/NWE WE WE(1) WE WE(2) WE WE

NWR1/NBS1 – WE(1) NUB WE(2) NUB(3) BE1(5)

NWR3/NBS3 – – – WE(2) NUB(4) BE3(5)

158
32015G–AVR32–09/09

AT32AP7001

Table 17-4. EBI Pins and External Devices Connections

Signals

Pins of the Interfaced Device

SDRAM
Compact

Flash

Compact
Flash

True IDE Mode

Smart Media
or

NAND Flash

Controller SDRAMC SMC

D0 - D7 D0 - D7 D0 - D7 D0 - D7 AD0-AD7

D8 - D15 D8 - D15 D8 - 15 D8 - 15 AD8-AD15

D16 - D31 D16 - D31 – – –

A0/NBS0 DQM0 A0 A0 –

A1/NWR2/NBS2 DQM2 A1 A1 –

A2 - A10 A[0:8] A[2:10] A[2:10] –

A11 A9 – – –

SDA10 A10 – – –

A12 – – – –

A13 - A14 A[11:12] – – –

A15 – – – –

A16/BA0 BA0 – – –

A17/BA1 BA1 – – –

A18 - A20 – – – –

A21 – – – CLE(3)

A22 – REG REG ALE(3)

A23 - A24 – – – –

A25 – – – –

NCS0 – – – –

NCS1/SDCS CS[0] – – –

NCS2 – – – –

NCS3/NANDCS – – – –

NCS4/CFCS0 – CFCS0(1) CFCS0(1) –

NCS5/CFCS1 – CFCS1(1) CFCS1(1) –

NANDOE – – – OE

NANDWE – – – WE

NRD/NOE/CFOE – OE – –

NWR0/NWE/CFWE – WE WE –

NWR1/NBS1/CFIOR DQM1 IOR IOR –

NWR3/NBS3/CFIOW DQM3 IOW IOW –

CFRNW – CFRNW(1) CFRNW(1) –

CFCE1 – CE1 CS0 –

CFCE2 – CE2 CS1 –

159
32015G–AVR32–09/09

AT32AP7001

Note: 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer
between the EBI data bus and the CompactFlash slot.

2. Any PIO line.
3. The CLE and ALE signals of the NAND Flash device may be driven by any address bit. For

details, see ”SmartMedia and NAND Flash Support” on page 166.
4.

SDCK CLK – – –

SDCKE CKE – – –

RAS RAS – – –

CAS CAS – – –

SDWE WE – – –

NWAIT – WAIT WAIT –

Pxx(2) – CD1 or CD2 CD1 or CD2 –

Pxx(2) – – – CE

Pxx(2) – – – RDY

Table 17-4. EBI Pins and External Devices Connections (Continued)

Signals

Pins of the Interfaced Device

SDRAM
Compact

Flash

Compact

Flash
True IDE Mode

Smart Media

or
NAND Flash

Controller SDRAMC SMC

160
32015G–AVR32–09/09

AT32AP7001

17.5.2 Connection Examples

Figure 17-2 shows an example of connections between the EBI and external devices.

Figure 17-2. EBI Connections to Memory Devices

EBI

D0-D31

A2-A15

RAS
CAS

SDCK
SDCKE
SDWE

A0/NBS0

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

NWR1/NBS1
A1/NWR2/NBS2

NWR3/NBS3

NCS1/SDCS

D0-D7 D8-D15

A16/BA0
A17/BA1
A18-A25

A10

SDA10

SDA10
A2-A11, A13

NCS0

NCS2
NCS3
NCS4
NCS5

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10 SDA10
A2-A11, A13

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

D16-D23 D24-D31

A10 SDA10
A2-A11, A13

A16/BA0
A17/BA1

2M x 8
SDRAM

D0-D7

A0-A9, A11

RAS
CAS

CLK
CKE
WE

DQM

CS

BA0
BA1

A10
SDA10
A2-A11, A13

A16/BA0
A17/BA1

NBS0 NBS1

NBS3
NBS2

NRD/NOE
NWR0/NWE

128K x 8
SRAM

128K x 8
SRAM

D0-D7 D0-D7A0-A16 A0-A16
A1-A17 A1-A17

CS CS

OE
WE

D0-D7 D8-D15

OE
WENRD/NOE

A0/NWR0/NBS0
NRD/NOE

NWR1/NBS1

SDWE

SDWESDWE

SDWE

161
32015G–AVR32–09/09

AT32AP7001

17.6 Product Dependencies

17.6.1 I/O Lines

The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the External Bus Interface pins
to their peripheral function. If I/O lines of the External Bus Interface are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

17.7 Functional Description

The EBI transfers data between the internal HSB Bus (handled by the HMatrix) and the external
memories or peripheral devices. It controls the waveforms and the parameters of the external
address, data and control busses and is composed of the following elements:

• The Static Memory Controller (SMC)

• The SDRAM Controller (SDRAMC)

• The ECC Controller (ECC)

• A chip select assignment feature that assigns an HSB address space to the external devices

• A multiplex controller circuit that shares the pins between the different Memory Controllers

• Programmable CompactFlash support logic

• Programmable SmartMedia and NAND Flash support logic

17.7.1 Bus Multiplexing

The EBI offers a complete set of control signals that share the 32-bit data lines, the address
lines of up to 26 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses.

17.7.2 Pull-up Control

A specific HMATRIX_SFR register in the Matrix User Interface permit enabling of on-chip pull-up
resistors on the data bus lines not multiplexed with the PIO Controller lines. For details on this
register, refer to the Peripherals Section. The pull-up resistors are enabled after reset. Setting
the EBI_DBPUC bit disables the pull-up resistors on lines not muxed with PIO. Enabling the pull-
up resistor on lines multiplexed with PIO lines can be performed by programming the appropri-
ate PIO controller.

17.7.3 Static Memory Controller

For information on the Static Memory Controller, refer to the Static Memory Controller Section.

17.7.4 SDRAM Controller

For information on the SDRAM Controller, refer to the SDRAM Section.

17.7.5 ECC Controller

For information on the ECC Controller, refer to the ECC Section.

162
32015G–AVR32–09/09

AT32AP7001

17.7.6 CompactFlash Support

The External Bus Interface integrates circuitry that interfaces to CompactFlash devices.

The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 and/or
NCS5 address space. Programming the EBI_CS4A and/or EBI_CS5A bits in a HMATRIX_SFR
Register to the appropriate value enables this logic. For details on this register, refer to the
Peripherals Section. Access to an external CompactFlash device is then made by accessing the
address space reserved to NCS4 and/or NCS5 (i.e., between 0x04000 0000 and 0x07FF FFFF
for NCS4 and between 0x2000 0000 and 0x23FF FFFF for NCS5).

All CompactFlash modes (Attribute Memory, Common Memory, I/O and True IDE) are sup-
ported but the signals _IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode) are
not handled.

17.7.6.1 I/O Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode

Within the NCS4 and/or NCS5 address space, the current transfer address is used to distinguish
I/O mode, common memory mode, attribute memory mode and True IDE mode.

The different modes are accessed through a specific memory mapping as illustrated on Figure
17-3. A[23:21] bits of the transfer address are used to select the desired mode as described in
Table 17-5 on page 163.

Figure 17-3. CompactFlash Memory Mapping

Note: The A22 pin is used to drive the REG signal of the CompactFlash Device (except in True IDE
mode).

CF Address Space

Attribute Memory Mode Space

Common Memory Mode Space

I/O Mode Space

True IDE Mode Space

True IDE Alternate Mode Space

Offset 0x00E0 0000

Offset 0x00C0 0000

Offset 0x0080 0000

Offset 0x0040 0000

Offset 0x0000 0000

163
32015G–AVR32–09/09

AT32AP7001

17.7.6.2 CFCE1 and CFCE2 signals

To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit
data bus. The odd byte access on the D[7:0] bus is only possible when the SMC is configured to
drive 8-bit memory devices on the corresponding NCS pin (NCS4 or NCS5). The Chip Select
Register (DBW field in the corresponding Chip Select Register) of the NCS4 and/or NCS5
address space must be set as shown in Table 17-6 to enable the required access type.

NBS1 and NBS0 are the byte selection signals from SMC and are available when the SMC is set
in Byte Select mode on the corresponding Chip Select.

The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For
details on these waveforms and timings, refer to the Static Memory Controller Section.

Table 17-5. CompactFlash Mode Selection

A[23:21] Mode Base Address

000 Attribute Memory

010 Common Memory

100 I/O Mode

110 True IDE Mode

111 Alternate True IDE Mode

Table 17-6. CFCE1 and CFCE2 Truth Table

Mode CFCE2 CFCE1 DBW Comment SMC Access Mode

Attribute Memory NBS1 NBS0 16 bits Access to Even Byte on D[7:0] Byte Select

Common Memory
NBS1 NBS0 16bits

Access to Even Byte on D[7:0]

Access to Odd Byte on D[15:8]
Byte Select

1 0 8 bits Access to Odd Byte on D[7:0]

I/O Mode
NBS1 NBS0 16 bits

Access to Even Byte on D[7:0]

Access to Odd Byte on D[15:8]
Byte Select

1 0 8 bits Access to Odd Byte on D[7:0]

True IDE Mode

Task File 1 0 8 bits
Access to Even Byte on D[7:0]

Access to Odd Byte on D[7:0]

Data Register 1 0 16 bits
Access to Even Byte on D[7:0]

Access to Odd Byte on D[15:8]
Byte Select

Alternate True IDE Mode

Control Register

Alternate Status Read
0 1

Don’t
Care

Access to Even Byte on D[7:0] Don’t Care

Drive Address 0 1 8 bits Access to Odd Byte on D[7:0]

Standby Mode or
Address Space is not
assigned to CF

1 1 – – –

164
32015G–AVR32–09/09

AT32AP7001

17.7.6.3 Read/Write Signals

In I/O mode and True IDE mode, the CompactFlash logic drives the read and write command
signals of the SMC on CFIOR and CFIOW signals, while the CFOE and CFWE signals are deac-
tivated. Likewise, in common memory mode and attribute memory mode, the SMC signals are
driven on the CFOE and CFWE signals, while the CFIOR and CFIOW are deactivated. Figure
17-4 on page 164 demonstrates a schematic representation of this logic.

Attribute memory mode, common memory mode and I/O mode are supported by setting the
address setup and hold time on the NCS4 (and/or NCS5) chip select to the appropriate values.
For details on these signal waveforms, please refer to the section: Setup and Hold Cycles of the
Static Memory Controller Section.

Figure 17-4. CompactFlash Read/Write Control Signals

17.7.6.4 Multiplexing of CompactFlash Signals on EBI Pins

Table 17-8 on page 165 and Table 17-9 on page 165 illustrate the multiplexing of the Compact-
Flash logic signals with other EBI signals on the EBI pins. The EBI pins in Table 17-8 are strictly
dedicated to the CompactFlash interface as soon as the EBI_CS4A and/or EBI_CS5A field of a
specific HMATRIX_SFR Register is set, see the Peripherals Section for details. These pins must
not be used to drive any other memory devices.

The EBI pins in Table 17-9 on page 165 remain shared between all memory areas when the cor-
responding CompactFlash interface is enabled (EBI_CS4A = 1 and/or EBI_CS5A = 1).

Table 17-7. CompactFlash Mode Selection

Mode Base Address CFOE CFWE CFIOR CFIOW

Attribute Memory

Common Memory
NRD_NOE NWR0_NWE 1 1

I/O Mode 1 1 NRD_NOE NWR0_NWE

True IDE Mode 0 1 NRD_NOE NWR0_NWE

SMC

NRD_NOE
NWR0_NWE

A23

CFIOR
CFIOW

CFOE
CFWE

1
1

CompactFlash Logic

External Bus Interface

1
1

1
0

A22

1

0

1

0

1

0

165
32015G–AVR32–09/09

AT32AP7001

17.7.6.5 Application Example

Figure 17-5 on page 166 illustrates an example of a CompactFlash application. CFCS0 and
CFRNW signals are not directly connected to the CompactFlash slot 0, but do control the direc-
tion and the output enable of the buffers between the EBI and the CompactFlash Device. The
timing of the CFCS0 signal is identical to the NCS4 signal. Moreover, the CFRNW signal
remains valid throughout the transfer, as does the address bus. The CompactFlash _WAIT sig-
nal is connected to the NWAIT input of the Static Memory Controller. For details on these
waveforms and timings, refer to the Static Memory Controller Section.

Table 17-8. Dedicated CompactFlash Interface Multiplexing

Pins
CompactFlash Signals EBI Signals

CS4A = 1 CS5A = 1 CS4A = 0 CS5A = 0

NCS4/CFCS0 CFCS0 NCS4

NCS5/CFCS1 CFCS1 NCS5

Table 17-9. Shared CompactFlash Interface Multiplexing

Pins

Access to
CompactFlash Device

Access to
Other EBI Devices

CompactFlash Signals EBI Signals

NOE/NRD/CFOE CFOE NRD/NOE

NWR0/NWE/CFWE CFWE NWR0/NWE

NWR1/NBS1/CFIOR CFIOR NWR1/NBS1

NWR3/NBS3/CFIOW CFIOW NWR3/NBS3

A25/CFRNW CFRNW A25

166
32015G–AVR32–09/09

AT32AP7001

Figure 17-5. CompactFlash Application Example

17.7.7 SmartMedia and NAND Flash Support

The External Bus Interface integrates circuitry that interfaces to SmartMedia and NAND Flash
devices.

The NAND Flash logic is driven by the Static Memory Controller on the NCS3 address space.
Programming the EBI_CS3A field in a specific HMATRIX_SFR Register to the appropriate value
enables the NAND Flash logic. For details on this register, refer to the Peripherals Section.
Access to an external NAND Flash device is then made by accessing the address space
reserved to NCS3 (i.e., between 0x0C00 0000 and 0x0FFF FFFF).

The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS3 signal is active. NANDOE and NANDWE are invalidated
as soon as the transfer address fails to lie in the NCS3 address space. See Figure ”NAND Flash
Signal Multiplexing on EBI Pins” on page 167 for more informations. For details on these wave-
forms, refer to the Static Memory Controller Section.

The SmartMedia device is connected the same way as the NAND Flash device.

CompactFlash ConnectorEBI

D[15:0]

/OEDIR

_CD1

_CD2

/OE

D[15:0]

A25/CFRNW

NCS4/CFCS0

CD (PIO)

A[10:0]

A22/REG

NOE/CFOE

A[10:0]

_REG

_OE

_WE

_IORD

_IOWR

_CE1

_CE2

NWE/CFWE

NWR1/CFIOR

NWR3/CFIOW

CFCE1

CFCE2

_WAITNWAIT

167
32015G–AVR32–09/09

AT32AP7001

Figure 17-6. NAND Flash Signal Multiplexing on EBI Pins

17.7.7.1 NAND Flash Signals

The address latch enable and command latch enable signals on the NAND Flash device are
driven by address bits A22 and A21 of the EBI address bus. The user should note that any bit on
the EBI address bus can also be used for this purpose. The command, address or data words
on the data bus of the NAND Flash device are distinguished by using their address within the
NCSx address space. The chip enable (CE) signal of the device and the ready/busy (R/B) sig-
nals are connected to PIO lines. The CE signal then remains asserted even when NCSx is not
selected, preventing the device from returning to standby mode.

SMC

NRD_NOE

NWR0_NWE

NANDOE

NANDWE

SmartMedia Logic

NCSx

NANDWE

NANDOE

168
32015G–AVR32–09/09

AT32AP7001

Figure 17-7. NAND Flash Application Example

Note: The External Bus Interfaces is also able to support 16-bits devices.

D[7:0]

ALE

NANDWE

NANDOE
NOE

NWE

A[22:21]

CLE

AD[7:0]

PIO R/B

EBI

CE

SmartMedia

PIO

NCSx/NANDCS Not Connected

169
32015G–AVR32–09/09

AT32AP7001

18. DMA Controller (DMACA)

Rev: 2.0.0.6

18.1 Features

• 2 HSB Master Interfaces
• 3 Channels
• Software and Hardware Handshaking Interfaces

– 11 Hardware Handshaking Interfaces
• Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
• Single-block DMA Transfer
• Multi-block DMA Transfer

– Linked Lists
– Auto-Reloading
– Contiguous Blocks

• DMA Controller is Always the Flow Controller
• Additional Features

– Scatter and Gather Operations
– Channel Locking

– Bus Locking
– FIFO Mode
– Pseudo Fly-by Operation

18.2 Overview

The DMA Controller (DMACA) is an HSB-central DMA controller core that transfers data from a
source peripheral to a destination peripheral over one or more System Bus. One channel is
required for each source/destination pair. In the most basic configuration, the DMACA has one
master interface and one channel. The master interface reads the data from a source and writes
it to a destination. Two System Bus transfers are required for each DMA data transfer. This is
also known as a dual-access transfer.

The DMACA is programmed via the HSB slave interface.

170
32015G–AVR32–09/09

AT32AP7001

18.3 Block Diagram

Figure 18-1. DMA Controller (DMACA) Block Diagram

18.4 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

18.4.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with GPIO lines.
The user must first program the GPIO controller to assign the DMACA pins to their peripheral
functions.

18.4.2 Power Management

To prevent bus errors the DMACA operation must be terminated before entering sleep mode.

18.4.3 Clocks

The CLK_DMACA to the DMACA is generated by the Power Manager (PM). Before using the
DMACA, the user must ensure that the DMACA clock is enabled in the power manager.

18.4.4 Interrupts

The DMACA interface has an interrupt line connected to the Interrupt Controller. Handling the
DMACA interrupt requires programming the interrupt controller before configuring the DMACA.

18.4.5 Peripherals

Both the source peripheral and the destination peripheral must be set up correctly prior to the
DMA transfer.

HSB Slave
I/F

HSB Master
I/F

CFG Interrupt
Generator

FIFO

Channel 0

SRC
FSM

DST
FSM

Channel 1

DMA Controller

irq_dmaHSB Slave

HSB Master

171
32015G–AVR32–09/09

AT32AP7001

18.5 Functional Description

18.5.1 Basic Definitions

Source peripheral: Device on a System Bus layer from where the DMACA reads data, which is
then stored in the channel FIFO. The source peripheral teams up with a destination peripheral to
form a channel.

Destination peripheral: Device to which the DMACA writes the stored data from the FIFO (pre-
viously read from the source peripheral).

Memory: Source or destination that is always “ready” for a DMA transfer and does not require a
handshaking interface to interact with the DMACA. A peripheral should be assigned as memory
only if it does not insert more than 16 wait states. If more than 16 wait states are required, then
the peripheral should use a handshaking interface (the default if the peripheral is not pro-
grammed to be memory) in order to signal when it is ready to accept or supply data.

Channel: Read/write datapath between a source peripheral on one configured System Bus
layer and a destination peripheral on the same or different System Bus layer that occurs through
the channel FIFO. If the source peripheral is not memory, then a source handshaking interface
is assigned to the channel. If the destination peripheral is not memory, then a destination hand-
shaking interface is assigned to the channel. Source and destination handshaking interfaces can
be assigned dynamically by programming the channel registers.

Master interface: DMACA is a master on the HSB bus reading data from the source and writing
it to the destination over the HSB bus.

Slave interface: The HSB interface over which the DMACA is programmed. The slave interface
in practice could be on the same layer as any of the master interfaces or on a separate layer.

Handshaking interface: A set of signal registers that conform to a protocol and handshake
between the DMACA and source or destination peripheral to control the transfer of a single or
burst transaction between them. This interface is used to request, acknowledge, and control a
DMACA transaction. A channel can receive a request through one of three types of handshaking
interface: hardware, software, or peripheral interrupt.

Hardware handshaking interface: Uses hardware signals to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral.

Software handshaking interface: Uses software registers to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral. No special
DMACA handshaking signals are needed on the I/O of the peripheral. This mode is useful for
interfacing an existing peripheral to the DMACA without modifying it.

Peripheral interrupt handshaking interface: A simple use of the hardware handshaking inter-
face. In this mode, the interrupt line from the peripheral is tied to the dma_req input of the
hardware handshaking interface. Other interface signals are ignored.

Flow controller: The device (either the DMACA or source/destination peripheral) that deter-
mines the length of and terminates a DMA block transfer. If the length of a block is known before
enabling the channel, then the DMACA should be programmed as the flow controller. If the
length of a block is not known prior to enabling the channel, the source or destination peripheral
needs to terminate a block transfer. In this mode, the peripheral is the flow controller.

Flow control mode (CFGx.FCMODE): Special mode that only applies when the destination
peripheral is the flow controller. It controls the pre-fetching of data from the source peripheral.

172
32015G–AVR32–09/09

AT32AP7001

Transfer hierarchy: Figure 18-2 on page 172 illustrates the hierarchy between DMACA trans-
fers, block transfers, transactions (single or burst), and System Bus transfers (single or burst) for
non-memory peripherals. Figure 18-3 on page 172 shows the transfer hierarchy for memory.

Figure 18-2. DMACA Transfer Hierarchy for Non-Memory Peripheral

Figure 18-3. DMACA Transfer Hierarchy for Memory

Block: A block of DMACA data. The amount of data (block length) is determined by the flow
controller. For transfers between the DMACA and memory, a block is broken directly into a
sequence of System Bus bursts and single transfers. For transfers between the DMACA and a
non-memory peripheral, a block is broken into a sequence of DMACA transactions (single and
bursts). These are in turn broken into a sequence of System Bus transfers.

Transaction: A basic unit of a DMACA transfer as determined by either the hardware or soft-
ware handshaking interface. A transaction is only relevant for transfers between the DMACA
and a source or destination peripheral if the source or destination peripheral is a non-memory
device. There are two types of transactions: single and burst.

DMAC Transfer DMA Transfer
 Level

Block Block Block
Block Transfer
Level

Burst
Transaction

Burst
Transaction

Burst
Transaction

Single
Transaction

DMA Transaction
Level

Burst
Transfer

System Bus
Burst

Transfer

System Bus
Burst

Transfer

System Bus
Single

Transfer

System Bus
System Bus
Transfer Level

Single
Transfer

System Bus

DMAC Transfer DMA Transfer
 Level

Block Block Block
Block Transfer
Level

Burst
Transfer

System Bus
Burst

Transfer

System Bus
Burst

Transfer

System Bus
Single

Transfer

System Bus System Bus
Transfer Level

173
32015G–AVR32–09/09

AT32AP7001

– Single transaction: The length of a single transaction is always 1 and is converted to
a single System Bus transfer.

– Burst transaction: The length of a burst transaction is programmed into the DMACA.
The burst transaction is converted into a sequence of System Bus bursts and single
transfers. DMACA executes each burst transfer by performing incremental bursts that
are no longer than the maximum System Bus burst size set. The burst transaction
length is under program control and normally bears some relationship to the FIFO
sizes in the DMACA and in the source and destination peripherals.

DMA transfer: Software controls the number of blocks in a DMACA transfer. Once the DMA
transfer has completed, then hardware within the DMACA disables the channel and can gener-
ate an interrupt to signal the completion of the DMA transfer. You can then re-program the
channel for a new DMA transfer.

Single-block DMA transfer: Consists of a single block.

Multi-block DMA transfer: A DMA transfer may consist of multiple DMACA blocks. Multi-block
DMA transfers are supported through block chaining (linked list pointers), auto-reloading of
channel registers, and contiguous blocks. The source and destination can independently select
which method to use.

– Linked lists (block chaining) – A linked list pointer (LLP) points to the location in
system memory where the next linked list item (LLI) exists. The LLI is a set of registers
that describe the next block (block descriptor) and an LLP register. The DMACA
fetches the LLI at the beginning of every block when block chaining is enabled.

– Auto-reloading – The DMACA automatically reloads the channel registers at the end
of each block to the value when the channel was first enabled.

– Contiguous blocks – Where the address between successive blocks is selected to
be a continuation from the end of the previous block.

Scatter: Relevant to destination transfers within a block. The destination System Bus address is
incremented or decremented by a programmed amount -the scatter increment- when a scatter
boundary is reached. The destination System Bus address is incremented or decremented by
the value stored in the destination scatter increment (DSRx.DSI) field, multiplied by the number
of bytes in a single HSB transfer to the destination (decoded value of CTLx.DST_TR_WIDTH)/8.
The number of destination transfers between successive scatter boundaries is programmed into
the Destination Scatter Count (DSC) field of the DSRx register.

Scatter is enabled by writing a ‘1’ to the CTLx.DST_SCATTER_EN bit. The CTLx.DINC field
determines if the address is incremented, decremented or remains fixed when a scatter bound-
ary is reached. If the CTLx.DINC field indicates a fixed-address control throughout a DMA
transfer, then the CTLx.DST_SCATTER_EN bit is ignored, and the scatter feature is automati-
cally disabled.

Gather: Relevant to source transfers within a block. The source System Bus address is incre-
mented or decremented by a programmed amount when a gather boundary is reached. The
number of System Bus transfers between successive gather boundaries is programmed into the
Source Gather Count (SGRx.SGC) field. The source address is incremented or decremented by
the value stored in the source gather increment (SGRx.SGI) field multiplied by the number of
bytes in a single HSB transfer from the source -(decoded value of CTLx.SRC_TR_WIDTH)/8 -
when a gather boundary is reached.

Gather is enabled by writing a ‘1’ to the CTLx.SRC_GATHER_EN bit. The CTLx.SINC field
determines if the address is incremented, decremented or remains fixed when a gather bound-

174
32015G–AVR32–09/09

AT32AP7001

ary is reached. If the CTLx.SINC field indicates a fixed-address control throughout a DMA
transfer, then the CTLx.SRC_GATHER_EN bit is ignored and the gather feature is automatically
disabled.

Note: For multi-block transfers, the counters that keep track of the number of transfer left to
reach a gather/scatter boundary are re-initialized to the source gather count (SGRx.SGC) and
destination scatter count (DSRx.DSC), respectively, at the start of each block transfer.

Figure 18-4. Destination Scatter Transfer

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0 x 080

System Memory

A0 + 0x218

A0 + 0x210

A0 + 0x208

A0 + 0x200

A0 + 0x118

A0 + 0x110

A0 + 0x108

A0 + 0x100

Scatter Increment

A0 + 0x018

A0 + 0x010

A0 + 0x008

A0

Scatter Increment
0 x 080

Scatter Boundary A0 + 0x220

Scatter Boundary A0 + 0x120

Scatter Boundary A0 + 0x020

Data Stream

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

d11

d8

d7

d4

d3

d0

DSR.DSI * 8 = 0x80 (Scatter Increment in bytes)

CTLx.DST_TR_WIDTH = 3'b011 (64bit/8 = 8 bytes)
DSR.DSI = 16
DSR.DSC = 4

175
32015G–AVR32–09/09

AT32AP7001

Figure 18-5. Source Gather Transfer

Channel locking: Software can program a channel to keep the HSB master interface by locking
the arbitration for the master bus interface for the duration of a DMA transfer, block, or transac-
tion (single or burst).

Bus locking: Software can program a channel to maintain control of the System Bus bus by
asserting hlock for the duration of a DMA transfer, block, or transaction (single or burst). Chan-
nel locking is asserted for the duration of bus locking at a minimum.

FIFO mode: Special mode to improve bandwidth. When enabled, the channel waits until the
FIFO is less than half full to fetch the data from the source peripheral and waits until the FIFO is
greater than or equal to half full to send data to the destination peripheral. Thus, the channel can
transfer the data using System Bus bursts, eliminating the need to arbitrate for the HSB master
interface for each single System Bus transfer. When this mode is not enabled, the channel only
waits until the FIFO can transmit/accept a single System Bus transfer before requesting the
master bus interface.

Pseudo fly-by operation: Typically, it takes two System Bus cycles to complete a transfer, one
for reading the source and one for writing to the destination. However, when the source and des-
tination peripherals of a DMA transfer are on different System Bus layers, it is possible for the
DMACA to fetch data from the source and store it in the channel FIFO at the same time as the
DMACA extracts data from the channel FIFO and writes it to the destination peripheral. This
activity is known as pseudo fly-by operation. For this to occur, the master interface for both
source and destination layers must win arbitration of their HSB layer. Similarly, the source and
destination peripherals must win ownership of their respective master interfaces.

D11

D10

D9

D8

System Memory

A0 + 0x034

A0 + 0x030

A0 + 0x02C

A0 + 0x028

d11

d8

d7

d4

A0 + 0x020

A0 + 0x01C

A0 + 0x018

A0 + 0x014

D7

D6

D5

D4

D3

D2

D1

D0

A0 + 0x00C

A0 + 0x008

A0 + 0x004

A0

d3

d0

Gather Boundary A0 + 0x24
Gather Increment = 4

Data Stream

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

Gather Boundary A0 + 0x38
Gather Increment = 4

Gather Boundary A0 + 0x10
Gather Increment = 4

SGR.SGI * 4 = 0x4 (Gather Increment in bytes)

CTLx.SRC_TR_WIDTH = 3'b010 (32bit/8 = 4 bytes)
SGR.SGI = 1
SGR.SGC = 4

176
32015G–AVR32–09/09

AT32AP7001

18.6 Arbitration for HSB Master Interface

Each DMACA channel has two request lines that request ownership of a particular master bus
interface: channel source and channel destination request lines.

Source and destination arbitrate separately for the bus. Once a source/destination state
machine gains ownership of the master bus interface and the master bus interface has owner-
ship of the HSB bus, then HSB transfers can proceed between the peripheral and the DMACA.

An arbitration scheme decides which of the request lines (2 * DMAH_NUM_CHANNELS) is
granted the particular master bus interface. Each channel has a programmable priority. A
request for the master bus interface can be made at any time, but is granted only after the cur-
rent HSB transfer (burst or single) has completed. Therefore, if the master interface is
transferring data for a lower priority channel and a higher priority channel requests service, then
the master interface will complete the current burst for the lower priority channel before switch-
ing to transfer data for the higher priority channel.

If only one request line is active at the highest priority level, then the request with the highest pri-
ority wins ownership of the HSB master bus interface; it is not necessary for the priority levels to
be unique.

If more than one request is active at the highest requesting priority, then these competing
requests proceed to a second tier of arbitration:

If equal priority requests occur, then the lower-numbered channel is granted.

In other words, if a peripheral request attached to Channel 7 and a peripheral request attached
to Channel 8 have the same priority, then the peripheral attached to Channel 7 is granted first.

18.7 Memory Peripherals

Figure 18-3 on page 172 shows the DMA transfer hierarchy of the DMACA for a memory periph-
eral. There is no handshaking interface with the DMACA, and therefore the memory peripheral
can never be a flow controller. Once the channel is enabled, the transfer proceeds immediately
without waiting for a transaction request. The alternative to not having a transaction-level hand-
shaking interface is to allow the DMACA to attempt System Bus transfers to the peripheral once
the channel is enabled. If the peripheral slave cannot accept these System Bus transfers, it
inserts wait states onto the bus until it is ready; it is not recommended that more than 16 wait
states be inserted onto the bus. By using the handshaking interface, the peripheral can signal to
the DMACA that it is ready to transmit/receive data, and then the DMACA can access the
peripheral without the peripheral inserting wait states onto the bus.

18.8 Handshaking Interface

Handshaking interfaces are used at the transaction level to control the flow of single or burst
transactions. The operation of the handshaking interface is different and depends on whether
the peripheral or the DMACA is the flow controller.

The peripheral uses the handshaking interface to indicate to the DMACA that it is ready to trans-
fer/accept data over the System Bus. A non-memory peripheral can request a DMA transfer
through the DMACA using one of two handshaking interfaces:

• Hardware handshaking

• Software handshaking

177
32015G–AVR32–09/09

AT32AP7001

Software selects between the hardware or software handshaking interface on a per-channel
basis. Software handshaking is accomplished through memory-mapped registers, while hard-
ware handshaking is accomplished using a dedicated handshaking interface.

18.8.1 Software Handshaking

When the slave peripheral requires the DMACA to perform a DMA transaction, it communicates
this request by sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMA trans-
action. These software registers are used to implement the software handshaking interface.

The HS_SEL_SRC/HS_SEL_DST bit in the CFGx channel configuration register must be set to
enable software handshaking.

When the peripheral is not the flow controller, then the last transaction registers LstSrcReg and
LstDstReg are not used, and the values in these registers are ignored.

18.8.1.1 Burst Transactions

Writing a 1 to the ReqSrcReg[x]/ReqDstReg[x] register is always interpreted as a burst transac-
tion request, where x is the channel number. However, in order for a burst transaction request to
start, software must write a 1 to the SglReqSrcReg[x]/SglReqDstReg[x] register.

You can write a 1 to the SglReqSrcReg[x]/SglReqDstReg[x] and ReqSrcReg[x]/ReqDstReg[x]
registers in any order, but both registers must be asserted in order to initiate a burst transaction.
Upon completion of the burst transaction, the hardware clears the SglReqSrcReg[x]/SglReqD-
stReg[x] and ReqSrcReg[x]/ReqDstReg[x] registers.

18.8.1.2 Single Transactions

Writing a 1 to the SglReqSrcReg/SglReqDstReg initiates a single transaction. Upon completion
of the single transaction, both the SglReqSrcReg/SglReqDstReg and ReqSrcReg/ReqDstReg
bits are cleared by hardware. Therefore, writing a 1 to the ReqSrcReg/ReqDstReg is ignored
while a single transaction has been initiated, and the requested burst transaction is not serviced.

Again, writing a 1 to the ReqSrcReg/ReqDstReg register is always a burst transaction request.
However, in order for a burst transaction request to start, the corresponding channel bit in the
SglReqSrcReg/SglReqDstReg must be asserted. Therefore, to ensure that a burst transaction is
serviced, you must write a 1 to the ReqSrcReg/ReqDstReg before writing a 1 to the SglReqSr-
cReg/SglReqDstReg register.

Software can poll the relevant channel bit in the SglReqSrcReg/ SglReqDstReg and ReqSr-
cReg/ReqDstReg registers. When both are 0, then either the requested burst or single
transaction has completed. Alternatively, the IntSrcTran or IntDstTran interrupts can be enabled
and unmasked in order to generate an interrupt when the requested source or destination trans-
action has completed.

Note: The transaction-complete interrupts are triggered when both single and burst transactions are
complete. The same transaction-complete interrupt is used for both single and burst transactions.

18.8.2 Hardware Handshaking

There are 11 hardware handshaking interfaces between the DMACA and peripherals. Refer to
the module configuration chapter for the device-specific mapping of these interfaces.

178
32015G–AVR32–09/09

AT32AP7001

18.8.2.1 External DMA Request Definition

When an external slave peripheral requires the DMACA to perform DMA transactions, it commu-
nicates its request by asserting the external nDMAREQx signal. This signal is resynchronized to
ensure a proper functionality (see ”External DMA Request Timing” on page 178).

The external nDMAREQx signal should be asserted when the source threshold level is reached.
After resynchronization, the rising edge of dma_req starts the transfer. An external DMAACKx
acknowledge signal is also provided to indicate when the DMA transfer has completed. The
peripheral should de-assert the DMA request signal when DMAACKx is asserted.

The external nDMAREQx signal must be de-asserted after the last transfer and re-asserted
again before a new transaction starts.

For a source FIFO, an active edge should be triggered on nDMAREQx when the source FIFO
exceeds a watermark level. For a destination FIFO, an active edge should be triggered on
nDMAREQx when the destination FIFO drops below the watermark level.

The source transaction length, CTLx.SRC_MSIZE, and destination transaction length,
CTLx.DEST_MSIZE, must be set according to watermark levels on the source/destination
peripherals.

Figure 18-6. External DMA Request Timing

18.9 DMACA Transfer Types

A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-
block transfer, the SARx/DARx register in the DMACA is reprogrammed using either of the fol-
lowing methods:

• Block chaining using linked lists

• Auto-reloading

• Contiguous address between blocks

On successive blocks of a multi-block transfer, the CTLx register in the DMACA is re-pro-
grammed using either of the following methods:

• Block chaining using linked lists

• Auto-reloading

When block chaining, using linked lists is the multi-block method of choice, and on successive
blocks, the LLPx register in the DMACA is re-programmed using the following method:

DMA Transfers DMA Transfers

Hclk

nDMAREQx

dma_req

dma_ack

DMA Transfers

DMA Transaction

179
32015G–AVR32–09/09

AT32AP7001

• Block chaining using linked lists

A block descriptor (LLI) consists of following registers, SARx, DARx, LLPx, CTL. These regis-
ters, along with the CFGx register, are used by the DMACA to set up and describe the block
transfer.

18.9.1 Multi-block Transfers

18.9.1.1 Block Chaining Using Linked Lists

In this case, the DMACA re-programs the channel registers prior to the start of each block by
fetching the block descriptor for that block from system memory. This is known as an LLI update.

DMACA block chaining is supported by using a Linked List Pointer register (LLPx) that stores the
address in memory of the next linked list item. Each LLI (block descriptor) contains the corre-
sponding block descriptor (SARx, DARx, LLPx, CTLx).

To set up block chaining, a sequence of linked lists must be programmed in memory.

The SARx, DARx, LLPx and CTLx registers are fetched from system memory on an LLI update.
The updated contents of the CTLx register are written back to memory on block completion. Fig-
ure 18-7 on page 179 shows how to use chained linked lists in memory to define multi-block
transfers using block chaining.

The Linked List multi-block transfers is initiated by programming LLPx with LLPx(0) (LLI(0) base
address) and CTLx with CTLx.LLP_S_EN and CTLx.LLP_D_EN.

Figure 18-7. Multi-block Transfer Using Linked Lists

System Memory

SARx

DARx

LLPx(1)

CTLx[31..0]

CTLx[63..32]

SARx

DARx

LLPx(2)

CTLx[31..0]

CTLx[63..32]

LLPx(0)
LLPx(2)

LLPx(1)

LLI(0) LLI(1)

180
32015G–AVR32–09/09

AT32AP7001

18.9.1.2 Auto-reloading of Channel Registers

During auto-reloading, the channel registers are reloaded with their initial values at the comple-
tion of each block and the new values used for the new block. Depending on the row number in
Table 18-1 on page 180, some or all of the SARx, DARx and CTLx channel registers are
reloaded from their initial value at the start of a block transfer.

18.9.1.3 Contiguous Address Between Blocks

In this case, the address between successive blocks is selected to be a continuation from the
end of the previous block. Enabling the source or destination address to be contiguous between

Table 18-1. Programming of Transfer Types and Channel Register Update Method (DMACA State Machine Table)

Transfer Type

LLP.

LOC

= 0

LLP_S_EN

(
CTLx)

RELOAD
_SR

(
CFGx)

LLP_D_EN

(
CTLx)

RELOAD_
DS

(
CFGx)

CTLx,
LLPx

Update

Method

SARx
Update
Method

DARx
Update
Method

Write
Back

1) Single Block or
last transfer of
multi-Block

Yes 0 0 0 0
None, user
reprograms

None (single)
None
(single)

No

2) Auto Reload
multi-block transfer
with contiguous
SAR

Yes 0 0 0 1
CTLx,LLPx are
reloaded from
initial values.

Contiguous
Auto-
Reload

No

3) Auto Reload
multi-block transfer
with contiguous
DAR

Yes 0 1 0 0
CTLx,LLPx are
reloaded from
initial values.

Auto-Reload
Con-
tiguous

No

4) Auto Reload
multi-block transfer

Yes 0 1 0 1
CTLx,LLPx are
reloaded from
initial values.

Auto-Reload
Auto-
Reload

No

5) Single Block or
last transfer of
multi-block

No 0 0 0 0
None, user
reprograms

None (single)
None
(single)

Yes

6) Linked List
multi-block transfer
with contiguous
SAR

No 0 0 1 0

CTLx,LLPx
loaded from
next Linked List
item

Contiguous
Linked
List

Yes

7) Linked List
multi-block transfer
with auto-reload
SAR

No 0 1 1 0

CTLx,LLPx
loaded from
next Linked List
item

Auto-Reload
Linked
List

Yes

8) Linked List
multi-block transfer
with contiguous
DAR

No 1 0 0 0

CTLx,LLPx
loaded from
next Linked List
item

Linked List
Con-
tiguous

Yes

9) Linked List
multi-block transfer
with auto-reload
DAR

No 1 0 0 1

CTLx,LLPx
loaded from
next Linked List
item

Linked List
Auto-
Reload

Yes

10) Linked List
multi-block transfer

No 1 0 1 0

CTLx,LLPx
loaded from
next Linked List
item

Linked List
Linked
List

Yes

181
32015G–AVR32–09/09

AT32AP7001

blocks is a function of CTLx.LLP_S_EN, CFGx.RELOAD_SR, CTLx.LLP_D_EN, and
CFGx.RELOAD_DS registers (see Figure 18-1 on page 170).

Note: Both SARx and DARx updates cannot be selected to be contiguous. If this functionality is
required, the size of the Block Transfer (CTLx.BLOCK_TS) must be increased. If this is at the max-
imum value, use Row 10 of Table 18-1 on page 180 and setup the LLI.SARx address of the
block descriptor to be equal to the end SARx address of the previous block. Similarly, setup the
LLI.DARx address of the block descriptor to be equal to the end DARx address of the previous
block.

18.9.1.4 Suspension of Transfers Between Blocks

At the end of every block transfer, an end of block interrupt is asserted if:

• interrupts are enabled, CTLx.INT_EN = 1

• the channel block interrupt is unmasked, MaskBlock[n] = 0, where n is the channel number.

Note: The block complete interrupt is generated at the completion of the block transfer to the destination.

For rows 6, 8, and 10 of Table 18-1 on page 180, the DMA transfer does not stall between block
transfers. For example, at the end of block N, the DMACA automatically proceeds to block N + 1.

For rows 2, 3, 4, 7, and 9 of Table 18-1 on page 180 (SARx and/or DARx auto-reloaded between
block transfers), the DMA transfer automatically stalls after the end of block. Interrupt is asserted
if the end of block interrupt is enabled and unmasked.

The DMACA does not proceed to the next block transfer until a write to the block interrupt clear
register, ClearBlock[n], is performed by software. This clears the channel block complete
interrupt.

For rows 2, 3, 4, 7, and 9 of Table 18-1 on page 180 (SARx and/or DARx auto-reloaded between
block transfers), the DMA transfer does not stall if either:

• interrupts are disabled, CTLx.INT_EN = 0, or

• the channel block interrupt is masked, MaskBlock[n] = 1, where n is the channel number.

Channel suspension between blocks is used to ensure that the end of block ISR (interrupt ser-
vice routine) of the next-to-last block is serviced before the start of the final block commences.
This ensures that the ISR has cleared the CFGx.RELOAD_SR and/or CFGx.RELOAD_DS bits
before complet ion of the f inal block. The reload bi ts CFGx.RELOAD_SR and/or
CFGx.RELOAD_DS should be cleared in the ‘end of block ISR’ for the next-to-last block
transfer.

18.9.2 Ending Multi-block Transfers

All multi-block transfers must end as shown in either Row 1 or Row 5 of Table 18-1 on page 180.
At the end of every block transfer, the DMACA samples the row number, and if the DMACA is in
Row 1 or Row 5 state, then the previous block transferred was the last block and the DMA trans-
fer is terminated.

Note: Row 1 and Row 5 are used for single block transfers or terminating multiblock transfers. Ending in
Row 5 state enables status fetch for the last block. Ending in Row 1 state disables status fetch for
the last block.

For rows 2,3 and 4 of Table 18-1 on page 180, (LLPx = 0 and CFGx.RELOAD_SR and/or
CFGx.RELOAD_DS is set) , mul t i -b lock DMA t ransfers cont inue unt i l both the
CFGx.RELOAD_SR and CFGx.RELOAD_DS registers are cleared by software. They should be

182
32015G–AVR32–09/09

AT32AP7001

programmed to zero in the end of block interrupt service routine that services the next-to-last
block transfer. This puts the DMACA into Row 1 state.

For rows 6, 8, and 10 (both CFGx.RELOAD_SR and CFGx.RELOAD_DS cleared) the user must
setup the last block descriptor in memory such that both LLI.CTLx.LLP_S_EN and
LLI.CTLx.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

For rows 7 and 9, the end-of-block interrupt service routine that services the next-to-last block
transfer should clear the CFGx.RELOAD_SR and CFGx.RELOAD_DS reload bits. The last
block descriptor in memory should be set up so that both the LLI.CTLx.LLP_S_EN and
LLI.CTLx.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

Note: The only allowed transitions between the rows of Table 18-1 on page 180are from any row into
row 1 or row 5. As already stated, a transition into row 1 or row 5 is used to terminate the DMA
transfer. All other transitions between rows are not allowed. Software must ensure that illegal tran-
sitions between rows do not occur between blocks of a multi-block transfer. For example, if block N
is in row 10 then the only allowed rows for block N + 1 are rows 10, 5 or 1.

18.10 Programming a Channel

Three registers, the LLPx, the CTLx and CFGx, need to be programmed to set up whether single
or multi-block transfers take place, and which type of multi-block transfer is used. The different
transfer types are shown in Table 18-1 on page 180.

The “Update Method” column indicates where the values of SARx, DARx, CTLx, and LLPx are
obtained for the next block transfer when multi-block DMACA transfers are enabled.

Note: In Table 18-1 on page 180, all other combinations of LLPx.LOC = 0, CTLx.LLP_S_EN,
CFGx.RELOAD_SR, CTLx.LLP_D_EN, and CFGx.RELOAD_DS are illegal, and causes indeter-
minate or erroneous behavior.

18.10.1 Programming Examples

18.10.1.1 Single-block Transfer (Row 1)

Row 5 in Table 18-1 on page 180 is also a single block transfer.

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr.
Reading the Interrupt Raw Status and Interrupt Status registers confirms that all inter-
rupts have been cleared.

3. Program the following channel registers:

a. Write the starting source address in the SARx register for channel x.

b. Write the starting destination address in the DARx register for channel x.

c. Program CTLx and CFGx according to Row 1 as shown in Table 18-1 on page 180.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in the register, you can program the following:

– i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

183
32015G–AVR32–09/09

AT32AP7001

– ii. Set up the transfer characteristics, such as:

– Transfer width for the source in the SRC_TR_WIDTH field.

– Transfer width for the destination in the DST_TR_WIDTH field.

– Source master layer in the SMS field where source resides.

– Destination master layer in the DMS field where destination resides.

– Incrementing/decrementing or fixed address for source in SINC field.

– Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.

– i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests.
Writing a ‘1’ activates the software handshaking interface to handle source/destination
requests.

– ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign a handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA selected channel has been programmed, enable the channel by writing
a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMA transactions to transfer the block of
data (assuming non-memory peripherals). The DMACA acknowledges at the completion
of every transaction (burst and single) in the block and carry out the block transfer.

6. Once the transfer completes, hardware sets the interrupts and disables the channel. At
this time you can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to
detect when the transfer is complete.

18.10.1.2 Multi-block Transfer with Linked List for Source and Linked List for Destination (Row 10)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the chain of Linked List Items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory (see Figure 18-7 on page 179) for channel x. For example, in the
register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

– i. Transfer width for the source in the SRC_TR_WIDTH field.

– ii. Transfer width for the destination in the DST_TR_WIDTH field.

– iii. Source master layer in the SMS field where source resides.

– iv. Destination master layer in the DMS field where destination resides.

– v. Incrementing/decrementing or fixed address for source in SINC field.

– vi. Incrementing/decrementing or fixed address for destination DINC field.

3. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires program-

184
32015G–AVR32–09/09

AT32AP7001

ming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’ activates the
hardware handshaking interface to handle source/destination requests for the spe-
cific channel. Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination periph-
eral. This requires programming the SRC_PER and DEST_PER bits, respectively.

4. Make sure that the LLI.CTLx register locations of all LLI entries in memory (except the
last) are set as shown in Row 10 of Table 18-1 on page 180. The LLI.CTLx register of the
last Linked List Item must be set as described in Row 1 or Row 5 of Table 18-1 on page
180. Figure 18-9 on page 186 shows a Linked List example with two list items.

5. Make sure that the LLI.LLPx register locations of all LLI entries in memory (except the
last) are non-zero and point to the base address of the next Linked List Item.

6. Make sure that the LLI.SARx/LLI.DARx register locations of all LLI entries in memory
point to the start source/destination block address preceding that LLI fetch.

7. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLI
entries in memory are cleared.

8. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr.
Reading the Interrupt Raw Status and Interrupt Status registers confirms that all inter-
rupts have been cleared.

9. Program the CTLx, CFGx registers according to Row 10 as shown in Table 18-1 on page
180.

10. Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

11. Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed.

12. The DMACA fetches the first LLI from the location pointed to by LLPx(0).
Note: The LLI.SARx, LLI. DARx, LLI.LLPx and LLI.CTLx registers are fetched. The DMACA automati-

cally reprograms the SARx, DARx, LLPx and CTLx channel registers from the LLPx(0).

13. Source and destination request single and burst DMA transactions to transfer the block of
data (assuming non-memory peripheral). The DMACA acknowledges at the completion
of every transaction (burst and single) in the block and carry out the block transfer.

Note: Table 18-1 on page 180

14. The DMACA does not wait for the block interrupt to be cleared, but continues fetching the
next LLI from the memory location pointed to by current LLPx register and automatically
reprograms the SARx, DARx, LLPx and CTLx channel registers. The DMA transfer con-
tinues until the DMACA determines that the CTLx and LLPx registers at the end of a
block transfer match that described in Row 1 or Row 5 of Table 18-1 on page 180. The
DMACA then knows that the previous block transferred was the last block in the DMA
transfer. The DMA transfer might look like that shown in Figure 18-8 on page 185.

185
32015G–AVR32–09/09

AT32AP7001

Figure 18-8. Multi-Block with Linked List Address for Source and Destination

If the user needs to execute a DMA transfer where the source and destination address are con-
tiguous but the amount of data to be transferred is greater than the maximum block size
CTLx.BLOCK_TS, then this can be achieved using the type of multi-block transfer as shown in
Figure 18-9 on page 186.

SAR(2)

SAR(1)

SAR(0)

DAR(2)

DAR(1)

DAR(0)

Block 2

Block 1

Block 0 Block 0

Block 1

Block 2

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

186
32015G–AVR32–09/09

AT32AP7001

Figure 18-9. Multi-Block with Linked Address for Source and Destination Blocks are
Contiguous

The DMA transfer flow is shown in Figure 18-11 on page 189.

SAR(2)

SAR(1)

SAR(0)

DAR(2)

DAR(1)

DAR(0)

Block 2

Block 1

Block 0

Block 0

Block 1

Block 2

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

SAR(3)

Block 2

DAR(3)

Block 2

187
32015G–AVR32–09/09

AT32AP7001

Figure 18-10. DMA Transfer Flow for Source and Destination Linked List Address

18.10.1.3 Multi-block Transfer with Source Address Auto-reloaded and Destination Address Auto-reloaded (Row 4)

1. Read the Channel Enable register to choose an available (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr.
Reading the Interrupt Raw Status and Interrupt Status registers confirms that all inter-
rupts have been cleared.

3. Program the following channel registers:

Channel enabled by
software

LLI Fetch

Hardware reprograms
SARx, DARx, CTLx, LLPx

DMAC block transfer

Source/destination
status fetch

Is DMAC in
Row1 of

DMAC State Machine Table?

Channel Disabled by
hardware

Block Complete interrupt
generated here

DMAC transfer Complete
interrupt generated here

yes

no

188
32015G–AVR32–09/09

AT32AP7001

a. Write the starting source address in the SARx register for channel x.

b. Write the starting destination address in the DARx register for channel x.

c. Program CTLx and CFGx according to Row 4 as shown in Table 18-1 on page 180.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in the register, you can program the following:

– i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

– ii. Set up the transfer characteristics, such as:

– Transfer width for the source in the SRC_TR_WIDTH field.

– Transfer width for the destination in the DST_TR_WIDTH field.

– Source master layer in the SMS field where source resides.

– Destination master layer in the DMS field where destination resides.

– Incrementing/decrementing or fixed address for source in SINC field.

– Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.
Ensure that the reload bits, CFGx. RELOAD_SR and CFGx.RELOAD_DS are
enabled.

– i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

– ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA selected channel has been programmed, enable the channel by writing
a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges on com-
pletion of each burst/single transaction and carry out the block transfer.

6. When the block transfer has completed, the DMACA reloads the SARx, DARx and CTLx
registers. Hardware sets the Block Complete interrupt. The DMACA then samples the
row number as shown in Table 18-1 on page 180. If the DMACA is in Row 1, then the
DMA transfer has completed. Hardware sets the transfer complete interrupt and disables
the channel. So you can either respond to the Block Complete or Transfer Complete
interrupts, or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is disabled, to
detect when the transfer is complete. If the DMACA is not in Row 1, the next step is
performed.

7. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until the
block complete interrupt is cleared by software. If the next block is to be the last block
in the DMA transfer, then the block complete ISR (interrupt service routine) should

189
32015G–AVR32–09/09

AT32AP7001

clear the reload bits in the CFGx.RELOAD_SR and CFGx.RELOAD_DS registers.
This put the DMACA into Row 1 as shown in Table 18-1 on page 180. If the next
block is not the last block in the DMA transfer, then the reload bits should remain
enabled to keep the DMACA in Row 4.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1’b0, where x is the channel number), then hardware does
not stall until it detects a write to the block complete interrupt clear register but starts
the next block transfer immediately. In this case software must clear the reload bits in
the CFGx.RELOAD_SR and CFGx.RELOAD_DS registers to put the DMACA into
ROW 1 of Table 18-1 on page 180 before the last block of the DMA transfer has com-
pleted. The transfer is similar to that shown in Figure 18-11 on page 189. The DMA
transfer flow is shown in Figure 18-12 on page 190.

Figure 18-11. Multi-Block DMA Transfer with Source and Destination Address Auto-reloaded

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

BlockN

Block2

Block1

Block0

SAR DAR

190
32015G–AVR32–09/09

AT32AP7001

Figure 18-12. DMA Transfer Flow for Source and Destination Address Auto-reloaded

18.10.1.4 Multi-block Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row7)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the chain of linked list items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory for channel x. For example, in the register you can program the
following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control peripheral by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

– i. Transfer width for the source in the SRC_TR_WIDTH field.

– ii. Transfer width for the destination in the DST_TR_WIDTH field.

– iii. Source master layer in the SMS field where source resides.

– iv. Destination master layer in the DMS field where destination resides.

– v. Incrementing/decrementing or fixed address for source in SINC field.

– vi. Incrementing/decrementing or fixed address for destination DINC field.

Channel Enabled by
software

Block Transfer

Reload SARx, DARx, CTLx

Channel Disabled by
hardware

Block Complete interrupt
generated here

DMAC transfer Complete
interrupt generated here yes

no

yes

Stall until block complete
interrupt cleared by software

CTLx.INT_EN=1
&&

MASKBLOCK[x]=1?

no

Is DMAC in Row1 of
DMAC State Machine Table?

191
32015G–AVR32–09/09

AT32AP7001

3. Write the starting source address in the SARx register for channel x.
Note: The values in the LLI.SARx register locations of each of the Linked List Items (LLIs) setup up in

memory, although fetched during a LLI fetch, are not used.

4. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires program-
ming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’ activates the
hardware handshaking interface to handle source/destination requests for the spe-
cific channel. Writing a ‘1’ activates the software handshaking interface
source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

5. Make sure that the LLI.CTLx register locations of all LLIs in memory (except the last) are
set as shown in Row 7 of Table 18-1 on page 180 while the LLI.CTLx register of the last
Linked List item must be set as described in Row 1 or Row 5 of Table 18-1 on page 180.
Figure 18-7 on page 179 shows a Linked List example with two list items.

6. Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last) are
non-zero and point to the next Linked List Item.

7. Make sure that the LLI.DARx register location of all LLIs in memory point to the start des-
tination block address proceeding that LLI fetch.

8. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLIs in
memory is cleared.

9. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr.
Reading the Interrupt Raw Status and Interrupt Status registers confirms that all inter-
rupts have been cleared.

10. Program the CTLx, CFGx registers according to Row 7 as shown in Table 18-1 on page
180.

11. Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

12. Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit 0 of the DmaCfgReg register is enabled.

13. The DMACA fetches the first LLI from the location pointed to by LLPx(0).
Note: The LLI.SARx, LLI.DARx, LLI. LLPx and LLI.CTLx registers are fetched. The LLI.SARx register

although fetched is not used.

14. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). DMACA acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.

15. Table 18-1 on page 180The DMACA reloads the SARx register from the initial value.
Hardware sets the block complete interrupt. The DMACA samples the row number as
shown in Table 18-1 on page 180. If the DMACA is in Row 1 or 5, then the DMA transfer
has completed. Hardware sets the transfer complete interrupt and disables the channel.
You can either respond to the Block Complete or Transfer Complete interrupts, or poll for
the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to detect when
the transfer is complete. If the DMACA is not in Row 1 or 5 as shown in Table 18-1 on
page 180 the following steps are performed.

16. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until the

192
32015G–AVR32–09/09

AT32AP7001

block complete interrupt is cleared by software. If the next block is to be the last block
in the DMA transfer, then the block complete ISR (interrupt service routine) should
clear the CFGx.RELOAD_SR source reload bit. This puts the DMACA into Row1 as
shown in Table 18-1 on page 180. If the next block is not the last block in the DMA
transfer, then the source reload bit should remain enabled to keep the DMACA in
Row 7 as shown in Table 18-1 on page 180.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1’b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but starts
the next block transfer immediately. In this case, software must clear the source
reload bit, CFGx.RELOAD_SR, to put the device into Row 1 of Table 18-1 on page
180 before the last block of the DMA transfer has completed.

17. The DMACA fetches the next LLI from memory location pointed to by the current LLPx
register, and automatically reprograms the DARx, CTLx and LLPx channel registers.
Note that the SARx is not re-programmed as the reloaded value is used for the next DMA
block transfer. If the next block is the last block of the DMA transfer then the CTLx and
LLPx registers just fetched from the LLI should match Row 1 or Row 5 of Table 18-1 on
page 180. The DMA transfer might look like that shown in Figure 18-13 on page 192.

Figure 18-13. Multi-Block DMA Transfer with Source Address Auto-reloaded and Linked List

Destination Address

The DMA Transfer flow is shown in Figure 18-14 on page 193.

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

SAR

Block0

Block1

Block2

BlockN

DAR(N)

DAR(1)

DAR(0)

DAR(2)

193
32015G–AVR32–09/09

AT32AP7001

Figure 18-14. DMA Transfer Flow for Source Address Auto-reloaded and Linked List Destina-
tion Address

Channel Enabled by
software

LLI Fetch

yes

no

no

yes

Hardware reprograms
 DARx, CTLx, LLPx

DMAC block transfer

Source/destination status fetch

Reload SARx

Block Complete interrupt
generated here

DMAC Transfer Complete
interrupt generated here

Channel Disabled by
hardware

CTLx.INT_EN=1
 &&

MASKBLOCK[X]=1 ?

Stall until block interrupt
Cleared by hardware

Is DMAC in
Row1 or Row5 of

DMAC State Machine Table?

194
32015G–AVR32–09/09

AT32AP7001

18.10.1.5 Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 3)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing a
‘1’ to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

3. Program the following channel registers:

a. Write the starting source address in the SARx register for channel x.

b. Write the starting destination address in the DARx register for channel x.

c. Program CTLx and CFGx according to Row 3 as shown in Table 18-1 on page 180.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in this register, you can program the following:

– i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

– ii. Set up the transfer characteristics, such as:

– Transfer width for the source in the SRC_TR_WIDTH field.

– Transfer width for the destination in the DST_TR_WIDTH field.

– Source master layer in the SMS field where source resides.

– Destination master layer in the DMS field where destination resides.

– Incrementing/decrementing or fixed address for source in SINC field.

– Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.

– i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

– ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA channel has been programmed, enable the channel by writing a ‘1’ to
the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is enabled.

5. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carries out the block
transfer.

6. When the block transfer has completed, the DMACA reloads the SARx register. The
DARx register remains unchanged. Hardware sets the block complete interrupt. The
DMACA then samples the row number as shown in Table 18-1 on page 180. If the
DMACA is in Row 1, then the DMA transfer has completed. Hardware sets the transfer
complete interrupt and disables the channel. So you can either respond to the Block
Complete or Transfer Complete interrupts, or poll for the Channel Enable (ChEn-

195
32015G–AVR32–09/09

AT32AP7001

Reg.CH_EN) bit until it is cleared by hardware, to detect when the transfer is complete. If
the DMACA is not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until the
block complete interrupt is cleared by software. If the next block is to be the last block
in the DMA transfer, then the block complete ISR (interrupt service routine) should
clear the source reload bit, CFGx.RELOAD_SR. This puts the DMACA into Row1 as
shown in Table 18-1 on page 180. If the next block is not the last block in the DMA
transfer then the source reload bit should remain enabled to keep the DMACA in
Row3 as shown in Table 18-1 on page 180.

b. If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1’b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but starts
the next block transfer immediately. In this case software must clear the source
reload bit, CFGx.RELOAD_SR, to put the device into ROW 1 of Table 18-1 on page
180 before the last block of the DMA transfer has completed.

The transfer is similar to that shown in Figure 18-15 on page 195.

The DMA Transfer flow is shown in Figure 18-16 on page 196.

Figure 18-15. Multi-block Transfer with Source Address Auto-reloaded and Contiguous Desti-
nation Address

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

SAR

Block0

Block1

Block2

DAR(1)

DAR(0)

DAR(2)

196
32015G–AVR32–09/09

AT32AP7001

Figure 18-16. DMA Transfer for Source Address Auto-reloaded and Contiguous Destination
Address

18.10.1.6 Multi-block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the linked list in memory. Write the control information in the LLI. CTLx register
location of the block descriptor for each LLI in memory for channel x. For example, in the
register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

– i. Transfer width for the source in the SRC_TR_WIDTH field.

– ii. Transfer width for the destination in the DST_TR_WIDTH field.

– iii. Source master layer in the SMS field where source resides.

– iv. Destination master layer in the DMS field where destination resides.

– v. Incrementing/decrementing or fixed address for source in SINC field.

Channel Enabled by
software

Block Transfer

Reload SARx, CTLx

Channel Disabled by
hardware

Block Complete interrupt
generated here

DMAC Transfer Complete
interrupt generated here yes

no

no

yes

Stall until Block Complete
interrupt cleared by software

CTLx.INT_EN=1
&&

MASKBLOCK[x]=1?

Is DMAC in Row1 of
DMAC State Machine Table?

197
32015G–AVR32–09/09

AT32AP7001

– vi. Incrementing/decrementing or fixed address for destination DINC field.

3. Write the starting destination address in the DARx register for channel x.
Note: The values in the LLI.DARx register location of each Linked List Item (LLI) in memory, although

fetched during an LLI fetch, are not used.

4. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires program-
ming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’ activates the
hardware handshaking interface to handle source/destination requests for the spe-
cific channel. Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripherals.
This requires programming the SRC_PER and DEST_PER bits, respectively.

5. Make sure that all LLI.CTLx register locations of the LLI (except the last) are set as
shown in Row 8 of Table 18-1 on page 180, while the LLI.CTLx register of the last Linked
List item must be set as described in Row 1 or Row 5 of Table 18-1 on page 180. Figure
18-7 on page 179 shows a Linked List example with two list items.

6. Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last) are
non-zero and point to the next Linked List Item.

7. Make sure that the LLI.SARx register location of all LLIs in memory point to the start
source block address proceeding that LLI fetch.

8. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLIs in
memory is cleared.

9. Clear any pending interrupts on the channel from the previous DMA transfer by writing a
‘1’ to the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,
ClearErr. Reading the Interrupt Raw Status and Interrupt Status registers confirms that
all interrupts have been cleared.

10. Program the CTLx, CFGx registers according to Row 8 as shown in Table 18-1 on page
180

11. Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

12. Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit 0 of the DmaCfgReg register is enabled.

13. The DMACA fetches the first LLI from the location pointed to by LLPx(0).
Note: The LLI.SARx, LLI.DARx, LLI.LLPx and LLI.CTLx registers are fetched. The LLI.DARx register

location of the LLI although fetched is not used. The DARx register in the DMACA remains
unchanged.

14. Source and destination requests single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carry out the block
transfer.

Note:

15. The DMACA does not wait for the block interrupt to be cleared, but continues and fetches
the next LLI from the memory location pointed to by current LLPx register and automati-
cally reprograms the SARx, CTLx and LLPx channel registers. The DARx register is left
unchanged. The DMA transfer continues until the DMACA samples the CTLx and LLPx
registers at the end of a block transfer match that described in Row 1 or Row 5 of Table
18-1 on page 180. The DMACA then knows that the previous block transferred was the
last block in the DMA transfer.

198
32015G–AVR32–09/09

AT32AP7001

The DMACA transfer might look like that shown in Figure 18-17 on page 198 Note that the des-
tination address is decrementing.

Figure 18-17. DMA Transfer with Linked List Source Address and Contiguous Destination
Address

The DMA transfer flow is shown in Figure 18-19 on page 199.

Figure 18-18.

SAR(2)

SAR(1)

SAR(0)

DAR(2)

DAR(1)

DAR(0)

Block 2

Block 1

Block 0

Block 0

Block 1

Block 2

Address of
Source Layer

Address of
Destination Layer

Source Blocks Destination Blocks

199
32015G–AVR32–09/09

AT32AP7001

Figure 18-19. DMA Transfer Flow for Source Address Auto-reloaded and Contiguous Destination Address

18.11 Disabling a Channel Prior to Transfer Completion

Under normal operation, software enables a channel by writing a ‘1’ to the Channel Enable Reg-
ister, ChEnReg.CH_EN, and hardware disables a channel on transfer completion by clearing the
ChEnReg.CH_EN register bit.

The recommended way for software to disable a channel without losing data is to use the
CH_SUSP bit in conjunction with the FIFO_EMPTY bit in the Channel Configuration Register
(CFGx) register.

Channel Enabled by
software

LLI Fetch

Hardware reprograms
SARx, CTLx, LLPx

DMAC block transfer

Source/destination
status fetch

Is DMAC in
Row 1 of Table 4 ?

Channel Disabled by
hardware

Block Complete interrupt
generated here

DMAC Transfer Complete
interrupt generated here

yes

no

200
32015G–AVR32–09/09

AT32AP7001

1. If software wishes to disable a channel prior to the DMA transfer completion, then it can
set the CFGx.CH_SUSP bit to tell the DMACA to halt all transfers from the source periph-
eral. Therefore, the channel FIFO receives no new data.

2. Software can now poll the CFGx.FIFO_EMPTY bit until it indicates that the channel FIFO
is empty.

3. The ChEnReg.CH_EN bit can then be cleared by software once the channel FIFO is
empty.

When CTLx.SRC_TR_WIDTH is less than CTLx.DST_TR_WIDTH and the CFGx.CH_SUSP bit
is high, the CFGx.FIFO_EMPTY is asserted once the contents of the FIFO do not permit a single
word of CTLx.DST_TR_WIDTH to be formed. However, there may still be data in the channel
FIFO but not enough to form a single transfer of CTLx.DST_TR_WIDTH width. In this configura-
tion, once the channel is disabled, the remaining data in the channel FIFO are not transferred to
the destination peripheral. It is permitted to remove the channel from the suspension state by
writing a ‘0’ to the CFGx.CH_SUSP register. The DMA transfer completes in the normal manner.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

18.11.1 Abnormal Transfer Termination

A DMACA DMA transfer may be terminated abruptly by software by clearing the channel enable
bit, ChEnReg.CH_EN. This does not mean that the channel is disabled immediately after the
ChEnReg.CH_EN bit is cleared over the HSB slave interface. Consider this as a request to dis-
able the channel. The ChEnReg.CH_EN must be polled and then it must be confirmed that the
channel is disabled by reading back 0. A case where the channel is not be disabled after a chan-
nel disable request is where either the source or destination has received a split or retry
response. The DMACA must keep re-attempting the transfer to the system HADDR that origi-
nally received the split or retry response until an OKAY response is returned. To do otherwise is
an System Bus protocol violation.

Software may terminate all channels abruptly by clearing the global enable bit in the DMACA
Configuration Register (DmaCfgReg[0]). Again, this does not mean that all channels are dis-
abled immediately after the DmaCfgReg[0] is cleared over the HSB slave interface. Consider
this as a request to disable all channels. The ChEnReg must be polled and then it must be con-
firmed that all channels are disabled by reading back ‘0’.

Note: If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to
the destination peripheral and is not present when the channel is re-enabled. For read sensitive
source peripherals such as a source FIFO this data is therefore lost. When the source is not a
read sensitive device (i.e., memory), disabling a channel without waiting for the channel FIFO to
empty may be acceptable as the data is available from the source peripheral upon request and is
not lost.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

201
32015G–AVR32–09/09

AT32AP7001

18.12 User Interface

Table 18-2. DMA Controller Memory Map

Offset Register Register Name Access Reset Value

0x000 Channel 0 Source Address Register SAR0 Read/Write 0x00000000

0x008 Channel 0 Destination Address Register DAR0 Read/Write 0x00000000

0x010 Channel 0 Linked List Pointer Register LLP0 Read/Write 0x00000000

0x018 Channel 0 Control Register Low CTL0L Read/Write 0x00304801

0x01C Channel 0 Control Register High CTL0H Read/Write 0x00000002

0x040 Channel 0 Configuration Register Low CFG0L Read/Write 0x00000c00

0x044 Channel 0 Configuration Register High CFG0H Read/Write 0x00000004

0x048 Channel 0 Source Gather Register SGR0 Read/Write 0x00000000

0x050 Channel 0 Destination Scatter Register DSR0 Read/Write 0x00000000

0x058 Channel 1 Source Address Register SAR1 Read/Write 0x00000000

0x060 Channel 1 Destination Address Register DAR1 Read/Write 0x00000000

0x068 Channel 1 Linked List Pointer Register LLP1 Read/Write 0x00000000

0x070 Channel 1 Control Register Low CTL1L Read/Write 0x00304801

0x074 Channel 1 Control Register High CTL1H Read/Write 0x00000002

0x098 Channel 1 Configuration Register Low CFG1L Read/Write 0x00000c20

0x09C Channel 1 Configuration Register High CFG1H Read/Write 0x00000004

0x0A0 Channel 1Source Gather Register SGR1 Read/Write 0x00000000

0x0A8 Channel 1 Destination Scatter Register DSR1 Read/Write 0x00000000

0x0B0 Channel 2 Source Address Register SAR2 Read/Write 0x00000000

0x0B8 Channel 2 Destination Address Register DAR2 Read/Write 0x00000000

0x0C0 Channel 2 Linked List Pointer Register LLP2 Read/Write 0x00000000

0x0C8 Channel 2 Control Register Low CTL2L Read/Write 0x00304801

0x0CC Channel 2 Control Register High CTL2H Read/Write 0x00000002

0x0F0 Channel 2 Configuration Register Low CFG2L Read/Write 0x00000c40

0x0F4 Channel 2 Configuration Register High CFG2H Read/Write 0x00000004

0x0F8 Channel 2 Source Gather Register SGR2 Read/Write 0x00000000

0x100 Channel 2 Destination Scatter Register DSR2 Read/Write 0x00000000

0x2C0 Raw Status for IntTfr Interrupt RawTfr Read-only 0x00000000

0x2C8 Raw Status for IntBlock Interrupt RawBlock Read-only 0x00000000

0x2D0 Raw Status for IntSrcTran Interrupt RawSrcTran Read-only 0x00000000

0x2D8 Raw Status for IntDstTran Interrupt RawDstTran Read-only 0x00000000

0x2E0 Raw Status for IntErr Interrupt RawErr Read-only 0x00000000

0x2E8 Status for IntTfr Interrupt StatusTfr Read-only 0x00000000

0x2F0 Status for IntBlock Interrupt StatusBlock Read-only 0x00000000

0x2F8 Status for IntSrcTran Interrupt StatusSrcTran Read-only 0x00000000

202
32015G–AVR32–09/09

AT32AP7001

0x300 Status for IntDstTran Interrupt StatusDstTran Read-only 0x00000000

0x308 Status for IntErr Interrupt StatusErr Read-only 0x00000000

0x310 Mask for IntTfr Interrupt MaskTfr Read/Write 0x00000000

0x318 Mask for IntBlock Interrupt MaskBlock Read/Write 0x00000000

0x320 Mask for IntSrcTran Interrupt MaskSrcTran Read/Write 0x00000000

0x328 Mask for IntDstTran Interrupt MaskDstTran Read/Write 0x00000000

0x330 Mask for IntErr Interrupt MaskErr Read/Write 0x00000000

0x338 Clear for IntTfr Interrupt ClearTfr Write-only 0x00000000

0x340 Clear for IntBlock Interrupt ClearBlock Write-only 0x00000000

0x348 Clear for IntSrcTran Interrupt ClearSrcTran Write-only 0x00000000

0x350 Clear for IntDstTran Interrupt ClearDstTran Write-only 0x00000000

0x358 Clear for IntErr Interrupt ClearErr Write-only 0x00000000

0x360 Status for each interrupt type StatusInt Read-only 0x00000000

0x368 Source Software Transaction Request Register ReqSrcReg Read/Write 0x00000000

0x370 Destination Software Transaction Request Register ReqDstReg Read/Write 0x00000000

0x378 Single Source Transaction Request Register SglReqSrcReg Read/Write 0x00000000

0x380 Single Destination Transaction Request Register SglReqDstReg Read/Write 0x00000000

0x388 Last Source Transaction Request Register LstSrcReg Read/Write 0x00000000

0x390 Last Destination Transaction Request Register LstDstReg Read/Write 0x00000000

0x398 DMA Configuration Register DmaCfgReg Read/Write 0x00000000

0x3A0 DMA Channel Enable Register ChEnReg Read/Write 0x00000000

0x3F8 DMA Component ID Register Low DmaCompIdRegL Read-only 0x44571110

0x3FC DMA Component ID Register High DmaCompIdRegH Read-only 0x3230362A

Table 18-2. DMA Controller Memory Map (Continued)

Offset Register Register Name Access Reset Value

203
32015G–AVR32–09/09

AT32AP7001

18.12.1 Channel x Source Address Register

Name: SARx

Access Type: Read/Write

Offset: 0x000 + [x * 0x58]

Reset Value: 0x00000000

• SADD: Source Address of DMA transfer

The starting System Bus source address is programmed by software before the DMA channel is enabled or by a LLI update
before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the source
address of the current System Bus transfer.

Updated after each source System Bus transfer. The SINC field in the CTLx register determines whether the address incre-
ments, decrements, or is left unchanged on every source System Bus transfer throughout the block transfer.

31 30 29 28 27 26 25 24

SADD[31:24]

23 22 21 20 19 18 17 16

SADD[23:16]

15 14 13 12 11 10 9 8

SADD[15:8]

7 6 5 4 3 2 1 0

SADD[7:0]

204
32015G–AVR32–09/09

AT32AP7001

18.12.2 Channel x Destination Address Register

Name: DARx

Access Type: Read/Write

Offset: 0x008 + [x * 0x58]

Reset Value: 0x00000000

• DADD: Destination Address of DMA transfer

The starting System Bus destination address is programmed by software before the DMA channel is enabled or by a LLI
update before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the desti-
nation address of the current System Bus transfer.

Updated after each destination System Bus transfer. The DINC field in the CTLx register determines whether the address
increments, decrements or is left unchanged on every destination System Bus transfer throughout the block transfer.

31 30 29 28 27 26 25 24

DADD[31:24]

23 22 21 20 19 18 17 16

DADD[23:16]

15 14 13 12 11 10 9 8

DADD[15:8]

7 6 5 4 3 2 1 0

DADD[7:0]

205
32015G–AVR32–09/09

AT32AP7001

18.12.3 Linked List Pointer Register for Channel x

Name: LLPx

Access Type: Read/Write

Offset: 0x010 + [x * 0x58]

Reset Value: 0x00000000

• LOC: Address of the next LLI

Starting address in memory of next LLI if block chaining is enabled.

The user need to program this register to point to the first Linked List Item (LLI) in memory prior to enabling the channel if
block chaining is enabled.

The LLP register has two functions:

The logical result of the equation LLP.LOC != 0 is used to set up the type of DMA transfer (single or multi-block).

If LLP.LOC is set to 0x0, then transfers using linked lists are NOT enabled. This register must be programmed prior to
enabling the channel in order to set up the transfer type.

It (LLP.LOC != 0) contains the pointer to the next Linked Listed Item for block chaining using linked lists.

The LLPx register is also used to point to the address where write back of the control and source/destination status infor-
mation occurs after block completion.

• LMS: List Master Select

Identifies the High speed bus interface for the device that stores the next linked list item:

31 30 29 28 27 26 25 24

LOC[29:22]

23 22 21 20 19 18 17 16

LOC[21:14]

15 14 13 12 11 10 9 8

LOC[13:6]

7 6 5 4 3 2 1 0

LOC[5:0] LMS

Table 18-3. List Master Select

LMS HSB Master

0 HSB master 1

1 HSB master 2

Other Reserved

206
32015G–AVR32–09/09

AT32AP7001

18.12.4 Control Register for Channel x Low

Name: CTLxL

Access Type: Read/Write

Offset: 0x018 + [x * 0x58]

Reset Value: 0x00304801

This register contains fields that control the DMA transfer. The CTLxL register is part of the block descriptor (linked list item)
when block chaining is enabled. It can be varied on a block-by-block basis within a DMA transfer when block chaining is
enabled.

• LLP_SRC_EN

Block chaining is only enabled on the source side if the LLP_SRC_EN field is high and LLPx.LOC is non-zero.

• LLP_DST_EN

Block chaining is only enabled on the destination side if the LLP_DST_EN field is high and LLPx.LOC is non-zero.

• SMS: Source Master Select

Identifies the Master Interface layer where the source device (peripheral or memory) is accessed from

31 30 29 28 27 26 25 24

LLP_SRC_E
N

LLP_DST_E
N

SMS DMS[1]

23 22 21 20 19 18 17 16

DMS[0] TT_FC
DST_GATHE

R_EN
SRC_GATHE

R_EN
SRC_MSIZE

[2]

15 14 13 12 11 10 9 8

SRC_MSIZE[1:0] DEST_MSIZE SINC DINC[1]

7 6 5 4 3 2 1 0

DINC[0] SRC_TR_WIDTH DST_TR_WIDTH INT_EN

Table 18-4. Source Master Select

SMS HSB Master

0 HSB master 1

1 HSB master 2

Other Reserved

207
32015G–AVR32–09/09

AT32AP7001

• DMS: Destination Master Select

Identifies the Master Interface layer where the destination device (peripheral or memory) resides

• TT_FC: Transfer Type and Flow Control

The four following transfer types are supported:

• Memory to Memory, Memory to Peripheral, Peripheral to Memory and Peripheral to Peripheral.

The DMACA is always the Flow Controller.

• DST_SCATTER_EN: Destination Scatter Enable
0 = Scatter disabled
1 = Scatter enabled

Scatter on the destination side is applicable only when the CTLx.DINC bit indicates an incrementing or decrementing
address control.

Important note: This bit is only implemented for channel 1, not for channels 0 and 2.
• SRC_GATHER_EN: Source Gather Enable

0 = Gather disabled
1 = Gather enabled

Gather on the source side is applicable only when the CTLx.SINC bit indicates an incrementing or decrementing address
control.

Important note: This bit is only implemented for channel 1, not for channels 0 and 2.
• SRC_MSIZE: Source Burst Transaction Length

Number of data items, each of width CTLx.SRC_TR_WIDTH, to be read from the source every time a source burst transac-
tion request is made from either the corresponding hardware or software handshaking interface.

Table 18-5. Destination Master Select

DMS HSB Master

0 HSB master 1

1 HSB master 2

Other Reserved

TT_FC Transfer Type Flow Controller

000 Memory to Memory DMACA

001 Memory to Peripheral DMACA

010 Peripheral to Memory DMACA

011 Peripheral to Peripheral DMACA

Other Reserved Reserved

SRC_MSIZE Size (items number)

0 1

1 4

2 8

208
32015G–AVR32–09/09

AT32AP7001

• DST_MSIZE: Destination Burst Transaction Length

Number of data items, each of width CTLx.DST_TR_WIDTH, to be written to the destination every time a destination burst
transaction request is made from either the corresponding hardware or software handshaking interface.

• SINC: Source Address Increment

Indicates whether to increment or decrement the source address on every source System Bus transfer. If your device is
fetching data from a source peripheral FIFO with a fixed address, then set this field to “No change”

• DINC: Destination Address Increment

Indicates whether to increment or decrement the destination address on every destination System Bus transfer. If your
device is writing data to a destination peripheral FIFO with a fixed address, then set this field to “No change”

3 16

4 32

Other Reserved

DST_MSIZE Size (items number)

0 1

1 4

2 8

3 16

4 32

Other Reserved

SINC
Source Address
Increment

0 Increment

1 Decrement

Other No change

DINC
Destination Address
Increment

0 Increment

1 Decrement

Other No change

SRC_MSIZE Size (items number)

209
32015G–AVR32–09/09

AT32AP7001

• SRT_TR_WIDTH: Source Transfer Width
• DSC_TR_WIDTH: Destination Transfer Width

• INT_EN: Interrupt Enable Bit

If set, then all five interrupt generating sources are enabled.

SRC_TR_WIDTH/DST_TR_WIDTH Size (bits)

0 8

1 16

2 32

Other Reserved

210
32015G–AVR32–09/09

AT32AP7001

18.12.5 Control Register for Channel x High

Name: CTLxH

Access Type: Read/Write

Offset: 0x01C + [x * 0x58]

Reset Value: 0x00000002

• DONE: Done Bit

Software can poll this bit to see when a block transfer is complete

• BLOCK_TS: Block Transfer Size

When the DMACA is flow controller, this field is written by the user before the channel is enabled to indicate the block size.

The number programmed into BLOCK_TS indicates the total number of single transactions to perform for every block
transfer, unless the transfer is already in progress, in which case the value of BLOCK_TS indicates the number of single
transactions that have been performed so far.

The width of the single transaction is determined by CTLx.SRC_TR_WIDTH.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - DONE BLOCK_TS[11:8]

7 6 5 4 3 2 1 0

BLOCK_TS[7:0]

211
32015G–AVR32–09/09

AT32AP7001

18.12.6 Configuration Register for Channel x Low

Name: CFGxL

Access Type: Read/Write

Offset: 0x040 + [x * 0x58]

• Reset Value: 0x00000C00 + [x * 0x20]

• RELOAD_DST: Automatic Destination Reload

The DARx register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

• RELOAD_SRC: Automatic Source Reload

The SARx register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

• SRC_HS_POL: Source Handshaking Interface Polarity
0 = Active high

1 = Active low
• DST_HS_POL: Destination Handshaking Interface Polarity

0 = Active high
1 = Active low

• HS_SEL_SRC: Source Software or Hardware Handshaking Select

This register selects which of the handshaking interfaces, hardware or software, is active for source requests on this
channel.

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.

1 = Software handshaking interface. Hardware-initiated transaction requests are ignored.

If the source peripheral is memory, then this bit is ignored.

• HS_SEL_DST: Destination Software or Hardware Handshaking Select

This register selects which of the handshaking interfaces, hardware or software, is active for destination requests on this
channel.

31 30 29 28 27 26 25 24

RELOAD_D
ST

RELOAD_S
RC

- - - - - -

23 22 21 20 19 18 17 16

- - - - SRC_HS_P
OL

DST_HS_PO
L

- -

15 14 13 12 11 10 9 8

- - HS_SEL_SR
C

HS_SEL_DS
T

FIFO_EMPT
Y

CH_SUSP

7 6 5 4 3 2 1 0

CH_PRIOR - - - - -

212
32015G–AVR32–09/09

AT32AP7001

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.
1 = Software handshaking interface. Hardware Initiated transaction requests are ignored.

If the destination peripheral is memory, then this bit is ignored.

• FIFO_EMPTY

Indicates if there is data left in the channel's FIFO. Can be used in conjunction with CFGx.CH_SUSP to cleanly disable a
channel.

1 = Channel's FIFO empty

0 = Channel's FIFO not empty

• CH_SUSP: Channel Suspend

Suspends all DMA data transfers from the source until this bit is cleared. There is no guarantee that the current transaction
will complete. Can also be used in conjunction with CFGx.FIFO_EMPTY to cleanly disable a channel without losing any
data.

0 = Not Suspended.

1 = Suspend. Suspend DMA transfer from the source.

• CH_PRIOR: Channel priority

A priority of 7 is the highest priority, and 0 is the lowest. This field must be programmed within the following range [0, x-1].

A programmed value outside this range causes erroneous behavior.

213
32015G–AVR32–09/09

AT32AP7001

18.12.7 Configuration Register for Channel x High

Name: CFGxH

Access Type: Read/Write

Offset: 0x044 + [x * 0x58]

Reset Value: 0x00000004

• DEST_PER: Destination Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the destination of channel x if the
CFGx.HS_SEL_DST field is 0. Otherwise, this field is ignored. The channel can then communicate with the destination
peripheral connected to that interface via the assigned hardware handshaking interface.

For correct DMA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

• SRC_PER: Source Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the source of channel x i f the
CFGx.HS_SEL_SRC field is 0. Otherwise, this field is ignored. The channel can then communicate with the source periph-
eral connected to that interface via the assigned hardware handshaking interface.

For correct DMACA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

• PROTCTL: Protection Control

Bits used to drive the System Bus HPROT[3:1] bus. The System Bus Specification recommends that the default value of
HPROT indicates a non-cached, nonbuffered, privileged data access. The reset value is used to indicate such an access.

HPROT[0] is tied high as all transfers are data accesses as there are no opcode fetches. There is a one-to-one mapping of
these register bits to the HPROT[3:1] master interface signals.

• FIFO_MODE: R/W 0x0 FIFO Mode Select

Determines how much space or data needs to be available in the FIFO before a burst transaction request is serviced.

0 = Space/data available for single System Bus transfer of the specified transfer width.
1 = Space/data available is greater than or equal to half the FIFO depth for destination transfers and less than half the FIFO

depth for source transfers. The exceptions are at the end of a burst transaction request or at the end of a block transfer.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- DEST_PER SRC_PER[3:1]

7 6 5 4 3 2 1 0

SRC_PER[0] - - PROTCTL FIFO_MODE FCMODE

214
32015G–AVR32–09/09

AT32AP7001

• FCMODE: Flow Control Mode

Determines when source transaction requests are serviced when the Destination Peripheral is the flow controller.

0 = Source transaction requests are serviced when they occur. Data pre-fetching is enabled.

1 = Source transaction requests are not serviced until a destination transaction request occurs. In this mode the amount of data
transferred from the source is limited such that it is guaranteed to be transferred to the destination prior to block termination by

the destination. Data pre-fetching is disabled.

215
32015G–AVR32–09/09

AT32AP7001

18.12.8 Source Gather Register for Channel x

Name: SGRx

Access Type: Read/Write

Offset: 0x048 + [x * 0x58]

Reset Value: 0x00000000

• SGC: Source Gather Count

Specifies the number of contiguous source transfers of CTLx.SRC_TR_WIDTH between successive gather intervals. This
is defined as a gather boundary.

• SGI: Source Gather Interval

Specifies the source address increment/decrement in multiples of CTLx.SRC_TR_WIDTH on a gather boundary when
gather mode is enabled for the source transfer.

Important note: This register is only implemented for channel 1, not for channels 0 and 2.

31 30 29 28 27 26 25 24

SGC[11:4]

23 22 21 20 19 18 17 16

SGC[3:0] SGI[19:16]

15 14 13 12 11 10 9 8

SGI[15:8]

7 6 5 4 3 2 1 0

SGI[7:0]

216
32015G–AVR32–09/09

AT32AP7001

18.12.9 Destination Scatter Register for Channel x

Name: DSRx

Access Type: Read/Write

Offset: 0x050 + [x * 0x58]

Reset Value: 0x00000000

• DSC: Destination Scatter Count

Specifies the number of contiguous destination transfers of CTLx.DST_TR_WIDTH between successive scatter
boundaries.

• DSI: Destination Scatter Interval

Specifies the destination address increment/decrement in multiples of CTLx.DST_TR_WIDTH on a scatter boundary when
scatter mode is enabled for the destination transfer.

Important note: This register is only implemented for channel 1, not for channels 0 and 2.

31 30 29 28 27 26 25 24

DSC[11:4]

23 22 21 20 19 18 17 16

DSC[3:0] DSI[19:16]

15 14 13 12 11 10 9 8

DSI[15:8]

7 6 5 4 3 2 1 0

DSI[7:0]

217
32015G–AVR32–09/09

AT32AP7001

18.12.10 Interrupt Registers

The following sections describe the registers pertaining to interrupts, their status, and how to clear them. For each channel,
there are five types of interrupt sources:

• IntTfr: DMA Transfer Complete Interrupt

This interrupt is generated on DMA transfer completion to the destination peripheral.

• IntBlock: Block Transfer Complete Interrupt

This interrupt is generated on DMA block transfer completion to the destination peripheral.

• IntSrcTran: Source Transaction Complete Interrupt

This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the source side.

If the source for a channel is memory, then that channel never generates a IntSrcTran interrupt and hence the correspond-
ing bit in this field is not set.

• IntDstTran: Destination Transaction Complete Interrupt

This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the destination side.

If the destination for a channel is memory, then that channel never generates the IntDstTran interrupt and hence the corre-
sponding bit in this field is not set.

• IntErr: Error Interrupt

This interrupt is generated when an ERROR response is received from an HSB slave on the HRESP bus during a DMA
transfer. In addition, the DMA transfer is cancelled and the channel is disabled.

218
32015G–AVR32–09/09

AT32AP7001

18.12.11 Interrupt Raw Status Registers

Name: RawTfr, RawBlock, RawSrcTran, RawDstTran, RawErr

Access Type: Read-only

Offset: 0x2C0, 0x2C8, 0x2D0, 0x2D8, 0x2E0

Reset Value: 0x00000000

• RAW[2:0]Raw interrupt for each channel

Interrupt events are stored in these Raw Interrupt Status Registers before masking: RawTfr, RawBlock, RawSrcTran,
RawDstTran, RawErr. Each Raw Interrupt Status register has a bit allocated per channel, for example, RawTfr[2] is Chan-
nel 2’s raw transfer complete interrupt. Each bit in these registers is cleared by writing a 1 to the corresponding location in
the ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr registers.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - RAW2 RAW1 RAW0

219
32015G–AVR32–09/09

AT32AP7001

18.12.12 Interrupt Status Registers

Name: StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, StatusErr

Access Type: Read-only

Offset: 0x2E8, 0x2F0, 0x2F8, 0x300, 0x308

Reset Value: 0x00000000

• STATUS[2:0]

All interrupt events from all channels are stored in these Interrupt Status Registers after masking: StatusTfr, StatusBlock,
StatusSrcTran, StatusDstTran, StatusErr. Each Interrupt Status register has a bit allocated per channel, for example, Sta-
tusTfr[2] is Channel 2’s status transfer complete interrupt.The contents of these registers are used to generate the interrupt
signals leaving the DMACA.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - STATUS2 STATUS1 STATUS0

220
32015G–AVR32–09/09

AT32AP7001

18.12.13 Interrupt Mask Registers

Name: MaskTfr, MaskBlock, MaskSrcTran, MaskDstTran, MaskErr

Access Type: Read/Write

Offset: 0x310, 0x318, 0x320, 0x328, 0x330

Reset Value: 0x00000000

The contents of the Raw Status Registers are masked with the contents of the Mask Registers: MaskTfr, MaskBlock, Mask-
SrcTran, MaskDstTran, MaskErr. Each Interrupt Mask register has a bit allocated per channel, for example, MaskTfr[2] is
the mask bit for Channel 2’s transfer complete interrupt.

A channel’s INT_MASK bit is only written if the corresponding mask write enable bit in the INT_MASK_WE field is asserted
on the same System Bus write transfer. This allows software to set a mask bit without performing a read-modified write
operation.

For example, writing hex 01x1 to the MaskTfr register writes a 1 into MaskTfr[0], while MaskTfr[7:1] remains unchanged.
Writing hex 00xx leaves MaskTfr[7:0] unchanged.

Writing a 1 to any bit in these registers unmasks the corresponding interrupt, thus allowing the DMACA to set the appropri-
ate bit in the Status Registers.

• INT_M_WE[10:8]: Interrupt Mask Write Enable
0 = Write disabled
1 = Write enabled

• INT_MASK[2:0]: Interrupt Mask
0= Masked

1 = Unmasked

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - INT_M_WE2 INT_M_WE1 INT_M_WE0

7 6 5 4 3 2 1 0

- - - - - INT_MASK2 INT_MASK1 INT_MASK0

221
32015G–AVR32–09/09

AT32AP7001

18.12.14 Interrupt Clear Registers

Name: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr

Access Type: Write-only

Offset: 0x338, 0x340, 0x348, 0x350, 0x358

Reset Value: 0x00000000

• CLEAR[2:0]: Interrupt Clear
0 = No effect

1 = Clear interrupt

Each bit in the Raw Status and Status registers is cleared on the same cycle by writing a 1 to the corresponding location in
the Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr. Each Interrupt Clear register has a bit allo-
cated per channel, for example, ClearTfr[2] is the clear bit for Channel 2’s transfer complete interrupt. Writing a 0 has no
effect. These registers are not readable.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - CLEAR2 CLEAR1 CLEAR0

222
32015G–AVR32–09/09

AT32AP7001

18.12.15 Combined Interrupt Status Registers

Name: StatusInt

Access Type: Read-only

Offset: 0x360

Reset Value: 0x00000000

The contents of each of the five Status Registers (StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, StatusErr) is
OR’ed to produce a single bit per interrupt type in the Combined Status Register (StatusInt).

• ERR

OR of the contents of StatusErr Register.

• DSTT

OR of the contents of StatusDstTran Register.

• SRCT

OR of the contents of StatusSrcTran Register.

• BLOCK

OR of the contents of StatusBlock Register.

• TFR

OR of the contents of StatusTfr Register.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - ERR DSTT SRCT BLOCK TFR

223
32015G–AVR32–09/09

AT32AP7001

18.12.16 Source Software Transaction Request Register

Name: ReqSrcReg

Access Type: Read/write

Offset: 0x368

Reset Value: 0x00000000

A bit is assigned for each channel in this register. ReqSrcReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel SRC_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

For example, writing 0x101 writes a 1 into ReqSrcReg[0], while ReqSrcReg[4:1] remains unchanged. Writing hex 0x0yy
leaves ReqSrcReg[4:0] unchanged. This allows software to set a bit in the ReqSrcReg register without performing a read-
modified write

• REQ_WE[10:8]: Request write enable
0 = Write disabled
1 = Write enabled

• SRC_REQ[2:0]: Source request

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - REQ_WE2 REQ_WE1 REQ_WE0

7 6 5 4 3 2 1 0

- - - - - SRC_REQ2 SRC_REQ1 SRC_REQ0

224
32015G–AVR32–09/09

AT32AP7001

18.12.17 Destination Software Transaction Request Register

Name: ReqDstReg

Access Type: Read/write

Offset: 0x370

Reset Value: 0x00000000

A bit is assigned for each channel in this register. ReqDstReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel DST_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on the
same System Bus write transfer.

• REQ_WE[10:8]: Request write enable
0 = Write disabled
1 = Write enabled

• DST_REQ[2:0]: Destination request

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - REQ_WE2 REQ_WE1 REQ_WE0

7 6 5 4 3 2 1 0

- - - - - DST_REQ2 DST_REQ1 DST_REQ0

225
32015G–AVR32–09/09

AT32AP7001

18.12.18 Single Source Transaction Request Register

Name: SglReqSrcReg

Access Type: Read/write

Offset: 0x378

Reset Value: 0x00000000

A bit is assigned for each channel in this register. SglReqSrcReg[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel S_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

• REQ_WE[10:8]: Request write enable
0 = Write disabled
1 = Write enabled

• S_SG_REQ[2:0]: Source single request

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - REQ_WE2 REQ_WE1 REQ_WE0

7 6 5 4 3 2 1 0

- - - - - S_SG_REQ2 S_SG_REQ1 S_SG_REQ0

226
32015G–AVR32–09/09

AT32AP7001

18.12.19 Single Destination Transaction Request Register

Name: SglReqDstReg

Access Type: Read/write

Offset: 0x380

Reset Value: 0x0000000

A bit is assigned for each channel in this register. SglReqDstReg[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel D_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

• REQ_WE[10:8]: Request write enable
0 = Write disabled
1 = Write enabled

• D_SG_REQ[2:0]: Destination single request

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - REQ_WE2 REQ_WE1 REQ_WE0

7 6 5 4 3 2 1 0

- - - - - D_SG_REQ2 D_SG_REQ1 D_SG_REQ0

227
32015G–AVR32–09/09

AT32AP7001

18.12.20 Last Source Transaction Request Register

Name: LstSrcReg

Access Type: Read/write

Offset: 0x388

Reset Value: 0x0000000

A bit is assigned for each channel in this register. LstSrcReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel LSTSRC bit is written only if the corresponding channel write enable bit in the LSTSRC_WE field is asserted on
the same System Bus write transfer.

• LSTSRC_WE[10:8]: Source Last Transaction request write enable
0 = Write disabled

1 = Write enabled
• LSTSRC[2:0]: Source Last Transaction request

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - LSTSRC_W
E2

LSTSRC_W
E1

LSTSRC_W
E0

7 6 5 4 3 2 1 0

- - - - - LSTSRC2 LSTSRC1 LSTSRC0

228
32015G–AVR32–09/09

AT32AP7001

18.12.21 Last Destination Transaction Request Register

Name: LstDstReg

Access Type: Read/write

Offset: 0x390

Reset Value: 0x00000000

A bit is assigned for each channel in this register. LstDstReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel LSTDST bit is written only if the corresponding channel write enable bit in the LSTDST_WE field is asserted on
the same System Bus write transfer.

• LSTDST_WE[10:8]: Destination Last Transaction request write enable
0 = Write disabled

1 = Write enabled
• LSTDST[2:0]: Destination Last Transaction request

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - LSTDST_WE
2

LSTDST_WE
1

LSTDST_WE
0

7 6 5 4 3 2 1 0

- - - - - LSTDST2 LSTDST1 LSTDST0

229
32015G–AVR32–09/09

AT32AP7001

18.12.22 DMA Configuration Register

Name: DmaCfgReg

Access Type: Read/Write

Offset: 0x398

Reset Value: 0x00000000

• DMA_EN: DMA Controller Enable
0 = DMACA Disabled

1 = DMACA Enabled.

This register is used to enable the DMACA, which must be done before any channel activity can begin.

If the global channel enable bit is cleared while any channel is still active, then DmaCfgReg.DMA_EN still returns ‘1’ to indi-
cate that there are channels still active until hardware has terminated all activity on all channels, at which point the
DmaCfgReg.DMA_EN bit returns ‘0’.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - DMA_EN

230
32015G–AVR32–09/09

AT32AP7001

18.12.23 DMA Channel Enable Register

Name: ChEnReg

Access Type: Read/Write

Offset: 0x3A0

Reset Value: 0x00000000

• CH_EN_WE[10:8]: Channel Enable Write Enable

The channel enable bit, CH_EN, is only written if the corresponding channel write enable bit, CH_EN_WE, is asserted on
the same System Bus write transfer.

For example, writing 0x101 writes a 1 into ChEnReg[0], while ChEnReg[7:1] remains unchanged.

• CH_EN[2:0]
0 = Disable the Channel

1 = Enable the Channel

Enables/Disables the channel. Setting this bit enables a channel, clearing this bit disables the channel.

The ChEnReg.CH_EN bit is automatically cleared by hardware to disable the channel after the last System Bus transfer of
the DMA transfer to the destination has completed.Software can therefore poll this bit to determine when a DMA transfer
has completed.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - CH_EN_WE
2

CH_EN_WE
1

CH_EN_WE
0

7 6 5 4 3 2 1 0

- - - - - CH_EN2 CH_EN1 CH_EN0

231
32015G–AVR32–09/09

AT32AP7001

18.12.24 DMACA Component Id Register Low

Name: DmaCompIdRegL

Access Type: Read-only

Offset: 0x3F8

Reset Value: 0x44571110

• DMA_COMP_TYPE

DesignWare component type number = 0x44571110.

This assigned unique hex value is constant and is derived from the two ASCII letters “DW” followed by a 32-bit unsigned
number

31 30 29 28 27 26 25 24

DMA_COMP_TYPE[31:24]

23 22 21 20 19 18 17 16

DMA_COMP_TYPE[23:16]

15 14 13 12 11 10 9 8

DMA_COMP_TYPE[15:8]

7 6 5 4 3 2 1 0

DMA_COMP_TYPE[7:0]

232
32015G–AVR32–09/09

AT32AP7001

18.12.25 DMACA Component Id Register High

Name: DmaCompIdRegH

Access Type: Read-only

Offset: 0x3FC

Reset Value: 0x3230362A

• DMA_COMP_VERSION: Version of the component

31 30 29 28 27 26 25 24

DMA_COMP_VERSION[31:24]

23 22 21 20 19 18 17 16

DMA_COMP_VERSION[23:16]

15 14 13 12 11 10 9 8

DMA_COMP_VERSION[15:8]

7 6 5 4 3 2 1 0

DMA_COMP_VERSION[7:0]

233
32015G–AVR32–09/09

AT32AP7001

19. Peripheral DMA Controller (PDC)

Rev: 1.0.0.1

19.1 Features

• Generates Transfers to/from Peripherals such as USART, SSC and SPI
• Supports Up to 20 Channels (Product Dependent)
• One Master Clock Cycle Needed for a Transfer from Memory to Peripheral
• Two Master Clock Cycles Needed for a Transfer from Peripheral to Memory

19.2 Description

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals such as
the UART, USART, SSC, SPI, and the on- and off-chip memories. Using the Peripheral DMA
Controller avoids processor intervention and removes the processor interrupt-handling over-
head. This significantly reduces the number of clock cycles required for a data transfer and, as a
result, improves the performance of the microcontroller and makes it more power efficient.

The PDC channels are implemented in pairs, each pair being dedicated to a particular periph-
eral. One channel in the pair is dedicated to the receiving channel and one to the transmitting
channel of each UART, USART, SSC and SPI.

The user interface of a PDC channel is integrated in the memory space of each peripheral. It
contains:

• A 32-bit memory pointer register

• A 16-bit transfer count register

• A 32-bit register for next memory pointer

• A 16-bit register for next transfer count

The peripheral triggers PDC transfers using transmit and receive signals. When the pro-
grammed data is transferred, an end of transfer interrupt is generated by the corresponding
peripheral.

234
32015G–AVR32–09/09

AT32AP7001

19.3 Block Diagram

Figure 19-1. Block Diagram

Control

PDC Channel 0

PDC Channel 1

THR

RHR

Control
Status & Control

Peripheral Peripheral DMA Controller

Memory
Controller

235
32015G–AVR32–09/09

AT32AP7001

19.4 Product Dependencies

19.4.1 Power Management

The PDC clock is generated by the Power Manager. The PDC also depends on the HSB-HSB
bridge clock. Before using the PDC, the programmer must ensure that the PDC clock and HSB-
HSB bridge clock are enabled in the Power Manager.

To prevent bus errors the PDC operation must be terminated before entering sleep mode

19.4.2 Interrupt

The PDC has an interrupt line for each channel connected to the Interrupt Controller via the cor-
responding peripheral. Handling the PDC interrupt requires programming the interrupt controller
before configuring the PDC.

19.4.3 Peripherals

Before using each PDC channel the corresponding peripheral has to be configured correctly.

19.5 Functional Description

19.5.1 Configuration

The PDC channels user interface enables the user to configure and control the data transfers for
each channel. The user interface of a PDC channel is integrated into the user interface of the
peripheral (offset 0x100), which it is related to.

Per peripheral, it contains four 32-bit Pointer Registers (RPR, RNPR, TPR, and TNPR) and four
16-bit Counter Registers (RCR, RNCR, TCR, and TNCR).

The size of the buffer (number of transfers) is configured in an internal 16-bit transfer counter
register, and it is possible, at any moment, to read the number of transfers left for each channel.

The memory base address is configured in a 32-bit memory pointer by defining the location of
the first address to access in the memory. It is possible, at any moment, to read the location in
memory of the next transfer and the number of remaining transfers. The PDC has dedicated sta-
tus registers which indicate if the transfer is enabled or disabled for each channel. The status for
each channel is located in the peripheral status register. Transfers can be enabled and/or dis-
abled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in PDC Transfer Control Register. These
control bits enable reading the pointer and counter registers safely without any risk of their
changing between both reads.

The PDC sends status flags to the peripheral visible in its status-register (ENDRX, ENDTX,
RXBUFF, and TXBUFE).

ENDRX flag is set when the PERIPH_RCR register reaches zero.

RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

ENDTX flag is set when the PERIPH_TCR register reaches zero.

TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.

These status flags are described in the peripheral status register.

236
32015G–AVR32–09/09

AT32AP7001

19.5.2 Memory Pointers

Each peripheral is connected to the PDC by a receiver data channel and a transmitter data
channel. Each channel has an internal 32-bit memory pointer. Each memory pointer points to a
location anywhere in the memory space (on-chip memory or external bus interface memory).

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
by 1, 2 or 4, respectively for peripheral transfers. The size of the transfer is setup up in the
peripheral’s control register and automatically sensed by the PDC. The size is always rounded
up to wither byte, half-word or word.

If a memory pointer is reprogrammed while the PDC is in operation, the transfer address is
changed, and the PDC performs transfers using the new address.

19.5.3 Transfer Counters

There is one internal 16-bit transfer counter for each channel used to count the size of the block
already transferred by its associated channel. These counters are decremented after each data
transfer. When the counter reaches zero, the transfer is complete and the PDC stops transfer-
ring data.

If the Next Counter Register is equal to zero, the PDC disables the trigger while activating the
related peripheral end flag.

If the counter is reprogrammed while the PDC is operating, the number of transfers is updated
and the PDC counts transfers from the new value.

Programming the Next Counter/Pointer registers chains the buffers. The counters are decre-
mented after each data transfer as stated above, but when the transfer counter reaches zero,
the values of the Next Counter/Pointer are loaded into the Counter/Pointer registers in order to
re-enable the triggers.

For each channel, two status bits indicate the end of the current buffer (ENDRX, ENTX) and the
end of both current and next buffer (RXBUFF, TXBUFE). These bits are directly mapped to the
peripheral status register and can trigger an interrupt request to the Interrupt Controller.

The peripheral end flag is automatically cleared when one of the counter-registers (Counter or
Next Counter Register) is written.

Note: When the Next Counter Register is loaded into the Counter Register, it is set to zero.

19.5.4 Data Transfers

The peripheral triggers PDC transfers using transmit (TXRDY) and receive (RXRDY) signals.

When the peripheral receives an external character, it sends a Receive Ready signal to the PDC
which then requests access to the system bus. When access is granted, the PDC starts a read
of the peripheral Receive Holding Register (RHR) and then triggers a write in the memory.

After each transfer, the relevant PDC memory pointer is incremented and the number of trans-
fers left is decremented. When the memory block size is reached, a signal is sent to the
peripheral and the transfer stops.

The same procedure is followed, in reverse, for transmit transfers.

237
32015G–AVR32–09/09

AT32AP7001

19.5.5 Priority of PDC Transfer Requests

The Peripheral DMA Controller handles transfer requests from the channel according to priori-
ties fixed for each product.These priorities are defined in the product datasheet.

If simultaneous requests of the same type (receiver or transmitter) occur on identical peripher-
als, the priority is determined by the numbering of the peripherals.

If transfer requests are not simultaneous, they are treated in the order they occurred. Requests
from the receivers are handled first and then followed by transmitter requests.

238
32015G–AVR32–09/09

AT32AP7001

19.6 Peripheral DMA Controller (PDC) User Interface

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the peripheral desired (USART, SSC, SPI, etc).

Table 19-1. Register Mapping

Offset Register Register Name Read/Write Reset

0x100 Receive Pointer Register PERIPH(1)_RPR Read/Write 0x0

0x104 Receive Counter Register PERIPH_RCR Read/Write 0x0

0x108 Transmit Pointer Register PERIPH_TPR Read/Write 0x0

0x10C Transmit Counter Register PERIPH_TCR Read/Write 0x0

0x110 Receive Next Pointer Register PERIPH_RNPR Read/Write 0x0

0x114 Receive Next Counter Register PERIPH_RNCR Read/Write 0x0

0x118 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0x0

0x11C Transmit Next Counter Register PERIPH_TNCR Read/Write 0x0

0x120 PDC Transfer Control Register PERIPH_PTCR Write-only -

0x124 PDC Transfer Status Register PERIPH_PTSR Read-only 0x0

239
32015G–AVR32–09/09

AT32AP7001

19.6.1 PDC Receive Pointer Register

Register Name: PERIPH_RPR

Access Type: Read/Write

• RXPTR: Receive Pointer Address

Address of the next receive transfer.

31 30 29 28 27 26 25 24

RXPTR

23 22 21 20 19 18 17 16

RXPTR

15 14 13 12 11 10 9 8

RXPTR

7 6 5 4 3 2 1 0

RXPTR

240
32015G–AVR32–09/09

AT32AP7001

19.6.2 PDC Receive Counter Register

Register Name: PERIPH_RCR

Access Type: Read/Write

• RXCTR: Receive Counter Value

Number of receive transfers to be performed.

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

RXCTR

7 6 5 4 3 2 1 0

RXCTR

241
32015G–AVR32–09/09

AT32AP7001

19.6.3 PDC Transmit Pointer Register

Register Name: PERIPH_TPR

Access Type: Read/Write

• TXPTR: Transmit Pointer Address

Address of the transmit buffer.

31 30 29 28 27 26 25 24

TXPTR

23 22 21 20 19 18 17 16

TXPTR

15 14 13 12 11 10 9 8

TXPTR

7 6 5 4 3 2 1 0

TXPTR

242
32015G–AVR32–09/09

AT32AP7001

19.6.4 PDC Transmit Counter Register

Register Name: PERIPH_TCR

Access Type: Read/Write

• TXCTR: Transmit Counter Value

TXCTR is the size of the transmit transfer to be performed. At zero, the peripheral data transfer is stopped.

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

TXCTR

7 6 5 4 3 2 1 0

TXCTR

243
32015G–AVR32–09/09

AT32AP7001

19.6.5 PDC Receive Next Pointer Register

Register Name: PERIPH_RNPR

Access Type: Read/Write

• RXNPTR: Receive Next Pointer Address

RXNPTR is the address of the next buffer to fill with received data when the current buffer is full.

31 30 29 28 27 26 25 24

RXNPTR

23 22 21 20 19 18 17 16

RXNPTR

15 14 13 12 11 10 9 8

RXNPTR

7 6 5 4 3 2 1 0

RXNPTR

244
32015G–AVR32–09/09

AT32AP7001

19.6.6 PDC Receive Next Counter Register

Register Name: PERIPH_RNCR

Access Type: Read/Write

• RXNCR: Receive Next Counter Value

RXNCR is the size of the next buffer to receive.

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

RXNCR

7 6 5 4 3 2 1 0

RXNCR

245
32015G–AVR32–09/09

AT32AP7001

19.6.7 PDC Transmit Next Pointer Register

Register Name: PERIPH_TNPR

Access Type: Read/Write

• TXNPTR: Transmit Next Pointer Address

TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

31 30 29 28 27 26 25 24

TXNPTR

23 22 21 20 19 18 17 16

TXNPTR

15 14 13 12 11 10 9 8

TXNPTR

7 6 5 4 3 2 1 0

TXNPTR

246
32015G–AVR32–09/09

AT32AP7001

19.6.8 PDC Transmit Next Counter Register

Register Name: PERIPH_TNCR

Access Type: Read/Write

• TXNCR: Transmit Next Counter Value

TXNCR is the size of the next buffer to transmit.

31 30 29 28 27 26 25 24

--

23 22 21 20 19 18 17 16

--

15 14 13 12 11 10 9 8

TXNCR

7 6 5 4 3 2 1 0

TXNCR

247
32015G–AVR32–09/09

AT32AP7001

19.6.9 PDC Transfer Control Register

Register Name: PERIPH_PTCR

Access Type: Write-only

• RXTEN: Receiver Transfer Enable

0 = No effect.

1 = Enables the receiver PDC transfer requests if RXTDIS is not set.

• RXTDIS: Receiver Transfer Disable

0 = No effect.

1 = Disables the receiver PDC transfer requests.

• TXTEN: Transmitter Transfer Enable

0 = No effect.

1 = Enables the transmitter PDC transfer requests.

• TXTDIS: Transmitter Transfer Disable

0 = No effect.

1 = Disables the transmitter PDC transfer requests

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXTDIS TXTEN

7 6 5 4 3 2 1 0

– – – – – – RXTDIS RXTEN

248
32015G–AVR32–09/09

AT32AP7001

19.6.10 PDC Transfer Status Register

Register Name: PERIPH_PTSR

Access Type: Read-only

• RXTEN: Receiver Transfer Enable

0 = Receiver PDC transfer requests are disabled.

1 = Receiver PDC transfer requests are enabled.

• TXTEN: Transmitter Transfer Enable

0 = Transmitter PDC transfer requests are disabled.

1 = Transmitter PDC transfer requests are enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – TXTEN

7 6 5 4 3 2 1 0

– – – – – – – RXTEN

249
32015G–AVR32–09/09

AT32AP7001

20. Parallel Input/Output Controller (PIO)

Rev: 2.0.2.3

20.1 Features
• Up to 32 Programmable I/O Lines
• Fully Programmable through Set/Clear Registers
• Multiplexing of Two Peripheral Functions per I/O Line
• For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose I/O)

– Input Change Interrupt
– Glitch Filter
– Programmable Pull Up on Each I/O Line
– Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time

• Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write

20.2 Description
The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each I/O line of the PIO Controller features:

•An input change interrupt enabling level change detection on any I/O line.

•A glitch filter providing rejection of pulses lower than one-half of clock cycle.

•Control of the the pull-up of the I/O line.

•Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.

250
32015G–AVR32–09/09

AT32AP7001

20.3 Block Diagram

Figure 20-1. Block Diagram

Figure 20-2. Application Block Diagram

Embedded
Peripheral

Embedded
Peripheral

PIO Interrupt

PIO Controller

Up to 32 pins

Power Manager

Up to 32
peripheral IOs

Up to 32
peripheral IOs

CLK_PIO

Peripheral Bus

Interrupt
Controller

Data, Enable

PIN 31

PIN 1

PIN 0

Data, Enable

On-Chip Peripherals

PIO Controller

On-Chip Peripheral Drivers
Control & Command

Driver
Keyboard Driver

Keyboard Driver General Purpose I/Os External Devices

251
32015G–AVR32–09/09

AT32AP7001

20.4 Product Dependencies

20.4.1 Pin Multiplexing
Each pin is configurable, according to product definition as either a general-purpose I/O line
only, or as an I/O line multiplexed with one or two peripheral I/Os. As the multiplexing is hard-
ware-defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e. not multiplexed with any peripheral I/O, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

20.4.2 External Interrupt Lines
The external interrupt request signals are most generally multiplexed through the PIO Control-
lers. However, it is not necessary to assign the I/O line to the interrupt function as the PIO
Controller has no effect on inputs and the external interrupt lines are used only as inputs.

20.4.3 Power Management
The PIO clock (CLK_PIO) is generated by the Power Manager. Before accessing the PIO, the
programmer must ensure that CLK_PIO is enabled in the Power Manager. Note that CLK_PIO
must be enabled when using the Input Change interrupt.

In the PIO description, CLK_PIO is the clock of the peripheral bus to which the PIO is
connected.

20.4.4 Interrupt Generation
The PIO interrupt line is connected to the Interrupt Controller. Using the PIO interrupt requires
the Interrupt Controller to be programmed first.

252
32015G–AVR32–09/09

AT32AP7001

20.5 Functional Description
The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic asso-
ciated to each I/O is represented in Figure 20-3. In this description each signal shown
represents but one of up to 32 possible indexes.

Figure 20-3. I/O Line Control Logic

1

0

1

0

1

0

1

0

Glitch
Filter

Peripheral B
Input

Peripheral A
Input

1

0

IFDR[0]

IFSR[0]

IFER[0]

Edge
Detector

PDSR[0] ISR[0]

IDR[0]

IMR[0]

IER[0]

PIO Interrupt

(Up to 32 possible inputs)

ISR[31]

IDR[31]

IMR[31]

IER[31]

Pad

PUDR[0]

PUSR[0]

PUER[0]

CODR[0]

ODSR[0]

SODR[0]

PDR[0]

PSR[0]

PER[0]

1

0

1

0

BSR[0]

ABSR[0]

ASR[0]

Peripheral B
Output Enable

Peripheral A
Output Enable

Peripheral B
Output

Peripheral A
Output

ODR[0]

OSR[0]

OER[0]

MDDR[0]

MDSR[0]

MDER[0]

CODR[0]

ODSR[0]

SODR[0]

MDDR[0]

MDSR[0]

MDER[0]

253
32015G–AVR32–09/09

AT32AP7001

20.5.1 Pull-up Resistor Control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by writing respectively PUER (Pull-up Enable Register) and PUDR (Pull-up Disable
Resistor). Writing in these registers results in setting or clearing the corresponding bit in PUSR
(Pull-up Status Register). Reading a 1 in PUSR means the pull-up is disabled and reading a 0
means the pull-up is enabled.

Control of the pull-up resistor is possible regardless of the configuration of the I/O line.

After reset, all of the pull-ups are enabled, i.e. PUSR resets at the value 0x0.

20.5.2 I/O Line or Peripheral Function Selection
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PER (PIO Enable Register) and PDR (PIO Disable Register). The register PSR
(PIO Status Register) is the result of the set and clear registers and indicates whether the pin is
controlled by the corresponding peripheral or by the PIO Controller. A value of 0 indicates that
the pin is controlled by the corresponding on-chip peripheral selected in the ABSR (AB Select
Status Register). A value of 1 indicates the pin is controlled by the PIO controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral), PER
and PDR have no effect and PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PSR resets at
1. However, in some events, it is important that PIO lines are controlled by the peripheral (as in
the case of memory chip select lines that must be driven inactive after reset or for address lines
that must be driven low for booting out of an external memory). Thus, the reset value of PSR is
defined at the product level, depending on the multiplexing of the device.

20.5.3 Peripheral A or B Selection
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing ASR (A Select Register) and BSR (Select B Register). ABSR
(AB Select Status Register) indicates which peripheral line is currently selected. For each pin,
the corresponding bit at level 0 means peripheral A is selected whereas the corresponding bit at
level 1 indicates that peripheral B is selected.

Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.

After reset, ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A. How-
ever, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.

Writing in ASR and BSR manages ABSR regardless of the configuration of the pin. However,
assignment of a pin to a peripheral function requires a write in the corresponding peripheral
selection register (ASR or BSR) in addition to a write in PDR.

20.5.4 Output Control
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PSR is at 0,
the drive of the I/O line is controlled by the peripheral. Peripheral A or B, depending on the value
in ABSR, determines whether the pin is driven or not.

When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing OER (Output Enable Register) and ODR (Output Disable Register). The
results of these write operations are detected in OSR (Output Status Register). When a bit in this

254
32015G–AVR32–09/09

AT32AP7001

register is at 0, the corresponding I/O line is used as an input only. When the bit is at 1, the cor-
responding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in SODR (Set Output Data Register)
and CODR (Clear Output Data Register). These write operations respectively set and clear
ODSR (Output Data Status Register), which represents the data driven on the I/O lines. Writing
in OER and ODR manages OSR whether the pin is configured to be controlled by the PIO con-
troller or assigned to a peripheral function. This enables configuration of the I/O line prior to
setting it to be managed by the PIO Controller.

Similarly, writing in SODR and CODR effects ODSR. This is important as it defines the first level
driven on the I/O line.

20.5.5 Multi-drive capability
The PIO is able to configure each pin as open drain to support external drivers on the same pin.
This is done by writing MDER (Multi-Drive Enable Register) and MDDR (Multi-Drive Disable
Register). The result of these write operations are detected in MDSR (multui-Drive Status Regis-
ter). The multi-drive mode is only available when the PIO is controlling the pin, i.e. PSR is set.

When using multi-drive the PIO will tri-state the pin when ODSR is set and drive the pin low
when ODSR is cleared. writing to OER or ODR will have no effect.

20.5.6 Synchronous Data Output
Controlling all parallel busses using several PIOs requires two successive write operations in the
SODR and CODR registers. This may lead to unexpected transient values. The PIO controller
offers a direct control of PIO outputs by single write access to ODSR (Output Data Status Regis-
ter). Only bits unmasked by OWSR (Output Write Status Register) are written. The mask bits in
the OWSR are set by writing to OWER (Output Write Enable Register) and cleared by writing to
OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the I/O lines as OWSR resets at 0x0.

20.5.7 Output Line Timings
Figure 20-4 shows how the outputs are driven either by writing SODR or CODR, or by directly
writing ODSR. This last case is valid only if the corresponding bit in OWSR is set. Figure 20-4
also shows when the feedback in PDSR is available.

Figure 20-4. Output Line Timings

2 cycles

Peripheral Bus Access

2 cycles

Peripheral Bus Access

CLK_PIO

Write SODR
Write ODSR at 1

ODSR

PDSR

Write CODR
Write ODSR at 0

255
32015G–AVR32–09/09

AT32AP7001

20.5.8 Inputs
The level on each I/O line can be read through PDSR (Pin Data Status Register). This register
indicates the level of the I/O lines regardless of their configuration, whether uniquely as an input
or driven by the PIO controller or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PDSR reads the levels present on the I/O line at the time the clock was disabled.

20.5.9 Input Glitch Filtering
Optional input glitch filters are independently programmable on each I/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 CLK_PIO cycle is automatically rejected,
while a pulse with a duration of 1 CLK_PIO cycle or more is accepted. For pulse durations
between 1/2 CLK_PIO cycle and 1 CLK_PIO cycle the pulse may or may not be taken into
account, depending on the precise timing of its occurrence. Thus for a pulse to be visible it must
exceed 1 CLK_PIO cycle, whereas for a glitch to be reliably filtered out, its duration must not
exceed 1/2 CLK_PIO cycle. The filter introduces one CLK_PIO cycle latency if the pin level
change occurs before a rising edge. However, this latency does not appear if the pin level
change occurs before a falling edge. This is illustrated in Figure 20-5.

The glitch filters are controlled by the register set; IFER (Input Filter Enable Register), IFDR
(Input Filter Disable Register) and IFSR (Input Filter Status Register). Writing IFER and IFDR
respectively sets and clears bits in IFSR. This last register enables the glitch filter on the I/O
lines.

When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PDSR and on the input change interrupt detection. The glitch fil-
ters require that the PIO Controller clock is enabled.

Figure 20-5. Input Glitch Filter Timing

20.5.10 Input Change Interrupt
The PIO Controller can be programmed to generate an interrupt when it detects an input change
on an I/O line. The Input Change Interrupt is controlled by writing IER (Interrupt Enable Register)
and IDR (Interrupt Disable Register), which respectively enable and disable the input change
interrupt by setting and clearing the corresponding bit in IMR (Interrupt Mask Register). As Input
change detection is possible only by comparing two successive samplings of the input of the I/O
line, the PIO Controller clock must be enabled. The Input Change Interrupt is available, regard-
less of the configuration of the I/O line, i.e. configured as an input only, controlled by the PIO
Controller or assigned to a peripheral function.

CLK_PIO

Pin Level

PDSR
if IFSR = 0

PDSR
if IFSR = 1

1 cycle 1 cycle 1 cycle

up to 1.5 cycles

2 cycles

up to 2.5 cycles up to 2 cycles

1 cycle

1 cycle

256
32015G–AVR32–09/09

AT32AP7001

When an input change is detected on an I/O line, the corresponding bit in ISR (Interrupt Status
Register) is set. If the corresponding bit in IMR is set, the PIO Controller interrupt line is
asserted. The interrupt signals of the thirty-two channels are ORed-wired together to generate a
single interrupt signal to the Interrupt Controller.

When the software reads ISR, all the interrupts are automatically cleared. This signifies that all
the interrupts that are pending when ISR is read must be handled.

Figure 20-6. Input Change Interrupt Timings

20.6 I/O Lines Programming Example
The programing example as shown in Table 20-1 below is used to define the following
configuration.

•4-bit output port on I/O lines 0 to 3, (should be written in a single write operation)

•Four output signals on I/O lines 4 to 7 (to drive LEDs for example)

•Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts

•Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter

•I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor

•I/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor

•I/O line 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor

CLK_PIO

Pin Level

Read ISR Peripheral Bus Access

ISR

Peripheral Bus Access

257
32015G–AVR32–09/09

AT32AP7001

Table 20-1. Programming Example

Register Value to be Written

PER 0x0000 FFFF

PDR 0x0FFF 0000

OER 0x0000 00FF

ODR 0x0FFF FF00

IFER 0x0000 0F00

IFDR 0x0FFF F0FF

SODR 0x0000 0000

CODR 0x0FFF FFFF

IER 0x0F00 0F00

IDR 0x00FF F0FF

PUDR 0x00F0 00F0

PUER 0x0F0F FF0F

ASR 0x0F0F 0000

BSR 0x00F0 0000

OWER 0x0000 000F

OWDR 0x0FFF FFF0

258
32015G–AVR32–09/09

AT32AP7001

20.7 User Interface
Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Control-
ler User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined,
writing to the corresponding bits has no effect. Undefined bits read zero. If the I/O line is not mul-
tiplexed with any peripheral, the I/O line is controlled by the PIO Controller and PSR returns 1
systematically.

Table 20-2. Register Mapping

Offset Register Name Access Reset Value

0x0000 PIO Enable Register PER Write-only –

0x0004 PIO Disable Register PDR Write-only –

0x0008 PIO Status Register PSR Read-only (1)

0x000C Reserved

0x0010 Output Enable Register OER Write-only –

0x0014 Output Disable Register ODR Write-only –

0x0018 Output Status Register OSR Read-only 0x0000 0000

0x001C Reserved

0x0020 Glitch Input Filter Enable Register IFER Write-only –

0x0024 Glitch Input Filter Disable Register IFDR Write-only –

0x0028 Glitch Input Filter Status Register IFSR Read-only 0x0000 0000

0x002C Reserved

0x0030 Set Output Data Register SODR Write-only –

0x0034 Clear Output Data Register CODR Write-only –

0x0038 Output Data Status Register ODSR
Read-only

or

Read/Write(2)

0x0000 0000

0x003C Pin Data Status Register(3) PDSR Read-only

0x0040 Interrupt Enable Register IER Write-only –

0x0044 Interrupt Disable Register IDR Write-only –

0x0048 Interrupt Mask Register IMR Read-only 0x0000 0000

0x004C Interrupt Status Register(4) ISR Read-only 0x0000 0000

0x0050 Multi-driver Enable Register MDER Write-only

0x0054 Multi-driver Disable Register MDDR Write-only

0x0058 Multi-driver Status Register MDSR Read-only

0x005C Reserved

0x0060 Pull-up Disable Register PUDR Write-only –

0x0064 Pull-up Enable Register PUER Write-only –

0x0068 Pad Pull-up Status Register PUSR Read-only 0x0000 0000

259
32015G–AVR32–09/09

AT32AP7001

Notes: 1. Reset value of PSR depends on the product implementation.
2. ODSR is Read-only or Read/Write depending on OWSR I/O lines.
3. Reset value of PDSR depends on the level of the I/O lines.
4. ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have occurred.
5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second

register.

0x006C Reserved

0x0070 Peripheral A Select Register(5) ASR Write-only –

0x0074 Peripheral B Select Register(5) BSR Write-only –

0x0078 AB Status Register(5) ABSR Read-only 0x0000 0000

0x007C to
0x009C

Reserved

0x00A0 Output Write Enable OWER Write-only –

0x00A4 Output Write Disable OWDR Write-only –

0x00A8 Output Write Status Register OWSR Read-only 0x0000 0000

0x00AC- 0x00FC Reserved

Table 20-2. Register Mapping (Continued)

Offset Register Name Access Reset Value

260
32015G–AVR32–09/09

AT32AP7001

20.7.1 PIO Controller PIO Enable Register

Name: PER

Access Type: Write-only

• P0-P31: PIO Enable

0 = No effect.

1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

261
32015G–AVR32–09/09

AT32AP7001

20.7.2 PIO Controller PIO Disable Register

Name: PDR

Access Type: Write-only

• P0-P31: PIO Disable

0 = No effect.

1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

262
32015G–AVR32–09/09

AT32AP7001

20.7.3 PIO Controller PIO Status Register

Name: PSR

Access Type: Read-only

• P0-P31: PIO Status

0 = PIO is inactive on the corresponding I/O line (peripheral is active).

1 = PIO is active on the corresponding I/O line (peripheral is inactive).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

263
32015G–AVR32–09/09

AT32AP7001

20.7.4 PIO Controller Output Enable Register

Name: OER

Access Type: Write-only

• P0-P31: Output Enable

0 = No effect.

1 = Enables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

264
32015G–AVR32–09/09

AT32AP7001

20.7.5 PIO Controller Output Disable Register

Name: ODR

Access Type: Write-only

• P0-P31: Output Disable

0 = No effect.

1 = Disables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

265
32015G–AVR32–09/09

AT32AP7001

20.7.6 PIO Controller Output Status Register

Name: OSR

Access Type: Read-only

• P0-P31: Output Status

0 = The I/O line is a pure input.

1 = The I/O line is enabled in output.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

266
32015G–AVR32–09/09

AT32AP7001

20.7.7 PIO Controller Glitch Input Filter Enable Register

Name: IFER

Access Type: Write-only

• P0-P31: Input Filter Enable

0 = No effect.

1 = Enables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

267
32015G–AVR32–09/09

AT32AP7001

20.7.8 PIO Controller Glitch Input Filter Disable Register

Name: IFDR

Access Type: Write-only

• P0-P31: Input Filter Disable

0 = No effect.

1 = Disables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

268
32015G–AVR32–09/09

AT32AP7001

20.7.9 PIO Controller Glitch Input Filter Status Register

Name: IFSR

Access Type: Read-only

• P0-P31: Input Filer Status

0 = The input glitch filter is disabled on the I/O line.

1 = The input glitch filter is enabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

269
32015G–AVR32–09/09

AT32AP7001

20.7.10 PIO Controller Set Output Data Register

Name: SODR

Access Type: Write-only

• P0-P31: Set Output Data

0 = No effect.

1 = Sets the data to be driven on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

270
32015G–AVR32–09/09

AT32AP7001

20.7.11 PIO Controller Clear Output Data Register

Name: CODR

Access Type: Write-only

• P0-P31: Set Output Data

0 = No effect.

1 = Clears the data to be driven on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

271
32015G–AVR32–09/09

AT32AP7001

20.7.12 PIO Controller Output Data Status Register

Name: ODSR

Access Type: Read-only or Read/Write

• P0-P31: Output Data Status

0 = The data to be driven on the I/O line is 0.

1 = The data to be driven on the I/O line is 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

272
32015G–AVR32–09/09

AT32AP7001

20.7.13 PIO Controller Pin Data Status Register

Name: PDSR

Access Type: Read-only

• P0-P31: Output Data Status

0 = The I/O line is at level 0.

1 = The I/O line is at level 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

273
32015G–AVR32–09/09

AT32AP7001

20.7.14 PIO Controller Interrupt Enable Register

Name: IER

Access Type: Write-only

• P0-P31: Input Change Interrupt Enable

0 = No effect.

1 = Enables the Input Change Interrupt on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

274
32015G–AVR32–09/09

AT32AP7001

20.7.15 PIO Controller Interrupt Disable Register

Name: IDR

Access Type: Write-only

• P0-P31: Input Change Interrupt Disable

0 = No effect.

1 = Disables the Input Change Interrupt on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

275
32015G–AVR32–09/09

AT32AP7001

20.7.16 PIO Controller Interrupt Mask Register

Name: IMR

Access Type: Read-only

• P0-P31: Input Change Interrupt Mask

0 = Input Change Interrupt is disabled on the I/O line.

1 = Input Change Interrupt is enabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

276
32015G–AVR32–09/09

AT32AP7001

20.7.17 PIO Controller Interrupt Status Register

Name: ISR

Access Type: Read-only

• P0-P31: Input Change Interrupt Status

0 = No Input Change has been detected on the I/O line since ISR was last read or since reset.

1 = At least one Input Change has been detected on the I/O line since ISR was last read or since reset.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

277
32015G–AVR32–09/09

AT32AP7001

20.7.18 PIO Controller Multi-driver Enable Register

Name: MDER

Access Type: Write-only

This register is used to enable PIO output drivers to be configured as open drain to support external drivers on the same
pin.

• P0-P31:

0 = No effect.

1 = Enables multi-drive option on the corresponding pin.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

278
32015G–AVR32–09/09

AT32AP7001

20.7.19 PIO Controller Multi-driver Disable Register

Name: MDDR

Access Type: Write-only

This register is used to diasble the open drain configuration of the output buffer.

• P0-P31:

0 = No effect.

1 = Disables multi-drive option on the corresponding pin.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

279
32015G–AVR32–09/09

AT32AP7001

20.7.20 PIO Controller Multi-driver Status Register

Name: MDSR

Access Type: Read-only

This register indicates which pins are configured with open drain drivers.

• P0-P31:

0 = PIO is not configured as an open drain.

1 = PIO is configured as an open drain.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

280
32015G–AVR32–09/09

AT32AP7001

20.7.21 PIO Pull Up Disable Register

Name: PUDR

Access Type: Write-only

• P0-P31: Pull Up Disable.

0 = No effect.

1 = Disables the pull up resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

281
32015G–AVR32–09/09

AT32AP7001

20.7.22 PIO Pull Up Enable Register

Name: PUER

Access Type: Write-only

• P0-P31: Pull Up Enable.

0 = No effect.

1 = Enables the pull up resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

282
32015G–AVR32–09/09

AT32AP7001

20.7.23 PIO Pull Up Status Register

Name: PUSR

Access Type: Read-only

• P0-P31: Pull Up Status.

0 = Pull Up resistor is enabled on the I/O line.

1 = Pull Up resistor is disabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

283
32015G–AVR32–09/09

AT32AP7001

20.7.24 PIO Peripheral A Select Register

Name: ASR

Access Type: Write-only

• P0-P31: Peripheral A Select.

0 = No effect.

1 = Assigns the I/O line to the Peripheral A function.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

284
32015G–AVR32–09/09

AT32AP7001

20.7.25 PIO Peripheral B Select Register

Name: BSR

Access Type: Write-only

• P0-P31: Peripheral B Select.

0 = No effect.

1 = Assigns the I/O line to the peripheral B function.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

285
32015G–AVR32–09/09

AT32AP7001

20.7.26 PIO Peripheral A B Status Register

Name: ABSR

Access Type: Read-only

• P0-P31: Peripheral A B Status.

0 = The I/O line is assigned to the Peripheral A.

1 = The I/O line is assigned to the Peripheral B.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

286
32015G–AVR32–09/09

AT32AP7001

20.7.27 PIO Output Write Enable Register

Name: OWER

Access Type: Write-only

• P0-P31: Output Write Enable.

0 = No effect.

1 = Enables writing ODSR for the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

287
32015G–AVR32–09/09

AT32AP7001

20.7.28 PIO Output Write Disable Register

Name: OWDR

Access Type: Write-only

• P0-P31: Output Write Disable.

0 = No effect.

1 = Disables writing ODSR for the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

288
32015G–AVR32–09/09

AT32AP7001

20.7.29 PIO Output Write Status Register

Name: OWSR

Access Type: Read-only

• P0-P31: Output Write Status.

0 = Writing ODSR does not affect the I/O line.

1 = Writing ODSR affects the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

289
32015G–AVR32–09/09

AT32AP7001

21. Serial Peripheral Interface (SPI)

Rev: 1.7.1.3

21.1 Features

• Supports Communication with Serial External Devices
– Four Chip Selects with External Decoder Support Allow Communication with Up to 15

Peripherals
– Serial Memories, such as DataFlash and 3-wire EEPROMs
– Serial Peripherals, such as ADCs, DACs, CAN Controllers and Sensors
– External Co-processors

• Master or Slave Serial Peripheral Bus Interface
– 8- to 16-bit Programmable Data Length Per Chip Select
– Programmable Phase and Polarity Per Chip Select
– Programmable Transfer Delays Between Consecutive Transfers and Between Clock and Data

Per Chip Select
– Programmable Delay Between Consecutive Transfers
– Selectable Mode Fault Detection

• Connection to PDC Channel Capabilities Optimizes Data Transfers
– One Channel for the Receiver, One Channel for the Transmitter
– Next Buffer Support

21.2 Description

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master”' which controls the data
flow, while the other devices act as “slaves'' which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of
the master. There may be no more than one slave transmitting data during any particular
transfer.

• Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data
bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once for
each bit that is transmitted.

• Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

290
32015G–AVR32–09/09

AT32AP7001

21.3 Block Diagram

Figure 21-1. Block Diagram

SPI Interface

Interrupt Control

PIO

PDC

Power
Manager

MCK

SPI Interrupt

SPCK

MISO

MOSI

NPCS0/NSS

NPCS1

NPCS2

DIV

NPCS3

ral Bus

MCK
32

(1)

291
32015G–AVR32–09/09

AT32AP7001

21.4 Application Block Diagram

Figure 21-2. Application Block Diagram: Single Master/Multiple Slave Implementation

SPI Master

SPCK

MISO

MOSI

NPCS0

NPCS1

NPCS2

SPCK

MISO

MOSI

NSS

Slave 0

SPCK

MISO

MOSI

NSS

Slave 1

SPCK

MISO

MOSI

NSS

Slave 2

NC

NPCS3

292
32015G–AVR32–09/09

AT32AP7001

21.5 Signal Description

Table 21-1. Signal Description

Pin Name Pin Description

Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1-NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

293
32015G–AVR32–09/09

AT32AP7001

21.6 Product Dependencies

21.6.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the SPI pins to their peripheral
functions. To use the local loopback function the SPI pins must be controlled by the SPI.

21.6.2 Power Management

The SPI clock is generated by the Power Manager. Before using the SPI, the programmer must
ensure that the SPI clock is enabled in the Power Manager.

In the SPI description, Master Clock (MCK) is the clock of the peripheral bus to which the SPI is
connected.

21.6.3 Interrupt

The SPI interface has an interrupt line connected to the Interrupt Controller. Handling the SPI
interrupt requires programming the interrupt controller before configuring the SPI.

294
32015G–AVR32–09/09

AT32AP7001

21.7 Functional Description

21.7.1 Modes of Operation

The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCS0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCS0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

21.7.2 Data Transfer

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 21-2 shows the four modes and corresponding parameter settings.

Figure 21-3 and Figure 21-4 show examples of data transfers.

Table 21-2. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA

0 0 1

1 0 0

2 1 1

3 1 0

295
32015G–AVR32–09/09

AT32AP7001

Figure 21-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

Figure 21-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

6

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

* Not defined, but normally MSB of previous character received.

1 2 3 4 5 7 86

*

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

1 2 3 4 5 7

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

* Not defined but normally LSB of previous character transmitted.

2

2

6

296
32015G–AVR32–09/09

AT32AP7001

21.7.3 Master Mode Operations

When configured in Master Mode, the SPI uses the internal programmable baud rate generator
as clock source. It fully controls the data transfers to and from the slave(s) connected to the SPI
bus. The SPI drives the chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the TDR (Transmit
Data Register). The written data is immediately transferred in the Shift Register and transfer on
the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO line
is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

Before writing the TDR, the PCS field must be set in order to select a slave.

If new data is written in TDR during the transfer, it stays in it until the current transfer is com-
pleted. Then, the received data is transferred from the Shift Register to RDR, the data in TDR is
loaded in the Shift Register and a new transfer starts.

The transfer of a data written in TDR in the Shift Register is indicated by the TDRE bit (Transmit
Data Register Empty) in the Status Register (SR). When new data is written in TDR, this bit is
cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SR register. If a transfer delay (DLY-
BCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said delay.
The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SR). When the received data is read, the
RDRF bit is cleared.

If the RDR (Receive Data Register) has not been read before new data is received, the Overrun
Error bit (OVRES) in SR is set. When this bit is set the SPI will continue to update RDR when
data is received, overwriting the previously received data. The user has to read the status regis-
ter to clear the OVRES bit.

Figure 21-5 on page 297 shows a block diagram of the SPI when operating in Master Mode. Fig-
ure 21-6 on page 298 shows a flow chart describing how transfers are handled.

297
32015G–AVR32–09/09

AT32AP7001

21.7.3.1 Master Mode Block Diagram

Figure 21-5. Master Mode Block Diagram

Shift Register

SPCK

MOSI
LSB MSB

MISO

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0..3

CPOL
NCPHA

BITS

0

1

FDIV

MCK

MCK/N

Baud Rate Generator

SPI_CSR0..3

SCBR

NPCS3

NPCS0

NPCS2

NPCS1

NPCS0

0

1

PS

SPI_MR
PCS

SPI_TDR
PCS

MODF

Current
Peripheral

SPI_RDR
PCS

SPI_CSR0..3
CSAAT

PCSDEC

MODFDIS

MSTR

298
32015G–AVR32–09/09

AT32AP7001

21.7.3.2 Master Mode Flow Diagram

Figure 21-6. Master Mode Flow Diagram S

SPI Enable

CSAAT ?

PS ?

1

0

0

1

1

NPCS = SPI_TDR(PCS) NPCS = SPI_MR(PCS)

Delay DLYBS

Serializer = SPI_TDR(TD)
TDRE = 1

Data Transfer

SPI_RDR(RD) = Serializer
RDRF = 1

TDRE ?

NPCS = 0xF

Delay DLYBCS

Fixed
 peripheral

Variable
peripheral

Delay DLYBCT

0

1
CSAAT ?

0

TDRE ?
1

0

PS ?
0

1

SPI_TDR(PCS)
= NPCS ?

no

yes
SPI_MR(PCS)

= NPCS ?

no

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_TDR(PCS)

NPCS = 0xF

Delay DLYBCS

NPCS = SPI_MR(PCS),
 SPI_TDR(PCS)

Fixed
 peripheral

Variable
peripheral

- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the
 Chip Select Register corresponding to the Current Chip Select
- When NPCS is 0xF, CSAAT is 0.

299
32015G–AVR32–09/09

AT32AP7001

21.7.3.3 Clock Generation

The SPI Baud rate clock is generated by dividing the Master Clock (MCK) or the Master Clock
divided by 32, by a value between 1 and 255. The selection between Master Clock or Master
Clock divided by 32 is done by the FDIV value set in the Mode Register

This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255*32.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

21.7.3.4 Transfer Delays

Figure 21-7 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

• The delay between chip selects, programmable only once for all the chip selects by writing the
DLYBCS field in the Mode Register. Allows insertion of a delay between release of one chip
select and before assertion of a new one.

• The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

• The delay between consecutive transfers, independently programmable for each chip select by
writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on the
same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

Figure 21-7. Programmable Delays

DLYBCS DLYBS DLYBCT DLYBCT

Chip Select 1

Chip Select 2

SPCK

300
32015G–AVR32–09/09

AT32AP7001

21.7.3.5 Peripheral Selection

The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

The peripheral selection can be performed in two different ways:

• Fixed Peripheral Select: SPI exchanges data with only one peripheral

• Variable Peripheral Select: Data can be exchanged with more than one peripheral

Fixed Peripheral Select is activated by writing the PS bit to zero in MR (Mode Register). In this
case, the current peripheral is defined by the PCS field in MR and the PCS field in TDR have no
effect.

Variable Peripheral Select is activated by setting PS bit to one. The PCS field in TDR is used to
select the current peripheral. This means that the peripheral selection can be defined for each
new data.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in TDR is 32 bits wide and defines the real data to be
transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit wide
buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, however the
SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI lines with
the chip select configuration registers. This is not the optimal means in term of memory size for
the buffers, but it provides a very effective means to exchange data with several peripherals
without any intervention of the processor.

21.7.3.6 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCS0 to NPCS3 with an external logic. This can be enabled by writing the PCS-
DEC bit at 1 in the Mode Register (MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14.

301
32015G–AVR32–09/09

AT32AP7001

21.7.3.7 Peripheral Deselection

When operating normally, as soon as the transfer of the last data written in TDR is completed,
the NPCS lines all rise. This might lead to runtime error if the processor is too long in responding
to an interrupt, and thus might lead to difficulties for interfacing with some serial peripherals
requiring the chip select line to remain active during a full set of transfers.

To facilitate interfacing with such devices, the Chip Select Register can be programmed with the
CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in
their current state (low = active) until transfer to another peripheral is required.

Figure 21-8 shows different peripheral deselection cases and the effect of the CSAAT bit.

Figure 21-8. Peripheral Deselection

A

NPCS[0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

DLYBCT

PCS=A

A

DLYBCS

DLYBCT

A

PCS = A

AA

DLYBCT

A A

CSAAT = 0

DLYBCT

A A

CSAAT = 1

A

302
32015G–AVR32–09/09

AT32AP7001

21.7.3.8 Mode Fault Detection

A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCS0/NSS signal. NPCS0, MOSI, MISO and SPCK must be con-
figured in open-drain through the PIO controller, so that external pull up resistors are needed to
guarantee high level.

When a mode fault is detected, the MODF bit in the SR is set until the SR is read and the SPI is
automatically disabled until re-enabled by writing the SPIEN bit in the CR (Control Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (MR).

21.7.4 SPI Slave Mode

When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the BITS field of the Chip Select Register 0 (CSR0). These bits are processed follow-
ing a phase and a polarity defined respectively by the NCPHA and CPOL bits of the CSR0. Note
that BITS, CPOL and NCPHA of the other Chip Select Registers have no effect when the SPI is
programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDRF bit rises. If RDRF is already high when the data is transferred, the Overrun bit
rises and the data transfer to RDR is aborted.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (TDR), the last data received is transferred. If no
data has been received since the last reset, all bits are transmitted low, as the Shift Register
resets at 0.

When a first data is written in TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in TDR until a transfer occurs, i.e. NSS falls and
there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in TDR is
transferred in the Shift Register and the TDRE bit rises. This enables frequent updates of critical
variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in TDR since the last load
from TDR to the Shift Register, the Shift Register is not modified and the last received character
is retransmitted.

Figure 21-9 shows a block diagram of the SPI when operating in Slave Mode.

303
32015G–AVR32–09/09

AT32AP7001

Figure 21-9. Slave Mode Functional Block Diagram

Shift Register

SPCK

SPIENS

LSB MSB

NSS

MOSI

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0

CPOL
NCPHA

BITS

FLOAD

SPIEN

SPIDIS

MISO

304
32015G–AVR32–09/09

AT32AP7001

21.8 Serial Peripheral Interface (SPI) User Interface

Note: 1. Values in the Version Register vary with the version of the IP block implementation.

Table 21-3. SPI Register Mapping

Offset Register Register Name Access Reset

0x00 Control Register CR Write-only ---

0x04 Mode Register MR Read/Write 0x0

0x08 Receive Data Register RDR Read-only 0x0

0x0C Transmit Data Register TDR Write-only ---

0x10 Status Register SR Read-only 0x000000F0

0x14 Interrupt Enable Register IER Write-only ---

0x18 Interrupt Disable Register IDR Write-only ---

0x1C Interrupt Mask Register IMR Read-only 0x0

0x20 - 0x2C Reserved

0x30 Chip Select Register 0 CSR0 Read/Write 0x0

0x34 Chip Select Register 1 CSR1 Read/Write 0x0

0x38 Chip Select Register 2 CSR2 Read/Write 0x0

0x3C Chip Select Register 3 CSR3 Read/Write 0x0

0x004C - 0x00F8 Reserved – – –

0x00FC Version Register VERSION Read-only 0x- (1)

0x100 - 0x124 Reserved for the PDC

305
32015G–AVR32–09/09

AT32AP7001

21.8.1 SPI Control Register

Name: CR

Access Type: Write-only

• SPIEN: SPI Enable

0 = No effect.

1 = Enables the SPI to transfer and receive data.

• SPIDIS: SPI Disable

0 = No effect.

1 = Disables the SPI.

As soon as SPDIS is set, SPI finishes its transfer.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.

• SWRST: SPI Software Reset

0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.

The SPI is in slave mode after a software reset.

PDC channels are not affected by software reset.

• LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

31 30 29 28 27 26 25 24

– – – – – – – LASTXFER

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – – – SPIDIS SPIEN

306
32015G–AVR32–09/09

AT32AP7001

21.8.2 SPI Mode Register

Name: MR

Access Type: Read/Write

• MSTR: Master/Slave Mode

0 = SPI is in Slave mode.

1 = SPI is in Master mode.

• PS: Peripheral Select

0 = Fixed Peripheral Select.

1 = Variable Peripheral Select.

• PCSDEC: Chip Select Decode

0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:

CSR0 defines peripheral chip select signals 0 to 3.

CSR1 defines peripheral chip select signals 4 to 7.

CSR2 defines peripheral chip select signals 8 to 11.

CSR3 defines peripheral chip select signals 12 to 14.

• FDIV: Clock Selection

0 = The SPI operates at MCK.

1 = The SPI operates at MCK/N.

• MODFDIS: Mode Fault Detection

0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

• LLB: Local Loopback Enable

0 = Local loopback path disabled.

1 = Local loopback path enabled.

LLB controls the local loopback on the data serializer for testing in Master Mode only. MISO is internally connected to
MOSI.

31 30 29 28 27 26 25 24

DLYBCS

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

LLB – – MODFDIS FDIV PCSDEC PS MSTR

307
32015G–AVR32–09/09

AT32AP7001

• PCS: Peripheral Chip Select

This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS.

• DLYBCS: Delay Between Chip Selects

This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods (or 6*N MCK periods if FDIV is set) will be inserted by default.

Otherwise, the following equation determines the delay:

If FDIV is 0:

If FDIV is 1:

Delay Between Chip Selects DLYBCS
MCK

-----------------------=

Delay Between Chip Selects DLYBCS N×
MCK

---------------------------------=

308
32015G–AVR32–09/09

AT32AP7001

21.8.3 SPI Receive Data Register

Name: RDR

Access Type: Read-only

• RD: Receive Data

Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

• PCS: Peripheral Chip Select

In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

RD

7 6 5 4 3 2 1 0

RD

309
32015G–AVR32–09/09

AT32AP7001

21.8.4 SPI Transmit Data Register

Name: TDR

Access Type: Write-only

• TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

• PCS: Peripheral Chip Select

This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] output signals = PCS

• LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

This field is only used if Variable Peripheral Select is active (PS = 1).

31 30 29 28 27 26 25 24

– – – – – – – LASTXFER

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

TD

7 6 5 4 3 2 1 0

TD

310
32015G–AVR32–09/09

AT32AP7001

21.8.5 SPI Status Register

Name: SR

Access Type: Read-only

• RDRF: Receive Data Register Full

0 = No data has been received since the last read of RDR

1 = Data has been received and the received data has been transferred from the serializer to RDR since the last read of
RDR.

• TDRE: Transmit Data Register Empty

0 = Data has been written to TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

• MODF: Mode Fault Error

0 = No Mode Fault has been detected since the last read of SR.

1 = A Mode Fault occurred since the last read of the SR.

• OVRES: Overrun Error Status

0 = No overrun has been detected since the last read of SR.

1 = An overrun has occurred since the last read of SR.

An overrun occurs when RDR is loaded at least twice from the serializer since the last read of the RDR.

• ENDRX: End of RX buffer

0 = The Receive Counter Register has not reached 0 since the last write in RCR or RNCR.

1 = The Receive Counter Register has reached 0 since the last write in RCR or RNCR.

• ENDTX: End of TX buffer

0 = The Transmit Counter Register has not reached 0 since the last write in TCR or TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TCR or TNCR.

• RXBUFF: RX Buffer Full

0 = RCR or RNCR has a value other than 0.

1 = Both RCR and RNCR has a value of 0.

• TXBUFE: TX Buffer Empty

0 = TCR or TNCR has a value other than 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – SPIENS

15 14 13 12 11 10 9 8

– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

311
32015G–AVR32–09/09

AT32AP7001

1 = Both TCR and TNCR has a value of 0.

• NSSR: NSS Rising

0 = No rising edge detected on NSS pin since last read.

1 = A rising edge occurred on NSS pin since last read.

• TXEMPTY: Transmission Registers Empty

0 = As soon as data is written in TDR.

1 = TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of such
delay.

• SPIENS: SPI Enable Status

0 = SPI is disabled.

1 = SPI is enabled.

312
32015G–AVR32–09/09

AT32AP7001

21.8.6 SPI Interrupt Enable Register

Name: IER

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Enable

• TDRE: SPI Transmit Data Register Empty Interrupt Enable

• MODF: Mode Fault Error Interrupt Enable

• OVRES: Overrun Error Interrupt Enable
• ENDRX: End of Receive Buffer Interrupt Enable
• ENDTX: End of Transmit Buffer Interrupt Enable
• RXBUFF: Receive Buffer Full Interrupt Enable
• TXBUFE: Transmit Buffer Empty Interrupt Enable
• TXEMPTY: Transmission Registers Empty Enable
• NSSR: NSS Rising Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

313
32015G–AVR32–09/09

AT32AP7001

21.8.7 SPI Interrupt Disable Register

Name: IDR

Access Type: Write-only

• RDRF: Receive Data Register Full Interrupt Disable

• TDRE: SPI Transmit Data Register Empty Interrupt Disable

• MODF: Mode Fault Error Interrupt Disable

• OVRES: Overrun Error Interrupt Disable
• ENDRX: End of Receive Buffer Interrupt Disable
• ENDTX: End of Transmit Buffer Interrupt Disable
• RXBUFF: Receive Buffer Full Interrupt Disable
• TXBUFE: Transmit Buffer Empty Interrupt Disable
• TXEMPTY: Transmission Registers Empty Disable
• NSSR: NSS Rising Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

314
32015G–AVR32–09/09

AT32AP7001

21.8.8 SPI Interrupt Mask Register

Name: IMR

Access Type: Read-only

• RDRF: Receive Data Register Full Interrupt Mask

• TDRE: SPI Transmit Data Register Empty Interrupt Mask

• MODF: Mode Fault Error Interrupt Mask

• OVRES: Overrun Error Interrupt Mask
• ENDRX: End of Receive Buffer Interrupt Mask
• ENDTX: End of Transmit Buffer Interrupt Mask
• RXBUFF: Receive Buffer Full Interrupt Mask
• TXBUFE: Transmit Buffer Empty Interrupt Mask
• TXEMPTY: Transmission Registers Empty Mask
• NSSR: NSS Rising Interrupt Mask

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

315
32015G–AVR32–09/09

AT32AP7001

21.8.9 SPI Chip Select Register

Name: CSR0... CSR3

Access Type: Read/Write

• CPOL: Clock Polarity

0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

• NCPHA: Clock Phase

0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

• CSAAT: Chip Select Active After Transfer

0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.

• BITS: Bits Per Transfer

The BITS field determines the number of data bits transferred. Reserved values should not be used, see Table 21-4 on
page 316.

31 30 29 28 27 26 25 24

DLYBCT

23 22 21 20 19 18 17 16

DLYBS

15 14 13 12 11 10 9 8

SCBR

7 6 5 4 3 2 1 0

BITS CSAAT – NCPHA CPOL

316
32015G–AVR32–09/09

AT32AP7001

.

• SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:

If FDIV is 0:

If FDIV is 1:

Note: N = 32

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

• DLYBS: Delay Before SPCK

This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Table 21-4. BITS, Bits Per Transfer

BITS Bits Per Transfer

0000 8

0001 9

0010 10

0011 11

0100 12

0101 13

0110 14

0111 15

1000 16

1001 Reserved

1010 Reserved

1011 Reserved

1100 Reserved

1101 Reserved

1110 Reserved

1111 Reserved

 SPCK Baudrate MCK
SCBR
---------------=

SPCK Baudrate MCK
N SCBR×()

------------------------------=

317
32015G–AVR32–09/09

AT32AP7001

Otherwise, the following equations determine the delay:

If FDIV is 0:

If FDIV is 1:

Note: N = 32

• DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.

Otherwise, the following equation determines the delay:

If FDIV is 0:

If FDIV is 1:

Note: N = 32

Delay Before SPCK DLYBS
MCK

-------------------=

Delay Before SPCK N DLYBS×
MCK

-----------------------------=

Delay Between Consecutive Transfers 32 DLYBCT×
MCK

------------------------------------ SCBR
2MCK
-----------------+=

Delay Between Consecutive Transfers 32 N× DLYBCT×
MCK

--- N SCBR×
2MCK

-------------------------+=

318
32015G–AVR32–09/09

AT32AP7001

22. Two-wire Interface (TWI)

Rev: 1.8.0.1

22.1 Features
• Compatible with Philips’ I2C protocol
• One, Two or Three Bytes for Slave Address
• Sequential Read/Write Operations

22.2 Description
The Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of
one clock line and one data line with speeds of up to 400 Kbits per second, based on a byte-ori-
ented transfer format. It can be used with any Atmel two-wire bus Serial EEPROM. The TWI is
programmable as a master with sequential or single-byte access. A configurable baud rate gen-
erator permits the output data rate to be adapted to a wide range of core clock frequencies.

22.3 Block Diagram

Figure 22-1. Block Diagram

22.4 Application Block Diagram

Figure 22-2. Application Block Diagram

Peripheral Bus
 Bridge

Power
Manager

MCK

Two-wire
Interface

PIO

Interrupt
Controller

TWI
Interrupt

TWCK

TWD

Host with
TWI

Interface

TWD

TWCK

AT24LC16
U1

AT24LC16
U2

Slave 1 Slave 2

R R

VDD

319
32015G–AVR32–09/09

AT32AP7001

22.4.1 I/O Lines Description

22.5 Product Dependencies

22.5.1 I/O Lines
Both TWD and TWCK are bi-directional lines, connected to a positive supply voltage via a cur-
rent source or pull-up resistor (see Figure 1-2 on page 1). When the bus is free, both lines are
high. The output stages of devices connected to the bus must have an open-drain or open-col-
lector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer
must program the PIO controller to dedicate TWD and TWCK as peripheral lines.

22.5.2 Power Management
The TWI clock is generated by the power manager. Before using the TWI, the programmer must
ensure that the TWI clock is enabled in the power manager.

In the TWI description, Master Clock (MCK) is the clock of the peripheral bus to which the TWI is
connected.

22.5.3 Interrupt
The TWI interface has an interrupt line connected to the interrupt controller. In order to handle
interrupts, the interrupt controller must be programmed before configuring the TWI.

Table 22-1. I/O Lines Description

Pin Name Pin Description Type

TWD Two-wire Serial Data Input/Output

TWCK Two-wire Serial Clock Input/Output

320
32015G–AVR32–09/09

AT32AP7001

22.6 Functional Description

22.6.1 Transfer format
The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
22-4 on page 320).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
22-3 on page 320).

•A high-to-low transition on the TWD line while TWCK is high defines the START condition.

•A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 22-3. START and STOP Conditions

Figure 22-4. Transfer Format

22.6.2 Modes of Operation
The TWI has two modes of operation:

•Master transmitter mode

•Master receiver mode

The TWI Control Register (CR) allows configuration of the interface in Master Mode. In this
mode, it generates the clock according to the value programmed in the Clock Waveform Gener-
ator Register (CWGR). This register defines the TWCK signal completely, enabling the interface
to be adapted to a wide range of clocks.

22.6.3 Transmitting Data
After the master initiates a Start condition, it sends a 7-bit slave address, configured in the Mas-
ter Mode register (DADR in MMR), to notify the slave device. The bit following the slave address
indicates the transfer direction (write or read). If this bit is 0, it indicates a write operation (trans-
mit operation). If the bit is 1, it indicates a request for data read (receive operation).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse, the master releases the data line (HIGH), enabling the slave to pull it down in
order to generate the acknowledge. The master polls the data line during this clock pulse and
sets the NAK bit in the status register if the slave does not acknowledge the byte. As with the

TWD

TWCK

Start Stop

TWD

TWCK

Start Address R/W Ack Data Ack Data Ack Stop

321
32015G–AVR32–09/09

AT32AP7001

other status bits, an interrupt can be generated if enabled in the interrupt enable register (IER).
After writing in the transmit-holding register (THR), setting the START bit in the control register
starts the transmission. The data is shifted in the internal shifter and when an acknowledge is
detected, the TXRDY bit is set until a new write in the THR (see Figure 22-6 below). The master
generates a stop condition to end the transfer.

The read sequence begins by setting the START bit. When the RXRDY bit is set in the status
register, a character has been received in the receive-holding register (RHR). The RXRDY bit is
reset when reading the RHR.

The TWI interface performs various transfer formats (7-bit slave address, 10-bit slave address).
The three internal address bytes are configurable through the Master Mode register (MMR). If
the slave device supports only a 7-bit address, IADRSZ must be set to 0. For a slave address
higher than 7 bits, the user must configure the address size (IADRSZ) and set the other slave
address bits in the internal address register (IADR).

Figure 22-5. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

Figure 22-6. Master Write with One Byte Internal Address and Multiple Data Bytes

Figure 22-7. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A DATA A P

S DADR W A IADR(15:8) A IADR(7:0) A PDATA A

A IADR(7:0) A PDATA AS DADR W

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

TWD

TWD

A IADR(7:0) A DATA AS DADR W DATA A PDATA A

TXCOMP

TXRDY

Write THR

Write THR Write THR Write THR

TWD

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A

S DADR W A IADR(15:8) A IADR(7:0) A

A IADR(7:0) AS DADR W

DATA N P

S DADR R A

S DADR R A DATA N P

S DADR R A DATA N P

TWD

TWD

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

322
32015G–AVR32–09/09

AT32AP7001

Figure 22-8. Master Read with One Byte Internal Address and Multiple Data Bytes

•S = Start

•P = Stop

•W = Write

•R = Read

•A = Acknowledge

•N = Not Acknowledge

•DADR= Device Address

•IADR = Internal Address

Figure 22-9 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the
use of internal addresses to access the device.

Figure 22-9. Internal Address Usage

A IADR(7:0) AS DADR W S DADR R A DATA A DATA N P

TXCOMP

Write START Bit

RXRDY

Write STOP Bit

Read RHR Read RHR

TWD

S
T
A
R
T

M
S
B

Device
Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST
WORD ADDRESS

SECOND
WORD ADDRESS DATA

S
T
O
P

323
32015G–AVR32–09/09

AT32AP7001

22.6.4 Read/Write Flowcharts
The following flowcharts shown in Figure 22-10 on page 323 and in Figure 22-11 on page 324
give examples for read and write operations in Master Mode. A polling or interrupt method can
be used to check the status bits. The interrupt method requires that the interrupt enable register
(IER) be configured first.

Figure 22-10. TWI Write in Master Mode

Set TWI clock:
 CWGR = clock

Set the control register:
- Master enable
 CR = MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit

Write ==> bit MREAD = 0

Internal address size = 0?

Load transmit register
THR = Data to send

Read status register

TXRDY = 0?

Data to send?

Read status register

TXCOMP = 0?

END

START

Set theinternal address
IADR = address

Yes

THR = data to send

Yes

Yes

Yes

324
32015G–AVR32–09/09

AT32AP7001

Figure 22-11. TWI Read in Master Mode

Set TWI clock:
CWGR = clock

Set the control register:
- Master enable

CR = MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit

Read ==> bit MREAD = 0

Internal address size = 0?

Start the transfer
CR = START

Stop the transfer
CR = STOP

Read status register

RXRDY = 0?

Data to read?

Read status register

TXCOMP = 0?

END

START

Set the internal address
IADR = address

Yes

Yes

Yes

Yes

Read RHR

325
32015G–AVR32–09/09

AT32AP7001

22.7 TWI User Interface

22.7.1 Register Mapping

Table 22-2. Two-wire Interface (TWI) User Interface

Offset Register Name Access Reset Value

0x0000 Control Register CR Write-only N/A

0x0004 Master Mode Register MMR Read/Write 0x0000

0x0008 Reserved - - -

0x000C Internal Address Register IADR Read/Write 0x0000

0x0010 Clock Waveform Generator Register CWGR Read/Write 0x0000

0x0020 Status Register SR Read-only 0x0008

0x0024 Interrupt Enable Register IER Write-only N/A

0x0028 Interrupt Disable Register IDR Write-only N/A

0x002C Interrupt Mask Register IMR Read-only 0x0000

0x0030 Receive Holding Register RHR Read-only 0x0000

0x0034 Transmit Holding Register THR Read/Write 0x0000

326
32015G–AVR32–09/09

AT32AP7001

22.7.2 TWI Control Register

Register Name: CR

Access Type: Write-only

• START: Send a START Condition

0 = No effect.

1 = A frame beginning with a START bit is transmitted according to the settings in the mode register.

This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent with the mode register as soon as the user writes a character in the holding register.

• STOP: Send a STOP Condition

0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read or write mode.

In single data byte master read or write, the START and STOP must both be set.

In multiple data bytes master read or write, the STOP must be set before ACK/NACK bit transmission.

In master read mode, if a NACK bit is received, the STOP is automatically performed.

In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically sent.

• MSEN: TWI Master Transfer Enabled

0 = No effect.

1 = If MSDIS = 0, the master data transfer is enabled.

• MSDIS: TWI Master Transfer Disabled

0 = No effect.

1 = The master data transfer is disabled, all pending data is transmitted. The shifter and holding characters (if they contain
data) are transmitted in case of write operation. In read operation, the character being transferred must be completely
received before disabling.

• SWRST: Software Reset

0 = No effect.

1 = Equivalent to a system reset.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – MSDIS MSEN STOP START

327
32015G–AVR32–09/09

AT32AP7001

22.7.3 TWI Master Mode Register

Register Name: MMR

Address Type: Read/Write

• IADRSZ: Internal Device Address Size

• MREAD: Master Read Direction

0 = Master write direction.

1 = Master read direction.

• DADR: Device Address

The device address is used in Master Mode to access slave devices in read or write mode.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– DADR

15 14 13 12 11 10 9 8
– – – MREAD – – IADRSZ

7 6 5 4 3 2 1 0

– – – – – – – –

IADRSZ[9:8]

0 0 No internal device address (Byte command protocol)

0 1 One-byte internal device address

1 0 Two-byte internal device address

1 1 Three-byte internal device address

328
32015G–AVR32–09/09

AT32AP7001

22.7.4 TWI Internal Address Register

Register Name: IADR

Access Type: Read/Write

• IADR: Internal Address

0, 1, 2 or 3 bytes depending on IADRSZ.

– Low significant byte address in 10-bit mode addresses.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

IADR

15 14 13 12 11 10 9 8
IADR

7 6 5 4 3 2 1 0

IADR

329
32015G–AVR32–09/09

AT32AP7001

22.7.5 TWI Clock Waveform Generator Register

Register Name: CWGR

Access Type: Read/Write

• CLDIV: Clock Low Divider

The SCL low period is defined as follows:

• CHDIV: Clock High Divider

The SCL high period is defined as follows:

• CKDIV: Clock Divider

The CKDIV is used to increase both SCL high and low periods.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – CKDIV

15 14 13 12 11 10 9 8

CHDIV

7 6 5 4 3 2 1 0
CLDIV

Tlow CLDIV(2CKDIV×() 3)+ TMCK×=

Thigh CHDIV(2CKDIV×() 3)+ TMCK×=

330
32015G–AVR32–09/09

AT32AP7001

22.7.6 TWI Status Register

Register Name: SR

Access Type: Read-only

• TXCOMP: Transmission Completed

0 = In master, during the length of the current frame. In slave, from START received to STOP received.

1 = When both holding and shift registers are empty and STOP condition has been sent (in Master), or when MSEN is set
(enable TWI).

• RXRDY: Receive Holding Register Ready

0 = No character has been received since the last RHR read operation.

1 = A byte has been received in theRHR since the last read.

• TXRDY: Transmit Holding Register Ready

0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into THR register.

1 = As soon as data byte is transferred from THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

• NACK: Not Acknowledged

0 = Each data byte has been correctly received by the far-end side TWI slave component.

1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP. Reset after read.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – NACK

7 6 5 4 3 2 1 0
– – – – – TXRDY RXRDY TXCOMP

331
32015G–AVR32–09/09

AT32AP7001

22.7.7 TWI Interrupt Enable Register

Register Name: IER

Access Type: Write-only

• TXCOMP: Transmission Completed

• RXRDY: Receive Holding Register Ready

• TXRDY: Transmit Holding Register Ready

• NACK: Not Acknowledge

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – NACK

7 6 5 4 3 2 1 0

– – – – – TXRDY RXRDY TXCOMP

332
32015G–AVR32–09/09

AT32AP7001

22.7.8 TWI Interrupt Disable Register

Register Name: IDR

Access Type: Write-only

• TXCOMP: Transmission Completed

• RXRDY: Receive Holding Register Ready

• TXRDY: Transmit Holding Register Ready

• NACK: Not Acknowledge

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – NACK

7 6 5 4 3 2 1 0
– – – – – TXRDY RXRDY TXCOMP

333
32015G–AVR32–09/09

AT32AP7001

22.7.9 TWI Interrupt Mask Register

Register Name: IMR

Access Type: Read-only

• TXCOMP: Transmission Completed

• RXRDY: Receive Holding Register Ready

• TXRDY: Transmit Holding Register Ready

• NACK: Not Acknowledge

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – NACK

7 6 5 4 3 2 1 0
– – – – – TXRDY RXRDY TXCOMP

334
32015G–AVR32–09/09

AT32AP7001

22.7.10 TWI Receive Holding Register

Register Name: RHR

Access Type: Read-only

• RXDATA: Master or Slave Receive Holding Data

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
RXDATA

335
32015G–AVR32–09/09

AT32AP7001

22.7.11 TWI Transmit Holding Register

Register Name: THR

Access Type: Read/Write

• TXDATA: Master or Slave Transmit Holding Data

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
TXDATA

336
32015G–AVR32–09/09

AT32AP7001

23. PS/2 Module (PSIF)

Rev: 1.0.0.2

23.1 Features

• PS/2 Host
• Receive and transmit capability
• Parity generation and error detection
• Overrun error detection

23.2 Description

The PS/2 module provides host functionality allowing the MCU to interface PS/2 devices such as
keyboard and mice. The module is capable of both host-to-device and device-to-host
communication.

23.3 Product Dependencies

23.3.1 I/O Lines

The PS/2 may be multiplexed with PIO lines. The programmer must first program the PIO con-
troller to give control of the pins to the PS/2 module.

23.3.2 Power Management

The clock for the PS/2 module is generated by the power manager. The programmer must
ensure that the PS/2 clock is enabled in the power manager before using the PS/2 module.

23.3.3 Interrupt

The PS/2 module has an interrupt line connected to the interrupt controller. Handling the PS/2
interrupt requires programming the interrupt controller before configuring the PS/2 module.

23.4 The PS/2 Protocol

The PS/2 protocol is a bidirectional synchronous serial communication protocol. It connects a
single master - referred to as the ‘host’ - to a single slave - referred to as the ‘device’. Communi-
cation is done through two lines called ‘data’ and ‘clock’. Both of these must be open-drain or
open-collector with a pullup resistor to perform a wired-AND function. When the bus is idle, both
lines are high.

The device always generates the clock signal, but the host may pull the clock low to inhibit trans-
fers. The clock frequency is in the range 10-16.7 kHz. Both the host and the slave may initiate a
transfer, but the host has ultimate control of the bus.

Data are transmitted one byte at a time in a frame consisting of 11-12 bits. The transfer format is
described in detail below.

23.4.1 Device to host communication

The device can only initiate a transfer when the bus is idle. If the host at any time pulls the clock
low, the device must stop transferring data and prepare to receive data from the host.

The device transmits data using a 11-bit frame. The device writes a bit on the data line when the
clock is high, and the host reads the bit when the clock is low.

The format of the frame is:

337
32015G–AVR32–09/09

AT32AP7001

• 1 start bit - always 0.

• 8 data bits, least significant bit first.

• 1 parity bit - odd parity.

• 1 stop bit - always 1.

Figure 23-1. Device to host transfer

23.4.2 Host to device communication

Because the device always generates the clock, host to device communication is done differ-
ently than device to host communication.

• The host starts by inhibiting communication by pulling clock low for a minimum of 100
microseconds.

• Then applies a “request-to-send” by releasing clock and pulling data low.

The device must check for this state at least every 10 milliseconds. Once it detects a request-to-
send, it must start generating the clock and receive one frame of data. The host writes a data bit
when the clock is low, and the device reads the bit when the clock is high.

The format of the frame is:

• 1 start bit - always 0.

• 8 data bits - least significant bit first.

• 1 parity bit - odd parity

• 1 stop bit - always one.

• 1 acknowledge bit - the device acknowledges by pulling data low.

S
ta

rt

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

7

S
to

p

B
it

6

CLOCK

DATA

P
ar

ity

338
32015G–AVR32–09/09

AT32AP7001

Figure 23-2. Host to device transfer

23.5 Functional Description

23.5.1 Prescaler

For all data transfers on the PS/2 bus, the device is responsible for generating the clock and
thus controlling the timing of the communications. When a host wants to initiate a transfer how-
ever, it needs to pull the clock line low for a given time (minimum 100µs). A clock prescaler
controls the timing of the transfer request pulse.

Before initiating host to device transfers, the programmer must write PSR (Prescale Register).
This value determines the length of the “transfer request” pulse and is found by:

PRSCV = Pulse length * PS/2 module frequency

According to the PS/2 specifications, the pulse length should be at least 100µs. The PS/2 mod-
ule frequency is the frequency of the peripheral bus to which the module is connected.

23.5.2 Receiving data

The receiver is enabled by writing the RXEN bit in CR (Control Register) to ‘1’. When enabled,
the receiver will continuously receive data transmitted by the device. The data is stored in RHR
(Receive Holding Register). When a byte has been received, the RXRDY bit in SR (Status Reg-
ister) is set.

For each received byte, the parity is calculated. If it doesn’t match the parity bit received from the
device, the PARITY bit in SR is set. The received byte should then be discarded.

If a received byte in RHR is not read before a new byte has been received, the overrun bit -
OVRUN in SR is set. The new data is stored in RHR overwriting the previously received byte.

23.5.3 Transmitting data

The transmitter is enabled by writing the TXEN bit in CR to ‘1’. When enabled, a data transfer to
the device will be started by writing the transmit data to THR (Transmit Holding Register). Any
ongoing transfer from the device will be aborted.

S
ta

rt

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

S
to

p

B
it

6

In
hi

bi
t

A
ck

CLOCK

DATA

Host Clock

Host Data

Device Clock

Device Data

B
it

7

P
ar

ity

339
32015G–AVR32–09/09

AT32AP7001

When the data written to THR has been transmitted to the device, the TXRDY bit in SR will be
set and a new value can be loaded into THR.

At the end of the transfer, the device should acknowledge the transfer by pulling the data line
low for one cycle. If an acknowledge is not detected, the NACK bit in SR will be set.

If the device fails to acknowledge the frame, the NACK bit in SR will be set. The software is
responsible for any retries.

All transfers from host to device are started by the host pulling the clock line low for at least
100µs. The programmer must ensure that the prescaler is programmed to generate correct
pulse length.

23.5.4 Interrupts

The PS/2 module can be configured to signal an interrupt when one of the bits in SR is set. The
interrupt is enabled by writing to IER (Interrupt Enable Register) and disabled by writing to IDR
(Interrupt Disable Register). The current setting of an interrupt line can be seen by reading IMR
(Interrupt Mask Register).

23.6 User Interface

Offset Register Register Name Access Reset

0x000 PS/2 Control Register 0 CR0 Write-only -

0x004 PS/2 Receive Holding Register 0 RHR0 Read-only 0x0

0x008 PS/2 Transmit Holding Register 0 THR0 Write-only -

0x00C RESERVED - - -

0x010 PS/2 Status Register 0 SR0 Read-only 0x0

0x014 PS/2 Interrupt Enable Register 0 IER0 Write-only -

0x018 PS/2 Interrupt Disable Register 0 IDR0 Write-only -

0x01C PS/2 Interrupt Mask Register 0 IMR0 Read-only 0x0

0x020 RESERVED - - -

0x024 PS/2 Prescale Register 0 PSR0 Read/Write 0x0

0x100 PS/2 Control Register 1 CR1 Write-only -

0x104 PS/2 Receive Holding Register 1 RHR1 Read-only 0x0

0x108 PS/2 Transmit Holding Register 1 THR1 Write-only -

0x10C RESERVED - - -

0x110 PS/2 Status Register 1 SR1 Read-only 0x0

0x114 PS/2 Interrupt Enable Register 1 IER1 Write-only -

0x118 PS/2 Interrupt Disable Register 1 IDR1 Write-only -

0x11C PS/2 Interrupt Mask Register 1 IMR1 Read-only 0x0

0x120 RESERVED - - -

0x124 PS/2 Prescale Register 1 PSR1 Read/Write 0x0

340
32015G–AVR32–09/09

AT32AP7001

23.6.1 PS/2 Control Register

Name: CR0, CR1

Access Type: Write-only

• SWRST: Software Reset
Writing this strobe causes a reset of the PS/2 interface module. Data shift registers are cleared and configuration registers are

reset to default values.

• TXDIS: Transmitter Disable
0: No effect.

1: Disables the transmitter.

• TXEN: Transmitter Enable
0: No effect.

1: Enables the transmitter if TXDIS=0.

• RXDIS: Receiver Disable
0: No effect.

1: Disables the receiver.

• RXEN: Receiver Enable
0: No effect.

1: Enables the receiver if RXDIS=0.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

SWRST - - - - - TXDIS TXEN

7 6 5 4 3 2 1 0

- - - - - - RXDIS RXEN

341
32015G–AVR32–09/09

AT32AP7001

23.6.2 PS/2 Receive Holding Register

Name: RHR0, RHR1

Access Type: Read-only

• RXDATA: Receive Data
Data received from the device.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

RXDATA

342
32015G–AVR32–09/09

AT32AP7001

23.6.3 PS/2 Transmit Holding Register

Name: THR0, THR1

Access Type: Write-only

• TXDATA: Transmit Data
Data to be transmitted to the device.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

TXDATA

343
32015G–AVR32–09/09

AT32AP7001

23.6.4 PS/2 Status Register

Name: SR0, SR1

Access Type: Read-only

• PARITY:
0: No parity errors detected on incoming data since last read of SR.

1: At least one parity error detected on incoming data since last read of SR.

• NACK: Not Acknowledge
0: All transmissions has been properly acknowledged by the device since last read of SR.

1: At least one transmission was not properly acknowledged by the device since last read of SR.

• OVRUN: Overrun
0: No receive overrun has occured since the last read of SR.

1: At least one receive overrun condition has occured since the last read of SR.

• RXRDY: Receiver Ready
0: RHR is empty.

1: RHR contains valid data received from the device.

• TXEMPTY: Transmitter Empty
0: Data remains in THR or is currently being transmitted from the shift register.

1: Both THR and the shift register are empty.

• TXRDY: Transmitter Ready
0: Data has been loaded in THR and is waiting to be loaded into the shift register.

1: THR is empty.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - PARITY NACK

7 6 5 4 3 2 1 0

- - OVRUN RXRDY - - TXEMPTY TXRDY

344
32015G–AVR32–09/09

AT32AP7001

23.6.5 PS/2 Interrupt Enable Register

Name: IER0, IER1

Access Type: Write-only

• PARITY: PARITY Interrupt Enable
• NACK: Not Acknowledge Interrupt Enable
• OVRUN: Overrun Interrupt Enable
• RXRDY: Overrun Interrupt Enable
• TXEMPTY: Overrun Interrupt Enable
• TXRDY: Overrun Interrupt Enable

0: No effect.
1: Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - PARITY NACK

7 6 5 4 3 2 1 0

- - OVRUN RXRDY - - TXEMPTY TXRDY

345
32015G–AVR32–09/09

AT32AP7001

‘

23.6.6 PS/2 Interrupt Disable Register

Name: IDR0, IDR1

Access Type: Write-Only

• PARITY: PARITY Interrupt Disable
• NACK: Not Acknowledge Interrupt Disable
• OVRUN: Overrun Interrupt Disable
• RXRDY: Overrun Interrupt Disable
• TXEMPTY: Overrun Interrupt Disable
• TXRDY: Overrun Interrupt Disable

0: No effect.
1: Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - PARITY NACK

7 6 5 4 3 2 1 0

- - OVRUN RXRDY - - TXEMPTY TXRDY

346
32015G–AVR32–09/09

AT32AP7001

23.6.7 PS/2 Interrupt Mask Register

Name: IMR0, IMR1

Access Type: Read-only

• PARITY: PARITY Interrupt Mask
• NACK: Not Acknowledge Interrupt Mask
• OVRUN: Overrun Interrupt Mask
• RXRDY: Overrun Interrupt Mask
• TXEMPTY: Overrun Interrupt Mask
• TXRDY: Overrun Interrupt Mask

0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - PARITY NACK

7 6 5 4 3 2 1 0

- - OVRUN RXRDY - - TXEMPTY TXRDY

347
32015G–AVR32–09/09

AT32AP7001

23.6.8 PS/2 Prescale Register

Name: PSR0, PSR1

Access Type: Read/Write

• PRSCV: Prescale Value

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - PRSCV

7 6 5 4 3 2 1 0

PRSCV

348
32015G–AVR32–09/09

AT32AP7001

24. Synchronous Serial Controller (SSC)

Rev: 2.0.0.2

24.1 Features
• Provides Serial Synchronous Communication Links Used in Audio and Telecom Applications
• Contains an Independent Receiver and Transmitter and a Common Clock Divider
• Interfaced with Two PDCA Channels (DMA Access) to Reduce Processor Overhead
• Offers a Configurable Frame Sync and Data Length
• Receiver and Transmitter Can be Programmed to Start Automatically or on Detection of Different

Events on the Frame Sync Signal
• Receiver and Transmitter Include a Data Signal, a Clock Signal and a Frame Synchronization

Signal

24.2 Overview
The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as I2S, Short Frame Sync, Long Frame Sync, etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TX_DATA/RX_DATA signal
fo r da ta , the TX_CLOCK/RX_CLOCK s igna l fo r the c lock and the
TX_FRAME_SYNC/RX_FRAME_SYNC signal for the Frame Sync. The transfers can be pro-
grammed to start automatically or on different events detected on the Frame Sync signal.

The SSC’s high-level of programmability and its two dedicated PDCA channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.

Featuring connection to two PDCA channels, the SSC permits interfacing with low processor
overhead to the following:

•CODEC’s in master or slave mode

•DAC through dedicated serial interface, particularly I2S

•Magnetic card reader

349
32015G–AVR32–09/09

AT32AP7001

24.3 Block Diagram

Figure 24-1. Block Diagram

24.4 Application Block Diagram

Figure 24-2. Application Block Diagram

SSC Interface

PDCA

Peripheral Bus
Bridge

High
Speed
Bus

Peripheral
Bus

Power
Manager

CLK_SSC

PIO

Interrupt Control

SSC Interrupt

TX_FRAME_SYNC

RX_FRAME_SYNC

TX_CLOCK

RX_CLOCK

RX_DATA

TX_DATA

Test
Management

Line Interface

Interrupt
Management

Frame
Management

Time Slot
Management

SSC

Power
Management

CodecSerial AUDIO

OS or RTOS Driver

350
32015G–AVR32–09/09

AT32AP7001

24.5 I/O Lines Description

24.6 Product Dependencies

24.6.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.

24.6.2 Power Management
The SSC clock is generated by the power manager. Before using the SSC, the programmer
must ensure that the SSC clock is enabled in the power manager.

In the SSC description, Master Clock (CLK_SSC) is the bus clock of the peripheral bus to which
the SSC is connected.

24.6.3 Interrupt
The SSC interface has an interrupt line connected to the interrupt controller. Handling interrupts
requires programming the interrupt controller before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.

24.7 Functional Description
This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.

The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TX_CLOCK or RX_CLOCK
pins. This allows the SSC to support many slave-mode data transfers. The maximum clock
speed allowed on the TX_CLOCK and RX_CLOCK pins is the master clock divided by 2.

Table 24-1. I/O Lines Description

Pin Name Pin Description Type

RX_FRAME_SYNC Receiver Frame Synchro Input/Output

RX_CLOCK Receiver Clock Input/Output

RX_DATA Receiver Data Input

TX_FRAME_SYNC Transmitter Frame Synchro Input/Output

TX_CLOCK Transmitter Clock Input/Output

TX_DATA Transmitter Data Output

351
32015G–AVR32–09/09

AT32AP7001

Figure 24-3. SSC Functional Block Diagram

24.7.1 Clock Management
The transmitter clock can be generated by:

•an external clock received on the TX_CLOCK I/O pad

•the receiver clock

•the internal clock divider

The receiver clock can be generated by:

•an external clock received on the RX_CLOCK I/O pad

•the transmitter clock

•the internal clock divider

Furthermore, the transmitter block can generate an external clock on the TX_CLOCK I/O pad,
and the receiver block can generate an external clock on the RX_CLOCK I/O pad.

This allows the SSC to support many Master and Slave Mode data transfers.

Clock
Divider

User
Interface

Peripheral
Bus

CLK_SSC

Interrupt Control

Start
Selector Receive Shift Register

Receive Holding
Register

Receive Sync
Holding Register

PDCA

Interrupt Controller

RX_FRAME_SYNC

RX_DATA

RX_CLOCK

Frame Sync
Controller

Clock Output
Controller

Receive Clock
Controller

Transmit Holding
Register

Transmit Sync
Holding Register

Transmit Shift Register

Frame Sync
Controller

Clock Output
Controller

Transmit Clock
Controller

Start
Selector

TX_FRAME_SYNC

RX_FRAME_SYNC

TX_CLOCK Input

Transmitter

TX_PDCA

Load Shift

RX clock

TX clock

TX_CLOCK

TX_FRAME_SYNC

TX_DATA

Receiver

RX clock
RX_CLOCK

Input

TX clock

TX_FRAME_SYNC

RX_FRAME_SYNC

RX_PDCA

Load Shift

352
32015G–AVR32–09/09

AT32AP7001

24.7.1.1 Clock Divider

Figure 24-4. Divided Clock Block Diagram

The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register CMR, allowing a Master Clock division by up
to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this field is
programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Mas-
ter Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master
Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of
whether the DIV value is even or odd.

Figure 24-5. Divided Clock Generation

24.7.1.2 Transmitter Clock Management
The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TX_CLOCK I/O pad. The transmitter clock is selected by the CKS field in
TCMR (Transmit Clock Mode Register). Transmit Clock can be inverted independently by the
CKI bits in TCMR.

Table 24-2.

Maximum Minimum

CLK_SSC / 2 CLK_SSC / 8190

CMR

/ 2
CLK_SSC Divided Clock12-bit Counter

Clock Divider

Master Clock

Divided Clock
DIV = 1

Master Clock

Divided Clock
DIV = 3

Divided Clock Frequency = CLK_SSC/2

Divided Clock Frequency = CLK_SSC/6

353
32015G–AVR32–09/09

AT32AP7001

The transmitter can also drive the TX_CLOCK I/O pad continuously or be limited to the actual
data transfer. The clock output is configured by the TCMR register. The Transmit Clock Inver-
sion (CKI) bits have no effect on the clock outputs. Programming the TCMR register to select
TX_CLOCK pin (CKS field) and at the same time Continuous Transmit Clock (CKO field) might
lead to unpredictable results.

Figure 24-6. Transmitter Clock Management

24.7.1.3 Receiver Clock Management
The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RX_CLOCK I/O pad. The Receive Clock is selected by the CKS field in
RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently by the
CKI bits in RCMR.

The receiver can also drive the RX_CLOCK I/O pad continuously or be limited to the actual data
transfer. The clock output is configured by the RCMR register. The Receive Clock Inversion
(CKI) bits have no effect on the clock outputs. Programming the RCMR register to select
RX_CLOCK pin (CKS field) and at the same time Continuous Receive Clock (CKO field) can
lead to unpredictable results.

TX_CLOCK(pin)

Receiver
Clock

Divider
Clock

CKO Data Transfer

Tri-state
Controller

INV
MUX

CKS

MUX

Tri-state
Controller

CKI CKG

Transmitter
Clock

Clock
Output

354
32015G–AVR32–09/09

AT32AP7001

Figure 24-7. Receiver Clock Management

24.7.1.4 Serial Clock Ratio Considerations
The Transmitter and the Receiver can be programmed to operate with the clock signals provided
on either the TX_CLOCK or RX_CLOCK pins. This allows the SSC to support many slave-mode
data transfers. In this case, the maximum clock speed allowed on the RX_CLOCK pin is:

–Master Clock divided by 2 if Receiver Frame Synchro is input

–Master Clock divided by 3 if Receiver Frame Synchro is output

In addition, the maximum clock speed allowed on the TX_CLOCK pin is:

–Master Clock divided by 6 if Transmit Frame Synchro is input

–Master Clock divided by 2 if Transmit Frame Synchro is output

24.7.2 Transmitter Operations
A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by setting the Transmit Clock Mode Register (TCMR). See Section
“24.7.4” on page 356.

The frame synchronization is configured setting the Transmit Frame Mode Register (TFMR).
See Section “24.7.5” on page 358.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the TCMR. Data is written by the application to the THR register then
transferred to the shift register according to the data format selected.

When both the THR and the transmit shift register are empty, the status flag TXEMPTY is set in
SR. When the Transmit Holding register is transferred in the Transmit shift register, the status
flag TXRDY is set in SR and additional data can be loaded in the holding register.

Divider
Clock

RX_CLOCK (pin)

Transmitter
Clock

MUX Tri-state
Controller

CKO Data Transfer

INV
MUX

CKI

Tri-state
Controller

CKG

Receiver
Clock

Clock
Output

CKS

355
32015G–AVR32–09/09

AT32AP7001

Figure 24-8. Transmitter Block Diagram

24.7.3 Receiver Operations
A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured setting the Receive Clock Mode Register (RCMR). See Section
“24.7.4” on page 356.

The frame synchronization is configured setting the Receive Frame Mode Register (RFMR). See
Section “24.7.5” on page 358.

The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the RCMR. The data is transferred from the shift register depending on the data for-
mat selected.

When the receiver shift register is full, the SSC transfers this data in the holding register, the sta-
tus flag RXRDY is set in SR and the data can be read in the receiver holding register. If another
transfer occurs before read of the RHR register, the status flag OVERUN is set in SR and the
receiver shift register is transferred in the RHR register.

TFMR.DATDEF

TFMR.MSBF 0

1

Transmit Shift Register

0 1

THR TSHR TFMR.FSLEN

TCMR.STTDLY
TFMR.FSDEN
TFMR.DATNB

CR.TXEN

CR.TXDIS

SR.TXEN

TX_DATA

TFMR.DATLEN

TCMR.STTDLY
TFMR.FSDEN

Start
Selector

RX_FRAME_SYNC
TX_FRAME_SYNC

Transmitter Clock

356
32015G–AVR32–09/09

AT32AP7001

Figure 24-9. Receiver Block Diagram

24.7.4 Start
The transmitter and receiver can both be programmed to start their operations when an event
occurs, respectively in the Transmit Start Selection (START) field of TCMR and in the Receive
Start Selection (START) field of RCMR.

Under the following conditions the start event is independently programmable:

•Continuous. In this case, the transmission starts as soon as a word is written in THR and the
reception starts as soon as the Receiver is enabled.

•Synchronously with the transmitter/receiver

•On detection of a falling/rising edge on TX_FRAME_SYNC/RX_FRAME_SYNC

•On detection of a low level/high level on TX_FRAME_SYNC/RX_FRAME_SYNC

•On detection of a level change or an edge on TX_FRAME_SYNC/RX_FRAME_SYNC

A start can be programmed in the same manner on either side of the Transmit/Receive Clock
Register (RCMR/TCMR). Thus, the start could be on TX_FRAME_SYNC (Transmit) or
RX_FRAME_SYNC (Receive).

Moreover, the Receiver can start when data is detected in the bit stream with the Compare
Functions.

Detection on TX_FRAME_SYNC/RX_FRAME_SYNC input/output is done by the field FSOS of
the Transmit/Receive Frame Mode Register (TFMR/RFMR).

Divider
C lock

RX _CLO CK (pin)

Transm itter
C lock

M UX Tri-state
Contro ller

CKO Data Transfer

INV
M UX

CKI

Tri-state
Contro ller

CKG

Receiver
C lock

C lock
O utput

CKS

357
32015G–AVR32–09/09

AT32AP7001

Figure 24-10. Transmit Start Mode

Figure 24-11. Receive Pulse/Edge Start Modes

X B0 B1

B1B0

B0 B1

B1B0

B0 B1 B0 B1

B0 B1B1B0

X

X

X

X

XTX_DATA (Output)
Start= Any Edge on TX_FRAME_SYNC

TX_DATA (Output)
Start= Level Change on TX_FRAME_SYNC

TX_DATA (Output)
Start= Rising Edge on TX_FRAME_SYNC

TX_DATA (Output)
Start= Falling Edge on TX_FRAME_SYNC

TX_DATA (Output)
Start= High Level on TX_FRAME_SYNC

TX_DATA (Output)
Start= Low Level on TX_FRAME_SYNC

TX_FRAME_SYNC (Input)

TX_CLOCK (Input)

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

RX_CLOCK

RX_FRAME_SYNC (Input)

RX_DATA (Input)
Start = High Level on RX_FRAME_SYNC

RX_DATA (Input)
Start = Falling Edge on RX_FRAME_SYNC

RX_DATA (Input)
Start = Rising Edge on RX_FRAME_SYNC

RX_DATA (Input)
Start = Level Change on RX_FRAME_SYNC

RX_DATA (Input)
Start = Any Edge on RX_FRAME_SYNC

RX_DATA (Input)
Start = Low Level on RX_FRAME_SYNC

X

X

X

X

X

X B0

B0

B0

B0

B0

B0

B0

B1 B1

B1

B1

B1

B1

B1

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

STTDLY

358
32015G–AVR32–09/09

AT32AP7001

24.7.5 Frame Sync
The Transmitter and Receiver Frame Sync pins, TX_FRAME_SYNC and RX_FRAME_SYNC,
can be programmed to generate different kinds of frame synchronization signals. The Frame
Sync Output Selection (FSOS) field in the Receive Frame Mode Register (RFMR) and in the
Transmit Frame Mode Register (TFMR) are used to select the required waveform.

•Programmable low or high levels during data transfer are supported.

•Programmable high levels before the start of data transfers or toggling are also supported.

If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in RFMR and TFMR pro-
grams the length of the pulse, from 1 bit time up to 16 bit time.

The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed
through the Period Divider Selection (PERIOD) field in RCMR and TCMR.

24.7.5.1 Frame Sync Data
Frame Sync Data transmits or receives a specific tag during the Frame Sync signal.

During the Frame Sync signal, the Receiver can sample the RX_DATA line and store the data in
the Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Reg-
ister in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync
signal is programmed by the FSLEN field in RFMR/TFMR.

Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the Receive Sync Holding Register through the Receive Shift Register.

The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync
Data Enable (FSDEN) in TFMR is set. If the Frame Sync length is equal to or lower than the
delay between the start event and the actual data transmission, the normal transmission has pri-
ority and the data contained in the Transmit Sync Holding Register is transferred in the Transmit
Register, then shifted out.

24.7.5.2 Frame Sync Edge Detection
The Frame Sync Edge detection is programmed by the FSEDGE field in RFMR/TFMR. This sets
the corresponding flags RXSYN/TXSYN in the SSC Status Register (SR) on frame synchro
edge detection (signals RX_FRAME_SYNC/TX_FRAME_SYNC).

359
32015G–AVR32–09/09

AT32AP7001

24.7.6 Receive Compare Modes

Figure 24-12. Receive Compare Modes

24.7.6.1 Compare Functions
Compare 0 can be one start event of the Receiver. In this case, the receiver compares at each
new sample the last FSLEN bits received at the FSLEN lower bit of the data contained in the
Compare 0 Register (RC0R). When this start event is selected, the user can program the
Receiver to start a new data transfer either by writing a new Compare 0, or by receiving continu-
ously until Compare 1 occurs. This selection is done with the bit (STOP) in RCMR.

24.7.7 Data Format
The data framing format of both the transmitter and the receiver are programmable through the
Transmitter Frame Mode Register (TFMR) and the Receiver Frame Mode Register (RFMR). In
either case, the user can independently select:

•the event that starts the data transfer (START)

•the delay in number of bit periods between the start event and the first data bit (STTDLY)

•the length of the data (DATLEN)

•the number of data to be transferred for each start event (DATNB).

•the length of synchronization transferred for each start event (FSLEN)

•the bit sense: most or lowest significant bit first (MSBF).

Additionally, the transmitter can be used to transfer synchronization and select the level driven
on the TX_DATA pin while not in data transfer operation. This is done respectively by the Frame
Sync Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in TFMR.

RX_DATA
(Input)

RX_CLOCK

CMP0 CMP1 CMP2 CMP3

Start

FSLEN
Up to 16 Bits

(4 in This Example)

STTDLY

Ignored

DATLEN

B2B0 B1

360
32015G–AVR32–09/09

AT32AP7001

Figure 24-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes

Note: 1. Example of input on falling edge of TX_FRAME_SYNC/RX_FRAME_SYNC.

Table 24-3. Data Frame Registers

Transmitter Receiver Field Length Comment

TFMR RFMR DATLEN Up to 32 Size of word

TFMR RFMR DATNB Up to 16 Number of words transmitted in frame

TFMR RFMR MSBF Most significant bit first

TFMR RFMR FSLEN Up to 16 Size of Synchro data register

TFMR DATDEF 0 or 1 Data default value ended

TFMR FSDEN Enable send TSHR

TCMR RCMR PERIOD Up to 512 Frame size

TCMR RCMR STTDLY Up to 255 Size of transmit start delay

DATNB

DATLEN

Data

DataData

Data

Data Data Default

Default

Sync Data

Sync DataIgnored

From DATDEF

Start

From DATDEF

DATLEN

To RHRTo RHR

From THR

From THRFrom THR

From THR

From DATDEF

From DATDEF

Ignored

Default

Default

Sync Data

To RSHR

From TSHR

FSLEN

Start

TX_FRAME_SYNC
/

RX_FRAME_SYNC

TX_DATA
(If FSDEN = 1)

TX_DATA
(If FSDEN = 0)

RX_DATA

STTDLY

Sync Data

PERIOD

(1)

361
32015G–AVR32–09/09

AT32AP7001

Figure 24-14. Transmit Frame Format in Continuous Mode

Note: 1. STTDLY is set to 0. In this example, THR is loaded twice. FSDEN value has no effect on the
transmission. SyncData cannot be output in continuous mode.

Figure 24-15. Receive Frame Format in Continuous Mode

Note: 1. STTDLY is set to 0.

24.7.8 Loop Mode
The receiver can be programmed to receive transmissions from the transmitter. This is done by
setting the Loop Mode (LOOP) bit in RFMR. In this case, RX_DATA is connected to TX_DATA,
RX_FRAME_SYNC is connected to TX_FRAME_SYNC and RX_CLOCK is connected to
TX_CLOCK.

24.7.9 Interrupt
Most bits in SR have a corresponding bit in interrupt management registers.

The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is
controlled by writing IER (Interrupt Enable Register) and IDR (Interrupt Disable Register) These
registers enable and disable, respectively, the corresponding interrupt by setting and clearing
the corresponding bit in IMR (Interrupt Mask Register), which controls the generation of inter-
rupts by asserting the SSC interrupt line connected to the interrupt controller.

Start

Data Data

DATLEN

From THR

DATLEN

TX_DATA

Start: 1. TXEMPTY set to 1
2. Write into the THR

From THR

Default

Data Data

To RHRTo RHR

DATLENDATLEN

RX_DATA

Start = Enable Receiver

362
32015G–AVR32–09/09

AT32AP7001

Figure 24-16. Interrupt Block Diagram

24.8 SSC Application Examples
The SSC can support several serial communication modes used in audio or high speed serial
links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.

Figure 24-17. Audio Application Block Diagram

IMR

IER IDR

ClearSet

Interrupt
Control

SSC Interrupt

TXRDY
TXEMPTY
TXSYNC

Transmitter

ENDTX
TXBUFE

PDCA

RXBUFF
ENDRX

Receiver

RXRDY
OVRUN
RXSYNC

Clock SCK

Word Select WS

Data SD MSB

Left Channel

LSB MSB

Right Channel

Data SD

Word Select WS

Clock SCK

SSC

TX_CLOCK

TX_FRAME_SYNC

TX_DATA

RX_DATA

RX_FRAME_SYNC

RX_CLOCK

I2S
RECEIVER

363
32015G–AVR32–09/09

AT32AP7001

Figure 24-18. Codec Application Block Diagram

Figure 24-19. Time Slot Application Block Diagram

SSC

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

Dstart Dend

First Time Slot

CODEC

TX_CLOCK

TX_FRAME_SYNC

TX_DATA

RX_DATA

RX_FRAME_SYNC

RX_CLOCK

CODEC
First

Time Slot

CODEC
Second

Time Slot

Data in

Data Out

FSYNC

SCLK

Serial Data Clock (SCLK)

Frame sync (FSYNC)

Serial Data Out

Serial Data In

Dstart

First Time Slot Second Time Slot

Dend

SSC

TX_CLOCK

TX_FRAME_SYNC

TX_DATA

RX_DATA

RX_FRAME_SYNC

RX_CLOCK

364
32015G–AVR32–09/09

AT32AP7001

24.9 User Interface

Table 24-4. Register Mapping

Offset Register Register Name Access Reset

0x0 Control Register CR Write –

0x4 Clock Mode Register CMR Read/Write 0x0

0x8 Reserved – – –

0xC Reserved – – –

0x10 Receive Clock Mode Register RCMR Read/Write 0x0

0x14 Receive Frame Mode Register RFMR Read/Write 0x0

0x18 Transmit Clock Mode Register TCMR Read/Write 0x0

0x1C Transmit Frame Mode Register TFMR Read/Write 0x0

0x20 Receive Holding Register RHR Read 0x0

0x24 Transmit Holding Register THR Write –

0x28 Reserved – – –

0x2C Reserved – – –

0x30 Receive Sync. Holding Register RSHR Read 0x0

0x34 Transmit Sync. Holding Register TSHR Read/Write 0x0

0x38 Receive Compare 0 Register RC0R Read/Write 0x0

0x3C Receive Compare 1 Register RC1R Read/Write 0x0

0x40 Status Register SR Read 0x000000CC

0x44 Interrupt Enable Register IER Write –

0x48 Interrupt Disable Register IDR Write –

0x4C Interrupt Mask Register IMR Read 0x0

0x50-0xFC Reserved – – –

365
32015G–AVR32–09/09

AT32AP7001

24.9.1 Control Register
Name: CR

Access Type: Write-only

Offset: 0x00

Reset value: -

• SWRST: Software Reset

0: No effect.

1: Performs a software reset. Has priority on any other bit in CR.

• TXDIS: Transmit Disable

0: No effect.

1: Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.

• TXEN: Transmit Enable

0: No effect.

1: Enables Transmit if TXDIS is not set.

• RXDIS: Receive Disable

0: No effect.

1: Disables Receive. If a character is currently being received, disables at end of current character reception.

• RXEN: Receive Enable

0: No effect.

1: Enables Receive if RXDIS is not set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

SWRST – – – – – TXDIS TXEN

7 6 5 4 3 2 1 0

– – – – – – RXDIS RXEN

366
32015G–AVR32–09/09

AT32AP7001

24.9.2 Clock Mode Register
Name: CMR

Access Type: Read/Write

Offset: 0x04

Reset value: 0x00000000

• DIV: Clock Divider

0: The Clock Divider is not active.

Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is CLK_SSC/2.
The minimum bit rate is CLK_SSC/2 x 4095 = CLK_SSC/8190.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – DIV

7 6 5 4 3 2 1 0

DIV

367
32015G–AVR32–09/09

AT32AP7001

24.9.3 Receive Clock Mode Register
Name: RCMR

Access Type: Read/Write

Offset: 0x10

Reset value: 0x00000000

• PERIOD: Receive Period Divider Selection

This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.

• STTDLY: Receive Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.

Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.

• STOP: Receive Stop Selection

0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a
new compare 0.

1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.

• START: Receive Start Selection

31 30 29 28 27 26 25 24

PERIOD

23 22 21 20 19 18 17 16

STTDLY

15 14 13 12 11 10 9 8

– – – STOP START

7 6 5 4 3 2 1 0

CKG CKI CKO CKS

START Receive Start

0x0
Continuous, as soon as the receiver is enabled, and immediately after the end of
transfer of the previous data.

0x1 Transmit start

0x2 Detection of a low level on RX_FRAME_SYNC signal

0x3 Detection of a high level on RX_FRAME_SYNC signal

0x4 Detection of a falling edge on RX_FRAME_SYNC signal

0x5 Detection of a rising edge on RX_FRAME_SYNC signal

0x6 Detection of any level change on RX_FRAME_SYNC signal

0x7 Detection of any edge on RX_FRAME_SYNC signal

0x8 Compare 0

0x9-0xF Reserved

368
32015G–AVR32–09/09

AT32AP7001

• CKG: Receive Clock Gating Selection

• CKI: Receive Clock Inversion

0: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge. The Frame Sync signal out-
put is shifted out on Receive Clock rising edge.

1: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge. The Frame Sync signal out-
put is shifted out on Receive Clock falling edge.

CKI affects only the Receive Clock and not the output clock signal.

• CKO: Receive Clock Output Mode Selection

• CKS: Receive Clock Selection

CKG Receive Clock Gating

0x0 None, continuous clock

0x1 Receive Clock enabled only if RX_FRAME_SYNC Low

0x2 Receive Clock enabled only if RX_FRAME_SYNC High

0x3 Reserved

CKO Receive Clock Output Mode RX_CLOCK pin

0x0 None Input-only

0x1 Continuous Receive Clock Output

0x2 Receive Clock only during data transfers Output

0x3-0x7 Reserved

CKS Selected Receive Clock

0x0 Divided Clock

0x1 TX_CLOCK Clock signal

0x2 RX_CLOCK pin

0x3 Reserved

369
32015G–AVR32–09/09

AT32AP7001

24.9.4 Receive Frame Mode Register
Name: RFMR

Access Type: Read/Write

Offset: 0x14

Reset value: 0x00000000

• FSLENHI: Receive Frame Sync Length High part

The four MSB of the FSLEN bitfield.

• FSEDGE: Frame Sync Edge Detection

Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register.

• FSOS: Receive Frame Sync Output Selection

• FSLEN: Receive Frame Sync Length

This field defines the length of the Receive Frame Sync Signal and the number of bits sampled and stored in the Receive
Sync Data Register. When this mode is selected by the START field in the Receive Clock Mode Register, it also deter-
mines the length of the sampled data to be compared to the Compare 0 or Compare 1 register. Note: The four most
significant bits fo this bitfield are in the FSLENHI bitfield.

Pulse length is equal to ({FSLENHI,FSLEN} + 1) Receive Clock periods. Thus, if {FSLENHI,FSLEN} is 0, the Receive
Frame Sync signal is generated during one Receive Clock period.

• DATNB: Data Number per Frame

31 30 29 28 27 26 25 24

FSLENHI – – – FSEDGE

23 22 21 20 19 18 17 16

– FSOS FSLEN

15 14 13 12 11 10 9 8

– – – – DATNB

7 6 5 4 3 2 1 0

MSBF – LOOP DATLEN

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

FSOS Selected Receive Frame Sync Signal RX_FRAME_SYNC Pin

0x0 None Input-only

0x1 Negative Pulse Output

0x2 Positive Pulse Output

0x3 Driven Low during data transfer Output

0x4 Driven High during data transfer Output

0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

370
32015G–AVR32–09/09

AT32AP7001

This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).

• MSBF: Most Significant Bit First

0: The lowest significant bit of the data register is sampled first in the bit stream.

1: The most significant bit of the data register is sampled first in the bit stream.

• LOOP: Loop Mode

0: Normal operating mode.

1: RX_DATA is driven by TX_DATA, RX_FRAME_SYNC is driven by TX_FRAME_SYNC and TX_CLOCK drives
RX_CLOCK.

• DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).
Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDCA assigned to the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and
15 (included), half-words are transferred, and for any other value, 32-bit words are transferred.

371
32015G–AVR32–09/09

AT32AP7001

24.9.5 Transmit Clock Mode Register
Name: TCMR

Access Type: Read/Write

Offset: 0x18

Reset value: 0x00000000

• PERIOD: Transmit Period Divider Selection

This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.

• STTDLY: Transmit Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.

Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data is emit-
ted instead of the end of TAG.

• START: Transmit Start Selection

31 30 29 28 27 26 25 24

PERIOD

23 22 21 20 19 18 17 16

STTDLY

15 14 13 12 11 10 9 8

– – – – START

7 6 5 4 3 2 1 0

CKG CKI CKO CKS

START Transmit Start

0x0
Continuous, as soon as a word is written in the THR Register (if Transmit is enabled), and immediately
after the end of transfer of the previous data.

0x1 Receive start

0x2 Detection of a low level on TX_FRAME_SYNC signal

0x3 Detection of a high level on TX_FRAME_SYNC signal

0x4 Detection of a falling edge on TX_FRAME_SYNC signal

0x5 Detection of a rising edge on TX_FRAME_SYNC signal

0x6 Detection of any level change on TX_FRAME_SYNC signal

0x7 Detection of any edge on TX_FRAME_SYNC signal

0x8 - 0xF Reserved

372
32015G–AVR32–09/09

AT32AP7001

• CKG: Transmit Clock Gating Selection

• CKI: Transmit Clock Inversion

0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal
input is sampled on Transmit clock rising edge.

1: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal
input is sampled on Transmit clock falling edge.

CKI affects only the Transmit Clock and not the output clock signal.

• CKO: Transmit Clock Output Mode Selection

• CKS: Transmit Clock Selection

CKG Transmit Clock Gating

0x0 None, continuous clock

0x1 Transmit Clock enabled only if TX_FRAME_SYNC Low

0x2 Transmit Clock enabled only if TX_FRAME_SYNC High

0x3 Reserved

CKO Transmit Clock Output Mode TX_CLOCK pin

0x0 None Input-only

0x1 Continuous Transmit Clock Output

0x2 Transmit Clock only during data transfers Output

0x3-0x7 Reserved

CKS Selected Transmit Clock

0x0 Divided Clock

0x1 RX_CLOCK Clock signal

0x2 TX_CLOCK Pin

0x3 Reserved

373
32015G–AVR32–09/09

AT32AP7001

24.9.6 Transmit Frame Mode Register
Name: TFMR

Access Type: Read/Write

Offset: 0x1C

Reset value: 0x00000000

• FSLENHI: Transmit Frame Sync Length High part

The four MSB of the FSLEN bitfield.

• FSEDGE: Frame Sync Edge Detection

Determines which edge on frame sync will generate the interrupt TXSYN (Status Register).

• FSDEN: Frame Sync Data Enable

0: The TX_DATA line is driven with the default value during the Transmit Frame Sync signal.

1: TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.

• FSOS: Transmit Frame Sync Output Selection

• FSLEN: Transmit Frame Sync Length

This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync
Data Register if FSDEN is 1. Note: The four most significant bits fo this bitfield are in the FSLENHI bitfield.

31 30 29 28 27 26 25 24

FSLENHI – – – FSEDGE

23 22 21 20 19 18 17 16

FSDEN FSOS FSLEN

15 14 13 12 11 10 9 8

– – – – DATNB

7 6 5 4 3 2 1 0

MSBF – DATDEF DATLEN

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

FSOS Selected Transmit Frame Sync Signal TX_FRAME_SYNC Pin

0x0 None Input-only

0x1 Negative Pulse Output

0x2 Positive Pulse Output

0x3 Driven Low during data transfer Output

0x4 Driven High during data transfer Output

0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

374
32015G–AVR32–09/09

AT32AP7001

Pulse length is equal to ({FSLENHI,FSLEN} + 1) Transmit Clock periods, i.e., the pulse length can range from 1 to 16
Transmit Clock periods. If {FSLENHI,FSLEN} is 0, the Transmit Frame Sync signal is generated during one Transmit Clock
period.

• DATNB: Data Number per frame

This field defines the number of data words to be transferred after each transfer start, which is equal to (DATNB +1).

• MSBF: Most Significant Bit First

0: The lowest significant bit of the data register is shifted out first in the bit stream.

1: The most significant bit of the data register is shifted out first in the bit stream.

• DATDEF: Data Default Value

This bit defines the level driven on the TX_DATA pin while out of transmission. Note that if the pin is defined as multi-drive
by the PIO Controller, the pin is enabled only if the SCC TX_DATA output is 1.

• DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).

Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDCA assigned to the Transmit. If DATLEN is lower or equal to 7, data transfers are bytes, if DATLEN is between 8 and 15
(included), half-words are transferred, and for any other value, 32-bit words are transferred.

375
32015G–AVR32–09/09

AT32AP7001

24.9.7 SSC Receive Holding Register
Name: RHR

Access Type: Read-only

Offset: 0x20

Reset value: 0x00000000

• RDAT: Receive Data

Right aligned regardless of the number of data bits defined by DATLEN in RFMR.

31 30 29 28 27 26 25 24

RDAT

23 22 21 20 19 18 17 16

RDAT

15 14 13 12 11 10 9 8

RDAT

7 6 5 4 3 2 1 0

RDAT

376
32015G–AVR32–09/09

AT32AP7001

24.9.8 Transmit Holding Register
Name: THR

Access Type: Write-only

Offset: 0x24

Reset value: -

• TDAT: Transmit Data

Right aligned regardless of the number of data bits defined by DATLEN in TFMR.

31 30 29 28 27 26 25 24

TDAT

23 22 21 20 19 18 17 16

TDAT

15 14 13 12 11 10 9 8

TDAT

7 6 5 4 3 2 1 0

TDAT

377
32015G–AVR32–09/09

AT32AP7001

24.9.9 Receive Synchronization Holding Register
Name: RSHR

Access Type: Read-only

Offset: 0x30

Reset value: 0x00000000

• RSDAT: Receive Synchronization Data

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RSDAT

7 6 5 4 3 2 1 0

RSDAT

378
32015G–AVR32–09/09

AT32AP7001

24.9.10 Transmit Synchronization Holding Register
Name: TSHR

Access Type: Read/Write

Offset: 0x34

Reset value: 0x00000000

• TSDAT: Transmit Synchronization Data

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TSDAT

7 6 5 4 3 2 1 0

TSDAT

379
32015G–AVR32–09/09

AT32AP7001

24.9.11 Receive Compare 0 Register
Name: RC0R

Access Type: Read/Write

Offset: 0x38

Reset value: 0x00000000

• CP0: Receive Compare Data 0

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CP0

7 6 5 4 3 2 1 0

CP0

380
32015G–AVR32–09/09

AT32AP7001

24.9.12 Receive Compare 1 Register
Name: RC1R

Access Type: Read/Write

Offset: 0x3C

Reset value: 0x00000000

• CP1: Receive Compare Data 1

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CP1

7 6 5 4 3 2 1 0

CP1

381
32015G–AVR32–09/09

AT32AP7001

24.9.13 Status Register
Name: SR

Access Type: Read-only

Offset: 0x40

Reset value: 0x000000CC

• RXEN: Receive Enable

0: Receive is disabled.

1: Receive is enabled.

• TXEN: Transmit Enable

0: Transmit is disabled.

1: Transmit is enabled.

• RXSYN: Receive Sync

0: An Rx Sync has not occurred since the last read of the Status Register.

1: An Rx Sync has occurred since the last read of the Status Register.

• TXSYN: Transmit Sync

0: A Tx Sync has not occurred since the last read of the Status Register.

1: A Tx Sync has occurred since the last read of the Status Register.

• CP1: Compare 1

0: A compare 1 has not occurred since the last read of the Status Register.

1: A compare 1 has occurred since the last read of the Status Register.

• CP0: Compare 0

0: A compare 0 has not occurred since the last read of the Status Register.

1: A compare 0 has occurred since the last read of the Status Register.

• RXBUFF: Receive Buffer Full

0: RCR or RNCR have a value other than 0.

1: Both RCR and RNCR have a value of 0.

• ENDRX: End of Reception

0: Data is written on the Receive Counter Register or Receive Next Counter Register.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – RXEN TXEN

15 14 13 12 11 10 9 8

– – – – RXSYN TXSYN CP1 CP0

7 6 5 4 3 2 1 0

RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

382
32015G–AVR32–09/09

AT32AP7001

1: End of PDCA transfer when Receive Counter Register has arrived at zero.

• OVRUN: Receive Overrun

0: No data has been loaded in RHR while previous data has not been read since the last read of the Status Register.

1: Data has been loaded in RHR while previous data has not yet been read since the last read of the Status Register.

• RXRDY: Receive Ready

0: RHR is empty.

1: Data has been received and loaded in RHR.

• TXBUFE: Transmit Buffer Empty

0: TCR or TNCR have a value other than 0.

1: Both TCR and TNCR have a value of 0.

• ENDTX: End of Transmission

0: The register TCR has not reached 0 since the last write in TCR or TNCR.

1: The register TCR has reached 0 since the last write in TCR or TNCR.

• TXEMPTY: Transmit Empty

0: Data remains in THR or is currently transmitted from TSR.

1: Last data written in THR has been loaded in TSR and last data loaded in TSR has been transmitted.

• TXRDY: Transmit Ready

0: Data has been loaded in THR and is waiting to be loaded in the Transmit Shift Register (TSR).

1: THR is empty.

383
32015G–AVR32–09/09

AT32AP7001

24.9.14 Interrupt Enable Register
Name: IER

Access Type: Write-only

Offset: 0x44

Reset value: -

• RXSYN: Rx Sync Interrupt Enable

0: No effect.

1: Enables the Rx Sync Interrupt.

• TXSYN: Tx Sync Interrupt Enable

0: No effect.

1: Enables the Tx Sync Interrupt.

• CP1: Compare 1 Interrupt Enable

0: No effect.

1: Enables the Compare 1 Interrupt.

• CP0: Compare 0 Interrupt Enable

0: No effect.

1: Enables the Compare 0 Interrupt.

• RXBUFF: Receive Buffer Full Interrupt Enable

0: No effect.

1: Enables the Receive Buffer Full Interrupt.

• ENDRX: End of Reception Interrupt Enable

0: No effect.

1: Enables the End of Reception Interrupt.

• OVRUN: Receive Overrun Interrupt Enable

0: No effect.

1: Enables the Receive Overrun Interrupt.

• RXRDY: Receive Ready Interrupt Enable

0: No effect.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – RXSYN TXSYN CP1 CP0

7 6 5 4 3 2 1 0

RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

384
32015G–AVR32–09/09

AT32AP7001

1: Enables the Receive Ready Interrupt.

• TXBUFE: Transmit Buffer Empty Interrupt Enable

0: No effect.

1: Enables the Transmit Buffer Empty Interrupt

• ENDTX: End of Transmission Interrupt Enable

0: No effect.

1: Enables the End of Transmission Interrupt.

• TXEMPTY: Transmit Empty Interrupt Enable

0: No effect.

1: Enables the Transmit Empty Interrupt.

• TXRDY: Transmit Ready Interrupt Enable

0: No effect.

1: Enables the Transmit Ready Interrupt.

385
32015G–AVR32–09/09

AT32AP7001

24.9.15 Interrupt Disable Register
Name: IDR

Access Type: Write-only

Offset: 0x48

Reset value: -

• RXSYN: Rx Sync Interrupt Enable

0: No effect.

1: Disables the Rx Sync Interrupt.

• TXSYN: Tx Sync Interrupt Enable

0: No effect.

1: Disables the Tx Sync Interrupt.

• CP1: Compare 1 Interrupt Disable

0: No effect.

1: Disables the Compare 1 Interrupt.

• CP0: Compare 0 Interrupt Disable

0: No effect.

1: Disables the Compare 0 Interrupt.

• RXBUFF: Receive Buffer Full Interrupt Disable

0: No effect.

1: Disables the Receive Buffer Full Interrupt.

• ENDRX: End of Reception Interrupt Disable

0: No effect.

1: Disables the End of Reception Interrupt.

• OVRUN: Receive Overrun Interrupt Disable

0: No effect.

1: Disables the Receive Overrun Interrupt.

• RXRDY: Receive Ready Interrupt Disable

0: No effect.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – RXSYN TXSYN CP1 CP0

7 6 5 4 3 2 1 0

RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

386
32015G–AVR32–09/09

AT32AP7001

1: Disables the Receive Ready Interrupt.

• TXBUFE: Transmit Buffer Empty Interrupt Disable

0: No effect.

1: Disables the Transmit Buffer Empty Interrupt.

• ENDTX: End of Transmission Interrupt Disable

0: No effect.

1: Disables the End of Transmission Interrupt.

• TXEMPTY: Transmit Empty Interrupt Disable

0: No effect.

1: Disables the Transmit Empty Interrupt.

• TXRDY: Transmit Ready Interrupt Disable

0: No effect.

1: Disables the Transmit Ready Interrupt.

387
32015G–AVR32–09/09

AT32AP7001

24.9.16 Interrupt Mask Register
Name: IMR

Access Type: Read-only

Offset: 0x4C

Reset value: 0x00000000

• RXSYN: Rx Sync Interrupt Mask

0: The Rx Sync Interrupt is disabled.

1: The Rx Sync Interrupt is enabled.

• TXSYN: Tx Sync Interrupt Mask

0: The Tx Sync Interrupt is disabled.

1: The Tx Sync Interrupt is enabled.

• CP1: Compare 1 Interrupt Mask

0: The Compare 1 Interrupt is disabled.

1: The Compare 1 Interrupt is enabled.

• CP0: Compare 0 Interrupt Mask

0: The Compare 0 Interrupt is disabled.

1: The Compare 0 Interrupt is enabled.

• RXBUFF: Receive Buffer Full Interrupt Mask

0: The Receive Buffer Full Interrupt is disabled.

1: The Receive Buffer Full Interrupt is enabled.

• ENDRX: End of Reception Interrupt Mask

0: The End of Reception Interrupt is disabled.

1: The End of Reception Interrupt is enabled.

• OVRUN: Receive Overrun Interrupt Mask

0: The Receive Overrun Interrupt is disabled.

1: The Receive Overrun Interrupt is enabled.

• RXRDY: Receive Ready Interrupt Mask

0: The Receive Ready Interrupt is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – RXSYN TXSYN CP1 CP0

7 6 5 4 3 2 1 0

RXBUFF ENDRX OVRUN RXRDY TXBUFE ENDTX TXEMPTY TXRDY

388
32015G–AVR32–09/09

AT32AP7001

25. Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

Rev: 3.0.2.3

25.1 Features

• Programmable Baud Rate Generator
• 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications

– 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode
– Parity Generation and Error Detection
– Framing Error Detection, Overrun Error Detection
– MSB- or LSB-first
– Optional Break Generation and Detection
– By 8 or by 16 Over-sampling Receiver Frequency
– Optional Hardware Handshaking RTS-CTS
– Receiver Time-out and Transmitter Timeguard
– Optional Multidrop Mode with Address Generation and Detection

• RS485 with Driver Control Signal
• ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards

– NACK Handling, Error Counter with Repetition and Iteration Limit
• IrDA Modulation and Demodulation

– Communication at up to 115.2 Kbps
• Test Modes

– Remote Loopback, Local Loopback, Automatic Echo
• Supports Connection of Two Peripheral DMA Controller Channels (PDC)
• Offers Buffer Transfer without Processor Intervention

25.2 Overview

The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programma-
ble (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multidrop communications are also supported through address bit han-
dling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 buses, with
ISO7816 T = 0 or T = 1 smart card slots and infrared transceivers. The hardware handshaking
feature enables an out-of-band flow control by automatic management of the pins RTS and
CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.

389
32015G–AVR32–09/09

AT32AP7001

25.3 Block Diagram

Figure 25-1. USART Block Diagram

Peripheral DMA
Controller

Channel Channel

INTC

Power
Manager

DIV

Receiver

Transmitter

User
Interface

PIO
Controller

RXD

RTS

TXD

CTS

CLKBaudRate
Generator

USART
Interrupt

CLK_USART

CLK_USART/DIV

USART

Peripheral bus

390
32015G–AVR32–09/09

AT32AP7001

25.4 Application Block Diagram

Figure 25-2. Application Block Diagram

25.5 I/O Lines Description

Table 25-1. I/O Line Description

Name Description Type Active Level

CLK Serial Clock I/O

TXD Transmit Serial Data I/O

RXD Receive Serial Data Input

CTS Clear to Send Input Low

RTS Request to Send Output Low

Smart
Card
Slot

USART

RS485
Drivers

Differential
Bus

IrDA
Transceivers

Field Bus
Driver

EMV
Driver IrDA

Driver

IrLAP

RS232
Drivers

Serial
Port

Serial
Driver

PPP

391
32015G–AVR32–09/09

AT32AP7001

25.6 Product Dependencies

25.6.1 I/O Lines

The pins used for interfacing the USART may be multiplexed with the PIO lines. The program-
mer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If I/O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.

To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up
is mandatory.

25.6.2 Power Manager (PM)

The USART is not continuously clocked. The programmer must ensure that the USART clock is
enabled in the Power Manager (PM) before using the USART. However, if the application does
not require USART operations, the USART clock can be stopped when not needed and be
restarted later. In this case, the USART will resume its operations where it left off. USART clock
(CLK_USART) in the USART description is the clock for the peripheral bus to which the USART
is connected.

25.6.3 Interrupt

The USART interrupt line is connected on one of the internal sources of the Interrupt Controller.
Using the USART interrupt requires the interrupt controller to be programmed first.

392
32015G–AVR32–09/09

AT32AP7001

25.7 Functional Description

The USART is capable of managing several types of serial synchronous or asynchronous
communications.

It supports the following communication modes:

•5- to 9-bit full-duplex asynchronous serial communication

–MSB- or LSB-first

–1, 1.5 or 2 stop bits

–Parity even, odd, marked, space or none

–By 8 or by 16 over-sampling receiver frequency

–Optional hardware handshaking

–Optional break management

–Optional multidrop serial communication

•High-speed 5- to 9-bit full-duplex synchronous serial communication

–MSB- or LSB-first

–1 or 2 stop bits

–Parity even, odd, marked, space or none

–By 8 or by 16 over-sampling frequency

–Optional hardware handshaking

–Optional break management

–Optional multidrop serial communication

•RS485 with driver control signal

•ISO7816, T0 or T1 protocols for interfacing with smart cards

–NACK handling, error counter with repetition and iteration limit

•InfraRed IrDA Modulation and Demodulation

•Test modes

–Remote loopback, local loopback, automatic echo

25.7.1 Baud Rate Generator

The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (MR) between:

•the CLK_USART

•a division of the CLK_USART, the divider being product dependent, but generally set to 8

•the external clock, available on the CLK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (BRGR). If CD is programmed at 0, the Baud Rate Gener-
ator does not generate any clock. If CD is programmed at 1, the divider is bypassed and
becomes inactive.

393
32015G–AVR32–09/09

AT32AP7001

If the external CLK clock is selected, the duration of the low and high levels of the signal pro-
vided on the CLK pin must be longer than a CLK_USART period. The frequency of the signal
provided on CLK must be at least 4.5 times lower than CLK_USART.

Figure 25-3. Baud Rate Generator

25.7.1.1 Baud Rate in Asynchronous Mode

If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (BRGR). The
resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

This gives a maximum baud rate of CLK_USART divided by 8, assuming that CLK_USART is
the highest possible clock and that OVER is programmed at 1.

25.7.1.2 Baud Rate Calculation Example
Table 25-2 shows calculations of CD to obtain a baud rate at 38400 bauds for different source
clock frequencies. This table also shows the actual resulting baud rate and the error.

16-bit Counter

CDUSCLKS

CDCLK_USART

CLK_USART/DIV

Reserved
CLK

SYNC

SYNC

USCLKS= 3

FIDI
OVER

Sampling
Divider

BaudRate
Clock

Sampling
Clock

1

00

CLK0
1

2

3
>1

1

1

0

0

Baudrate SelectedClock
8 2 Over–()CD()

--=

Table 25-2. Baud Rate Example (OVER = 0)

Source Clock
Expected Baud

Rate Calculation Result CD Actual Baud Rate Error

MHz Bit/s Bit/s

3 686 400 38 400 6.00 6 38 400.00 0.00%

4 915 200 38 400 8.00 8 38 400.00 0.00%

5 000 000 38 400 8.14 8 39 062.50 1.70%

394
32015G–AVR32–09/09

AT32AP7001

The baud rate is calculated with the following formula:

The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.

25.7.1.3 Fractional Baud Rate in Asynchronous Mode

The Baud Rate generator previously defined is subject to the following limitation: the output fre-
quency changes by only integer multiples of the reference frequency. An approach to this
problem is to integrate a fractional N clock generator that has a high resolution. The generator
architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock.
This fractional part is programmed with the FP field in the Baud Rate Generator Register
(BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the clock
divider. This feature is only available when using USART normal mode. The fractional Baud
Rate is calculated using the following formula:

7 372 800 38 400 12.00 12 38 400.00 0.00%

8 000 000 38 400 13.02 13 38 461.54 0.16%

12 000 000 38 400 19.53 20 37 500.00 2.40%

12 288 000 38 400 20.00 20 38 400.00 0.00%

14 318 180 38 400 23.30 23 38 908.10 1.31%

14 745 600 38 400 24.00 24 38 400.00 0.00%

18 432 000 38 400 30.00 30 38 400.00 0.00%

24 000 000 38 400 39.06 39 38 461.54 0.16%

24 576 000 38 400 40.00 40 38 400.00 0.00%

25 000 000 38 400 40.69 40 38 109.76 0.76%

32 000 000 38 400 52.08 52 38 461.54 0.16%

32 768 000 38 400 53.33 53 38 641.51 0.63%

33 000 000 38 400 53.71 54 38 194.44 0.54%

40 000 000 38 400 65.10 65 38 461.54 0.16%

50 000 000 38 400 81.38 81 38 580.25 0.47%

60 000 000 38 400 97.66 98 38 265.31 0.35%

70 000 000 38 400 113.93 114 38 377.19 0.06%

Table 25-2. Baud Rate Example (OVER = 0) (Continued)

Source Clock
Expected Baud

Rate Calculation Result CD Actual Baud Rate Error

BaudRate CLKUSART() CD 16×⁄=

Error 1 ExpectedBaudRate
ActualBaudRate

---⎝ ⎠
⎛ ⎞–=

Baudrate SelectedClock

8 2 Over–() CD FP
8

-------+⎝ ⎠
⎛ ⎞

⎝ ⎠
⎛ ⎞
---=

395
32015G–AVR32–09/09

AT32AP7001

The modified architecture is presented below:

Figure 25-4. Fractional Baud Rate Generator

25.7.1.4 Baud Rate in Synchronous Mode

If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in BRGR.

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART CLK pin. No division is active. The value written in BRGR
has no effect. The external clock frequency must be at least 4.5 times lower than the system
clock.

When either the external clock CLK or the internal clock divided (CLK_USART/DIV) is selected,
the value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on
the CLK pin. If the internal clock CLK_USART is selected, the Baud Rate Generator ensures a
50:50 duty cycle on the CLK pin, even if the value programmed in CD is odd.

25.7.1.5 Baud Rate in ISO 7816 Mode

The ISO7816 specification defines the bit rate with the following formula:

where:

•B is the bit rate

•Di is the bit-rate adjustment factor

•Fi is the clock frequency division factor

•f is the ISO7816 clock frequency (Hz)

USCLKS CD
Modulus
Control

FP

FP
CD

glitch-free
logic

16-bit Counter

OVER

FIDI
SYNC

Sampling
Divider

CLK_USART

CLK_USART/DIV

ReservedCLK

CLK

BaudRate
Clock

Sampling
Clock

SYNC

USCLKS = 3

>1

1

2

3
0

0

1

0

1

1

0

0

BaudRate SelectedClock
CD

--------------------------------------=

B Di
Fi
------ f×=

396
32015G–AVR32–09/09

AT32AP7001

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 25-3.

Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 25-4.

Table 25-5 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the
baud rate clock.

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (MR) is first divided by the value programmed in the field CD in the Baud Rate
Generator Register (BRGR). The resulting clock can be provided to the CLK pin to feed the
smart card clock inputs. This means that the CLKO bit can be set in MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (FIDI). This is performed by the Sampling Divider, which performs a division by up to
2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the user
must program the FI_DI_RATIO field to a value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 25-5 shows the relation between the Elementary Time Unit, corresponding to a bit time,
and the ISO 7816 clock.

Table 25-3. Binary and Decimal Values for Di

DI field 0001 0010 0011 0100 0101 0110 1000 1001

Di (decimal) 1 2 4 8 16 32 12 20

Table 25-4. Binary and Decimal Values for Fi

FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101

Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048

Table 25-5. Possible Values for the Fi/Di Ratio

Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048

1 372 558 744 1116 1488 1860 512 768 1024 1536 2048

2 186 279 372 558 744 930 256 384 512 768 1024

4 93 139.5 186 279 372 465 128 192 256 384 512

8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256

16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128

32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64

12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6

20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4

397
32015G–AVR32–09/09

AT32AP7001

Figure 25-5. Elementary Time Unit (ETU)

25.7.2 Receiver and Transmitter Control

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (CR). However, the receiver registers can be programmed before the
receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (CR). However, the transmitter registers can be programmed before being
enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register (CR).
The reset commands have the same effect as a hardware reset on the corresponding logic.
Regardless of what the receiver or the transmitter is performing, the communication is immedi-
ately stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in CR. If the receiver is disabled during a character reception, the USART
waits until the end of reception of the current character, then the reception is stopped. If the
transmitter is disabled while it is operating, the USART waits the end of transmission of both the
current character and character being stored in the Transmit Holding Register (THR). If a time-
guard is programmed, it is handled normally.

25.7.3 Synchronous and Asynchronous Modes

25.7.3.1 Transmitter Operations

The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The parity
bit is set according to the PAR field in MR. The even, odd, space, marked or none parity bit can
be configured. The MSBF field in MR configures which data bit is sent first. If written at 1, the
most significant bit is sent first. At 0, the less significant bit is sent first. The number of stop bits is
selected by the NBSTOP field in MR. The 1.5 stop bit is supported in asynchronous mode only.

1 ETU

FI_DI_RATIO
ISO7816 Clock Cycles

SO7816 Clock
on CLK

O7816 I/O Line
on TXD

398
32015G–AVR32–09/09

AT32AP7001

Figure 25-6. Character Transmit

The characters are sent by writing in the Transmit Holding Register (THR). The transmitter
reports two status bits in the Channel Status Register (CSR): TXRDY (Transmitter Ready),
which indicates that THR is empty and TXEMPTY, which indicates that all the characters written
in THR have been processed. When the current character processing is completed, the last
character written in THR is transferred into the Shift Register of the transmitter and THR
becomes empty, thus TXRDY raises.

Both TXRDY and TXEMPTY bits are low since the transmitter is disabled. Writing a character in
THR while TXRDY is active has no effect and the written character is lost.

Figure 25-7. Transmitter Status

25.7.3.2 Manchester Encoder

When the Manchester encoder is in use, characters transmitted through the USART are
encoded based on biphase Manchester II format. To enable this mode, set the MAN field in the
MR register to 1. Depending on polarity configuration, a logic level (zero or one), is transmitted
as a coded signal one-to-zero or zero-to-one. Thus, a transition always occurs at the midpoint of
each bit time. It consumes more bandwidth than the original NRZ signal (2x) but the receiver has
more error control since the expected input must show a change at the center of a bit cell. An
example of Manchester encoded sequence is: the byte 0xB1 or 10110001 encodes to 10 01 10
10 01 01 01 10, assuming the default polarity of the encoder. Figure 25-8 illustrates this coding
scheme.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled One Stop

Baud Rate
 Clock

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

399
32015G–AVR32–09/09

AT32AP7001

Figure 25-8. NRZ to Manchester Encoding

The Manchester encoded character can also be encapsulated by adding both a configurable
preamble and a start frame delimiter pattern. Depending on the configuration, the preamble is a
training sequence, composed of a pre-defined pattern with a programmable length from 1 to 15
bit times. If the preamble length is set to 0, the preamble waveform is not generated prior to any
character. The preamble pattern is chosen among the following sequences: ALL_ONE,
ALL_ZERO, ONE_ZERO or ZERO_ONE, writing the field TX_PP in the MAN register, the field
TX_PL is used to configure the preamble length. Figure 25-9 illustrates and defines the valid
patterns. To improve flexibility, the encoding scheme can be configured using the TX_MPOL
field in the MAN register. If the TX_MPOL field is set to zero (default), a logic zero is encoded
with a zero-to-one transition and a logic one is encoded with a one-to-zero transition. If the
TX_MPOL field is set to one, a logic one is encoded with a one-to-zero transition and a logic
zero is encoded with a zero-to-one transition.

Figure 25-9. Preamble Patterns, Default Polarity Assumed

A start frame delimiter is to be configured using the ONEBIT field in the MR register. It consists
of a user-defined pattern that indicates the beginning of a valid data. Figure 25-10 illustrates
these patterns. If the start frame delimiter, also known as start bit, is one bit, (ONEBIT at 1), a
logic zero is Manchester encoded and indicates that a new character is being sent serially on the
line. If the start frame delimiter is a synchronization pattern also referred to as sync (ONEBIT at
0), a sequence of 3 bit times is sent serially on the line to indicate the start of a new character.

NRZ
encoded

data

Manchester
encoded

data

1 0 1 1 0 0 0 1

Txd

Manchester
encoded

data Txd SFD DATA

8 bit width "ALL_ONE" Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width "ALL_ZERO" Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width "ZERO_ONE" Preamble

Manchester
encoded

data Txd SFD DATA

8 bit width "ONE_ZERO" Preamble

400
32015G–AVR32–09/09

AT32AP7001

The sync waveform is in itself an invalid Manchester waveform as the transition occurs at the
middle of the second bit time. Two distinct sync patterns are used: the command sync and the
data sync. The command sync has a logic one level for one and a half bit times, then a transition
to logic zero for the second one and a half bit times. If the MODSYNC field in the MR register is
set to 1, the next character is a command. If it is set to 0, the next character is a data. When
direct memory access is used, the MODSYNC field can be immediately updated with a modified
character located in memory. To enable this mode, VAR_SYNC field in MR register must be set
to 1. In this case, the MODSYNC field in MR is bypassed and the sync configuration is held in
the TXSYNH in the THR register. The USART character format is modified and includes sync
information.

Figure 25-10. Start Frame Delimiter

25.7.3.3 Drift Compensation
Drift compensation is available only in 16X oversampling mode. An hardware recovery system
allows a larger clock drift. To enable the hardware system, the bit in the MAN register must be
set. If the RXD edge is one 16X clock cycle from the expected edge, this is considered as nor-
mal jitter and no corrective actions is taken. If the RXD event is between 4 and 2 clock cycles
before the expected edge, then the current period is shortened by one clock cycle. If the RXD
event is between 2 and 3 clock cycles after the expected edge, then the current period is length-
ened by one clock cycle. These intervals are considered to be drift and so corrective actions are
automatically taken.

Manchester
encoded

data Txd

SFD

DATA

One bit start frame delimiter

Preamble Length
is set to 0

Manchester
encoded

data
Txd

SFD

DATA

Command Sync
start frame delimiter

Manchester
encoded

data Txd

SFD

DATA

Data Sync
start frame delimiter

401
32015G–AVR32–09/09

AT32AP7001

Figure 25-11. Bit Resynchronization

25.7.3.4 Asynchronous Receiver

If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (MR).

The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. The number of stop bits
has no effect on the receiver as it considers only one stop bit, regardless of the field NBSTOP,
so that resynchronization between the receiver and the transmitter can occur. Moreover, as
soon as the stop bit is sampled, the receiver starts looking for a new start bit so that resynchroni-
zation can also be accomplished when the transmitter is operating with one stop bit.

Figure 25-12 and Figure 25-13 illustrate start detection and character reception when USART
operates in asynchronous mode.

RXD

Oversampling
 16x Clock

Sampling
point

Expected edge

ToleranceSynchro.
Jump

Sync
JumpSynchro.

Error

Synchro.
Error

402
32015G–AVR32–09/09

AT32AP7001

Figure 25-12. Asynchronous Start Detection

Figure 25-13. Asynchronous Character Reception

25.7.3.5 Manchester Decoder

When the MAN field in MR register is set to 1, the Manchester decoder is enabled. The decoder
performs both preamble and start frame delimiter detection. One input line is dedicated to Man-
chester encoded input data.

An optional preamble sequence can be defined, its length is user-defined and totally indepen-
dent of the emitter side. Use RX_PL in MAN register to configure the length of the preamble
sequence. If the length is set to 0, no preamble is detected and the function is disabled. In addi-
tion, the polarity of the input stream is programmable with RX_MPOL field in MAN register.
Depending on the desired application the preamble pattern matching is to be defined via the
RX_PP field in MAN. See Figure 25-9 for available preamble patterns.

Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder.
So, if ONEBIT field is set to 1, only a zero encoded Manchester can be detected as a valid start
frame delimiter. If ONEBIT is set to 0, only a sync pattern is detected as a valid start frame
delimiter. Decoder operates by detecting transition on incoming stream. If RXD is sampled dur-
ing one quarter of a bit time at zero, a start bit is detected. See Figure 25-14. The sample pulse
rejection mechanism applies.

Sampling
Clock (x16)

RXD

Start
Detection

Sampling

Baud Rate
Clock

RXD

Start
Rejection

Sampling

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 0 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D0

Sampling

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Stop
Bit

Example: 8-bit, Parity Enabled

Baud Rate
Clock

Start
Detection

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

16
samples

403
32015G–AVR32–09/09

AT32AP7001

Figure 25-14. Asynchronous Start Bit Detection

The receiver is activated and starts Preamble and Frame Delimiter detection, sampling the data
at one quarter and then three quarters. If a valid preamble pattern or start frame delimiter is
detected, the receiver continues decoding with the same synchronization. If the stream does not
match a valid pattern or a valid start frame delimiter, the receiver re-synchronizes on the next
valid edge.The minimum time threshold to estimate the bit value is three quarters of a bit time.

If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming
stream is decoded into NRZ data and passed to USART for processing. Figure 25-15 illustrates
Manchester pattern mismatch. When incoming data stream is passed to the USART, the
receiver is also able to detect Manchester code violation. A code violation is a lack of transition
in the middle of a bit cell. In this case, MANE flag in CSR register is raised. It is cleared by writing
the Control Register (CR) with the RSTSTA bit at 1. See Figure 25-16 for an example of Man-
chester error detection during data phase.

Figure 25-15. Preamble Pattern Mismatch

Figure 25-16. Manchester Error Flag

When the start frame delimiter is a sync pattern (ONEBIT field at 0), both command and data
delimiter are supported. If a valid sync is detected, the received character is written as RXCHR

Manchester
encoded

data Txd

1 2 3 4

Sampling
Clock
(16 x)

Start
Detection

Manchester
encoded

data Txd SFD DATA

Preamble Length is set to 8

Preamble Mismatch
invalid pattern

Preamble Mismatch
Manchester coding error

Manchester
encoded

data Txd

SFD

Preamble Length
is set to 4

Elementary character bit time

Manchester
Coding Error

detected

sampling points

Preamble subpacket
and Start Frame Delimiter

were successfully
decoded

Entering USART character area

404
32015G–AVR32–09/09

AT32AP7001

field in the RHR register and the RXSYNH is updated. RXCHR is set to 1 when the received
character is a command, and it is set to 0 if the received character is a data. This mechanism
alleviates and simplifies the direct memory access as the character contains its own sync field in
the same register.

As the decoder is setup to be used in unipolar mode, the first bit of the frame has to be a zero-to-
one transition.

25.7.3.6 Radio Interface: Manchester Encoded USART Application

This section describes low data rate RF transmission systems and their integration with a Man-
chester encoded USART. These systems are based on transmitter and receiver ICs that support
ASK and FSK modulation schemes.

The goal is to perform full duplex radio transmission of characters using two different frequency
carriers. See the configuration in Figure 25-17.

Figure 25-17. Manchester Encoded Characters RF Transmission

The USART module is configured as a Manchester encoder/decoder. Looking at the down-
stream communication channel, Manchester encoded characters are serially sent to the RF
emitter. This may also include a user defined preamble and a start frame delimiter. Mostly, pre-
amble is used in the RF receiver to distinguish between a valid data from a transmitter and
signals due to noise. The Manchester stream is then modulated. See Figure 25-18 for an exam-
ple of ASK modulation scheme. When a logic one is sent to the ASK modulator, the power
amplifier, referred to as PA, is enabled and transmits an RF signal at downstream frequency.
When a logic zero is transmitted, the RF signal is turned off. If the FSK modulator is activated,
two different frequencies are used to transmit data. When a logic 1 is sent, the modulator out-
puts an RF signal at frequency F0 and switches to F1 if the data sent is a 0. See Figure 25-19.

From the receiver side, another carrier frequency is used. The RF receiver performs a bit check
operation examining demodulated data stream. If a valid pattern is detected, the receiver
switches to receiving mode. The demodulated stream is sent to the Manchester decoder.
Because of bit checking inside RF IC, the data transferred to the microcontroller is reduced by a

LNA
VCO

RF filter
Demod

control
bi-dir

line

PA
RF filter

Mod
VCO

control

Manchester
decoder

Manchester
encoder

USART
Receiver

USART
Emitter

ASK/FSK
Upstream Receiver

ASK/FSK
downstream transmitter

Upstream
Emitter

Downstream
Receiver

Serial
Configuration

Interface

Fup frequency Carrier

Fdown frequency Carrier

405
32015G–AVR32–09/09

AT32AP7001

user-defined number of bits. The Manchester preamble length is to be defined in accordance
with the RF IC configuration.

Figure 25-18. ASK Modulator Output

Figure 25-19. FSK Modulator Output

25.7.3.7 Synchronous Receiver

In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 25-20 illustrates a character reception in synchronous mode.

Figure 25-20. Synchronous Mode Character Reception

Manchester
encoded

data
default polarity
unipolar output

Txd

ASK Modulator
Output

Uptstream Frequency F0

NRZ stream
1 0 0 1

Manchester
encoded

data
default polarity
unipolar output

Txd

FSK Modulator
Output

Uptstream Frequencies
[F0, F0+offset]

NRZ stream
1 0 0 1

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Sampling

Parity Bit
Stop Bit

Example: 8-bit, Parity Enabled 1 Stop

Baud Rate
Clock

406
32015G–AVR32–09/09

AT32AP7001

25.7.3.8 Receiver Operations

When a character reception is completed, it is transferred to the Receive Holding Register
(RHR) and the RXRDY bit in the Status Register (CSR) rises. If a character is completed while
the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into
RHR and overwrites the previous one. The OVRE bit is cleared by writing the Control Register
(CR) with the RSTSTA (Reset Status) bit at 1.

Figure 25-21. Receiver Status

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

RXRDY

OVRE

D0 D1 D2 D3 D4 D5 D6 D7
Start

Bit
Parity

Bit
Stop
Bit

RSTSTA = 1

Read
US_RHR

407
32015G–AVR32–09/09

AT32AP7001

25.7.3.9 Parity

The USART supports five parity modes selected by programming the PAR field in the Mode
Register (MR). The PAR field also enables the Multidrop mode, see ”Multidrop Mode” on page
408. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at 0 if a num-
ber of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sam-
pled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at 0 if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is
used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 25-6 shows an example of the parity bit for the character 0x41 (character ASCII “A”)
depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added
when a parity is odd, or 0 is added when a parity is even.

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (CSR). The PARE bit can be cleared by writing the Control Register (CR) with the RST-
STA bit at 1. Figure 25-22 illustrates the parity bit status setting and clearing.

Table 25-6. Parity Bit Examples

Character Hexa Binary Parity Bit Parity Mode

A 0x41 0100 0001 1 Odd

A 0x41 0100 0001 0 Even

A 0x41 0100 0001 1 Mark

A 0x41 0100 0001 0 Space

A 0x41 0100 0001 None None

408
32015G–AVR32–09/09

AT32AP7001

Figure 25-22. Parity Error

25.7.3.10 Multidrop Mode

If the PAR field in the Mode Register (MR) is programmed to the value 0x6 or 0x07, the USART
runs in Multidrop Mode. This mode differentiates the data characters and the address charac-
ters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the parity bit
at 1.

If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit at 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.

The transmitter sends an address byte (parity bit set) when SENDA is written to CR. In this case,
the next byte written to THR is transmitted as an address. Any character written in THR without
having written the command SENDA is transmitted normally with the parity at 0.

25.7.3.11 Transmitter Timeguard

The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Regis-
ter (TTGR). When this field is programmed at zero no timeguard is generated. Otherwise, the
transmitter holds a high level on TXD after each transmitted byte during the number of bit peri-
ods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 25-23, the behavior of TXRDY and TXEMPTY status bits is modified by
the programming of a timeguard. TXRDY rises only when the start bit of the next character is
sent, and thus remains at 0 during the timeguard transmission if a character has been written in
THR. TXEMPTY remains low until the timeguard transmission is completed as the timeguard is
part of the current character being transmitted.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Bad
Parity

Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

PARE

RXRDY

RSTSTA = 1

409
32015G–AVR32–09/09

AT32AP7001

Figure 25-23. Timeguard Operations

Table 25-7 indicates the maximum length of a timeguard period that the transmitter can handle
in relation to the function of the Baud Rate.

25.7.3.12 Receiver Time-out

The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (CSR) rises and can generate an interrupt, thus indicating to the driver an end of
frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (RTOR). If the TO field is programmed at 0, the
Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in CSR remains at
0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO. This counter
is decremented at each bit period and reloaded each time a new character is received. If the
counter reaches 0, the TIMEOUT bit in the Status Register rises.

The user can either:

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Start
Bit

TG = 4

Write
US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit
Stop
Bit

TXRDY

TXEMPTY

TG = 4

Table 25-7. Maximum Timeguard Length Depending on Baud Rate

Baud Rate Bit time Timeguard

Bit/sec µs ms

1 200 833 212.50

9 600 104 26.56

14400 69.4 17.71

19200 52.1 13.28

28800 34.7 8.85

33400 29.9 7.63

56000 17.9 4.55

57600 17.4 4.43

115200 8.7 2.21

410
32015G–AVR32–09/09

AT32AP7001

•Obtain an interrupt when a time-out is detected after having received at least one character.
This is performed by writing the Control Register (CR) with the STTTO (Start Time-out) bit at
1.

•Obtain a periodic interrupt while no character is received. This is performed by writing CR with
the RETTO (Reload and Start Time-out) bit at 1.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time-out. This prevents having to
obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This
enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 25-24 shows the block diagram of the Receiver Time-out feature.

Figure 25-24. Receiver Time-out Block Diagram

Table 25-8 gives the maximum time-out period for some standard baud rates.

16-bit Time-out
Counter

0

TO

TIMEOUT

Baud Rate
Clock

=

Character
Received

RETTO

Load

Clock

16-bit
Value

STTTO

D Q1

Clear

Table 25-8. Maximum Time-out Period

Baud Rate Bit Time Time-out

bit/sec µs ms

600 1 667 109 225

1 200 833 54 613

2 400 417 27 306

4 800 208 13 653

9 600 104 6 827

14400 69 4 551

19200 52 3 413

28800 35 2 276

33400 30 1 962

56000 18 1 170

57600 17 1 138

200000 5 328

411
32015G–AVR32–09/09

AT32AP7001

25.7.3.13 Framing Error

The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (CR) with the RSTSTA bit at 1.

Figure 25-25. Framing Error Status

25.7.3.14 Transmit Break

The user can request the transmitter to generate a break condition on the TXD line. A break con-
dition drives the TXD line low during at least one complete character. It appears the same as a
0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (CR) with the STTBRK bit at 1. This can be
performed at any time, either while the transmitter is empty (no character in either the Shift Reg-
ister or in THR) or when a character is being transmitted. If a break is requested while a
character is being shifted out, the character is first completed before the TXD line is held low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in CSR is at 1 and the start of the break
condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable result. All
STPBRK commands requested without a previous STTBRK command are ignored. A byte writ-
ten into the Transmit Holding Register while a break is pending, but not started, is ignored.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

FRAME

RXRDY

RSTSTA = 1

412
32015G–AVR32–09/09

AT32AP7001

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 25-26 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK)
commands on the TXD line.

Figure 25-26. Break Transmission

25.7.3.15 Receive Break

The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data at 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in CSR. This bit may be
cleared by writing the Control Register (CR) with the bit RSTSTA at 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

25.7.3.16 Hardware Handshaking

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 25-27.

Figure 25-27. Connection with a Remote Device for Hardware Handshaking

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

TXRDY

TXEMPTY

STPBRK = 1STTBRK = 1

Break Transmission End of Break

USART

TXD

CTS

Remote
Device

RXD

TXDRXD

RTS

RTS

CTS

413
32015G–AVR32–09/09

AT32AP7001

Setting the USART to operate with hardware handshaking is performed by writing the MODE
field in the Mode Register (MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.

Figure 25-28 shows how the receiver operates if hardware handshaking is enabled. The RTS
pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) com-
ing from the PDC channel is high. Normally, the remote device does not start transmitting while
its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating
to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the
status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 25-28. Receiver Behavior when Operating with Hardware Handshaking

Figure 25-29 shows how the transmitter operates if hardware handshaking is enabled. The CTS
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens as
soon as the pin CTS falls.

Figure 25-29. Transmitter Behavior when Operating with Hardware Handshaking

25.7.4 ISO7816 Mode

The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the MODE field in the Mode Regis-
ter (MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T = 1.

25.7.4.1 ISO7816 Mode Overview

The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see ”Baud Rate Generator”
on page 392).

RTS

RXBUFF

Write
US_CR

RXEN = 1

RXD

RXDIS = 1

CTS

TXD

414
32015G–AVR32–09/09

AT32AP7001

The USART connects to a smart card as shown in Figure 25-30. The TXD line becomes bidirec-
tional and the Baud Rate Generator feeds the ISO7816 clock on the CLK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is con-
sidered as the master of the communication as it generates the clock.

Figure 25-30. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
”USART Mode Register” on page 425 and ”PAR: Parity Type” on page 426.

The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the I/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (THR) or after reading it in the Receive Holding Register (RHR).

25.7.4.2 Protocol T = 0

In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.

If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 25-31.

If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as
shown in Figure 25-32. This error bit is also named NACK, for Non Acknowledge. In this case,
the character lasts 1 bit time more, as the guard time length is the same and is added to the
error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (RHR). It appropriately sets the PARE bit in the Status Register
(SR) so that the software can handle the error.

CLK

TXD

USART

CLK

I/O
Smart
Card

415
32015G–AVR32–09/09

AT32AP7001

Figure 25-31. T = 0 Protocol without Parity Error

Figure 25-32. T = 0 Protocol with Parity Error

25.7.4.3 Receive Error Counter
The USART receiver also records the total number of errors. This can be read in the Number of
Error (NER) register. The NB_ERRORS field can record up to 255 errors. Reading NER auto-
matically clears the NB_ERRORS field.

25.7.4.4 Receive NACK Inhibit
The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (MR). If INACK is at 1, no error signal is driven on the I/O line
even if a parity bit is detected, but the INACK bit is set in the Status Register (SR). The INACK
bit can be cleared by writing the Control Register (CR) with the RSTNACK bit at 1.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.

25.7.4.5 Transmit Character Repetition
When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetit ion is enabled by writ ing the
MAX_ITERATION field in the Mode Register (MR) at a value higher than 0. Each character can
be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in CSR can be cleared by writing the Control Register with the RSIT bit at 1.

25.7.4.6 Disable Successive Receive NACK
The receiver can limit the number of successive NACKs sent back to the remote transmitter.
This is programmed by setting the bit DSNACK in the Mode Register (MR). The maximum num-
ber of NACK transmitted is programmed in the MAX_ITERATION field. As soon as

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Next
Start

Bit

Guard
Time 2

D0 D1 D2 D3 D4 D5 D6 D7

I/O

Parity
Bit

Baud Rate
Clock

Start
Bit

Guard
Time 1

Start
Bit

Guard
Time 2

D0 D1

Error

Repetition

416
32015G–AVR32–09/09

AT32AP7001

MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.

25.7.4.7 Protocol T = 1

When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (CSR).

25.7.5 IrDA Mode

The USART features an IrDA mode supplying half-duplex point-to-point wireless communica-
tion. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 25-33. The modulator and demodulator are compliant
with the IrDA specification version 1.1 and support data transfer speeds ranging from 2.4 Kb/s to
115.2 Kb/s.

The USART IrDA mode is enabled by setting the MODE field in the Mode Register (MR) to the
value 0x8. The IrDA Filter Register (IFR) allows configuring the demodulator filter. The USART
transmitter and receiver operate in a normal asynchronous mode and all parameters are acces-
sible. Note that the modulator and the demodulator are activated.

Figure 25-33. Connection to IrDA Transceivers

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

25.7.5.1 IrDA Modulation

For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 25-9.

IrDA
Transceivers

RXD RX

TXD

TX

USART

Demodulator

Modulator

Receiver

Transmitter

Table 25-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)

2.4 Kb/s 78.13 µs

9.6 Kb/s 19.53 µs

19.2 Kb/s 9.77 µs

417
32015G–AVR32–09/09

AT32AP7001

Figure 25-34 shows an example of character transmission.

Figure 25-34. IrDA Modulation

25.7.5.2 IrDA Baud Rate

Table 25-10 gives some examples of CD values, baud rate error and pulse duration. Note that
the requirement on the maximum acceptable error of ±1.87% must be met.

38.4 Kb/s 4.88 µs

57.6 Kb/s 3.26 µs

115.2 Kb/s 1.63 µs

Table 25-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)

Bit Period Bit Period3
16

Start
Bit

Data Bits Stop
Bit

0 00 0 01 11 11
Transmitter

Output

TXD

Table 25-10. IrDA Baud Rate Error

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time

3 686 400 115 200 2 0.00% 1.63

20 000 000 115 200 11 1.38% 1.63

32 768 000 115 200 18 1.25% 1.63

40 000 000 115 200 22 1.38% 1.63

3 686 400 57 600 4 0.00% 3.26

20 000 000 57 600 22 1.38% 3.26

32 768 000 57 600 36 1.25% 3.26

40 000 000 57 600 43 0.93% 3.26

3 686 400 38 400 6 0.00% 4.88

20 000 000 38 400 33 1.38% 4.88

32 768 000 38 400 53 0.63% 4.88

40 000 000 38 400 65 0.16% 4.88

3 686 400 19 200 12 0.00% 9.77

20 000 000 19 200 65 0.16% 9.77

32 768 000 19 200 107 0.31% 9.77

40 000 000 19 200 130 0.16% 9.77

418
32015G–AVR32–09/09

AT32AP7001

25.7.5.3 IrDA Demodulator

The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in IFR. When a falling edge is detected on the RXD pin, the
Filter Counter starts counting down at the CLK_USART speed. If a rising edge is detected on the
RXD pin, the counter stops and is reloaded with IFR. If no rising edge is detected when the
counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 25-35 illustrates the operations of the IrDA demodulator.

Figure 25-35. IrDA Demodulator Operations

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in FIDI
must be set to a value higher than 0 in order to assure IrDA communications operate correctly.

3 686 400 9 600 24 0.00% 19.53

20 000 000 9 600 130 0.16% 19.53

32 768 000 9 600 213 0.16% 19.53

40 000 000 9 600 260 0.16% 19.53

3 686 400 2 400 96 0.00% 78.13

20 000 000 2 400 521 0.03% 78.13

32 768 000 2 400 853 0.04% 78.13

Table 25-10. IrDA Baud Rate Error (Continued)

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time

CLK_USART

RXD

Counter
Value

Receiver
Input

6 5 4 63
Pulse

Rejected

2 6 45 3 2 1 0
Pulse

Accepted

Driven Low During 16 Baud Rate Clock Cycles

419
32015G–AVR32–09/09

AT32AP7001

25.7.6 RS485 Mode

The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters is possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to a RS485 bus is shown in Figure 25-36.

Figure 25-36. Typical Connection to a RS485 Bus

The USART is set in RS485 mode by programming the MODE field in the Mode Register (MR)
to the value 0x1.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character com-
pletion. Figure 25-37 gives an example of the RTS waveform during a character transmission
when the timeguard is enabled.

Figure 25-37. Example of RTS Drive with Timeguard

USART

RTS

TXD

RXD

Differential
Bus

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

TG = 4

Write
US_THR

TXRDY

TXEMPTY

RTS

420
32015G–AVR32–09/09

AT32AP7001

25.7.7 Test Modes

The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are dis-
connected or not and reconfigured for loopback internally or externally.

25.7.7.1 Normal Mode

Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD
pin.

Figure 25-38. Normal Mode Configuration

25.7.7.2 Automatic Echo Mode

Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 25-39. Programming the transmitter has no effect on
the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains
active.

Figure 25-39. Automatic Echo Mode Configuration

25.7.7.3 Local Loopback Mode

Local loopback mode connects the output of the transmitter directly to the input of the receiver,
as shown in Figure 25-40. The TXD and RXD pins are not used. The RXD pin has no effect on
the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 25-40. Local Loopback Mode Configuration

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD
1

421
32015G–AVR32–09/09

AT32AP7001

25.7.7.4 Remote Loopback Mode

Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 25-41.
The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit
retransmission.

Figure 25-41. Remote Loopback Mode Configuration

Receiver

Transmitter

RXD

TXD

1

422
32015G–AVR32–09/09

AT32AP7001

25.8 USART User Interface

Note: 1. Values in the Version Register vary with the version of the IP block implementation.

Table 25-11. USART Memory Map

Offset Register Name Access Reset State

0x0000 Control Register CR Write-only –

0x0004 Mode Register MR Read/Write –

0x0008 Interrupt Enable Register IER Write-only –

0x000C Interrupt Disable Register IDR Write-only –

0x0010 Interrupt Mask Register IMR Read-only 0x0

0x0014 Channel Status Register CSR Read-only –

0x0018 Receiver Holding Register RHR Read-only 0x0

0x001C Transmitter Holding Register THR Write-only –

0x0020 Baud Rate Generator Register BRGR Read/Write 0x0

0x0024 Receiver Time-out Register RTOR Read/Write 0x0

0x0028 Transmitter Timeguard Register TTGR Read/Write 0x0

0x2C - 0x3C Reserved – – –

0x0040 FI DI Ratio Register FIDI Read/Write 0x174

0x0044 Number of Errors Register NER Read-only –

0x0048 Reserved - – –

0x004C IrDA Filter Register IFR Read/Write 0x0

0x0050 Manchester Encoder Decoder Register MAN Read/Write 0x30011004

0x5C - 0xF8 Reserved – – –

0xFC Version Register US_VERSION Read-only 0x–(1)

0x100 - 0x128 Reserved for PDC Registers – – –

423
32015G–AVR32–09/09

AT32AP7001

25.8.1 USART Control Register

Name: CR

Access Type: Write-only

Offset: 0x00

Reset Value: -

• RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter
0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable
0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable
0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable
0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable
0: No effect.

1: Disables the transmitter.

• RSTSTA: Reset Status Bits
0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in CSR.

• STTBRK: Start Break
0: No effect.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RTSDIS RTSEN – –

15 14 13 12 11 10 9 8
RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0
TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

424
32015G–AVR32–09/09

AT32AP7001

1: Starts transmission of a break after the characters present in THR and the Transmit Shift Register have been transmit-
ted. No effect if a break is already being transmitted.

• STPBRK: Stop Break
0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.

• STTTO: Start Time-out
0: No effect

1: Starts waiting for a character before clocking the time-out counter.

• SENDA: Send Address
0: No effect.

1: In Multidrop Mode only, the next character written to the THR is sent with the address bit set.

• RSTIT: Reset Iterations
0: No effect.

1: Resets ITERATION in CSR. No effect if the ISO7816 is not enabled.

• RSTNACK: Reset Non Acknowledge
0: No effect

1: Resets NACK in CSR.

• RETTO: Rearm Time-out
0: No effect

1: Restart Time-out

• RTSEN: Request to Send Enable
0: No effect.

1: Drives the pin RTS to 0.

• RTSDIS: Request to Send Disable
0: No effect.

1: Drives the pin RTS to 1.

425
32015G–AVR32–09/09

AT32AP7001

25.8.2 USART Mode Register

Name: MR

Access Type: Read/Write

• MODE

• USCLKS: Clock Selection

• CHRL: Character Length.

31 30 29 28 27 26 25 24

ONEBIT MODSYNC MAN FILTER – MAX_ITERATION

23 22 21 20 19 18 17 16

– VAR_SYNC DSNACK INACK OVER CLKO MODE9 MSBF

15 14 13 12 11 10 9 8

CHMODE NBSTOP PAR SYNC

7 6 5 4 3 2 1 0

CHRL USCLKS MODE

MODE Mode of the USART

0 0 0 0 Normal

0 0 0 1 RS485

0 0 1 0 Hardware Handshaking

0 0 1 1 Reserved

0 1 0 0 IS07816 Protocol: T = 0

0 1 0 1 Reserved

0 1 1 0 IS07816 Protocol: T = 1

0 1 1 1 Reserved

1 0 0 0 IrDA

1 1 x x Reserved

USCLKS Selected Clock

0 0 CLK_USART

0 1 CLK_USART / DIV

1 0 Reserved

1 1 CLK

CHRL Character Length

0 0 5 bits

426
32015G–AVR32–09/09

AT32AP7001

• SYNC: Synchronous Mode Select
0: USART operates in Asynchronous Mode.

1: USART operates in Synchronous Mode.

• PAR: Parity Type

• NBSTOP: Number of Stop Bits

• CHMODE: Channel Mode

• MSBF: Bit Order
0: Least Significant Bit is sent/received first.

1: Most Significant Bit is sent/received first.

• MODE9: 9-bit Character Length
0: CHRL defines character length.

1: 9-bit character length.

• CLKO: Clock Output Select
0: The USART does not drive the CLK pin.

0 1 6 bits

1 0 7 bits

1 1 8 bits

PAR Parity Type

0 0 0 Even parity

0 0 1 Odd parity

0 1 0 Parity forced to 0 (Space)

0 1 1 Parity forced to 1 (Mark)

1 0 x No parity

1 1 x Multidrop mode

NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC = 1)

0 0 1 stop bit 1 stop bit

0 1 1.5 stop bits Reserved

1 0 2 stop bits 2 stop bits

1 1 Reserved Reserved

CHMODE Mode Description

0 0 Normal Mode

0 1 Automatic Echo. Receiver input is connected to the TXD pin.

1 0 Local Loopback. Transmitter output is connected to the Receiver Input..

1 1 Remote Loopback. RXD pin is internally connected to the TXD pin.

427
32015G–AVR32–09/09

AT32AP7001

1: The USART drives the CLK pin if USCLKS does not select the external clock CLK.

• OVER: Oversampling Mode
0: 16x Oversampling.

1: 8x Oversampling.

• INACK: Inhibit Non Acknowledge
0: The NACK is generated.

1: The NACK is not generated.

• DSNACK: Disable Successive NACK
0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-
ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

• VAR_SYNC: Variable synchronization of command/data sync Start Frame Delimiter
0: User defined configuration of command or data sync field depending on SYNC value.

1: The sync field is updated when a character is written into THR register.

• MAX_ITERATION
Defines the maximum number of iterations in mode ISO7816, protocol T= 0.

• FILTER: Infrared Receive Line Filter
0: The USART does not filter the receive line.

1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

• MAN: Manchester Encoder/Decoder Enable
0: Manchester Encoder/Decoder are disabled.

1: Manchester Encoder/Decoder are enabled.

• MODSYNC: Manchester Synchronization mode
0:The Manchester Start bit is a 0 to 1 transition

1: The Manchester Start bit is a 1 to 0 transition.

• ONEBIT: Start Frame Delimiter selector
0: Start Frame delimiter is COMMAND or DATA SYNC.

1: Start Frame delimiter is One Bit.

428
32015G–AVR32–09/09

AT32AP7001

25.8.3 USART Interrupt Enable Register

Name: IER

Access Type: Write-only

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• RXBRK: Receiver Break Interrupt Enable

• ENDRX: End of Receive Transfer Interrupt Enable

• ENDTX: End of Transmit Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• FRAME: Framing Error Interrupt Enable

• PARE: Parity Error Interrupt Enable

• TIMEOUT: Time-out Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• ITERATION: Iteration Interrupt Enable

• TXBUFE: Buffer Empty Interrupt Enable

• RXBUFF: Buffer Full Interrupt Enable

• NACK: Non Acknowledge Interrupt Enable

• CTSIC: Clear to Send Input Change Interrupt Enable

• MANE: Manchester Error Interrupt Enable
0: No effect.

1: Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – MANE CTSIC – – –

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

429
32015G–AVR32–09/09

AT32AP7001

25.8.4 USART Interrupt Disable Register

Name: IDR

Access Type: Write-only

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• RXBRK: Receiver Break Interrupt Disable

• ENDRX: End of Receive Transfer Interrupt Disable

• ENDTX: End of Transmit Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• FRAME: Framing Error Interrupt Disable

• PARE: Parity Error Interrupt Disable

• TIMEOUT: Time-out Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• ITERATION: Iteration Interrupt Disable

• TXBUFE: Buffer Empty Interrupt Disable

• RXBUFF: Buffer Full Interrupt Disable

• NACK: Non Acknowledge Interrupt Disable

• CTSIC: Clear to Send Input Change Interrupt Disable

• MANE: Manchester Error Interrupt Disable
0: No effect.

1: Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – MANE CTSIC – – –

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

430
32015G–AVR32–09/09

AT32AP7001

25.8.5 USART Interrupt Mask Register

Name: IMR

Access Type: Read-only

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• RXBRK: Receiver Break Interrupt Mask

• ENDRX: End of Receive Transfer Interrupt Mask

• ENDTX: End of Transmit Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• FRAME: Framing Error Interrupt Mask

• PARE: Parity Error Interrupt Mask

• TIMEOUT: Time-out Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• ITERATION: Iteration Interrupt Mask

• TXBUFE: Buffer Empty Interrupt Mask

• RXBUFF: Buffer Full Interrupt Mask

• NACK: Non Acknowledge Interrupt Mask

• CTSIC: Clear to Send Input Change Interrupt Mask

• MANE: Manchester Error Interrupt Mask
0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – MANE CTSIC – – –

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

431
32015G–AVR32–09/09

AT32AP7001

25.8.6 USART Channel Status Register

Name: CSR

Access Type: Read-only

• RXRDY: Receiver Ready
0: No complete character has been received since the last read of RHR or the receiver is disabled. If characters were being
received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and RHR has not yet been read.

• TXRDY: Transmitter Ready
0: A character is in the THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1: There is no character in the THR.

• RXBRK: Break Received/End of Break
0: No Break received or End of Break detected since the last RSTSTA.

1: Break Received or End of Break detected since the last RSTSTA.

• ENDRX: End of Receiver Transfer
0: The End of Transfer signal from the Receive PDC channel is inactive.

1: The End of Transfer signal from the Receive PDC channel is active.

• ENDTX: End of Transmitter Transfer
0: The End of Transfer signal from the Transmit PDC channel is inactive.

1: The End of Transfer signal from the Transmit PDC channel is active.

• OVRE: Overrun Error
0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error
0: No stop bit has been detected low since the last RSTSTA.

1: At least one stop bit has been detected low since the last RSTSTA.

• PARE: Parity Error
0: No parity error has been detected since the last RSTSTA.

31 30 29 28 27 26 25 24

– – – – – – – MANERR

23 22 21 20 19 18 17 16

CTS – – – CTSIC – – –

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITERATION TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

432
32015G–AVR32–09/09

AT32AP7001

1: At least one parity error has been detected since the last RSTSTA.

• TIMEOUT: Receiver Time-out
0: There has not been a time-out since the last Start Time-out command or the Time-out Register is 0.

1: There has been a time-out since the last Start Time-out command.

• TXEMPTY: Transmitter Empty
0: There are characters in either THR or the Transmit Shift Register, or the transmitter is disabled.

TXEMPTY == 1 means that the transmit shift register is empty and that there is no data in THR.

• ITERATION: Max number of Repetitions Reached
0: Maximum number of repetitions has not been reached since the last RSIT.

1: Maximum number of repetitions has been reached since the last RSIT.

• TXBUFE: Transmission Buffer Empty
0: The signal Buffer Empty from the Transmit PDC channel is inactive.

1: The signal Buffer Empty from the Transmit PDC channel is active.

• RXBUFF: Reception Buffer Full
0: The signal Buffer Full from the Receive PDC channel is inactive.

1: The signal Buffer Full from the Receive PDC channel is active.

• NACK: Non Acknowledge
0: No Non Acknowledge has not been detected since the last RSTNACK.

1: At least one Non Acknowledge has been detected since the last RSTNACK.

• CTSIC: Clear to Send Input Change Flag
0: No input change has been detected on the CTS pin since the last read of CSR.

1: At least one input change has been detected on the CTS pin since the last read of CSR.

• CTS: Image of CTS Input
0: CTS is at 0.

1: CTS is at 1.

• MANERR: Manchester Error
0: No Manchester error has been detected since the last RSTSTA.

1: At least one Manchester error has been detected since the last RSTSTA.

433
32015G–AVR32–09/09

AT32AP7001

25.8.7 USART Receive Holding Register

Name: RHR

Access Type: Read-only

• RXCHR: Received Character
Last character received if RXRDY is set.

• RXSYNH: Received Sync
0: Last Character received is a Data.

1: Last Character received is a Command.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RXSYNH – – – – – – RXCHR

7 6 5 4 3 2 1 0

RXCHR

434
32015G–AVR32–09/09

AT32AP7001

25.8.8 USART Transmit Holding Register

Name: THR

Access Type: Write-only

• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

• TXSYNH: Sync Field to be transmitted
0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXSYNH – – – – – – TXCHR

7 6 5 4 3 2 1 0

TXCHR

435
32015G–AVR32–09/09

AT32AP7001

25.8.9 USART Baud Rate Generator Register

Name: BRGR

Access Type: Read/Write

• CD: Clock Divider

• FP: Fractional Part
0: Fractional divider is disabled.

1 - 7: Baudrate resolution, defined by FP x 1/8.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – FP

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD

CD

MODE ≠ ISO7816

MODE = ISO7816SYNC = 0 SYNC = 1

OVER = 0 OVER = 1

0 Baud Rate Clock Disabled

1 to 65535
Baud Rate =

Selected Clock/16/CD

Baud Rate =

Selected Clock/8/CD

Baud Rate =

Selected Clock /CD
Baud Rate = Selected
Clock/CD/FI_DI_RATIO

436
32015G–AVR32–09/09

AT32AP7001

25.8.10 USART Receiver Time-out Register

Name: RTOR

Access Type: Read/Write

• TO: Time-out Value
0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
TO

7 6 5 4 3 2 1 0
TO

437
32015G–AVR32–09/09

AT32AP7001

25.8.11 USART Transmitter Timeguard Register

Name: TTGR

Access Type: Read/Write

• TG: Timeguard Value

0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TG

438
32015G–AVR32–09/09

AT32AP7001

25.8.12 USART FI DI RATIO Register

Name: FIDI

Access Type: Read/Write

Reset Value : 0x174

• FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1 - 2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on CLK divided by FI_DI_RATIO.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – FI_DI_RATIO

7 6 5 4 3 2 1 0

FI_DI_RATIO

439
32015G–AVR32–09/09

AT32AP7001

25.8.13 USART Number of Errors Register

Name: NER

Access Type: Read-only

• NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

NB_ERRORS

440
32015G–AVR32–09/09

AT32AP7001

25.8.14 USART Manchester Configuration Register

Name: MAN

Access Type: Read/Write

• TX_PL: Transmitter Preamble Length
0: The Transmitter Preamble pattern generation is disabled

1 - 15: The Preamble Length is TX_PL x Bit Period

• TX_PP: Transmitter Preamble Pattern

• TX_MPOL: Transmitter Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

• RX_PL: Receiver Preamble Length
0: The receiver preamble pattern detection is disabled

1 - 15: The detected preamble length is RX_PL x Bit Period

• RX_PP: Receiver Preamble Pattern detected

• RX_MPOL: Receiver Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

31 30 29 28 27 26 25 24

– DRIFT – RX_MPOL – – RX_PP

23 22 21 20 19 18 17 16

– – – – RX_PL

15 14 13 12 11 10 9 8

– – – TX_MPOL – – TX_PP

7 6 5 4 3 2 1 0

– – – – TX_PL

TX_PP Preamble Pattern default polarity assumed (TX_MPOL field not set)

0 0 ALL_ONE

0 1 ALL_ZERO

1 0 ZERO_ONE

1 1 ONE_ZERO

RX_PP Preamble Pattern default polarity assumed (RX_MPOL field not set)

0 0 ALL_ONE

0 1 ALL_ZERO

1 0 ZERO_ONE

1 1 ONE_ZERO

441
32015G–AVR32–09/09

AT32AP7001

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

• DRIFT: Drift compensation
0: The USART can not recover from an important clock drift

1: The USART can recover from clock drift. The 16X clock mode must be enabled.

442
32015G–AVR32–09/09

AT32AP7001

25.8.15 USART IrDA FILTER Register

Name: IFR

Access Type: Read/Write

• IRDA_FILTER: IrDA Filter
Sets the filter of the IrDA demodulator.

25.9 USART Version Register
Name: US_VERSION

Access Type: Read-only

• VERSION
Reserved. Value subject to change. No functionality associated. This is the Atmel internal version of the macrocell.

• MFN
Reserved. Value subject to change. No functionality associated.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

IRDA_FILTER

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – MFN

15 14 13 12 11 10 9 8

– – – – VERSION

7 6 5 4 3 2 1 0

VERSION

443
32015G–AVR32–09/09

AT32AP7001

26. AC97 Controller (AC97C)

Rev: 2.1.0.0

26.1 Features
• Compliant with AC97 2.2 Component Specification
• 2 independent communication channels

– Codec Channel, dedicated to the AC97 Analog Front End Control and Status Monitoring
– 2 channels associated with DMA Controller interface for Isochronous Audio Streaming

Transfer
• Variable Sampling Rate AC97 Codec Interface Support
• One Primary Codec Support
• Independent input and Output Slot to Channel Assignment, Several Slots Can Be Assigned to the

Same Channel.
• Channels Support Mono/Stereo/Multichannel Samples of 10, 16, 18 and 20 Bits.

26.2 Description
The AC97 Controller is the hardware implementation of the AC97 digital controller (DC’97) com-
pliant with AC97 Component Specification 2.2. The AC97 Controller communicates with an
audio codec (AC97) or a modem codec (MC’97) via the AC-link digital serial interface. All digital
audio, modem and handset data streams, as well as control (command/status) informations are
transferred in accordance to the AC-link protocol.

The AC97 Controller features a DMA Controller interface for audio streaming transfers. It also
supports variable sampling rate and four Pulse Code Modulation (PCM) sample resolutions of
10, 16, 18 and 20 bits.

444
32015G–AVR32–09/09

AT32AP7001

26.3 Block Diagram

Figure 26-1. Functional Block Diagram

AC97 Channel A

AC97C_CATHR

AC97C_CARHR
Slot #3...12

AC97 CODEC Channel

AC97C_COTHR

AC97C_CORHR
Slot #2

Slot #1,2

AC97 Channel B

AC97C_CBTHR

AC97C_CBRHR
Slot #3...12

AC97 Tag Controller
Transmit Shift Register

Receive Shift Register

Receive Shift Register

Receive Shift Register

Receive Shift Register

Transmit Shift Register

Transmit Shift Register

Transmit Shift Register

Slot #0

Slot #0,1

AC97 Slot Controller

Slot Number
16/20 bits

Slot Number

SDI

SCLK

SDO

SYNC

User Interface

MCK Clock Domain

Bit Clock Domain

AC97C Interrupt

MCK

Peripheral Bus

M

U

X

D

E

M

U

X

445
32015G–AVR32–09/09

AT32AP7001

26.4 Pin Name List

The AC97 reset signal provided to the primary codec can be generated by a PIO.

26.5 Application Block Diagram

Figure 26-2. Application Block diagram

Table 26-1. I/O Lines Description

Pin Name Pin Description Type

SCLK 12.288-MHz bit-rate clock (Referred as BITCLK in AC-link spec) Input

SDI Receiver Data (Referred as SDATA_IN in AC-link spec) Input

SYNC 48-KHz frame indicator and synchronizer Output

SDO Transmitter Data (Referred as SDATA_OUT in AC-link spec) Output

AC 97 Controller

SDO

SDI

PIOx

AC'97 Primary Codec

SYNC

SCLK

AC97_RESET

AC97_SYNC

AC97_SDATA_OUT

AC97_BITCLK

AC-link

AC97_SDATA_IN

446
32015G–AVR32–09/09

AT32AP7001

26.6 Product Dependencies

26.6.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the AC97 Controller receiver, the PIO controller must be configured in order for the
AC97C receiver I/O lines to be in AC97 Controller peripheral mode.

Before using the AC97 Controller transmitter, the PIO controller must be configured in order for
the AC97C transmitter I/O lines to be in AC97 Controller peripheral mode.

26.6.2 Power Management
The AC97 clock is generated by the power manager. Before using the AC97, the programmer
must ensure that the AC’97 clock is enabled in the power manager.

In the AC97 description, Master Clock (MCK) is the clock of the peripheral bus to which the
AC97 is connected. It is important that that the MCK clock frequency is higher than the SCLK
(Bit Clock) clock frequancy as signals that cross the two clock domains are re-synchronized.

26.6.3 Interrupt
The AC97 interface has an interrupt line connected to the interrupt controller. In order to handle
interrupts, the interrupt controller must be programmed before configuring the AC97.

All AC97 Controller interrupts can be enabled/disabled by writing to the AC97 Controller Inter-
rupt Enable/Disable Registers. Each pending and unmasked AC97 Controller interrupt will
assert the interrupt line. The AC97 Controller interrupt service routine can get the interrupt
source in two steps:

•Reading and ANDing AC97 Controller Interrupt Mask Register (IMR) and AC97 Controller
Status Register (SR).

•Reading AC97 Controller Channel x Status Register (CxSR).)

447
32015G–AVR32–09/09

AT32AP7001

26.7 Functional Description

26.7.1 Protocol overview
AC-link protocol is a bidirectional, fixed clock rate, serial digital stream. AC-link handles multiple
input and output Pulse Code Modulation PCM audio streams, as well as control register
accesses employing a Time Division Multiplexed (TDM) scheme that divides each audio frame
in 12 outgoing and 12 incoming 20-bit wide data slots.

Figure 26-3. Bidirectional AC-link Frame with Slot Assignment

Slot #

AC97FS

TAG
CMD

ADDR
CMD
DATA

0

AC97TX
(Controller Output)

AC97RX
(Codec output)

PCM
L Front

PCM
R Front

LINE 1
DAC

PCM
Center

PCM
R SURR

PCM
LFE

LINE 2
DAC

HSET
DAC

IO
CTRL

TAG
STATUS

ADDR
STATUS

DATA
PCM
LEFT

LINE 1
DAC

PCM
MIC

RSVED RSVED RSVED
LINE 2
ADC

HSET
ADC

IO
STATUS

1 2 3 4 5 6 7 8 9 10 11 12

PCM
L SURR

PCM
RIGHT

Table 26-2. AC-link Output Slots Transmitted from the AC97C Controller

Slot # Pin Description

0 TAG

1 Command Address Port

2 Command Data Port

3,4 PCM playback Left/Right Channel

5 Modem Line 1 Output Channel

6, 7, 8 PCM Center/Left Surround/Right Surround

9 PCM LFE DAC

10 Modem Line 2 Output Channel

11 Modem Handset Output Channel

12 Modem GPIO Control Channel

Table 26-3. AC-link Input Slots Transmitted from the AC97C Controller
Slot # Pin Description

0 TAG

1 Status Address Port

2 Status Data Port

3,4 PCM playback Left/Right Channel

5 Modem Line 1 ADC

6 Dedicated Microphone ADC

7, 8, 9 Vendor Reserved

10 Modem Line 2 ADC

11 Modem Handset Input ADC

12 Modem IO Status

448
32015G–AVR32–09/09

AT32AP7001

26.7.2 Slot Description

26.7.2.1 Tag Slot
The tag slot, or slot 0, is a 16-bit wide slot that always goes at the beginning of an outgoing or
incoming frame. Within tag slot, the first bit is a global bit that flags the entire frame validity. The
next 12 bit positions sampled by the AC97 Controller indicate which of the corresponding 12
time slots contain valid data. The slot’s last two bits (combined) called Codec ID, are used to dis-
tinguish primary and secondary codec.

The 16-bit wide tag slot of the output frame is automatically generated by the AC97 Controller
according to the transmit request of each channel and to the SLOTREQ from the previous input
frame, sent by the AC97 Codec, in Variable Sample Rate mode.

26.7.2.2 Codec Slot 1
The command/status slot is a 20-bit wide slot used to control features, and monitors status for
AC97 Codec functions.

The control interface architecture supports up to sixty-four 16-bit wide read/write registers. Only
the even registers are currently defined and addressed.

Slot 1’s bitmap is the following:

•Bit 19 is for read/write command, 1= read, 0 = write.

•Bits [18:12] are for control register index.

•Bits [11:0] are reserved.

26.7.2.3 Codec Slot 2
Slot 2 is a 20-bit wide slot used to carry 16-bit wide AC97 Codec control register data. If the cur-
rent command port operation is a read, the entire slot time is stuffed with zeros. Its bitmap is the
following:

•Bits [19:4] are the control register data

•Bits [3:0] are reserved and stuffed with zeros.

26.7.2.4 Data Slots [3:12]
Slots [3:12] are 20-bit wide data slots, they usually carry audio PCM or/and modem I/O data.

449
32015G–AVR32–09/09

AT32AP7001

26.7.3 AC97 Controller Channel Organization
The AC97 Controller features a Codec channel and 2 logical channels; Channel A and Channel
B.

The Codec channel controls AC97 Codec registers, it enables write and read configuration val-
ues in order to bring the AC97 Codec to an operating state. The Codec channel always runs slot
1 and slot 2 exclusively, in both input and output directions.

Channel A and Channel B transfer data to/from AC97 codec. All audio samples and modem
data must transit by these two channels.

Each slot of the input or the output frame that belongs to this range [3 to 12] can be operated by
either Channel A or Channel B. The slot to channel assignment is configured by two registers:

•AC97 Controller Input Channel Assignment Register (ICA)

•AC97 Controller Output Channel Assignment Register (OCA)

The AC97 Controller Input Channel Assignment Register (ICA) configures the input slot to chan-
nel assignment. The AC97 Controller Output Channel Assignment Register (OCA) configures
the output slot to channel assignment.

A slot can be left unassigned to a channel by the AC97 Controller. Slots 0, 1,and 2 cannot be
assigned to Channel A or to Channel B through the OCA and ICA Registers.

The width of sample data, that transit via Channel A and Channel B varies and can take one of
these values; 10, 16, 18 or 20 bits.

Figure 26-4. Logical Channel Assignment

Slot #

AC97FS

TAG CMD
DATA

0

AC97TX
(Controller Output)

AC97RX
(Codec output)

PCM
L Front

PCM
R Front

LINE 1
DAC

PCM
Center

PCM
L SURR

PCM
R SURR

PCM
LFE

LINE 2
DAC

HSET
DAC

IO
CTRL

TAG STATUS
ADDR

STATUS
DATA

PCM
LEFT

PCM
RIGHT

LINE 1
DAC

PCM
MIC RSVED RSVED RSVED LINE 2

ADC
HSET
ADC

IO
STATUS

1 2 3 4 5 6 7 8 9 10 11 12

Codec Channel Channel A

Codec Channel Channel A

AC97C_OCA = 0x0000_0209

AC97C_ICA = 0x0000_0009

CMD
ADDR

450
32015G–AVR32–09/09

AT32AP7001

26.7.3.1 AC97 Controller Setup
The following operations must be performed in order to bring the AC97 Controller into an operat-
ing state:

1. Enable the AC97 Controller clock in the power manager.

2. Turn on AC97 function by enabling the ENA bit in AC97 Controller Mode Register (MR).

3. Configure the input channel assignment by controlling the AC97 Controller Input Assign-
ment Register (ICA).

4. Configure the output channel assignment by controlling the AC97 Controller Input
Assignment Register (OCA).

5. Configure sample width for Channel A and Channel B by writing the SIZE bit field in
AC97C Channel A Mode Register (CAMR) and AC97C Channel B Mode Register
(CBMR). The application can write 10, 16, 18,or 20-bit wide PCM samples through the
AC97 interface and they will be transferred into 20-bit wide slots.

6. Configure data Endianness for Channel A and Channel B by writing CEM bit field in
CAMR and CBMR registers. Data on the AC-link are shifted MSB first. The application
can write little- or big-endian data to the AC97 Controller interface.

7. Configure the PIO controller to drive the RESET signal of the external Codec. The
RESET signal must fulfill external AC97 Codec timing requirements.

8. Enable Channel A and/or Channel B by writing CEN bit field in CAMR and CBMR
registers.

26.7.3.2 Transmit Operation
The application must perform the following steps in order to send data via a channel to the AC97
Codec:

•Check if previous data has been sent by polling TXRDY flag in the AC97C Channel x Status
Register (CxSR). x being one of the 2 channels.

•Write data to the AC97 Controller Channel x Transmit Holding Register (CxTHR).

Once data has been transferred to the Channel x Shift Register, the TXRDY flag is automatically
set by the AC97 Controller which allows the application to start a new write action. The applica-
tion can also wait for an interrupt notice associated with TXRDY in order to send data. The
interrupt remains active until TXRDY flag is cleared..

451
32015G–AVR32–09/09

AT32AP7001

Figure 26-5. Audio Transfer (PCM L Front, PCM R Front) on Channel x

The TXEMPTY flag in the AC97 Controller Channel x Status Register (CxSR) is set when all
requested transmissions for a channel have been shifted on the AC-link. The application can
either poll TXEMPTY flag in CxSR or wait for an interrupt notice associated with the same flag.

In most cases, the AC97 Controller is embedded in chips that target audio player devices. In
such cases, the AC97 Controller is exposed to heavy audio transfers. Using the polling tech-
nique increases processor overhead and may fail to keep the required pace under an operating
system.

In order to avoid these polling drawbacks, the application can perform audio streams by using a
DMA controller (DMAC) connected to both channels, which reduces processor overhead and
increases performance especially under an operating system.

The DMAC transmit counter values must be equal to the number of PCM samples to be trans-
mitted, each sample goes in one slot.

26.7.3.3 AC97 Output Frame
The AC97 Controller outputs a thirteen-slot frame on the AC-Link. The first slot (tag slot or slot 0)
flags the validity of the entire frame and the validity of each slot; whether a slot carries valid data
or not. Slots 1 and 2 are used if the application performs control and status monitoring actions
on AC97 Codec control/status registers. Slots [3:12] are used according to the content of the
AC97 Controller Output Channel Assignment Register (OCA). If the application performs many
transmit requests on a channel, some of the slots associated to this channel or all of them will
carry valid data.

Slot #

AC97FS

TAG
CMD
ADDR

CMD
DATA

0

AC97TX
(Controller Output)

PCM
L Front

PCM
R Front

LINE 1
DAC

PCM
Center

PCM
L SURR

PCM
R SURR

PCM
LFE

LINE 2
DAC

HSET
DAC

IO
CTRL

1 2 3 4 5 6 7 8 9 10 11 12

TXRDYCx
(AC97C_SR)

Write access to
AC97C_THRx

PCM L Front
transfered to the shift register

PCM R Front
transfered to the shift register

TXEMPTY
(AC97C_SR)

452
32015G–AVR32–09/09

AT32AP7001

26.7.3.4 Receive Operation
The AC97 Controller can also receive data from AC97 Codec. Data is received in the channel’s
shift register and then transferred to the AC97 Controller Channel x Read Holding Register. To
read the newly received data, the application must perform the following steps:

•Poll RXRDY flag in AC97 Controller Channel x Status Register (CxSR). x being one of the 2
channels.

•Read data from AC97 Controller Channel x Read Holding Register.

The application can also wait for an interrupt notice in order to read data from CxRHR. The inter-
rupt remains active until RXRDY is cleared by reading CxSR.

The RXRDY flag in CxSR is set automatically when data is received in the Channel x shift regis-
ter. Data is then shifted to CxRHR.

Figure 26-6. Audio Transfer (PCM L Front, PCM R Front) on Channel x

If the previously received data has not been read by the application, the new data overwrites the
data already waiting in CxRHR, therefore the OVRUN flag in CxSR is raised. The application
can either poll the OVRUN flag in CxSR or wait for an interrupt notice. The interrupt remains
active until the OVRUN flag in CxSR is set.

The AC97 Controller can also be used in sound recording devices in association with an AC97
Codec. The AC97 Controller may also be exposed to heavy PCM transfers.

The application can use the DMAC connected to both channels in order to reduce processor
overhead and increase performance especially under an operating system.

The DMAC receive counter values must be equal to the number of PCM samples to be received.
When more than one timeslot is assigned to a channel using DMA, the different timeslot sam-
ples will be interleaved.

26.7.3.5 AC97 Input Frame
The AC97 Controller receives a thirteen slot frame on the AC-Link sent by the AC97 Codec. The
first slot (tag slot or slot 0) flags the validity of the entire frame and the validity of each slot;
whether a slot carries valid data or not. Slots 1 and 2 are used if the application requires status
informations from AC97 Codec. Slots [3:12] are used according to AC97 Controller Output
Channel Assignment Register (ICA) content. The AC97 Controller will not receive any data from
any slot if ICA is not assigned to a channel in input.

Slot #

AC97FS

0 1 2 3 4 5 6 7 8 9 10 11 12

RXRDYCx
(AC97C_SR)

Read access to
AC97C_RHRx

AC97RX
(Codec output)

TAG
STATUS
ADDR

STATUS
DATA

PCM
LEFT

PCM
RIGHT

LINE 1
DAC

PCM
MIC

RSVED RSVED RSVED
LINE 2
ADC

HSET
ADC

IO
STATUS

453
32015G–AVR32–09/09

AT32AP7001

26.7.3.6 Configuring and Using Interrupts
Instead of polling flags in AC97 Controller Global Status Register (SR) and in AC97 Controller
Channel x Status Register (CxSR), the application can wait for an interrupt notice. The following
steps show how to configure and use interrupts correctly:

•Set the interruptible flag in AC97 Controller Channel x Mode Register (CxMR).

•Set the interruptible event and channel event in AC97 Controller Interrupt Enable Register
(IER).

The interrupt handler must read both AC97 Controller Global Status Register (SR) and AC97
Controller Interrupt Mask Register (IMR) and AND them to get the real interrupt source. Further-
more, to get which event was activated, the interrupt handler has to read AC97 Controller
Channel x Status Register (CxSR), x being the channel whose event triggers the interrupt.

The application can disable event interrupts by writing in AC97 Controller Interrupt Disable Reg-
ister (IDR). The AC97 Controller Interrupt Mask Register (IMR) shows which event can trigger
an interrupt and which one cannot.

26.7.3.7 Endianness
Endianness can be managed automatically for each channel, except for the Codec channel, by
writing to Channel Endianness Mode (CEM) in CxMR. This enables transferring data on AC-link
in Little Endian format without any additional operation.

26.7.3.8 To Transmit a Word Stored in Little Endian Format on AC-link
Word to be written in AC97 Controller Channel x Transmit Holding Register (CxTHR) (as it is
stored in memory or microprocessor register).

Word stored in Channel x Transmit Holding Register (AC97C_CxTHR) (data to transmit).

Data transmitted on appropriate slot: data[19:0] = {Byte1[3:0], Byte2[7:0], Byte3[7:0]}.

26.7.3.9 To Transmit A Halfword Stored in Little Endian Format on AC-link
Halfword to be written in AC97 Controller Channel x Transmit Holding Register (CxTHR).

Halfword stored in AC97 Controller Channel x Transmit Holding Register (CxTHR) (data to
transmit).

Data emitted on related slot: data[19:0] = {Byte1[7:0], Byte0[7:0], 0x0}.

31 24 23 16 15 8 7 0

Byte3[7:0] Byte2[7:0] Byte1[7:0] Byte0[7:0]

31 24 23 20 19 16 15 8 7 0

– – Byte1[3:0] Byte2[7:0] Byte3[7:0]

31 24 23 16 15 8 7 0

– – Byte0[7:0] Byte1[7:0]

31 24 23 16 15 8 7 0

– – Byte1[7:0] Byte0[7:0]

454
32015G–AVR32–09/09

AT32AP7001

26.7.3.10 To Transmit a10-bit Sample Stored in Little Endian Format on AC-link
Halfword to be written in AC97 Controller Channel x Transmit Holding Register (CxTHR).

Halfword stored in AC97 Controller Channel x Transmit Holding Register (CxTHR) (data to
transmit).

Data emitted on related slot: data[19:0] = {Byte1[1:0], Byte0[7:0], 0x000}.

26.7.3.11 To Receive Word transfers
Data received on appropriate slot: data[19:0] = {Byte2[3:0], Byte1[7:0], Byte0[7:0]}.

Word stored in AC97 Controller Channel x Receive Holding Register (CxRHR) (Received Data).

Data is read from AC97 Controller Channel x Receive Holding Register (CxRHR) when Channel
x data size is greater than 16 bits and when little endian mode is enabled (data written to
memory).

26.7.3.12 To Receive Halfword Transfers
Data received on appropriate slot: data[19:0] = {Byte1[7:0], Byte0[7:0], 0x0 }.

Halfword stored in AC97 Controller Channel x Receive Holding Register (CxRHR) (Received
Data).

Data is read from AC97 Controller Channel x Receive Holding Register (CxRHR) when data size
is equal to 16 bits and when little endian mode is enabled.

26.7.3.13 To Receive 10-bit Samples
Data received on appropriate slot: data[19:0] = {Byte1[1:0], Byte0[7:0], 0x000}. Halfword stored
in AC97 Controller Channel x Receive Holding Register (CxRHR) (Received Data)

31 24 23 16 15 8 7 0

– – Byte0[7:0] {0x00, Byte1[1:0]}

31 24 23 16 15 10 9 8 7 0

– – –
Byte1
[1:0]

Byte0[7:0]

31 24 23 20 19 16 15 8 7 0

– – Byte2[3:0] Byte1[7:0] Byte0[7:0]

31 24 23 16 15 8 7 0

Byte0[7:0] Byte1[7:0] {0x0, Byte2[3:0]} 0x00

31 24 23 16 15 8 7 0

– – Byte1[7:0] Byte0[7:0]

31 24 23 16 15 8 7 0
– – Byte0[7:0] Byte1[7:0]

31 24 23 16 15 10 9 8 7 0

– – –
Byte1
[1:0]

Byte0[7:0]

455
32015G–AVR32–09/09

AT32AP7001

Data read from AC97 Controller Channel x Receive Holding Register (CxRHR) when data size is
equal to 10 bits and when little endian mode is enabled.

26.7.4 Variable Sample Rate
The problem of variable sample rate can be summarized by a simple example. When passing a
44.1 kHz stream across the AC-link, for every 480 audio output frames that are sent across, 441
of them must contain valid sample data. The new AC97 standard approach calls for the addition
of “on-demand” slot request flags. The AC97 Codec examines its sample rate control register,
the state of its FIFOs, and the incoming SDATA_OUT tag bits (slot 0) of each output frame and
then determines which SLOTREQ bits to set active (low). These bits are passed from the AC97
Codec to the AC97 Controller in slot 1/SLOTREQ in every audio input frame. Each time the
AC97 controller sees one or more of the newly defined slot request flags set active (low) in a
given audio input frame, it must pass along the next PCM sample for the corresponding slot(s) in
the AC-link output frame that immediately follows.

The variable Sample Rate mode is enabled by performing the following steps:

•Setting the VRA bit in the AC97 Controller Mode Register (MR).

•Enable Variable Rate mode in the AC97 Codec by performing a transfer on the Codec
channel.

Slot 1 of the input frame is automatically interpreted as SLOTREQ signaling bits. The AC97 Con-
troller will automatically fill the active slots according to both SLOTREQ and OCA register in the
next transmitted frame.

26.7.5 Power Management

26.7.5.1 Powering Down the AC-Link
The AC97 Codecs can be placed in low power mode. The application can bring AC97 Codec to
a power down state by performing sequential writes to AC97 Codec powerdown register . Both
the bit clock (clock delivered by AC97 Codec, SCLK) and the input line (SDI) are held at a logic
low voltage level. This puts AC97 Codec in power down state while all its registers are still hold-
ing current values. Without the bit clock, the AC-link is completely in a power down state.

The AC97 Controller should not attempt to play or capture audio data until it has awakened
AC97 Codec.

To set the AC97 Codec in low power mode, the PR4 bit in the AC97 Codec powerdown register
(Codec address 0x26) must be set to 1. Then the primary Codec drives both BITCLK and SDI to
a low logic voltage level.

The following operations must be done to put AC97 Codec in low power mode:

•Disable Channel A clearing CEN in the CAMR register.

•Disable Channel B clearing CEN field in the CBMR register.

•Write 0x2680 value in the COTHR register.

•Poll the TXEMPTY flag in CxSR registers for the 2 channels.

At this point AC97 Codec is in low power mode.

31 24 23 16 15 8 7 3 1 0

– – Byte0[7:0] 0x00
Byte1
[1:0]

456
32015G–AVR32–09/09

AT32AP7001

26.7.5.2 Waking up the AC-link
There are two methods to bring the AC-link out of low power mode. Regardless of the method, it
is always the AC97 Controller that performs the wake-up.

26.7.5.3 Wake-up Tiggered by the AC97 Controller
The AC97 Controller can wake up the AC97 Codec by issuing either a cold or a warm reset.

The AC97 Controller can also wake up the AC97 Codec by asserting SYNC signal, however this
action should not be performed for a minimum period of four audio frames following the frame in
which the powerdown was issued.

26.7.5.4 Wake-up Triggered by the AC97 Codec
This feature is implemented in AC97 modem codecs that need to report events such as Caller-
ID and wake-up on ring.

The AC97 Codec can drive SDI signal from low to high level and holding it high until the control-
ler issues either a cold or a warm reset. The SDI rising edge is asynchronously (regarding
SYNC) detected by the AC97 Controller. If WKUP bit is enabled in IMR register, an interrupt is
triggered that wakes up the AC97 Controller which should then immediately issue a cold or a
warm reset.

If the processor needs to be awakened by an external event, the SDI signal must be externally
connected to the WAKEUP entry of the system controller.

Figure 26-7. AC97 Power-Down/Up Sequence

AC97CK

AC97FS

TAG
Write to
 0x26

Data
PR4

Power Down Frame Sleep State

TAG
Write to
 0x26

Data
PR4

Wake Event

Warm Reset New Audio Frame

TAG Slot1 Slot2

AC97TX

AC97RX

TAG Slot1 Slot2

457
32015G–AVR32–09/09

AT32AP7001

26.7.5.5 AC97 Codec Reset
There are three ways to reset an AC97 Codec.

26.7.5.6 Cold AC97 Reset
A cold reset is generated by asserting the RESET signal low for the minimum specified time
(depending on the AC97 Codec) and then by de-asserting RESET high. BITCLK and SYNC is
reactivated and all AC97 Codec registers are set to their default power-on values. Transfers on
AC-link can resume.

The RESET signal will be controlled via a PIO line. This is how an application should perform a
cold reset:

•Clear and set ENA flag in the MR register to reset the AC97 Controller

•Clear PIO line output controlling the AC97 RESET signal

•Wait for the minimum specified time

•Set PIO line output controlling the AC97 RESET signal

BITCLK, the clock provided by AC97 Codec, is detected by the controller.

26.7.5.7 Warm AC97 Reset
A warm reset reactivates the AC-link without altering AC97 Codec registers. A warm reset is sig-
naled by driving AC97FX signal high for a minimum of 1us in the absence of BITCLK. In the
absence of BITCLK, AC97FX is treated as an asynchronous (regarding AC97FX) input used to
signal a warm reset to AC97 Codec.

This is the right way to perform a warm reset:

•Set WRST in the MR register.

•Wait for at least 1us

•Clear WRST in the MR register.

The application can check that operations have resumed by checking SOF flag in the SR regis-
ter or wait for an interrupt notice if SOF is enabled in IMR.

458
32015G–AVR32–09/09

AT32AP7001

26.8 AC97 Controller (AC97C) User Interface

Table 26-4. Register Mapping

Offset Register Register Name Access Reset

0x0-0x4 Reserved – – –

0x8 Mode Register MR Read/Write 0x0

0xC Reserved – – –

0x10 Input Channel Assignment Register ICA Read/Write 0x0

0x14 Output Channel Assignment Register OCA Read/Write 0x0

0x18-0x1C Reserved – – –

0x20 Channel A Receive Holding Register CARHR Read 0x0

0x24 Channel A Transmit Holding Register CATHR Write –

0x28 Channel A Status Register CASR Read 0x0

0x2C Channel A Mode Register CAMR Read/Write 0x0

0x30 Channel B Receive Holding Register CBRHR Read 0x0

0x34 Channel B Transmit Holding Register CBTHR Write –

0x38 Channel B Status Register CBSR Read 0x0

0x3C Channel B Mode Register CBMR Read/Write 0x0

0x40 Codec Receive Holding Register CORHR Read 0x0

0x44 Codec Transmit Holding Register COTHR Write –

0x48 Codec Status Register COSR Read 0x0

0x4C Codec Mode Register COMR Read/Write 0x0

0x50 Status Register SR Read 0x0

0x54 Interrupt Enable Register IER Write –

0x58 Interrupt Disable Register IDR Write –

0x5C Interrupt Mask Register IMR Read 0x0

0x60-0xFB Reserved – – –

459
32015G–AVR32–09/09

AT32AP7001

26.8.1 AC97 Controller Mode Register

Name: MR

Access Type: Read-Write

• VRA: Variable Rate (for Data Slots 3-12)

0: Variable Rate is inactive. (48 KHz only)

1: Variable Rate is active.

• WRST: Warm Reset

0: Warm Reset is inactive.

1: Warm Reset is active.

• ENA: AC97 Controller Global Enable

0: No effect. AC97 function as well as access to other AC97 Controller registers are disabled.

1: Activates the AC97 function.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – VRA WRST ENA

460
32015G–AVR32–09/09

AT32AP7001

26.8.2 AC97 Controller Input Channel Assignment Register

Register Name: ICA

Access Type: Read/Write

• CHIDx: Channel ID for the input slot x

31 30 29 28 27 26 25 24

– – CHID12 CHID11

23 22 21 20 19 18 17 16

CHID10 CHID9 CHID8
15 14 13 12 11 10 9 8

CHID8 CHID7 CHID6 CHID5

7 6 5 4 3 2 1 0
CHID5 CHID4 CHID3

CHIDx Selected Receive Channel

0x0 None. No data will be received during this Slot x

0x1 Channel A data will be received during this slot time.

0x2 Channel B data will be received during this slot time

461
32015G–AVR32–09/09

AT32AP7001

26.8.3 AC97 Controller Output Channel Assignment Register

Register Name: OCA

Access Type: Read/Write

• CHIDx: Channel ID for the output slot x

31 30 29 28 27 26 25 24

– – CHID12 CHID11

23 22 21 20 19 18 17 16

CHID10 CHID9 CHID8
15 14 13 12 11 10 9 8

CHID8 CHID7 CHID6 CHID5

7 6 5 4 3 2 1 0
CHID5 CHID4 CHID3

CHIDx Selected Transmit Channel

0x0 None. No data will be transmitted during this Slot x

0x1 Channel A data will be transferred during this slot time.

0x2 Channel B data will be transferred during this slot time

462
32015G–AVR32–09/09

AT32AP7001

26.8.4 AC97 Controller Codec Channel Receive Holding Register

Register Name: CORHR

Access Type: Read-only

• SDATA: Status Data

Data sent by the CODEC in the third AC97 input frame slot (Slot 2).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

SDATA

7 6 5 4 3 2 1 0
SDATA

463
32015G–AVR32–09/09

AT32AP7001

26.8.5 AC97 Controller Codec Channel Transmit Holding Register

Register Name: COTHR

Access Type: Write-only

• READ: Read/Write command

0: Write operation to the CODEC register indexed by the CADDR address.

1: Read operation to the CODEC register indexed by the CADDR address.

This flag is sent during the second AC97 frame slot

• CADDR: CODEC control register index

Data sent to the CODEC in the second AC97 frame slot.

• CDATA: Command Data

Data sent to the CODEC in the third AC97 frame slot (Slot 2).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

READ CADDR
15 14 13 12 11 10 9 8

CDATA

7 6 5 4 3 2 1 0
CDATA

464
32015G–AVR32–09/09

AT32AP7001

26.8.6 AC97 Controller Channel A, Channel B Receive Holding Register

Register Name: CARHR, CBRHR

Access Type: Read-only

• RDATA: Receive Data

Received Data on channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RDATA
15 14 13 12 11 10 9 8

RDATA

7 6 5 4 3 2 1 0
RDATA

465
32015G–AVR32–09/09

AT32AP7001

26.8.7 AC97 Controller Channel A, channel B Transmit Holding Register

Register Name: CATHR, CBTHR

Access Type: Write-only

• TDATA: Transmit Data

Data to be sent on channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – TDATA
15 14 13 12 11 10 9 8

TDATA

7 6 5 4 3 2 1 0
TDATA

466
32015G–AVR32–09/09

AT32AP7001

26.8.8 AC97 Controller Channel A Status Register

Register Name: CASR

Access Type: Read-only

26.8.9 AC97 Controller Channel B Status Register

Register Name: CBSR

Access Type: Read-only

26.8.10 AC97 Controller Codec Channel Status Register

Register Name: COSR

Access Type: Read-only

• TXRDY: Channel Transmit Ready

0: Data has been loaded in Channel Transmit Register and is waiting to be loaded in the Channel Transmit Shift Register.

1: Channel Transmit Register is empty.

• TXEMPTY: Channel Transmit Empty

0: Data remains in the Channel Transmit Register or is currently transmitted from the Channel Transmit Shift Register.

1: Data in the Channel Transmit Register have been loaded in the Channel Transmit Shift Register and sent to the codec.

• RXRDY: Channel Receive Ready

0: Channel Receive Holding Register is empty.

1: Data has been received and loaded in Channel Receive Holding Register.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – OVRUN RXRDY – UNRUN TXEMPTY TXRDY

31 30 29 28 27 26 25 24

– – – – – – – –
23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0

– – OVRUN RXRDY – UNRUN TXEMPTY TXRDY

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –
7 6 5 4 3 2 1 0

– – OVRUN RXRDY – - TXEMPTY TXRDY

467
32015G–AVR32–09/09

AT32AP7001

• OVRUN: Receive Overrun

Automatically cleared by a processor read operation.

0: No data has been loaded in the Channel Receive Holding Register while previous data has not been read since the last
read of the Status Register.

1: Data has been loaded in the Channel Receive Holding Register while previous data has not yet been read since the last
read of the Status Register.

468
32015G–AVR32–09/09

AT32AP7001

26.8.11 AC97 Controller Channel A Mode Register

Register Name: CAMR

Access Type: Read/Write

• DMAEN: DMA Enable

0: Disable DMA transfers for this channel.

1: Enable DMA transfers for this channel using DMAC.

• CEM: Channel A Endian Mode

0: Transferring Data through Channel A is straight forward (Big Endian).

1: Transferring Data through Channel A from/to a memory is performed with from/to Little Endian format translation.

• SIZE: Channel A Data Size

SIZE Encoding

Note: Each time slot in the data phase is 20 bit long. For example, if a 16-bit sample stream is being played to an AC 97 DAC, the first
16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the AC97 Controller
fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the imple-
mented DAC’s resolution (16-, 18-, or 20-bit).

• CEN: Channel A Enable

0: Data transfer is disabled on Channel A.

1: Data transfer is enabled on Channel A.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– DMAEN CEN – – CEM SIZE
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – OVRUN RXRDY – UNRUN TXEMPTY TXRDY

SIZE Selected Channel

0x0 20 bits

0x1 18bits

0x2 16 bits

0x3 10 bits

469
32015G–AVR32–09/09

AT32AP7001

26.8.12 AC97 Controller Channel B Mode Register

Register Name: CBMR

Access Type: Read/Write

• DMAEN: DMA Enable

0: Disable DMA transfers for this channel.

1: Enable DMA transfers for this channel using DMAC.

• CEM: Channel B Endian Mode

0: Transferring Data through Channel B is straight forward (Big Endian).

1: Transferring Data through Channel B from/to a memory is performed with from/to Little Endian format translation.

• SIZE: Channel B Data Size

SIZE Encoding

Note: Each time slot in the data phase is 20 bit long. For example, if a 16-bit sample stream is being played to an AC 97 DAC, the first
16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the AC97 Controller
fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the imple-
mented DAC’s resolution (16-, 18-, or 20-bit).

• CEN: Channel B Enable

0: Data transfer is disabled on Channel B.

1: Data transfer is enabled on Channel B.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– DMAEN CEN – – CEM SIZE
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – OVRUN RXRDY – UNRUN TXEMPTY TXRDY

SIZE Selected Channel

0x0 20 bits

0x1 18bits

0x2 16 bits

0x3 10 bits

470
32015G–AVR32–09/09

AT32AP7001

26.8.13 AC97 Controller Codec Channel Mode Register

Register Name: COMR

Access Type: Read/Write

• TXRDY: Channel Transmit Ready Interrupt Enable

• TXEMPTY: Channel Transmit Empty Interrupt Enable

• RXRDY: Channel Receive Ready Interrupt Enable

• OVRUN: Receive Overrun Interrupt Enable

0: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.

1: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – OVRUN RXRDY – - TXEMPTY TXRDY

471
32015G–AVR32–09/09

AT32AP7001

26.8.14 AC97 Controller Status Register

Register Name: SR

Access Type: Read-only

WKUP and SOF flags in SR register are automatically cleared by a processor read operation.

• SOF: Start Of Frame

0: No Start of Frame has been detected since the last read of the Status Register.

1: At least one Start of frame has been detected since the last read of the Status Register.

• WKUP: Wake Up detection

0: No Wake-up has been detected.

1: At least one rising edge on SDATA_IN has been asynchronously detected. That means AC97 Codec has notified a
wake-up.

• COEVT: CODEC Channel Event

A Codec channel event occurs when COSR AND COMR is not 0. COEVT flag is automatically cleared when the channel
event condition is cleared.

0: No event on the CODEC channel has been detected since the last read of the Status Register.

1: At least one event on the CODEC channel is active.

• CAEVT: Channel A Event

A channel A event occurs when CASR AND CAMR is not 0. CAEVT flag is automatically cleared when the channel event
condition is cleared.

0: No event on the channel A has been detected since the last read of the Status Register.

1: At least one event on the channel A is active.

• CBEVT: Channel B Event

A channel B event occurs when CBSR AND CBMR is not 0. CBEVT flag is automatically cleared when the channel event
condition is cleared.

0: No event on the channel B has been detected since the last read of the Status Register.

1: At least one event on the channel B is active.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0

– – – CBEVT CAEVT COEVT WKUP SOF

472
32015G–AVR32–09/09

AT32AP7001

26.8.15 AC97 Controller Interrupt Enable Register

Register Name: IER

Access Type: Write-only

• SOF: Start Of Frame

• WKUP: Wake Up

• COEVT: Codec Event

• CAEVT: Channel A Event

• CBEVT: Channel B Event

0: No Effect.

1: Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – CBEVT CAEVT COEVT WKUP SOF

473
32015G–AVR32–09/09

AT32AP7001

26.8.16 AC97 Controller Interrupt Disable Register

Register Name: IDR

Access Type: Write-only

• SOF: Start Of Frame

• WKUP: Wake Up

• COEVT: Codec Event

• CAEVT: Channel A Event

• CBEVT: Channel B Event

0: No Effect.

1: Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – CBEVT CAEVT COEVT WKUP SOF

474
32015G–AVR32–09/09

AT32AP7001

26.8.17 AC97 Controller Interrupt Mask Register

Register Name: IMR

Access Type: Read-only

• SOF: Start Of Frame

• WKUP: Wake Up

• COEVT: Codec Event

• CAEVT: Channel A Event

• CBEVT: Channel B Event

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – CBEVT CAEVT COEVT WKUP SOF

475
32015G–AVR32–09/09

AT32AP7001

27. Audio Bitstream DAC (ABDAC)

Rev: 1.0.1.1

27.1 Features

• Digital Stereo DAC
• Oversampled D/A conversion architecture

– Oversampling ratio fixed 128x
– FIR equalization filter
– Digital interpolation filter: Comb4
– 3rd Order Sigma-Delta D/A converters

• Digital bitstream outputs
• Parallel interface
• Connected to DMA Controller for background transfer without CPU intervention

27.2 Description

The Audio Bitstream DAC converts a 16-bit sample value to a digital bitstream with an average
value proportional to the sample value. Two channels are supported, making the Audio Bit-
stream DAC particularly suitable for stereo audio. Each channel has a pair of complementary
digital outputs, DACn and DACn_N, which can be connected to an external high input imped-
ance amplifier.

The Audio Bitstream DAC is compromised of two 3rd order Sigma Delta D/A converter with an
oversampling ratio of 128. The samples are upsampled with a 4th order Sinc interpolation filter
(Comb4) before being input to the Sigmal Delta Modulator. In order to compensate for the pass
band frequency response of the interpolation filter and flatten the overall frequency response,
the input to the interpolation filter is first filtered with a simple 3-tap FIR filter.The total frequency
response of the Equalization FIR filter and the interpolation filter is given in Figure 27-2 on page
487. The digital output bitstreams from the Sigma Delta Modulators should be low-pass filtered
to remove high frequency noise inserted by the Modulation process.

The output DACn and DACn_N should be as ideal as possible before filtering, to achieve the
best SNR quality. The output can be connected to a class D amplifier output stage, or it can be
low pass filtered and connected to a high input impedance amplifier. A simple 1st order or higher
low pass filter that filters all the frequencies above 50 kHz should be adequate.

476
32015G–AVR32–09/09

AT32AP7001

27.3 Block Diagram

Figure 27-1. Functional Block Diagram

27.4 Pin Name List

27.5 Product Dependencies

27.5.1 I/O Lines
The output pins used for the output bitstream from the Audio Bitstream DAC may be multiplexed
with PIO lines.

Before using the Audio Bitstream DAC, the PIO controller must be configured in order for the
Audio Bitstream DAC I/O lines to be in Audio Bitstream DAC peripheral mode.

27.5.2 Power Management
The PB-bus clock to the Audio Bitstream DAC is generated by the power manager. Before using
the Audio Bitstream DAC, the programmer must ensure that the Audio Bitstream DAC clock is
enabled in the power manager.

Table 27-1. I/O Lines Description

Pin Name Pin Description Type

DATA0 Output from Audio Bitstream DAC Channel 0 Output

DATA1 Output from Audio Bitstream DAC Channel 1 Output

DATAN0 Inverted output from Audio Bitstream DAC Channel 0 Output

DATAN1 Inverted output from Audio Bitstream DAC Channel 1 Output

Clock Generator

Equalization FIR COMB
(INT=128)

Sigma-Delta
DA-MOD

Equalization FIR COMB
(INT=128)

Sigma-Delta
DA-MOD

bit_clk

bit_out1

bit_out2

clk

sample_clk

din1[15:0]

din2[15:0]

Audio Bitstream DAC

477
32015G–AVR32–09/09

AT32AP7001

27.5.3 Clock Management

The Audio Bitstream DAC needs a separate clock for the D/A conversion operation. This clock
should be set up in the generic clock register in the power manager. The frequency of this clock
must be 256 times the frequency of the desired samplerate (fs). For fs=48kHz this means that the
clock must have a frequency of 12.288MHz.

27.5.4 Interrupts

The Audio Bitstream DAC interface has an interrupt line connected to the interrupt controller. In
order to handle interrupts, the interrupt controller must be programmed before configuring the
Audio Bitstream DAC.

All Audio Bitstream DAC interrupts can be enabled/disabled by writing to the Audio Bitstream
DAC Interrupt Enable/Disable Registers. Each pending and unmasked Audio Bitstream DAC
interrupt will assert the interrupt line. The Audio Bitstream DAC interrupt service routine can get
the interrupt source by reading the Interrupt Status Register.

27.5.5 DMA

The Audio Bitstream DAC is connected to the DMA controller. The DMA controller can be pro-
grammed to automatically transfer samples to the Audio Bitstream DAC Sample Data Register
(SDR) when the Audio Bitstream DAC is ready for new samples. This enables the Audio Bit-
stream DAC to operate without any CPU intervention such as polling the Interrupt Status
Register (ISR) or using interrupts. See the DMA controller documentation for details on how to
setup DMA transfers.

27.6 Functional Description

In order to use the Audio Bitstream DAC the product dependencies given in Section 27.5 on
page 476 must be resolved. Particular attention should be given to the configuration of clocks
and I/O lines in order to ensure correct operation of the Audio Bitstream DAC.

The Audio Bitstream DAC is enabled by writing the ENABLE bit in the Audio Bitstream DAC
Control Register (CR). The two 16-bit sample values for channel 0 and 1 can then be written to
the least and most significant halfword of the Sample Data Register (SDR), respectively. The
TX_READY bit in the Interrupt Status Register (ISR) will be set whenever the DAC is ready to
receive a new sample. A new sample value should be written to SDR before 256 DAC clock
cycles, or an underrun will occur, as indicated by the UNDERRUN status flags in ISR. ISR is
cleared when read, or when writing one to the corresponding bits in the Interrupt Clear Register
(ICR).

For interrupt-based operation, the relevant interrupts must be enabled by writing one to the cor-
responding bits in the Interrupt Enable Register (IER). Interrupts can be disabled by the Interrupt
Disable Register (IDR), and active interrupts are indicated in the read-only Interrupt Mask Regis-
ter (IMR).

The Audio Bitstream DAC can also be configured for peripheral DMA access, in which case only
the enable bit in the control register needs to be set in the Audio Bitstream DAC module.

27.6.1 Equalization Filter

The equalization filter is a simple 3-tap FIR filter. The purpose of this filter is to compensate for
the pass band frequency response of the sinc interpolation filter. The equalization filter makes
the pass band response more flat and moves the -3dB corner a little higher.

478
32015G–AVR32–09/09

AT32AP7001

27.6.2 Interpolation filter

The interpolation filter interpolates from fs to 128fs. This filter is a 4th order Cascaded Integrator-
Comb filter, and the basic building blocks of this filter is a comb part and an integrator part.

27.6.3 Sigma Delta Modulator

This part is a 3rd order Sigma Delta Modulator consisting of three differentiators (delta blocks),
three integrators (sigma blocks) and a one bit quantizer. The purpose of the integrators is to
shape the noise, so that the noise is reduces in the band of interest and increased at the higher
frequencies, where it can be filtered.

27.6.4 Data Format

Input data is on two’s complement format.

479
32015G–AVR32–09/09

AT32AP7001

27.7 Audio Bitstream DAC User Interface

Table 27-2. Register Mapping

Offset Register Register Name Access Reset

0x0 Sample Data Register SDR Read/Write 0x0

0x4 Reserved - - -

0x8 Control Register CR Read/Write 0x0

0xc Interrupt Mask Register IMR Read 0x0

0x10 Interrupt Enable Register IER Write -

0x14 Interrupt Disable Register IDR Write -

0x18 Interrupt Clear Register ICR Write -

0x1C Interrupt Status Register ISR Read 0x0

480
32015G–AVR32–09/09

AT32AP7001

27.7.1 Audio Bitstream DAC Sample Data Register

Name: SDR

Access Type: Read-Write

• CHANNEL0: Sample Data for Channel 0

Signed 16-bit Sample Data for channel 0. When the SWAP bit in the DAC Control Register (CR) is set writing to the Sample
Data Register (SDR) will cause the values written to CHANNEL0 and CHANNEL1 to be swapped.

• CHANNEL1: Sample Data for Channel 1

Signed 16-bit Sample Data for channel 1. When the SWAP bit in the DAC Control Register (CR) is set writing to the Sample
Data Register (SDR) will cause the values written to CHANNEL0 and CHANNEL1 to be swapped.

31 30 29 28 27 26 25 24
CHANNEL1

23 22 21 20 19 18 17 16

CHANNEL1

15 14 13 12 11 10 9 8
CHANNEL0

7 6 5 4 3 2 1 0

CHANNEL0

481
32015G–AVR32–09/09

AT32AP7001

27.7.2 Audio Bitstream DAC Control Register

Name: CR

Access Type: Read-Write

• SWAP: Swap Channels

0: The CHANNEL0 and CHANNEL1 samples will not be swapped when writing the Audio Bitstream DAC Sample Data
Register (SDR).

1: The CHANNEL0 and CHANNEL1 samples will be swapped when writing the Audio Bitstream DAC Sample Data Regis-
ter (SDR).

• EN: Enable Audio Bitstream DAC

0: Audio Bitstream DAC is disabled.

1: Audio Bitstream DAC is enabled.

31 30 29 28 27 26 25 24
EN SWAP - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -

482
32015G–AVR32–09/09

AT32AP7001

27.7.3 Audio Bitstream DAC Interrupt Mask Register

Name: IMR

Access Type: Read-only

• UNDERRUN: Underrun Interrupt Mask

0: The Audio Bitstream DAC Underrun interrupt is disabled.

1: The Audio Bitstream DAC Underrun interrupt is enabled.

• TX_READY: TX Ready Interrupt Mask

0: The Audio Bitstream DAC TX Ready interrupt is disabled.

1: The Audio Bitstream DAC TX Ready interrupt is enabled.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -

483
32015G–AVR32–09/09

AT32AP7001

27.7.4 Audio Bitstream DAC Interrupt Enable Register

Name: IER

Access Type: Write-only

• UNDERRUN: Underrun Interrupt Enable

0: No effect.

1: Enables the Audio Bitstream DAC Underrun interrupt.

• TX_READY: TX Ready Interrupt Enable

0: No effect.

1: Enables the Audio Bitstream DAC TX Ready interrupt.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -

484
32015G–AVR32–09/09

AT32AP7001

27.7.5 Audio Bitstream DAC Interrupt Disable Register

Name: IDR

Access Type: Write-only

• UNDERRUN: Underrun Interrupt Disable

0: No effect.

1: Disable the Audio Bitstream DAC Underrun interrupt.

• TX_READY: TX Ready Interrupt Disable

0: No effect.

1: Disable the Audio Bitstream DAC TX Ready interrupt.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -

485
32015G–AVR32–09/09

AT32AP7001

27.7.6 Audio Bitstream DAC Interrupt Clear Register

Name: ICR

Access Type: Write-only

• UNDERRUN: Underrun Interrupt Clear

0: No effect.

1: Clear the Audio Bitstream DAC Underrun interrupt.

• TX_READY: TX Ready Interrupt Clear

0: No effect.

1: Clear the Audio Bitstream DAC TX Ready interrupt.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -

486
32015G–AVR32–09/09

AT32AP7001

27.7.7 Audio Bitstream DAC Interrupt Status Register

Name: ISR

Access Type: Read-only

• UNDERRUN: Underrun Interrupt Status

0: No Audio Bitstream DAC Underrun has occured since the last time ISR was read or since reset.

1: At least one Audio Bitstream DAC Underrun has occured since the last time ISR was read or since reset.

• TX_READY: TX Ready Interrupt Status

0: No Audio Bitstream DAC TX Ready has occuredt since the last time ISR was read.

1: At least one Audio Bitstream DAC TX Ready has occuredt since the last time ISR was read.

31 30 29 28 27 26 25 24
- - TX_READY UNDERRUN - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - -

487
32015G–AVR32–09/09

AT32AP7001

27.8 Frequency Response

Figure 27-2. Frequecy response, EQ-FIR+COMB4

0 1 2 3 4 5 6 7 8 9 1 0

x 1 0
4

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

488
32015G–AVR32–09/09

AT32AP7001

28. Static Memory Controller (SMC)

Rev. 1.0.0.3

28.1 Features

• 6 chip selects available
• 64-Mbytes address space per chip select
• 8-, 16- or 32-bit data bus
• Word, halfword, byte transfers
• Byte write or byte select lines
• Programmable setup, pulse and hold time for read signals per chip select
• Programmable setup, pulse and hold time for write signals per chip select
• Programmable data float time per chip select
• Compliant with LCD module
• External wait request
• Automatic switch to slow clock mode
• Asynchronous read in page mode supported: page size ranges from 4 to 32 bytes

28.2 Overview

The Static Memory Controller (SMC) generates the signals that control the access to the exter-
nal memory devices or peripheral devices. It has 6 chip selects and a 26-bit address bus. The
32-bit data bus can be configured to interface with 8-, or16-, or 32-bit external devices. Separate
read and write control signals allow for direct memory and peripheral interfacing. Read and write
signal waveforms are fully parametrizable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.

489
32015G–AVR32–09/09

AT32AP7001

28.3 Block Diagram

Figure 28-1. SMC Block Diagram

28.4 I/O Lines Description

SMC
Chip SelectBus

Matrix

Power
Manager

CLK_SMC

SMC

NCS[5:0]

NRD

NWE0

ADDR[0]

NWE1

ADDR[1]

NWE3

ADDR[25:2]

DATA[31:0]

NWAIT

User Interface

Peripheral Bus

NCS[5:0]

NRD

NWR0/NWE

A0/NBS0

NWR1/NBS1

A1/NWR2/NBS2

NWR3/NBS3

A[25:2]

D[31:0]

NWAIT

EBI
Mux Logic

I/O
Controller

Table 28-1. I/O Lines Description

Pin Name Pin Description Type Active Level

NCS[5:0] Chip Select Lines Output Low

NRD Read Signal Output Low

NWR0/NWE Write 0/Write Enable Signal Output Low

A0/NBS0 Address Bit 0/Byte 0 Select Signal Output Low

NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low

A1/NWR2/NBS2 Address Bit 1/Write 2/Byte 2 Select Signal Output Low

NWR3/NBS3 Write 3/Byte 3 Select Signal Output Low

A[25:2] Address Bus Output

D[31:0] Data Bus Input/Output

NWAIT External Wait Signal Input Low

490
32015G–AVR32–09/09

AT32AP7001

28.5 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

28.5.1 I/O Lines

The SMC signals pass through the External Bus Interface (EBI) module where they are multi-
plexed. The user must first configure the I/O Controller to assign the EBI pins corresponding to
SMC signals to their peripheral function. If the I/O lines of the EBI corresponding to SMC signals
are not used by the application, they can be used for other purposes by the I/O Controller.

28.5.2 Clocks

The clock for the SMC bus interface (CLK_SMC) is generated by the Power Manager. This clock
is enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the
SMC before disabling the clock, to avoid freezing the SMC in an undefined state.

28.6 Functional Description

28.6.1 Application Example

Figure 28-2. SMC Connections to Static Memory Devices

28.6.2 External Memory Mapping

The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address
up to 64Mbytes of memory.

128K x 8
SRAM

D0-D7

CS

OE

WE

A0-A16

128K x 8
SRAM

D0-D7

CS

OE

WE

A0-A16

128K x 8
SRAM

D0-D7

CS

OE

WE

A0-A16

128K x 8
SRAM

D0-D7

CS

OE

WE

A0-A16

D0-D31

NWR1/NBS1

A0/NBS0
NWR0/NWE

A1/NWR2/NBS2
NWR3/NBS3

NCS0

NCS2
NCS1

NCS3

NCS5
NCS4

NRD

NRD NRD

NRD

A2-A25

Static Memory
Controller

A1/NWR2/NBS2

NWR0/NWE NWR1/NBS1

NWR3/NBS3

D8-D15D0-D7

D16-D23 D24-D31

A2-A18A2-A18

A2-A18
A2-A18

491
32015G–AVR32–09/09

AT32AP7001

If the physical memory device connected on one chip select is smaller than 64Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid
access to the memory device within the page (see Figure 28-3 on page 491).

A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory, A[25:2] is used for
32-bit memory.

Figure 28-3. Memory Connections for Six External Devices

28.6.3 Connection to External Devices

28.6.3.1 Data bus width

A data bus width of 8, 16, or 32 bits can be selected for each chip select. This option is con-
trolled by the Data Bus Width field in the Mode Register (MODE.DBW) for the corresponding
chip select.

Figure 28-4 on page 492 shows how to connect a 512K x 8-bit memory on NCS2. Figure 28-5 on
page 492 shows how to connect a 512K x 16-bit memory on NCS2. Figure 28-6 shows two 16-
bit memories connected as a single 32-bit memory.

28.6.3.2 Byte write or byte select access

Each chip select with a 16-bit or 32-bit data bus can operate with one of two different types of
write access: byte write or byte select access. This is controlled by the Byte Access Type bit in
the MODE register (MODE.BAT) for the corresponding chip select.

NCS[0] - NCS[5]

NRD

NWE

A[25:0]

D[31:0]

SMC NCS5

NCS4

NCS3

NCS2

NCS1

NCS0

8 or 16 or 32

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Output Enable

Write Enable

A[25:0]
D[31:0] or D[15:0] or
D[7:0]

492
32015G–AVR32–09/09

AT32AP7001

Figure 28-4. Memory Connection for an 8-bit Data Bus

Figure 28-5. Memory Connection for a 16-bit Data Bus

Figure 28-6. Memory Connection for a 32-bit Data Bus

•Byte write access

The byte write access mode supports one byte write signal per byte of the data bus and a single
read signal.

Note that the SMC does not allow boot in byte write access mode.

SMC

A0

NWE

NRD

NCS[2]

A0

Write Enable

Output Enable

Memory Enable

D[7:0] D[7:0]

A[18:2]A[18:2]

A1 A1

SMC NBS0

NWE

NRD

NCS[2]

Low Byte Enable

Write Enable

Output Enable

Memory Enable

NBS1 High Byte Enable

D[15:0] D[15:0]

A[19:2] A[18:1]

A[0]A1

D[31:16]

SMC NBS0

NWE

NRD

NCS[2]

NBS1

D[15:0]

A[20:2]

D[31:16]

NBS2

NBS3

Byte 0 Enable

Write Enable

Output Enable

Memory Enable

Byte 1 Enable

D[15:0]

A[18:0]

Byte 2 Enable

Byte 3 Enable

493
32015G–AVR32–09/09

AT32AP7001

• For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byte0
(lower byte) and byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.

The byte write access mode is used to connect two 8-bit devices as a 16-bit memory.

• For 32-bit devices: NWR0, NWR1, NWR2 and NWR3, are the write signals of byte0 (lower
byte), byte1, byte2, and byte 3 (upper byte) respectively. One single read signal (NRD) is
provided. The byte write access is used to connect four 8-bit devices as a 32-bit memory.

The byte write option is illustrated on Figure 28-7 on page 493.

•Byte select access

In this mode, read/write operations can be enabled/disabled at a byte level. One byte select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.

• For 16-bit devices: the SMC provides NBS0 and NBS1 selection signals for respectively byte0
(lower byte) and byte1 (upper byte) of a 16-bit bus. The byte select access is used to connect
one 16-bit device.

• For 32-bit devices: NBS0, NBS1, NBS2 and NBS3, are the selection signals of byte0 (lower
byte), byte1, byte2, and byte 3 (upper byte) respectively. The byte select access is used to
connect two 16-bit devices.

Figure 28-8 on page 494 shows how to connect two 16-bit devices on a 32-bit data bus in byte
select access mode, on NCS3.

Figure 28-7. Connection of two 8-bit Devices on a 16-bit Bus: Byte Write Option

•Signal multiplexing

Depending on the MODE.BAT bit, only the write signals or the byte select signals are used. To
save I/Os at the external bus interface, control signals at the SMC interface are multiplexed.

SMC A1

NWR0

NRD

NCS[3]

Write Enable

Read Enable

Memory Enable

NWR1

Write Enable

Read Enable

Memory Enable

D[7:0] D[7:0]

D[15:8]

D[15:8]

A[24:2]

A[23:1]

A[23:1]

A[0]

A[0]

494
32015G–AVR32–09/09

AT32AP7001

For 32-bit devices, bits A0 and A1 are unused. For 16-bit devices, bit A0 of address is unused.
When byte select option is selected, NWR1 to NWR3 are unused. When byte write option is
selected, NBS0 to NBS3 are unused.

Figure 28-8. Connection of two 16-bit Data Bus on a 32-bit Data Bus: Byte Select Option

SMC

NWE

NRD

NCS[3]

Write Enable

Read Enable

Memory Enable

NBS0

D[15:0] D[15:0]

D[31:16]

A[25:2] A[23:0]

Write Enable

Read Enable

Memory Enable

D[31:16]

A[23:0]

Low Byte Enable

High Byte Enable

Low Byte Enable

High Byte EnableNBS1

NBS2

NBS3

Table 28-2. SMC Multiplexed Signal Translation

Signal Name 32-bit Bus 16-bit Bus 8-bit Bus

Device Type 1 x 32-bit 2 x 16-bit 4 x 8-bit 1 x 16-bit 2 x 8-bit 1 x 8-bit

Byte Access Type (BAT) Byte Select Byte Select Byte Write Byte Select Byte Write

NBS0_A0 NBS0 NBS0 NBS0 A0

NWE_NWR0 NWE NWE NWR0 NWE NWR0 NWE

NBS1_NWR1 NBS1 NBS1 NWR1 NBS1 NWR1

NBS2_NWR2_A1 NBS2 NBS2 NWR2 A1 A1 A1

NBS3_NWR3 NBS3 NBS3 NWR3

495
32015G–AVR32–09/09

AT32AP7001

28.6.4 Standard Read and Write Protocols

In the following sections, the byte access type is not considered. Byte select lines (NBS0 to
NBS3) always have the same timing as the address bus (A). NWE represents either the NWE
signal in byte select access type or one of the byte write lines (NWR0 to NWR3) in byte write
access type. NWR0 to NWR3 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS[0..5] chip select lines.

28.6.4.1 Read waveforms

The read cycle is shown on Figure 28-9 on page 495.

The read cycle starts with the address setting on the memory address bus, i.e.:

{A[25:2], A1, A0} for 8-bit devices

{A[25:2], A1} for 16-bit devices

A[25:2] for 32-bit devices.

Figure 28-9. Standard Read Cycle

•NRD waveform

The NRD signal is characterized by a setup timing, a pulse width, and a hold timing.

1. NRDSETUP: the NRD setup time is defined as the setup of address before the NRD fall-
ing edge.

2. NRDPULSE: the NRD pulse length is the time between NRD falling edge and NRD rising
edge.

A[25:2]

CLK_SMC

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]

NCSRDSETUP

NRDSETUP NRDPULSE

NCSRDPULSE

NRDCYCLE

NRDHOLD

NCSRDHOLD

496
32015G–AVR32–09/09

AT32AP7001

3. NRDHOLD: the NRD hold time is defined as the hold time of address after the NRD ris-
ing edge.

•NCS waveform

Similarly, the NCS signal can be divided into a setup time, pulse length and hold time.

1. NCSRDSETUP: the NCS setup time is defined as the setup time of address before the
NCS falling edge.

2. NCSRDPULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge.

3. NCSRDHOLD: the NCS hold time is defined as the hold time of address after the NCS
rising edge.

•Read cycle

The NRDCYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

Similarly,

All NRD and NCS timings are defined separately for each chip select as an integer number of
CLK_SMC cycles. To ensure that the NRD and NCS timings are coherent, the user must define
the total read cycle instead of the hold timing. NRDCYCLE implicitly defines the NRD hold time
and NCS hold time as:

And,

•Null delay setup and hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 28-10
on page 497).

NRDCYCLE NRDSETUP NRDPULSE NRDHOLD+ +=

NRDCYCLE NCSRDSETUP NCSRDPULSE NCSRDHOLD+ +=

NRDHOLD NRDCYCLE NRDSETUP– NRDPULSE–=

NCSRDHOLD NRDCYCLE NCSRDSETUP– NCSRDPULSE–=

497
32015G–AVR32–09/09

AT32AP7001

Figure 28-10. No Setup, No Hold on NRD, and NCS Read Signals

•Null Pulse

Programming null pulse is not permitted. Pulse must be at least written to one. A null value leads
to unpredictable behavior.

28.6.4.2 Read mode

As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which s ignal r ises f i rs t . The Read Mode bi t in the MODE register
(MODE.READMODE) of the corresponding chip select indicates which signal of NRD and NCS
controls the read operation.

•Read is controlled by NRD (MODE.READMODE = 1)

Figure 28-11 on page 498 shows the waveforms of a read operation of a typical asynchronous
RAM. The read data is available tPACC after the falling edge of NRD, and turns to ‘Z’ after the ris-
ing edge of NRD. In this case, the MODE.READMODE bit must be written to one (read is
controlled by NRD), to indicate that data is available with the rising edge of NRD. The SMC sam-
ples the read data internally on the rising edge of CLK_SMC that generates the rising edge of
NRD, whatever the programmed waveform of NCS may be.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]

NRDSETUP NRDPULSE

NCSRDPULSE

NRDCYCLE NRDCYCLE

NCSRDPULSE NCSRDPULSE

NRDPULSE

NRDCYCLE

498
32015G–AVR32–09/09

AT32AP7001

Figure 28-11. READMODE = 1: Data Is Sampled by SMC Before the Rising Edge of NRD

•Read is controlled by NCS (MODE.READMODE = 0)

Figure 28-12 on page 499 shows the typical read cycle of an LCD module. The read data is valid
tPACC after the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data
must be sampled when NCS is raised. In that case, the MODE.READMODE bit must be written
to zero (read is controlled by NCS): the SMC internally samples the data on the rising edge of
CML_SMC that generates the rising edge of NCS, whatever the programmed waveform of NRD
may be.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]
tPACC

Data Sampling

499
32015G–AVR32–09/09

AT32AP7001

Figure 28-12. READMODE = 0: Data Is Sampled by SMC Before the Rising Edge of NCS

28.6.4.3 Write waveforms

The write protocol is similar to the read protocol. It is depicted in Figure 28-13 on page 500. The
write cycle starts with the address setting on the memory address bus.

•NWE waveforms

The NWE signal is characterized by a setup timing, a pulse width and a hold timing.

1. NWESETUP: the NWE setup time is defined as the setup of address and data before the
NWE falling edge.

2. NWEPULSE: the NWE pulse length is the time between NWE falling edge and NWE ris-
ing edge.

3. NWEHOLD: the NWE hold time is defined as the hold time of address and data after the
NWE rising edge.

The NWE waveforms apply to all byte-write lines in byte write access mode: NWR0 to NWR3.

28.6.4.4 NCS waveforms

The NCS signal waveforms in write operation are not the same that those applied in read opera-
tions, but are separately defined.

1. NCSWRSETUP: the NCS setup time is defined as the setup time of address before the
NCS falling edge.

2. NCSWRPULSE: the NCS pulse length is the time between NCS falling edge and NCS
rising edge;

3. NCSWRHOLD: the NCS hold time is defined as the hold time of address after the NCS
rising edge.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]
tPACC

Data Sampling

500
32015G–AVR32–09/09

AT32AP7001

Figure 28-13. Write Cycle

•Write cycle

The write cycle time is defined as the total duration of the write cycle, that is, from the time where
address is set on the address bus to the point where address may change. The total write cycle
time is equal to:

Similarly,

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of CLK_SMC cycles. To ensure that the NWE and NCS timings are coherent, the user must
define the total write cycle instead of the hold timing. This implicitly defines the NWE hold time
and NCS (write) hold times as:

And,

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NCS

NWESETUP NWEPULSE

NCSWRPULSENCSWRSETUP

NWECYCLE

NWEHOLD

NCSWRHOLD

NWECYCLE NWESETUP NWEPULSE NWEHOLD+ +=

NWECYCLE NCSWRSETUP NCSWRPULSE NCSWRHOLD+ +=

NWEHOLD NWECYCLE NWESETUP– NWEPULSE–=

NCSWRHOLD NWECYCLE NCSWRSETUP– NCSWRPULSE–=

501
32015G–AVR32–09/09

AT32AP7001

•Null delay setup and hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 28-14 on page
501). However, for devices that perform write operations on the rising edge of NWE or NCS,
such as SRAM, either a setup or a hold must be programmed.

Figure 28-14. Null Setup and Hold Values of NCS and NWE in Write Cycle

•Null pulse

Programming null pulse is not permitted. Pulse must be at least written to one. A null value leads
to unpredictable behavior.

28.6.4.5 Write mode

The Write Mode bit in the MODE register (MODE.WRITEMODE) of the corresponding chip
select indicates which signal controls the write operation.

•Write is controlled by NWE (MODE.WRITEMODE = 1)

Figure 28-15 on page 502 shows the waveforms of a write operation with MODE.WRITEMODE
equal to one. The data is put on the bus during the pulse and hold steps of the NWE signal. The
internal data buffers are turned out after the NWESETUP time, and until the end of the write
cycle, regardless of the programmed waveform on NCS.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE,
NWE0, NWE1

NCS

NWESETUP NWEPULSE

NCSWRPULSENCSWRSETUP

NWECYCLE

D[15:0]

NWECYCLE

NWEPULSE

NCSWRPULSE

NWECYCLE

502
32015G–AVR32–09/09

AT32AP7001

Figure 28-15. WRITEMODE = 1. The Write Operation Is Controlled by NWE

•Write is controlled by NCS (MODE.WRITEMODE = 0)

Figure 28-16 on page 502 shows the waveforms of a write operation with MODE.WRITEMODE
written to zero. The data is put on the bus during the pulse and hold steps of the NCS signal.
The internal data buffers are turned out after the NCSWRSETUP time, and until the end of the
write cycle, regardless of the programmed waveform on NWE.

Figure 28-16. WRITEMODE = 0. The Write Operation Is Controlled by NCS

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE,
NWR0, NWR1

NCS

D[15:0]

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE,
NWR0, NWR1

NCS

D[15:0]

503
32015G–AVR32–09/09

AT32AP7001

28.6.4.6 Coding timing parameters

All timing parameters are defined for one chip select and are grouped together in one register
according to their type.

The Setup register (SETUP) groups the definition of all setup parameters:

• NRDSETUP, NCSRDSETUP, NWESETUP, and NCSWRSETUP.

The Pulse register (PULSE) groups the definition of all pulse parameters:

• NRDPULSE, NCSRDPULSE, NWEPULSE, and NCSWRPULSE.

The Cycle register (CYCLE) groups the definition of all cycle parameters:

• NRDCYCLE, NWECYCLE.

Table 28-3 on page 503 shows how the timing parameters are coded and their permitted range.

28.6.4.7 Usage restriction

The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP
and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpre-
dictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true if the MODE.WRITE-
MODE bit is written to one. See Section 28.6.5.2.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

Table 28-3. Coding and Range of Timing Parameters

Coded Value Number of Bits Effective Value

Permitted Range

Coded Value Effective Value

setup [5:0] 6 128 x setup[5] + setup[4:0] 0 ≤ value ≤ 31 128 ≤ value ≤ 128+31

pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0 ≤ value ≤ 63 256 ≤ value ≤ 256+63

cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0 ≤ value ≤ 127

256 ≤ value ≤ 256+127

512 ≤ value ≤ 512+127
768 ≤ value ≤ 768+127

504
32015G–AVR32–09/09

AT32AP7001

28.6.5 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

28.6.5.1 Chip select wait states

The SMC always inserts an idle cycle between two transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the deactivation of one device and the
activation of the next one.

During chip select wait state, all control lines are turned inactive: NBS0 to NBS3, NWR0 to
NWR3, NCS[0..5], NRD lines are all set to high level.

Figure 28-17 on page 504 illustrates a chip select wait state between access on Chip Select 0
(NCS0) and Chip Select 2 (NCS2).

Figure 28-17. Chip Select Wait State Between a Read Access on NCS0 and a Write Access on
NCS2

28.6.5.2 Early read wait state

In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

CLK_SMC

A[25:2]

 NBS1,
, A1

NRD

NWE

NCS0

NCS2

D[15:0]

NRDCYCLE

Read to Write
Wait State

Chip Select
Wait State

NWECYCLE

505
32015G–AVR32–09/09

AT32AP7001

An early read wait state is automatically inserted if at least one of the following conditions is
valid:

• if the write controlling signal has no hold time and the read controlling signal has no setup time
(Figure 28-18 on page 505).

• in NCS write controlled mode (MODE.WRITEMODE = 0), if there is no hold timing on the NCS
signal and the NCSRDSETUP parameter is set to zero, regardless of the read mode (Figure
28-19 on page 506). The write operation must end with a NCS rising edge. Without an early
read wait state, the write operation could not complete properly.

• in NWE controlled mode (MODE.WRITEMODE = 1) and if there is no hold timing (NWEHOLD
= 0), the feedback of the write control signal is used to control address, data, chip select, and
byte select lines. If the external write control signal is not inactivated as expected due to load
capacitances, an early read wait state is inserted and address, data and control signals are
maintained one more cycle. See Figure 28-20 on page 507.

Figure 28-18. Early Read Wait State: Write with No Hold Followed by Read with No Setup.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NRD

D[15:0]

No hold
No setup

Read cycleEarly Read
Wait state

Write cycle

506
32015G–AVR32–09/09

AT32AP7001

Figure 28-19. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read
with No Setup.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NRD

D[15:0]

No hold No setup

Read cycle
(READMODE=0 or READMODE=1)

Early Read
Wait State

Write cycle
(WRITEMODE=0)

507
32015G–AVR32–09/09

AT32AP7001

Figure 28-20. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read
with one Set-up Cycle.

28.6.5.3 Reload user configuration wait state

The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “reload user configuration wait
state” is used by the SMC to load the new set of parameters to apply to next accesses.

The reload configuration wait state is not applied in addition to the chip select wait state. If
accesses before and after reprogramming the user interface are made to different devices (dif-
ferent chip selects), then one single chip select wait state is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a reload configuration wait state is inserted, even if the change does not concern the cur-
rent chip select.

•User procedure

To insert a reload configuration wait state, the SMC detects a write access to any MODE register
of the user interface. If the user only modifies timing registers (SETUP, PULSE, CYCLE regis-
ters) in the user interface, he must validate the modification by writing the MODE register, even
if no change was made on the mode parameters.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

Internal write controlling signal

external write controlling
signal(NWE)

NRD

D[15:0]

No hold Read setup=1

Write cycle
(WRITEMODE = 1)

Early Read
Wait State

Read cycle
(READMODE=0 or READMODE=1)

508
32015G–AVR32–09/09

AT32AP7001

•Slow clock mode transition

A reload configuration wait state is also inserted when the slow clock mode is entered or exited,
after the end of the current transfer (see Section 28.6.8).

28.6.5.4 Read to write wait state

Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 28-17 on page 504.

28.6.6 Data Float Wait States

Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

• before starting a read access to a different external memory.

• before starting a write access to the same device or to a different external one.

The Data Float Output Time (tDF) for each external memory device is programmed in the Data
Float Time field of the MODE register (MODE.TDFCYCLES) for the corresponding chip select.
The value of MODE.TDFCYCLES indicates the number of data float wait cycles (between 0 and
15) before the external device releases the bus, and represents the time allowed for the data
output to go to high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tDF will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the MODE.READMODE bit and the TDF
Optimization bit of the MODE register (MODE.TDFMODE) for the corresponding chip select.

28.6.6.1 Read mode

Writing a one to the MODE.READMODE bit indicates to the SMC that the NRD signal is respon-
sible for turning off the tri-state buffers of the external memory device. The data float period then
begins after the rising edge of the NRD signal and lasts MODE.TDFCYCLES cycles of the
CLK_SMC clock.

When the read operation is controlled by the NCS signal (MODE.READMODE = 0), the
MODE.TDFCYCLES field gives the number of CLK_SMC cycles during which the data bus
remains busy after the rising edge of NCS.

Figure 28-21 on page 509 illustrates the data float period in NRD-controlled mode
(MODE.READMODE =1), assuming a data float period of two cycles (MODE.TDFCYCLES = 2).
Figure 28-22 on page 509 shows the read operation when controlled by NCS (MODE.READ-
MODE = 0) and the MODE.TDFCYCLES field equals to three.

509
32015G–AVR32–09/09

AT32AP7001

Figure 28-21. TDF Period in NRD Controlled Read Access (TDFCYCLES = 2)

Figure 28-22. TDF Period in NCS Controlled Read Operation (TDFCYCLES = 3)

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]
tPACC

NRD controlled read operation

TDF = 2 clock cycles

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NCS

D[15:0]
tPACC

NCS controlled read operation

TDF = 3 clock cycles

510
32015G–AVR32–09/09

AT32AP7001

28.6.6.2 TDF optimization enabled (MODE.TDFMODE = 1)

When the MODE.TDFMODE bit is written to one (TDF optimization is enabled), the SMC takes
advantage of the setup period of the next access to optimize the number of wait states cycle to
insert.

Figure 28-23 on page 510 shows a read access controlled by NRD, followed by a write access
controlled by NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRDHOLD = 4; READMODE = 1 (NRD controlled)

NWESETUP = 3; WRITEMODE = 1 (NWE controlled)

TDFCYCLES = 6; TDFMODE = 1 (optimization enabled).

Figure 28-23. TDF Optimization: No TDF Wait States Are Inserted if the TDF Period Is over when the Next Access Begins

28.6.6.3 TDF optimization disabled (MODE.TDFMODE = 0)

When optimization is disabled, data float wait states are inserted at the end of the read transfer,
so that the data float period is ended when the second access begins. If the hold period of the
read1 controlling signal overlaps the data float period, no additional data float wait states will be
inserted.

Figure 28-24 on page 511, Figure 28-25 on page 511 and Figure 28-26 on page 512 illustrate
the cases:

• read access followed by a read access on another chip select.

CLK_SMC

A[25:2]

NRD

NWE

NCS0

D[15:0]

Read access on NCS0 (NRD controlled) Read to Write
Wait State

Write access on NCS0 (NWE controlled)

TDFCYCLES = 6

NWESETUP = 3

NRDHOLD = 4

511
32015G–AVR32–09/09

AT32AP7001

• read access followed by a write access on another chip select.

• read access followed by a write access on the same chip select.

with no TDF optimization.

Figure 28-24. TDF Optimization Disabled (MODE.TDFMODE = 0). TDF Wait States between Two Read Accesses on Dif-
ferent Chip Selects.

Figure 28-25. TDF Optimization Disabled (MODE.TDFMODE= 0). TDF Wait States between a Read and a Write Access
on Different Chip Selects.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

Read1 controlling
signal(NRD)

Read2 controlling
signal(NRD)

D[15:0]

Read1 hold = 1

Read1 cycle
TDFCYCLES = 6

Chip Select Wait State

5 TDF WAIT STATES

TDFCYCLES = 6

Read2 setup = 1

Read 2 cycle
TDFMODE=0

(optimization disabled)

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

Read1 controlling
signal(NRD)

Write2 controlling
signal(NWE)

D[15:0]

Read1 cycle
TDFCYCLES = 4

Chip Select
Wait State

Read1 hold = 1

TDFCYCLES = 4

Read to Write
Wait State

2 TDF WAIT STATES

Write2 setup = 1

Write 2 cycle
TDFMODE=0

(optimization disabled)

512
32015G–AVR32–09/09

AT32AP7001

Figure 28-26. TDF Optimization Disabled (MODE.TDFMODE = 0). TDF Wait States between Read and Write accesses on
the Same Chip Select.

28.6.7 External Wait

Any access can be extended by an external device using the NWAIT input signal of the SMC.
The External Wait Mode field of the MODE register (MODE.EXNWMODE) on the corresponding
chip select must be written to either two (frozen mode) or three (ready mode). When the
MODE.EXNWMODE field is written to zero (disabled), the NWAIT signal is simply ignored on
the corresponding chip select. The NWAIT signal delays the read or write operation in regards to
the read or write controlling signal, depending on the read and write modes of the corresponding
chip select.

28.6.7.1 Restriction

When one of the MODE.EXNWMODE is enabled, it is mandatory to program at least one hold
cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be used in
Page Mode (Section 28.6.9), or in Slow Clock Mode (Section 28.6.8).

The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.

28.6.7.2 Frozen mode

When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the synchronized NWAIT signal is deasserted, the SMC com-
pletes the access, resuming the access from the point where it was stopped. See Figure 28-27
on page 513. This mode must be selected when the external device uses the NWAIT signal to
delay the access and to freeze the SMC.

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

Read1 controlling
signal(NRD)

Write2 controlling
signal(NWE)

D[15:0]

Read1 hold = 1

TDFCYCLES = 5

Read1 cycle
TDFCYCLES = 5

Read to Write
Wait State

4 TDF WAIT STATES

Write2 setup = 1

Write 2 cycle
TDFMODE=0

(optimization disabled)

513
32015G–AVR32–09/09

AT32AP7001

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure
28-28 on page 514.

Figure 28-27. Write Access with NWAIT Assertion in Frozen Mode (MODE.EXNWMODE = 2).

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NCS

D[15:0]

6 5 4

4

3

3

2

2 1 1

2

1

2 2

1

0

0

FROZEN STATE

NWAIT

Internally synchronized
NWAIT signal

Write cycle

EXNWMODE = 2 (Frozen)
WRITEMODE = 1 (NWE controlled)

NWEPULSE = 5
NCSWRPULSE = 7

514
32015G–AVR32–09/09

AT32AP7001

Figure 28-28. Read Access with NWAIT Assertion in Frozen Mode (MODE.EXNWMODE = 2).

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NRD

NWAIT

Internally synchronized
NWAIT signal

EXNWMODE = 2 (Frozen)
READMODE = 0 (NCS controlled)

NRDPULSE = 2, NRDHOLD = 6
NCSRDPULSE = 5, NCSRDHOLD = 3

Read cycle

Assertion is ignored

4 3 2 1 02 2

1 0

5 5 5 4 3

2

2 1

1 0

0

FROZEN STATE

515
32015G–AVR32–09/09

AT32AP7001

28.6.7.3 Ready mode

In Ready mode (MODE.EXNWMODE = 3), the SMC behaves differently. Normally, the SMC
begins the access by down counting the setup and pulse counters of the read/write controlling
signal. In the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 28-29 on page 515 and Figure
28-30 on page 516. After deassertion, the access is completed: the hold step of the access is
performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-
ure 28-30 on page 516.

Figure 28-29. NWAIT Assertion in Write Access: Ready Mode (MODE.EXNWMODE = 3).

C LK_SM C

A [25:2]

N BS 0, N BS 1,
A 0, A1

N W E

N C S

D [15 :0]

6 5 4

4

3

3

2

2 1 0

1

0

1 1

0

FR O ZE N STA TE

N W A IT

Interna lly synchronized
N W AIT s ignal

W rite cyc le

EXN W M O D E = 3 (R eady m ode)
W R ITEM O D E = 1 (N W E_contro lled)

N W EPU LSE = 5
N C SW R PU LSE = 7

0

516
32015G–AVR32–09/09

AT32AP7001

Figure 28-30. NWAIT Assertion in Read Access: Ready Mode (EXNWMODE = 3).

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NRD
6

6

5

5

4

4 3 2

3

1

2 1

0

NWAIT

Internally synchronized
NWAIT signal

Read cycle

EXNWMODE = 3 (Ready mode)
READMODE = 0 (NCS_controlled)

NRDPULSE = 7
NCSRDPULSE = 7

1

0

0

Assertion is ignored Assertion is ignored

Wait STATE

517
32015G–AVR32–09/09

AT32AP7001

28.6.7.4 NWAIT latency and read/write timings

There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the two cycles of resynchronization
plus one cycle. Otherwise, the SMC may enter the hold state of the access without detecting the
NWAIT signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated
on Figure 28-31 on page 517.

When the MODE.EXNWMODE field is enabled (ready or frozen), the user must program a pulse
length of the read and write controlling signal of at least:

Figure 28-31. NWAIT Latency

minimal pulse length NWAIT latency 2 synchronization cycles 1 cycle+ +=

Wait STATE

01234

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NRD

NWAIT

nternally synchronized
NWAIT signal

Minimal pulse length

00

NWAIT latency 2 cycle resynchronization

Read cycle

EXNWMODE = 2 or 3
READMODE = 1 (NRD controlled)

NRDPULSE = 5

518
32015G–AVR32–09/09

AT32AP7001

28.6.8 Slow Clock Mode

The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the SMC’s Power Management Controller is asserted because
CLK_SMC has been turned to a very slow clock rate (typically 32 kHz clock rate). In this mode,
the user-programmed waveforms are ignored and the slow clock mode waveforms are applied.
This mode is provided so as to avoid reprogramming the User Interface with appropriate wave-
forms at very slow clock rate. When activated, the slow mode is active on all chip selects.

28.6.8.1 Slow clock mode waveforms

Figure 28-32 on page 518 illustrates the read and write operations in slow clock mode. They are
valid on all chip selects. Table 28-4 on page 518 indicates the value of read and write parame-
ters in slow clock mode.

Figure 28-32. Read and Write Cycles in Slow Clock Mode

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NWE

NWECYCLES = 3

SLOW CLOCK MODE WRITE

1

1

1

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NRD

SLOW CLOCK MODE READ

NRDCYCLES = 2

1

1

Table 28-4. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters Duration (cycles) Write Parameters Duration (cycles)

NRDSETUP 1 NWESETUP 1

NRDPULSE 1 NWEPULSE 1

NCSRDSETUP 0 NCSWRSETUP 0

NCSRDPULSE 2 NCSWRPULSE 3

NRDCYCLE 2 NWECYCLE 3

519
32015G–AVR32–09/09

AT32AP7001

28.6.8.2 Switching from (to) slow clock mode to (from) normal mode

When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters. See Figure 28-33
on page 519. The external device may not be fast enough to support such timings.

Figure 28-34 on page 520 illustrates the recommended procedure to properly switch from one
mode to the other.

Figure 28-33. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

CLK_SMC

A[25:2]

NBS0, NBS1,
A0, A1

NCS

NWE

Slow Clock Mode
Internal signal from PM

This write cycle finishes with the slow clock mode set
of parameters after the clock rate transition

NWECYCLE = 3

SLOW CLOCK MODE WRITE SLOW CLOCK MODE WRITE

1 1 1 1 1 1 2 3 2

NWECYCLE = 7

NORMAL MODE WRITE

Slow clock mode transition is detected:
Reload Configuration Wait State

520
32015G–AVR32–09/09

AT32AP7001

Figure 28-34. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode

28.6.9 Asynchronous Page Mode

The SMC supports asynchronous burst reads in page mode, providing that the Page Mode
Enabled bit is written to one in the MODE register (MODE.PMEN). The page size must be con-
figured in the Page Size field in the MODE register (MODE.PS) to 4, 8, 16, or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 28-5 on page 520.

With page mode memory devices, the first access to one page (tpa) takes longer than the subse-
quent accesses to the page (tsa) as shown in Figure 28-35 on page 521. When in page mode,
the SMC enables the user to define different read timings for the first access within one page,
and next accesses within the page.

Notes: 1. A denotes the address bus of the memory device
2. For 16-bit devices, the bit 0 of address is ignored. For 32-bit devices, bits [1:0] are ignored.

28.6.9.1 Protocol and timings in page mode

Figure 28-35 on page 521 shows the NRD and NCS timings in page mode access.

CLK_SMC

Slow Clock Mode
Internal signal from PM

A[25:2]

NBS0, NBS1,
A0, A1

NWE

NCS

1 1

SLOW CLOCK MODE WRITE

2 3 2

IDLE STATE

Reload Configuration
Wait State

NORMAL MODE WRITE

1

Table 28-5. Page Address and Data Address within a Page

Page Size Page Address(1) Data Address in the Page(2)

4 bytes A[25:2] A[1:0]

8 bytes A[25:3] A[2:0]

16 bytes A[25:4] A[3:0]

32 bytes A[25:5] A[4:0]

521
32015G–AVR32–09/09

AT32AP7001

Figure 28-35. Page Mode Read Protocol (Address MSB and LSB Are Defined in Table 28-5 on page 520)

The NRD and NCS signals are held low during all read transfers, whatever the programmed val-
ues of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS
timings are identical. The pulse length of the first access to the page is defined with the
PULSE.NCSRDPULSE field value. The pulse length of subsequent accesses within the page
are defined using the PULSE.NRDPULSE field value.

In page mode, the programming of the read timings is described in Table 28-6 on page 521:

The SMC does not check the coherency of timings. It will always apply the NCSRDPULSE tim-
ings as page access timing (tpa) and the NRDPULSE for accesses to the page (tsa), even if the
programmed value for tpa is shorter than the programmed value for tsa.

28.6.9.2 Byte access type in page mode

The byte access type configuration remains active in page mode. For 16-bit or 32-bit page mode
devices that require byte selection signals, configure the MODE.BAT bit to zero (byte select
access type).

CLK_SMC

A[MSB]

A[LSB]

NCS

NRD

D[15:0]

tpa

NCSRDPULSE

tsa

NRDPULSE NRDPULSE

tsa

Table 28-6. Programming of Read Timings in Page Mode

Parameter Value Definition

READMODE ‘x’ No impact

NCSRDSETUP ‘x’ No impact

NCSRDPULSE tpa Access time of first access to the page

NRDSETUP ‘x’ No impact

NRDPULSE tsa Access time of subsequent accesses in the page

NRDCYCLE ‘x’ No impact

522
32015G–AVR32–09/09

AT32AP7001

28.6.9.3 Page mode restriction

The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.

28.6.9.4 Sequential and non-sequential accesses

If the chip select and the MSB of addresses as defined in Table 28-5 on page 520 are identical,
then the current access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (tsa). Figure 28-36 on page 522 illustrates access to an 8-bit mem-
ory device in page mode, with 8-byte pages. Access to D1 causes a page access with a long
access time (tpa). Accesses to D3 and D7, though they are not sequential accesses, only require
a short access time (tsa).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequen-
tial accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.

Figure 28-36. Access to Non-sequential Data within the Same Page

CLK_SMC

A[25:3]

A[2], A1, A0

NCS

NRD

D[7:0]

A1

Page address

A3 A7

D1 D3 D7

NCSRDPULSE NRDPULSE NRDPULSE

523
32015G–AVR32–09/09

AT32AP7001

28.7 User Interface

The SMC is programmed using the registers listed in Table 28-7 on page 523. For each chip select, a set of four registers
is used to program the parameters of the external device connected on it. In Table 28-7 on page 523, “CS_number”
denotes the chip select number. Sixteen bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing anyone of the Mode Registers.

Table 28-7. SMC Register Memory Map

Offset Register Register Name Access Reset

0x00 + CS_number*0x10 Setup Register SETUP Read/Write 0x01010101

0x04 + CS_number*0x10 Pulse Register PULSE Read/Write 0x01010101

0x08 + CS_number*0x10 Cycle Register CYCLE Read/Write 0x00030003

0x0C + CS_number*0x10 Mode Register MODE Read/Write 0x10002103

524
32015G–AVR32–09/09

AT32AP7001

28.7.1 Setup Register

Register Name: SETUP

Access Type: Read/Write

Offset: 0x00 + CS_number*0x10

Reset Value: 0x01010101

• NCSRDSETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:

• NRDSETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:

• NCSWRSETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:

• NWESETUP: NWE Setup Length
The NWE signal setup length is defined as:

31 30 29 28 27 26 25 24

– – NCSRDSETUP

23 22 21 20 19 18 17 16

– – NRDSETUP

15 14 13 12 11 10 9 8

– – NCSWRSETUP

7 6 5 4 3 2 1 0

– – NWESETUP

NCS Setup Length in read access 128 NCSRDSETUP 5[] NCSRDSETUP 4:0[]+×() clock cycles=

NRD Setup Length 128 NRDSETUP 5[] NRDSETUP 4:0[]+×() clock cycles=

NCS Setup Length in write access 128 NCSWRSETUP 5[] NCSWRSETUP 4:0[]+×() clock cycles=

NWE Setup Length 128 NWESETUP 5[] NWESETUP 4:0[]+×() clock cycles=

525
32015G–AVR32–09/09

AT32AP7001

28.7.2 Pulse Register

Register Name: PULSE

Access Type: Read/Write

Offset: 0x04 + CS_number*0x10

Reset Value: 0x01010101

• NCSRDPULSE: NCS Pulse Length in READ Access
In standard read access, the NCS signal pulse length is defined as:

The NCS pulse length must be at least one clock cycle.
In page mode read access, the NCSRDPULSE field defines the duration of the first access to one page.

• NRDPULSE: NRD Pulse Length
In standard read access, the NRD signal pulse length is defined in clock cycles as:

The NRD pulse length must be at least one clock cycle.

In page mode read access, the NRDPULSE field defines the duration of the subsequent accesses in the page.
• NCSWRPULSE: NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

The NCS pulse length must be at least one clock cycle.

• NWEPULSE: NWE Pulse Length
The NWE signal pulse length is defined as:

The NWE pulse length must be at least one clock cycle.

31 30 29 28 27 26 25 24

– NCSRDPULSE

23 22 21 20 19 18 17 16

– NRDPULSE

15 14 13 12 11 10 9 8

– NCSWRPULSE

7 6 5 4 3 2 1 0

– NWEPULSE

NCS Pulse Length in read access 256 NCSRDPULSE 6[] NCSRDPULSE 5:0[]+×() clock cycles=

NRD Pulse Length 256 NRDPULSE 6[] NRDPULSE 5:0[]+×() clock cycles=

NCS Pulse Length in write access 256 NCSWRPULSE 6[] NCSWRPULSE 5:0[]+×() clock cycles=

NWE Pulse Length 256 NWEPULSE 6[] NWEPULSE 5:0[]+×() clock cycles=

526
32015G–AVR32–09/09

AT32AP7001

28.7.3 Cycle Register

Register Name: CYCLE

Access Type: Read/Write

Offset: 0x08 + CS_number*0x10

Reset Value: 0x00030003

• NRDCYCLE[8:0]: Total Read Cycle Length
The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse and
hold steps of the NRD and NCS signals. It is defined as:

• NWECYCLE[8:0]: Total Write Cycle Length
The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse and

hold steps of the NWE and NCS signals. It is defined as:

31 30 29 28 27 26 25 24

– – – – – – – NRDCYCLE[8]

23 22 21 20 19 18 17 16

NRDCYCLE[7:0]

15 14 13 12 11 10 9 8

– – – – – – – NWECYCLE[8]

7 6 5 4 3 2 1 0

NWECYCLE[7:0]

Read Cycle Length 256 NRDCYCLE 8:7[] NRDCYCLE 6:0[]+×() clock cycles=

Write Cycle Length 256 NWECYCLE 8:7[] NWECYCLE 6:0[]+×() clock cycles=

527
32015G–AVR32–09/09

AT32AP7001

28.7.4 Mode Register

Register Name: MODE

Access Type: Read/Write

Offset: 0x0C + CS_number*0x10

Reset Value: 0x10002103

• PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.

• PMEN: Page Mode Enabled
1: Asynchronous burst read in page mode is applied on the corresponding chip select.
0: Standard read is applied.

• TDFMODE: TDF Optimization
1: TDF optimization is enabled. The number of TDF wait states is optimized using the setup period of the next read/write

access.

0: TDF optimization is disabled.The number of TDF wait states is inserted before the next access begins.
• TDFCYCLES: Data Float Time

This field gives the integer number of clock cycles required by the external device to release the data after the rising edge of the
read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDFCYCLES period. The external

bus cannot be used by another chip select during TDFCYCLES plus one cycles. From 0 up to 15 TDFCYCLES can be set.

31 30 29 28 27 26 25 24

– – PS – – – PMEN

23 22 21 20 19 18 17 16

– – – TDFMODE TDFCYCLES

15 14 13 12 11 10 9 8

– – DBW – – – BAT

7 6 5 4 3 2 1 0

– – EXNWMODE – – WRITEMODE READMODE

PS Page Size

0 4-byte page

1 8-byte page

2 16-byte page

3 32-byte page

528
32015G–AVR32–09/09

AT32AP7001

• DBW: Data Bus Width

• BAT: Byte Access Type
This field is used only if DBW defines a 16- or 32-bit data bus.

• EXNWMODE: External WAIT Mode
The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of the

read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be programmed for
the read and write controlling signal.

• WRITEMODE: Write Mode
1: The write operation is controlled by the NWE signal. If TDF optimization is enabled (TDFMODE =1), TDF wait states will be
inserted after the setup of NWE.

0: The write operation is controlled by the NCS signal. If TDF optimization is enabled (TDFMODE =1), TDF wait states will be

inserted after the setup of NCS.

DBW Data Bus Width

0 8-bit bus

1 16-bit bus

2 32-bit bus

3 Reserved

BAT Byte Access Type

0

Byte select access type:

Write operation is controlled using NCS, NWE, NBS0, NBS1, NBS2, and NBS3

Read operation is controlled using NCS, NRD, NBS0, NBS1, NBS2, and NBS3

1

Byte write access type:

Write operation is controlled using NCS, NWR0, NWR1, NWR2, and NWR3
Read operation is controlled using NCS and NRD

EXNWMODE External NWAIT Mode

0
Disabled:
the NWAIT input signal is ignored on the corresponding chip select.

1 Reserved

2
Frozen Mode:

if asserted, the NWAIT signal freezes the current read or write cycle. after deassertion, the read or write cycle
is resumed from the point where it was stopped.

3

Ready Mode:

the NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling read
or write signal, to complete the access. If high, the access normally completes. If low, the access is extended
until NWAIT returns high.

529
32015G–AVR32–09/09

AT32AP7001

• READMODE: Read Mode

READMODE Read Access Mode

0

The read operation is controlled by the NCS signal.

If TDF are programmed, the external bus is marked busy after the rising edge of NCS.

If TDF optimization is enabled (TDFMODE = 1), TDF wait states are inserted after the setup of NCS.

1

The read operation is controlled by the NRD signal.

If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.

If TDF optimization is enabled (TDFMODE =1), TDF wait states are inserted after the setup of NRD.

530
32015G–AVR32–09/09

AT32AP7001

29. SDRAM Controller (SDRAMC)

Rev: 2.0.0.3

29.1 Features

• 256-Mbytes address space
• Numerous configurations supported

– 2K, 4K, 8K row address memory parts
– SDRAM with two or four internal banks
– SDRAM with 16- or 32-bit data path

• Programming facilities
– Word, halfword, byte access
– Automatic page break when memory boundary has been reached
– Multibank ping-pong access
– Timing parameters specified by software
– Automatic refresh operation, refresh rate is programmable
– Automatic update of DS, TCR and PASR parameters (mobile SDRAM devices)

• Energy-saving capabilities
– Self-refresh, power-down, and deep power-down modes supported
– Supports mobile SDRAM devices

• Error detection
– Refresh error interrupt

• SDRAM power-up initialization by software
• CAS latency of one, two, and three supported
• Auto Precharge command not used

29.2 Overview

The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the
interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges from
2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit), halfword (16-
bit) and word (32-bit) accesses.

The SDRAMC supports a read or write burst length of one location. It keeps track of the active
row in each bank, thus maximizing SDRAM performance, e.g., the application may be placed in
one bank and data in the other banks. So as to optimize performance, it is advisable to avoid
accessing different rows in the same bank.

The SDRAMC supports a CAS latency of one, two, or three and optimizes the read access
depending on the frequency.

The different modes available (self refresh, power-down, and deep power-down modes) mini-
mize power consumption on the SDRAM device.

531
32015G–AVR32–09/09

AT32AP7001

29.3 Block Diagram

Figure 29-1. SDRAM Controller Block Diagram

29.4 I/O Lines Description

Memory
Controller

Power
Manager

CLK_SDRAMC

SDRAMC
Chip Select

SDRAMC
Interrupt

SDRAMC

User Interface

Peripheral Bus

I/O
Controller

SDCS

SDCK

SDCKE

BA[1:0]

RAS

CAS

SDWE

DQM[0]

SDRAMC_A[9:0]

D[31:0]

EBI
MUX Logic

DATA[31:0]

SDCK

SDCKE

SDCS

RAS

CAS

ADDR[17:16]

SDWE

ADDR[0]
DQM[1]

NWE1
DQM[2]

ADDR[1]
DQM[3]

NWE3

ADDR[11:2]
SDRAMC_A[10]

SDA10
SDRAMC_A[12:11]

ADDR[13:14]

Table 29-1. I/O Lines Description

Name Description Type Active Level

SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High

SDCS SDRAM Chip Select Output Low

BA[1:0] Bank Select Signals Output

RAS Row Signal Output Low

CAS Column Signal Output Low

SDWE SDRAM Write Enable Output Low

DQM[3:0] Data Mask Enable Signals Output High

SDRAMC_A[12:0] Address Bus Output

D[31:0] Data Bus Input/Output

532
32015G–AVR32–09/09

AT32AP7001

29.5 Application Example

29.5.1 Hardware Interface

Figure 29-2 on page 532 shows an example of SDRAM device connection to the SDRAMC
using a 32-bit data bus width. Figure 29-3 on page 533 shows an example of SDRAM device
connection using a 16-bit data bus width. It is important to note that these examples are given
for a direct connection of the devices to the SDRAMC, without External Bus Interface or I/O Con-
troller multiplexing.

Figure 29-2. SDRAM Controller Connections to SDRAM Devices: 32-bit Data Bus Width

SDRAMC_A[0-9], SDRAMC_A11

2Mx8
SDRAM

D0-D7
CS

DQM

CLK
CKE
WE
RAS
CAS

A0-A9 A11

BA0
A10

BA1

SDRAMC_A10
BA0
BA1

2Mx8
SDRAM

D0-D7
CS

DQM

CLK
CKE
WE
RAS
CAS

A0-A9 A11

BA0
A10

BA1

SDRAMC_A10
BA0
BA1

2Mx8
SDRAM

D0-D7
CS

DQM

CLK
CKE
WE
RAS
CAS

A0-A9 A11

BA0
A10

BA1

SDRAMC_A10
BA0
BA1

2Mx8
SDRAM

D0-D7
CS

DQM

CLK
CKE
WE
RAS
CAS

A0-A9 A11

BA0
A10

BA1

SDRAMC_A10
BA0
BA1

SDRAMC_A[0-9], SDRAMC_A11

SDRAMC_A[0-9], SDRAMC_A11SDRAMC_A[0-9], SDRAMC_A11

D8-D15

DQM1DQM0

D0-D7

DQM2

D16-D23

DQM3

D24-D31

SDRAM
Controller

SDCS

BA1
BA0

SDRAMC_A[0-12]

DQM[0-3]

SDWE
SDCKE
SDCK

CAS
RAS

D0-D31

533
32015G–AVR32–09/09

AT32AP7001

Figure 29-3. SDRAM Controller Connections to SDRAM Devices: 16-bit Data Bus Width

29.5.2 Software Interface

The SDRAM address space is organized into banks, rows, and columns. The SDRAMC allows
mapping different memory types according to the values set in the SDRAMC Configuration Reg-
ister (CR).

The SDRAMC’s function is to make the SDRAM device access protocol transparent to the user.
Table 29-2 on page 534 to Table 29-7 on page 535 illustrate the SDRAM device memory map-
ping seen by the user in correlation with the device structure. Various configurations are
illustrated.

2Mx8
SDRAM

D0-D7
CS

DQM

CLK
CKE
WE
RAS
CAS

A0-A9 A11

BA0
A10

BA1

SDRAMC_A10
BA0
BA1

2Mx8
SDRAM

D0-D7
CS

DQM

CLK
CKE
WE
RAS
CAS

A0-A9 A11

BA0
A10

BA1

SDRAMC_A10
BA0
BA1

SDCS

BA1
BA0

SDRAMC_A[0-12]

SDRAM
Controller

DQM[0-1]
SDWE

SDCKE
SDCK
CAS
RAS

D0-D31

DQM0

D0-D7 D8-D15

DQM1

534
32015G–AVR32–09/09

AT32AP7001

29.5.2.1 32-bit memory data bus width

Notes: 1. M[1:0] is the byte address inside a 32-bit word.

Table 29-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BA[1:0] Row[10:0] Column[7:0] M[1:0]

BA[1:0] Row[10:0] Column[8:0] M[1:0]

BA[1:0] Row[10:0] Column[9:0] M[1:0]

BA[1:0] Row[10:0] Column[10:0] M[1:0]

Table 29-3. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BA[1:0] Row[11:0] Column[7:0] M[1:0]

BA[1:0] Row[11:0] Column[8:0] M[1:0]

BA[1:0] Row[11:0] Column[9:0] M[1:0]

BA[1:0] Row[11:0] Column[10:0] M[1:0]

Table 29-4. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BA[1:0] Row[12:0] Column[7:0] M[1:0]

BA[1:0] Row[12:0] Column[8:0] M[1:0]

BA[1:0] Row[12:0] Column[9:0] M[1:0]

BA[1:0] Row[12:0] Column[10:0] M[1:0]

535
32015G–AVR32–09/09

AT32AP7001

29.5.2.2 16-bit memory data bus width

Notes: 1. M0 is the byte address inside a 16-bit halfword.

29.6 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

29.6.1 I/O Lines

The SDRAMC module signals pass through the External Bus Interface (EBI) module where they
are multiplexed. The user must first configure the I/O controller to assign the EBI pins corre-
sponding to SDRAMC signals to their peripheral function. If I/O lines of the EBI corresponding to
SDRAMC signals are not used by the application, they can be used for other purposes by the
I/O Controller.

Table 29-5. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BA[1:0] Row[10:0] Column[7:0] M0

BA[1:0] Row[10:0] Column[8:0] M0

BA[1:0] Row[10:0] Column[9:0] M0

BA[1:0] Row[10:0] Column[10:0] M0

Table 29-6. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BA[1:0] Row[11:0] Column[7:0] M0

BA[1:0] Row[11:0] Column[8:0] M0

BA[1:0] Row[11:0] Column[9:0] M0

BA[1:0] Row[11:0] Column[10:0] M0

Table 29-7. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BA[1:0] Row[12:0] Column[7:0] M0

BA[1:0] Row[12:0] Column[8:0] M0

BA[1:0] Row[12:0] Column[9:0] M0

BA[1:0] Row[12:0] Column[10:0] M0

536
32015G–AVR32–09/09

AT32AP7001

29.6.2 Power Management

The SDRAMC must be properly stopped before entering in reset mode, i.e., the user must issue
a Deep power mode command in the Mode (MD) register and wait for the command to be
completed.

29.6.3 Clocks

The clock for the SDRAMC bus interface (CLK_SDRAMC) is generated by the Power Manager.
This clock is enabled at reset, and can be disabled in the Power Manager. It is recommended to
disable the SDRAMC before disabling the clock, to avoid freezing the SDRAMC in an undefined
state.

29.6.4 Interrupts

The SDRAMC interrupt request line is connected to the interrupt controller. Using the SDRAMC
interrupt requires the interrupt controller to be programmed first.

29.7 Functional Description

29.7.1 SDRAM Device Initialization

The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:

1. SDRAM features must be defined in the CR register by writing the following fields with
the desired value: asynchronous timings (TXSR, TRAS, TRCD, TRP, TRC, and TWR),
Number of Columns (NC), Number of Rows (NR), Number of Banks (NB), CAS Latency
(CAS), and the Data Bus Width (DBW).

2. For mobile SDRAM devices, Temperature Compensated Self Refresh (TCSR), Drive
Strength (DS) and Partial Array Self Refresh (PASR) fields must be defined in the Low
Power Register (LPR).

3. The Memory Device Type field must be defined in the Memory Device Register
(MDR.MD).

4. A No Operation (NOP) command must be issued to the SDRAM devices to start the
SDRAM clock. The user must write the value one to the Command Mode field in the
SDRAMC Mode Register (MR.MODE) and perform a write access to any SDRAM
address.

5. A minimum pause of 200µs is provided to precede any signal toggle.

6. An All Banks Precharge command must be issued to the SDRAM devices. The user
must write the value two to the MR.MODE field and perform a write access to any
SDRAM address.

7. Eight Auto Refresh commands are provided. The user must write the value four to the
MR.MODE field and performs a write access to any SDRAM location eight times.

8. A Load Mode Register command must be issued to program the parameters of the
SDRAM devices in its Mode Register, in particular CAS latency, burst type, and burst
length. The user must write the value three to the MR.MODE field and perform a write
access to the SDRAM. The write address must be chosen so that BA[1:0] are set to zero.
See Section 29.8.1 for details about Load Mode Register command.

9. For mobile SDRAM initialization, an Extended Load Mode Register command must be
issued to program the SDRAM devices parameters (TCSR, PASR, DS). The user must
write the value five to the MR.MODE field and perform a write access to the SDRAM. The

537
32015G–AVR32–09/09

AT32AP7001

write address must be chosen so that BA[1] or BA[0] are equal to one. See Section
29.8.1 for details about Extended Load Mode Register command.

10. The user must go into Normal Mode, writing the value 0 to the MR.MODE field and per-
forming a write access at any location in the SDRAM.

11. Write the refresh rate into the Refresh Timer Count field in the Refresh Timer Register
(TR.COUNT). The refresh rate is the delay between two successive refresh cycles. The
SDRAM device requires a refresh every 15.625µs or 7.81µs. With a 100MHz frequency,
the TR register must be written with the value 1562 (15.625 µs x 100 MHz) or 781 (7.81
µs x 100 MHz).

After initialization, the SDRAM devices are fully functional.

Figure 29-4. SDRAM Device Initialization Sequence

29.7.2 SDRAM Controller Write Cycle

The SDRAMC allows burst access or single access. In both cases, the SDRAMC keeps track of
the active row in each bank, thus maximizing performance. To initiate a burst access, the
SDRAMC uses the transfer type signal provided by the master requesting the access. If the next
access is a sequential write access, writing to the SDRAM device is carried out. If the next
access is a write-sequential access, but the current access is to a boundary page, or if the next
access is in another row, then the SDRAMC generates a precharge command, activates the
new row and initiates a write command. To comply with SDRAM timing parameters, additional
clock cycles are inserted between precharge and active (tRP) commands and between active
and write (tRCD) commands. For definition of these timing parameters, refer to the Section
29.8.3. This is described in Figure 29-5 on page 538.

SDCKE

SDCK

SDRAMC_A[9:0]

A10

SDRAMC_A[12:11]

SDCS

RAS

CAS

SDWE

DQM

Inputs Stable for
200 usec

Valid CommandPrecharge All Banks 1st Auto Refresh 8th Auto Refresh LMR Command

tMRDtRCtRP

538
32015G–AVR32–09/09

AT32AP7001

Figure 29-5. Write Burst, 16-bit SDRAM Access

29.7.3 SDRAM Controller Read Cycle

The SDRAMC allows burst access, incremental burst of unspecified length or single access. In
all cases, the SDRAMC keeps track of the active row in each bank, thus maximizing perfor-
mance of the SDRAM. If row and bank addresses do not match the previous row/bank address,
then the SDRAMC automatically generates a precharge command, activates the new row and
starts the read command. To comply with the SDRAM timing parameters, additional clock cycles
on SDCK are inserted between precharge and active (tRP) commands and between active and
read (tRCD) commands. These two parameters are set in the CR register of the SDRAMC. After a
read command, additional wait states are generated to comply with the CAS latency (one, two,
or three clock delays specified in the CR register).

For a single access or an incremented burst of unspecified length, the SDRAMC anticipates the
next access. While the last value of the column is returned by the SDRAMC on the bus, the
SDRAMC anticipates the read to the next column and thus anticipates the CAS latency. This
reduces the effect of the CAS latency on the internal bus.

For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads
to the best performance. If the burst is broken (border, busy mode, etc.), the next access is han-
dled as an incrementing burst of unspecified length.

SDCS

tRCD = 3

SDCK

SDRAMC_A[12:0]

RAS

CAS

SDWE

D[15:0] Dna Dnb Dnc Dnd Dne Dnf Dng Dnh Dni Dnj Dnk Dnl

Row n Col b Col c Col d Col e Col f Col g Col h Col i Col k Col lCol jCol a

539
32015G–AVR32–09/09

AT32AP7001

Figure 29-6. Read Burst, 16-bit SDRAM Access

29.7.4 Border Management

When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAMC generates a precharge command, activates the new row and initiates a read
or write command. To comply with SDRAM timing parameters, an additional clock cycle is
inserted between the precharge and active (tRP) commands and between the active and read
(tRCD) commands. This is described in Figure 29-7 on page 540.

SDCS

D[15:0]
(Input)

SDCK

SDRAMC_A[12:0]

RAS

CAS

SDWE

Dna Dnb Dnc Dnd Dne Dnf

Col a Col b Col c Col d Col e Col fRow n

CAS = 2tRCD = 3

540
32015G–AVR32–09/09

AT32AP7001

Figure 29-7. Read Burst with Boundary Row Access

29.7.5 SDRAM Controller Refresh Cycles

An auto refresh command is used to refresh the SDRAM device. Refresh addresses are gener-
ated internally by the SDRAM device and incremented after each auto refresh automatically.
The SDRAMC generates these auto refresh commands periodically. An internal timer is loaded
with the value in the Refresh Timer Register (TR) that indicates the number of clock cycles
between successive refresh cycles.

A refresh error interrupt is generated when the previous auto refresh command did not perform.
In this case a Refresh Error Status bit is set in the Interrupt Status Register (ISR.RES). It is
cleared by reading the ISR register.

When the SDRAMC initiates a refresh of the SDRAM device, internal memory accesses are not
delayed. However, if the CPU tries to access the SDRAM, the slave indicates that the device is
busy and the master is held by a wait signal. See Figure 29-8 on page 541.

SDCS

SDCK

SDRAMC_A[12:0]

CAS

RAS

SDWE

D[15:0] Dna Dnb Dnc Dnd Dma Dmb Dmc DmeDmd

Row m Col a Col b Col c Col d Col e

Row n

Col a Col b Col c Col d

CAS = 2TRCD = 3TRP = 3

541
32015G–AVR32–09/09

AT32AP7001

Figure 29-8. Refresh Cycle Followed by a Read Access

29.7.6 Power Management

Three low power modes are available:

• Self refresh mode: the SDRAM executes its own auto refresh cycles without control of the
SDRAMC. Current drained by the SDRAM is very low.

• Power-down mode: auto refresh cycles are controlled by the SDRAMC. Between auto refresh
cycles, the SDRAM is in power-down. Current drained in power-down mode is higher than in
self refresh mode.

• Deep power-down mode (only available with mobile SDRAM): the SDRAM contents are lost,
but the SDRAM does not drain any current.

The SDRAMC activates one low power mode as soon as the SDRAM device is not selected. It is
possible to delay the entry in self refresh and power-down mode after the last access by config-
uring the Timeout field in the Low Power Register (LPR.TIMEOUT).

29.7.6.1 Self refresh mode

This mode is selected by writing the value one to the Low Power Configuration Bits field in the
SDRAMC Low Power Register (LPR.LPCB). In self refresh mode, the SDRAM device retains
data without external clocking and provides its own internal clocking, thus performing its own
auto refresh cycles. All the inputs to the SDRAM device become “don’t care” except SDCKE,
which remains low. As soon as the SDRAM device is selected, the SDRAMC provides a
sequence of commands and exits self refresh mode.

Some low power SDRAMs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter
or all banks of the SDRAM array. This feature reduces the self refresh current. To configure this
feature, Temperature Compensated Self Refresh (TCSR), Partial Array Self Refresh (PASR)

SDCS

SDCK

SDRAMC_A[12:0]

Row n
Col c Col d

RAS

CAS

SDWE

D[15:0]
(input) Dnb Dnc Dnd Dma

Col aRow m

CAS = 2tRCD = 3tRC = 8tRP = 3

542
32015G–AVR32–09/09

AT32AP7001

and Drive Strength (DS) parameters must be set by writing the corresponding fields in the LPR
register, and transmitted to the low power SDRAM device during initialization.

After initialization, as soon as the LPR.PASR, LPR.DS, or LPR.TCSR fields are modified and
self refresh mode is activated, the SDRAMC issues an Extended Load Mode Register command
to the SDRAM and the Extended Mode Register of the SDRAM device is accessed automati-
cally. The PASR/DS/TCSR parameters values are therefore updated before entry into self
refresh mode.

The SDRAM device must remain in self refresh mode for a minimum period of tRAS and may
remain in self refresh mode for an indefinite period. This is described in Figure 29-9 on page
542.

Figure 29-9. Self Refresh Mode Behavior

29.7.6.2 Low power mode

This mode is selected by writing the value two to the LPR.LPCB field. Power consumption is
greater than in self refresh mode. All the input and output buffers of the SDRAM device are
deactivated except SDCKE, which remains low. In contrast to self refresh mode, the SDRAM
device cannot remain in low power mode longer than the refresh period (64ms for a whole
device refresh operation). As no auto refresh operations are performed by the SDRAM itself, the
SDRAMC carries out the refresh operation. The exit procedure is faster than in self refresh
mode.

This is described in Figure 29-10 on page 543.

SDRAMC_A[12:0]

SDCK

SDCKE

SDCS

RAS

CAS

Access Request
To the SDRAM Controller

Self Refresh Mode

Row

TXSR = 3

SDWE

543
32015G–AVR32–09/09

AT32AP7001

Figure 29-10. Low Power Mode Behavior

29.7.6.3 Deep power-down mode

This mode is selected by writing the value three to the LPR.LPCB field. When this mode is acti-
vated, all internal voltage generators inside the SDRAM are stopped and all data is lost.

When this mode is enabled, the user must not access to the SDRAM until a new initialization
sequence is done (See Section 29.7.1).

This is described in Figure 29-11 on page 544.

Low Power ModeCAS = 2TRCD = 3

SDCS

SDCK

SDRAMC_A[12:0]

RAS

CAS

SDCKE

D[15:0]
(input) Dna Dnb Dnc Dnd Dne Dnf

Col fCol eCol dCol cCol bCol aRow n

544
32015G–AVR32–09/09

AT32AP7001

Figure 29-11. Deep Power-down Mode Behavior

SDCS

SDCK

SDRAMC_A[12:0]

RAS

CAS

SDWE

SCKE

D[15:0]
(Input) Dnb Dnc Dnd

Col dCol c

Row n

tRP = 3

545
32015G–AVR32–09/09

AT32AP7001

29.8 User Interface

Table 29-8. SDRAMC Register Memory Map

Offset Register Register Name Access Reset

0x00 Mode Register MR Read/Write 0x00000000

0x04 Refresh Timer Register TR Read/Write 0x00000000

0x08 Configuration Register CR Read/Write 0x852372C0

0x0C High Speed Register HSR Read/Write 0x00000000

0x10 Low Power Register LPR Read/Write 0x00000000

0x14 Interrupt Enable Register IER Write-only 0x00000000

0x18 Interrupt Disable Register IDR Write-only 0x00000000

0x1C Interrupt Mask Register IMR Read-only 0x00000000

0x20 Interrupt Status Register ISR Read-only 0x00000000

0x24 Memory Device Register MDR Read/Write 0x00000000

546
32015G–AVR32–09/09

AT32AP7001

29.8.1 Mode Register

Register Name: MR

Access Type: Read/Write

Offset: 0x00

Reset Value: 0x00000000

• MODE: Command Mode
This field defines the command issued by the SDRAMC when the SDRAM device is accessed.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - MODE

MODE Description

0 Normal mode. Any access to the SDRAM is decoded normally.

1 The SDRAMC issues a “NOP” command when the SDRAM device is accessed regardless of the cycle.

2
The SDRAMC issues an “All Banks Precharge” command when the SDRAM device is accessed regardless of
the cycle.

3

The SDRAMC issues a “Load Mode Register” command when the SDRAM device is accessed regardless of the
cycle. This command will load the CR.CAS field into the SDRAM device Mode Register. All the other parameters
of the SDRAM device Mode Register will be set to zero (burst length, burst type, operating mode, write burst
mode...).

4
The SDRAMC issues an “Auto Refresh” command when the SDRAM device is accessed regardless of the cycle.
Previously, an “All Banks Precharge” command must be issued.

5

The SDRAMC issues an “Extended Load Mode Register” command when the SDRAM device is accessed
regardless of the cycle. This command will load the LPR.PASR, LPR.DS, and LPR.TCR fields into the SDRAM
device Extended Mode Register. All the other bits of the SDRAM device Extended Mode Register will be set to
zero.

6 Deep power-down mode. Enters deep power-down mode.

547
32015G–AVR32–09/09

AT32AP7001

29.8.2 Refresh Timer Register

Register Name: TR

Access Type: Read/Write

Offset: 0x04

Reset Value: 0x00000000

• COUNT[11:0]: Refresh Timer Count
This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh burst

is initiated.
The value to be loaded depends on the SDRAMC clock frequency (CLK_SDRAMC), the refresh rate of the SDRAM device and

the refresh burst length where 15.6µs per row is a typical value for a burst of length one.

To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is issued
and no refresh of the SDRAM device is carried out.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - COUNT[11:8]

7 6 5 4 3 2 1 0

COUNT[7:0]

548
32015G–AVR32–09/09

AT32AP7001

29.8.3 Configuration Register

Register Name: CR

Access Type: Read/Write

Offset: 0x08

Reset Value: 0x852372C0

• TXSR: Exit Self Refresh to Active Delay
Reset value is eight cycles.

This field defines the delay between SCKE set high and an Activate command in number of cycles. Number of cycles is between
0 and 15.

• TRAS: Active to Precharge Delay
Reset value is five cycles.

This field defines the delay between an Activate command and a Precharge command in number of cycles. Number of cycles is

between 0 and 15.
• TRCD: Row to Column Delay

Reset value is two cycles.
This field defines the delay between an Activate command and a Read/Write command in number of cycles. Number of cycles

is between 0 and 15.

• TRP: Row Precharge Delay
Reset value is three cycles.

This field defines the delay between a Precharge command and another command in number of cycles. Number of cycles is
between 0 and 15.

• TRC: Row Cycle Delay
Reset value is seven cycles.

This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is between 0

and 15.
• TWR: Write Recovery Delay

Reset value is two cycles.

This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15.
• DBW: Data Bus Width

Reset value is 16 bits.
0: Data bus width is 32 bits.

1: Data bus width is 16 bits.

31 30 29 28 27 26 25 24

TXSR TRAS

23 22 21 20 19 18 17 16

TRCD TRP

15 14 13 12 11 10 9 8

TRC TWR

7 6 5 4 3 2 1 0

DBW CAS NB NR NC

549
32015G–AVR32–09/09

AT32AP7001

• CAS: CAS Latency
Reset value is two cycles.

In the SDRAMC, only a CAS latency of one, two and three cycles is managed.

• NB: Number of Banks
Reset value is two banks.

• NR: Number of Row Bits
Reset value is 11 row bits.

• NC: Number of Column Bits
Reset value is 8 column bits.

CAS CAS Latency (Cycles)

0 Reserved

1 1

2 2

3 3

NB Number of Banks

0 2

1 4

NR Row Bits

0 11

1 12

2 13

3 Reserved

NC Column Bits

0 8

1 9

2 10

3 11

550
32015G–AVR32–09/09

AT32AP7001

29.8.4 High Speed Register

Register Name: HSR

Access Type: Read/Write

Offset: 0x0C

Reset Value: 0x00000000

• DA: Decode Cycle Enable
A decode cycle can be added on the addresses as soon as a non-sequential access is performed on the HSB bus.
The addition of the decode cycle allows the SDRAMC to gain time to access the SDRAM memory.

1: Decode cycle is enabled.

0: Decode cycle is disabled.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - DA

551
32015G–AVR32–09/09

AT32AP7001

29.8.5 Low Power Register

Register Name: LPR

Access Type: Read/Write

Offset: 0x10

Reset Value: 0x00000000

• TIMEOUT: Time to Define when Low Power Mode Is Enabled

• DS: Drive Strength (only for low power SDRAM)
This field is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parameter must be
set according to the SDRAM device specification.

After initialization, as soon as this field is modified and self refresh mode is activated, the Extended Mode Register of the

SDRAM device is accessed automatically and its DS parameter value is updated before entry in self refresh mode.
• TCSR: Temperature Compensated Self Refresh (only for low power SDRAM)

This field is transmitted to the SDRAM during initialization to set the refresh interval during self refresh mode depending on the
temperature of the low power SDRAM. This parameter must be set according to the SDRAM device specification.

After initialization, as soon as this field is modified and self refresh mode is activated, the Extended Mode Register of the

SDRAM device is accessed automatically and its TCSR parameter value is updated before entry in self refresh mode.
• PASR: Partial Array Self Refresh (only for low power SDRAM)

This field is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks of the

SDRAM array are enabled. Disabled banks are not refreshed in self refresh mode. This parameter must be set according to the
SDRAM device specification.

After initialization, as soon as this field is modified and self refresh mode is activated, the Extended Mode Register of the

SDRAM device is accessed automatically and its PASR parameter value is updated before entry in self refresh mode.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - TIMEOUT DS TCSR

7 6 5 4 3 2 1 0

- PASR - - LPCB

TIMEOUT Time to Define when Low Power Mode Is Enabled

0 The SDRAMC activates the SDRAM low power mode immediately after the end of the last transfer.

1 The SDRAMC activates the SDRAM low power mode 64 clock cycles after the end of the last transfer.

2 The SDRAMC activates the SDRAM low power mode 128 clock cycles after the end of the last transfer.

3 Reserved.

552
32015G–AVR32–09/09

AT32AP7001

• LPCB: Low Power Configuration Bits

LPCB Low Power Configuration

0
Low power feature is inhibited: no power-down, self refresh or deep power-down command is issued to
the SDRAM device.

1
The SDRAMC issues a self refresh command to the SDRAM device, the SDCLK clock is deactivated and
the SDCKE signal is set low. The SDRAM device leaves the self refresh mode when accessed and
enters it after the access.

2
The SDRAMC issues a power-down command to the SDRAM device after each access, the SDCKE
signal is set to low. The SDRAM device leaves the power-down mode when accessed and enters it after
the access.

3
The SDRAMC issues a deep power-down command to the SDRAM device. This mode is unique to low-
power SDRAM.

553
32015G–AVR32–09/09

AT32AP7001

29.8.6 Interrupt Enable Register

Register Name: IER

Access Type: Write-only

Offset: 0x14

Reset Value: 0x00000000

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will set the corresponding bit in IMR.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - RES

554
32015G–AVR32–09/09

AT32AP7001

29.8.7 Interrupt Disable Register

Register Name: IDR

Access Type: Write-only

Offset: 0x18

Reset Value: 0x00000000

Writing a zero to a bit in this register has no effect.

Writing a one to a bit in this register will clear the corresponding bit in IMR.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - RES

555
32015G–AVR32–09/09

AT32AP7001

29.8.8 Interrupt Mask Register

Register Name: IMR

Access Type: Read-only

Offset: 0x1C

Reset Value: 0x00000000

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.
A bit in this register is set when the corresponding bit in IER is written to one.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - RES

556
32015G–AVR32–09/09

AT32AP7001

29.8.9 Interrupt Status Register

Register Name: ISR

Access Type: Read-only

Offset: 0x20

Reset Value: 0x00000000

• RES: Refresh Error Status
This bit is set when a refresh error is detected.
This bit is cleared when the register is read.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - RES

557
32015G–AVR32–09/09

AT32AP7001

29.8.10 Memory Device Register

Register Name: MDR

Access Type: Read/Write

Offset: 0x24

Reset Value: 0x00000000

• MD: Memory Device Type

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - MD

MD Device Type

0 SDRAM

1 Low power SDRAM

Other Reserved

558
32015G–AVR32–09/09

AT32AP7001

30. Error Corrected Code (ECC) Controller

Rev: 1.0.0.0

30.1 Features

• Hardware Error Corrected Code (ECC) Generation
– Detection and Correction by Software

• Supports NAND Flash and SmartMedia™ Devices with 8- or 16-bit Data Path.
• Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes, Specified

by Software

30.2 Description

NAND Flash/SmartMedia devices contain by default invalid blocks which have one or more
invalid bits. Over the NAND Flash/SmartMedia lifetime, additional invalid blocks may occur
which can be detected/corrected by ECC code.

The ECC Controller is a mechanism that encodes data in a manner that makes possible the
identification and correction of certain errors in data. The ECC controller is capable of single bit
error correction and 2-bit random detection. When NAND Flash/SmartMedia have more than 2
bits of errors, the data cannot be corrected.

The ECC user interface is accesible through the peripheral bus.

30.3 Block Diagram

Figure 30-1. Block Diagram

User Interface

Ctrl/ECC Algorithm

Static
Memory

Controller

Peripheral Bus

NAND Flash

SmartMedia
Logic

ECC
Controller

559
32015G–AVR32–09/09

AT32AP7001

30.4 Functional Description

A page in NAND Flash and SmartMedia memories contains an area for main data and an addi-
tional area used for redundancy (ECC). The page is organized in 8-bit or 16-bit words. The page
size corresponds to the number of words in the main data plus the number of words in the extra
area used for redundancy.

The only configuration required for ECC is the NAND Flash or the SmartMedia page size
(528/1056/2112/4224). Page size is configured setting the PAGESIZE field in the ECC Mode
Register (MR).

ECC is automatically computed as soon as a read (00h)/write (80h) command to the NAND
Flash or the SmartMedia is detected. Read and write access must start at a page boundary.

ECC is computed as soon as the counter reaches the page size. Values in the ECC Parity Reg-
ister (PR) and ECC NParity Register (NPR) are then valid and locked until a new start condition
(read/write command followed by five access address cycles).

30.4.1 Write Access

Once the flash memory page is written, the computed ECC code is available in the ECC Parity
Error (PR) and ECC_NParity Error (NPR) registers. The ECC code value must be written by the
software application at the end of the page, in the extra area used for redundancy.

30.4.2 Read Access

After reading main data in the page area, the application can perform read access to the extra
area used for redundancy. Error detection is automatically performed by the ECC controller. The
application can check the ECC Status Register (SR) for any detected errors.

It is up to the application to correct any detected error. ECC computation can detect four differ-
ent circumstances:

•No error: XOR between the ECC computation and the ECC code stored at the end of the
NAND Flash or SmartMedia page is equal to 0. No error flags in the ECC Status Register
(SR).

•Recoverable error: Only the RECERR flag in the ECC Status register (SR) is set. The
corrupted word offset in the read page is defined by the WORDADDR field in the ECC Parity
Register (PR). The corrupted bit position in the concerned word is defined in the BITADDR
field in the ECC Parity Register (PR).

•ECC error: The ECCERR flag in the ECC Status Register is set. An error has been detected
in the ECC code stored in the Flash memory. The position of the corrupted bit can be found
by the application performing an XOR between the Parity and the NParity contained in the
ECC code stored in the flash memory.

•Non correctable error: The MULERR flag in the ECC Status Register is set. Several
unrecoverable errors have been detected in the flash memory page.

ECC Status Register, ECC Parity Register and ECC NParity Register are cleared when a
read/write command is detected or a software register is enabled.

For single bit Error Correction and double bit Error Detection (SEC-DED) hsiao code is used. 32-
bit ECC is generated in order to perform one bit correction per 512/1024/2048/4096 8- or 16-bit

560
32015G–AVR32–09/09

AT32AP7001

words. Of the 32 ECC bits, 26 bits are for line parity and 6 bits are for column parity. They are
generated according to the schemes shown in Figure 30-2 and Figure 30-3.

Figure 30-2. Parity Generation for 512/1024/2048/4096 8-bit Words1

To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.

Page size = 2n

 for i =0 to n

 begin

 for (j = 0 to page_size_byte)

 begin

 if(j[i] ==1)

 P[2i+3]=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)

 bit2(+)bit1(+)bit0(+)P[2i+3]

 else

 P[2i+3]’=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)

 bit2(+)bit1(+)bit0(+)P[2i+3]'

 end

 end

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P8

P8'

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P8

P8'

P16

P16'

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P8

P8'

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P8

P8'

P16

P16'

P32

P32

1st byte

P32
2nd byte

3rd byte

4 th byte

 Page size th byte

(page size -1)th byte

PX

PX'

Page size = 512 Px = 2048
Page size = 1024 Px = 4096
Page size = 2048 Px = 8192
Page size = 4096 Px = 16384

 (page size -2)th byte

 (page size -3)th byte

P1 P1' P1'P1 P1 P1' P1'P1

P2 P2' P2 P2'

P4 P4'

P1=bit7(+)bit5(+)bit3(+)bit1(+)P1
P2=bit7(+)bit6(+)bit3(+)bit2(+)P2
P4=bit7(+)bit6(+)bit5(+)bit4(+)P4
P1'=bit6(+)bit4(+)bit2(+)bit0(+)P1'
P2'=bit5(+)bit4(+)bit1(+)bit0(+)P2'
P4'=bit7(+)bit6(+)bit5(+)bit4(+)P4'

561
32015G–AVR32–09/09

AT32AP7001

Figure 30-3. Parity Generation for 512/1024/2048/4096 16-bit Words

1s
t w

or
d

2n
d

w
or

d

3r
d

w
or

d

4t
h

w
or

d

(P
ag

e
si

ze
 -3

)t
h

w
or

d

(P
ag

e
si

ze
 -2

)t
h

w
or

d

(P
ag

e
si

ze
 -1

)t
h

w
or

d

Pa
ge

 s
iz

e
th

 w
or

d
(+

)
(+

)

562
32015G–AVR32–09/09

AT32AP7001

To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.

Page size = 2n

 for i =0 to n

 begin

 for (j = 0 to page_size_word)

 begin

 if(j[i] ==1)

 P[2i+3]= bit15(+)bit14(+)bit13(+)bit12(+)

 bit11(+)bit10(+)bit9(+)bit8(+)

 bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)

 bit2(+)bit1(+)bit0(+)P[2n+3]

 else

 P[2i+3]’=bit15(+)bit14(+)bit13(+)bit12(+)

 bit11(+)bit10(+)bit9(+)bit8(+)

 bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)

 bit2(+)bit1(+)bit0(+)P[2i+3]'

 end

 end

563
32015G–AVR32–09/09

AT32AP7001

30.5 ECC User Interface

Table 30-1. ECC Register Mapping

Offset Register Register Name Access Reset

0x00 ECC Control Register CR Write-only 0x0

0x04 ECC Mode Register MR Read/Write 0x0

0x8 ECC Status Register SR Read-only 0x0

0x0C ECC Parity Register PR Read-only 0x0

0x10 ECC NParity Register NPR Read-only 0x0

0x14-0xF8 Reserved – – –

0x14 - 0xFC Reserved – – –

564
32015G–AVR32–09/09

AT32AP7001

30.5.1 ECC Control Register

Name: CR

Access Type: Write-only

• RST: RESET Parity

Provides reset to current ECC by software.

0: No effect

1: Reset sECC Parity and ECC NParity register

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – RST

565
32015G–AVR32–09/09

AT32AP7001

30.5.2 ECC Mode Register

Register Name: MR

Access Type: Read/Write

• PAGESIZE: Page Size

This field defines the page size of the NAND Flash device.

A word has a value of 8 bits or 16 bits, depending on the NAND Flash or Smartmedia memory organization.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –
7 6 5 4 3 2 1 0

– – – – – – PAGESIZE

Page Size Description

00 528 words

01 1056 words

10 2112 words

11 4224 words

566
32015G–AVR32–09/09

AT32AP7001

30.5.3 ECC Status Register

Register Name: SR

Access Type: Read-only

• RECERR: Recoverable Error

0: No Errors Detected

1: Errors Detected. If MULERR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were
detected

• ECCERR: ECC Error

0: No Errors Detected

1: A single bit error occurred in the ECC bytes.

Read both ECC Parity and ECC Parityn register, the error occurred at the location which contains a 1 in the least significant
16 bits.

• MULERR: Multiple Error

0: No Multiple Errors Detected

1: Multiple Errors Detected

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –
15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – MULERR ECCERR RECERR

567
32015G–AVR32–09/09

AT32AP7001

30.5.4 ECC Parity Register

Register Name: PR

Access Type: Read-only

During a page write, the value of the entire register must be written in the extra area used for redundancy (for a 512-byte
page size: address 512-513)

• BITADDR

During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If
multiple errors were detected, this value is meaningless.

• WORDADDR

During a page read, this value contains the word address (8-bit or 16-bit word depending on the memory plane organiza-
tion) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

WORDADDR
7 6 5 4 3 2 1 0

WORDADDR BITADDR

568
32015G–AVR32–09/09

AT32AP7001

30.5.5 ECC NParity Register

Register Name: NPR

Access Type: Read-only

• NPARITY:

During a write, the value of this register must be written in the extra area used for redundancy (for a 512-byte page size:
address 514-515)

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

NPARITY
7 6 5 4 3 2 1 0

NPARITY

569
32015G–AVR32–09/09

AT32AP7001

31. MultiMedia Card Interface (MCI)

Rev: 2.0.0.3

31.1 Features

• Compatible with MultiMedia Card Specification Version 2.2
• Compatible with SD Memory Card Specification Version 1.0
• Compatible with MultiMedia Card Specification Version 3.31
• Compatible with SDIO Specification Version 1.1
• Cards Clock Rate Up to Master Clock Divided by 2
• Embedded Power Management to Slow Down Clock Rate When Not Used
• Supports 2 Slots

– Each Slot for either a MultiMediaCard Bus (Up to 30 Cards) or an SD Memory Card
• Support for Stream, Block and Multi-block Data Read and Write
• Supports Connection to DMA Controller

– Minimizes Processor Intervention for Large Buffer Transfers

31.2 Overview

The MCI includes a command register, response registers, data registers, timeout counters and
error detection logic that automatically handle the transmission of commands and, when
required, the reception of the associated responses and data with a limited processor overhead.

The MCI supports stream, block and multi-block data read and write, and is compatible with a
DMA Controller, minimizing processor intervention for large buffer transfers.

The MCI operates at a rate of up to Master Clock divided by 2 and supports the interfacing of 2
Slots . Each slot may be used to interface with a MultiMedia Card bus (up to 30 Cards) or with a
SD Memory Card. Only one slot can be selected at a time (slots are multiplexed). A bit field in
the SD Card Register performs this selection.

The SD Memory Card communication is based on a 9-pin interface (clock, command, four data
and three power lines) and the MultiMediaCard on a 7-pin interface (clock, command, one data,
three power lines and one reserved for future use).

The SD Memory Card interface also supports MultiMedia Card operations. The main differences
between SD and MultiMedia Cards are the initialization process and the bus topology.

570
32015G–AVR32–09/09

AT32AP7001

31.3 Block Diagram

Figure 31-1. Block Diagram

CLK

GPIOMCI Interface

Interrupt Control

MCI Interrupt

CLK_MCIPM

Peripheral
Bus

PDCA

Peripheral Bus Bridge

DATA0

DATA1

DATA2

DATA3

DATA4

DATA5

DATA6

DATA7

CMD0

CMD1

571
32015G–AVR32–09/09

AT32AP7001

31.4 Application Block Diagram

Figure 31-2. Application Block Diagram

31.5 I/O Lines Description

Note: 1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

1 2 3 4 5 6

MMC

7
1

9
2 3 4 5 76 8

SDCard

Physical Layer
MCI Interface

Application Layer
Ex: File System, Audio, Security, etc

Table 31-1. I/O Lines Description

Pin Name Pin Description Type(1) Comments

CMD[1:0] Command/response I/O/PP/OD CMD of an MMC or SD Card

CLK Clock I/O CLK of an MMC or SD Card

DATA[3..0] Data 0..3 of Slot A I/O/PP
DAT0 of an MMC

DAT[0..3] of an SD Card

DATA[7...4] Data 0..3 of Slot B I/O/PP
DAT0 of an MMC

DAT[0..3] of an SD Card

572
32015G–AVR32–09/09

AT32AP7001

31.6 Product Dependencies

31.6.1 GPIO

The pins used for interfacing the MultiMedia Cards or SD Cards may be multiplexed with GPIO
lines. The programmer must first program the GPIO controller to assign the peripheral functions
to MCI pins.

31.6.2 Power Manager

The MCI may receive a clock from the Power Manager (PM), so the programmer must first con-
figure the PM to enable the MCI clock(CLK_MCI).

31.6.3 Interrupt Controller

The MCI interface has an interrupt line connected to the Interrupt Controller (INTC).

Handling the MCI interrupt requires programming the INTC before configuring the MCI.

31.7 Functional Description

31.7.1 Bus Topology

Figure 31-3. MultiMedia Memory Card Bus Topology

The MultiMedia Card communication is based on a 7-pin serial bus interface. It has three com-
munication lines and four supply lines.

Note: 1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

Table 31-2. Bus Topology

Pin
Number Name Type(1) Description

MCI Pin Name
(Slot x)

1 RSV NC Not connected

2 CMD I/O/PP/OD Command/response CMDx

3 VSS1 S Supply voltage ground VSS

4 VDD S Supply voltage VDD

5 CLK I/O Clock CLK

6 VSS2 S Supply voltage ground VSS

7 DAT[0] I/O/PP Data 0 DATAx0

1 2 3 4 5 6 7

MMC

573
32015G–AVR32–09/09

AT32AP7001

Figure 31-4. MMC Bus Connections (One Slot)

Figure 31-5. SD Memory Card Bus Topology

The SD Memory Card bus includes the signals listed in Table 31-3 on page 573.

Note: 1. I: input, O: output, PP: Push Pull, OD: Open Drain

Table 31-3. SD Memory Card Bus Signals

Pin Number Name Type(1) Description
MCI Pin Name
(Slot x)

1 CD/DAT[3] I/O/PP Card detect/ Data line Bit 3 DATAx3

2 CMD PP Command/response CMDx

3 VSS1 S Supply voltage ground VSS

4 VDD S Supply voltage VDD

5 CLK I/O Clock CLK

6 VSS2 S Supply voltage ground VSS

7 DAT[0] I/O/PP Data line Bit 0 DATAx0

8 DAT[1] I/O/PP Data line Bit 1 or Interrupt DATAx1

9 DAT[2] I/O/PP Data line Bit 2 DATAx2

21 3 4 5 6 7

MMC1

21 3 4 5 6 7

MMC2

21 3 4 5 6 7

MMC3

CLK

DATA0

CMD

MCI

1 2 43 5 6 7 8
9

SDCARD

574
32015G–AVR32–09/09

AT32AP7001

Figure 31-6. SD Card Bus Connections with Two Slots

Figure 31-7. Mixing MultiMedia and SD Memory Cards with Two Slots

When the MCI is configured to operate with SD memory cards, the width of the data bus can be
selected in the SDCR register. Clearing the SDCBUS bit in this register means that the width is
one bit; setting it means that the width is four bits. In the case of multimedia cards, only the data
line 0 is used. The other data lines can be used as independent GPIOs.

5
2

3
6

1
4

7
8

9

SDCARD1

5
2

3
6

1
4

7
8

9

SDCARD2

DATA[7..4]

CMD0

CLK

DATA[3..0]

CMD1

1 2 3 4 5 6 7

MMC1

1 2 3 4 5 6 7

MMC2

1 2 3 4 5 6 7

MMC3

4
9

2
3

1
5

6
7

8

SDCARD

DATA0

CMD0

CLK

DATA[7..4]

CMD1

575
32015G–AVR32–09/09

AT32AP7001

31.7.2 MultiMedia Card Operations

After a power-on reset, the cards are initialized by a special message-based MultiMedia Card
bus protocol. Each message is represented by one of the following tokens:

• Command: A command is a token that starts an operation. A command is sent from the host
either to a single card (addressed command) or to all connected cards (broadcast command).
A command is transferred serially on the CMD line.

• Response: A response is a token which is sent from an addressed card or (synchronously)
from all connected cards to the host as an answer to a previously received command. A
response is transferred serially on the CMD line.

• Data: Data can be transferred from the card to the host or vice versa. Data is transferred via
the data line.

Card addressing is implemented using a session address assigned during the initialization
phase by the bus controller to all currently connected cards. Their unique CID number identifies
individual cards.

The structure of commands, responses and data blocks is described in the MultiMedia-Card
System Specification. See also Table 31-4 on page 576.

MultiMediaCard bus data transfers are composed of these tokens.

There are different types of operations. Addressed operations always contain a command and a
response token. In addition, some operations have a data token; the others transfer their infor-
mation directly within the command or response structure. In this case, no data token is present
in an operation. The bits on the DAT and the CMD lines are transferred synchronous to the MCI
Clock.

Two types of data transfer commands are defined:

• Sequential commands: These commands initiate a continuous data stream. They are
terminated only when a stop command follows on the CMD line. This mode reduces the
command overhead to an absolute minimum.

• Block-oriented commands: These commands send a data block succeeded by CRC bits.

Both read and write operations allow either single or multiple block transmission. A multiple
block transmission is terminated when a stop command follows on the CMD line similarly to the
sequential read or when a multiple block transmission has a predefined block count (See ”Data
Transfer Operation” on page 577.).

The MCI provides a set of registers to perform the entire range of MultiMedia Card operations.

31.7.2.1 Command - Response Operation

After reset, the MCI is disabled and becomes valid after setting the MCIEN bit in the Control
Register(CR).

The two bits RDPROOF and WRPROOF in the Mode Register (MR) allow stopping the MCI
Clock during read or write access if the internal FIFO is full. This will guarantee data integrity, not
bandwidth.

The command and the response of the card are clocked out with the rising edge of the MCI
Clock.

All the timings for MultiMedia Card are defined in the MultiMediaCard System Specification.

576
32015G–AVR32–09/09

AT32AP7001

The two bus modes (open drain and push/pull) needed to process all the operations are defined
in the MCI command register. The CMDR allows a command to be carried out.

For example, to perform an ALL_SEND_CID command:

The command ALL_SEND_CID and the fields and values for the CMDR Control Register are
described in Table 31-4 and Table 31-5.

Note: bcr means broadcast command with response.

The ARGR contains the argument field of the command.

To send a command, the user must perform the following steps:

• Fill the argument register (ARGR) with the command argument.

• Set the command register (CMDR) (see Table 31-5).

The command is sent immediately after writing the command register. The status bit CMDRDY
in the Status Register (SR) is asserted when the command is completed. If the command
requires a response, it can be read in the Response Register (RSPR). The response size can be
from 48 bits up to 136 bits depending on the command. The MCI embeds an error detection to
prevent any corrupted data during the transfer.

The following flowchart shows how to send a command to the card and read the response if
needed. In this example, the status register bits are polled but setting the appropriate bits in the
Interrupt Enable Register (IER) allows using an interrupt method.

Host Command NID Cycles CID

CMD S T Content CRC E Z ****** Z S T Content Z Z Z

Table 31-4. ALL_SEND_CID Command Description

CMD Index Type Argument Resp Abbreviation
Command
Description

CMD2 bcr [31:0] stuff bits R2 ALL_SEND_CID
Asks all cards to send
their CID numbers on
the CMD line

Table 31-5. Fields and Values for CMDR Command Register

Field Value

CMDNB (command number) 2 (CMD2)

RSPTYP (response type) 2 (R2: 136 bits response)

SPCMD (special command) 0 (not a special command)

OPCMD (open drain command) 1

MAXLAT (max latency for command to response) 0 (NID cycles ==> 5 cycles)

TRCMD (transfer command) 0 (No transfer)

TRDIR (transfer direction) X (available only in transfer command)

TRTYP (transfer type) X (available only in transfer command)

577
32015G–AVR32–09/09

AT32AP7001

Figure 31-8. Command/Response Functional Flow Diagram

Note: 1. If the command is SEND_OP_COND, the CRC error flag is always present (refer to R3
response in the MultiMedia Card specification).

31.7.2.2 Data Transfer Operation

The MultiMedia Card allows several read/write operations (single block, multiple blocks, stream,
etc). These kind of transfers can be selected setting the Transfer Type (TRTYP) field in the I
Command Register (CMDR).

These operations can be done using the a DMA Controller.

In all cases, the block length (BLKLEN field) must be defined either in the MR register, or in the
Block Register(BLKR). This field determines the size of the data block.

Enabling PDC Force Byte Transfer (PDCFBYTE in the MR) allows the PDC to manage with
internal byte transfers, so that transfers of blocks with a size different from modulo 4 can be sup-

Set the command argument
ARGR = Argument(1)

Set the command
CMD = Command

Read SR

0

Yes

1

CMDRDY
Wait for command
Ready status flag

Check error bits in the
Status register(1) Status error flags?

RETURN OK

RETURN ERROR(1)

Read response if required

578
32015G–AVR32–09/09

AT32AP7001

ported. When PDC Force Byte Transfer is disabled, the PDC type of transfers are in words,
otherwise the type of transfers are in bytes.

Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions
are defined (the host can use either one at any time):

•Open-ended/Infinite Multiple block read (or write):

The number of blocks for the read (or write) multiple block operation is not defined. The card
will continuously transfer (or program) data blocks until a stop transmission command is
received.

•Multiple block read (or write) with pre-defined block count (since version 3.1 and higher):

The card will transfer (or program) the requested number of data blocks and terminate the
transaction. The stop command is not required at the end of this type of multiple block read
(or write), unless terminated with an error. In order to start a multiple block read (or write) with
pre-defined block count, the host must correctly program the Block Register (BLKR). Other-
wise the card will start an open-ended multiple block read. The BCNT field of the Block
Register defines the number of blocks to transfer (from 1 to 65535 blocks). Programming the
value 0 in the BCNT field corresponds to an infinite block transfer.

31.7.2.3 Read Operation

The following flowchart shows how to read a single block with or without use of DMA facilities. In
this example, a polling method is used to wait for the end of read. Similarly, the user can config-
ure the IER regsiter to trigger an interrupt at the end of read.

579
32015G–AVR32–09/09

AT32AP7001

Figure 31-9. Read Functional Flow Diagram

Note: 1. This command is supposed to have been correctly sent (see Figure 31-8).

31.7.2.4 Write Operation

In write operation, the MR register is used to define the padding value when writing non-multiple
block size. If the bit DMAPADV is 0, then 0x00 value is used when padding data, otherwise 0xFF
is used.

Send command SEL_DESEL_CARD
to select the card

Send command SET_BLOCKLEN

Read with DMA
No Yes

Reset the PDCMODE bit
MR &= ~PDCMODE

Set the block length (in bytes)
MR |= (BlockLength << 16)

Send command
READ_SINGLE_BLOCK(1)

Number of words to read = BlockLength/4

Set the block length (in bytes)
MR |= (BlockLength << 16)

Configure the DMA controller

Send command
READ_SINGLE_BLOCK(1)

Data received?

Wait for data from MMC

Number of words to read = 0 ?

No

Yes

No

Yes

No

No

Yes

Yes

Read status register SR

RETURN

RETURN
RETURN

Read data = RDR

Number of words to read =
Number of words to read - 1

DMA transfer
Complete ?

Poll the bit
RXRDY = 0 ?

580
32015G–AVR32–09/09

AT32AP7001

The following flowchart shows how to write a single block with or without use of DMA facilities.
Polling or interrupt method can be used to wait for the end of write according to the contents of
the Interrupt Mask Register (IMR).

581
32015G–AVR32–09/09

AT32AP7001

Figure 31-10. Write Functional Flow Diagram

Note: 1. It is assumed that this command has been correctly sent (see Figure 31-8).

Send command SEL_DESEL_CARD
to select the card

Send command SET_BLOCKLEN

No
Write with DMA

Yes

Reset the PDCMODE bit
MR &= ~PDCMODE

Set the block length (in bytes)
MR |= (BlockLength << 16)

Send command
WRITE_SINGLE_BLOCK(1)

Number of words to write = BlockLength/4

Number of words to write = 0 ?
Yes

No

Read status register SR

YesPoll the bit
TXRDY = 0 ?

No

TDR = Data to write

Number of words to write =
Number of words to write - 1

RETURN

RETURN

DMA transfer
Complete ?

Yes

Yes

Data transmitted?

No

No

Wait for data transfert to MMC complete

Send command
WRITE_SINGLE_BLOCK(1)

Configure the DMA controller

Set the block length (in bytes)
MR |= (BlockLength << 16)

582
32015G–AVR32–09/09

AT32AP7001

31.7.3 SD Card Operations

The MultiMedia Card Interface allows processing of SD Memory (Secure Digital Memory Card)
and SDIO (SD Input Output) Card commands.

SD/SDIO cards are based on the MultiMedia Card (MMC) format, but are physically slightly
thicker and feature higher data transfer rates, a lock switch on the side to prevent accidental
overwriting and security features. The physical form factor, pin assignment and data transfer
protocol are forward-compatible with the MMC with some additions. SD slots can actually be
used for more than flash memory cards. Devices that support SDIO can use small devices
designed for the SD form factor, such as GPS receivers, Wi-Fi or Bluetooth adapters, modems,
barcode readers, IrDA adapters, FM radio tuners, RFID readers, digital cameras and more.

SD/SDIO is covered by numerous patents and trademarks, and licensing is only available
through the Secure Digital Card Association.

The SD/SDIO Card communication is based on a 9-pin interface (Clock, Command, 4 x Data
and 3 x Power lines). The communication protocol is defined as a part of this specification. The
main difference between the SD/SDIO Card and the MMC is the initialization process.

The SD/SDIO Card Register (SDCR) allows selection of the Card Slot and the data bus width.

The SD/SDIO Card bus allows dynamic configuration of the number of data lines. After power
up, by default, the SD/SDIO Card uses only DAT0 for data transfer. After initialization, the host
can change the bus width (number of active data lines).

31.7.3.1 SDIO Data Transfer Type

SDIO cards may transfer data in either a multi-byte (1 to 512 bytes) or an optional block format
(1 to 511 blocks), while the SD memory cards are fixed in the block transfer mode. The TRTYP
field in the Command Register (CMDR) allows to choose between SDIO Byte or SDIO Block
transfer.

The number of bytes/blocks to transfer is set through the BCNT field in the Block Register
(BLKR). In SDIO Block mode, the field BLKLEN must be set to the data block size while this field
is not used in SDIO Byte mode.

An SDIO Card can have multiple I/O or combined I/O and memory (called Combo Card). Within
a multi-function SDIO or a Combo card, there are multiple devices (I/O and memory) that share
access to the SD bus. In order to allow the sharing of access to the host among multiple devices,
SDIO and combo cards can implement the optional concept of suspend/resume (Refer to the
SDIO Specification for more details). To send a suspend or a resume command, the host must
set the SDIO Special Command field (IOSPCMD) in the Command Register.

31.7.3.2 SDIO Interrupts

Each function within an SDIO or Combo card may implement interrupts (Refer to the SDIO Spec-
ification for more details). In order to allow the SDIO card to interrupt the host, an interrupt
function is added to a pin on the DAT[1] line to signal the card’s interrupt to the host. An SDIO
interrupt on each slot can be enabled through the MCI Interrupt Enable Register. The SDIO inter-
rupt is sampled regardless of the currently selected slot.

583
32015G–AVR32–09/09

AT32AP7001

31.8 User Interface

Note: 1. The response register can be read by N accesses at the same RSPR or at consecutive addresses (0x20 to 0x2C).
N depends on the size of the response.

Table 31-6. Register Mapping

Offset Register Register Name Read/Write Reset

0x00 Control Register CR Write –

0x04 Mode Register MR Read/write 0x0

0x08 Data Timeout Register DTOR Read/write 0x0

0x0C SD/SDIO Card Register SDCR Read/write 0x0

0x10 Argument Register ARGR Read/write 0x0

0x14 Command Register CMDR Write –

0x18 Block Register BLKR Read/write –

 0x1C Reserved – – –

0x20 Response Register(1) RSPR Read 0x0

0x24 Response Register(1) RSPR Read 0x0

0x28 Response Register(1) RSPR Read 0x0

0x2C Response Register(1) RSPR Read 0x0

0x30 Receive Data Register RDR Read 0x0

0x34 Transmit Data Register TDR Write –

0x38 - 0x3C Reserved – – –

0x40 Status Register SR Read 0x25

0x44 Interrupt Enable Register IER Write –

0x48 Interrupt Disable Register IDR Write –

0x4C Interrupt Mask Register IMR Read 0x0

0x50-0xF8 Reserved – – –

0xFC Version Register VERSION Read-only –

0x50-0xFC Reserved – – –

584
32015G–AVR32–09/09

AT32AP7001

31.8.1 Control Register

Name: CR

Access Type: Write-only

Offset: 0x00

Reset Value: –

• SWRST: Software Reset

0 = No effect.

1 = Resets the MCI. A software triggered hardware reset of the MCI interface is performed.

• MCIDIS: Multi-Media Interface Disable

0 = No effect.

1 = Disables the Multi-Media Interface.

• MCIEN: Multi-Media Interface Enable

0 = No effect.

1 = Enables the Multi-Media Interface if MCDIS is 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – – MCIDIS MCIEN

585
32015G–AVR32–09/09

AT32AP7001

31.8.2 Mode Register

Name: MR

Access Type: Read/write

Offset: 0x04

Reset Value: 0x00000000

• BLKLEN: Data Block Length

This field determines the size of the data block.

This field is also accessible in the MCI Block Register (BLKR).

Bits 16 and 17 must be written to 0 if PDCFBYTE is disabled.

Note: In SDIO Byte mode, BLKLEN field is not used.

• DMAPADV: DMA Padding Value

0 = 0x00 value is used when padding data in write transfer.

1 = 0xFF value is used when padding data in write transfer.

• PDCFBYTE: PDC Force Byte Transfer
Enabling PDC Force Byte Transfer allows the PDC to manage with internal byte transfers, so that transfer of blocks with a
size different from modulo 4 can be supported. This applies to both PDC and non-PDC transfers.

Warning: BLKLEN value depends on PDCFBYTE.

0 = Disables PDC Force Byte Transfer. PDC type of transfer are in words.

1 = Enables PDC Force Byte Transfer. PDC type of transfer are in bytes.

• WRPROOF Write Proof Enable
Enabling Write Proof allows to stop the MCI Clock during write access if the internal FIFO is full. This will guarantee data
integrity, not bandwidth.

0 = Disables Write Proof.

1 = Enables Write Proof.

• RDPROOF Read Proof Enable
Enabling Read Proof allows to stop the MCI Clock during read access if the internal FIFO is full. This will guarantee data
integrity, not bandwidth.

0 = Disables Read Proof.

1 = Enables Read Proof.

31 30 29 28 27 26 25 24

BLKLEN

23 22 21 20 19 18 17 16

BLKLEN

15 14 13 12 11 10 9 8

- DMAPADV PDCFBYTE WRPROOF RDPROOF

7 6 5 4 3 2 1 0

CLKDIV

586
32015G–AVR32–09/09

AT32AP7001

• CLKDIV: Clock Divider

Multimedia Card Interface clock (MCCK) is Master Clock (CLK_MCI) divided by (2*(CLKDIV+1)).

587
32015G–AVR32–09/09

AT32AP7001

31.8.3 Data Timeout Register

Name: DTOR

Access Type: Read/write

Offset: 0x08

Reset Value: 0x00000000

• DTOMUL: Data Timeout Multiplier

These fields determine the maximum number of Master Clock cycles that the MCI waits between two data block transfers.
It equals (DTOCYC x Multiplier).

Multiplier is defined by DTOMUL as shown in the following table:

If the data time-out set by DTOCYC and DTOMUL has been exceeded, the Data Time-out Error flag (DTOE) in the MCI
Status Register (SR) raises.

• DTOCYC: Data Timeout Cycle Number

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– DTOMUL DTOCYC

DTOMUL Multiplier

0 0 0 1

0 0 1 16

0 1 0 128

0 1 1 256

1 0 0 1024

1 0 1 4096

1 1 0 65536

1 1 1 1048576

588
32015G–AVR32–09/09

AT32AP7001

31.8.4 SD Card/SDIO Register

Name: SDCR

Access Type: Read/write

Offset: 0x0C

Reset Value: 0x00000000

• SDCBUS: SD Card/SDIO Bus Width

0 = 1-bit data bus

1 = 4-bit data bus

• SDCSEL: SD Card Selector

0 = SDCARD Slot A selected.

1= SDCARD Slot B selected.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SDCBUS – – – – – SDCSEL

589
32015G–AVR32–09/09

AT32AP7001

31.8.5 Argument Register

Name: ARGR

Access Type: Read/write

Offset: 0x10

Reset Value: 0x00000000

• ARG: Command Argument

31 30 29 28 27 26 25 24

ARG

23 22 21 20 19 18 17 16

ARG

15 14 13 12 11 10 9 8

ARG

7 6 5 4 3 2 1 0

ARG

590
32015G–AVR32–09/09

AT32AP7001

31.8.6 Command Register

Name: CMDR

Access Type: Write-only

Offset: 0x14

Reset Value: –

This register is write-protected while CMDRDY is 0 in SR. If an Interrupt command is sent, this register is only writeable by
an interrupt response (field SPCMD). This means that the current command execution cannot be interrupted or modified.

• IOSPCMD: SDIO Special Command

• TRTYP: Transfer Type

• TRDIR: Transfer Direction

0 = Write

1 = Read

31 30 29 28 27 26 25 24

– – – – – – IOSPCMD

23 22 21 20 19 18 17 16

– – TRTYP TRDIR TRCMD

15 14 13 12 11 10 9 8

– – – MAXLAT OPDCMD SPCMD

7 6 5 4 3 2 1 0

RSPTYP CMDNB

IOSPCMD SDIO Special Command Type

0 0 Not a SDIO Special Command

0 1 SDIO Suspend Command

1 0 SDIO Resume Command

1 1 Reserved

TRTYP Transfer Type

0 0 0 MMC/SDCard Single Block

0 0 1 MMC/SDCard Multiple Block

0 1 0 MMC Stream

0 1 1 Reserved

1 0 0 SDIO Byte

1 0 1 SDIO Block

1 1 0 Reserved

1 1 1 Reserved

591
32015G–AVR32–09/09

AT32AP7001

• TRCMD: Transfer Command

• MAXLAT: Max Latency for Command to Response

0 = 5-cycle max latency

1 = 64-cycle max latency

• OPDCMD: Open Drain Command

0 = Push pull command

1 = Open drain command

• SPCMD: Special Command

• RSPTYP: Response Type

• CMDNB: Command Number

TRCMD Transfer Type

0 0 No data transfer

0 1 Start data transfer

1 0 Stop data transfer

1 1 Reserved

SPCMD Command

0 0 0 Not a special CMD.

0 0 1
Initialization CMD:
74 clock cycles for initialization sequence.

0 1 0
Synchronized CMD:
Wait for the end of the current data block transfer before sending the
pending command.

0 1 1 Reserved.

1 0 0
Interrupt command:

Corresponds to the Interrupt Mode (CMD40).

1 0 1
Interrupt response:

Corresponds to the Interrupt Mode (CMD40).

RSP Response Type

0 0 No response.

0 1 48-bit response.

1 0 136-bit response.

1 1 Reserved.

592
32015G–AVR32–09/09

AT32AP7001

31.8.7 Block Register

Name: BLKR

Access Type: Read/write

Offset: 0x00

Reset Value: –

• BLKLEN: Data Block Length
This field determines the size of the data block.

This field is also accessible in the MCI Mode Register (MR).

Bits 16 and 17 must be set to 0 if PDCFBYTE is disabled.

Note: In SDIO Byte mode, BLKLEN field is not used.

• BCNT: MMC/SDIO Block Count - SDIO Byte Count
This field determines the number of data byte(s) or block(s) to transfer.

The transfer data type and the authorized values for BCNT field are determined by the TRTYP field in the MCI Command
Register (CMDR):

Warning: In SDIO Byte and Block modes, writing to the 7 last bits of BCNT field, is forbidden and may lead to unpredict-
able results.

31 30 29 28 27 26 25 24

BLKLEN

23 22 21 20 19 18 17 16

BLKLEN

15 14 13 12 11 10 9 8

BCNT

7 6 5 4 3 2 1 0

BCNT

TRTYP Type of Transfer BCNT Authorized Values

0 0 1 MMC/SDCard Multiple Block
From 1 to MCI_MAXNUM_BLK: Value 0 corresponds to an infinite block
transfer.

1 0 0 SDIO Byte
From 1 to 512 bytes: Value 0 corresponds to a 512-byte transfer.

Values from 0x200 to 0xFFFF are forbidden.

1 0 1 SDIO Block
From 1 to 511 blocks: Value 0 corresponds to an infinite block transfer.

Values from 0x200 to 0xFFFF are forbidden.

Other values - Reserved.

593
32015G–AVR32–09/09

AT32AP7001

31.8.8 Response Register

Name: RSPR

Access Type: Read-only

Offset: 0x20 - 0x2C

Reset Value: 0x00000000

• RSP: Response
Note: 1. The response register can be read by N accesses at the same RSPR or at consecutive addresses (0x20 to 0x2C).

N depends on the size of the response.

31 30 29 28 27 26 25 24

RSP

23 22 21 20 19 18 17 16

RSP

15 14 13 12 11 10 9 8

RSP

7 6 5 4 3 2 1 0

RSP

594
32015G–AVR32–09/09

AT32AP7001

31.8.9 Receive Data Register

Name: RDR

Access Type: Read-only

Offset: 0x30

Reset Value: 0x00000000

• DATA: Data to Read

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

595
32015G–AVR32–09/09

AT32AP7001

31.8.10 Transmit Data Register

Name: TDR

Access Type: Write-only

Offset: 0x34

Reset Value: –

• DATA: Data to Write

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

596
32015G–AVR32–09/09

AT32AP7001

31.8.11 Status Register

Name: SR

Access Type: Read-only

Offset: 0x40

Reset Value: 0x00000025

• UNRE: Underrun

0 = No error.

1 = At least one 8-bit data has been sent without valid information (not written). Cleared when sending a new data transfer
command.

• OVRE: Overrun

0 = No error.

1 = At least one 8-bit received data has been lost (not read). Cleared when sending a new data transfer command.

• DTOE: Data Time-out Error

0 = No error.

1 = The data time-out set by DTOCYC and DTOMUL in DTOR has been exceeded. Cleared when reading SR.

• DCRCE: Data CRC Error

0 = No error.

1 = A CRC16 error has been detected in the last data block. Cleared when reading SR.

• RTOE: Response Time-out Error

0 = No error.

1 = The response time-out set by MAXLAT in the CMDR has been exceeded. Cleared when writing in the CMDR.

• RENDE: Response End Bit Error

0 = No error.

1 = The end bit of the response has not been detected. Cleared when writing in the CMDR.

• RCRCE: Response CRC Error

0 = No error.

1 = A CRC7 error has been detected in the response. Cleared when writing in the CMDR.

• RDIRE: Response Direction Error

0 = No error.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

– – – – – – SDIOIRQB SDIOIRQA

7 6 5 4 3 2 1 0

– – NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

597
32015G–AVR32–09/09

AT32AP7001

1 = The direction bit from card to host in the response has not been detected.

• RINDE: Response Index Error

0 = No error.

1 = A mismatch is detected between the command index sent and the response index received. Cleared when writing in
the CMDR.

• SDIOIRQB: SDIO Interrupt for Slot B
0 = No interrupt detected on SDIO Slot B.

1 = A SDIO Interrupt on Slot B has reached. Cleared when reading the SR.

• SDIOIRQA: SDIO Interrupt for Slot A
0 = No interrupt detected on SDIO Slot A.

1 = A SDIO Interrupt on Slot A has reached. Cleared when reading the SR.

• NOTBUSY: Data Not Busy

This flag must be used only for Write Operations.

A block write operation uses a simple busy signalling of the write operation duration on the data (DAT0) line: during a data
transfer block, if the card does not have a free data receive buffer, the card indicates this condition by pulling down the data
line (DAT0) to LOW. The card stops pulling down the data line as soon as at least one receive buffer for the defined data
transfer block length becomes free.

The NOTBUSY flag allows to deal with these different states.

0 = The MCI is not ready for new data transfer. Cleared at the end of the card response.

1 = The MCI is ready for new data transfer. Set when the busy state on the data line has ended. This corresponds to a free
internal data receive buffer of the card.

Refer to the MMC or SD Specification for more details concerning the busy behavior.

• DTIP: Data Transfer in Progress

0 = No data transfer in progress.

1 = The current data transfer is still in progress, including CRC16 calculation. Cleared at the end of the CRC16 calculation.

• BLKE: Data Block Ended
This flag must be used only for Write Operations.

0 = A data block transfer is not yet finished. Cleared when reading the SR.

1 = A data block transfer has ended, including the CRC16 Status transmission.
The flag is set for each transmitted CRC Status.

Refer to the MMC or SD Specification for more details concerning the CRC Status.

• TXRDY: Transmit Ready

0= The last data written in TDR has not yet been transferred in the Shift Register.

1= The last data written in TDR has been transferred in the Shift Register.

• RXRDY: Receiver Ready

0 = No data has been received since the last read of RDR.

1 = Data has been received since the last read of RDR.

598
32015G–AVR32–09/09

AT32AP7001

• CMDRDY: Command Ready

0 = A command is in progress.

1 = The last command has been sent. Cleared when writing in the CMDR.

599
32015G–AVR32–09/09

AT32AP7001

31.8.12 Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x44

Reset Value: –

• UNRE: UnderRun Interrupt Enable
• OVRE: Overrun Interrupt Enable
• DTOE: Data Time-out Error Interrupt Enable
• DCRCE: Data CRC Error Interrupt Enable
• RTOE: Response Time-out Error Interrupt Enable
• RENDE: Response End Bit Error Interrupt Enable
• RCRCE: Response CRC Error Interrupt Enable
• RDIRE: Response Direction Error Interrupt Enable
• RINDE: Response Index Error Interrupt Enable
• SDIOIRQB: SDIO Interrupt for Slot B Interrupt Enable
• SDIOIRQA: SDIO Interrupt for Slot A Interrupt Enable
• NOTBUSY: Data Not Busy Interrupt Enable
• DTIP: Data Transfer in Progress Interrupt Enable
• BLKE: Data Block Ended Interrupt Enable
• TXRDY: Transmit Ready Interrupt Enable
• RXRDY: Receiver Ready Interrupt Enable
• CMDRDY: Command Ready Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

– – – – – – SDIOIRQB SDIOIRQA

7 6 5 4 3 2 1 0

– – NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

600
32015G–AVR32–09/09

AT32AP7001

31.8.13 Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x48

Reset Value: –

• UNRE: UnderRun Interrupt Disable
• OVRE: Overrun Interrupt Disable
• DTOE: Data Time-out Error Interrupt Disable
• DCRCE: Data CRC Error Interrupt Disable
• RTOE: Response Time-out Error Interrupt Disable
• RENDE: Response End Bit Error Interrupt Disable
• RCRCE: Response CRC Error Interrupt Disable
• RDIRE: Response Direction Error Interrupt Disable
• RINDE: Response Index Error Interrupt Disable
• SDIOIRQB: SDIO Interrupt for Slot B Interrupt Enable
• SDIOIRQA: SDIO Interrupt for Slot A Interrupt Enable
• NOTBUSY: Data Not Busy Interrupt Disable
• DTIP: Data Transfer in Progress Interrupt Disable
• BLKE: Data Block Ended Interrupt Disable
• TXRDY: Transmit Ready Interrupt Disable
• RXRDY: Receiver Ready Interrupt Disable
• CMDRDY: Command Ready Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

– – – – – – SDIOIRQB SDIOIRQA

7 6 5 4 3 2 1 0

– – NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

601
32015G–AVR32–09/09

AT32AP7001

31.8.14 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x4C

Reset Value: 0x00000000

• UNRE: UnderRun Interrupt Mask
• OVRE: Overrun Interrupt Mask
• DTOE: Data Time-out Error Interrupt Mask
• DCRCE: Data CRC Error Interrupt Mask
• RTOE: Response Time-out Error Interrupt Mask
• RENDE: Response End Bit Error Interrupt Mask
• RCRCE: Response CRC Error Interrupt Mask
• RDIRE: Response Direction Error Interrupt Mask
• RINDE: Response Index Error Interrupt Mask
• SDIOIRQB: SDIO Interrupt for Slot B Interrupt Enable
• SDIOIRQA: SDIO Interrupt for Slot A Interrupt Enable
• NOTBUSY: Data Not Busy Interrupt Mask
• DTIP: Data Transfer in Progress Interrupt Mask
• BLKE: Data Block Ended Interrupt Mask
• TXRDY: Transmit Ready Interrupt Mask
• RXRDY: Receiver Ready Interrupt Mask
• CMDRDY: Command Ready Interrupt Mask

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

UNRE OVRE – – – – – –

23 22 21 20 19 18 17 16

– DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

– – – – – – SDIOIRQB SDIOIRQA

7 6 5 4 3 2 1 0

– – NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

602
32015G–AVR32–09/09

AT32AP7001

32. Hi-Speed USB Interface (USBA)

Rev: 1.4.0.2

32.1 Features

• Supports Hi (480Mbps) and Full (12Mbps) speed communication
• Compatible with the USB 2.0 specification
• UTMI Compliant
• 7 Endpoints
• Embedded Dual-port RAM for Endpoints
• Suspend/Resume Logic (Command of UTMI)
• Up to Three Memory Banks for Endpoints (Not for Control Endpoint)
• 4 KBytes of DPRAM

32.2 Description

The USB High Speed Device (USBA) is compliant with the Universal Serial Bus (USB), rev 2.0
High Speed device specification.

Each endpoint can be configured in one of several USB transfer types. It can be associated with
one, two or three banks of a dual-port RAM used to store the current data payload. If two or
three banks are used, one DPR bank is read or written by the processor, while the other is read
or written by the USB device peripheral. This feature is mandatory for isochronous endpoints.

The default size of the DPRAM is 4 KB.

Suspend and resume are automatically detected by the USBA device, which notifies the proces-
sor by raising an interrupt.

Table 32-1. USBA Endpoint Description

Endpoint # Mnemonic Nb Bank DMA High Band Width Max. Endpoint Size Endpoint Type Offset

0 EP0 1 N N 64 Control 0x00000

1 EP1 2 Y Y 512 Ctrl/Bulk/Iso/Interrupt 0x10000

2 EP2 2 Y Y 512 Ctrl/Bulk/Iso/Interrupt 0x20000

3 EP3 3 Y N 64 Ctrl/Bulk/Interrupt 0x30000

4 EP4 3 Y N 64 Ctrl/Bulk/Interrupt 0x40000

5 EP5 3 Y Y 1024 Ctrl/Bulk/Iso/Interrupt 0x50000

6 EP6 3 Y Y 1024 Ctrl/Bulk/Iso/Interrupt 0x60000

603
32015G–AVR32–09/09

AT32AP7001

32.3 Block Diagram

Figure 32-1. Block diagram:

32.4 Product Dependencies

32.4.1 Power Management

The USBA clock is generated by the Power Manager. Before using the USBA, the programmer
must ensure that the USBA clock is enabled in the Power Manager.

To prevent bus errors the USBA operation must be terminated before entering sleep mode.

The USB HS PHY clock has to be enabled before using the USBA. The description of this clock
can be found in the Peripherals chapter under Clock Connections.

32.4.2 Interrupt

The USBA interface has an interrupt line connected to the Interrupt Controller. Handling the
USBA interrupt requires programming the interrupt controller before configuring the USBA.

32 bits

System Clock
Domain

USB Clock
Domain

ctrl
status

Rd/Wr/Ready

Peripheral Bus
Interface

USB2.0
CORE

EPT
Alloc

 HSB1
DMA
 HSB0

Local
HSB
Slave
interface

Master
 HSB
 Multiplexer
Slave

DPRAM

UTMI

16/8 bits

PB bus

HSB bus

HSB bus

604
32015G–AVR32–09/09

AT32AP7001

32.5 Typical Connection

Figure 32-2. Board Schematic

Table 32-2. Components Typical Values

Symbol Value Unit

R1 6.8 ± 1% kΩ

R2 39 ± 1% Ω

C1 10 pF

HSDP

HSDM

FSDM

FSDP

BIAS

R2

R2

R1

C1

D- D+

605
32015G–AVR32–09/09

AT32AP7001

32.6 USB V2.0 High Speed Device Introduction

The USB V2.0 High Speed Device provides communication services to/from host when
attached. Each device is offered with a collection of communication flows (pipes) associated with
each endpoint. Software on the host communicates with a USB Device through a set of commu-
nication flows.

32.6.1 USB V2.0 High Speed Transfer Types

A communication flow is carried over one of four transfer types defined by the USB device.

A device provides several logical communication pipes with the host. To each logical pipe is
associated an endpoint. Transfer through a pipe belongs to one of the four transfer types:

• Control Transfers: Used to configure a device at attach time and can be used for other device-
specific purposes, including control of other pipes on the device.

• Bulk Data Transfers: Generated or consumed in relatively large burst quantities and have wide
dynamic latitude in transmission constraints.

• Interrupt Data Transfers: Used for timely but reliable delivery of data, for example, characters or
coordinates with human-perceptible echo or feedback response characteristics.

• Isochronous Data Transfers: Occupy a prenegotiated amount of USB bandwidth with a
prenegotiated delivery latency. (Also called streaming real time transfers.)

As indicated below, transfers are sequential events carried out on the USB bus.

Endpoints must be configured according to the transfer type they handle.

Table 32-3. USB Communication Flow

Transfer Direction Bandwidth Endpoint Size Error Detection Retrying

Control Bidirectional Not guaranteed 8,16,32,64 Yes Automatic

Isochronous Unidirectional Guaranteed 8-1024 Yes No

Interrupt Unidirectional Not guaranteed 8-1024 Yes Yes

Bulk Unidirectional Not guaranteed 8-512 Yes Yes

606
32015G–AVR32–09/09

AT32AP7001

32.6.2 USB Transfer Event Definitions

A transfer is composed of one or several transactions;

Notes: 1. Control transfer must use endpoints with one bank and can be aborted using a stall handshake.
2. Isochronous transfers must use endpoints configured with two or three banks.

An endpoint handles all transactions related to the type of transfer for which it has been
configured.

32.6.3 USB V2.0 High Speed BUS Transactions

Each transfer results in one or more transactions over the USB bus.

There are five kinds of transactions flowing across the bus in packets:

1. Setup Transaction

2. Data IN Transaction

3. Data OUT Transaction

4. Status IN Transaction

5. Status OUT Transaction

Table 32-4. USB Transfer Events

CONTROL
(bidirectional)

Control Transfers (1)

• Setup transaction > Data IN transactions > Status OUT transaction

• Setup transaction > Data OUT transactions > Status IN transaction
• Setup transaction > Status IN transaction

IN
(device toward host)

Bulk IN Transfer • Data IN transaction > Data IN transaction

Interrupt IN Transfer • Data IN transaction > Data IN transaction

Isochronous IN Transfer (2) • Data IN transaction > Data IN transaction

OUT
(host toward device)

Bulk OUT Transfer • Data OUT transaction > Data OUT transaction

Interrupt OUT Transfer • Data OUT transaction > Data OUT transaction

Isochronous OUT Transfer (2) • Data OUT transaction > Data OUT transaction

607
32015G–AVR32–09/09

AT32AP7001

Figure 32-3. Control Read and Write Sequences

A status IN or OUT transaction is identical to a data IN or OUT transaction.

32.6.4 Endpoint Configuration

The endpoint 0 is always a control endpoint, it must be programmed and active in order to be
enabled when the End Of Reset interrupt occurs.

To configure the endpoints:

• Fill the configuration register (EPTCFG) with the endpoint size, direction (IN or OUT), type
(CTRL, Bulk, IT, ISO) and the number of banks.

• Fill the number of transactions (NB_TRANS) for isochronous endpoints.

Note: For control endpoints the direction has no effect.

• Verify that the EPT_MAPD flag is set. This flag is set if the endpoint size and the number of
banks are correct compared to the FIFO maximum capacity and the maximum number of
allowed banks.

• Configure control flags of the endpoint and enable it in EPTCTLENBx according to ”USBA
Endpoint Control Register” on page 658.

Control endpoints can generate interrupts and use only 1 bank.

All endpoints (except endpoint 0) can be configured either as Bulk, Interrupt or Isochronous. See
Table 32-1. USBA Endpoint Description.

The maximum packet size they can accept corresponds to the maximum endpoint size.

Note: The endpoint size of 1024 is reserved for isochronous endpoints.

The size of the DPRAM is 4 KB. The DPR is shared by all active endpoints. The memory size
required by the active endpoints must not exceed the size of the DPRAM.

Control Write Setup TX Data OUT TX Data OUT TX

Data Stage

Control Read

Setup Stage

Setup Stage

Setup TX

Setup TX
No Data
Control

Data IN TX Data IN TX

Status Stage

Status Stage

Status IN TX

Status OUT TX

Status IN TX

Data Stage

Setup Stage Status Stage

608
32015G–AVR32–09/09

AT32AP7001

SIZE_DPRAM = SIZE _EPT0

+ NB_BANK_EPT1 x SIZE_EPT1

+ NB_BANK_EPT2 x SIZE_EPT2

+ NB_BANK_EPT3 x SIZE_EPT3

+ NB_BANK_EPT4 x SIZE_EPT4

+ NB_BANK_EPT5 x SIZE_EPT5

+ NB_BANK_EPT6 x SIZE_EPT6

+... (refer to 32.7.17 USBA Endpoint Configuration Register)

If a user tries to configure endpoints with a size the sum of which is greater than the DPRAM,
then the EPT_MAPD is not set.

The application has access to the physical block of DPR reserved for the endpoint through a 64
KB logical address space.

The physical block of DPR allocated for the endpoint is remapped all along the 64 KB logical
address space. The application can write a 64 KB buffer linearly.

Figure 32-4. Logical Address Space for DPR Access:

Configuration examples of EPTCTLx (USBA Endpoint Control Register) for Bulk IN endpoint
type follow below.

64 KB
EP0

64 KB
EP1

64 KB
EP2

DPR

Logical address 8 to 64 B

8 to1024 B

8 to1024 B

8 to1024 B

64 KB
EP3

...

8 to 64 B
8 to 64 B
8 to 64 B

...

...

x banks

y banks

z banks8 to1024 B
8 to1024 B
8 to1024 B

609
32015G–AVR32–09/09

AT32AP7001

• With DMA

– AUTO_VALID: Automatically validate the packet and switch to the next bank.

– EPT_ENABL: Enable endpoint.

• Without DMA:

– TX_BK_RDY: An interrupt is generated after each transmission.

– EPT_ENABL: Enable endpoint.

Configuration examples of Bulk OUT endpoint type follow below.

• With DMA

– AUTO_VALID: Automatically validate the packet and switch to the next bank.

– EPT_ENABL: Enable endpoint.

• Without DMA

– RX_BK_RDY: An interrupt is sent after a new packet has been stored in the endpoint
FIFO.

– EPT_ENABL: Enable endpoint.

610
32015G–AVR32–09/09

AT32AP7001

32.6.5 DMA

USB packets of any length may be transferred when required by the USBA Device. These trans-
fers always feature sequential addressing.

Packet data HSB bursts may be locked on a DMA buffer basis for drastic overall HSB bus band-
width performance boost with paged memories. These clock-cycle consuming memory row (or
bank) changes will then likely not occur, or occur only once instead of dozens times, during a
single big USB packet DMA transfer in case another HSB master addresses the memory. This
means up to 128-word single-cycle unbroken HSB bursts for Bulk endpoints and 256-word sin-
gle-cycle unbroken bursts for isochronous endpoints. This maximum burst length is then
controlled by the lowest programmed USB endpoint size (EPT_SIZE bit in the EPTCFGx regis-
ter) and DMA Size (BUFF_LENGTH bit in the DMACONTROLx register).

The USBA device average throughput may be up to nearly 60 MBytes. Its internal slave average
access latency decreases as burst length increases due to the 0 wait-state side effect of
unchanged endpoints. If at least 0 wait-state word burst capability is also provided by the exter-
nal DMA HSB bus slaves, each of both DMA HSB busses need less than 50% bandwidth
allocation for full USBA bandwidth usage at 30 MHz, and less than 25% at 60 MHz.

The USBA DMA Channel Transfer Descriptor is described in ”USBA DMA Channel Transfer
Descriptor” on page 669

Figure 32-5. Example of DMA Chained List:

32.6.6 Handling Transactions with USB V2.0 Device Peripheral

32.6.6.1 Setup Transaction

The setup packet is valid in the DPR while RX_SETUP is set. Once RX_SETUP is cleared by
the application, the USBA accepts the next packets sent over the device endpoint.

Data Buff 1

Data Buff 2

Data Buff 3

Memory Area

Transfer Descriptor

Next Descriptor Address

DMA Channel Address

DMA Channel Control

Transfer Descriptor

Next Descriptor Address

DMA Channel Address

DMA Channel Control

Transfer Descriptor

Next Descriptor Address

DMA Channel Address

DMA Channel Control

UDPHS Registers
(Current Transfer Descriptor)

UDPHS Next Descriptor

DMA Channel Address

DMA Channel Control

Null

611
32015G–AVR32–09/09

AT32AP7001

When a valid setup packet is accepted by the USBA:

• the USBA device automatically acknowledges the setup packet (sends an ACK response)

• payload data is written in the endpoint

• sets the RX_SETUP interrupt

• the BYTE_COUNT field in the EPTSTAx register is updated

An endpoint interrupt is generated while RX_SETUP in the EPTSTAx register is not cleared.
This interrupt is carried out to the microcontroller if interrupts are enabled for this endpoint.

Thus, firmware must detect RX_SETUP polling EPTSTAx or catching an interrupt, read the
setup packet in the FIFO, then clear the RX_SETUP bit in the EPTCLRSTA register to acknowl-
edge the setup stage.

If STALL_SNT was set to 1, then this bit is automatically reset when a setup token is detected by
the device. Then, the device still accepts the setup stage. (See Section 32.6.6.15 ”STALL” on
page 622).

32.6.6.2 NYET

NYET is a High Speed only handshake. It is returned by a High Speed endpoint as part of the
PING protocol.

High Speed devices must support an improved NAK mechanism for Bulk OUT and control end-
points (except setup stage). This mechanism allows the device to tell the host whether it has
sufficient endpoint space for the next OUT transfer (see USB 2.0 spec 8.5.1 NAK Limiting via
Ping Flow Control).

The NYET/ACK response to a High Speed Bulk OUT transfer and the PING response are auto-
matically handled by hardware in the EPTCTLx register (except when the user wants to force a
NAK response by using the NYET_DIS bit).

If the endpoint responds instead to the OUT/DATA transaction with an NYET handshake, this
means that the endpoint accepted the data but does not have room for another data payload.
The host controller must return to using a PING token until the endpoint indicates it has space
available.

Figure 32-6. NYET Example with Two Endpoint Banks

t = 0 t = 125 µs t = 250 µs t = 375 µs t = 500 µs t = 625 µs

data 0 ACK data 1 NYET PING ACK data 0 NYET PING NACK PING ACK

Bank 1

Bank 0 Bank 0

Bank 1

Bank 0

Bank 1

Bank 0

Bank 1

Bank 0

Bank 1

Bank 0

Bank 1

Bank 0

Bank 1E

F

F

E

F

E'

F

E

F

F

E'

F

E

F

E: empty
E': begin to empty
F: full

612
32015G–AVR32–09/09

AT32AP7001

32.6.6.3 Data IN

32.6.6.4 Bulk IN or Interrupt IN

Data IN packets are sent by the device during the data or the status stage of a control transfer or
during an (interrupt/bulk/isochronous) IN transfer. Data buffers are sent packet by packet under
the control of the application or under the control of the DMA channel.

There are three ways for an application to transfer a buffer in several packets over the USB:

• packet by packet (see 32.6.6.5 below)

• 64 KB (see 32.6.6.5 below)

• DMA (see 32.6.6.6 below)

32.6.6.5 Bulk IN or Interrupt IN: Sending a Packet Under Application Control (Device to Host)

The application can write one or several banks.

A simple algorithm can be used by the application to send packets regardless of the number of
banks associated to the endpoint.

Algorithm Description for Each Packet:

• The application waits for TX_PK_RDY flag to be cleared in the EPTSTAx register before it can
perform a write access to the DPR.

• The application writes one USB packet of data in the DPR through the 64 KB endpoint logical
memory window.

• The application sets TX_PK_RDY flag in the EPTSETSTAx register.

The application is notified that it is possible to write a new packet to the DPR by the
TX_PK_RDY interrupt. This interrupt can be enabled or masked by setting the TX_PK_RDY bit
in the EPTCTLENB/EPTCTLDIS register.

Algorithm Description to Fill Several Packets:

Using the previous algorithm, the application is interrupted for each packet. It is possible to
reduce the application overhead by writing linearly several banks at the same time. The
AUTO_VALID bit in the EPTCTLx must be set by writing the AUTO_VALID bit in the
EPTCTLENBx register.

The auto-valid-bank mechanism allows the transfer of data (IN and OUT) without the interven-
tion of the CPU. This means that bank validation (set TX_PK_RDY or clear the RX_BK_RDY bit)
is done by hardware.

• The application checks the BUSY_BANK_STA field in the EPTSTAx register. The application
must wait that at least one bank is free.

• The application writes a number of bytes inferior to the number of free DPR banks for the
endpoint. Each time the application writes the last byte of a bank, the TX_PK_RDY signal is
automatically set by the USBA.

• If the last packet is incomplete (i.e., the last byte of the bank has not been written) the
application must set the TX_PK_RDY bit in the EPTSETSTAx register.

The application is notified that all banks are free, so that it is possible to write another burst of
packets by the BUSY_BANK interrupt. This interrupt can be enabled or masked by setting the
BUSY_BANK flag in the EPTCTLENB and EPTCTLDIS registers.

613
32015G–AVR32–09/09

AT32AP7001

This algorithm must not be used for isochronous transfer. In this case, the ping-pong mechanism
does not operate.

A Zero Length Packet can be sent by setting just the TX_PKTRDY flag in the EPTSETSTAx
register.

32.6.6.6 Bulk IN or Interrupt IN: Sending a Buffer Using DMA (Device to Host)

The USBA integrates a DMA host controller. This DMA controller can be used to transfer a buf-
fer from the memory to the DPR or from the DPR to the processor memory under the USBA
control. The DMA can be used for all transfer types except control transfer.

Example DMA configuration:

1. Program DMAADDRESSx with the address of the buffer that should be transfer.

2. Enable the interrupt of the DMA in IEN

3. Program DMACONTROLx:

– Size of buffer to send: size of the buffer to be sent to the host.

– END_B_EN: The endpoint can validate the packet (according to the values
programmed in the AUTO_VALID and SHRT_PCKT fields of EPTCTLx.) (See ”USBA
Endpoint Control Register” on page 658 and Figure 32-11. Autovalid with DMA)

– END_BUFFIT: generate an interrupt when the BUFF_COUNT in DMASTATUSx
reaches 0.

– CHANN_ENB: Run and stop at end of buffer

The auto-valid-bank mechanism allows the transfer of data (IN & OUT) without the intervention
of the CPU. This means that bank validation (set TX_PK_RDY or clear the RX_BK_RDY bit) is
done by hardware.

A transfer descriptor can be used. Instead of programming the register directly, a descriptor
should be programmed and the address of this descriptor is then given to DMANXTDSC to be
processed after setting the LDNXT_DSC field (Load Next Descriptor Now) in DMACONTROLx
register.

The structure that defines this transfer descriptor must be aligned.

Each buffer to be transferred must be described by a DMA Transfer descriptor (see ”USBA DMA
Channel Transfer Descriptor” on page 669). Transfer descriptors are chained. Before executing
transfer of the buffer, the USBA may fetch a new transfer descriptor from the memory address
pointed by the DMANXTDSCx register. Once the transfer is complete, the transfer status is
updated in the DMASTATUSx register.

To chain a new transfer descriptor with the current DMA transfer, the DMA channel must be
stopped. To do so, INTDIS_DMA and TX_BK_RDY may be set in the EPTCTLENBx register. It
is also possible for the application to wait for the completion of all transfers. In this case the
LDNXT_DSC field in the last transfer descriptor DMACONTROLx register must be set to 0 and
CHANN_ENB set to 1.

Then the application can chain a new transfer descriptor.

The INTDIS_DMA can be used to stop the current DMA transfer if an enabled interrupt is trig-
gered. This can be used to stop DMA transfers in case of errors.

The application can be notified at the end of any buffer transfer (ENB_BUFFIT bit in the DMA-
CONTROLx register).

614
32015G–AVR32–09/09

AT32AP7001

Figure 32-7. Data IN Transfer for Endpoint with One Bank

Figure 32-8. Data IN Transfer for Endpoint with Two Banks

USB Bus
Packets

FIFO
Content

TX_COMPLT Flag
(UDPHS_EPTSTAx)

TX_PK_RDY
Flag
(UDPHS_EPTSTAx)

Prevous Data IN TX Microcontroller Loads Data in FIFO Data is Sent on USB Bus

Interrupt Pending

Set by firmware Cleared by hardware Set by the firmware Cleared by hardware

Interrupt Pending

Cleared by firmware

DPR access by firmware DPR access by hardware

Cleared by firmware

Payload in FIFO

Set by hardware

Data IN 2Token IN NAKACKData IN 1Token IN Token IN ACK

Data IN 1 Load in progress Data IN 2

 Read by USB Device

 Read by UDPHS Device

FIFO
(DPR)
Bank 0

TX_COMPLT
Flag
(UDPHS_EPTSTAx) Interrupt Cleared by Firmware

Virtual TX_PK_RDY
bank 1
(UDPHS_EPTSTAx)

ACK Token IN ACK

Set by Firmware,
Data Payload Written in FIFO Bank 1

Cleared by Hardware
Data Payload Fully Transmitted

Token IN
USB Bus
Packets

Set by HardwareSet by Hardware

Set by Firmware,
Data Payload Written
in FIFO Bank 0

Written by FIFO
(DPR)
Bank1

Microcontroller

Written by
Microcontroller

Written by
Microcontroller

Microcontroller
Load Data IN Bank 0

Microcontroller Load Data IN Bank 1
UDPHS Device Send Bank 0

Microcontroller Load Data IN Bank 0
UDPHS Device Send Bank 1

Interrupt Pending

Data INData IN

Cleared by Hardware
switch to next bank

Virtual TX_PK_RDY
bank 0
(UDPHS_EPTSTAx)

615
32015G–AVR32–09/09

AT32AP7001

Figure 32-9. Data IN Followed By Status OUT Transfer at the End of a Control Transfer

Note: A NAK handshake is always generated at the first status stage token.

Figure 32-10. Data OUT Followed by Status IN Transfer

Note: Before proceeding to the status stage, the software should determine that there is no risk
of extra data from the host (data stage). If not certain (non-predictable data stage length), then
the software should wait for a NAK-IN interrupt before proceeding to the status stage. This pre-
caution should be taken to avoid collision in the FIFO.

Token OUTData INToken IN ACKACK Data OUT (ZLP)

RX_BK_RDY
(UDPHS_EPTSTAx)

TX_COMPLT
(UDPHS_EPTSTAx)

Set by Hardware

Set by Hardware

USB Bus
Packets

Cleared by Firmware

Cleared by Firmware

Device Sends a
Status OUT to Host

Device Sends the Last
Data Payload to Host

Interrupt
Pending

Token OUT ACKData OUT (ZLP)

Token INACKData OUTToken OUT ACKData IN
USB Bus
Packets

RX_BK_RDY
(UDPHS_EPTSTAx)

Cleared by Firmware

Set by Hardware

Clear by Hardware

TX_PK_RDY
(UDPHS_EPTSTAx)

Set by Firmware

Host Sends the Last
Data Payload to the Device

Device Sends a Status IN
to the Host

Interrupt Pending

616
32015G–AVR32–09/09

AT32AP7001

Figure 32-11. Autovalid with DMA

Note: In the illustration above Autovalid validates a bank as full, although this might not be the case, in order to continue processing
data and to send to DMA.

32.6.6.7 Isochronous IN

Isochronous-IN is used to transmit a stream of data whose timing is implied by the delivery rate.
Isochronous transfer provides periodic, continuous communication between host and device.

It guarantees bandwidth and low latencies appropriate for telephony, audio, video, etc.

If the endpoint is not available (TX_PK_RDY = 0), then the device does not answer to the host.
An ERR_FL_ISO interrupt is generated in the EPTSTAx register and once enabled, then sent to
the CPU.

The STALL_SNT command bit is not used for an ISO-IN endpoint.

Bank 0 Bank 1 Bank 0Bank (usb)

Write write bank 0 write bank 1 write bank 0

Bank 0Bank (system) Bank 1 Bank 0 Bank 1

Virtual TX_PK_RDY Bank 0

Virtual TX_PK_RDY Bank 1

TX_PK_RDY
(Virtual 0 & Virtual 1)

bank 0 is full bank 1 is full bank 0 is full

IN data 0 IN data 1 IN data 0

Bank 1

Bank 1 Bank 0

617
32015G–AVR32–09/09

AT32AP7001

32.6.6.8 High Bandwidth Isochronous Endpoint Handling: IN Example

For high bandwidth isochronous endpoints, the DMA can be programmed with the number of
transactions (BUFF_LENGTH field in DMACONTROLx) and the system should provide the
required number of packets per microframe, otherwise, the host will notice a sequencing
problem.

A response should be made to the first token IN recognized inside a microframe under the fol-
lowing conditions:

• If at least one bank has been validated, the correct DATAx corresponding to the programmed
Number Of Transactions per Microframe (NB_TRANS) should be answered. In case of a
subsequent missed or corrupted token IN inside the microframe, the USBA Core available data
bank(s) that should normally have been transmitted during that microframe shall be flushed at
its end. If this flush occurs, an error condition is flagged (ERR_FLUSH is set in EPTSTAx).

• If no bank is validated yet, the default DATA0 ZLP is answered and underflow is flagged
(ERR_FL_ISO is set in EPTSTAx). Then, no data bank is flushed at microframe end.

• If no data bank has been validated at the time when a response should be made for the second
transaction of NB_TRANS = 3 transactions microframe, a DATA1 ZLP is answered and
underflow is flagged (ERR_FL_ISO is set in EPTSTAx). If and only if remaining untransmitted
banks for that microframe are available at its end, they are flushed and an error condition is
flagged (ERR_FLUSH is set in EPTSTAx).

• If no data bank has been validated at the time when a response should be made for the last
programmed transaction of a microframe, a DATA0 ZLP is answered and underflow is flagged
(ERR_FL_ISO is set in EPTSTAx). If and only if the remaining untransmitted data bank for that
microframe is available at its end, it is flushed and an error condition is flagged (ERR_FLUSH
is set in EPTSTAx).

• If at the end of a microframe no valid token IN has been recognized, no data bank is flushed
and no error condition is reported.

At the end of a microframe in which at least one data bank has been transmitted, if less than
NB_TRANS banks have been validated for that microframe, an error condition is flagged
(ERR_TRANS is set in EPTSTAx).

Cases of Error (in EPTSTAx)

• ERR_FL_ISO: There was no data to transmit inside a microframe, so a ZLP is answered by
default.

• ERR_FLUSH: At least one packet has been sent inside the microframe, but the number of
token IN received is lesser than the number of transactions actually validated (TX_BK_RDY)
and likewise with the NB_TRANS programmed.

• ERR_TRANS: At least one packet has been sent inside the microframe, but the number of
token IN received is lesser than the number of programmed NB_TRANS transactions and the
packets not requested were not validated.

• ERR_FL_ISO + ERR_FLUSH: At least one packet has been sent inside the microframe, but
the data has not been validated in time to answer one of the following token IN.

• ERR_FL_ISO + ERR_TRANS: At least one packet has been sent inside the microframe, but
the data has not been validated in time to answer one of the following token IN and the data
can be discarded at the microframe end.

618
32015G–AVR32–09/09

AT32AP7001

• ERR_FLUSH + ERR_TRANS: The first token IN has been answered and it was the only one
received, a second bank has been validated but not the third, whereas NB_TRANS was
waiting for three transactions.

• ERR_FL_ISO + ERR_FLUSH + ERR_TRANS: The first token IN has been treated, the data for
the second Token IN was not available in time, but the second bank has been validated before
the end of the microframe. The third bank has not been validated, but three transactions have
been set in NB_TRANS.

32.6.6.9 Data OUT

32.6.6.10 Bulk OUT or Interrupt OUT

Like data IN, data OUT packets are sent by the host during the data or the status stage of con-
trol transfer or during an interrupt/bulk/isochronous OUT transfer. Data buffers are sent packet
by packet under the control of the application or under the control of the DMA channel.

32.6.6.11 Bulk OUT or Interrupt OUT: Receiving a Packet Under Application Control (Host to Device)

Algorithm Description for Each Packet:

• The application enables an interrupt on RX_BK_RDY.

• When an interrupt on RX_BK_RDY is received, the application knows that EPTSTAx register
BYTE_COUNT bytes have been received.

• The application reads the BYTE_COUNT bytes from the endpoint.

• The application clears RX_BK_RDY.

Note: If the application does not know the size of the transfer, it may not be a good option to use
AUTO_VALID. Because if a zero-length-packet is received, the RX_BK_RDY is automatically
cleared by the AUTO_VALID hardware and if the endpoint interrupt is triggered, the software will
not find its originating flag when reading the EPTSTAx register.

Algorithm to Fill Several Packets:

• The application enables the interrupts of BUSY_BANK and AUTO_VALID.

• When a BUSY_BANK interrupt is received, the application knows that all banks available for
the endpoint have been filled. Thus, the application can read all banks available.

If the application doesn’t know the size of the receive buffer, instead of using the BUSY_BANK
interrupt, the application must use RX_BK_RDY.

32.6.6.12 Bulk OUT or Interrupt OUT: Sending a Buffer Using DMA (Host To Device)

To use the DMA setting, the AUTO_VALID field is mandatory.

See 32.6.6.6 Bulk IN or Interrupt IN: Sending a Buffer Using DMA (Device to Host) for more
information.

DMA Configuration Example:

1. First program DMAADDRESSx with the address of the buffer that should be transferred.

2. Enable the interrupt of the DMA in IEN

3. Program the DMA Channelx Control Register:

– Size of buffer to be sent.

– END_B_EN: Can be used for OUT packet truncation (discarding of unbuffered packet
data) at the end of DMA buffer.

619
32015G–AVR32–09/09

AT32AP7001

– END_BUFFIT: Generate an interrupt when BUFF_COUNT in the DMASTATUSx
register reaches 0.

– END_TR_EN: End of transfer enable, the USBA device can put an end to the current
DMA transfer, in case of a short packet.

– END_TR_IT: End of transfer interrupt enable, an interrupt is sent after the last USB
packet has been transferred by the DMA, if the USB transfer ended with a short
packet. (Beneficial when the receive size is unknown.)

– CHANN_ENB: Run and stop at end of buffer.

For OUT transfer, the bank will be automatically cleared by hardware when the application has
read all the bytes in the bank (the bank is empty).

Note: When a zero-length-packet is received, RX_BK_RDY bit in EPTSTAx is cleared automat-
ically by AUTO_VALID, and the application knows of the end of buffer by the presence of the
END_TR_IT.

Note: If the host sends a zero-length packet, and the endpoint is free, then the device sends an
ACK. No data is written in the endpoint, the RX_BY_RDY interrupt is generated, and the
BYTE_COUNT field in EPTSTAx is null.

Figure 32-12. Data OUT Transfer for Endpoint with One Bank

ACKToken OUTNAKToken OUTACKToken OUT Data OUT 1USB Bus
Packets

RX_BK_RDY

Set by Hardware Cleared by Firmware,
Data Payload Written in FIFO

FIFO (DPR)
Content

Written by UDPHS Device Microcontroller Read

Data OUT 1 Data OUT 1 Data OUT 2

Host Resends the Next Data Payload
Microcontroller Transfers Data

Host Sends Data Payload

Data OUT 2 Data OUT 2

Host Sends the Next Data Payload

Written by UDPHS Device

(UDPHS_EPTSTAx)

Interrupt Pending

620
32015G–AVR32–09/09

AT32AP7001

Figure 32-13. Data OUT Transfer for an Endpoint with Two Banks

32.6.6.13 High Bandwidth Isochronous Endpoint OUT

Figure 32-14. Bank Management, Example of Three Transactions per Microframe

USB 2.0 supports individual High Speed isochronous endpoints that require data rates up to 192
Mb/s (24 MB/s): 3x1024 data bytes per microframe.

To support such a rate, two or three banks may be used to buffer the three consecutive data
packets. The microcontroller (or the DMA) should be able to empty the banks very rapidly (at
least 24 MB/s on average).

NB_TRANS field in EPTCFGx register = Number Of Transactions per Microframe.

If NB_TRANS > 1 then it is High Bandwidth.

Token OUT ACK Data OUT 3Token OUTData OUT 2Token OUTData OUT 1

Data OUT 1

Data OUT 2 Data OUT 2

ACK

 Cleared by Firmware

USB Bus
Packets

Virtual RX_BK_RDY
Bank 0

Virtual RX_BK_RDY
Bank 1

Set by Hardware
Data Payload written
in FIFO endpoint bank 1

FIFO (DPR)
Bank 0

Bank 1

Write by UDPHS Device Write in progress

Read by Microcontroller

Read by Microcontroller

Set by Hardware,
Data payload written
in FIFO endpoint bank 0

Host sends first data payload
 Microcontroller reads Data 1 in bank 0,
 Host sends second data payload

 Microcontroller reads Data 2 in bank 1,
 Host sends third data payload

Cleared by Firmware

Write by Hardware

FIFO (DPR)

(UDPHS_EPTSTAx)

Interrupt pending

Interrupt pending

RX_BK_RDY = (virtual bank 0 | virtual bank 1)

Data OUT 1 Data OUT 3

MDATA0 MDATA0 MDATA1 DATA2DATA2MDATA1

t = 0 t = 52.5 µs
(40% of 125 µs)RX_BK_RDY

t = 125 µs
RX_BK_RDY

USB line

Read Bank 3Read Bank 2Read Bank 1 Read Bank 1

USB bus
Transactions

Microcontroller FIFO
(DPR) Access

621
32015G–AVR32–09/09

AT32AP7001

Example:

• If NB_TRANS = 3, the sequence should be either

– MData0

– MData0/Data1

– MData0/Data1/Data2

• If NB_TRANS = 2, the sequence should be either

– MData0

– MData0/Data1

• If NB_TRANS = 1, the sequence should be

– Data0

32.6.6.14 Isochronous Endpoint Handling: OUT Example

The user can ascertain the bank status (free or busy), and the toggle sequencing of the data
packet for each bank with the EPTSTAx register in the three bit fields as follows:

• TOGGLESQ_STA: PID of the data stored in the current bank

• CURRENT_BANK: Number of the bank currently being accessed by the microcontroller.

• BUSY_BANK_STA: Number of busy bank

This is particularly useful in case of a missing data packet.

If the inter-packet delay between the OUT token and the Data is greater than the USB standard,
then the ISO-OUT transaction is ignored. (Payload data is not written, no interrupt is generated
to the CPU.)

If there is a data CRC (Cyclic Redundancy Check) error, the payload is, none the less, written in
the endpoint. The ERR_CRISO flag is set in EPTSTAx register.

If the endpoint is already full, the packet is not written in the DPRAM. The ERR_FL_ISO flag is
set in EPTSTAx.

If the payload data is greater than the maximum size of the endpoint, then the ERR_OVFLW flag
is set. It is the task of the CPU to manage this error. The data packet is written in the endpoint
(except the extra data).

If the host sends a Zero Length Packet, and the endpoint is free, no data is written in the end-
point, the RX_BK_RDY flag is set, and the BYTE_COUNT field in EPTSTAx register is null.

The FRCESTALL command bit is unused for an isochonous endpoint.

Otherwise, payload data is written in the endpoint, the RX_BK_RDY interrupt is generated and
the BYTE_COUNT in EPTSTAx register is updated.

622
32015G–AVR32–09/09

AT32AP7001

32.6.6.15 STALL

STALL is returned by a function in response to an IN token or after the data phase of an OUT or
in response to a PING transaction. STALL indicates that a function is unable to transmit or
receive data, or that a control pipe request is not supported.

• OUT

To stall an endpoint, set the FRCESTALL bit in EPTSETSTAx register and after the
STALL_SNT flag has been set, set the TOGGLE_SEG bit in the EPTCLRSTAx register.

• IN

Set the FRCESTALL bit in EPTSETSTAx register.

Figure 32-15. Stall Handshake Data OUT Transfer

Figure 32-16. Stall Handshake Data IN Transfer

Token OUT Stall PID Data OUT
USB Bus
Packets

Cleared by Firmware

Set by Firmware
FRCESTALL

STALL_SNT
Set by Hardware

Interrupt Pending
Cleared by Firmware

Token IN Stall PIDUSB Bus
Packets

Cleared by FirmwareSet by Firmware

FRCESTALL

STALL_SNT

Set by Hardware Cleared by Firmware

Interrupt Pending

623
32015G–AVR32–09/09

AT32AP7001

32.6.7 Speed Identification

The high speed reset is managed by the hardware.

At the connection, the host makes a reset which could be a classic reset (full speed) or a high
speed reset.

At the end of the reset process (full or high), the ENDRESET interrupt is generated.

Then the CPU should read the SPEED bit in INTSTAx to ascertain the speed mode of the
device.

32.6.8 USB V2.0 High Speed Global Interrupt

Interrupts are defined in Section 32.7.3 ”USBA Interrupt Enable Register” (IEN) and in Section
32.7.4 ”USBA Interrupt Status Register” (INTSTA).

32.6.9 Endpoint Interrupts

Interrupts are enabled in IEN (see Section 32.7.3 ”USBA Interrupt Enable Register”) and individ-
ually masked in EPTCTLENBx (see Section 32.7.18 ”USBA Endpoint Control Enable Register”).

Table 32-5. Endpoint Interrupt Source Masks

SHRT_PCKT Short Packet Interrupt

BUSY_BANK Busy Bank Interrupt

NAK_OUT NAKOUT Interrupt

NAK_IN/ERR_FLUSH NAKIN/Error Flush Interrupt

STALL_SNT/ERR_CRISO/ERR_NB_TRA Stall Sent/CRC error/Number of Transaction Error Interrupt

RX_SETUP/ERR_FL_ISO Received SETUP/Error Flow Interrupt

TX_PK_RD /ERR_TRANS TX Packet Read/Transaction Error Interrupt

TX_COMPLT Transmitted IN Data Complete Interrupt

RX_BK_RDY Received OUT Data Interrupt

ERR_OVFLW Overflow Error Interrupt

MDATA_RX MDATA Interrupt

DATAX_RX DATAx Interrupt

624
32015G–AVR32–09/09

AT32AP7001

Figure 32-17. USBA Interrupt Control Interface

DET_SUSPD

MICRO_SOF

IEN_SOF

ENDRESET

WAKE_UP

ENDOFRSM

UPSTR_RES

USB Global
IT Sources

EPT0 IT
Sources

BUSY_BANK

NAK_OUT

(UDPHS_EPTCTLENBx)

NAK_IN/ERR_FLUSH

STALL_SNT/ERR_CRISO/ERR_NB_TRA

RX_SETUP/ERR_FL_ISO

TX_BK_RDY/ERR_TRANS

TX_COMPLT

RX_BK_RDY

ERR_OVFLW

MDATA_RX

DATAX_RX

(UDPHS_IEN)

EPT1-6 IT
Sources

Global IT mask

Global IT sources

EP mask

EP sources

(UDPHS_IEN)
EPT_INT_0

EP mask

EP sources

(UDPHS_IEN)
EPT_INT_x

(UDPHS_EPTCTLx)
INT_DIS_DMA

DMA CH x

(UDPHS_DMACONTROLx)

EN_BUFFIT

END_TR_IT

DESC_LD_IT

mask

mask

mask

(UDPHS_IEN)
DMA_INT_x

SHRT_PCKT

husb2dev
interrupt

disable DMA
channelx request

625
32015G–AVR32–09/09

AT32AP7001

32.6.10 Power Modes

32.6.10.1 Controlling Device States

A USB device has several possible states. Refer to Chapter 9 (USB Device Framework) of the
Universal Serial Bus Specification, Rev 2.0.

Figure 32-18. USBADevice State Diagram

Movement from one state to another depends on the USB bus state or on standard requests
sent through control transactions via the default endpoint (endpoint 0).

After a period of bus inactivity, the USB device enters Suspend Mode. Accepting Sus-
pend/Resume requests from the USB host is mandatory. Constraints in Suspend Mode are very
strict for bus-powered applications; devices may not consume more than 500 µA on the USB
bus.

While in Suspend Mode, the host may wake up a device by sending a resume signal (bus activ-
ity) or a USB device may send a wake-up request to the host, e.g., waking up a PC by moving a
USB mouse.

Attached

Suspended

Suspended

Suspended

Suspended

Hub Reset
or

Deconfigured

Hub
Configured

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Reset

Reset

Address
Assigned

Device
Deconfigured

Device
Configured

Powered

Default

Address

Configured

Power
Interruption

626
32015G–AVR32–09/09

AT32AP7001

The wake-up feature is not mandatory for all devices and must be negotiated with the host.

32.6.10.2 From Powered State to Default State (Reset)

After its connection to a USB host, the USB device waits for an end-of-bus reset. The unmasked
flag ENDRESET is set in the IEN register and an interrupt is triggered.

Once the ENDRESET interrupt has been triggered, the device enters Default State. In this state,
the USBA software must:

• Enable the default endpoint, setting the EPT_ENABL flag in the EPTCTLENB[0] register and,
optionally, enabling the interrupt for endpoint 0 by writing 1 in EPT_INT_0 of the IEN register.
The enumeration then begins by a control transfer.

• Configure the Interrupt Mask Register which has been reset by the USB reset detection

• Enable the transceiver.

In this state, the EN_USBA bit in CTRL register must be enabled.

32.6.10.3 From Default State to Address State (Address Assigned)

After a Set Address standard device request, the USB host peripheral enters the address state.

Warning: before the device enters address state, it must achieve the Status IN transaction of
the control transfer, i.e., the USBA device sets its new address once the TX_COMPLT flag in the
EPTCTL[0] register has been received and cleared.

To move to address state, the driver software sets the DEV_ADDR field and the FADDR_EN
flag in the CTRL register.

32.6.10.4 From Address State to Configured State (Device Configured)

Once a valid Set Configuration standard request has been received and acknowledged, the
device enables endpoints corresponding to the current configuration. This is done by setting the
BK_NUMBER, EPT_TYPE, EPT_DIR and EPT_SIZE fields in the EPTCFGx registers and
enabling them by setting the EPT_ENABL flag in the EPTCTLENBx registers, and, optionally,
enabling corresponding interrupts in the IEN register.

32.6.10.5 Entering Suspend State (Bus Activity)

When a Suspend (no bus activity on the USB bus) is detected, the DET_SUSPD signal in the
INTSTA register is set. This triggers an interrupt if the corresponding bit is set in the IEN register.
This flag is cleared by writing to the CLRINT register. Then the device enters Suspend Mode.

In this state bus powered devices must drain less than 500 µA from the 5V VBUS. As an exam-
ple, the microcontroller switches to slow clock, disables the PLL and main oscillator, and goes
into Idle Mode. It may also switch off other devices on the board.

The USBAUSBA device peripheral clocks can be switched off. Resume event is asynchronously
detected.

32.6.10.6 Receiving a Host Resume

In Suspend mode, a resume event on the USB bus line is detected asynchronously, transceiver
and clocks disabled (however the pull-up should not be removed).

627
32015G–AVR32–09/09

AT32AP7001

Once the resume is detected on the bus, the signal WAKE_UP in the INTSTA is set. It may gen-
erate an interrupt if the corresponding bit in the IEN register is set. This interrupt may be used to
wake-up the core, enable PLL and main oscillators and configure clocks.

32.6.10.7 Sending an External Resume

In Suspend State it is possible to wake-up the host by sending an external resume.

The device waits at least 5 ms after being entered in Suspend State before sending an external
resume.

The device must force a K state from 1 to 15 ms to resume the host.

32.6.11 Test Mode

A device must support the TEST_MODE feature when in the Default, Address or Configured

High Speed device states.

TEST_MODE can be:

• Test_J

• Test_K

• Test_Packet

• Test_SEO_NAK

(See Section 32.7.11 ”USBA Test Register” on page 644 for definitions of each test mode.)

const char test_packet_buffer[] = {

// JKJKJKJK * 9

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

// JJKKJJKK * 8

0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,

// JJKKJJKK * 8

0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,

// JJJJJJJKKKKKKK * 8

0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

// JJJJJJJK * 8

0x7F,0xBF,0xDF,0xEF,0xF7,0xFB,0xFD,

// {JKKKKKKK * 10}, JK

0xFC,0x7E,0xBF,0xDF,0xEF,0xF7,0xFB,0xFD,0x7E

};

628
32015G–AVR32–09/09

AT32AP7001

32.7 USB High Speed Device (USBA) User Interface

Table 32-6. Register Mapping

Offset Register Name Access Reset

0x00 USBA Control Register CTRL Read/Write 0x0000_0200

0x04 USBA Frame Number Register FNUM Read 0x0000_0000

0x08 - 0x0C Reserved – – –

0x10 USBA Interrupt Enable Register IEN Read/Write 0x0000_0010

0x14 USBA Interrupt Status Register INTSTA Read 0x0000_0000

0x18 USBA Clear Interrupt Register CLRINT Write –

0x1C USBA Endpoints Reset Register EPTRST Write –

0x20 - 0xCC Reserved – – –

0xD0 USBA Test SOF Counter Register TSTSOFCNT Read/Write 0x0000_0000

0xD4 USBA Test A Counter Register TSTCNTA Read/Write 0x0000_0000

0xD8 USBA Test B Counter Register TSTCNTB Read/Write 0x0000_0000

0xDC USBA Test Mode Register TSTMODEREG Read/Write 0x0000_0000

0xE0 USBA Test Register TST Read/Write 0x0000_0000

0xE4 - 0xE8 Reserved – – –

0xEC USBA PADDRSIZE Register IPPADDRSIZE Read 0x0000_4000

0xF0 USBA Name1 Register IPNAME1 Read 0x4855_5342

0xF4 USBA Name2 Register IPNAME2 Read 0x3244_4556

0xF8 USBA Features Register IPFEATURES Read

0xFC USBA IP Version Register IPVERSION Read

0x100 USBA Endpoint Configuration Register EPTCFGx Read/Write 0x0000_0000

0x104 USBA Endpoint Control Enable Register EPTCTLENBx Write –

0x108 USBA Endpoint Control Disable Register EPTCTLDISx Write –

0x10C USBA Endpoint Control Register EPTCTLx Read 0x0000_0000(1)

0x110 Reserved – – –

0x114 USBA Endpoint Set Status Register EPTSETSTAx Write –

0x118 USBA Endpoint Clear Status Register EPTCLRSTAx Write –

0x11C USBA Endpoint Status Register EPTSTA Read 0x0000_0040

0x120 - 0x1FC Endpoints 1 to 7

0x200 - 0x2FC Endpoints 8 to 15

0x200 - 0x30C Reserved – – –

0x300 - 0x30C Reserved – – –

0x310 USBA DMA Next Descriptor Address Register DMANXTDSCx Read/Write 0x0000_0000

0x314 USBA DMA Channelx Address Register DMAADDRESSx Read/Write 0x0000_0000

629
32015G–AVR32–09/09

AT32AP7001

Note: 1. The reset value for EPTCTL0 is 0x0000_0001

0x318 USBA DMA Channelx Control Register DMACONTROLx Read/Write 0x0000_0000

0x31C USBA DMA Channelx Status Register DMASTATUSx Read/Write 0x0000_0000

0x320 - 0x37C DMA Channel 2 to 7

Table 32-6. Register Mapping (Continued)

Offset Register Name Access Reset

630
32015G–AVR32–09/09

AT32AP7001

32.7.1 USBA Control Register

Name: CTRL

Access Type: Read/Write

• DEV_ADDR: USBA Address

Read:

This field contains the default address (0) after power-up or USBA bus reset.

Write:

This field is written with the value set by a SET_ADDRESS request received by the device firmware.

• FADDR_EN: Function Address Enable

Read:

0 = Device is not in address state.

1 = Device is in address state.

Write:

0 = only the default function address is used (0).

1 = this bit is set by the device firmware after a successful status phase of a SET_ADDRESS transaction. When set, the
only address accepted by the USBA controller is the one stored in the USBA Address field. It will not be cleared afterwards
by the device firmware. It is cleared by hardware on hardware reset, or when USBA bus reset is received (see above).

• EN_USBA: USBA Enable

Read:

0 = USBA is disabled.

1 = USBA is enabled.

Write:

0 = disable and reset the USBA controller, disable the USBA transceiver.

1 = enables the USBA controller.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – REWAKEUP DETACH EN_USBA

7 6 5 4 3 2 1 0

FADDR_EN DEV_ADDR

631
32015G–AVR32–09/09

AT32AP7001

• DETACH: Detach Command

Read:

0 = USBA is attached.

1 = USBA is detached, UTMI transceiver is suspended.

Write:

0 = pull up the DP line (attach command).

1 = simulate a detach on the USBA line and force the UTMI transceiver into suspend state (Suspend M = 0).

• REWAKEUP: Send Remote Wake Up

Read:

0 = Remote Wake Up is disabled.

1 = Remote Wake Up is enabled.

Write:

0 = no effect.

1 = force an external interrupt on the USBA controller for Remote Wake UP purposes.

An Upstream Resume is sent only after the USBA bus has been in SUSPEND state for at least 5 ms.

This bit is automatically cleared by hardware at the end of the Upstream Resume.

632
32015G–AVR32–09/09

AT32AP7001

32.7.2 USBA Frame Number Register

Name: FNUM

Access Type: Read

• MICRO_FRAME_NUM: Microframe Number

Number of the received microframe (0 to 7) in one frame.This field is reset at the beginning of each new frame (1 ms).

One microframe is received each 125 microseconds (1 ms/8).

• FRAME_NUMBER: Frame Number as defined in the Packet Field Formats

This field is provided in the last received SOF packet (see INT_SOF in the USBA Interrupt Status Register).

• FNUM_ERR: Frame Number CRC Error

This bit is set by hardware when a corrupted Frame Number in Start of Frame packet (or Micro SOF) is received.

This bit and the INT_SOF (or MICRO_SOF) interrupt are updated at the same time.

31 30 29 28 27 26 25 24

FNUM_ERR – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – FRAME_NUMBER

7 6 5 4 3 2 1 0

FRAME_NUMBER MICRO_FRAME_NUM

633
32015G–AVR32–09/09

AT32AP7001

32.7.3 USBA Interrupt Enable Register

Name: IEN

Access Type: Read/Write

• DET_SUSPD: Suspend Interrupt Enable

Read:

0 = Suspend Interrupt is disabled.

1 = Suspend Interrupt is enabled.

Write

0 = disable Suspend Interrupt.

1 = enable Suspend Interrupt.

• MICRO_SOF: Micro-SOF Interrupt Enable

Read:

0 = Micro-SOF Interrupt is disabled.

1 = Micro-SOF Interrupt is enabled.

Write

0 = disable Micro-SOF Interrupt.

1 = enable Micro-SOF Interrupt.

• INT_SOF: SOF Interrupt Enable

Read:

0 = SOF Interrupt is disabled.

1 = SOF Interrupt is enabled.

Write

0 = disable SOF Interrupt.

1 = enable SOF Interrupt.

31 30 29 28 27 26 25 24

DMA_INT_6 DMA_INT_5 DMA_INT_4 DMA_INT_3 DMA_INT_2 DMA_INT_1 –

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

EPT_INT_7 EPT_INT_6 EPT_INT_5 EPT_INT_4 EPT_INT_3 EPT_INT_2 EPT_INT_1 EPT_INT_0

7 6 5 4 3 2 1 0

UPSTR_RES ENDOFRSM WAKE_UP ENDRESET INT_SOF MICRO_SOF DET_SUSPD –

634
32015G–AVR32–09/09

AT32AP7001

• ENDRESET: End Of Reset Interrupt Enable

Read:

0 = End Of Reset Interrupt is disabled.

1 = End Of Reset Interrupt is enabled.

Write

0 = disable End Of Reset Interrupt.

1 = enable End Of Reset Interrupt.

• WAKE_UP: Wake Up CPU Interrupt Enable

Read:

0 = Wake Up CPU Interrupt is disabled.

1 = Wake Up CPU Interrupt is enabled.

Write

0 = disable Wake Up CPU Interrupt.

1 = enable Wake Up CPU Interrupt.

• ENDOFRSM: End Of Resume Interrupt Enable

Read:

0 = Resume Interrupt is disabled.

1 = Resume Interrupt is enabled.

Write

0 = disable Resume Interrupt.

1 = enable Resume Interrupt.

• UPSTR_RES: Upstream Resume Interrupt Enable

Read:

0 = Upstream Resume Interrupt is disabled.

1 = Upstream Resume Interrupt is enabled.

Write

0 = disable Upstream Resume Interrupt.

1 = enable Upstream Resume Interrupt.

• EPT_INT_x: Endpointx Interrupt Enable

Read:

0 = the interrupts for this endpoint are disabled.

1 = the interrupts for this endpoint are enabled.

Write

0 = disable the interrupts for this endpoint.

1 = enable the interrupts for this endpoint.

635
32015G–AVR32–09/09

AT32AP7001

• DMA_INT_x: DMA Channelx Interrupt Enable

Read:

0 = the interrupts for this channel are disabled.

1 = the interrupts for this channel are enabled.

Write

0 = disable the interrupts for this channel.

1 = enable the interrupts for this channel.

636
32015G–AVR32–09/09

AT32AP7001

32.7.4 USBA Interrupt Status Register

Name: INTSTA

Access Type: Read-only

• SPEED: Speed Status

0 = reset by hardware when the hardware is in Full Speed mode.

1 = set by hardware when the hardware is in High Speed mode

• DET_SUSPD: Suspend Interrupt

0 = cleared by setting the DET_SUSPD bit in CLRINT register

1 = set by hardware when a USBA Suspend (Idle bus for three frame periods, a J state for 3 ms) is detected. This triggers
a USBA interrupt when the DET_SUSPD bit is set in IEN register.

• MICRO_SOF: Micro Start Of Frame Interrupt

0 = cleared by setting the MICRO_SOF bit in CLRINT register.

1 = set by hardware when an USBA micro start of frame PID (SOF) has been detected (every 125 us) or synthesized by the
macro. This triggers a USBA interrupt when the MICRO_SOF bit is set in IEN. In case of detected SOF, the
MICRO_FRAME_NUM field in FNUM register is incremented and the FRAME_NUMBER field doesn’t change.

Note: The Micro Start Of Frame Interrupt (MICRO_SOF), and the Start Of Frame Interrupt (INT_SOF) are not generated at the same
time.

• INT_SOF: Start Of Frame Interrupt

0 = cleared by setting the INT_SOF bit in CLRINT.

1 = set by hardware when an USBA Start Of Frame PID (SOF) has been detected (every 1 ms) or synthesized by the
macro. This triggers a USBA interrupt when the INT_SOF bit is set in IEN register. In case of detected SOF, in High Speed
mode, the MICRO_FRAME_NUMBER field is cleared in FNUM register and the FRAME_NUMBER field is updated.

• ENDRESET: End Of Reset Interrupt

0 = cleared by setting the ENDRESET bit in CLRINT.

1 = set by hardware when an End Of Reset has been detected by the USBA controller. This triggers a USBA interrupt when
the ENDRESET bit is set in IEN.

31 30 29 28 27 26 25 24

DMA_INT_6 DMA_INT_5 DMA_INT_4 DMA_INT_3 DMA_INT_2 DMA_INT_1 –

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

EPT_INT_7 EPT_INT_6 EPT_INT_5 EPT_INT_4 EPT_INT_3 EPT_INT_2 EPT_INT_1 EPT_INT_0

7 6 5 4 3 2 1 0

UPSTR_RES ENDOFRSM WAKE_UP ENDRESET INT_SOF MICRO_SOF DET_SUSPD SPEED

637
32015G–AVR32–09/09

AT32AP7001

• WAKE_UP: Wake Up CPU Interrupt

0 = cleared by setting the WAKE_UP bit in CLRINT.

1 = set by hardware when the USBA controller is in SUSPEND state and is re-activated by a filtered non-idle signal from
the USBA line (not by an upstream resume). This triggers a USBA interrupt when the WAKE_UP bit is set in IEN register.
When receiving this interrupt, the user has to enable the device controller clock prior to operation.

Note: this interrupt is generated even if the device controller clock is disabled.

• ENDOFRSM: End Of Resume Interrupt

0 = cleared by setting the ENDOFRSM bit in CLRINT.

1 = set by hardware when the USBA controller detects a good end of resume signal initiated by the host. This triggers a
USBA interrupt when the ENDOFRSM bit is set in IEN.

• UPSTR_RES: Upstream Resume Interrupt

0 = cleared by setting the UPSTR_RES bit in CLRINT.

1 = set by hardware when the USBA controller is sending a resume signal called “upstream resume”. This triggers a USBA
interrupt when the UPSTR_RES bit is set in IEN.

• EPT_INT_x: Endpointx Interrupt

0 = reset when the EPTSTAx interrupt source is cleared.

1 = set by hardware when an interrupt is triggered by the EPTSTAx register and this endpoint interrupt is enabled by the
EPT_INT_x bit in IEN.

• DMA_INT_x: DMA Channelx Interrupt

0 = reset when the DMASTATUSx interrupt source is cleared.

1 = set by hardware when an interrupt is triggered by the DMA Channelx and this endpoint interrupt is enabled by the
DMA_INT_x bit in IEN.

638
32015G–AVR32–09/09

AT32AP7001

32.7.5 USBA Clear Interrupt Register

Name: CLRINT

Access Type: Write only

• DET_SUSPD: Suspend Interrupt Clear

0 = no effect.

1 = clear the DET_SUSPD bit in INTSTA.

• MICRO_SOF: Micro Start Of Frame Interrupt Clear

0 = no effect.

1 = clear the MICRO_SOF bit in INTSTA.

• INT_SOF: Start Of Frame Interrupt Clear

0 = no effect.

1 = clear the INT_SOF bit in INTSTA.

• ENDRESET: End Of Reset Interrupt Clear

0 = no effect.

1 = clear the ENDRESET bit in INTSTA.

• WAKE_UP: Wake Up CPU Interrupt Clear

0 = no effect.

1 = clear the WAKE_UP bit in INTSTA.

• ENDOFRSM: End Of Resume Interrupt Clear

0 = no effect.

1 = clear the ENDOFRSM bit in INTSTA.

• UPSTR_RES: Upstream Resume Interrupt Clear

0 = no effect.

1 = clear the UPSTR_RES bit in INTSTA.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

UPSTR_RES ENDOFRSM WAKE_UP ENDRESET INT_SOF MICRO_SOF DET_SUSPD –

639
32015G–AVR32–09/09

AT32AP7001

32.7.6 USBA Endpoints Reset Register

Name: EPTRST

Access Type: Write only

• RST_EPT_x: Endpointx Reset

0 = no effect.

1 = reset the Endpointx state.

Setting this bit clears the Endpoint status EPTSTAx register, except for the TOGGLESQ_STA field.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
RST_EPT_7 RST_EPT_6 RST_EPT_5 RST_EPT_4 RST_EPT_3 RST_EPT_2 RST_EPT_1 RST_EPT_0

640
32015G–AVR32–09/09

AT32AP7001

32.7.7 USBA Test SOF Counter Register

Name: TSTSOFCNT

Access Type: Read/Write

• SOFCNTMAX: SOF Counter Max Value

• SOFCTLOAD: SOF Counter Load

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SOFCTLOAD SOFCNTMAX

641
32015G–AVR32–09/09

AT32AP7001

32.7.8 USBA Test A Counter Register

Name: TSTCNTA

Access Type: Read/Write

• CNTALOAD: A Counter Load

• CNTAMAX: A Counter Max Value

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CNTALOAD CNTAMAX

7 6 5 4 3 2 1 0

CNTAMAX

642
32015G–AVR32–09/09

AT32AP7001

32.7.9 USBA Test B Counter Register

Name: TSTCNTB

Access Type: Read/Write

• CNTBLOAD: B Counter Load

• CNTBMAX: B Counter Max Value

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

CNTBLOAD – CNTBMAX

643
32015G–AVR32–09/09

AT32AP7001

32.7.10 USBA Test Mode Register

Name: TSTMODEREG

Access Type: Read/Write

• TSTMODE: USBA Core TestModeReg

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TSTMODE

644
32015G–AVR32–09/09

AT32AP7001

32.7.11 USBA Test Register

Name: TST

Access Type: Read/Write

• SPEED_CFG: Speed Configuration

Read/Write:

Speed Configuration:

• TST_J: Test J Mode

Read and write:

0 = no effect.

1 = set to send the J state on the USBA line. This enables the testing of the high output drive level on the D+ line.

• TST_K: Test K Mode

Read and write:

0 = no effect.

1 = set to send the K state on the USBA line. This enables the testing of the high output drive level on the D- line.

• TST_PKT: Test Packet Mode

Read and write:

0 = no effect.

1 = set to repetitively transmit the packet stored in the current bank. This enables the testing of rise and fall times, eye pat-
terns, jitter, and any other dynamic waveform specifications.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – OPMODE2 TST_PKT TST_K TST_J SPEED_CFG

00
Normal Mode: The macro is in Full Speed mode, ready to make a High Speed identification, if the host supports it and then
to automatically switch to High Speed mode

01 Reserved

10 Force High Speed: Set this value to force the hardware to work in High Speed mode. Only for debug or test purpose.

11
Force Full Speed: Set this value to force the hardware to work only in Full Speed mode. In this configuration, the macro will
not respond to a High Speed reset handshake

645
32015G–AVR32–09/09

AT32AP7001

• OPMODE2: OpMode2

Read and write:

0 = no effect.

1 = set to force the OpMode signal (UTMI interface) to “10”, to disable the bit-stuffing and the NRZI encoding.

Note: For the Test mode, Test_SE0_NAK (see Universal Serial Bus Specification, Revision 2.0: 7.1.20, Test Mode Sup-
port). Force the device in High Speed mode, and configure a bulk-type endpoint. Do not fill this endpoint for sending NAK to
the host.

Upon command, a port’s transceiver must enter the High Speed receive mode and remain in that mode until the exit action
is taken. This enables the testing of output impedance, low level output voltage and loading characteristics. In addition,
while in this mode, upstream facing ports (and only upstream facing ports) must respond to any IN token packet with a NAK
handshake (only if the packet CRC is determined to be correct) within the normal allowed device response time. This
enables testing of the device squelch level circuitry and, additionally, provides a general purpose stimulus/response test for
basic functional testing.

646
32015G–AVR32–09/09

AT32AP7001

32.7.12 USBA PADDRSIZE Register

Name: IPPADDRSIZE

Access Type: Read-only

• IP_PADDRSIZE

2^PADDR_SIZE

PB address bus aperture of the USBA

31 30 29 28 27 26 25 24

IP_PADDRSIZE

23 22 21 20 19 18 17 16

IP_PADDRSIZE

15 14 13 12 11 10 9 8

IP_PADDRSIZE

7 6 5 4 3 2 1 0

IP_PADDRSIZE

647
32015G–AVR32–09/09

AT32AP7001

32.7.13 USBA Name1 Register

Name: IPNAME1

Access Type: Read-only

• IP_NAME1

ASCII string “HUSB”

31 30 29 28 27 26 25 24

IP_NAME1

23 22 21 20 19 18 17 16

IP_NAME1

15 14 13 12 11 10 9 8

IP_NAME1

7 6 5 4 3 2 1 0

IP_NAME1

648
32015G–AVR32–09/09

AT32AP7001

32.7.14 USBA Name2 Register

Name: IPNAME2

Access Type: Read-only

• IP_NAME2

ASCII string “2DEV”

31 30 29 28 27 26 25 24

IP_NAME2

23 22 21 20 19 18 17 16

IP_NAME2

15 14 13 12 11 10 9 8

IP_NAME2

7 6 5 4 3 2 1 0

IP_NAME2

649
32015G–AVR32–09/09

AT32AP7001

32.7.15 USBA Features Register

Name: IPFEATURES

Access Type: Read-only

• EPT_NBR_MAX: Max Number of Endpoints

Give the max number of endpoints.

0 = if 16 endpoints are hardware implemented.

1 = if 1 endpoint is hardware implemented.

2 = if 2 endpoints are hardware implemented.

...

15 = if 15 endpoints are hardware implemented.

• DMA_CHANNEL_NBR: Number of DMA Channels

Give the number of DMA channels.

1 = if 1 DMA channel is hardware implemented.

2 = if 2 DMA channels are hardware implemented.

...

7 = if 7 DMA channels are hardware implemented.

• DMA_B_SIZ: DMA Buffer Size

0 = if the DMA Buffer size is 16 bits.

1 = if the DMA Buffer size is 24 bits.

• DMA_FIFO_WORD_DEPTH: DMA FIFO Depth in Words

0 = if FIFO is 16 words deep.

1 = if FIFO is 1 word deep.

2 = if FIFO is 2 words deep.

...

15 = if FIFO is 15 words deep.

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

ISO_EPT_7 ISO_EPT_6 ISO_EPT_5 ISO_EPT_4 ISO_EPT_3 ISO_EPT_2 ISO_EPT_1 DATAB16_8

15 14 13 12 11 10 9 8

BW_DPRAM FIFO_MAX_SIZE DMA_FIFO_WORD_DEPTH

7 6 5 4 3 2 1 0

DMA_B_SIZ DMA_CHANNEL_NBR EPT_NBR_MAX

650
32015G–AVR32–09/09

AT32AP7001

• FIFO_MAX_SIZE: DPRAM Size

0 = if DPRAM is 128 bytes deep.

1 = if DPRAM is 256 bytes deep.

2 = if DPRAM is 512 bytes deep.

3 = if DPRAM is 1024 bytes deep.

4 = if DPRAM is 2048 bytes deep.

5 = if DPRAM is 4096 bytes deep.

6 = if DPRAM is 8192 bytes deep.

7 = if DPRAM is 16384 bytes deep.

• BW_DPRAM: DPRAM Byte Write Capability

0 = if DPRAM Write Data Shadow logic is implemented.

1 = if DPRAM is byte write capable.

• DATAB16_8: UTMI DataBus16_8

0 = if the UTMI uses an 8-bit parallel data interface (60 MHz, unidirectional).

1 = if the UTMI uses a 16-bit parallel data interface (30 MHz, bidirectional).

• ISO_EPT_x: Endpointx High Bandwidth Isochronous Capability

0 = if the endpoint does not have isochronous High Bandwidth Capability.

1 = if the endpoint has isochronous High Bandwidth Capability.

651
32015G–AVR32–09/09

AT32AP7001

32.7.16 USBA IP Version Register

Name: IPVERSION

Access Type: Read-only

• VERSION_NUM: IP Version

Give the IP version.

• METAL_FIX_NUM: Number of metal fixes

Give the number of metal fixes.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – METAL_FIX_NUM

15 14 13 12 11 10 9 8

VERSION_NUM

7 6 5 4 3 2 1 0

VERSION_NUM

652
32015G–AVR32–09/09

AT32AP7001

32.7.17 USBA Endpoint Configuration Register

Name: EPTCFGx

Access Type: Read/Write

• EPT_SIZE: Endpoint Size

Read and write:

Set this field according to the endpoint size in bytes (see Section 32.6.4 ”Endpoint Configuration”).

Endpoint Size

Note: 1. 1024 bytes is only for isochronous endpoint.

• EPT_DIR: Endpoint Direction

Read and write:

0 = Clear this bit to configure OUT direction for Bulk, Interrupt and Isochronous endpoints.

1 = set this bit to configure IN direction for Bulk, Interrupt and Isochronous endpoints.

For Control endpoints this bit has no effect and should be left at zero.

• EPT_TYPE: Endpoint Type

Read and write:

Set this field according to the endpoint type (see Section 32.6.4 ”Endpoint Configuration”).

(Endpoint 0 should always be configured as control)

31 30 29 28 27 26 25 24

EPT_MAPD – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – NB_TRANS

7 6 5 4 3 2 1 0

BK_NUMBER EPT_TYPE EPT_DIR EPT_SIZE

000 8 bytes

001 16 bytes

010 32 bytes

011 64 bytes

100 128 bytes

101 256 bytes

110 512 bytes

111 1024 bytes(1)

653
32015G–AVR32–09/09

AT32AP7001

Endpoint Type:

• BK_NUMBER: Number of Banks

Read and write:

Set this field according to the endpoint’s number of banks (see Section 32.6.4 ”Endpoint Configuration”).

Number of Banks

• NB_TRANS: Number Of Transaction per Microframe

Read and Write:

The Number of transactions per microframe is set by software.

Note: Meaningful for high bandwidth isochronous endpoint only.

• EPT_MAPD: Endpoint Mapped

Read-only:

0 = the user should reprogram the register with correct values.

1 = set by hardware when the endpoint size (EPT_SIZE) and the number of banks (BK_NUMBER) are correct regarding:

– the fifo max capacity (FIFO_MAX_SIZE in IPFEATURES register)

– the number of endpoints/banks already allocated

– the number of allowed banks for this endpoint

00 Control endpoint

01 Isochronous endpoint

10 Bulk endpoint

11 Interrupt endpoint

00 Zero bank, the endpoint is not mapped in memory

01 One bank (bank 0)

10 Double bank (Ping-Pong: bank 0/bank 1)

11 Triple bank (bank 0/bank 1/bank 2)

654
32015G–AVR32–09/09

AT32AP7001

32.7.18 USBA Endpoint Control Enable Register

Name: EPTCTLENBx

Access Type: Write-only

For additional Information, see ”USBA Endpoint Control Register” on page 658.

• EPT_ENABL: Endpoint Enable

0 = no effect.

1 = enable endpoint according to the device configuration.

• AUTO_VALID: Packet Auto-Valid Enable

0 = no effect.

1 = enable this bit to automatically validate the current packet and switch to the next bank for both IN and OUT transfers.

• INTDIS_DMA: Interrupts Disable DMA

0 = no effect.

1 = If set, when an enabled endpoint-originated interrupt is triggered, the DMA request is disabled.

• NYET_DIS: NYET Disable (Only for High Speed Bulk OUT endpoints)

0 = no effect.

1 = forces an ACK response to the next High Speed Bulk OUT transfer instead of a NYET response.

• DATAX_RX: DATAx Interrupt Enable (Only for high bandwidth Isochronous OUT endpoints)

0 = no effect.

1 = enable DATAx Interrupt.

• MDATA_RX: MDATA Interrupt Enable (Only for high bandwidth Isochronous OUT endpoints)

0 = no effect.

1 = enable MDATA Interrupt.

31 30 29 28 27 26 25 24

SHRT_PCKT – – – – – – –

23 22 21 20 19 18 17 16

– – – – – BUSY_BANK – –

15 14 13 12 11 10 9 8

NAK_OUT
NAK_IN/

ERR_FLUSH

STALL_SNT/
ERR_CRISO/
ERR_NBTRA

RX_SETUP/
ERR_FL_ISO

TX_PK_RDY/
ERR_TRANS

TX_COMPLT RX_BK_RDY ERR_OVFLW

7 6 5 4 3 2 1 0

MDATA_RX DATAX_RX – NYET_DIS INTDIS_DMA – AUTO_VALID EPT_ENABL

655
32015G–AVR32–09/09

AT32AP7001

• ERR_OVFLW: Overflow Error Interrupt Enable

0 = no effect.

1 = enable Overflow Error Interrupt.

• RX_BK_RDY: Received OUT Data Interrupt Enable

0 = no effect.

1 = enable Received OUT Data Interrupt.

• TX_COMPLT: Transmitted IN Data Complete Interrupt Enable

0 = no effect.

1 = enable Transmitted IN Data Complete Interrupt.

• TX_PK_RDY/ERR_TRANS: TX Packet Ready/Transaction Error Interrupt Enable

0 = no effect.

1 = enable TX Packet Ready/Transaction Error Interrupt.

• RX_SETUP/ERR_FL_ISO: Received SETUP/Error Flow Interrupt Enable

0 = no effect.

1 = enable RX_SETUP/Error Flow ISO Interrupt.

• STALL_SNT/ERR_CRISO/ERR_NBTRA: Stall Sent /ISO CRC Error/Number of Transaction Error Interrupt Enable

0 = no effect.

1 = enable Stall Sent/Error CRC ISO/Error Number of Transaction Interrupt.

• NAK_IN/ERR_FLUSH: NAKIN/Bank Flush Error Interrupt Enable

0 = no effect.

1 = enable NAKIN/Bank Flush Error Interrupt.

• NAK_OUT: NAKOUT Interrupt Enable

0 = no effect.

1 = enable NAKOUT Interrupt.

• BUSY_BANK: Busy Bank Interrupt Enable

0 = no effect.

1 = enable Busy Bank Interrupt.

• SHRT_PCKT: Short Packet Send/Short Packet Interrupt Enable

For OUT endpoints:

0 = no effect.

1 = enable Short Packet Interrupt.

For IN endpoints:

Guarantees short packet at end of DMA Transfer if the DMACONTROLx register END_B_EN and EPTCTLx register
AUTOVALID bits are also set.

656
32015G–AVR32–09/09

AT32AP7001

32.7.19 USBA Endpoint Control Disable Register

Name: EPTCTLDISx

Access Type: Write-only

For additional Information, see ”USBA Endpoint Control Register” on page 658.

• EPT_DISABL: Endpoint Disable

0 = no effect.

1 = disable endpoint.

• AUTO_VALID: Packet Auto-Valid Disable

0 = no effect.

1 = disable this bit to not automatically validate the current packet.

• INTDIS_DMA: Interrupts Disable DMA

0 = no effect.

1 = disable the “Interrupts Disable DMA”.

• NYET_DIS: NYET Enable (Only for High Speed Bulk OUT endpoints)

0 = no effect.

1 = let the hardware handle the handshake response for the High Speed Bulk OUT transfer.

• DATAX_RX: DATAx Interrupt Disable (Only for High Bandwidth Isochronous OUT endpoints)

0 = no effect.

1 = disable DATAx Interrupt.

• MDATA_RX: MDATA Interrupt Disable (Only for High Bandwidth Isochronous OUT endpoints)

0 = no effect.

1 = disable MDATA Interrupt.

31 30 29 28 27 26 25 24

SHRT_PCKT – – – – – – –

23 22 21 20 19 18 17 16

– – – – – BUSY_BANK – –

15 14 13 12 11 10 9 8

NAK_OUT
NAK_IN/

ERR_FLUSH

STALL_SNT/
ERR_CRISO/
ERR_NBTRA

RX_SETUP/
ERR_FL_ISO

TX_PK_RDY/
ERR_TRANS

TX_COMPLT RX_BK_RDY ERR_OVFLW

7 6 5 4 3 2 1 0

MDATA_RX DATAX_RX – NYET_DIS INTDIS_DMA – AUTO_VALID EPT_DISABL

657
32015G–AVR32–09/09

AT32AP7001

• ERR_OVFLW: Overflow Error Interrupt Disable

0 = no effect.

1 = disable Overflow Error Interrupt.

• RX_BK_RDY: Received OUT Data Interrupt Disable

0 = no effect.

1 = disable Received OUT Data Interrupt.

• TX_COMPLT: Transmitted IN Data Complete Interrupt Disable

0 = no effect.

1 = disable Transmitted IN Data Complete Interrupt.

• TX_PK_RDY/ERR_TRANS: TX Packet Ready/Transaction Error Interrupt Disable

0 = no effect.

1 = disable TX Packet Ready/Transaction Error Interrupt.

• RX_SETUP/ERR_FL_ISO: Received SETUP/Error Flow Interrupt Disable

0 = no effect.

1 = disable RX_SETUP/Error Flow ISO Interrupt.

• STALL_SNT/ERR_CRISO/ERR_NBTRA: Stall Sent/ISO CRC Error/Number of Transaction Error Interrupt Disable

0 = no effect.

1 = disable Stall Sent/Error CRC ISO/Error Number of Transaction Interrupt.

• NAK_IN/ERR_FLUSH: NAKIN/bank flush error Interrupt Disable

0 = no effect.

1 = disable NAKIN/ Bank Flush Error Interrupt.

• NAK_OUT: NAKOUT Interrupt Disable

0 = no effect.

1 = disable NAKOUT Interrupt.

• BUSY_BANK: Busy Bank Interrupt Disable

0 = no effect.

1 = disable Busy Bank Interrupt.

• SHRT_PCKT: Short Packet Interrupt Disable

For OUT endpoints:

0 = no effect.

1 = disable Short Packet Interrupt.

For IN endpoints:

Never automatically add a zero length packet at end of DMA transfer.

.

658
32015G–AVR32–09/09

AT32AP7001

32.7.20 USBA Endpoint Control Register

Name: EPTCTLx

Access Type: Read-only

• EPT_ENABL: Endpoint Enable

0 = If cleared, the endpoint is disabled according to the device configuration. Endpoint 0 should always be enabled after a
hardware or USBA bus reset and participate in the device configuration.

1 = If set, the endpoint is enabled according to the device configuration.

• AUTO_VALID: Packet Auto-Valid Enabled (Not for CONTROL Endpoints)

Set this bit to automatically validate the current packet and switch to the next bank for both IN and OUT endpoints.

For IN Transfer:

If this bit is set, then the EPTSTAx register TX_PK_RDY bit is set automatically when the current bank is full and at the
end of DMA buffer if the DMACONTROLx register END_B_EN bit is set.

The user may still set the EPTSTAx register TX_PK_RDY bit if the current bank is not full, unless the user wants to send
a Zero Length Packet by software.

For OUT Transfer:

If this bit is set, then the EPTSTAx register RX_BK_RDY bit is automatically reset for the current bank when the last
packet byte has been read from the bank FIFO or at the end of DMA buffer if the DMACONTROLx register END_B_EN
bit is set. For example, to truncate a padded data packet when the actual data transfer size is reached.

The user may still clear the EPTSTAx register RX_BK_RDY bit, for example, after completing a DMA buffer by software
if DMACONTROLx register END_B_EN bit was disabled or in order to cancel the read of the remaining data bank(s).

• INTDIS_DMA: Interrupt Disables DMA

If set, when an enabled endpoint-originated interrupt is triggered, the DMA request is disabled regardless of the IEN regis-
ter EPT_INT_x bit for this endpoint. Then, the firmware will have to clear or disable the interrupt source or clear this bit if
transfer completion is needed.

If the exception raised is associated with the new system bank packet, then the previous DMA packet transfer is normally
completed, but the new DMA packet transfer is not started (not requested).

If the exception raised is not associated to a new system bank packet (NAK_IN, NAK_OUT, ERR_FL_ISO...), then the
request cancellation may happen at any time and may immediately stop the current DMA transfer.

31 30 29 28 27 26 25 24

SHRT_PCKT – – – – – – –

23 22 21 20 19 18 17 16

– – – – – BUSY_BANK – –

15 14 13 12 11 10 9 8

NAK_OUT
NAK_IN/

ERR_FLUSH

STALL_SNT/
ERR_CRISO/
ERR_NBTRA

RX_SETUP/
ERR_FL_ISO

TX_PK_RDY/
ERR_TRANS

TX_COMPLT RX_BK_RDY ERR_OVFLW

7 6 5 4 3 2 1 0

MDATA_RX DATAX_RX – NYET_DIS INTDIS_DMA – AUTO_VALID EPT_ENABL

659
32015G–AVR32–09/09

AT32AP7001

This may be used, for example, to identify or prevent an erroneous packet to be transferred into a buffer or to complete a
DMA buffer by software after reception of a short packet, or to perform buffer truncation on ERR_FL_ISO interrupt for
adaptive rate.

• NYET_DIS: NYET Disable (Only for High Speed Bulk OUT endpoints)

0 = If clear, this bit lets the hardware handle the handshake response for the High Speed Bulk OUT transfer.

1 = If set, this bit forces an ACK response to the next High Speed Bulk OUT transfer instead of a NYET response.

Note: According to the Universal Serial Bus Specification, Rev 2.0 (8.5.1.1 NAK Responses to OUT/DATA During PING Protocol), a
NAK response to an HS Bulk OUT transfer is expected to be an unusual occurrence.

• DATAX_RX: DATAx Interrupt Enabled (Only for High Bandwidth Isochronous OUT endpoints)

0 = no effect.

1 = send an interrupt when a DATA2, DATA1 or DATA0 packet has been received meaning the whole microframe data
payload has been received.

• MDATA_RX: MDATA Interrupt Enabled (Only for High Bandwidth Isochronous OUT endpoints)

0 = no effect.

1 = send an interrupt when an MDATA packet has been received and so at least one packet of the microframe data pay-
load has been received.

• ERR_OVFLW: Overflow Error Interrupt Enabled

0 = Overflow Error Interrupt is masked.

1 = Overflow Error Interrupt is enabled.

• RX_BK_RDY: Received OUT Data Interrupt Enabled

0 = Received OUT Data Interrupt is masked.

1 = Received OUT Data Interrupt is enabled.

• TX_COMPLT: Transmitted IN Data Complete Interrupt Enabled

0 = Transmitted IN Data Complete Interrupt is masked.

1 = Transmitted IN Data Complete Interrupt is enabled.

• TX_PK_RDY/ERR_TRANS: TX Packet Ready/Transaction Error Interrupt Enabled

0 = TX Packet Ready/Transaction Error Interrupt is masked.

1 = TX Packet Ready/Transaction Error Interrupt is enabled.

Caution: Interrupt source is active as long as the corresponding EPTSTAx register TX_PK_RDY flag remains low. If
there are no more banks available for transmitting after the software has set EPTSTAx/TX_PK_RDY for the last trans-
mit packet, then the interrupt source remains inactive until the first bank becomes free again to transmit at
EPTSTAx/TX_PK_RDY hardware clear.

• RX_SETUP/ERR_FL_ISO: Received SETUP/Error Flow Interrupt Enabled

0 = Received SETUP/Error Flow Interrupt is masked.

1 = Received SETUP/Error Flow Interrupt is enabled.

660
32015G–AVR32–09/09

AT32AP7001

• STALL_SNT/ERR_CRISO/ERR_NBTRA: Stall Sent/ISO CRC Error/Number of Transaction Error Interrupt Enabled

0 = Stall Sent/ISO CRC error/number of Transaction Error Interrupt is masked.

1 = Stall Sent /ISO CRC error/number of Transaction Error Interrupt is enabled.

• NAK_IN/ERR_FLUSH: NAKIN/Bank Flush Error Interrupt Enabled

0 = NAKIN Interrupt is masked.

1 = NAKIN/Bank Flush Error Interrupt is enabled.

• NAK_OUT: NAKOUT Interrupt Enabled

0 = NAKOUT Interrupt is masked.

1 = NAKOUT Interrupt is enabled.

• BUSY_BANK: Busy Bank Interrupt Enabled

0 = BUSY_BANK Interrupt is masked.

1 = BUSY_BANK Interrupt is enabled.

For OUT endpoints: an interrupt is sent when all banks are busy.

For IN endpoints: an interrupt is sent when all banks are free.

• SHRT_PCKT: Short Packet Interrupt Enabled

For OUT endpoints: send an Interrupt when a Short Packet has been received.

0 = Short Packet Interrupt is masked.

1 = Short Packet Interrupt is enabled.

For IN endpoints: a Short Packet transmission is guaranteed upon end of the DMA Transfer, thus signaling a BULK or
INTERRUPT end of transfer or an end of isochronous (micro-)frame data, but only if the DMACONTROLx register
END_B_EN and EPTCTLx register AUTO_VALID bits are also set.

661
32015G–AVR32–09/09

AT32AP7001

32.7.21 USBA Endpoint Set Status Register

Name: EPTSETSTAx

Access Type: Write-only

• FRCESTALL: Stall Handshake Request Set

0 = no effect.

1 = set this bit to request a STALL answer to the host for the next handshake

Refer to chapters 8.4.5 (Handshake Packets) and 9.4.5 (Get Status) of the Universal Serial Bus Specification, Rev 2.0 for
more information on the STALL handshake.

• KILL_BANK: KILL Bank Set (for IN Endpoint)

0 = no effect.

1 = kill the last written bank.

• TX_PK_RDY: TX Packet Ready Set

0 = no effect.

1 = set this bit after a packet has been written into the endpoint FIFO for IN data transfers

– This flag is used to generate a Data IN transaction (device to host).

– Device firmware checks that it can write a data payload in the FIFO, checking that TX_PK_RDY is cleared.

– Transfer to the FIFO is done by writing in the “Buffer Address” register.

– Once the data payload has been transferred to the FIFO, the firmware notifies the USBA device setting
TX_PK_RDY to one.

– USBA bus transactions can start.

– TXCOMP is set once the data payload has been received by the host.

– Data should be written into the endpoint FIFO only after this bit has been cleared.

– Set this bit without writing data to the endpoint FIFO to send a Zero Length Packet.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – TX_PK_RDY – KILL_BANK –

7 6 5 4 3 2 1 0

– – FRCESTALL – – – – –

662
32015G–AVR32–09/09

AT32AP7001

32.7.22 USBA Endpoint Clear Status Register

Name: EPTCLRSTAx

Access Type: Write-only

• FRCESTALL: Stall Handshake Request Clear

0 = no effect.

1 = clear the STALL request. The next packets from host will not be STALLed.

• TOGGLESQ: Data Toggle Clear

0 = no effect.

1 = clear the PID data of the current bank

For OUT endpoints, the next received packet should be a DATA0.

For IN endpoints, the next packet will be sent with a DATA0 PID.

• RX_BK_RDY: Received OUT Data Clear

0 = no effect.

1 = clear the RX_BK_RDY flag of EPTSTAx.

• TX_COMPLT: Transmitted IN Data Complete Clear

0 = no effect.

1 = clear the TX_COMPLT flag of EPTSTAx.

• RX_SETUP/ERR_FL_ISO: Received SETUP/Error Flow Clear

0 = no effect.

1 = clear the RX_SETUP/ERR_FL_ISO flags of EPTSTAx.

• STALL_SNT/ERR_NBTRA: Stall Sent/Number of Transaction Error Clear

0 = no effect.

1 = clear the STALL_SNT/ERR_NBTRA flags of EPTSTAx.

• NAK_IN/ERR_FLUSH: NAKIN/Bank Flush Error Clear

0 = no effect.

1 = clear the NAK_IN/ERR_FLUSH flags of EPTSTAx.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

NAK_OUT
NAK_IN/

ERR_FLUSH
STALL_SNT/
ERR_NBTRA

RX_SETUP/
ERR_FL_ISO

– TX_COMPLT RX_BK_RDY –

7 6 5 4 3 2 1 0
– TOGGLESQ FRCESTALL – – – – –

663
32015G–AVR32–09/09

AT32AP7001

• NAK_OUT: NAKOUT Clear

0 = no effect.

1 = clear the NAK_OUT flag of EPTSTAx.

664
32015G–AVR32–09/09

AT32AP7001

32.7.23 USBA Endpoint Status Register

Name: EPTSTAx

Access Type: Read-only

• FRCESTALL: Stall Handshake Request

0 = no effect.

1= If set a STALL answer will be done to the host for the next handshake.

This bit is reset by hardware upon received SETUP.

• TOGGLESQ_STA: Toggle Sequencing

Toggle Sequencing:

IN endpoint: it indicates the PID Data Toggle that will be used for the next packet sent. This is not relative to the current
bank.

CONTROL and OUT endpoint:

These bits are set by hardware to indicate the PID data of the current bank:

Note 1: In OUT transfer, the Toggle information is meaningful only when the current bank is busy (Received OUT
Data = 1).

Note 2:These bits are updated for OUT transfer:

– a new data has been written into the current bank.

– the user has just cleared the Received OUT Data bit to switch to the next bank.

Note 3: For High Bandwidth Isochronous Out endpoint, it is recommended to check the EPTSTAx/ERR_TRANS bit to
know if the toggle sequencing is correct or not.

Note 4: This field is reset to DATA1 by the EPTCLRSTAx register TOGGLESQ bit, and by EPTCTLDISx (disable
endpoint).

31 30 29 28 27 26 25 24

SHRT_PCKT BYTE_COUNT

23 22 21 20 19 18 17 16

BYTE_COUNT BUSY_BANK_STA
CURRENT_BANK/

CONTROL_DIR

15 14 13 12 11 10 9 8

NAK_OUT
NAK_IN/

ERR_FLUSH

STALL_SNT/
ERR_CRISO/
ERR_NBTRA

RX_SETUP/
ERR_FL_ISO

TX_PK_RDY/
ERR_TRANS

TX_COMPLT
RX_BK_RDY/
KILL_BANK

ERR_OVFLW

7 6 5 4 3 2 1 0

TOGGLESQ_STA FRCESTALL – – – – –

00 Data0

01 Data1

10 Data2 (only for High Bandwidth Isochronous Endpoint)

11 MData (only for High Bandwidth Isochronous Endpoint)

665
32015G–AVR32–09/09

AT32AP7001

• ERR_OVFLW: Overflow Error

This bit is set by hardware when a new too-long packet is received.

Example: If the user programs an endpoint 64 bytes wide and the host sends 128 bytes in an OUT transfer, then the Over-
flow Error bit is set.

This bit is updated at the same time as the BYTE_COUNT field.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint) and by EPTCTLDISx (disable endpoint).

• RX_BK_RDY/KILL_BANK: Received OUT Data/KILL Bank

Received OUT Data: (For OUT endpoint or Control endpoint)

This bit is set by hardware after a new packet has been stored in the endpoint FIFO.

This bit is cleared by the device firmware after reading the OUT data from the endpoint.

For multi-bank endpoints, this bit may remain active even when cleared by the device firmware, this if an other packet has
been received meanwhile.

Hardware assertion of this bit may generate an interrupt if enabled by the EPTCTLx register RX_BK_RDY bit.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint) and by EPTCTLDISx (disable endpoint).

KILL Bank: (For IN endpoint)

– the bank is really cleared or the bank is sent, BUSY_BANK_STA is decremented.

– the bank is not cleared but sent on the IN transfer, TX_COMPLT

– the bank is not cleared because it was empty. The user should wait that this bit is cleared before trying to clear
another packet.

Note: “Kill a packet” may be refused if at the same time, an IN token is coming and the current packet is sent on the USBA
line. In this case, the TX_COMPLT bit is set. Take notice however, that if at least two banks are ready to be sent, there is
no problem to kill a packet even if an IN token is coming. In fact, in that case, the current bank is sent (IN transfer) and the
last bank is killed.

• TX_COMPLT: Transmitted IN Data Complete

This bit is set by hardware after an IN packet has been transmitted for isochronous endpoints and after it has been
accepted (ACK’ed) by the host for Control, Bulk and Interrupt endpoints.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint), and by EPTCTLDISx (disable endpoint).

• TX_PK_RDY/ERR_TRANS: TX Packet Ready/Transaction Error

TX Packet Ready:

This bit is cleared by hardware, as soon as the packet has been sent for isochronous endpoints, or after the host has
acknowledged the packet for Control, Bulk and Interrupt endpoints.

For Multi-bank endpoints, this bit may remain clear even after software is set if another bank is available to transmit.

Hardware clear of this bit may generate an interrupt if enabled by the EPTCTLx register TX_PK_RDY bit.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint), and by EPTCTLDISx (disable endpoint).

Transaction Error: (For high bandwidth isochronous OUT endpoints) (Read-Only)

This bit is set by hardware when a transaction error occurs inside one microframe.

If one toggle sequencing problem occurs among the n-transactions (n = 1, 2 or 3) inside a microframe, then this bit is still
set as long as the current bank contains one “bad” n-transaction. (see ”CURRENT_BANK/CONTROL_DIR: Current

666
32015G–AVR32–09/09

AT32AP7001

Bank/Control Direction” on page 667) As soon as the current bank is relative to a new “good” n-transactions, then this bit is
reset.

Note1: A transaction error occurs when the toggle sequencing does not respect the Universal Serial Bus Specification, Rev
2.0 (5.9.2 High Bandwidth Isochronous endpoints) (Bad PID, missing data....)

Note2: When a transaction error occurs, the user may empty all the “bad” transactions by clearing the Received OUT Data
flag (RX_BK_RDY).

If this bit is reset, then the user should consider that a new n-transaction is coming.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint), and by EPTCTLDISx (disable endpoint).

• RX_SETUP/ERR_FL_ISO: Received SETUP/Error Flow

Received SETUP: (for Control endpoint only)

This bit is set by hardware when a valid SETUP packet has been received from the host.

It is cleared by the device firmware after reading the SETUP data from the endpoint FIFO.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint), and by EPTCTLDISx (disable endpoint).

Error Flow: (for isochronous endpoint only)

This bit is set by hardware when a transaction error occurs.

– Isochronous IN transaction is missed, the micro has no time to fill the endpoint (underflow).

– Isochronous OUT data is dropped because the bank is busy (overflow).

This bit is reset by EPTRST register RST_EPT_x (reset endpoint) and by EPTCTLDISx (disable endpoint).

• STALL_SNT/ERR_CRISO/ERR_NBTRA: Stall Sent/CRC ISO Error/Number of Transaction Error

STALL_SNT: (for Control, Bulk and Interrupt endpoints)

This bit is set by hardware after a STALL handshake has been sent as requested by the EPTSTAx register FRCESTALL
bit.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint) and by EPTCTLDISx (disable endpoint).

ERR_CRISO: (for Isochronous OUT endpoints) (Read-only)

This bit is set by hardware if the last received data is corrupted (CRC error on data).

This bit is updated by hardware when new data is received (Received OUT Data bit).

ERR_NBTRA: (for High Bandwidth Isochronous IN endpoints)

This bit is set at the end of a microframe in which at least one data bank has been transmitted, if less than the number of
transactions per micro-frame banks (EPTCFGx register NB_TRANS) have been validated for transmission inside this
microframe.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint) and by EPTCTLDISx (disable endpoint).

• NAK_IN/ERR_FLUSH: NAK IN/Bank Flush Error

NAK_IN:

This bit is set by hardware when a NAK handshake has been sent in response to an IN request from the Host.

This bit is cleared by software.

ERR_FLUSH: (for High Bandwidth Isochronous IN endpoints)

This bit is set when flushing unsent banks at the end of a microframe.

667
32015G–AVR32–09/09

AT32AP7001

This bit is reset by EPTRST register RST_EPT_x (reset endpoint) and by EPT_CTL_DISx (disable endpoint).

• NAK_OUT: NAK OUT

This bit is set by hardware when a NAK handshake has been sent in response to an OUT or PING request from the Host.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint) and by EPT_CTL_DISx (disable endpoint).

• CURRENT_BANK/CONTROL_DIR: Current Bank/Control Direction

Current Bank: (all endpoints except Control endpoint)

These bits are set by hardware to indicate the number of the current bank.

Note: the current bank is updated each time the user:

– Sets the TX Packet Ready bit to prepare the next IN transfer and to switch to the next bank.

– Clears the received OUT data bit to access the next bank.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint) and by EPTCTLDISx (disable endpoint).

Control Direction: (for Control endpoint only)

0 = a Control Write is requested by the Host.

1 = a Control Read is requested by the Host.

Note1: This bit corresponds with the 7th bit of the bmRequestType (Byte 0 of the Setup Data).

Note2: This bit is updated after receiving new setup data.

• BUSY_BANK_STA: Busy Bank Number

These bits are set by hardware to indicate the number of busy banks.

IN endpoint: it indicates the number of busy banks filled by the user, ready for IN transfer.

OUT endpoint: it indicates the number of busy banks filled by OUT transaction from the Host.

• BYTE_COUNT: USBA Byte Count

Byte count of a received data packet.

This field is incremented after each write into the endpoint (to prepare an IN transfer).

This field is decremented after each reading into the endpoint (OUT transfer).

This field is also updated at RX_BK_RDY flag clear with the next bank.

This field is also updated at TX_PK_RDY flag set with the next bank.

00 Bank 0 (or single bank)

01 Bank 1

10 Bank 2

11 Invalid

00 All banks are free

01 1 busy bank

10 2 busy banks

11 3 busy banks

668
32015G–AVR32–09/09

AT32AP7001

This field is reset by RST_EPT_x of EPTRST register.

• SHRT_PCKT: Short Packet

An OUT Short Packet is detected when the receive byte count is less than the configured EPTCFGx register EPT_Size.

This bit is updated at the same time as the BYTE_COUNT field.

This bit is reset by EPTRST register RST_EPT_x (reset endpoint) and by EPTCTLDISx (disable endpoint).

669
32015G–AVR32–09/09

AT32AP7001

32.7.24 USBA DMA Channel Transfer Descriptor

The DMA channel transfer descriptor is loaded from the memory.

Be careful with the alignment of this buffer.

The structure of the DMA channel transfer descriptor is defined by three parameters as described below:

Offset 0:

The address must be aligned: 0xXXXX0

Next Descriptor Address Register: DMANXTDSCx

Offset 4:

The address must be aligned: 0xXXXX4

DMA Channelx Address Register: DMAADDRESSx

Offset 8:

The address must be aligned: 0xXXXX8

DMA Channelx Control Register: DMACONTROLx

To use the DMA channel transfer descriptor, fill the structures with the correct value (as described in the following pages).

Then write directly in DMANXTDSCx the address of the descriptor to be used first.

Then write 1 in the LDNXT_DSC bit of DMACONTROLx (load next channel transfer descriptor). The descriptor is automat-
ically loaded upon Endpointx request for packet transfer.

670
32015G–AVR32–09/09

AT32AP7001

32.7.25 USBA DMA Next Descriptor Address Register

Name: DMANXTDSCx

Access Type: Read/Write

• NXT_DSC_ADD

This field points to the next channel descriptor to be processed. This channel descriptor must be aligned, so bits 0 to 3 of
the address must be equal to zero.

31 30 29 28 27 26 25 24

NXT_DSC_ADD

23 22 21 20 19 18 17 16

NXT_DSC_ADD

15 14 13 12 11 10 9 8

NXT_DSC_ADD

7 6 5 4 3 2 1 0

NXT_DSC_ADD

671
32015G–AVR32–09/09

AT32AP7001

32.7.26 USBA DMA Channelx Address Register

Name: DMAADDRESSx

Access Type: Read/Write

• BUFF_ADD

This field determines the HSB bus starting address of a DMA channel transfer.

Channel start and end addresses may be aligned on any byte boundary.

The firmware may write this field only when the DMASTATUS register CHANN_ENB bit is clear.

This field is updated at the end of the address phase of the current access to the HSB bus. It is incrementing of the access
byte width. The access width is 4 bytes (or less) at packet start or end, if the start or end address is not aligned on a word
boundary.

The packet start address is either the channel start address or the next channel address to be accessed in the channel
buffer.

The packet end address is either the channel end address or the latest channel address accessed in the channel buffer.

The channel start address is written by software or loaded from the descriptor, whereas the channel end address is either
determined by the end of buffer or the USBA device, USB end of transfer if the DMACONTROLx register END_TR_EN bit
is set.

31 30 29 28 27 26 25 24

BUFF_ADD

23 22 21 20 19 18 17 16

BUFF_ADD

15 14 13 12 11 10 9 8

BUFF_ADD

7 6 5 4 3 2 1 0

BUFF_ADD

672
32015G–AVR32–09/09

AT32AP7001

32.7.27 USBA DMA Channelx Control Register

Name: DMACONTROLx

Access Type: Read/Write

• CHANN_ENB (Channel Enable Command)

0 = DMA channel is disabled at and no transfer will occur upon request. This bit is also cleared by hardware when the chan-
nel source bus is disabled at end of buffer.

If the DMACONTROL register LDNXT_DSC bit has been cleared by descriptor loading, the firmware will have to set the
corresponding CHANN_ENB bit to start the described transfer, if needed.

If the DMACONTROL register LDNXT_DSC bit is cleared, the channel is frozen and the channel registers may then be
read and/or written reliably as soon as both DMASTATUS register CHANN_ENB and CHANN_ACT flags read as 0.

If a channel request is currently serviced when this bit is cleared, the DMA FIFO buffer is drained until it is empty, then the
DMASTATUS register CHANN_ENB bit is cleared.

If the LDNXT_DSC bit is set at or after this bit clearing, then the currently loaded descriptor is skipped (no data transfer
occurs) and the next descriptor is immediately loaded.

1 = DMASTATUS register CHANN_ENB bit will be set, thus enabling DMA channel data transfer. Then any pending
request will start the transfer. This may be used to start or resume any requested transfer.

• LDNXT_DSC: Load Next Channel Transfer Descriptor Enable (Command)

0 = no channel register is loaded after the end of the channel transfer.

1 = the channel controller loads the next descriptor after the end of the current transfer, i.e. when the DMASTA-
TUS/CHANN_ENB bit is reset.

If the DMA CONTROL/CHANN_ENB bit is cleared, the next descriptor is immediately loaded upon transfer request.

DMA Channel Control Command Summary

• END_TR_EN: End of Transfer Enable (Control)

31 30 29 28 27 26 25 24

BUFF_LENGTH

23 22 21 20 19 18 17 16

BUFF_LENGTH

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

BURST_LCK DESC_LD_IT END_BUFFIT END_TR_IT END_B_EN END_TR_EN LDNXT_DSC CHANN_ENB

LDNXT_DSC CHANN_ENB Description

0 0 Stop now

0 1 Run and stop at end of buffer

1 0 Load next descriptor now

1 1 Run and link at end of buffer

673
32015G–AVR32–09/09

AT32AP7001

Used for OUT transfers only.

0 = USB end of transfer is ignored.

1 = USBA device can put an end to the current buffer transfer.

When set, a BULK or INTERRUPT short packet or the last packet of an ISOCHRONOUS (micro) frame (DATAX) will close
the current buffer and the DMASTATUSx register END_TR_ST flag will be raised.

This is intended for USBA non-prenegotiated end of transfer (BULK or INTERRUPT) or ISOCHRONOUS microframe data
buffer closure.

• END_B_EN: End of Buffer Enable (Control)

0 = DMA Buffer End has no impact on USB packet transfer.

1 = endpoint can validate the packet (according to the values programmed in the EPTCTLx register AUTO_VALID and
SHRT_PCKT fields) at DMA Buffer End, i.e. when the DMASTATUS register BUFF_COUNT reaches 0.

This is mainly for short packet IN validation initiated by the DMA reaching end of buffer, but could be used for OUT packet
truncation (discarding of unwanted packet data) at the end of DMA buffer.

• END_TR_IT: End of Transfer Interrupt Enable

0 = USBA device initiated buffer transfer completion will not trigger any interrupt at STATUSx/END_TR_ST rising.

1 = an interrupt is sent after the buffer transfer is complete, if the USBA device has ended the buffer transfer.

Use when the receive size is unknown.

• END_BUFFIT: End of Buffer Interrupt Enable

0 = DMA_STATUSx/END_BF_ST rising will not trigger any interrupt.

1 = an interrupt is generated when the DMASTATUSx register BUFF_COUNT reaches zero.

• DESC_LD_IT: Descriptor Loaded Interrupt Enable

0 = DMASTATUSx/DESC_LDST rising will not trigger any interrupt.

1 = an interrupt is generated when a descriptor has been loaded from the bus.

• BURST_LCK: Burst Lock Enable

0 = the DMA never locks bus access.

1 = USB packets HSB data bursts are locked for maximum optimization of the bus bandwidth usage and maximization of
fly-by HSB burst duration.

• BUFF_LENGTH: Buffer Byte Length (Write-only)

This field determines the number of bytes to be transferred until end of buffer. The maximum channel transfer size (64 KB)
is reached when this field is 0 (default value). If the transfer size is unknown, this field should be set to 0, but the transfer
end may occur earlier under USBA device control.

When this field is written, The DMASTATUSx register BUFF_COUNT field is updated with the write value.

Note: Bits [31:2] are only writable when issuing a channel Control Command other than “Stop Now”.

Note: For reliability it is highly recommended to wait for both DMASTATUSx register CHAN_ACT and CHAN_ENB flags are at 0, thus
ensuring the channel has been stopped before issuing a command other than “Stop Now”.

674
32015G–AVR32–09/09

AT32AP7001

32.7.28 USBA DMA Channelx Status Register

Name: DMASTATUSx

Access Type: Read/Write

• CHANN_ENB: Channel Enable Status

0 = if cleared, the DMA channel no longer transfers data, and may load the next descriptor if the DMACONTROLx register
LDNXT_DSC bit is set.

When any transfer is ended either due to an elapsed byte count or a USBA device initiated transfer end, this bit is automat-
ically reset.

1 = if set, the DMA channel is currently enabled and transfers data upon request.

This bit is normally set or cleared by writing into the DMACONTROLx register CHANN_ENB bit field either by software or
descriptor loading.

If a channel request is currently serviced when the DMACONTROLx register CHANN_ENB bit is cleared, the DMA FIFO
buffer is drained until it is empty, then this status bit is cleared.

• CHANN_ACT: Channel Active Status

0 = the DMA channel is no longer trying to source the packet data.

When a packet transfer is ended this bit is automatically reset.

1 = the DMA channel is currently trying to source packet data, i.e. selected as the highest-priority requesting channel.

When a packet transfer cannot be completed due to an END_BF_ST, this flag stays set during the next channel descriptor
load (if any) and potentially until USBA packet transfer completion, if allowed by the new descriptor.

• END_TR_ST: End of Channel Transfer Status

0 = cleared automatically when read by software.

1 = set by hardware when the last packet transfer is complete, if the USBA device has ended the transfer.

Valid until the CHANN_ENB flag is cleared at the end of the next buffer transfer.

• END_BF_ST: End of Channel Buffer Status

0 = cleared automatically when read by software.

1 = set by hardware when the BUFF_COUNT downcount reach zero.

Valid until the CHANN_ENB flag is cleared at the end of the next buffer transfer.

31 30 29 28 27 26 25 24

BUFF_COUNT

23 22 21 20 19 18 17 16

BUFF_COUNT

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– DESC_LDST END_BF_ST END_TR_ST – – CHANN_ACT CHANN_ENB

675
32015G–AVR32–09/09

AT32AP7001

• DESC_LDST: Descriptor Loaded Status

0 = cleared automatically when read by software.

1 = set by hardware when a descriptor has been loaded from the system bus.

Valid until the CHANN_ENB flag is cleared at the end of the next buffer transfer.

• BUFF_COUNT: Buffer Byte Count

This field determines the current number of bytes still to be transferred for this buffer.

This field is decremented from the HSB source bus access byte width at the end of this bus address phase.

The access byte width is 4 by default, or less, at DMA start or end, if the start or end address is not aligned on a word
boundary.

At the end of buffer, the DMA accesses the USBA device only for the number of bytes needed to complete it.

This field value is reliable (stable) only if the channel has been stopped or frozen (EPTCTLx register NT_DIS_DMA bit is
used to disable the channel request) and the channel is no longer active CHANN_ACT flag is 0.

Note: For OUT endpoints, if the receive buffer byte length (BUFF_LENGTH) has been defaulted to zero because the USB transfer
length is unknown, the actual buffer byte length received will be 0x10000-BUFF_COUNT.

676
32015G–AVR32–09/09

AT32AP7001

33. Timer/Counter (TC)

Rev: 2.0.0.1

33.1 Features

• Three 16-bit Timer Counter channels
• A wide range of functions including:

– Frequency measurement
– Event counting
– Interval measurement
– Pulse generation
– Delay timing
– Pulse width modulation
– Up/down capabilities

• Each channel is user-configurable and contains:
– Three external clock inputs
– Five internal clock inputs
– Two multi-purpose input/output signals

• Internal interrupt signal
• Two global registers that act on all three TC channels
• Peripheral event input on all A lines in capture mode

33.2 Overview

The Timer Counter (TC) includes three identical 16-bit Timer Counter channels.

Each channel can be independently programmed to perform a wide range of functions including
frequency measurement, event counting, interval measurement, pulse generation, delay timing,
and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs, and two multi-purpose
input/output signals which can be configured by the user. Each channel drives an internal inter-
rupt signal which can be programmed to generate processor interrupts.

The TC block has two global registers which act upon all three TC channels.

The Block Control Register (BCR) allows the three channels to be started simultaneously with
the same instruction.

The Block Mode Register (BMR) defines the external clock inputs for each channel, allowing
them to be chained.

677
32015G–AVR32–09/09

AT32AP7001

33.3 Block Diagram

Figure 33-1. TC Block Diagram

33.4 I/O Lines Description

33.5 Product Dependencies

In order to use this module, other parts of the system must be configured correctly, as described
below.

33.5.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with I/O lines.
The user must first program the I/O Controller to assign the TC pins to their peripheral functions.

 I/O
Controller

TC2XC2S

INT0

INT1

INT2

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1

TIOA2

TIOA0

TIOA2

TIOA1

Interrupt
Controller

CLK0
CLK1
CLK2

A0
B0

A1
B1

A2
B2

Timer Count er

TIOB

TIOA

TIOB

SYNC

TIMER_CLOCK1

TIOA

SYNC

SYNC

TIOA

TIOB

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC1

XC0

XC0

XC2

XC1

XC0

XC1

XC2

Timer/Counter
Channel 2

Timer/Counter
Channel 1

Timer/Counter
Channel 0

TC1XC1S

TC0XC0S

TIOA0

Table 33-1. I/O Lines Description

Pin Name Description Type

CLK0-CLK2 External Clock Input Input

A0-A2 I/O Line A Input/Output

B0-B2 I/O Line B Input/Output

678
32015G–AVR32–09/09

AT32AP7001

When using the TIOA lines as inputs the user must make sure that no peripheral events are gen-
erated on the line. Refer to the Peripheral Event System chapter for details.

33.5.2 Power Management

If the CPU enters a sleep mode that disables clocks used by the TC, the TC will stop functioning
and resume operation after the system wakes up from sleep mode.

33.5.3 Clocks

The clock for the TC bus interface (CLK_TC) is generated by the Power Manager. This clock is
enabled at reset, and can be disabled in the Power Manager. It is recommended to disable the
TC before disabling the clock, to avoid freezing the TC in an undefined state.

33.5.4 Interrupts

The TC interrupt request line is connected to the interrupt controller. Using the TC interrupt
requires the interrupt controller to be programmed first.

33.5.5 Peripheral Events

The TC peripheral events are connected via the Peripheral Event System. Refer to the Periph-
eral Event System chapter for details.

33.5.6 Debug Operation

The Timer Counter clocks are frozen during debug operation, unless the OCD system keeps
peripherals running in debug operation.

33.6 Functional Description

33.6.1 TC Description

The three channels of the Timer Counter are independent and identical in operation. The regis-
ters for channel programming are listed in Figure 33-3 on page 693.

33.6.1.1 Channel I/O Signals

As described in Figure 33-1 on page 677, each Channel has the following I/O signals.

33.6.1.2 16-bit counter

Each channel is organized around a 16-bit counter. The value of the counter is incremented at
each positive edge of the selected clock. When the counter has reached the value 0xFFFF and
passes to 0x0000, an overflow occurs and the Counter Overflow Status bit in the Channel n Sta-
tus Register (SRn.COVFS) is set.

Table 33-2. Channel I/O Signals Description

Block/Channel Signal Name Description

Channel Signal

XC0, XC1, XC2 External Clock Inputs

TIOA
Capture mode: Timer Counter Input
Waveform mode: Timer Counter Output

TIOB
Capture mode: Timer Counter Input
Waveform mode: Timer Counter Input/Output

INT Interrupt Signal Output

SYNC Synchronization Input Signal

679
32015G–AVR32–09/09

AT32AP7001

The current value of the counter is accessible in real time by reading the Channel n Counter
Value Register (CVn). The counter can be reset by a trigger. In this case, the counter value
passes to 0x0000 on the next valid edge of the selected clock.

33.6.1.3 Clock selection

At block level, input clock signals of each channel can either be connected to the external inputs
TCLK0, TCLK1 or TCLK2, or be connected to the configurable I/O signals A0, A1 or A2 for
chaining by writing to the BMR register. See Figure 33-2 on page 679.

Each channel can independently select an internal or external clock source for its counter:

• Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3,
TIMER_CLOCK4, TIMER_CLOCK5. See the Module Configuration Chapter for details about
the connection of these clock sources.

• External clock signals: XC0, XC1 or XC2. See the Module Configuration Chapter for details
about the connection of these clock sources.

This selection is made by the Clock Selection field in the Channel n Mode Register
(CMRn.TCCLKS).

The selected clock can be inverted with the Clock Invert bit in CMRn (CMRn.CLKI). This allows
counting on the opposite edges of the clock.

The burst function allows the clock to be validated when an external signal is high. The Burst
Signal Selection field in the CMRn register (CMRn.BURST) defines this signal.

Note: In all cases, if an external clock is used, the duration of each of its levels must be longer than the
CLK_TC period. The external clock frequency must be at least 2.5 times lower than the CLK_TC.

Figure 33-2. Clock Selection

TIMER_CLOCK5

XC2

TCCLKS

CLKI

BURST

1

Selected
Clock

XC1

XC0

TIMER_CLOCK4

TIMER_CLOCK3

TIMER_CLOCK2

TIMER_CLOCK1

680
32015G–AVR32–09/09

AT32AP7001

33.6.1.4 Clock control

The clock of each counter can be controlled in two different ways: it can be enabled/disabled
and started/stopped. See Figure 33-3 on page 680.

• The clock can be enabled or disabled by the user by writing to the Counter Clock
Enable/Disable Command bits in the Channel n Clock Control Register (CCRn.CLKEN and
CCRn.CLKDIS). In Capture mode it can be disabled by an RB load event if the Counter Clock
Disable with RB Loading bit in CMRn is written to one (CMRn.LDBDIS). In Waveform mode, it
can be disabled by an RC Compare event if the Counter Clock Disable with RC Compare bit in
CMRn is written to one (CMRn.CPCDIS). When disabled, the start or the stop actions have no
effect: only a CLKEN command in CCRn can re-enable the clock. When the clock is enabled,
the Clock Enabling Status bit is set in SRn (SRn.CLKSTA).

• The clock can also be started or stopped: a trigger (software, synchro, external or compare)
always starts the clock. In Capture mode the clock can be stopped by an RB load event if the
Counter Clock Stopped with RB Loading bit in CMRn is written to one (CMRn.LDBSTOP). In
Waveform mode it can be stopped by an RC compare event if the Counter Clock Stopped with
RC Compare bit in CMRn is written to one (CMRn.CPCSTOP). The start and the stop
commands have effect only if the clock is enabled.

Figure 33-3. Clock Control

33.6.1.5 TC operating modes

Each channel can independently operate in two different modes:

• Capture mode provides measurement on signals.

• Waveform mode provides wave generation.

The TC operating mode selection is done by writing to the Wave bit in the CCRn register
(CCRn.WAVE).

In Capture mode, TIOA and TIOB are configured as inputs.

Q S
R

S

R

Q

CLKSTA CLKEN CLKDIS

Stop
Event

Disable
Counter

Clock

Selected
Clock Trigger

Event

681
32015G–AVR32–09/09

AT32AP7001

In Waveform mode, TIOA is always configured to be an output and TIOB is an output if it is not
selected to be the external trigger.

33.6.1.6 Trigger

A trigger resets the counter and starts the counter clock. Three types of triggers are common to
both modes, and a fourth external trigger is available to each mode.

The following triggers are common to both modes:

• Software Trigger: each channel has a software trigger, available by writing a one to the
Software Trigger Command bit in CCRn (CCRn.SWTRG).

• SYNC: each channel has a synchronization signal SYNC. When asserted, this signal has the
same effect as a software trigger. The SYNC signals of all channels are asserted
simultaneously by writing a one to the Synchro Command bit in the BCR register (BCR.SYNC).

• Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the
counter value matches the RC value if the RC Compare Trigger Enable bit in CMRn
(CMRn.CPCTRG) is written to one.

The channel can also be configured to have an external trigger. In Capture mode, the external
trigger signal can be selected between TIOA and TIOB. In Waveform mode, an external event
can be programmed to be one of the following signals: TIOB, XC0, XC1, or XC2. This external
event can then be programmed to perform a trigger by writing a one to the External Event Trig-
ger Enable bit in CMRn (CMRn.ENETRG).

If an external trigger is used, the duration of the pulses must be longer than the CLK_TC period
in order to be detected.

Regardless of the trigger used, it will be taken into account at the following active edge of the
selected clock. This means that the counter value can be read differently from zero just after a
trigger, especially when a low frequency signal is selected as the clock.

33.6.1.7 Peripheral events on TIOA inputs

The TIOA input lines are ored internally with peripheral events from the Peripheral Event Sys-
tem. To capture using events the user must ensure that the corresponding pin functions for the
TIOA line are disabled. When capturing on the external TIOA pin the user must ensure that no
peripheral events are generated on this pin.

33.6.2 Capture Operating Mode

This mode is entered by writing a zero to the CMRn.WAVE bit.

Capture mode allows the TC channel to perform measurements such as pulse timing, fre-
quency, period, duty cycle and phase on TIOA and TIOB signals which are considered as
inputs.

Figure 33-4 on page 683 shows the configuration of the TC channel when programmed in Cap-
ture mode.

33.6.2.1 Capture registers A and B

Registers A and B (RA and RB) are used as capture registers. This means that they can be
loaded with the counter value when a programmable event occurs on the signal TIOA.

682
32015G–AVR32–09/09

AT32AP7001

The RA Loading Selection field in CMRn (CMRn.LDRA) defines the TIOA edge for the loading of
the RA register, and the RB Loading Selection field in CMRn (CMRn.LDRB) defines the TIOA
edge for the loading of the RB register.

RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since
the last loading of RA.

RB is loaded only if RA has been loaded since the last trigger or the last loading of RB.

Loading RA or RB before the read of the last value loaded sets the Load Overrun Status bit in
SRn (SRn.LOVRS). In this case, the old value is overwritten.

33.6.2.2 Trigger conditions

In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trig-
ger can be defined.

The TIOA or TIOB External Trigger Selection bit in CMRn (CMRn.ABETRG) selects TIOA or
TIOB input signal as an external trigger. The External Trigger Edge Selection bit in CMRn
(CMRn.ETREDG) defines the edge (rising, falling or both) detected to generate an external trig-
ger. If CMRn.ETRGEDG is zero (none), the external trigger is disabled.

683
32015G–AVR32–09/09

AT32AP7001

Figure 33-4. Capture Mode

TI
M

ER
_C

LO
C

K1

XC
0

XC
1

XC
2

TC
C

LK
S

C
LK

I

Q
S R

S R

Q

C
LK

S
TA

C
LK

EN
C

LK
D

IS

B
U

R
ST

TI
O

B

C
ap

tu
re

R
eg

is
te

r A
C

om
pa

re
 R

C
 =

16
-b

it
C

ou
nt

er

AB
ET

R
G

S
W

TR
G

ET
R

G
E

D
G

C
P

C
TR

G

IMR

Tr
ig

LDRBS

LDRAS

ETRGS

SR

LOVRS

COVFS

S
YN

C

1

M
TI

O
B

TI
O

A

M
TI

O
A

LD
RA

LD
B

ST
O

P

If
R

A
is

 n
ot

 L
oa

de
d

or
 R

B
is

 L
oa

de
d

If
R

A
is

 L
oa

de
d

LD
B

D
IS

CPCS

IN
T

Ed
ge

De
te

ct
or

LD
R

B

C
LK

O
V

F
R

ES
ET

Ti
m

er
/C

ou
nt

er
 C

ha
nn

el

E
dg

e
D

et
ec

to
r

E
dg

e
D

et
ec

to
r

C
ap

tu
re

R
eg

is
te

r B

R
eg

is
te

r C

TI
M

ER
_C

LO
C

K2
TI

M
E

R
_C

LO
C

K3
TI

M
E

R
_C

LO
C

K4
TI

M
E

R
_C

LO
C

K5

684
32015G–AVR32–09/09

AT32AP7001

33.6.3 Waveform Operating Mode

Waveform operating mode is entered by writing a one to the CMRn.WAVE bit.

In Waveform operating mode the TC channel generates one or two PWM signals with the same
frequency and independently programmable duty cycles, or generates different types of one-
shot or repetitive pulses.

In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used
as an external event.

Figure 33-5 on page 685 shows the configuration of the TC channel when programmed in
Waveform operating mode.

33.6.3.1 Waveform selection

Depending on the Waveform Selection field in CMRn (CMRn.WAVSEL), the behavior of CVn
varies.

With any selection, RA, RB and RC can all be used as compare registers.

RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB output
(if correctly configured) and RC Compare is used to control TIOA and/or TIOB outputs.

685
32015G–AVR32–09/09

AT32AP7001

Figure 33-5. Waveform Mode

TC
C

LK
S

C
LK

I

Q
S R

S R

Q

C
LK

S
TA

C
LK

E
N

C
LK

D
IS

C
P

C
D

IS

BU
R

S
T

TI
O

B

R
eg

is
te

r A

C
om

pa
re

 R
C

 =

C
PC

S
TO

P

16
-b

it
C

ou
nt

er

EE
VT

EE
V

TE
D

G

S
YN

C

SW
TR

G

E
NE

TR
G

W
A

VS
E

L

IMR
Tr

ig

A
C

P
C

AC
P

A

AE
E

VT

AS
W

TR
G

BC
P

C

B
C

P
B

B
E

E
VT

B
SW

TR
G

TI
O

A

M
TI

O
A

TI
O

B

M
TI

O
B

CPAS

COVFS

ETRGS

SR

CPCS

CPBS
C

LK
O

V
F

R
E

SE
T

OutputController OutputController

IN
T

1

Ed
ge

De
te

ct
or

Ti
m

er
/C

ou
nt

er
 C

ha
nn

el

TI
M

E
R

_C
LO

C
K1

XC
0

XC
1

XC
2

W
AV

SE
L

R
eg

is
te

r B
R

eg
is

te
r C

C
om

pa
re

 R
B

 =
C

om
pa

re
 R

A
 =

TI
M

E
R

_C
LO

C
K2

TI
M

ER
_C

LO
C

K
3

TI
M

ER
_C

LO
C

K
4

TI
M

ER
_C

LO
C

K
5

686
32015G–AVR32–09/09

AT32AP7001

33.6.3.2 WAVSEL = 0

When CMRn.WAVSEL is zero, the value of CVn is incremented from 0 to 0xFFFF. Once
0xFFFF has been reached, the value of CVn is reset. Incrementation of CVn starts again and
the cycle continues. See Figure 33-6 on page 686.

An external event trigger or a software trigger can reset the value of CVn. It is important to note
that the trigger may occur at any time. See Figure 33-7 on page 687.

RC Compare cannot be programmed to generate a trigger in this configuration. At the same
time, RC Compare can stop the counter clock (CMRn.CPCSTOP = 1) and/or disable the counter
clock (CMRn.CPCDIS = 1).

Figure 33-6. WAVSEL= 0 Without Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with
0xFFFF

0xFFFF

Waveform Examples

687
32015G–AVR32–09/09

AT32AP7001

Figure 33-7. WAVSEL= 0 With Trigger

33.6.3.3 WAVSEL = 2

When CMRn.WAVSEL is two, the value of CVn is incremented from zero to the value of RC,
then automatically reset on a RC Compare. Once the value of CVn has been reset, it is then
incremented and so on. See Figure 33-8 on page 688.

It is important to note that CVn can be reset at any time by an external event or a software trig-
ger if both are programmed correctly. See Figure 33-9 on page 688.

In addition, RC Compare can stop the counter clock (CMRn.CPCSTOP) and/or disable the
counter clock (CMRn.CPCDIS = 1).

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter cleared by trigger

688
32015G–AVR32–09/09

AT32AP7001

Figure 33-8. WAVSEL = 2 Without Trigger

Figure 33-9. WAVSEL = 2 With Trigger

33.6.3.4 WAVSEL = 1

When CMRn.WAVSEL is one, the value of CVn is incremented from 0 to 0xFFFF. Once 0xFFFF
is reached, the value of CVn is decremented to 0, then re-incremented to 0xFFFF and so on.
See Figure 33-10 on page 689.

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match
with RC

0xFFFF

Waveform Examples

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

Counter cleared by trigger

689
32015G–AVR32–09/09

AT32AP7001

A trigger such as an external event or a software trigger can modify CVn at any time. If a trigger
occurs while CVn is incrementing, CVn then decrements. If a trigger is received while CVn is
decrementing, CVn then increments. See Figure 33-11 on page 689.

RC Compare cannot be programmed to generate a trigger in this configuration.

At the same time, RC Compare can stop the counter clock (CMRn.CPCSTOP = 1) and/or dis-
able the counter clock (CMRn.CPCDIS = 1).

Figure 33-10. WAVSEL = 1 Without Trigger

Figure 33-11. WAVSEL = 1 With Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match
with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter decremented by trigger

RC

RB

RA

Counter incremented by trigger

690
32015G–AVR32–09/09

AT32AP7001

33.6.3.5 WAVSEL = 3

When CMRn.WAVSEL is three, the value of CVn is incremented from zero to RC. Once RC is
reached, the value of CVn is decremented to zero, then re-incremented to RC and so on. See
Figure 33-12 on page 690.

A trigger such as an external event or a software trigger can modify CVn at any time. If a trigger
occurs while CVn is incrementing, CVn then decrements. If a trigger is received while CVn is
decrementing, CVn then increments. See Figure 33-13 on page 691.

RC Compare can stop the counter clock (CMRn.CPCSTOP = 1) and/or disable the counter clock
(CMRn.CPCDIS = 1).

Figure 33-12. WAVSEL = 3 Without Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC
0xFFFF

Waveform Examples

691
32015G–AVR32–09/09

AT32AP7001

Figure 33-13. WAVSEL = 3 With Trigger

33.6.3.6 External event/trigger conditions

An external event can be programmed to be detected on one of the clock sources (XC0, XC1,
XC2) or TIOB. The external event selected can then be used as a trigger.

The External Event Selection field in CMRn (CMRn.EEVT) selects the external trigger. The
External Event Edge Selection field in CMRn (CMRn.EEVTEDG) defines the trigger edge for
each of the possible external triggers (rising, falling or both). If CMRn.EEVTEDG is written to
zero, no external event is defined.

If TIOB is defined as an external event signal (CMRn.EEVT = 0), TIOB is no longer used as an
output and the compare register B is not used to generate waveforms and subsequently no
IRQs. In this case the TC channel can only generate a waveform on TIOA.

When an external event is defined, it can be used as a trigger by writing a one to the
CMRn.ENETRG bit.

As in Capture mode, the SYNC signal and the software trigger are also available as triggers. RC
Compare can also be used as a trigger depending on the CMRn.WAVSEL field.

33.6.3.7 Output controller

The output controller defines the output level changes on TIOA and TIOB following an event.
TIOB control is used only if TIOB is defined as output (not as an external event).

The following events control TIOA and TIOB:

• software trigger

• external event

• RC compare

RA compare controls TIOA and RB compare controls TIOB. Each of these events can be pro-
grammed to set, clear or toggle the output as defined in the following fields in CMRn:

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match
with RC

0xFFFF

Waveform Examples

RC

RB

RA

Counter decremented by trigger

Counter incremented by trigger

692
32015G–AVR32–09/09

AT32AP7001

• RC Compare Effect on TIOB (CMRn.BCPC)

• RB Compare Effect on TIOB (CMRn.BCPB)

• RC Compare Effect on TIOA (CMRn.ACPC)

• RA Compare Effect on TIOA (CMRn.ACPA)

693
32015G–AVR32–09/09

AT32AP7001

33.7 User Interface

Notes: 1. Read-only if CMRn.WAVE is zero

Table 33-3. TC Register Memory Map

Offset Register Register Name Access Reset

0x00 Channel 0 Control Register CCR0 Write-only 0x00000000

0x04 Channel 0 Mode Register CMR0 Read/Write 0x00000000

0x10 Channel 0 Counter Value CV0 Read-only 0x00000000

0x14 Channel 0 Register A RA0 Read/Write(1) 0x00000000

0x18 Channel 0 Register B RB0 Read/Write(1) 0x00000000

0x1C Channel 0 Register C RC0 Read/Write 0x00000000

0x20 Channel 0 Status Register SR0 Read-only 00x00000000

0x24 Interrupt Enable Register IER0 Write-only 0x00000000

0x28 Channel 0 Interrupt Disable Register IDR0 Write-only 0x00000000

0x2C Channel 0 Interrupt Mask Register IMR0 Read-only 0x00000000

0x40 Channel 1 Control Register CCR1 Write-only 0x00000000

0x44 Channel 1 Mode Register CMR1 Read/Write 0x00000000

0x50 Channel 1 Counter Value CV1 Read-only 0x00000000

0x54 Channel 1 Register A RA1 Read/Write(1) 0x00000000

0x58 Channel 1 Register B RB1 Read/Write(1) 0x00000000

0x5C Channel 1 Register C RC1 Read/Write 0x00000000

0x60 Channel 1 Status Register SR1 Read-only 0x00000000

0x64 Channel 1 Interrupt Enable Register IER1 Write-only 0x00000000

0x68 Channel 1 Interrupt Disable Register IDR1 Write-only 0x00000000

0x6C Channel 1 Interrupt Mask Register IMR1 Read-only 0x00000000

0x80 Channel 2 Control Register CCR2 Write-only 0x00000000

0x84 Channel 2 Mode Register CMR2 Read/Write 0x00000000

0x90 Channel 2 Counter Value CV2 Read-only 0x00000000

0x94 Channel 2 Register A RA2 Read/Write(1) 0x00000000

0x98 Channel 2 Register B RB2 Read/Write(1) 0x00000000

0x9C Channel 2 Register C RC2 Read/Write 0x00000000

0xA0 Channel 2 Status Register SR2 Read-only 0x00000000

0xA4 Channel 2 Interrupt Enable Register IER2 Write-only 0x00000000

0xA8 Channel 2 Interrupt Disable Register IDR2 Write-only 0x00000000

0xAC Channel 2 Interrupt Mask Register IMR2 Read-only 0x00000000

0xC0 Block Control Register BCR Write-only 0x00000000

0xC4 Block Mode Register BMR Read/Write 0x00000000

694
32015G–AVR32–09/09

AT32AP7001

33.7.1 Channel Control Register

Name: CCR

Access Type: Write-only

Offset: 0x00 + n * 0x40

Reset Value: 0x00000000

• SWTRG: Software Trigger Command
1: Writing a one to this bit will perform a software trigger: the counter is reset and the clock is started.

0: Writing a zero to this bit has no effect.
• CLKDIS: Counter Clock Disable Command

1: Writing a one to this bit will disable the clock.
0: Writing a zero to this bit has no effect.

• CLKEN: Counter Clock Enable Command
1: Writing a one to this bit will enable the clock if CLKDIS is not one.

0: Writing a zero to this bit has no effect.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - SWTRG CLKDIS CLKEN

695
32015G–AVR32–09/09

AT32AP7001

33.7.2 Channel Mode Register: Capture Mode

Name: CMR

Access Type: Read/Write

Offset: 0x04 + n * 0x40

Reset Value: 0x00000000

• LDRB: RB Loading Selection

• LDRA: RA Loading Selection

• WAVE
1: Capture mode is disabled (Waveform mode is enabled).

0: Capture mode is enabled.

• CPCTRG: RC Compare Trigger Enable
1: RC Compare resets the counter and starts the counter clock.

0: RC Compare has no effect on the counter and its clock.
• ABETRG: TIOA or TIOB External Trigger Selection

1: TIOA is used as an external trigger.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - LDRB LDRA

15 14 13 12 11 10 9 8

WAVE CPCTRG - - - ABETRG ETRGEDG

7 6 5 4 3 2 1 0

LDBDIS LDBSTOP BURST CLKI TCCLKS

LDRB Edge

0 none

1 rising edge of TIOA

2 falling edge of TIOA

3 each edge of TIOA

LDRA Edge

0 none

1 rising edge of TIOA

2 falling edge of TIOA

3 each edge of TIOA

696
32015G–AVR32–09/09

AT32AP7001

0: TIOB is used as an external trigger.
• ETRGEDG: External Trigger Edge Selection

• LDBDIS: Counter Clock Disable with RB Loading
1: Counter clock is disabled when RB loading occurs.

0: Counter clock is not disabled when RB loading occurs.
• LDBSTOP: Counter Clock Stopped with RB Loading

1: Counter clock is stopped when RB loading occurs.
0: Counter clock is not stopped when RB loading occurs.

• BURST: Burst Signal Selection

• CLKI: Clock Invert
1: The counter is incremented on falling edge of the clock.

0: The counter is incremented on rising edge of the clock.

• TCCLKS: Clock Selection

ETRGEDG Edge

0 none

1 rising edge

2 falling edge

3 each edge

BURST Burst Signal Selection

0 The clock is not gated by an external signal

1 XC0 is ANDed with the selected clock

2 XC1 is ANDed with the selected clock

3 XC2 is ANDed with the selected clock

TCCLKS Clock Selected

0 TIMER_CLOCK1

1 TIMER_CLOCK2

2 TIMER_CLOCK3

3 TIMER_CLOCK4

4 TIMER_CLOCK5

5 XC0

6 XC1

7 XC2

697
32015G–AVR32–09/09

AT32AP7001

33.7.3 Channel Mode Register: Waveform Mode

Name: CMR

Access Type: Read/Write

Offset: 0x04 + n * 0x40

Reset Value: 0x00000000

• BSWTRG: Software Trigger Effect on TIOB

• BEEVT: External Event Effect on TIOB

31 30 29 28 27 26 25 24

BSWTRG BEEVT BCPC BCPB

23 22 21 20 19 18 17 16

ASWTRG AEEVT ACPC ACPA

15 14 13 12 11 10 9 8

WAVE WAVSEL ENETRG EEVT EEVTEDG

7 6 5 4 3 2 1 0

CPCDIS CPCSTOP BURST CLKI TCCLKS

BSWTRG Effect

0 none

1 set

2 clear

3 toggle

BEEVT Effect

0 none

1 set

2 clear

3 toggle

698
32015G–AVR32–09/09

AT32AP7001

• BCPC: RC Compare Effect on TIOB

• BCPB: RB Compare Effect on TIOB

• ASWTRG: Software Trigger Effect on TIOA

• AEEVT: External Event Effect on TIOA

• ACPC: RC Compare Effect on TIOA

BCPC Effect

0 none

1 set

2 clear

3 toggle

BCPB Effect

0 none

1 set

2 clear

3 toggle

ASWTRG Effect

0 none

1 set

2 clear

3 toggle

AEEVT Effect

0 none

1 set

2 clear

3 toggle

ACPC Effect

0 none

1 set

2 clear

3 toggle

699
32015G–AVR32–09/09

AT32AP7001

• ACPA: RA Compare Effect on TIOA

• WAVE
1: Waveform mode is enabled.

0: Waveform mode is disabled (Capture mode is enabled).

• WAVSEL: Waveform Selection

• ENETRG: External Event Trigger Enable
1: The external event resets the counter and starts the counter clock.

0: The external event has no effect on the counter and its clock. In this case, the selected external event only controls the TIOA
output.

• EEVT: External Event Selection

Note: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and subse-
quently no IRQs.

• EEVTEDG: External Event Edge Selection

• CPCDIS: Counter Clock Disable with RC Compare
1: Counter clock is disabled when counter reaches RC.

0: Counter clock is not disabled when counter reaches RC.
• CPCSTOP: Counter Clock Stopped with RC Compare

1: Counter clock is stopped when counter reaches RC.

ACPA Effect

0 none

1 set

2 clear

3 toggle

WAVSEL Effect

0 UP mode without automatic trigger on RC Compare

1 UPDOWN mode without automatic trigger on RC Compare

2 UP mode with automatic trigger on RC Compare

3 UPDOWN mode with automatic trigger on RC Compare

EEVT Signal selected as external event TIOB Direction

0 TIOB input(1)

1 XC0 output

2 XC1 output

3 XC2 output

EEVTEDG Edge

0 none

1 rising edge

2 falling edge

3 each edge

700
32015G–AVR32–09/09

AT32AP7001

0: Counter clock is not stopped when counter reaches RC.
• BURST: Burst Signal Selection

• CLKI: Clock Invert
1: Counter is incremented on falling edge of the clock.

0: Counter is incremented on rising edge of the clock.
• TCCLKS: Clock Selection

BURST Burst Signal Selection

0 The clock is not gated by an external signal.

1 XC0 is ANDed with the selected clock.

2 XC1 is ANDed with the selected clock.

3 XC2 is ANDed with the selected clock.

TCCLKS Clock Selected

0 TIMER_CLOCK1

1 TIMER_CLOCK2

2 TIMER_CLOCK3

3 TIMER_CLOCK4

4 TIMER_CLOCK5

5 XC0

6 XC1

7 XC2

701
32015G–AVR32–09/09

AT32AP7001

33.7.4 Channel Counter Value Register

Name: CV

Access Type: Read-only

Offset: 0x10 + n * 0x40

Reset Value: 0x00000000

• CV: Counter Value
CV contains the counter value in real time.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

CV[15:8]

7 6 5 4 3 2 1 0

CV[7:0]

702
32015G–AVR32–09/09

AT32AP7001

33.7.5 Channel Register A

Name: RA

Access Type: Read-only if CMRn.WAVE = 0, Read/Write if CMRn.WAVE = 1

Offset: 0x14 + n * 0X40

Reset Value: 0x00000000

• RA: Register A
RA contains the Register A value in real time.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

RA[15:8]

7 6 5 4 3 2 1 0

RA[7:0]

703
32015G–AVR32–09/09

AT32AP7001

33.7.6 Channel Register B

Name: RB

Access Type: Read-only if CMRn.WAVE = 0, Read/Write if CMRn.WAVE = 1

Offset: 0x18 + n * 0x40

Reset Value: 0x00000000

• RB: Register B
RB contains the Register B value in real time.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

RB[15:8]

7 6 5 4 3 2 1 0

RB[7:0]

704
32015G–AVR32–09/09

AT32AP7001

33.7.7 Channel Register C

Name: RC

Access Type: Read/Write

Offset: 0x1C + n * 0x40

Reset Value: 0x00000000

• RC: Register C
RC contains the Register C value in real time.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

RC[15:8]

7 6 5 4 3 2 1 0

RC[7:0]

705
32015G–AVR32–09/09

AT32AP7001

33.7.8 Channel Status Register

Name: SR

Access Type: Read-only

Offset: 0x20 + n * 0x40

Reset Value: 0x00000000

Note: Reading the Status Register will also clear the interrupt bit for the corresponding interrupts.

• MTIOB: TIOB Mirror
1: TIOB is high. If CMRn.WAVE is zero, this means that TIOB pin is high. If CMRn.WAVE is one, this means that TIOB is driven
high.

0: TIOB is low. If CMRn.WAVE is zero, this means that TIOB pin is low. If CMRn.WAVE is one, this means that TIOB is driven

low.
• MTIOA: TIOA Mirror

1: TIOA is high. If CMRn.WAVE is zero, this means that TIOA pin is high. If CMRn.WAVE is one, this means that TIOA is driven
high.

0: TIOA is low. If CMRn.WAVE is zero, this means that TIOA pin is low. If CMRn.WAVE is one, this means that TIOA is driven

low.
• CLKSTA: Clock Enabling Status

1: This bit is set when the clock is enabled.
0: This bit is cleared when the clock is disabled.

• ETRGS: External Trigger Status
1: This bit is set when an external trigger has occurred.

0: This bit is cleared when the SR register is read.

• LDRBS: RB Loading Status
1: This bit is set when an RB Load has occurred and CMRn.WAVE is zero.

0: This bit is cleared when the SR register is read.

• LDRAS: RA Loading Status
1: This bit is set when an RA Load has occurred and CMRn.WAVE is zero.

0: This bit is cleared when the SR register is read.
• CPCS: RC Compare Status

1: This bit is set when an RC Compare has occurred.
0: This bit is cleared when the SR register is read.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - MTIOB MTIOA CLKSTA

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

706
32015G–AVR32–09/09

AT32AP7001

• CPBS: RB Compare Status
1: This bit is set when an RB Compare has occurred and CMRn.WAVE is one.

0: This bit is cleared when the SR register is read.
• CPAS: RA Compare Status

1: This bit is set when an RA Compare has occurred and CMRn.WAVE is one.
0: This bit is cleared when the SR register is read.

• LOVRS: Load Overrun Status
1: This bit is set when RA or RB have been loaded at least twice without any read of the corresponding register and
CMRn.WAVE is zero.

0: This bit is cleared when the SR register is read.

• COVFS: Counter Overflow Status
1: This bit is set when a counter overflow has occurred.

0: This bit is cleared when the SR register is read.

707
32015G–AVR32–09/09

AT32AP7001

33.7.9 Channel Interrupt Enable Register

Name: IER

Access Type: Write-only

Offset: 0x24 + n * 0x40

Reset Value: 0x00000000

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will set the corresponding bit in IMR.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

708
32015G–AVR32–09/09

AT32AP7001

33.7.10 Channel Interrupt Disable Register

Name: IDR

Access Type: Write-only

Offset: 0x28 + n * 0x40

Reset Value: 0x00000000

Writing a zero to a bit in this register has no effect.
Writing a one to a bit in this register will clear the corresponding bit in IMR.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

709
32015G–AVR32–09/09

AT32AP7001

33.7.11 Channel Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x2C + n * 0x40

Reset Value: 0x00000000

0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.

A bit in this register is cleared when the corresponding bit in IDR is written to one.

A bit in this register is set when the corresponding bit in IER is written to one.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

710
32015G–AVR32–09/09

AT32AP7001

33.7.12 Block Control Register

Name: BCR

Access Type: Write-only

Offset: 0xC0

Reset Value: 0x00000000

• SYNC: Synchro Command
1: Writing a one to this bit asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

0: Writing a zero to this bit has no effect.

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - - - - - - SYNC

711
32015G–AVR32–09/09

AT32AP7001

33.7.13 Block Mode Register

Name: BMR

Access Type: Read/Write

Offset: 0xC4

Reset Value: 0x00000000

• TC2XC2S: External Clock Signal 2 Selection

• TC1XC1S: External Clock Signal 1 Selection

• TC0XC0S: External Clock Signal 0 Selection

31 30 29 28 27 26 25 24

- - - - - - - -

23 22 21 20 19 18 17 16

- - - - - - - -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

- - TC2XC2S TC1XC1S TC0XC0S

TC2XC2S Signal Connected to XC2

0 TCLK2

1 none

2 TIOA0

3 TIOA1

TC1XC1S Signal Connected to XC1

0 TCLK1

1 none

2 TIOA0

3 TIOA2

TC0XC0S Signal Connected to XC0

0 TCLK0

712
32015G–AVR32–09/09

AT32AP7001

1 none

2 TIOA1

3 TIOA2

713
32015G–AVR32–09/09

AT32AP7001

34. Pulse Width Modulation Controller (PWM)

Rev: 1.2.0.2

34.1 Features

• 4 Channels
• One 20-bit Counter Per Channel
• Common Clock Generator Providing Thirteen Different Clocks

– A Modulo n Counter Providing Eleven Clocks
– Two Independent Linear Dividers Working on Modulo n Counter Outputs

• Independent Channels
– Independent Enable Disable Command for Each Channel
– Independent Clock Selection for Each Channel
– Independent Period and Duty Cycle for Each Channel
– Double Buffering of Period or Duty Cycle for Each Channel
– Programmable Selection of The Output Waveform Polarity for Each Channel
– Programmable Center or Left Aligned Output Waveform for Each Channel

34.2 Description

The PWM macrocell controls several channels independently. Each channel controls one
square output waveform. Characteristics of the output waveform such as period, duty-cycle and
polarity are configurable through the user interface. Each channel selects and uses one of the
clocks provided by the clock generator. The clock generator provides several clocks resulting
from the division of the PWM macrocell master clock.

All PWM macrocell accesses are made through registers mapped on the peripheral bus.

Channels can be synchronized, to generate non overlapped waveforms. All channels integrate a
double buffering system in order to prevent an unexpected output waveform while modifying the
period or the duty-cycle.

714
32015G–AVR32–09/09

AT32AP7001

34.3 Block Diagram

Figure 34-1. Pulse Width Modulation Controller Block Diagram

34.4 I/O Lines Description

Each channel outputs one waveform on one external I/O line.

PWM
Controller

Peripheral
Bus

PWMx

PWMx

PWMx

Channel

Update

Duty Cycle

Counter

PWM0
Channel

PIO

Interrupt
Controller

Power
Manager

MCK
Clock Generator PB Interface Interrupt Generator

Clock
Selector

Period

Comparator

Update

Duty Cycle

Counter
Clock

Selector

Period

Comparator

PWM0

PWM0

Table 34-1. I/O Line Description

Name Description Type

PWMx PWM Waveform Output for channel x Output

715
32015G–AVR32–09/09

AT32AP7001

34.5 Product Dependencies

34.5.1 I/O Lines

The pins used for interfacing the PWM may be multiplexed with PIO lines. The programmer must
first program the PIO controller to assign the desired PWM pins to their peripheral function. If I/O
lines of the PWM are not used by the application, they can be used for other purposes by the
PIO controller.

Not all PWM outputs may be enabled. If an application requires only four channels, then only
four PIO lines will be assigned to PWM outputs.

34.5.2 Debug operation

The PWM clock is running during debug operation.

34.5.3 Power Management

The PWM clock is generated by the Power Manager. Before using the PWM, the programmer
must ensure that the PWM clock is enabled in the Power Manager. However, if the application
does not require PWM operations, the PWM clock can be stopped when not needed and be
restarted later. In this case, the PWM will resume its operations where it left off.

In the PWM description, Master Clock (MCK) is the clock of the peripheral bus to which the
PWM is connected.

34.5.4 Interrupt Sources

The PWM interrupt line is connected to the interrupt controller. Using the PWM interrupt requires
the interrupt controller to be programmed first.

716
32015G–AVR32–09/09

AT32AP7001

34.6 Functional Description

The PWM macrocell is primarily composed of a clock generator module and 4 channels.

– Clocked by the system clock, MCK, the clock generator module provides 13 clocks.

– Each channel can independently choose one of the clock generator outputs.

– Each channel generates an output waveform with attributes that can be defined
independently for each channel through the user interface registers.

34.6.1 PWM Clock Generator

Figure 34-2. Functional View of the Clock Generator Block Diagram

Caution: Before using the PWM macrocell, the programmer must ensure that the PWM clock in
the Power Manager is enabled.

The PWM macrocell master clock, MCK, is divided in the clock generator module to provide dif-
ferent clocks available for all channels. Each channel can independently select one of the
divided clocks.

modulo n counter
MCK

MCK/2
MCK/4

MCK/16
MCK/32
MCK/64

MCK/8

Divider A clkA

DIVA

PWM_MR

MCK

MCK/128
MCK/256
MCK/512
MCK/1024

PREA

Divider B clkB

DIVB

PWM_MR

PREB

717
32015G–AVR32–09/09

AT32AP7001

The clock generator is divided in three blocks:

– a modulo n counter which provides 11 clocks: FMCK, FMCK/2, FMCK/4, FMCK/8, FMCK/16,
FMCK/32, FMCK/64, FMCK/128, FMCK/256, FMCK/512, FMCK/1024

– two linear dividers (1, 1/2, 1/3, ... 1/255) that provide two separate clocks: clkA and
clkB

Each linear divider can independently divide one of the clocks of the modulo n counter. The
selection of the clock to be divided is made according to the PREA (PREB) field of the PWM
Mode register (MR). The resulting clock clkA (clkB) is the clock selected divided by DIVA (DIVB)
field value in the PWM Mode register (MR).

After a reset of the PWM controller, DIVA (DIVB) and PREA (PREB) in the PWM Mode register
are set to 0. This implies that after reset clkA (clkB) are turned off.

At reset, all clocks provided by the modulo n counter are turned off except clock “clk”. This situa-
tion is also true when the PWM master clock is turned off through the Power Management
Controller.

34.6.2 PWM Channel

34.6.2.1 Block Diagram

Figure 34-3. Functional View of the Channel Block Diagram

Each of the 4 channels is composed of three blocks:

• A clock selector which selects one of the clocks provided by the clock generator described in
Section 34.6.1 ”PWM Clock Generator” on page 716.

• An internal counter clocked by the output of the clock selector. This internal counter is
incremented or decremented according to the channel configuration and comparators events.
The size of the internal counter is 20 bits.

• A comparator used to generate events according to the internal counter value. It also computes
the PWMx output waveform according to the configuration.

34.6.2.2 Waveform Properties

The different properties of output waveforms are:

• the internal clock selection. The internal channel counter is clocked by one of the clocks
provided by the clock generator described in the previous section. This channel parameter is
defined in the CPRE field of the CMRx register. This field is reset at 0.

• the waveform period. This channel parameter is defined in the CPRD field of the CPRDx
register.

Comparator PWMx output waveform
Internal
Counter

Clock
Selector

inputs
from clock
generator

inputs from
Peripheral

Bus

Channel

718
32015G–AVR32–09/09

AT32AP7001

- If the waveform is left aligned, then the output waveform period depends on the counter
source clock and can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value
(with X being 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024), the resulting period formula will be:

By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes,
respectively:

 or

If the waveform is center aligned then the output waveform period depends on the counter
source clock and can be calculated:
By using the Master Clock (MCK) divided by an X given prescaler value
(with X being 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula will
be:

By using a Master Clock divided by one of both DIVA or DIVB divider, the formula becomes,
respectively:

 or

• the waveform duty cycle. This channel parameter is defined in the CDTY field of the CDTYx
register.
If the waveform is left aligned then:

If the waveform is center aligned, then:

• the waveform polarity. At the beginning of the period, the signal can be at high or low level.
This property is defined in the CPOL field of the CMRx register. By default the signal starts by
a low level.

• the waveform alignment. The output waveform can be left or center aligned. Center aligned
waveforms can be used to generate non overlapped waveforms. This property is defined in the
CALG field of the CMRx register. The default mode is left aligned.

X CPRD×()
MCK

CRPD DIVA×()
MCK

-- CRPD DIVAB×()
MCK

--

2 X CPRD××()
MCK

2 CPRD DIVA××()
MCK

-- 2 CPRD× DIVB×()
MCK

--

duty cycle period 1 fchannel_x_clock CDTY×⁄–()
period

--=

duty cycle period 2⁄() 1 fchannel_x_clock CDTY×⁄–())
period 2⁄()

---=

719
32015G–AVR32–09/09

AT32AP7001

Figure 34-4. Non Overlapped Center Aligned Waveforms

Note: 1. See Figure 34-5 on page 720 for a detailed description of center aligned waveforms.

When center aligned, the internal channel counter increases up to CPRD and.decreases down
to 0. This ends the period.

When left aligned, the internal channel counter increases up to CPRD and is reset. This ends
the period.

Thus, for the same CPRD value, the period for a center aligned channel is twice the period for a
left aligned channel.

Waveforms are fixed at 0 when:

• CDTY = CPRD and CPOL = 0

• CDTY = 0 and CPOL = 1

Waveforms are fixed at 1 (once the channel is enabled) when:

• CDTY = 0 and CPOL = 0

• CDTY = CPRD and CPOL = 1

The waveform polarity must be set before enabling the channel. This immediately affects the
channel output level. Changes on channel polarity are not taken into account while the channel
is enabled.

PWM0

PWM1

Period

No overlap

720
32015G–AVR32–09/09

AT32AP7001

Figure 34-5. Waveform Properties

PWM_MCKx

CHIDx(PWM_SR)

Center Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform PWMx
CPOL(PWM_CMRx) = 0

Output Waveform PWMx
CPOL(PWM_CMRx) = 1

CHIDx(PWM_ISR)

Left Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform PWMx
CPOL(PWM_CMRx) = 0

 Output Waveform PWMx
CPOL(PWM_CMRx) = 1

CHIDx(PWM_ISR)

CALG(PWM_CMRx) = 0

CALG(PWM_CMRx) = 1

Period

Period

CHIDx(PWM_ENA)

CHIDx(PWM_DIS)

721
32015G–AVR32–09/09

AT32AP7001

34.6.3 PWM Controller Operations

34.6.3.1 Initialization

Before enabling the output channel, this channel must have been configured by the software
application:

• Configuration of the clock generator if DIVA and DIVB are required

• Selection of the clock for each channel (CPRE field in the CMRx register)

• Configuration of the waveform alignment for each channel (CALG field in the CMRx register)

• Configuration of the period for each channel (CPRD in the CPRDx register). Writing in CPRDx
Register is possible while the channel is disabled. After validation of the channel, the user must
use CUPDx Register to update CPRDx as explained below.

• Configuration of the duty cycle for each channel (CDTY in the CDTYx register). Writing in
CDTYx Register is possible while the channel is disabled. After validation of the channel, the
user must use CUPDx Register to update CDTYx as explained below.

• Configuration of the output waveform polarity for each channel (CPOL in the CMRx register)

• Enable Interrupts (Writing CHIDx in the IER register)

• Enable the PWM channel (Writing CHIDx in the ENA register)

It is possible to synchronize different channels by enabling them at the same time by means of
writing simultaneously several CHIDx bits in the ENA register.

In such a situation, all channels may have the same clock selector configuration and the same
period specified.

34.6.3.2 Source Clock Selection Criteria

The large number of source clocks can make selection difficult. The relationship between the
value in the Period Register (CPRDx) and the Duty Cycle Register (CDTYx) can help the user in
choosing. The event number written in the Period Register gives the PWM accuracy. The Duty
Cycle quantum cannot be lower than 1/CPRDx value. The higher the value of CPRDx, the
greater the PWM accuracy.

For example, if the user sets 15 (in decimal) in CPRDx, the user is able to set a value between 1
up to 14 in CDTYx Register. The resulting duty cycle quantum cannot be lower than 1/15 of the
PWM period.

34.6.3.3 Changing the Duty Cycle or the Period

It is possible to modulate the output waveform duty cycle or period.

To prevent unexpected output waveform, the user must use the update register (PWM_CUPDx)
to change waveform parameters while the channel is still enabled. The user can write a new
period value or duty cycle value in the update register (CUPDx). This register holds the new
value until the end of the current cycle and updates the value for the next cycle. Depending on
the CPD field in the CMRx register, CUPDx either updates CPRDx or CDTYx. Note that even if
the update register is used, the period must not be smaller than the duty cycle.

722
32015G–AVR32–09/09

AT32AP7001

Figure 34-6. Synchronized Period or Duty Cycle Update

To prevent overwriting the CUPDx by software, the user can use status events in order to syn-
chronize his software. Two methods are possible. In both, the user must enable the dedicated
interrupt in IER at PWM Controller level.

The first method (polling method) consists of reading the relevant status bit in ISR Register
according to the enabled channel(s). See Figure 34-7.

The second method uses an Interrupt Service Routine associated with the PWM channel.

Note: Reading the ISR register automatically clears CHIDx flags.

Figure 34-7. Polling Method

Note: Polarity and alignment can be modified only when the channel is disabled.

PWM_CUPDx Value

PWM_CPRDx PWM_CDTYx

End of Cycle

PWM_CMRx. CPD

User's Writing

1 0

Writing in PWM_CUPDx
The last write has been taken into account

CHIDx = 1

Writing in CPD field
Update of the Period or Duty Cycle

PWM_ISR Read
Acknowledgement and clear previous register state

YES

723
32015G–AVR32–09/09

AT32AP7001

34.6.3.4 Interrupts

Depending on the interrupt mask in the IMR register, an interrupt is generated at the end of the
corresponding channel period. The interrupt remains active until a read operation in the ISR reg-
ister occurs.

A channel interrupt is enabled by setting the corresponding bit in the IER register. A channel
interrupt is disabled by setting the corresponding bit in the IDR register.

724
32015G–AVR32–09/09

AT32AP7001

34.7 Pulse Width Modulation (PWM) Controller User Interface

34.7.1 Register Mapping

Table 34-2. PWM Controller Registers

Offset Register Name Access
Peripheral

Reset Value

0x00 PWM Mode Register MR Read/Write 0

0x04 PWM Enable Register ENA Write-only -

0x08 PWM Disable Register DIS Write-only -

0x0C PWM Status Register SR Read-only 0

0x10 PWM Interrupt Enable Register IER Write-only -

0x14 PWM Interrupt Disable Register IDR Write-only -

0x18 PWM Interrupt Mask Register IMR Read-only 0

0x1C PWM Interrupt Status Register ISR Read-only 0

0x4C - 0xF8 Reserved – – –

0x4C - 0xFC Reserved – – –

0x100 - 0x1FC Reserved

0x200 Channel 0 Mode Register CMR0 Read/Write 0x0

0x204 Channel 0 Duty Cycle Register CDTY0 Read/Write 0x0

0x208 Channel 0 Period Register CPRD0 Read/Write 0x0

0x20C Channel 0 Counter Register CCNT0 Read-only 0x0

0x210 Channel 0 Update Register CUPD0 Write-only -

... Reserved

0x220 Channel 1 Mode Register CMR1 Read/Write 0x0

0x224 Channel 1 Duty Cycle Register CDTY1 Read/Write 0x0

0x228 Channel 1 Period Register CPRD1 Read/Write 0x0

0x22C Channel 1 Counter Register CCNT1 Read-only 0x0

0x230 Channel 1 Update Register CUPD1 Write-only -

...

725
32015G–AVR32–09/09

AT32AP7001

34.7.2 PWM Mode Register

Register Name: MR

Access Type: Read/Write

• DIVA, DIVB: CLKA, CLKB Divide Factor

• PREA, PREB

31 30 29 28 27 26 25 24

– – – – PREB

23 22 21 20 19 18 17 16

DIVB

15 14 13 12 11 10 9 8

– – – – PREA

7 6 5 4 3 2 1 0

DIVA

DIVA, DIVB CLKA, CLKB

0 CLKA, CLKB clock is turned off

1 CLKA, CLKB clock is clock selected by PREA, PREB

2-255 CLKA, CLKB clock is clock selected by PREA, PREB divided by DIVA, DIVB factor.

PREA, PREB Divider Input Clock

0 0 0 0 MCK.

0 0 0 1 MCK/2

0 0 1 0 MCK/4

0 0 1 1 MCK/8

0 1 0 0 MCK/16

0 1 0 1 MCK/32

0 1 1 0 MCK/64

0 1 1 1 MCK/128

1 0 0 0 MCK/256

1 0 0 1 MCK/512

1 0 1 0 MCK/1024

Other Reserved

726
32015G–AVR32–09/09

AT32AP7001

34.7.3 PWM Enable Register

Register Name: ENA

Access Type: Write-only

• CHIDx: Channel ID

0 = No effect.

1 = Enable PWM output for channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

727
32015G–AVR32–09/09

AT32AP7001

34.7.4 PWM Disable Register

Register Name: DIS

Access Type: Write-only

• CHIDx: Channel ID

0 = No effect.

1 = Disable PWM output for channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

728
32015G–AVR32–09/09

AT32AP7001

34.7.5 PWM Status Register

Register Name: SR

Access Type: Read-only

• CHIDx: Channel ID

0 = PWM output for channel x is disabled.

1 = PWM output for channel x is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

729
32015G–AVR32–09/09

AT32AP7001

34.7.6 PWM Interrupt Enable Register

Register Name: IER

Access Type: Write-only

• CHIDx: Channel ID.

0 = No effect.

1 = Enable interrupt for PWM channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

730
32015G–AVR32–09/09

AT32AP7001

34.7.7 PWM Interrupt Disable Register

Register Name: IDR

Access Type: Write-only

• CHIDx: Channel ID.

0 = No effect.

1 = Disable interrupt for PWM channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

731
32015G–AVR32–09/09

AT32AP7001

34.7.8 PWM Interrupt Mask Register

Register Name: IMR

Access Type: Read-only

• CHIDx: Channel ID.

0 = Interrupt for PWM channel x is disabled.

1 = Interrupt for PWM channel x is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

732
32015G–AVR32–09/09

AT32AP7001

34.7.9 PWM Interrupt Status Register

Register Name: ISR

Access Type: Read-only

• CHIDx: Channel ID

0 = No new channel period since the last read of the ISR register.

1 = At least one new channel period since the last read of the ISR register.

Note: Reading ISR automatically clears CHIDx flags.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

733
32015G–AVR32–09/09

AT32AP7001

34.7.10 PWM Channel Mode Register

Register Name: CMRx

Access Type: Read/Write

• CPRE: Channel Pre-scaler

• CALG: Channel Alignment

0 = The period is left aligned.

1 = The period is center aligned.

• CPOL: Channel Polarity

0 = The output waveform starts at a low level.

1 = The output waveform starts at a high level.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – CPD CPOL CALG

7 6 5 4 3 2 1 0

– – – – CPRE

CPRE Channel Pre-scaler

0 0 0 0 MCK

0 0 0 1 MCK/2

0 0 1 0 MCK/4

0 0 1 1 MCK/8

0 1 0 0 MCK/16

0 1 0 1 MCK/32

0 1 1 0 MCK/64

0 1 1 1 MCK/128

1 0 0 0 MCK/256

1 0 0 1 MCK/512

1 0 1 0 MCK/1024

1 0 1 1 CLKA

1 1 0 0 CLKB

Other Reserved

734
32015G–AVR32–09/09

AT32AP7001

• CPD: Channel Update Period

0 = Writing to the CUPDx will modify the duty cycle at the next period start event.

1 = Writing to the CUPDx will modify the period at the next period start event.

735
32015G–AVR32–09/09

AT32AP7001

34.7.11 PWM Channel Duty Cycle Register

Register Name: CDTYx

Access Type: Read/Write

Only the first 20 bits (internal channel counter size) are significant.

• CDTY: Channel Duty Cycle

Defines the waveform duty cycle. This value must be defined between 0 and CPRD (CPRx).

31 30 29 28 27 26 25 24

CDTY

23 22 21 20 19 18 17 16

CDTY

15 14 13 12 11 10 9 8

CDTY

7 6 5 4 3 2 1 0

CDTY

736
32015G–AVR32–09/09

AT32AP7001

34.7.12 PWM Channel Period Register

Register Name: CPRDx

Access Type: Read/Write

Only the first 20 bits (internal channel counter size) are significant.

• CPRD: Channel Period

If the waveform is left-aligned, then the output waveform period depends on the counter source clock and can be
calculated:

– By using the Master Clock (MCK) divided by an X given prescaler value (with X being
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula will be:

– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula
becomes, respectively:

 or

If the waveform is center-aligned, then the output waveform period depends on the counter source clock and can be
calculated:

– By using the Master Clock (MCK) divided by an X given prescaler value (with X being
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024). The resulting period formula will be:

– By using a Master Clock divided by one of both DIVA or DIVB divider, the formula
becomes, respectively:

 or

31 30 29 28 27 26 25 24

CPRD

23 22 21 20 19 18 17 16

CPRD

15 14 13 12 11 10 9 8

CPRD

7 6 5 4 3 2 1 0

CPRD

X CPRD×()
MCK

CRPD DIVA×()
MCK

-- CRPD DIVAB×()
MCK

--

2 X CPRD××()
MCK

2 CPRD DIVA××()
MCK

-- 2 CPRD× DIVB×()
MCK

--

737
32015G–AVR32–09/09

AT32AP7001

34.7.13 PWM Channel Counter Register

Register Name: CCNTx

Access Type: Read-only

• CNT: Channel Counter Register

Internal counter value. This register is reset when:

• the channel is enabled (writing CHIDx in the ENA register).

• the counter reaches CPRD value defined in the CPRDx register if the waveform is left aligned.

31 30 29 28 27 26 25 24

CNT

23 22 21 20 19 18 17 16

CNT

15 14 13 12 11 10 9 8

CNT

7 6 5 4 3 2 1 0

CNT

738
32015G–AVR32–09/09

AT32AP7001

34.7.14 PWM Channel Update Register

Register Name: CUPDx

Access Type: Write-only

This register acts as a double buffer for the period or the duty cycle. This prevents an unexpected waveform when modify-
ing the waveform period or duty-cycle.

Only the first 20 bits (internal channel counter size) are significant.

31 30 29 28 27 26 25 24

CUPD

23 22 21 20 19 18 17 16

CUPD

15 14 13 12 11 10 9 8

CUPD

7 6 5 4 3 2 1 0

CUPD

CPD (CMRx Register)

0
The duty-cycle (CDTY in the CDTYx register) is updated with the CUPD value at the beginning of
the next period.

1
The period (CPRD in the CPRDx register) is updated with the CUPD value at the beginning of the
next period.

739
32015G–AVR32–09/09

AT32AP7001

35. Image Sensor Interface (ISI)

Rev: 0.0.5.2

35.1 Features
• ITU-R BT. 601/656 8-bit Mode External Interface Support
• Supports up to 12-bit Grayscale CMOS Sensors
• Support for ITU-R BT.656-4 SAV and EAV Synchronization
• Vertical and Horizontal Resolutions up to 2048 x 2048
• Preview Path up to 640*480
• 128 Bytes FIFO on Codec Path
• 128 Bytes FIFO on Preview Path
• Support for Packed Data Formatting for YCbCr 4:2:2 Formats
• Preview Scaler to Generate Smaller Size image
• Programmable Frame Capture Rate
• VGA, QVGA, CIF, QCIF supported for LCD Preview
• Custom Formats with Horizontal and Vertical Preview Size as Multiples of 16 Also Supported for

LCD Preview

35.2 Overview
The Image Sensor Interface (ISI) connects a CMOS-type image sensor to the processor and
provides image capture in various formats. It does data conversion, if necessary, before the stor-
age in memory through DMA.

The ISI supports color CMOS image sensor and grayscale image sensors with a reduced set of
functionalities.

This module outputs the data in RGB format (LCD compatible) and has scaling capabilities to
make it compliant to the LCD display resolution (See Table 35-3 on page 742).

Several input formats such as preprocessed RGB or YCbCr are supported through the data bus
interface.

It supports two modes of synchronization:

1. The hardware with VSYNC and HSYNC signals

2. The International Telecommunication Union Recommendation ITU-R BT.656-4 Start-of-
Active-Video (SAV) and End-of-Active-Video (EAV) synchronization sequence.

Using EAV/SAV for synchronization reduces the pin count (VSYNC, HSYNC not used). The
polarity of the synchronization pulse is programmable to comply with the sensor signals.

Table 35-1. I/O Description

Signal Dir Description

VSYNC IN Vertical Synchronization

HSYNC IN Horizontal Synchronization

DATA[11..0] IN Sensor Pixel Data

MCK OUT Master Clock Provided to the Image Sensor

PCK IN Pixel Clock Provided by the Image Sensor

740
32015G–AVR32–09/09

AT32AP7001

Figure 35-1. ISI Connection Example

35.3 Block Diagram

Figure 35-2. Image Sensor Interface Block Diagram

35.4 Product Dependencies

35.4.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the ISI pins to their peripheral
functions.

35.4.2 Power Management

The ISI clock is generated by the Power Manager. Before using the ISI, the programmer must
ensure that the ISIclock is enabled in the Power Manager.

In the ISI description, Master Clock (MCK) is the clock of the peripheral bus to which the ISI is
connected.

Image Sensor Image Sensor Interface

data[11..0] ISI_DATA[11..0]

CLK ISI_MCK

PCLK ISI_PCK

VSYNC

HSYNC

ISI_VSYNC

ISI_HSYNC

Timing Signals
Interface

CCIR-656
Embedded Timing
Decoder(SAV/EAV)

Pixel Sampling
Module

Clipping + Color
Conversion

YCC to RGB

2-D Image
Scaler

Pixel
Formatter

Rx Direct
Display
FIFO Core

Video
Arbiter

Camera
HSB

Master
Interface

PB
InterfaceCamera

Interrupt
Controller

Config
Registers

Clipping + Color
Conversion

RGB to YCC

Rx Direct
Capture

FIFO

Scatter
Mode

Support
Packed

Formatter

Frame Rate

YCbCr 4:2:2

8:8:8
5:6:5RGB

CMOS
sensor
Pixel input
up to 12 bit

Hsync/Len
Vsync/Fen

CMOS
sensor
pixel clock
input

Pixel
Clock Domain

HSB
Clock Domain

PB
Clock DomainFrom

Rx buffers

Camera
Interrupt Request Line

codec_on

H
S

B
 b

us
P

B
 b

us

741
32015G–AVR32–09/09

AT32AP7001

To prevent bus errors the ISI operation must be terminated before entering sleep mode

35.4.3 Interrupt

The ISI interface has an interrupt line connected to the Interrupt Controller. Handling the ISI
interrupt requires programming the interrupt controller before configuring the ISI.

35.5 Functional Description
The Image Sensor Interface (ISI) supports direct connection to the International Telecommuni-
cation Union Recommendation ITU-R BT. 601/656 8-bit mode compliant sensors and up to 12-
bit grayscale sensors. It receives the image data stream from the image sensor on the 12-bit
data bus.

This module receives up to 12 bits for data, the horizontal and vertical synchronizations and the
pixel clock. The reduced pin count alternative for synchronization is supported for sensors that
embed SAV (start of active video) and EAV (end of active video) delimiters in the data stream.

The Image Sensor Interface interrupt line is generally connected to the Interrupt Controller and
can trigger an interrupt at the beginning of each frame and at the end of a DMA frame transfer. If
the SAV/EAV synchronization is used, an interrupt can be triggered on each delimiter event.

For 8-bit color sensors, the data stream received can be in several possible formats: YCbCr
4:2:2, RGB 8:8:8, RGB 5:6:5 and may be processed before the storage in memory. The data
stream may be sent on both preview path and codec path if the bit CODEC_ON in the CR1 is
one. To optimize the bandwidth, the codec path should be enabled only when a capture is
required.

In grayscale mode, the input data stream is stored in memory without any processing. The 12-bit
data, which represent the grayscale level for the pixel, is stored in memory one or two pixels per
word, depending on the GS_MODE bit in the CR2 register. The codec datapath is not available
when grayscale image is selected.

A frame rate counter allows users to capture all frames or 1 out of every 2 to 8 frames.

35.5.1 Data Timing
The two data timings using horizontal and vertical synchronization and EAV/SAV sequence syn-
chronization are shown in Figure 35-3 and Figure 35-4.

In the VSYNC/HSYNC synchronization, the valid data is captured with the active edge of the
pixel clock (PCK), after SFD lines of vertical blanking and SLD pixel clock periods delay pro-
grammed in the control register.

The ITU-RBT.656-4 defines the functional timing for an 8-bit wide interface.

There are two timing reference signals, one at the beginning of each video data block SAV
(0xFF000080) and one at the end of each video data block EAV(0xFF00009D). Only data sent
between EAV and SAV is captured. Horizontal blanking and vertical blanking are ignored. Use of
the SAV and EAV synchronization eliminates the VSYNC and HSYNC signals from the inter-
face, thereby reducing the pin count. In order to retrieve both frame and line synchronization
properly, at least one line of vertical blanking is mandatory.

742
32015G–AVR32–09/09

AT32AP7001

Figure 35-3. HSYNC and VSYNC Synchronization

Figure 35-4. SAV and EAV Sequence Synchronization

35.5.2 Data Ordering
The RGB color space format is required for viewing images on a display screen preview, and the
YCbCr color space format is required for encoding.

All the sensors do not output the YCbCr or RGB components in the same order. The ISI allows
the user to program the same component order as the sensor, reducing software treatments to
restore the right format.

ISI_VSYNC

ISI_HSYNC

ISI_PCK

 Frame

1 line

Y Cb Y Cr Y Cb Y Cr Y Cb Y CrDATA[7..0]

ISII_PCK

Cr Y Cb Y Cr Y Y Cr Y Cb FF 00DATA[7..0] FF 00 00 80 Y Cb Y 00 9D

SAV EAVActive Video

Table 35-2. Data Ordering in YCbCr Mode

Mode Byte 0 Byte 1 Byte 2 Byte 3

Default Cb(i) Y(i) Cr(i) Y(i+1)

Mode1 Cr(i) Y(i) Cb(i) Y(i+1)

Mode2 Y(i) Cb(i) Y(i+1) Cr(i)

Mode3 Y(i) Cr(i) Y(i+1) Cb(i)

Table 35-3. RGB Format in Default Mode, RGB_CFG = 00, No Swap

Mode Byte D7 D6 D5 D4 D3 D2 D1 D0

RGB 8:8:8

Byte 0 R7(i) R6(i) R5(i) R4(i) R3(i) R2(i) R1(i) R0(i)

Byte 1 G7(i) G6(i) G5(i) G4(i) G3(i) G2(i) G1(i) G0(i)

Byte 2 B7(i) B6(i) B5(i) B4(i) B3(i) B2(i) B1(i) B0(i)

Byte 3 R7(i+1) R6(i+1) R5(i+1) R4(i+1) R3(i+1) R2(i+1) R1(i+1) R0(i+1)

743
32015G–AVR32–09/09

AT32AP7001

The RGB 5:6:5 input format is processed to be displayed as RGB 5:5:5 format.

35.5.3 Clocks
The sensor master clock (MCK) can be generated either by the power manager through a pro-
grammable clock output or by an external oscillator connected to the sensor.

None of the sensors embeds a power management controller, so providing the clock by the
power manager is a simple and efficient way to control power consumption of the system.

Care must be taken when programming the system clock. The ISI has two clock domains, the
system bus clock and the pixel clock provided by sensor. The two clock domains are not syn-
chronized, but the system clock must be faster than pixel clock.

RGB 5:6:5

Byte 0 R4(i) R3(i) R2(i) R1(i) R0(i) G5(i) G4(i) G3(i)

Byte 1 G2(i) G1(i) G0(i) B4(i) B3(i) B2(i) B1(i) B0(i)

Byte 2 R4(i+1) R3(i+1) R2(i+1) R1(i+1) R0(i+1) G5(i+1) G4(i+1) G3(i+1)

Byte 3 G2(i+1) G1(i+1) G0(i+1) B4(i+1) B3i+1) B2(i+1) B1(i+1) B0(i+1)

Table 35-3. RGB Format in Default Mode, RGB_CFG = 00, No Swap

Table 35-4. RGB Format, RGB_CFG = 10 (Mode 2), No Swap

Mode Byte D7 D6 D5 D4 D3 D2 D1 D0

RGB 5:6:5

Byte 0 G2(i) G1(i) G0(i) R4(i) R3(i) R2(i) R1(i) R0(i)

Byte 1 B4(i) B3(i) B2(i) B1(i) B0(i) G5(i) G4(i) G3(i)

Byte 2 G2(i+1) G1(i+1) G0(i+1) R4(i+1) R3(i+1) R2(i+1) R1(i+1) R0(i+1)

Byte 3 B4(i+1) B3(i+1) B2(i+1) B1(i+1) B0(i+1) G5(i+1) G4(i+1) G3(i+1)

Table 35-5. RGB Format in Default Mode, RGB_CFG = 00, Swap Activated

Mode Byte D7 D6 D5 D4 D3 D2 D1 D0

RGB 8:8:8

Byte 0 R0(i) R1(i) R2(i) R3(i) R4(i) R5(i) R6(i) R7(i)

Byte 1 G0(i) G1(i) G2(i) G3(i) G4(i) G5(i) G6(i) G7(i)

Byte 2 B0(i) B1(i) B2(i) B3(i) B4(i) B5(i) B6(i) B7(i)

Byte 3 R0(i+1) R1(i+1) R2(i+1) R3(i+1) R4(i+1) R5(i+1) R6(i+1) R7(i+1)

RGB 5:6:5

Byte 0 G3(i) G4(i) G5(i) R0(i) R1(i) R2(i) R3(i) R4(i)

Byte 1 B0(i) B1(i) B2(i) B3(i) B4(i) G0(i) G1(i) G2(i)

Byte 2 G3(i+1) G4(i+1) G5(i+1) R0(i+1) R1(i+1) R2(i+1) R3(i+1) R4(i+1)

Byte 3 B0(i+1) B1(i+1) B2(i+1) B3(i+1) B4(i+1) G0(i+1) G1(i+1) G2(i+1)

744
32015G–AVR32–09/09

AT32AP7001

35.5.4 Preview Path

35.5.4.1 Scaling, Decimation (Subsampling)
This module resizes captured 8-bit color sensor images to fit the LCD display format. The resize
module performs only downscaling. The same ratio is applied for both horizontal and vertical
resize, then a fractional decimation algorithm is applied.

The decimation factor is a multiple of 1/16 and values 0 to 15 are forbidden.

Example:

Input 1280*1024 Output=640*480

Hratio = 1280/640 =2

Vratio = 1024/480 =2.1333

The decimation factor is 2 so 32/16.

Table 35-6. Decimation Factor

Dec value 0->15 16 17 18 19 ... 124 125 126 127

Dec Factor X 1 1.063 1.125 1.188 ... 7.750 7.813 7.875 7.938

Table 35-7. Decimation and Scaler Offset Values

INPUT

OUTPUT
352*288 640*480 800*600 1280*1024 1600*1200 2048*1536

VGA

640*480
F NA 16 20 32 40 51

QVGA

320*240
F 16 32 40 64 80 102

CIF

352*288
F 16 26 33 56 66 85

QCIF

176*144
F 16 53 66 113 133 170

745
32015G–AVR32–09/09

AT32AP7001

Figure 35-5. Resize Examples

35.5.4.2 Color Space Conversion
This module converts YCrCb or YUV pixels to RGB color space. Clipping is performed to ensure
that the samples value do not exceed the allowable range. The conversion matrix is defined
below:

Example of programmable value to convert YCrCb to RGB:

An example of programmable value to convert from YUV to RGB:

1280

1024 480

640

32/16 decimation

1280

1024 288

352

56/16 decimation

R
G
B

C0 0 C1

C0 C2– C3–

C0 C4 0

Y Yoff–

Cb Cboff–

Cr Croff–

×=

R 1.164 Y 16–()⋅ 1.596 Cr 128–()⋅+=

G 1.164 Y 16–() 0.813 Cr 128–()⋅– 0.392 Cb 128–()⋅–⋅=

B 1.164 Y 16–()⋅ 2.107 Cb 128–()⋅+=⎩
⎪
⎨
⎪
⎧

R Y 1.596 V⋅+=

G Y 0.394 U⋅– 0.436 V⋅–=

B Y 2.032 U⋅+=⎩
⎪
⎨
⎪
⎧

746
32015G–AVR32–09/09

AT32AP7001

35.5.4.3 Memory Interface
Preview datapath contains a data formatter that converts 8:8:8 pixel to RGB 5:5:5 format. In
general, when converting from a color channel with more bits to one with fewer bits, formatter
module discards the lower-order bits. Example: Converting from RGB 8:8:8 to RGB 5:6:5, it dis-
cards the three LSBs from the red and blue channels, and two LSBs from the green channel.
When grayscale mode is enabled, two memory format are supported. One mode supports 2 pix-
els per word, and the other mode supports 1 pixel per word.

35.5.4.4 FIFO and DMA Features
Both preview and Codec datapaths contain FIFOs, asynchronous buffers that are used to safely
transfer formatted pixels from Pixel clock domain to High Speed Bus (HSB) clock domain. A
video arbiter is used to manage FIFO thresholds and triggers a relevant DMA request through
the HSB master interface. Thus, depending on FIFO state, a specified length burst is asserted.
Regarding HSB master interface, it supports Scatter DMA mode through linked list operation.
This mode of operation improves flexibility of image buffer location and allows the user to allo-
cate two or more frame buffers. The destination frame buffers are defined by a series of Frame
Buffer Descriptors (FBD). Each FBD controls the transfer of one entire frame and then optionally
loads a further FBD to switch the DMA operation at another frame buffer address. The FBD is
defined by a series of two words. The first one defines the current frame buffer address, and the
second defines the next FBD memory location. This DMA transfer mode is only available for pre-
view datapath and is configured in the PPFBD register that indicates the memory location of the
first FBD.

The primary FBD is programmed into the camera interface controller. The data to be transferred
described by an FBD requires several burst access. In the example below, the use of 2 ping-
pong frame buffers is described.

35.5.4.5 Example
The first FBD, stored at address 0x30000, defines the location of the first frame buffer.

Destination Address: frame buffer ID0 0x02A000

Next FBD address: 0x30010

Second FBD, stored at address 0x30010, defines the location of the second frame buffer.

Destination Address: frame buffer ID1 0x3A000

Transfer width: 32 bit

Next FBD address: 0x30000, wrapping to first FBD.

Using this technique, several frame buffers can be configured through the linked list. Figure 35-6
illustrates a typical three frame buffer application. Frame n is mapped to frame buffer 0, frame
n+1 is mapped to frame buffer 1, frame n+2 is mapped to Frame buffer 2, further frames wrap. A
codec request occurs, and the full-size 4:2:2 encoded frame is stored in a dedicated memory
space.

Table 35-8. Grayscale Memory Mapping Configuration for 12-bit Data

GS_MODE DATA[31:24] DATA[23:16] DATA[15:8] DATA[7:0]

0 P_0[11:4] P_0[3:0], 0000 P_1[11:4] P_1[3:0], 0000

1 P_0[11:4] P_0[3:0], 0000 0 0

747
32015G–AVR32–09/09

AT32AP7001

Figure 35-6. Three Frame Buffers Application and Memory Mapping

35.5.5 Codec Path

35.5.5.1 Color Space Conversion
Depending on user selection, this module can be bypassed so that input YCrCb stream is
directly connected to the format converter module. If the RGB input stream is selected, this mod-
ule converts RGB to YCrCb color space with the formulas given below:

An example of coefficients are given below:

frame n frame n+1 frame n+2frame n-1 frame n+3 frame n+4

Frame Buffer 0

Frame Buffer 1

Frame Buffer 3

4:2:2 Image
Full ROI

ISI config Space

Codec Request
Codec Done

LCD

Memory Space

Y
Cr
Cb

C0 C1 C2

C3 C– 4 C– 5

C– 6 C– 7 C8

R
G
B

×

Yoff
Croff
Cboff

+=

Y 0.257 R⋅ 0.504 G 0.098 B 16+⋅+⋅+=

Cr 0.439 R⋅ 0.368 G⋅– 0.071 B 128+⋅–=

Cb 0.148 R⋅– 0.291 G 0.439 B 128+⋅+⋅–=⎩
⎪
⎨
⎪
⎧

748
32015G–AVR32–09/09

AT32AP7001

35.5.5.2 Memory Interface
Dedicated FIFO are used to support packed memory mapping. YCrCb pixel components are
sent in a single 32-bit word in a contiguous space (packed). Data is stored in the order of natural
scan lines. Planar mode is not supported.

35.5.5.3 DMA Features
Unlike preview datapath, codec datapath DMA mode does not support linked list operation. Only
the CODEC_DMA_ADDR register is used to configure the frame buffer base address.

749
32015G–AVR32–09/09

AT32AP7001

35.6 Image Sensor Interface (ISI) User Interface

Table 35-9. ISI Registers

Offset Register Name Register Access Reset Value

0x00 ISI Control 1 Register CR1 Read/Write 0x00000002

0x04 ISI Control 2 Register CR2 Read/Write 0x00000000

0x08 ISI Status Register SR Read 0x00000000

0x0C ISI Interrupt Enable Register IER Write 0x00000000

0x10 ISI Interrupt Disable Register IDR Write 0x00000000

0x14 ISI Interrupt Mask Register IMR Read 0x00000000

0x18 Reserved - - -

0x1C Reserved - - -

0x20 ISI Preview Size Register PSIZE Read/Write 0x00000000

0x24 ISI Preview Decimation Factor Register PDECF Read/Write 0x00000010

0x28 ISI Preview Primary FBD Register PPFBD Read/Write 0x00000000

0x2C ISI Codec DMA Base Address Register CDBA Read/Write 0x00000000

0x30 ISI CSC YCrCb To RGB Set 0 Register Y2R_SET0 Read/Write 0x6832cc95

0x34 ISI CSC YCrCb To RGB Set 1 Register Y2R_SET1 Read/Write 0x00007102

0x38 ISI CSC RGB To YCrCb Set 0 Register R2Y_SET0 Read/Write 0x01324145

0x3C ISI CSC RGB To YCrCb Set 1 Register R2Y_SET1 Read/Write 0x01245e38

0x40 ISI CSC RGB To YCrCb Set 2 Register R2Y_SET2 Read/Write 0x01384a4b

0x44-0xFC Reserved – – –

750
32015G–AVR32–09/09

AT32AP7001

35.6.1 ISI Control 1 Register
Register Name: CR1

Access Type: Read/Write

Reset Value: 0x00000002

• RST: Image sensor interface reset
0: No action

1: Resets the image sensor interface.

• DIS: Image sensor disable:
0: Enable the image sensor interface.

1: Finish capturing the current frame and then shut down the module.

• HSYNC_POL: Horizontal synchronization polarity
0: HSYNC active high

1: HSYNC active low

• VSYNC_POL: Vertical synchronization polarity
0: VSYNC active high

1: VSYNC active low

• PIXCLK_POL: Pixel clock polarity
0: Data is sampled on rising edge of pixel clock

1: Data is sampled on falling edge of pixel clock

• EMB_SYNC: Embedded synchronization
0: Synchronization by HSYNC, VSYNC

1: Synchronization by embedded synchronization sequence SAV/EAV

• CRC_SYNC: Embedded synchronization
0: No CRC correction is performed on embedded synchronization

1: CRC correction is performed. if the correction is not possible, the current frame is discarded and the CRC_ERR is set in
the status register.

• FRATE: Frame rate [0..7]
0: All the frames are captured, else one frame every FRATE+1 is captured.

31 30 29 28 27 26 25 24

SFD

23 22 21 20 19 18 17 16
SLD

15 14 13 12 11 10 9 8
CODEC_EN THMASK FULL - FRATE

7 6 5 4 3 2 1 0
CRC_SYNC EMB_SYNC - PIXCLK_POL VSYNC_POL HSYNC_POL DIS RST

751
32015G–AVR32–09/09

AT32AP7001

• FULL: Full mode is allowed
0: Codec and preview datapaths are not working simultaneously

1: Both codec and preview datapaths are working simultaneously

• THMASK: Threshold mask
0: 4, 8 and 16 HSB bursts are allowed

1: 8 and 16 HSB bursts are allowed

2: Only 16 HSB bursts are allowed

• CODEC_EN: Enable the codec path enable bit
This bit always read as zero

0: The codec path is disabled

1: The codec path is enabled and the next frame is captured

• SLD: Start of Line Delay
SLD pixel clock periods to wait before the beginning of a line.

• SFD: Start of Frame Delay
SFD lines are skipped at the beginning of the frame.

752
32015G–AVR32–09/09

AT32AP7001

35.6.2 ISI Control 2 Register
Register Name: CR2

Access Type: Read/Write

Reset Value: 0x0

• IM_VSIZE: Vertical size of the Image sensor [0..2047]
Vertical size = IM_VSIZE + 1

• GS_MODE
0: 2 pixels per word

1: 1 pixel per word

• RGB_MODE: RGB input mode
0: RGB 8:8:8 24 bits

1: RGB 5:6:5 16 bits

• GRAYSCALE
0: Grayscale mode is disabled

1: Input image is assumed to be grayscale coded

• RGB_SWAP
0: D7 -> R7

1: D0 -> R7

The RGB_SWAP has no effect when the grayscale mode is enabled.

• COL_SPACE: Color space for the image data
0: YCbCr

1: RGB

• IM_HSIZE: Horizontal size of the Image sensor [0..2047]
Horizontal size = IM_HSIZE + 1

31 30 29 28 27 26 25 24

RGB_CFG YCC_SWAP - IM_HSIZE

23 22 21 20 19 18 17 16
IM_HSIZE

15 14 13 12 11 10 9 8
COL_SPACE RGB_SWAP GRAYSCALE RGB_MODE GS_MODE IM_VSIZE

7 6 5 4 3 2 1 0
IM_VSIZE

753
32015G–AVR32–09/09

AT32AP7001

• YCC_SWAP: Defines the YCC image data

• RGB_CFG: Defines RGB pattern when RGB_MODE is set to 1

If RGB_MODE is set to RGB 8:8:8, then RGB_CFG = 0 implies RGB color sequence, else it implies BGR color sequence.

YCC_SWAP Byte 0 Byte 1 Byte 2 Byte 3

00: Default Cb(i) Y(i) Cr(i) Y(i+1)

01: Mode1 Cr(i) Y(i) Cb(i) Y(i+1)

10: Mode2 Y(i) Cb(i) Y(i+1) Cr(i)

11: Mode3 Y(i) Cr(i) Y(i+1) Cb(i)

RGB_CFG Byte 0 Byte 1 Byte 2 Byte 3

00: Default R/G(MSB) G(LSB)/B R/G(MSB) G(LSB)/B

01: Mode1 B/G(MSB) G(LSB)/R B/G(MSB) G(LSB)/R

10: Mode2 G(LSB)/R B/G(MSB) G(LSB)/R B/G(MSB)

11: Mode3 G(LSB)/B R/G(MSB) G(LSB)/B R/G(MSB)

754
32015G–AVR32–09/09

AT32AP7001

35.6.3 ISI Status Register
Register Name: SR

Access Type: Read

Reset Value: 0x0

• SOF: Start of frame
0: No start of frame has been detected.

1: A start of frame has been detected.

• DIS: Image Sensor Interface disable
0: The image sensor interface is enabled.

1: The image sensor interface is disabled and stops capturing data. The DMA controller and the core can still read the
FIFOs.

• SOFTRST: Software reset
0: Software reset not asserted or not completed

1: Software reset has completed successfully

• CDC_STAT: Codec Request Status
0: Codec request has been asserted

1: Codec request has been serviced

• CRC_ERR: CRC synchronization error
0: No crc error in the embedded synchronization frame (SAV/EAV)

1: The CRC_SYNC is enabled in the control register and an error has been detected and not corrected. The frame is dis-
carded and the ISI waits for a new one.

• FO_C_OVF: FIFO codec overflow
0: No overflow

1: An overrun condition has occurred in input FIFO on the codec path. The overrun happens when the FIFO is full and an
attempt is made to write a new sample to the FIFO.

• FO_P_OVF: FIFO preview overflow
0: No overflow

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – FR_OVR FO_C_EMP

7 6 5 4 3 2 1 0
FO_P_EMP FO_P_OVF FO_C_OVF CRC_ERR CDC_STAT SOFTRST DIS SOF

755
32015G–AVR32–09/09

AT32AP7001

1: An overrun condition has occurred in input FIFO on the preview path. The overrun happens when the FIFO is full and an
attempt is made to write a new sample to the FIFO.

• FO_P_EMP
0:The DMA has not finished transferring all the contents of the preview FIFO.

1:The DMA has finished transferring all the contents of the preview FIFO.

• FO_C_EMP
0: The DMA has not finished transferring all the contents of the codec FIFO.

1: The DMA has finished transferring all the contents of the codec FIFO.

• FR_OVR: Frame overrun
0: No frame overrun.

1: Frame overrun, the current frame is being skipped because a vsync signal has been detected while flushing FIFOs.

756
32015G–AVR32–09/09

AT32AP7001

35.6.4 Interrupt Enable Register
Register Name: IER

Access Type: Write

Reset Value: 0x0

• SOF: Start of Frame
1: Enables the Start of Frame interrupt.

• DIS: Image Sensor Interface disable
1: Enables the DIS interrupt.

• SOFTRST: Soft Reset
1: Enables the Soft Reset Completion interrupt.

• CRC_ERR: CRC synchronization error
1: Enables the CRC_SYNC interrupt.

• FO_C_OVF: FIFO codec Overflow
1: Enables the codec FIFO overflow interrupt.

• FO_P_OVF: FIFO preview Overflow
1: Enables the preview FIFO overflow interrupt.

• FO_P_EMP
1: Enables the preview FIFO empty interrupt.

• FO_C_EMP
1: Enables the codec FIFO empty interrupt.

• FR_OVR: Frame overrun
1: Enables the Frame overrun interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – FR_OVR FO_C_EMP

7 6 5 4 3 2 1 0

FO_P_EMP FO_P_OVF FO_C_OVF CRC_ERR – SOFTRST DIS SOF

757
32015G–AVR32–09/09

AT32AP7001

35.6.5 ISI Interrupt Disable Register
Register Name: IDR

Access Type: Write

Reset Value: 0x0

• SOF: Start of Frame
1: Disables the Start of Frame interrupt.

• DIS: Image Sensor Interface disable
1: Disables the DIS interrupt.

• SOFTRST
1: Disables the soft reset completion interrupt.

• CRC_ERR: CRC synchronization error
1: Disables the CRC_SYNC interrupt.

• FO_C_OVF: FIFO codec overflow
1: Disables the codec FIFO overflow interrupt.

• FO_P_OVF: FIFO preview overflow
1: Disables the preview FIFO overflow interrupt.

• FO_P_EMP
1: Disables the preview FIFO empty interrupt.

• FO_C_EMP
1: Disables the codec FIFO empty interrupt.

• FR_OVR: Frame overrun
1: Disables frame overrun interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – FR_OVR FO_C_EMP

7 6 5 4 3 2 1 0
FO_P_EMP FO_P_OVF FO_C_OVF CRC_ERR – SOFTRST DIS SOF

758
32015G–AVR32–09/09

AT32AP7001

35.6.6 ISI Interrupt Mask Register
Register Name: IMR

Access Type: Read

Reset Value: 0x0

• SOF: Start of Frame
0: The Start of Frame interrupt is disabled.

1: The Start of Frame interrupt is enabled.

• DIS: Image sensor interface disable
0: The DIS interrupt is disabled.

1: The DIS interrupt is enabled.

• SOFTRST
0: The soft reset completion interrupt is enabled.

1: The soft reset completion interrupt is disabled.

• CRC_ERR: CRC synchronization error
0: The CRC_SYNC interrupt is disabled.

1: The CRC_SYNC interrupt is enabled.

• FO_C_OVF: FIFO codec overflow
0: The codec FIFO overflow interrupt is disabled.

1: The codec FIFO overflow interrupt is enabled.

• FO_P_OVF: FIFO preview overflow
0: The preview FIFO overflow interrupt is disabled.

1: The preview FIFO overflow interrupt is enabled.

• FO_P_EMP
0: The preview FIFO empty interrupt is disabled.

1: The preview FIFO empty interrupt is enabled.

• FO_C_EMP
0: The codec FIFO empty interrupt is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – FR_OVR FO_C_EMP

7 6 5 4 3 2 1 0
FO_P_EMP FO_P_OVF FO_C_OVF CRC_ERR – SOFTRST DIS SOF

759
32015G–AVR32–09/09

AT32AP7001

1: The codec FIFO empty interrupt is enabled.

• FR_OVR: Frame Overrun

0: The frame overrun interrupt is disabled.

1: The frame overrun interrupt is enabled.

760
32015G–AVR32–09/09

AT32AP7001

35.6.7 ISI Preview Size Register
Register Name: PSIZE

Access Type: Read/Write

Reset Value: 0x0

• PREV_VSIZE: Vertical size for the preview path
Vertical Preview size = PREV_VSIZE + 1 (480 max)

• PREV_HSIZE: Horizontal size for the preview path
Horizontal Preview size = PREV_HSIZE + 1 (640 max)

31 30 29 28 27 26 25 24

– – – – – – PREV_HSIZE

23 22 21 20 19 18 17 16

PREV_HSIZE

15 14 13 12 11 10 9 8

– – – – – – PREV_VSIZE

7 6 5 4 3 2 1 0

PREV_VSIZE

761
32015G–AVR32–09/09

AT32AP7001

35.6.8 ISI Preview Decimation Factor Register
Register Name: PDECF

Access Type: Read/Write

Reset Value: 0x00000010

• DEC_FACTOR: Decimation factor
DEC_FACTOR is 8-bit width, range is from 16 to 255. Values from 0 to 16 do not perform any decimation.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

DEC_FACTOR

762
32015G–AVR32–09/09

AT32AP7001

35.6.9 ISI Preview Primary FBD Register
Register Name: PPFBD

Access Type: Read/Write

Reset Value: 0x0

• PREV_FBD_ADDR: Base address for preview frame buffer descriptor
Written with the address of the start of the preview frame buffer queue, reads as a pointer to the current buffer being used.
Forced to word alignement, ie the 2 lowest bits always read zero.

31 30 29 28 27 26 25 24

PREV_FBD_ADDR

23 22 21 20 19 18 17 16

PREV_FBD_ADDR

15 14 13 12 11 10 9 8

PREV_FBD_ADDR

7 6 5 4 3 2 1 0

PREV_FBD_ADDR

763
32015G–AVR32–09/09

AT32AP7001

35.6.10 ISI Codec DMA Base Address Register
Register Name: CDBA

Access Type: Read/Write

Reset Value: 0x0

• CODEC_DMA_ADDR: Base address for codec DMA
This register contains codec datapath start address of buffer location. Forced to word alignement, ie the 2 lowest bits
always read zero.

31 30 29 28 27 26 25 24

CODEC_DMA_ADDR

23 22 21 20 19 18 17 16

CODEC_DMA_ADDR

15 14 13 12 11 10 9 8

CODEC_DMA_ADDR

7 6 5 4 3 2 1 0

CODEC_DMA_ADDR

764
32015G–AVR32–09/09

AT32AP7001

35.6.11 ISI Color Space Conversion YCrCb to RGB Set 0 Register
Register Name: Y2R_SET0

Access Type: Read/Write

Reset Value: 0x6832cc95

• C3 : Color Space Conversion Matrix Coefficient C3
C3 element, default step is 1/128, ranges from 0 to 255/128

• C2 : Color Space Conversion Matrix Coefficient C2
C2 element, default step is 1/128, ranges from 0 to 255/128

• C1 : Color Space Conversion Matrix Coefficient C1
C1 element, default step is 1/128, ranges from 0 to 255/128

• C0 : Color Space Conversion Matrix Coefficient C0
C0 element, default step is 1/128, ranges from 0 to 255/128

31 30 29 28 27 26 25 24

C3

23 22 21 20 19 18 17 16

C2

15 14 13 12 11 10 9 8

C1

7 6 5 4 3 2 1 0

C0

765
32015G–AVR32–09/09

AT32AP7001

35.6.12 ISI Color Space Conversion YCrCb to RGB Set 1 Register
Register Name: Y2R_SET1

Access Type: Read/Write

Reset Value: 0x00007102

• C4: Color Space Conversion Matrix coefficient C4
C4 element default step is 1/128, ranges from 0 to 512/128

• Yoff: Color Space Conversion Luminance default offset
0: No offset

1: Offset = 128

• Croff: Color Space Conversion Red Chrominance default offset
0: No offset

1: Offset = 16

• Cboff: Color Space Conversion Blue Chrominance default offset
0: No offset

1: Offset = 16

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– Cboff Croff Yoff – – – C4

C4

766
32015G–AVR32–09/09

AT32AP7001

35.6.13 ISI Color Space Conversion RGB to YCrCb Set 0 Register
Register Name: R2Y_SET0

Access Type: Read/Write

Reset Value: 0x01324145

• C0: Color Space Conversion Matrix coefficient C0
C0 element default step is 1/256, from 0 to 127/256

• C1: Color Space Conversion Matrix coefficient C1
C1 element default step is 1/128, from 0 to 127/128

• C2: Color Space Conversion Matrix coefficient C2
C2 element default step is 1/512, from 0 to 127/512

• Roff: Color Space Conversion Red component offset
0: No offset

1: Offset = 16

31 30 29 28 27 26 25 24

– – – – – – – Roff

23 22 21 20 19 18 17 16

- C2

15 14 13 12 11 10 9 8

- C1

7 6 5 4 3 2 1 0

- C0

767
32015G–AVR32–09/09

AT32AP7001

35.6.14 ISI Color Space Conversion RGB to YCrCb Set 1 Register
Register Name: R2Y_SET1

Access Type: Read/Write

Reset Value: 0x01245e38

• C3: Color Space Conversion Matrix coefficient C3
C0 element default step is 1/128, ranges from 0 to 127/128

• C4: Color Space Conversion Matrix coefficient C4
C1 element default step is 1/256, ranges from 0 to 127/256

• C5: Color Space Conversion Matrix coefficient C5
C1 element default step is 1/512, ranges from 0 to 127/512

• Goff: Color Space Conversion Green component offset
0: No offset

1: Offset = 128

31 30 29 28 27 26 25 24

– – – – – – – Goff

23 22 21 20 19 18 17 16

- C5

15 14 13 12 11 10 9 8

- C4

7 6 5 4 3 2 1 0

- C3

768
32015G–AVR32–09/09

AT32AP7001

35.6.15 ISI Color Space Conversion RGB to YCrCb Set 2 Register
Register Name: R2Y_SET2

Access Type: Read/Write

Reset Value: 0x01384a4b

• C6: Color Space Conversion Matrix coefficient C6
C6 element default step is 1/512, ranges from 0 to 127/512

• C7: Color Space Conversion Matrix coefficient C7
C7 element default step is 1/256, ranges from 0 to 127/256

• C8: Color Space Conversion Matrix coefficient C8
C8 element default step is 1/128, ranges from 0 to 127/128

• Boff: Color Space Conversion Blue component offset
0: No offset

1: Offset = 128

31 30 29 28 27 26 25 24

– – – – – – – Boff

23 22 21 20 19 18 17 16

- C8

15 14 13 12 11 10 9 8

- C7

7 6 5 4 3 2 1 0

- C6

769
32015G–AVR32–09/09

AT32AP7001

36. On-Chip Debug

Rev: 1.0.0.0

36.1 Features

• Debug interface in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 3
• JTAG access to all on-chip debug functions
• Advanced Program, Data, Ownership, and Watchpoint trace supported
• NanoTrace JTAG-based trace access
• Auxiliary port for high-speed trace information
• Hardware support for 6 Program and 2 Data breakpoints
• Unlimited number of software breakpoints supported
• Automatic CRC check of memory regions
• Advanced Program, Data, Ownership, and Watchpoint trace supported

36.2 Overview

Debugging on the AT32AP7001 is facilitated by a powerful On-Chip Debug (OCD) system. The
user accesses this through an external debug tool which connects to the JTAG port and the Aux-
iliary (AUX) port. The AUX port is primarily used for trace functions, and a JTAG-based
debugger is sufficient for basic debugging.

The debug system is based on the Nexus 2.0 standard, class 3, which includes:

• Basic run-time control

• Program breakpoints

• Data breakpoints

• Program trace

• Ownership trace

• Data trace

• Run-time direct memory access

In addition to the mandatory Nexus debug features, the AT32AP7001 implements several useful
OCD features, such as:

• Debug Communication Channel between CPU and JTAG

• Run-time PC monitoring

• CRC checking

• NanoTrace

• Software Quality Assurance (SQA) support

The OCD features are controlled by OCD registers, which can be accessed by JTAG when the
NEXUS_ACCESS JTAG instruction is loaded. The CPU can also access OCD registers directly
using mtdr/mfdr instructions in any privileged mode. The OCD registers are implemented based
on the recommendations in the Nexus 2.0 standard, and are detailed in the AVR32AP Technical
Reference Manual.

770
32015G–AVR32–09/09

AT32AP7001

36.3 Block diagram

Figure 36-1. On-Chip Debug block diagram

36.4 Functional description

36.4.1 JTAG-based debug features

A debugger can control all OCD features by writing OCD registers over the JTAG interface.
Many of these do not depend on output on the AUX port, allowing a JTAG-based debugger to be
used.

A JTAG-based debugger should connect to the device through a standard 10-pin IDC connector
as described in the AVR32AP Technical Reference Manual.

On-Chip Debug

JTAG

Debug PC

Debug
Instruction

CPU

Breakpoints Program
Trace Data Trace Ownership

Trace

WatchpointsTransmit Queue

AUX

JTAG

Memory

NanoTrace
Module

Service Access Bus

Memory
Interface

Data
Cache

771
32015G–AVR32–09/09

AT32AP7001

Figure 36-2. JTAG-based debugger

36.4.1.1 Debug Communication Channel

The Debug Communication Channel (DCC) consists of a pair OCD registers with associated
handshake logic, accessible to both CPU and JTAG. The registers can be used to exchange
data between the CPU and the JTAG master, both runtime as well as in debug mode.

36.4.1.2 Breakpoints

One of the most fundamental debug features is the ability to halt the CPU, to examine registers
and the state of the system. This is accomplished by breakpoints, of which many types are
available:

• Unconditional breakpoints are set by writing OCD registers by JTAG, halting the CPU
immediately.

• Program breakpoints halt the CPU when a specific address in the program is executed.

• Data breakpoints halt the CPU when a specific memory address is read or written, allowing
variables to be watched.

• Software breakpoints halt the CPU when the breakpoint instruction is executed.

When a breakpoint triggers, the CPU enters debug mode, and the D bit in the status register is
set. This is a privileged mode with dedicated return address and return status registers. All privi-
leged instructions are permitted. Debug mode can be entered as either OCD Mode, running
instructions from JTAG, or Monitor Mode, running instructions from program memory.

AVR32

JTAG-based
debug tool

PC

JTAG

10-pin IDC

772
32015G–AVR32–09/09

AT32AP7001

36.4.1.3 OCD Mode

When a breakpoint triggers, the CPU enters OCD mode, and instructions are fetched from the
Debug Instruction OCD register. Each time this register is written by JTAG, the instruction is
executed, allowing the JTAG to execute CPU instructions directly. The JTAG master can e.g.
read out the register file by issuing mtdr instructions to the CPU, writing each register to the
Debug Communication Channel OCD registers.

36.4.1.4 Monitor Mode

Since the OCD registers are directly accessible by the CPU, it is possible to build a software-
based debugger that runs on the CPU itself. Setting the Monitor Mode bit in the Development
Control register causes the CPU to enter Monitor Mode instead of OCD mode when a breakpoint
triggers. Monitor Mode is similar to OCD mode, except that instructions are fetched from the
debug exception vector in regular program memory, instead of issued by JTAG.

36.4.1.5 Program Counter monitoring

Normally, the CPU would need to be halted for a JTAG-based debugger to examine the current
PC value. However, the AT32AP7001 also proves a Debug Program Counter OCD register,
where the debugger can continuously read the current PC without affecting the CPU. This allows
the debugger to generate a simple statistic of the time spent in various areas of the code, easing
code optimization.

36.4.1.6 Cyclic Redundancy Check (CRC)

The MIU can be used to automatically calculate the CRC of a block of data in memory. The OCD
will then read out each word in the specified memory block and report the CRC32-value in an
OCD register.

36.4.1.7 NanoTrace

The MIU additionally supports NanoTrace. This is an AVR32-specific feature, in which trace data
is output to memory instead of the AUX port. This allows the trace data to be extracted by JTAG
MEMORY_ACCESS, enabling trace features for JTAG-based debuggers. The user must write
OCD registers to configure the address and size of the memory block to be used for NanoTrace.
The NanoTrace buffer can be anywhere in the physical address range, including internal and
external RAM, through an EBI, if present. This area may not be used by the application running
on the CPU.

36.4.2 AUX-based debug features

Utilizing the Auxiliary (AUX) port gives access to a wide range of advanced debug features. Of
prime importance are the trace features, which allow an external debugger to receive continuous
information on the program execution in the CPU. Additionally, Event In and Event Out pins
allow external events to be correlated with the program flow.

The AUX port contains a number of pins, as shown in Table 36-1 on page 773. These are multi-
plexed with PIO lines, and must explicitly be enabled by writing OCD registers before the debug
session starts. The AUX port is mapped to two different locations, selectable by OCD Registers,
minimizing the chance that the AUX port will need to be shared with an application.

Debug tools utilizing the AUX port should connect to the device through a Nexus-compliant Mic-
tor-38 connector, as described in the AVR32AP Technical Reference manual. This connector

773
32015G–AVR32–09/09

AT32AP7001

includes the JTAG signals and the RESET_N pin, giving full access to the programming and
debug features in the device.

Figure 36-3. AUX+JTAG based debugger

36.4.2.1 Trace operation

Trace features are enabled by writing OCD registers by JTAG. The OCD extracts the trace infor-
mation from the CPU, compresses this information and formats it into variable-length messages
according to the Nexus standard. The messages are buffered in a 16-frame transmit queue, and
are output on the AUX port one frame at a time.

The trace features can be configured to be very selective, to reduce the bandwidth on the AUX
port. In case the transmit queue overflows, error messages are produced to indicate loss of

Table 36-1. Auxiliary port signals

Signal Direction Description

MCKO Output Trace data output clock

MDO[5:0] Output Trace data output

MSEO[1:0] Output Trace frame control

EVTI_N Input Event In

EVTO_N Output Event Out

A V R 3 2

A U X + J T A G
d e b u g to o l

J T A GA U X
h ig h s p e e d

M ic t o r 3 8

T r a c e b u f f e r

P C

774
32015G–AVR32–09/09

AT32AP7001

data. The transmit queue module can optionally be configured to halt the CPU when an overflow
occurs, to prevent the loss of messages, at the expense of longer run-time for the program.

36.4.2.2 Program Trace

Program trace allows the debugger to continuously monitor the program execution in the CPU.
Program trace messages are generated for every branch in the program, and contains com-
pressed information, which allows the debugger to correlate the message with the source code
to identify the branch instruction and target address.

36.4.2.3 Data Trace

Data trace outputs a message every time a specific location is read or written. The message
contains information about the type (read/write) and size of the access, as well as the address
and data of the accessed location. The AT32AP7001 contains two data trace channels, each of
which are controlled by a pair of OCD registers which determine the range of addresses (or sin-
gle address) which should produce data trace messages.

36.4.2.4 Ownership Trace

Program and data trace operate on virtual addresses. In cases where an operating system runs
several processes in overlapping virtual memory segments, the Ownership Trace feature can be
used to identify the process switch. When the O/S activates a process, it will write the process ID
number to an OCD register, which produces an Ownership Trace Message, allowing the debug-
ger to switch context for the subsequent program and data trace messages. As the use of this
feature depends on the software running on the CPU, it can also be used to extract other types
of information from the system.

36.4.2.5 Watchpoint messages

The breakpoint modules normally used to generate program and data breakpoints can also be
used to generate Watchpoint messages, allowing a debugger to monitor program and data
events without halting the CPU. Watchpoints can be enabled independently of breakpoints, so a
breakpoint module can optionally halt the CPU when the trigger condition occurs. Data trace
modules can also be configured to produce watchpoint messages instead of regular data trace
messages.

36.4.2.6 Event In and Event Out pins

The AUX port also contains an Event In pin (EVTI_N) and an Event Out pin (EVTO_N). EVTI_N
can be used to trigger a breakpoint when an external event occurs. It can also be used to trigger
specific program and data trace synchronization messages, allowing an external event to be
correlated to the program flow.

When the CPU enters debug mode, a Debug Status message is transmitted on the trace port.
All trace messages can be timestamped when they are received by the debug tool. However,
due to the latency of the transmit queue buffering, the timestamp will not be 100% accurate. To
improve this, EVTO_N can toggle every time a message is inserted into the transmit queue,
allowing trace messages to be timestamped precisely. EVTO_N can also toggle when a break-
point module triggers, or when the CPU enters debug mode, for any reason. This can be used to
measure precisely when the respective internal event occurs.

775
32015G–AVR32–09/09

AT32AP7001

36.4.2.7 Software Quality Analysis (SQA)

Software Quality Analysis (SQA) deals with two important issues regarding embedded software
development. Code coverage involves identifying untested parts of the embedded code, to
improve test procedures and thus the quality of the released software. Performance analysis
allows the developer to precisely quantify the time spent in various parts of the code, allowing
bottlenecks to be identified and optimized.

Program trace must be used to accomplish these tasks without instrumenting (altering) the code
to be examined. However, traditional program trace cannot reconstruct the current PC value
without correlating the trace information with the source code, which cannot be done on-the-fly.
This limits program trace to a relatively short time segment, determined by the size of the trace
buffer in the debug tool.

The OCD system in AT32AP7001 extends program trace with SQA capabilities, allowing the
debug tool to reconstruct the PC value on-the-fly. Code coverage and performance analysis can
thus be reported for an unlimited execution sequence.

776
32015G–AVR32–09/09

AT32AP7001

37. JTAG and Boundary Scan

Rev.: 1.0.0.0

37.1 Features

• IEEE1149.1 compliant JTAG Interface
• Boundary-Scan Chain for board-level testing
• Direct memory access and programming capabilities through JTAG interface
• On-Chip Debug access in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0)

37.2 Overview

Figure 37-1 on page 777 shows how the JTAG is connected in an AVR32 device. The TAP Con-
troller is a state machine controlled by the TCK and TMS signals. The TAP Controller selects
either the JTAG Instruction Register or one of several Data Registers as the scan chain (shift
register) between the TDI-input and TDO-output. The Instruction Register holds JTAG instruc-
tions controlling the behavior of a Data Register.

The Device Identification Register, Bypass Register, and the Boundary-Scan Chain are the Data
Registers used for board-level testing. The Reset Register can be used to keep the device reset
during test or programming.

The Service Access Bus (SAB) interface contains address and data registers for the Service
Access Bus, which gives access to on-chip debug, programming, and other functions in the
device. The SAB offers several modes of access to the address and data registers, as dis-
cussed in ”Service Access Bus” on page 780.

”JTAG Instruction Summary” on page 782 lists the supported JTAG instructions, with references
to the description in this document.

777
32015G–AVR32–09/09

AT32AP7001

37.3 Block diagram

Figure 37-1. JTAG and Boundary Scan access

37.4 Functional description

37.4.1 JTAG interface

The JTAG interface is accessed through the dedicated JTAG pins shown in Table 37-1 on page
778. The TMS control line navigates the TAP controller, as shown in Figure 37-2 on page 778.
The TAP controller manages the serial access to the JTAG Instruction and Data registers. Data
is scanned into the selected instruction or data register on TDI, and out of the register on TDO,
in the Shift-IR and Shift-DR states, respectively. The LSB is shifted in and out first. TDO is high-
Z in other states than Shift-IR and Shift-DR.

Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for 5 TCK clock periods. This sequence should always be applied
at the start of a JTAG session to bring the TAP Controller into a defined state before applying

AVR32 device

JTAG data registers

TAP
Controller

TCK

TMS

TDI

TDO

Instruction Register

ID Register

By-
pass

Reset
Register

Memory Access

B
ou

nd
ar

y
S

ca
n

C
ha

in

CPU

Internal Memory

Caches

OCD Registers

External Bus Interface

P
in

s
an

d
an

al
og

 b
lo

ck
s

Instruction Register
Scan enable

Data register
scan enable

Nexus Access

JT
A

G
 T

A
P

TRST_N Boundary scan enable

JTAG deviceJTAG device

JTAG master
TRST_N

TCK

TMS

TD
I

TD
O

TD
I

TD
O

External Memory

HSB

778
32015G–AVR32–09/09

AT32AP7001

JTAG commands. Applying a 0 on TMS for 1 TCK period brings the TAP Controller to the Run-
Test/Idle state, which is the starting point for JTAG operations.

The device implements a 5-bit Instruction Register (IR). A number of public JTAG instructions
defined by the JTAG standard are supported, as described in ”Public JTAG instructions” on
page 783, as well as a number of AVR32-specific private JTAG instructions described in ”Private
JTAG Instructions” on page 784. Each instruction selects a specific data register for the Shift-DR
path, as described for each instruction.

Figure 37-2. TAP Controller State Diagram

Table 37-1. JTAG pins

Pin Direction Description

TCK Input Test Clock. Fully asynchronous to system clock frequency.

TMS Input Test Mode Select, sampled on rising TCK

TDI Input Test Data In, sampled on rising TCK.

TDO Output Test Data Out, driven on falling TCK.

Test-Logic-
Reset

Run-Test/
Idle

Select-DR
Scan

Select-IR
Scan

Capture-DR Capture-IR

Shift-DR Shift-IR

Exit1-DR Exit1-IR

Pause-DR Pause-IR

Exit2-DR Exit2-IR

Update-DR Update-IR

0

1 1

1

0

0

1

0

1

1

0

0

1

0

1

1

1

0

1 1

0 0

11

0

1

0

0 0

0

0

1

779
32015G–AVR32–09/09

AT32AP7001

37.4.2 Typical sequence

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

37.4.2.1 Scanning in JTAG instruction

At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register - Shift-IR state. While in this state, shift the 5 bits of the JTAG instructions
into the JTAG instruction register from the TDI input at the rising edge of TCK. The TMS input
must be held low during input of the 4 LSBs in order to remain in the Shift-IR state. The JTAG
Instruction selects a particular Data Register as path between TDI and TDO and controls the cir-
cuitry surrounding the selected Data Register.

Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
onto the parallel output from the shift register path in the Update-IR state. The Exit-IR, Pause-IR,
and Exit2-IR states are only used for navigating the state machine.

Figure 37-3. Scanning in JTAG instruction

37.4.2.2 Scanning in/out data

At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data
Register - Shift-DR state. While in this state, upload the selected Data Register (selected by the
present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising edge
of TCK. In order to remain in the Shift-DR state, the TMS input must be held low. While the Data
Register is shifted in from the TDI pin, the parallel inputs to the Data Register captured in the
Capture-DR state is shifted out on the TDO pin.

Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data Register
has a latched parallel-output, the latching takes place in the Update-DR state. The Exit-DR,
Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers.

37.4.3 Boundary-Scan

The Boundary-Scan chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by
the TDI/TDO signals to form a long shift register. An external controller sets up the devices to
drive values at their output pins, and observe the input values received from other devices. The
controller compares the received data with the expected result. In this way, Boundary-Scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits
Boards by using the 4 TAP signals only.

TCK

TAP State TLR RTI SelDR SelIR CapIR ShIR Ex1IR UpdIR RTI

TMS

TDI Instruction

TDO ImplDefined

780
32015G–AVR32–09/09

AT32AP7001

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST can be used for testing the Printed Circuit Board. Initial scanning of the
data register path will show the ID-code of the device, since IDCODE is the default JTAG
instruction. It may be desirable to have the AVR32 device in reset during test mode. If not reset,
inputs to the device may be determined by the scan operations, and the internal software may
be in an undetermined state when exiting the test mode. Entering reset, the outputs of any Port
Pin will instantly enter the high impedance state, making the HIGHZ instruction redundant. If
needed, the BYPASS instruction can be issued to make the shortest possible scan chain
through the device. The device can be set in the reset state either by pulling the external
RESETn pin low, or issuing the AVR_RESET instruction with appropriate setting of the Reset
Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction
is loaded into the JTAG IR-register. Therefore, the SAMPLE/PRELOAD should also be used for
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST
instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the
external pins during normal operation of the part.

When using the JTAG interface for Boundary-Scan, the JTAG TCK clock is independent of the
internal chip clock, which is not required to run.

NOTE: For pins connected to 5V lines care should be taken to not drive the pins to a logic one
using boundary scan, as this will create a current flowing from the 3,3V driver to the 5V pullup on
the line. Optionally a series resistor can be added between the line and the pin to reduce the
current.

37.4.4 Service Access Bus

The AVR32 architecture offers a common interface for access to On-Chip Debug, programming,
and test functions. These are mapped on a common bus called the Service Access Bus (SAB),
which is linked to the JTAG port through a bus master module, which also handles synchroniza-
tion between the JTAG and SAB clocks.

When accessing the SAB through the TAP there are no limitations on TCK frequency compared
to chip frequency, although there must be an active system clock in order for the SAB accesses
to complete. If the system clock is switched off in sleep mode, activity on the TCK pin will restart
the system clock automatically, without waking the device from sleep. JTAG masters may opti-
mize the transfer rate by adjusting the TCK frequency in relation to the system clock. This ratio
can be measured with the SYNC instruction.

The Service Access Bus uses 36 address bits to address memory or registers in any of the
slaves on the bus. The bus supports accesses of words (32 bits). All accesses must be aligned
to the size of the access, i.e. word accesses must have the two lowest address bits cleared.

A number of private instructions are used to access SAB resources. Each of these are described
in detail in ”Private JTAG Instructions” on page 784. The MEMORY_WORD_ACCESS instruc-
tion allows a read or write a word to any 36-bit address on the bus. NEXUS_ACCESS instruction
is a Nexus-compliant shorthand instruction for accessing the 32-bit OCD registers in the 7-bit
address space reserved for these. These instructions require two passes through the Shift-DR
TAP state: one for the address and control information, and one for data.

781
32015G–AVR32–09/09

AT32AP7001

To increase the transfer rate, consecutive memory accesses can be accomplished by the
MEMORY_BLOCK_ACCESS instruction, which only requires a single pass through Shift-DR for
data transfer only. The address is automatically increment the address.

The access time to SAB resources depends on the type of resource being accessed. It is possi-
ble to read external memory through the EBI, in which case the latency may be very long. It is
possible to abort an ongoing SAB access by the CANCEL_ACCESS instruction, to avoid hang-
ing the bus due to an extremely slow slave.

37.4.4.1 Busy reporting

As the time taken to perform an access may vary depending on system activity and current chip
frequency, all the SAB access JTAG instructions can return a busy indicator. This indicates
whether a delay needs to be inserted, or an operation needs to be repeated in order to be suc-
cessful. If a new access is requested while the SAB is busy, the request is ignored.

The SAB becomes busy when:

• Entering Update-DR in the address phase of any read operation, e.g. after scanning in a
NEXUS_ACCESS address with the read bit set.

• Entering Update-DR in the data phase of any write operation, e.g. after scanning in data for a
NEXUS_ACCESS write.

• Entering Update-DR during a MEMORY_BLOCK_ACCESS.

• Entering Update-DR after scanning in a counter value for SYNC.

• Entering Update-IR after scanning in a MEMORY_BLOCK_ACCESS if the previous access
was a read and data was scanned after scanning the address.

The SAB becomes ready again when:

• A read or write operation completes.

• A SYNC countdown completed.

• A operation is cancelled by the CANCEL_ACCESS instruction.

What to do if the busy bit is set:

• During Shift-IR: The new instruction is selected, but the previous operation has not yet
completed and will continue (unless the new instruction is CANCEL_ACCESS). You may
continue shifting the same instruction until the busy bit clears, or start shifting data. If shifting
data, you must be prepared that the data shift may also report busy.

• During Shift-DR of an address: The new address is ignored. The SAB stays in address mode,
so no data must be shifted. Repeat the address until the busy bit clears.

• During Shift-DR of read data: The read data are invalid. The SAB stays in data mode. Repeat
scanning until the busy bit clears.

• During Shift-DR of write data: The write data are ignored. The SAB stays in data mode. Repeat
scanning until the busy bit clears.

37.4.4.2 Error reporting

The Service access port may not be able to complete all accesses as requested. This may be
because the address is invalid, the addressed area is read-only or cannot handle byte/halfword
accesses, or because the chip is set in a protected mode where only limited accesses are
allowed.

The error bit is updated when an access completes, and is cleared when a new access starts.

782
32015G–AVR32–09/09

AT32AP7001

What to do if the error bit is set:

• During Shift-IR: The new instruction is selected. The last operation performed using the old
instruction did not complete successfully.

• During Shift-DR of an address: The previous operation failed. The new address is accepted. If
the read bit is set, a read operation is started.

• During Shift-DR of read data: The read operation failed, and the read data are invalid.

• During Shift-DR of write data: The previous write operation failed. The new data are accepted
and a write operation started. This should only occur during block writes or stream writes. No
error can occur between scanning a write address and the following write data.

• While polling with CANCEL_ACCESS: The previous access was cancelled. It may or may not
have actually completed.

37.4.5 Memory programming

The High-Speed Bus (HSB) in the device is mapped as a slave on the SAB. This enables all
HSB-mapped memories to be read or written through the SAB using JTAG instructions, as
described in ”Service Access Bus” on page 780.

Internal SRAM can always be directly accessed. External static memory or SDRAM can be
accessed if the EBI has been correctly configured to access this memory. It is also possible to
access the configuration registers for these modules to set up the correct configuration. Simi-
larly, external parallel flash can be programmed by accessing the registers for the flash device
through the EBI.

Memory can be written while the CPU is executing, which can be utilized for debug purposes.
When downloading a new program, the AVR_RESET instruction should be used to freeze the
CPU, to prevent partially downloaded code from being executed.

37.5 JTAG Instruction Summary

The implemented JTAG instructions in the AVR32 are shown in the table below.

Table 37-2. JTAG Instruction Summary

Instruction
OPCODE Instruction Description Page

0x01 IDCODE Select the 32-bit Device Identification register as data register. 783

0x02 SAMPLE_PRELOAD
Take a snapshot of external pin values without affecting system
operation.

783

0x03 EXTEST
Select boundary scan chain as data register for testing circuitry
external to the device.

783

0x04 INTEST Select boundary scan chain for internal testing of the device. 783

0x06 CLAMP
Bypass device through Bypass register, while driving outputs from
boundary scan register.

784

0x0C AVR_RESET Apply or remove a static reset to the device 789

0x10 NEXUS_ACCESS
Select the SAB Address and Data registers as data register for the
TAP. The registers are accessed in Nexus mode.

785

0x11 MEMORY_WORD_ACCESS
Select the SAB Address and Data registers as data register for the
TAP.

786

783
32015G–AVR32–09/09

AT32AP7001

37.6 Public JTAG instructions

37.6.1 IDCODE

This instruction selects the 32 bit Device Identification register as Data Register. The Device
Identification register consists of a version number, a device number and the manufacturer code
chosen by JEDEC. This is the default instruction after power-up.

The active states are:

• Capture-DR: The static IDCODE value is latched into the shift register.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

37.6.2 SAMPLE_PRELOAD

JTAG instruction for taking a snap-shot of the input/output pins without affecting the system
operation, and pre-loading the scan chain without updating the DR-latch. The Boundary-Scan
Chain is selected as Data Register.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-Scan Chain.

• Shift-DR: The Boundary-Scan Chain is shifted by the TCK input.

EXTEST

JTAG instruction for selecting the Boundary-Scan Chain as Data Register for testing circuitry
external to the AVR32 package. The contents of the latched outputs of the Boundary-Scan chain
is driven out as soon as the JTAG IR-register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins is sampled into the Boundary-Scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

37.6.3 INTEST

This instruction selects the Boundary-Scan Chain as Data Register for testing internal logic in
the device. The logic inputs are determined by the Boundary-Scan Chain, and the logic outputs
are captured by the Boundary-Scan chain. The device output pins are driven from the Boundary-
Scan Chain.

0x12 MEMORY_BLOCK_ACCESS
Select the SAB Data register as data register for the TAP. The
address is auto-incremented.

787

0x13 CANCEL_ACCESS Cancel an ongoing Nexus or Memory access. 788

0x17 SYNC Synchronization counter 788

0x1F BYPASS Bypass this device through the bypass register. 784

Others N/A Acts as BYPASS

Table 37-2. JTAG Instruction Summary

Instruction
OPCODE Instruction Description Page

784
32015G–AVR32–09/09

AT32AP7001

The active states are:

• Capture-DR: Data from the internal logic is sampled into the Boundary-Scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to internal logic inputs.

37.6.4 CLAMP

This instruction selects the Bypass register as Data Register. The device output pins are driven
from the Boundary-Scan Chain.

The active states are:

• Capture-DR: Loads a logic ‘0’ into the Bypass Register.

• Shift-DR: Data is scanned from TDI to TDO through the Bypass register.

37.6.5 BYPASS

 JTAG instruction selecting the 1-bit Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic ‘0’ into the Bypass Register.

• Shift-DR: Data is scanned from TDI to TDO through the Bypass register.

37.7 Private JTAG Instructions

37.7.1 Notation

The AVR32 defines a number of private JTAG instructions. Each instruction is briefly described
in text, with details following in table form.

Table 37-4 on page 785 shows bit patterns to be shifted in a format like "peb01". Each character
corresponds to one bit, and eight bits are grouped together for readability. The rightmost bit is
always shifted first, and the leftmost bit shifted last. The symbols used are shown in Table 37-3.

Table 37-3. Symbol description

Symbol Description

0 Constant low value - always reads as zero.

1 Constant high value - always reads as one.

a An address bit - always scanned with the least significant bit first

b
A busy bit. Reads as one if the SAB was busy, or zero if it was not. See ”Busy reporting” on
page 781 for details on how the busy reporting works.

d A data bit - always scanned with the least significant bit first.

e
An error bit. Reads as one if an error occurred, or zero if not. See ”Error reporting” on page
781 for details on how the error reporting works.

p
The chip protected bit. Some devices may be set in a protected state where access to chip
internals are severely restricted. See the documentation for the specific device for details.
On devices without this possibility, this bit always reads as zero.

r A direction bit. Set to one to request a read, set to zero to request a write.

x A don’t care bit. Any value can be shifted in, and output data should be ignored.

785
32015G–AVR32–09/09

AT32AP7001

In many cases, it is not required to shift all bits through the data register. Bit patterns are shown
using the full width of the shift register, but the suggested or required bits are emphasized using
bold text. I.e. given the pattern "aaaaaaar xxxxxxxx xxxxxxxx xxxxxxxx xx", the shift register is
34 bits, but the test or debug unit may choose to shift only 8 bits "aaaaaaar".

The following describes how to interpret the fields in the instruction description tables:

37.7.2 NEXUS_ACCESS

This instruction allows Nexus-compliant access to on-chip debug registers through the SAB.
OCD registers are addressed by their register index, as listed in the AVR32 Technical Reference
Manual. The 7-bit register index and a read/write control bit, and the 32-bit data is accessed
through the JTAG port.

The data register is alternately interpreted by the SAB as an address register and a data regis-
ter. The SAB starts in address mode after the NEXUS_ACCESS instruction is selected, and
toggles between address and data mode each time a data scan completes with the busy bit
cleared.

NOTE: The polarity of the direction bit is inverse of the Nexus standard.

Starting in Run-Test/Idle, OCD registers are accessed in the following way:

1. Select the DR Scan path

2. Scan in the 7-bit address for the OCD register and a direction bit (1=read, 0=write).

3. Go to Update-DR and re-enter Select-DR Scan

4. For a read operation, scan out the contents of the addressed register. For a write opera-
tion, scan in the new contents of the register.

5. Return to Run-Test/Idle

Table 37-4. Instruction description

Instruction Description

IR input value

Shows the bit pattern to shift into IR in the Shift-IR state in order to select this
instruction. The pattern is show both in binary and in hexadecimal form for
convenience.

Example: 10000 (0x10)

IR output value
Shows the bit pattern shifted out of IR in the Shift-IR state when this instruction is
active.
Example: peb01

DR Size
Shows the number of bits in the data register chain when this instruction is active.
Example: 34 bits

DR input value

Shows which bit pattern to shift into the data register in the Shift-DR state when this
instruction is active. Multiple such lines may exist, e.g. to distinguish between reads
and writes.

Example: aaaaaaar xxxxxxxx xxxxxxxx xxxxxxxx xx

DR output value

Shows the bit pattern shifted out of the data register in the Shift-DR state when this
instruction is active. Multiple such lines may exist, e.g. to distinguish between reads
and writes.

Example: xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

786
32015G–AVR32–09/09

AT32AP7001

For any operation, the full 7 bits of the address must be provided. For write operations, 32 data
bits must be provided, or the result will be undefined. For read operations, shifting may be termi-
nated once the required number of bits have been acquired.

37.7.3 MEMORY_WORD_ACCESS

This instruction allows access to the entire Service Access Bus data area. Data are accessed
through a 34-bit word index, a direction bit, and 32 bits of data. Since word allignment is implied
only the 34 most significant bits of the Service Access Bus address is used.

The data register is alternately interpreted by the SAB as an address register and a data regis-
ter. The SAB starts in address mode after the MEMORY_WORD_ACCESS instruction is
selected, and toggles between address and data mode each time a data scan completes with
the busy bit cleared.

Starting in Run-Test/Idle, SAB data are accessed in the following way:

1. Select the DR Scan path

2. Scan in the 34-bit address of the data to access, and a direction bit (1=read, 0=write).

3. Go to Update-DR and re-enter Select-DR Scan

4. For a read operation, scan out the contents of the addressed area. For a write operation,
scan in the new contents of the area.

5. Return to Run-Test/Idle

For any operation, the full 34 bits of the address must be provided. For write operations, 32 data
bits must be provided, or the result will be undefined. For read operations, shifting may be termi-
nated once the required number of bits have been acquired.

Table 37-5. NEXUS_ACCESS details

Instructions Details

IR input value 10000 (0x10)

IR output value peb01

DR Size 34 bits

DR input value (Address phase) aaaaaaar xxxxxxxx xxxxxxxx xxxxxxxx xx

DR input value (Data read phase) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx

DR input value (Data write phase) dddddddd dddddddd dddddddd dddddddd xx

DR output value (Address phase) xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

DR output value (Data read phase) eb dddddddd dddddddd dddddddd dddddddd

DR output value (Data write phase) xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

Table 37-6. MEMORY_WORD_ACCESS details

Instructions Details

IR input value 10001 (0x11)

IR output value peb01

DR Size 35 bits

DR input value (Address phase) aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aar

DR input value (Data read phase) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxx

787
32015G–AVR32–09/09

AT32AP7001

37.7.4 MEMORY_BLOCK_ACCESS

This instruction allows access to the entire SAB data area. Up to 32 bits of data are accessed at
a time, while the address is sequentially incremented from the previously used address.

In this mode, the SAB address, and access direction is not provided with each access. Instead,
the previous address is auto-incremented and the previous operation repeated. The address
must be set up in advance with MEMORY_WORD_ACCESS. It is allowed, but not required, to
shift data after shifting the address.

This instruction is primarily intended to speed up large quantities of sequential word accesses..

The following sequence should be used:

1. Use the MEMORY_WORD_ACCESS to read or write the first location.

2. Apply MEMORY_BLOCK_ACCESS in the IR Scan path.

3. Select the DR Scan path. The address will now have incremented by 4 (corresponding to
the next word location).

4. For a read operation, scan out the contents of the next addressed location. For a write
operation, scan in the new contents of the next addressed location.

5. Go to Update-DR

6. If the block access is not complete, return to Select-DR Scan and repeat the access.

7. If the block access is complete, return to Run-Test/Idle

For write operations, 32 data bits must be provided, or the result will be undefined. For read
operations, shifting may be terminated once the required number of bits have been acquired.

The overhead using block word access is 4 cycles per 32 bits of data, resulting in an 88% trans-
fer efficiency, or 2.1 MBytes per second with a 20 MHz TCK frequency.

DR input value (Data write phase) dddddddd dddddddd dddddddd dddddddd xxx

DR output value (Address phase) xxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

DR output value (Data read phase) xeb dddddddd dddddddd dddddddd dddddddd

DR output value (Data write phase) xxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

Table 37-6. MEMORY_WORD_ACCESS details (Continued)

Instructions Details

Table 37-7. MEMORY_BLOCK_ACCESS details

Instructions Details

IR input value 10010 (0x12)

IR output value peb01

DR Size 34 bits

DR input value (Data read phase) xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx

DR input value (Data write phase) dddddddd dddddddd dddddddd dddddddd xx

DR output value (Data read phase) eb dddddddd dddddddd dddddddd dddddddd

DR output value (Data write phase) xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxeb

788
32015G–AVR32–09/09

AT32AP7001

37.7.5 CANCEL_ACCESS

If a very slow memory location is accessed during a SAB memory access, it could take a very
long time until the busy bit is cleared, and the SAB becomes ready for the next operation. The
CANCEL_ACCESS instruction provides a possibility to abort an ongoing transfer and report a
timeout to the user.

When the CANCEL_ACCESS instruction is selected, the current access will be terminated as
soon as possible. There are no guarantees about how long this will take, as the hardware may
not always be able to cancel the access immediately. The SAB is ready to respond to a new
command when the busy bit clears.

37.7.6 SYNC

This instruction allows external debuggers and testers to measure the ratio between the external
JTAG clock and the internal system clock. The SYNC data register is a 16-bit counter that
counts down to zero using the internal system clock. The busy bit stays high until the counter
reaches zero.

Starting in Run-Test/Idle, SYNC instruction is used in the following way:

1. Select the DR Scan path

2. Scan in an 16-bit counter value

3. Go to Update-DR and re-enter Select-DR Scan

4. Scan out the busy bit, and retry until the busy bit clears.

5. Calculate an approximation to the internal clock speed using the elapsed time and the
counter value.

6. Return to Run-Test/Idle

The full 16-bit counter value must be provided when starting the synch operation, or the result
will be undefined. When reading status, shifting may be terminated once the required number of
bits have been acquired.

Table 37-8. CANCEL_ACCESS details

Instructions Details

IR input value 10011 (0x13)

IR output value peb01

DR Size 1

DR input value x

DR output value 0

Table 37-9. SYNC_ACCESS details

Instructions Details

IR input value 10111 (0x17)

IR output value peb01

DR Size 16 bits

DR input value dddddddd dddddddd

DR output value xxxxxxxx xxxxxxeb

789
32015G–AVR32–09/09

AT32AP7001

37.7.7 AVR_RESET

This instruction allows a debugger or tester to directly control separate reset domains inside the
chip. The shift register contains one bit for each controllable reset domain. Setting a bit to one
resets that domain and holds it in reset. Setting a bit to zero releases the reset for that domain.

See the device specific documentation for the number of reset domains, and what these
domains are.

For any operation, all bits must be provided or the result will be undefined.

Table 37-10. AVR_RESET details

Instructions Details

IR input value 01100 (0x0C)

IR output value p0001

DR Size Device specific. Typically 5 bits.

DR input value ddddd

DR output value ddddd

790
32015G–AVR32–09/09

AT32AP7001

37.8 JTAG Data Registers

The following device specific registers can be selected as JTAG scan chain depending on the
instruction loaded in the JTAG Instruction Register. Additional registers exist, but are implicitly
described in the functional description of the relevant instructions.

37.8.1 Device Identification Register

The Device Identification Register contains a unique identifier for each product. The register is
selected by the IDCODE instruction, which is the default instruction after a JTAG reset.

37.8.1.1 Device specific ID codes

The different device configurations have different JTAG ID codes, as shown in Table 37-11. .

37.8.2 Reset register

The reset register is selected by the AVR_RESET instruction and contains one bit for each reset
domain in the device. Setting each bit to one will keep that domain reset until the bit is cleared.

MS
B

LSB

Bit 31 28 27 12 11 1 0

Device ID Revision Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1 bit

Revision This is a 4 bit number identifying the revision of the component.
Rev A = 0x0, B = 0x1, etc.

Part Number The part number is a 16 bit code identifying the component.

Manufacturer ID The Manufacturer ID is a 11 bit code identifying the manufacturer.
The JTAG manufacturer ID for ATMEL is 0x01F.

Table 37-11. Device and JTAG ID

Device name JTAG ID code (r is the revision number)

AT32AP7000 0xr1E8203F

AT32AP7001 0xr1E8203F

LSB

Bit 4 3 2 1 0

Device ID OCD APP DCACHE ICACHE CPU

CPU CPU

ICACHE Instruction cache

791
32015G–AVR32–09/09

AT32AP7001

This register is intended to be used when programming the device, to avoid running partially
downloaded code. The following procedure is recommended:

• RESET = OCD | APP | DCACHE | ICACHE | CPU

– This will bring the entire system back to its reset state, regardless of the preceding
state.

• RESET = ICACHE | CPU

– This keeps the ICache and CPU from fetching and executing partially downloaded
instructions.

• Perform the programming operations

• RESET = 0

– The CPU will start executing from the reset vector.

It is not recommended to use the RESET register for other purposes than described above, as
operations may not function correctly when parts of the system are reset.

37.8.3 Boundary-Scan Chain

The Boundary-Scan Chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as driving and observing the logic levels between the digital I/O pins and the
internal logic. Typically, output value, output enable, and input data are all available in the
boundary scan chain.

The boundary scan chain is described in the BDSL (Boundary Scan Description Language) file
available at the Atmel web site.

37.9 SAB address map

The Service Access Bus (SAB) gives the user access to the internal address space and other
features through a 36 bits address space. The 4 MSBs identify the slave number, while the 32
LSBs are decoded within the slave’s address space. The SAB slaves are shown in Table 37-12.

DCACHE Data cache and JTAG SAB interface

APP HSB and PB buses

OCD On-Chip Debug logic and registers

Table 37-12. SAB Slaves, addresses and descriptions.

Slave Address [35:32] Description

Unallocated 0x0 Intentionally unallocated

OCD 0x1 OCD registers

HSB cached 0x4
HSB memory space, as seen by the CPU through the data
cache

HSB uncached 0x5
Alternative mapping for HSB space, as seen by the CPU
bypassingthe data cache.

Reserved Other Unused

792
32015G–AVR32–09/09

AT32AP7001

38. Boot Sequence

This chapter summarizes the boot sequence of the AT32AP7001. The behaviour after power-up
is controlled by the Power Manager.

38.1 Starting of clocks

After power-up, the device will be held in a reset state by the Power-On Reset (POR) circuitry
until the voltage has reached the power-on reset rising threshold value (see Electrical Character-
istics for details). This ensures that all critical parts of the device are properly reset.

Once the power-on reset is complete, the device will use the XIN0 pin as clock source. XIN0 can
be connected either to an external clock, or a crystal. The OSCEN_N pin is connected either to
VDD or GND to inform the Power Manager on how the XIN0 pin is connected. If XIN0 receives a
signal from a crystal, dedicated circuitry in the Power Manager keeps the part in a reset state
until the oscillator connected to XIN0 has settled. If XIN0 receives an external clock, no such set-
tling delay is applied.

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have
a divided frequency, all parts of the system recieves a clock with the same frequency as the
XIN0 clock.

Note that the power-on reset will release reset at a lower voltage threshold than the minimum
specified operating voltage. If the voltage is not guaranteed to be stable by the time the device
starts executing, an external brown-out reset circuit should be used.

38.2 Fetching of initial instructions

After reset has been released, the AVR32AP CPU starts fetching instructions from the reset
address, which is 0xA000_0000. This address lies in the P2 segment, which is non-translated,
non-cacheable, and permanently mapped to the physical address range 0x0000_0000 to
0x2000_0000. This means that the instruction being fetched from virtual address 0xA000_0000
is being fetched from physical address 0x0000_0000. Physical address 0x0000_0000 is
mapped to EBI SRAM CS0. This is the external memory the device boots from.

The code read from the SRAM CS0 memory is free to configure the system to use for example
the PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the
clocks to unused peripherals.

793
32015G–AVR32–09/09

AT32AP7001

39. Mechanical Characteristics

39.1 AVR32AP7001

39.1.1 Thermal Considerations

39.1.1.1 Thermal Data

Table 38-1 summarizes the thermal resistance data depending on the package.

39.1.1.2 Junction Temperature

The average chip-junction temperature, TJ, in °C can be obtained from the following:

1.

2.

where:

•θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 38-4 on
page 769.

•θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in
Table 38-4 on page 769.

•θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet.

•PD = device power consumption (W) estimated from data provided in the Power consumption
section, in the next chapter.

•TA = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a
cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second
equation should be used to compute the resulting average chip-junction temperature TJ in °C.

Table 39-1. Thermal Resistance Data

Symbol Parameter Condition Package Typ Unit

θJA Junction-to-ambient thermal resistance Still Air QFP208 38
°C/W

θJC Junction-to-case thermal resistance QFP208 6.8

TJ TA PD θJA×()+=

TJ TA P(D θ(HEATSINK× θJC))+ +=

794
32015G–AVR32–09/09

AT32AP7001

39.1.2 Package Drawings

Figure 39-1. 208-pin QFP Package Drawing

795
32015G–AVR32–09/09

AT32AP7001

39.1.3 Soldering Profile

Table 38-6 gives the recommended soldering profile from J-STD-20.

Note: It is recommended to apply a soldering temperature higher than 250°C. A maximum of three
reflow passes is allowed per component.

Table 39-2. Soldering Information

Pin Land 0.29 x 1.35 mm

Table 39-3. Device and 208-QFP Package Maximum Weight

2850 mg

Table 39-4. 208-QFP Package Characteristics

Moisture Sensitivity Level 3

Table 39-5. Package Reference

JEDEC Drawing Reference MS-029

JESD97 Classification e3

Table 39-6. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3°C/sec

Preheat Temperature 175°C ±25°C 60 - 180 sec

Temperature Maintained Above 217°C 60 - 150 sec

Time within 5°C of Actual Peak Temperature 20 - 40 sec

Peak Temperature Range 260 + 0°C

Ramp-down Rate 6°C/sec max

Time 25°C to Peak Temperature 8 minuts max

796
32015G–AVR32–09/09

AT32AP7001

40. Electrical Characteristics

40.1 Absolute Maximum Ratings

40.2 DC Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise spec-
ified and are certified for a junction temperature up to TJ = 100°C.

Table 40-1. Absolute Maximum Ratings*

Operating Temperature (Industrial)............ -40°C to +85°C *NOTICE: Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at these or other conditions beyond those
indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reli-
ability.

Storage Temperature -60°C to +150°C

Voltage on Input Pins
with Respect to Ground-0.3V to VDDIO + 0.3V (+3.9V max)

Maximum Operating Voltage
(VDDCORE, VDDOSC, VDDPLL and VDDUSB) 1.95V

Maximum Operating Voltage
(VDDIO) ... 3.6V

Total DC Output Current on all I/O lines 350 mA

Table 40-2. DC Characteristics

Symbol Parameter Conditions Min Typ Max Units

VVDDCORE DC Supply Core 1.65 1.95 V

VVDDBU DC Supply Backup 1.65 1.95

VVDDOSC DC Supply Oscillator 1.65 1.95 V

VVDDPLL DC Supply PLL 1.65 1.95 V

VVDDUSB DC Supply USB 1.65 1.95 V

VVDDIO
DC Supply Peripheral
I/Os

3.0 3.6 V

VIL Input Low-level Voltage -0.3 +0.8 V

VIH Input High-level Voltage 2.0 VVDDIO+0.3 V

VOL Output Low-level Voltage
IOL = 8 mA

0.4 V
IOL, TDO= 2 mA

VOH Output High-level Voltage
IOH = 8 mA

VVDDIO-0.4 V
IOH, TDO = 2 mA

IIL
Input Leakage Current,
Pin Low

Pullup resistors disabled 1 µA

IIH
Input Leakage Current,
Pin High

Pullup resistors disabled 1 µA

RPULLUPPIO
Pull-up Resistance on
PIO pins

190 kΩ

797
32015G–AVR32–09/09

AT32AP7001

Note: 1. Includes the TCK, TMS, TDI, OSCEN_N, TRST_N, RESET_N, EVTI_N, and WAKE_N pins.

40.3 Power Consumption
•Typical power consumption of PLLs, Slow Clock and Main Oscillator.

•Power consumption of power supply in Active mode.

•Power consumption by peripheral: calculated as the difference in current measurement after
having enabled then disabled the corresponding clock.

40.3.1 Power Consumption versus Modes
The values in Table 40-3 and Table 40-4 on page 798 are measured values of power consump-
tion with operating conditions as follows:

•VVDDIO = 3.3V

•VVDDCORE = VVDDUSB= VVDDPLL= VVDDOSC = 1.8V

•TA = 25°C

•There is no consumption on the I/Os of the device

Figure 40-1. Measures Schematics

RPULLUPCTRL
Pull-up Resistance on
Control and JTAG pins(1) 13 kΩ

IO Output Current 8
mA

IO, TDO Output Current, TDO pin 2

ISC Static Current

On VVDDCORE = 1.8V,

CPU = 0 Hz
TA =25°C 300

µA
All inputs driven;
RESET_N=1

TA =85°C 5000

Table 40-2. DC Characteristics (Continued)

VDDCORE

VDDUSB

VDDPLL

VDDOSC

AMP

798
32015G–AVR32–09/09

AT32AP7001

These figures represent the power consumption measured on the power supplies.

Note: 1. The value is measured at best case condition. Actual current consumption will vary depending
on the application.

.

Note: 1. These numbers are relative to the actual CPU clock frequency, using the standard bus divi-
sion: HSB and PBB divided by two. PBA divided by four.

Table 40-3. Typical Power Consumption for Different Operating Modes

Mode Conditions
Typical

consumption Unit

Active(1) All peripheral clocks deactivated. 500

µA/MHz
Idle All peripheral clocks activated. 480

Frozen All peripheral clocks activated. 280

Standby All peripheral clocks activated. 80

Table 40-4. Power Consumption by Peripheral in Active Mode

Peripheral Consumption Unit(1)

PIO Controller 3

µA/MHz

USART 3

USB 9

SMC 1

SDRAMC 1

AC97 5

ISI 3

Audio DAC 1

TWI 1

SPI 1

MCI 7

SSC 3

Timer Counter Channels 1

799
32015G–AVR32–09/09

AT32AP7001

40.4 Clock Characteristics
These parameters are given in the following conditions: VVDDCORE = 1.8V, Ambient Temperature = 25°C, unless otherwise
specified.

40.4.1 CPU Clock Characteristics

Note: 1. The bus clocks in the system should be divided, relative to the CPU, to be sure they operate in their specified range. The
HSB and PBB bus clocks should be divided by two and the PBA bus clock should be divided by four relative to the CPU
clock. The division factor of the buses can be set by programming the Power Manager register CKSEL.

Figure 40-2 and Figure 40-3 shows typical maximum CPU frequencies based on a selection of samples from different lots.

Figure 40-2. CPU Clock Frequency vs. VVDDCORE (Typical)

Table 40-5. Guaranteed CPU Clock Frequencies.

Symbol Parameter Conditions Min Max Units

1/(tCPCPU) CPU Clock Frequency (1) Temp = 85°C,
VVDDCORE = 1.8V

150 MHz

1/(tCPCPU) CPU Clock Frequency (1) Temp = 85°C,
VVDDCORE = 1.65V

133 MHz

85 °C

25 °C

-40 °C

100

120

140

160

180

200

220

240

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

VVDDCORE (V)

F
re

qu
en

cy
 (

M
H

z)

800
32015G–AVR32–09/09

AT32AP7001

Figure 40-3. CPU Clock Frequency vs. Temperature (Typical)

40.4.2 XIN Clock Characteristics

Note: 1. These characteristics apply only when the Oscillators arein bypass mode (i.e., when OSCEN_N is 1)

40.4.3 RESET_N Characteristics

1.95 V
1.90 V
1.85 V
1.80 V
1.75 V
1.70 V
1.65 V

100

120

140

160

180

200

220

240

-60 -40 -20 0 20 40 60 80 100

Temperature (°C)

F
re

qu
en

cy
 (

M
H

z)

Table 40-6. XIN Clock Electrical Characteristics

Symbol Parameter Conditions Min Max Units

1/(tCPXIN) XIN Clock Frequency(1 50.0 MHz

Table 40-7. RESET_N Electrical Characteristics

Symbol Parameter Conditions Min Max Units

tRESET RESET_N minimum pulse length 50 ns

801
32015G–AVR32–09/09

AT32AP7001

40.5 Crystal Oscillator Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of
power supply, unless otherwise specified.

40.5.1 32 kHz Oscillator Characteristics

Note: 1. RS is the equivalent series resistance, CL is the equivalent load capacitance.

40.5.2 Main Oscillators Characteristics

Notes: 1. CS is the shunt capacitance

40.5.3 PLL Characteristics

Note: 1. Startup time depends on PLL RC filter. A calculation tool is provided by Atmel.

Table 40-8. 32 KHz Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCP32KHz) Crystal Oscillator Frequency 32 768 Hz

tST Startup Time
VDDOSC = 1.8 V

RS = TBD kΩ, CL = TBD pF(1) 1000 ms

Table 40-9. Main Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

1/(tCPMAIN) Crystal Oscillator Frequency 10 27 MHz

CL1, CL2
Internal Load Capacitance

(CL1 = CL2)
TBD pF

tST Startup Time 4 ms

Table 40-10. Phase Lock Loop Characteristics

Symbol Parameter Conditions Min Typ Max Unit

FOUT Output Frequency 80 150 MHz

FIN Input Frequency 6 32 MHz

802
32015G–AVR32–09/09

AT32AP7001

40.6 USB Transceiver Characteristics

40.6.1 Electrical Characteristics

40.6.2 Switching Characteristics

Table 40-11. Electrical Parameters

Symbol Parameter Conditions Min Typ Max Unit

Input Levels

VIL Low Level 0.8 V

VIH High Level 2.0 V

VDI Differential Input Sensivity |(D+) - (D-)| 0.2 V

VCM

Differential Input Common
Mode Range

0.8 2.5 V

CIN Transceiver capacitance Capacitance to ground on each line 75 pF

I Hi-Z State Data Line Leakage 0V < VIN < 3.3V TBD TBD µA

REXT

Recommended External USB
Series Resistor

In series with each USB pin with ±5% 39 Ω

Output Levels

VOL Low Level Output
Measured with RL of 1.425 kΩ tied to
3.6V

0 0.3 V

VOH High Level Output
Measured with RL of 14.25 kΩ tied to
GND

2.8 3.6 V

VCRS

Output Signal Crossover
Voltage

Measure conditions described in
Figure 40-4

1.3 2.0 V

Table 40-12. In Full Speed

Symbol Parameter Conditions Min Typ Max Unit

tFR Transition Rise Time CLOAD = 50 pF 4 20 ns

tFE Transition Fall Time CLOAD = 50 pF 4 20 ns

tFRFM Rise/Fall time Matching 90 111 %

Table 40-13. In High Speed

Symbol Parameter Conditions Min Typ Max Unit

tFR Transition Rise Time Specified with test fixture + USB
cable

500 TBD ps

tFE Transition Fall Time 500 TBD ps

803
32015G–AVR32–09/09

AT32AP7001

Figure 40-4. USB Data Signal Rise and Fall Times

10% 10%

90%VCRS

tR tF
Differential
Data Lines

Rise Time Fall Time

Fosc = 6 MHz/750kHz
REXT = 39 ohms

CloadBuffer

(b)

(a)

804
32015G–AVR32–09/09

AT32AP7001

40.7 AC Characteristics

40.8 EBI Timings
These timings are given for worst case process, T = 85°C, VDDCORE = 1.65V, VDDIO = 3V and 50 pF load capacitance.

Note: 1. The maximum frequenzy of the SMC interface is the same as the max frequnzy for the HSB.

Note: 1. hold length = total cycle duration - setup duration - pulse duration. “hold length” is for “ncs rd hold length” or “nrd hold length”.

Table 40-14. SMC Clock Signal.

Symbol Parameter Max(1) Units

1/(tCPSMC) SMC Controller Clock Frequency 1/(2tcpcpu) MHz

Table 40-15. SMC Read Signals with Hold Settings

Symbol Parameter Min Units

NRD Controlled (READ_MODE = 1)

SMC1 Data Setup before NRD High 11.2

ns

SMC2 Data Hold after NRD High 0

SMC3 NRD High to NBS0/A0 Change(1) nrd hold length * tCPSMC - 1.3

SMC4 NRD High to NBS1 Change(1) nrd hold length * tCPSMC - 1.3

SMC5 NRD High to NBS2/A1 Change(1) nrd hold length * tCPSMC - 1.3

SMC6 NRD High to NBS3 Change(1) nrd hold length * tCPSMC - 1.3

SMC7 NRD High to A2 - A25 Change(1) nrd hold length * tCPSMC - 1.3

SMC8 NRD High to NCS Inactive(1) (nrd hold length - ncs rd hold length) * tCPSMC - 0.6

SMC9 NRD Pulse Width nrd pulse length * tCPSMC - 0.1

NRD Controlled (READ_MODE = 0)

SMC10 Data Setup before NCS High 12.4

ns

SMC11 Data Hold after NCS High 0

SMC12 NCS High to NBS0/A0 Change(1) ncs rd hold length * tCPSMC - 2.5

SMC13 NCS High to NBS0/A0 Change(1) ncs rd hold length * tCPSMC - 2.5

SMC14 NCS High to NBS2/A1 Change(1) ncs rd hold length * tCPSMC - 2.5

SMC15 NCS High to NBS3 Change(1) ncs rd hold length * tCPSMC - 2.5

SMC16 NCS High to A2 - A25 Change(1) ncs rd hold length * tCPSMC - 1.2

SMC17 NCS High to NRD Inactive(1) ncs rd hold length - nrd hold length)* tCPSMC - 4.3

SMC18 NCS Pulse Width ncs rd pulse length * tCPSMC - 1.5

805
32015G–AVR32–09/09

AT32AP7001

Note: 1. hold length = total cycle duration - setup duration - pulse duration. “hold length” is for “ncs wr hold length” or “nwe hold
length"

Table 40-16. SMC Read Signals with no Hold Settings

Symbol Parameter Min Units

NRD Controlled (READ_MODE = 1)

SMC19 Data Setup before NRD High 15.8
ns

SMC20 Data Hold after NRD High 0

NRD Controlled (READ_MODE = 0)

SMC21 Data Setup before NCS High 17.0
ns

SMC22 Data Hold after NCS High 0

Table 40-17. SMC Write Signals with Hold Settings

Symbol Parameter Min Units

NRD Controlled (READ_MODE = 1)

SMC23 Data Out Valid before NWE High (nwe pulse length - 1) * tCPSMC - 1.6

ns

SMC24 Data Out Valid after NWE High(1) nwe hold length * tCPSMC - 1.5

SMC25 NWE High to NBS0/A0 Change(1) nwe hold length * tCPSMC - 1.0

SMC26 NWE High to NBS1 Change(1) nwe hold length * tCPSMC - 1.0

SMC29 NWE High to NBS2/A1 Change(1) nwe hold length * tCPSMC - 1.0

SMC30 NWE High to NBS3 Change(1) nwe hold length * tCPSMC - 1.0

SMC31 NWE High to A2 - A25 Change(1) nwe hold length * tCPSMC - 1.6

SMC32 NWE High to NCS Inactive(1) (nwe hold length - ncs wr hold length)* tCPSMC - 0.3

SMC33 NWE Pulse Width nwe pulse length * tCPSMC

NRD Controlled (READ_MODE = 0)

SMC34 Data Out Valid before NCS High (ncs wr pulse length - 1)* tCPSMC - 1.9

nsSMC35 Data Out Valid after NCS High(1) ncs wr hold length * tCPSMC - 3.0

SMC36 NCS High to NWE Inactive(1) (ncs wr hold length - nwe hold length)* tCPSMC - 1.5

806
32015G–AVR32–09/09

AT32AP7001

Figure 40-5. SMC Signals for NCS Controlled Accesses.

Table 40-18. SMC Write Signals with No Hold Settings (NWE Controlled only).

Symbol Parameter Min Units

SMC37 NWE Rising to A2-A25 Valid 8.0

ns

SMC38 NWE Rising to NBS0/A0 Valid 8.0

SMC39 NWE Rising to NBS1 Change 8.0

SMC40 NWE Rising to A1/NBS2 Change 8.0

SMC41 NWE Rising to NBS3 Change 8.0

SMC42 NWE Rising to NCS Rising 8.5

SMC43 Data Out Valid before NWE Rising (nwe pulse length - 1) * tCPSMC - 4.9

SMC44 Data Out Valid after NWE Rising 8.4

SMC45 NWE Pulse Width nwe pulse length * tCPSMC + 0.3

NRD

NCS

D0 - D15

NWE

A2-A25

A0/A1/NBS[3:0]

SMC34 SMC35SMC10 SMC11

SMC16

SMC15

SMC22SMC21

SMC17

SMC18

SMC14
SMC13
SMC12

SMC18

SMC17

SMC16

SMC15
SMC14
SMC13
SMC12

SMC18

SMC36

SMC16

SMC15
SMC14
SMC13
SMC12

807
32015G–AVR32–09/09

AT32AP7001

Figure 40-6. SMC Signals for NRD and NRW Controlled Accesses.

40.8.1 SDRAM Signals

These timings are given for 10 pF load on SDCK and 50 pF on other signals.

Note: 1. The maximum frequenzy of the SDRAMC interface is the same as the max frequnzy for the
HSB.

NRD

NCS

D0 - D31

NWE

A2-A25

A0/A1/NBS[3:0]

SMC7

SMC19 SMC20 SMC43

SMC37

SMC42 SMC8

SMC1 SMC2 SMC23 SMC24

SMC32

SMC7

SMC8

SMC6
SMC5
SMC4
SMC3

SMC9

SMC41
SMC40
SMC39
SMC38

SMC45

SMC9

SMC6
SMC5
SMC4
SMC3

SMC33

SMC30
SMC29
SMC26
SMC25

SMC31

SMC44

Table 40-19. SDRAM Clock Signal.

Symbol Parameter Max(1) Units

1/(tCPSDCK) SDRAM Controller Clock Frequency 1/(2tcpcpu) MHz

808
32015G–AVR32–09/09

AT32AP7001

Table 40-20. SDRAM Clock Signal.

Symbol Parameter Min Units

SDRAMC1 SDCKE High before SDCK Rising Edge 6.8

ns

SDRAMC2 SDCKE Low after SDCK Rising Edge 5.8

SDRAMC3 SDCKE Low before SDCK Rising Edge 6.8

SDRAMC4 SDCKE High after SDCK Rising Edge 6.2

SDRAMC5 SDCS Low before SDCK Rising Edge 6.7

SDRAMC6 SDCS High after SDCK Rising Edge 5.9

SDRAMC7 RAS Low before SDCK Rising Edge 6.7

SDRAMC8 RAS High after SDCK Rising Edge 6.9

SDRAMC9 SDA10 Change before SDCK Rising Edge 6.9

SDRAMC10 SDA10 Change after SDCK Rising Edge 5.7

SDRAMC11 Address Change before SDCK Rising Edge 6.4

SDRAMC12 Address Change after SDCK Rising Edge 4.5

SDRAMC13 Bank Change before SDCK Rising Edge 6.6

SDRAMC14 Bank Change after SDCK Rising Edge 5.2

SDRAMC15 CAS Low before SDCK Rising Edge 7.1

SDRAMC16 CAS High after SDCK Rising Edge 5.9

SDRAMC17 DQM Change before SDCK Rising Edge 6.5

SDRAMC18 DQM Change after SDCK Rising Edge 4.6

SDRAMC19 D0-D15 in Setup before SDCK Rising Edge 2.3

SDRAMC20 D0-D15 in Hold after SDCK Rising Edge 3.9

SDRAMC21 D16-D31 in Setup before SDCK Rising Edge 0.9

SDRAMC22 D16-D31 in Hold after SDCK Rising Edge 4.0

SDRAMC23 SDWE Low before SDCK Rising Edge 6.5

SDRAMC24 SDWE High after SDCK Rising Edge 7.0

SDRAMC25 D0-D15 Out Valid before SDCK Rising Edge 6.2

SDRAMC26 D0-D15 Out Valid after SDCK Rising Edge 4.1

SDRAMC27 D16-D31 Out Valid before SDCK Rising Edge 6.2

SDRAMC28 D16-D31 Out Valid after SDCK Rising Edge 4.5

809
32015G–AVR32–09/09

AT32AP7001

Figure 40-7. SDRAMC Signals relative to SDCK.

RAS

A0 - A9,
A11 - A13

D0 - D15
Read

SDCK

SDA10

D0 - D15
to Write

SDRAMC1

SDCKE

SDRAMC2 SDRAMC3 SDRAMC4

SDCS

SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6

SDRAMC7 SDRAMC8

CAS

SDRAMC15 SDRAMC16 SDRAMC15 SDRAMC16

SDWE

SDRAMC23 SDRAMC24

SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10

SDRAMC11 SDRAMC12 SDRAMC11 SDRAMC12SDRAMC11 SDRAMC12

BA0/BA1

SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14

SDRAMC17 SDRAMC18SDRAMC17 SDRAMC18

DQM0 -
DQM3

SDRAMC19 SDRAMC20

D16 - D31
Read

SDRAMC21 SDRAMC22

SDRAMC25 SDRAMC26

D16 - D31
to Write

SDRAMC27 SDRAMC28

810
32015G–AVR32–09/09

AT32AP7001

41. Ordering Information

Table 41-1. Ordering Information

Ordering Code Package Package Type Packing
Temperature

Operating Range

AT32AP7001-ALUT QFP208 Green Tray Industrial (-40°C to 85°C)

811
32015G–AVR32–09/09

AT32AP7001

42. Errata

42.1 Rev. C

1. SPI FDIV option does not work
Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround
Do not set FDIV = 1.

2. SPI Chip Select 0 BITS field overrides other Chip Selects
The BITS field for Chip Select 0 overrides BITS fields for other Chip selects.

Fix/Workaround
Update Chip Select 0 BITS field to the relevant settings before transmitting with Chip Selects
other than 0.

3. SPI LASTXFER may be overwritten
When Peripheral Select (PS) = 0, the LASTXFER-bit in the Transmit Data Register (TDR)
should be internally discared. This fails and may cause problems during DMA transfers.
Transmitting data using the PDC when PS=0, the size of the transferred data is 8- or 16-bits.
The upper 16 bits of the TDR will be written to a random value. If Chip Select Active After
Transfer (CSAAT) = 1, the behavior of the Chip Select will be unpredictable.

Fix/Workaround
- Do not use CSAAT = 1 if PS = 0

- Use GPIO to control Chip Select lines

- Select PS=1 and store data for PCS and LASTXFER for each data in transmit buffer.

4. SPI LASTXFER overrides Chip Select
The LASTXFER bit overrides Chip Select input when PS = 0 and CSAAT is used.

Fix/Workaround
- Do not use the CSAAT

- Use GPIO as Chip Select input

- Select PS = 1. Transfer 32-bit with correct LASTXFER settings.

5. MMC data write operation with less than 12 bytes is impossible.
MCI data write operation with less than 12 bytes is impossible. The Data Write operation
with a number of bytes less than 12 leaves the internal MCI FIFO in an inconsistent state.
Subsequent reads and writes will not function properly.

Fix/Workaround
Always transfer 12 or more bytes at a time. If less than 12 bytes are transferred, the only
recovery mechanism is to perform a software reset of the MCI.

6. MMC SDIO interrupt only works for slot A
If 1-bit data bus width and on other slots than slot A, the SDIO interrupt can not be cap-
tured.

812
32015G–AVR32–09/09

AT32AP7001

Fix/Workaround
Use slot A.

7. PSIF TXEN/RXEN may disable the transmitter/receiver
Writing a '0' to RXEN will disable the receiver. Writing '0' to TXEN will disable the transmitter.

Fix/Workaround
When accessing the PS/2 Control Register always write '1' to RXEN to keep the receiver
enabled, and write '1' to TXEN to keep the transmitter enabled.

8. PSIF TXRDY interrupt corrupts transfers
When writing to the Transmit Holding Register (THR), the data will be transferred to the data
shift register immediately, regardless of the state of the data shift register. If a transfer is
ongoing, it will be interrupted and a new transfer will be started with the new data written to
THR.

Fix/Workaround
Use the TXEMPTY-interrupt instead of the TXRDY-interrupt to update the THR. This
ensures that a transfer is completed.

9. PWMcounter restarts at 0x0001
The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first
PWM period has one more clock cycle.

Fix/Workaround
- The first period is 0x0000, 0x0001, ..., period

- Consecutive periods are 0x0001, 0x0002, ..., period

10. PWM channel interrupt enabling triggers an interrupt
When enabling a PWM channel that is configured with center aligned period (CALG=1), an
interrupt is signalled.

Fix/Workaround
When using center aligned mode, enable the channel and read the status before channel
interrupt is enabled.

11. PWM update period to a 0 value does not work
It is impossible to update a period equal to 0 by the using the PWM update register
(PWM_CUPD).

Fix/Workaround
Do not update the PWM_CUPD register with a value equal to 0.

12. PWM channel status may be wrong if disabled before a period has elapsed
Before a PWM period has elapsed, the read channel status may be wrong. The CHIDx-bit
for a PWM channel in the PWM Enable Register will read '1' for one full PWM period even if
the channel was disabled before the period elapsed. It will then read '0' as expected.

Fix/Workaround
Reading the PWM channel status of a disabled channel is only correct after a PWM period

13. TWI transfer error without ACK

813
32015G–AVR32–09/09

AT32AP7001

If the TWI does not receive an ACK from a slave during the address+R/W phase, no bits in
the status register will be set to indicate this. Hence, the transfer will never complete.

Fix/Workaround
To prevent errors due to missing ACK, the software should use a timeout mechanism to ter-
minate the transfer if this happens.

14. SSC can not transmit or receive data
The SSC can not transmit or receive data when CKS = CKDIV and CKO = none in TCMR or
RCMR respectively.

Fix/Workaround
Set CKO to a value that is not "None" and enable the PIO with output driver disabled on the
TK/RK pin.

15. USART - RXBREAK flag is not correctly handled
The FRAME_ERROR is set instead of the RXBREAK when the break character is located
just after the STOP BIT(S) in ASYNCHRONOUS mode.

Fix/Workaround
The transmitting UART must set timeguard greater than 0.

16. USART - Manchester encoding/decoding is not working.
Manchester encoding/decoding is not working.

Fix/Workaround
Do not use manchester encoding.

17. SPI - Disabling SPI has no effect on TDRE flag.
Disabling SPI has no effect on TDRE whereas the write data command is filtered when SPI
is disabled. This means that as soon as the SPI is disabled it becomes impossible to reset
the TDRE flag by writing in the SPI_TDR. So if the SPI is disabled during a PDC transfer, the
PDC will continue to write data in the SPI_TDR (as TDRE keeps High) till its buffer is empty,
and all data written after the disable command is lost.

Fix/Workaround
Disable PDC, 2 NOP (minimum), Disable SPI. When you want to continue the transfer:
Enable SPI, Enable PDC.

18. SPI disable does not work in SLAVE mode.
SPI disable does not work in SLAVE mode.

Fix/Workaround
Read the last received data, then perform a Software Reset.

19. SCC - First Data transmitted after reset is not DATDEF.
In the first frame transmitted, the first transmitted data that follows the frame synchro is 0,
not DATDEF. This happens when:

1. PDC is disabled

2. Reset the SSC

814
32015G–AVR32–09/09

AT32AP7001

3. Configure the SSC with a transmit START condition different from CONTINUOUS
(START = 0)

4. DATDEF = 1

5. Enable the SSC in transmission.

This trouble only appears after a reset and it is only the first frame is affected.

Fix/Workaround
Use the PDC to fill the THR after the enable of the SSC and before the start of the frame.

20. MCI - False data timeout error DTOE may occur.
If a small block (5 bytes) is read through the READ_SINGLE_BLOCK command (CMD17),
the flag NOTBUSY will be set and a false data timeout error DTOE occurs.

Fix/Workaround
None.

21. SDRAM - Self-refresh mode
If Entry in Self-refresh mode is followed by SDRAM access and auto-refresh event, TRC tim-
ing is not checked for AUTO_REFRESH sequence.

Fix/Workaround
Set the value of TRAS field in user interface with TRC+1.

22. SPI - No TX UNDERRUN flag available
There is no TX UNDERRUN flag available, therefore in slave mode there is no way to be
informed of a character lost in transmission.

Fix/Workaround
PDC/PDCA transfers: None.

Manual transfers (no PDC and TX slave only): Read the RHR every time the THR is written.
The OVRS flag of the status register will track any UNDERRUN on the TX side.

23. HMATRIX - Fixed priority arbitration does not work
Fixed priority arbitration does not work.

Fix/Workaround
Use Round-robin arbitration instead.

24. OSC32 is not available for RTC, WDT, TIMERs and USARTs at startup
Right after startup the osc32 clock to internal modules is not valid. The osc32 clock will be
valid for use approximately 128 osc32 cycles after the the first instruction is executed. This
has consequences if you are planning to use the RTC, WDT, going into sleep mode and
USARTs with SCK and TCs with TIMER_CLOCK0.

Fix/Workaround
Before executing any code the user should enable the RTC with the smallest prescaler and
poll that the RTC is counting before doing anything in your program. Another way to ensure
that the osc32 is valid is to use interrupts with TOP=1.

Example:

//reset the counter register

815
32015G–AVR32–09/09

AT32AP7001

AVR32_RTC.val = 0x0;

//enable the RTC with the smallest prescaler

AVR32_RTC.ctrl = 0x1;

//wait until the value increases

while(AVR32_RTC.val == 0);

25. SPI can generate a false RXREADY signal in SLAVE mode
In slave mode the SPI can generate a false rxready signal during enabling of the SPI or dur-
ing the first transfer.

Fix/Workaround
1. Set slave mode, set required CPOL/CPHA

2. Enable SPI

3. Set the polarity CPOL of the line in the opposite value of the required one

4. Set the polarity CPOL to the required one.

5. Read the RXHOLDING register

Transfers can now begin and RXREADY will now behave as expected.

26. EBI address lines 23, 24, and 25 are pulled up when booting up
After reset the EBI address lines 23, 24 and 25 are tristated with pullups. Booting from a
flash larger than 8 MB using these lines will fail, as the flash will be accessed with these
address bits set.

Fix/Workaround
Add external pulldown resistors (5 kΩ) on these lines if booting from a flash larger than 8 MB
using these address lines.

27. SSC - Additional delay on TD output
A delay from 2 to 3 system clock cycles is added to TD output when:

TCMR.START = Receive Start,

TCMR.STTDLY = more than ZERO,

RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge

RFMR.FSOS = None (input)

Fix/Workaround
None.

28. SSC - TF output is not correct
TF output is not correct (at least emitted one serial clock cycle later than expected) when:

TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer

TCMR.START = Receive start

RFMR.FSOS = None (Input)

RCMR.START = any on RF (edge/level)

Fix/Workaround
None.

29. USART - TXD signal is floating in Modem and Hardware Handshaking mode

816
32015G–AVR32–09/09

AT32AP7001

The TXD signal is floating in Modem and Hardware Handshaking mode, but should be
pulled up.

Fix/Workaround
Enable pullup on this line in the PIO.

30. PWM - Impossible to update a period equal to 0 by using the CUPD register
It is impossible to UPDATE a period equal to 0 by the using of the UPDATE register
(CUPD).

Fix/Workaround
To update a period equal to 0, write directly to the CPRD register.

31. WDT Clear is blocked after WDT Reset
A watchdog timer event will, after reset, block writes to the WDT_CLEAR register, prevent-
ing the program to clear the next Watchdog Timer Reset.

Fix/Workaround
If the RTC is not used a write to AVR32_RTC.ctrl.pclr = 1, instead of writing to
AVR32_WDT.clr, will reset the prescaler and thus prevent the watchdog event from happen-
ing. This will render the RTC useless, but prevents WDT reset because the RTC and WDT
share the same prescaler. Another sideeffect of this is that the watchdog timeout period will
be half the expected timeout period.

If the RTC is used one can disable the Watchdog Timer (WDT) after a WDT reset has
occured. This will prevent the WDT resetting the system. To make the WDT functional again
a hard reset (power on reset or RESET_N) must be applied. If you still want to use the WDT
after a WDT reset a smal l code can be inserted at the startup checking the
AVR32_PM.rcause register for WDT reset and use a GPIO pin to reset the system. This
method requires that one of the GPIO pins are available and connected externally to the
RESET_N pin. After the GPIO pin has pulled down the reset line the GPIO will be reset and
leave the pin tristated with pullup.

32. USART - The DCD Signal is active high from the USART, but should be active low
The DCD signal is active high from the USART, but should be active low.

Fix/Workaround
An inverter should be added on this line on the PCB.

33. MCI Transmit Data Register (TDR) FIFO corruption
If the number of bytes to be transmitted by the MCI is not a multiple of 4, the Transmit Data
Register (TDR) First In First Out data buffer control logic will become corrupted when trans-
mit data is written to the TDR as 32-bit values.

Fix/Workaround
Configure the MCI Mode Register (MR) to accept 8-bit data input by writing a 1 to bit 13
(FBYTE), and transfer each byte of the transmit data to TDR by right aligning the useful
value. This allows the number of bytes transferred into the TDR to match the number set up
in the BCNT field of the MCI Block Register (BLKR).

34. Unreliable branch folding
In certain situations, branch folding does not work as expected.

817
32015G–AVR32–09/09

AT32AP7001

Fix/Workaround
Write 0 to CPUCR.FE before executing any branch instructions after reset.

35. USB PLL jitter may cause packet loss during USB hi-speed transmission
The USB Hi-speed PLL accuracy is not sufficient for Isochronous USB hi-speed transmis-
sion and may cause packet loss. The observed bit-loss is typically < 125 ppm.

Fix/Workaround
Do not use isochronous mode if absolute data accuracy is critical.

42.2 Rev. B

Not sampled.

42.3 Rev. A

Not sampled.

818
32015G–AVR32–09/09

AT32AP7001

43. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.

43.1 Rev. G 09/09

43.2 Rev. F 09/09

43.3 Rev. E 01/08

43.4 Rev. D 09/07

1. Updated ”Errata” on page 811.

1. Updated ”Errata” on page 811.

1. Updated Pin 208 from GND to VDDIO in ”Package and Pinout” on page 9.

1. PIO Controller C Multiplexing table updated in ”Peripherals” on page 73“.

2. Added section ”USBA” on page 78 in Clock Connections in ”Peripherals” on page 73.

3. USBA feature list updated in ”Peripherals” on page 73.

4. Renamed clk_slow to clk_osc32 in Table 9-4 on page 80.

5 Updated organisation of User Interface in ”HSB Bus Matrix (HMATRIX)” on page 139.

6. Updated special bus granting mechanism in ”HSB Bus Matrix (HMATRIX)” on page 139.

7. Added product dependencies in ”DMA Controller (DMACA)” on page 169.

8. Added product dependencies in ”Peripheral DMA Controller (PDC)” on page 233.

9. Added description of multi-drive in ”Parallel Input/Output Controller (PIO)” on page 249.

10.
Added MDER/MDDR/MDSR to pin logic diagram in ”Parallel Input/Output Controller (PIO)” on
page 249.

11. SPI pins must be enabled to use local loopback.

12. Updated description of the OVRES bit in ”SPI Status Register” on page 310.

13. Updated bit description of TXEMPTY in the ”USART Channel Status Register” on page 431.

14.
Number of chip select lines updatedin figures and tables, changed from 8 to 6 in ”Static
Memory Controller (SMC)” on page 488.

15.
Made the MDR register Read/Write instead of Read in ”SDRAM Controller (SDRAMC)” on
page 530.

16. Removed the PWSEN and PWSDIS bits from the ”Control Register” on page 584.

17. Added PDCFBYTE and removed the PWSDIV bits from the ”Mode Register” on page 585.

18.
Added note about reading the Status Register clears the interrupt flag in ”Timer/Counter (TC)”
on page 676.

819
32015G–AVR32–09/09

AT32AP7001

43.5 Rev. C 07/07

43.6 Rev. B 04/07

43.7 Rev. A 02/07

19. Added debug operation to product dependencies in ”Timer/Counter (TC)” on page 676.

20.
Added debug operation to product dependencies in ”Pulse Width Modulation Controller
(PWM)” on page 713.

21. Updated ”PLL Characteristics” on page 933.

22. Updated ”Errata” on page 811.

1. Updated ”Part Description” on page 2.

2. PC Signals removed in ”Signals Description” on page 5

3. USB Signals updated in ”Signals Description” on page 5.

4. The PX0 - PX53 Signals added in ”Signals Description” on page 5.

5. SDCS signals removed from PIO Controller Multiplexing tables in ”Peripherals” on page 79.

6. LCD and MAC references removed form tables in ”Memories” on page 77.

7. LCD and MAC controller references removed in ”Peripheral overview” on page 94.

8.
SDCS1 signal removed from figures and tables, and SDCS0 renamed to SDCS in ”External
Bus Interface (EBI)” on page 152.

9.
SmartMedia renamed to NAND Flash in some description to avoid confusion in ”External Bus
Interface (EBI)” on page 152.

10. Updated Application block diagram in Figure 1-2 on page 1.

11. LCD removed from feature list in ”Serial Peripheral Interface (SPI)” on page 297.

12. Updated the reset state of the SMC Mode register in Table 27-9 on page 523.

13. Updated ”Mechanical Characteristics” on page 927.

14. Updated pad parameters in ”DC Characteristics” on page 796.

15.
Updated ”Power Consumption by Peripheral in Active Mode” on page 798, LCD and MACB
excluded.

16. Updated pad parameters in ”Clock Characteristics” on page 799.

17. Updated ”USB Transceiver Characteristics” on page 802.

18. Updated ”EBI Timings” on page 939.

1. Updated ”Features” on page 1.

2. Updated tables in ”Signals Description” on page 4.

3.
Updated Table 9-2 on page 77, Table 9-9 on page 82, and Table 9-10 on page 83 in the
”Peripherals” on page 75.

4. Updated module names and abbreviations through the datasheet.

1. Initial revision.

820
32015G–AVR32–09/09

AT32AP7001

Table of Contents

Features ... 1

1 Part Description ... 2

2 Signals Description ... 3

3 Power Considerations ... 8

3.1Power Supplies ...8

3.2Power Supply Connections ...8

4 Package and Pinout ... 9

4.1AVR32AP7001 ..9

5 Blockdiagram ... 11

6 I/O Line Considerations ... 15

6.1JTAG pins ..15

6.2WAKE_N pin ...15

6.3RESET_N pin ..15

6.4EVTI_N pin ..15

6.5TWI pins ..15

6.6PIO pins ...15

7 AVR32 AP CPU ... 16

7.1AVR32 Architecture ...16

7.2The AVR32 AP CPU ...16

7.3Programming Model ..22

8 Pixel Coprocessor (PICO) ... 25

8.1Features ..25

8.2Description ..25

8.3Block Diagram ...26

8.4Vector Multiplication Unit (VMU) ..27

8.5Input Pixel Selector ...27

8.6Output Pixel Inserter ..29

8.7User Interface ..31

8.8PICO Instructions ..49

8.9Data Hazards ..70

9 Memories .. 71

821
32015G–AVR32–09/09

AT32AP7001

9.1Embedded Memories ..71

9.2Physical Memory Map ...71

10 Peripherals ... 73

10.1Peripheral address map ..73

10.2Interrupt Request Signal Map ..75

10.3DMACA Handshake Interface Map ...76

10.4Clock Connections ..77

10.5External Interrupt Pin Mapping ..78

10.6Nexus OCD AUX port connections ...78

10.7Peripheral Multiplexing on IO lines ..79

10.8Peripheral overview ...86

11 Power Manager (PM) .. 91

11.1Features ..91

11.2Description ..91

11.3Block Diagram ...92

11.4Product Dependencies ..93

11.5Functional Description ...93

11.6User Interface ..106

12 Real Time Counter (RTC) .. 115

12.1Features ..115

12.2Description ..115

12.3Block Diagram ...115

12.4Product Dependencies ..115

12.5Functional Description ...116

12.6User Interface ..117

13 Watchdog Timer (WDT) ... 122

13.1Features ..122

13.2Description ..122

13.3Block Diagram ...122

13.4Product Dependencies ..122

13.5Functional Description ...123

13.6User Interface ..124

14 Interrupt Controller (INTC) .. 126

14.1Features ..126

822
32015G–AVR32–09/09

AT32AP7001

14.2Overview ...126

14.3Block Diagram ...126

14.4Product Dependencies ..127

14.5Functional Description ...127

14.6User Interface ..129

15 External Interrupt Controller (EIC) ... 133

15.1Features ..133

15.2Description ..133

15.3Block Diagram ...133

15.4Product Dependencies ..133

15.5Functional Description ...134

15.6User Interface ..135

16 HSB Bus Matrix (HMATRIX) .. 139

16.1Features ...139

16.2Overview ...139

16.3Product Dependencies ..139

16.4Functional Description ...139

16.5User Interface ..143

17 External Bus Interface (EBI) .. 152

17.1Features ..152

17.2Description ..152

17.3Block Diagram ...153

17.4I/O Lines Description ...155

17.5Application Example ..157

17.6Product Dependencies ..161

17.7Functional Description ...161

18 DMA Controller (DMACA) .. 169

18.1Features ..169

18.2Overview ...169

18.3Block Diagram ...170

18.4Product Dependencies ..170

18.5Functional Description ...171

18.6Arbitration for HSB Master Interface ...176

18.7Memory Peripherals ..176

18.8Handshaking Interface ..176

823
32015G–AVR32–09/09

AT32AP7001

18.9DMACA Transfer Types ..178

18.10Programming a Channel ...182

18.11Disabling a Channel Prior to Transfer Completion ..199

18.12User Interface ..201

19 Peripheral DMA Controller (PDC) ... 233

19.1Features ..233

19.2Description ..233

19.3Block Diagram ...234

19.4Product Dependencies ..235

19.5Functional Description ...235

19.6Peripheral DMA Controller (PDC) User Interface ...238

20 Parallel Input/Output Controller (PIO) .. 249

20.1Features ..249

20.2Description ..249

20.3Block Diagram ...250

20.4Product Dependencies ..251

20.5Functional Description ...252

20.6I/O Lines Programming Example ..256

20.7User Interface ..258

21 Serial Peripheral Interface (SPI) ... 289

21.1Features ..289

21.2Description ..289

21.3Block Diagram ...290

21.4Application Block Diagram ..291

21.5Signal Description ...292

21.6Product Dependencies ..293

21.7Functional Description ...294

21.8Serial Peripheral Interface (SPI) User Interface ..304

22 Two-wire Interface (TWI) ... 318

22.1Features ...318

22.2Description ..318

22.3Block Diagram ...318

22.4Application Block Diagram ..318

22.5Product Dependencies ..319

22.6Functional Description ...320

824
32015G–AVR32–09/09

AT32AP7001

22.7TWI User Interface ..325

23 PS/2 Module (PSIF) .. 336

23.1Features ..336

23.2Description ..336

23.3Product Dependencies ..336

23.4The PS/2 Protocol ...336

23.5Functional Description ...338

23.6User Interface ..339

24 Synchronous Serial Controller (SSC) .. 348

24.1Features ...348

24.2Overview ...348

24.3Block Diagram ...349

24.4Application Block Diagram ..349

24.5I/O Lines Description ...350

24.6Product Dependencies ..350

24.7Functional Description ...350

24.8SSC Application Examples ..362

24.9User Interface ..364

25 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
388

25.1Features ..388

25.2Overview ...388

25.3Block Diagram ...389

25.4Application Block Diagram ..390

25.5I/O Lines Description ..390

25.6Product Dependencies ..391

25.7Functional Description ...392

25.8USART User Interface ..422

25.9USART Version Register ...442

26 AC97 Controller (AC97C) .. 443

26.1Features ...443

26.2Description ..443

26.3Block Diagram ...444

26.4Pin Name List ..445

26.5Application Block Diagram ..445

825
32015G–AVR32–09/09

AT32AP7001

26.6Product Dependencies ..446

26.7Functional Description ...447

26.8AC97 Controller (AC97C) User Interface ..458

27 Audio Bitstream DAC (ABDAC) .. 475

27.1Features ..475

27.2Description ..475

27.3Block Diagram ...476

27.4Pin Name List ..476

27.5Product Dependencies ..476

27.6Functional Description ...477

27.7Audio Bitstream DAC User Interface ...479

27.8Frequency Response ..487

28 Static Memory Controller (SMC) ... 488

28.1Features ...488

28.2Overview ...488

28.3Block Diagram ...489

28.4I/O Lines Description ...489

28.5Product Dependencies ..490

28.6Functional Description ...490

28.7User Interface ..523

29 SDRAM Controller (SDRAMC) .. 530

29.1Features ..530

29.2Overview ...530

29.3Block Diagram ...531

29.4I/O Lines Description ...531

29.5Application Example ..532

29.6Product Dependencies ..535

29.7Functional Description ...536

29.8User Interface ..545

30 Error Corrected Code (ECC) Controller ... 558

30.1Features ...558

30.2Description ..558

30.3Block Diagram ...558

30.4Functional Description ...559

30.5ECC User Interface ...563

826
32015G–AVR32–09/09

AT32AP7001

31 MultiMedia Card Interface (MCI) ... 569

31.1Features ..569

31.2Overview ...569

31.3Block Diagram ...570

31.4Application Block Diagram ..571

31.5I/O Lines Description ...571

31.6Product Dependencies ..572

31.7Functional Description ...572

31.8User Interface ..583

32 Hi-Speed USB Interface (USBA) ... 602

32.1Features ..602

32.2Description ..602

32.3Block Diagram ...603

32.4Product Dependencies ..603

32.5Typical Connection ..604

32.6USB V2.0 High Speed Device Introduction ...605

32.7USB High Speed Device (USBA) User Interface ...628

33 Timer/Counter (TC) .. 676

33.1Features ..676

33.2Overview ...676

33.3Block Diagram ...677

33.4I/O Lines Description ...677

33.5Product Dependencies ..677

33.6Functional Description ...678

33.7User Interface ..693

34 Pulse Width Modulation Controller (PWM) .. 713

34.1Features ..713

34.2Description ..713

34.3Block Diagram ...714

34.4I/O Lines Description ...714

34.5Product Dependencies ..715

34.6Functional Description ...716

34.7Pulse Width Modulation (PWM) Controller User Interface724

35 Image Sensor Interface (ISI) .. 739

35.1Features ..739

827
32015G–AVR32–09/09

AT32AP7001

35.2Overview ...739

35.3Block Diagram ...740

35.4Product Dependencies ..740

35.5Functional Description ...741

35.6Image Sensor Interface (ISI) User Interface ..749

36 On-Chip Debug ... 769

36.1Features ..769

36.2Overview ...769

36.3Block diagram ..770

36.4Functional description ...770

37 JTAG and Boundary Scan ... 776

37.1Features ..776

37.2Overview ...776

37.3Block diagram ..777

37.4Functional description ...777

37.5JTAG Instruction Summary ...782

37.6Public JTAG instructions ...783

37.7Private JTAG Instructions ..784

37.8JTAG Data Registers ..790

37.9SAB address map ...791

38 Boot Sequence ... 792

38.1Starting of clocks ...792

38.2Fetching of initial instructions ..792

39 Mechanical Characteristics ... 793

39.1AVR32AP7001 ..793

40 Electrical Characteristics .. 796

40.1Absolute Maximum Ratings ...796

40.2DC Characteristics ..796

40.3Power Consumption ..797

40.4Clock Characteristics ...799

40.5Crystal Oscillator Characteristics ...801

40.6USB Transceiver Characteristics ...802

40.7AC Characteristics ...804

40.8EBI Timings ...804

828
32015G–AVR32–09/09

AT32AP7001

41 Ordering Information ... 810

42 Errata ... 811

42.1Rev. C ...811

42.2Rev. B ..817

42.3Rev. A ..817

43 Datasheet Revision History .. 818

43.1Rev. G 09/09 ...818

43.2Rev. F 09/09 ..818

43.3Rev. E 01/08 ..818

43.4Rev. D 09/07 ...818

43.5Rev. C 07/07 ...819

43.6Rev. B 04/07 ..819

43.7Rev. A 02/07 ..819

Table of Contents.. 820

32015G–AVR32–09/09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr32@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo and others are registered trade-
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	Features
	1. Part Description
	2. Signals Description
	3. Power Considerations
	3.1 Power Supplies
	3.2 Power Supply Connections

	4. Package and Pinout
	4.1 AVR32AP7001

	5. Blockdiagram
	5.0.1 AVR32AP CPU
	5.0.2 Pixel Coprocessor (PICO)
	5.0.3 Debug and Test system
	5.0.4 DMA Controller
	5.0.5 Peripheral DMA Controller
	5.0.6 Bus system

	6. I/O Line Considerations
	6.1 JTAG pins
	6.2 WAKE_N pin
	6.3 RESET_N pin
	6.4 EVTI_N pin
	6.5 TWI pins
	6.6 PIO pins

	7. AVR32 AP CPU
	7.1 AVR32 Architecture
	7.2 The AVR32 AP CPU
	7.2.1 Pipeline Overview
	7.2.2 AVR32B Microarchitecture Compliance
	7.2.3 Java Support
	7.2.4 Memory management
	7.2.5 Caches and write buffer
	7.2.6 Unaligned reference handling
	7.2.7 Unimplemented instructions
	7.2.8 Exceptions and Interrupts

	7.3 Programming Model
	7.3.1 Register file configuration
	7.3.2 Status register configuration
	7.3.3 Processor States
	7.3.3.1 Normal RISC State
	7.3.3.2 Debug State
	7.3.3.3 Java State

	8. Pixel Coprocessor (PICO)
	8.1 Features
	8.2 Description
	8.3 Block Diagram
	8.4 Vector Multiplication Unit (VMU)
	8.5 Input Pixel Selector
	8.5.1 Transformation Mode
	8.5.2 Horizontal Filter Mode
	8.5.3 Vertical Filter Mode

	8.6 Output Pixel Inserter
	8.6.1 Planar Insertion Mode
	8.6.2 Packed Insertion Mode

	8.7 User Interface
	8.7.1 Register File
	8.7.1.1 Input Pixel Register 0
	8.7.1.2 Input Pixel Register 1
	8.7.1.3 Input Pixel Register 2
	8.7.1.4 Output Pixel Register 0
	8.7.1.5 Output Pixel Register 1
	8.7.1.6 Output Pixel Register 2
	8.7.1.7 Coefficient Register A for VMU0
	8.7.1.8 Coefficient Register B for VMU0
	8.7.1.9 Coefficient Register A for VMU1
	8.7.1.10 Coefficient Register B for VMU1
	8.7.1.11 Coefficient Register A for VMU2
	8.7.1.12 Coefficient Register B for VMU2
	8.7.1.13 VMU0 Output Register
	8.7.1.14 VMU1 Output Register
	8.7.1.15 VMU2 Output Register
	8.7.1.16 PICO Configuration Register

	8.8 PICO Instructions
	8.8.1 PICO Instructions Nomenclature
	8.8.1.1 Registers and Operands
	8.8.1.2 Operations
	8.8.1.3 Data Type Extensions

	8.8.2 PICO Instruction Summary

	8.9 Data Hazards

	9. Memories
	9.1 Embedded Memories
	9.2 Physical Memory Map

	10. Peripherals
	10.1 Peripheral address map
	10.2 Interrupt Request Signal Map
	10.3 DMACA Handshake Interface Map
	10.4 Clock Connections
	10.4.1 Timer/Counters
	10.4.2 USARTs
	10.4.3 SPIs
	10.4.4 USBA

	10.5 External Interrupt Pin Mapping
	10.6 Nexus OCD AUX port connections
	10.7 Peripheral Multiplexing on IO lines
	10.7.1 PIO Controller A Multiplexing
	10.7.2 PIO Controller B Multiplexing
	10.7.3 PIO Controller E Multiplexing
	10.7.4 IO Pins Without Multiplexing
	10.7.4.1 HMatrix SFR4 EBI Control Register

	10.8 Peripheral overview
	10.8.1 External Bus Interface
	10.8.2 Static Memory Controller
	10.8.3 SDRAM Controller
	10.8.4 Error Corrected Code Controller
	10.8.5 Serial Peripheral Interface
	10.8.6 Two-wire Interface
	10.8.7 USART
	10.8.8 Serial Synchronous Controller
	10.8.9 AC97 Controller
	10.8.10 Audio Bitstream DAC
	10.8.11 Timer Counter
	10.8.12 Pulse Width Modulation Controller
	10.8.13 MultiMedia Card Interface
	10.8.14 PS/2 Interface
	10.8.15 USB Interface
	10.8.16 Image Sensor Interface

	11. Power Manager (PM)
	11.1 Features
	11.2 Description
	11.3 Block Diagram
	11.4 Product Dependencies
	11.4.1 I/O Lines
	11.4.2 Interrupt

	11.5 Functional Description
	11.5.1 Oscillator 0 and 1 operation
	11.5.2 32 KHz oscillator operation
	11.5.3 PLL operation
	11.5.3.1 Enabling the PLL
	11.5.3.2 Lock suppression
	11.5.3.3 Operating range selection

	11.5.4 Synchronous clocks
	11.5.4.1 Selecting PLL or oscillator for the main clock
	11.5.4.2 Selecting synchronous clock division ratio
	11.5.4.3 Clock Ready flag

	11.5.5 Peripheral clock masking
	11.5.5.1 Cautionary note
	11.5.5.2 Mask Ready flag

	11.5.6 Sleep modes
	11.5.6.1 Entering and exiting sleep modes
	11.5.6.2 Supported sleep modes
	11.5.6.3 Precautions when entering sleep mode

	11.5.7 Generic clocks
	11.5.7.1 Enabling a generic clock
	11.5.7.2 Disabling a generic clock
	11.5.7.3 Changing clock frequency
	11.5.7.4 Generic clock implementation

	11.5.8 Divided PB clocks
	11.5.9 Debug operation
	11.5.10 Reset Controller

	11.6 User Interface
	11.6.1 Main Clock Control
	11.6.2 Clock Select
	11.6.3 Clock Mask
	11.6.4 PLL Control
	11.6.5 Interrupt Enable/Disable/Mask/Status/Clear
	11.6.6 Generic Clock Control
	11.6.7 Reset Cause

	12. Real Time Counter (RTC)
	12.1 Features
	12.2 Description
	12.3 Block Diagram
	12.4 Product Dependencies
	12.4.1 I/O Lines
	12.4.2 Power Management
	12.4.3 Interrupt
	12.4.4 Debug Operation

	12.5 Functional Description
	12.5.1 RTC operation
	12.5.1.1 Source clock
	12.5.1.2 Counter operation
	12.5.1.3 RTC Interrupt

	12.6 User Interface
	12.6.1 RTC Control
	12.6.2 RTC Value
	12.6.3 RTC Top
	12.6.4 RTC Interrupt Enable/Disable/Mask/Status/Clear

	13. Watchdog Timer (WDT)
	13.1 Features
	13.2 Description
	13.3 Block Diagram
	13.4 Product Dependencies
	13.4.1 I/O Lines
	13.4.2 Power Management
	13.4.3 Debug Operation

	13.5 Functional Description
	13.5.1 Watchdog Timer

	13.6 User Interface
	13.6.1 WDT Control
	13.6.2 WDT Clear

	14. Interrupt Controller (INTC)
	14.1 Features
	14.2 Overview
	14.3 Block Diagram
	14.4 Product Dependencies
	14.4.1 Power Management
	14.4.2 Clocks
	14.4.3 Debug Operation

	14.5 Functional Description
	14.5.1 Non-Maskable Interrupts
	14.5.2 CPU Response
	14.5.3 Clearing an Interrupt Request

	14.6 User Interface
	14.6.1 Interrupt Priority Registers
	14.6.2 Interrupt Request Registers
	14.6.3 Interrupt Cause Registers

	15. External Interrupt Controller (EIC)
	15.1 Features
	15.2 Description
	15.3 Block Diagram
	15.4 Product Dependencies
	15.4.1 I/O Lines
	15.4.2 Power Management
	15.4.3 Interrupt

	15.5 Functional Description
	15.5.1 External Interrupts
	15.5.1.1 Synchronization of external interrupts

	15.5.2 NMI Control

	15.6 User Interface
	15.6.1 EIC Interrupt Enable/Disable/Mask/Status/Clear
	15.6.2 External Interrupt Mode/Edge/Level
	15.6.3 NMI Control

	16. HSB Bus Matrix (HMATRIX)
	16.1 Features
	16.2 Overview
	16.3 Product Dependencies
	16.3.1 Clocks

	16.4 Functional Description
	16.4.1 Memory Mapping
	16.4.2 Special Bus Granting Mechanism
	16.4.2.1 No Default Master
	16.4.2.2 Last Access Master
	16.4.2.3 Fixed Default Master

	16.4.3 Arbitration
	16.4.3.1 Arbitration Rules
	16.4.3.2 Round-Robin Arbitration
	16.4.3.3 Fixed Priority Arbitration

	16.4.4 Slave and Master assignation

	16.5 User Interface
	16.5.1 Master Configuration Registers
	16.5.2 Slave Configuration Registers
	16.5.3 Bus Matrix Priority Registers A For Slaves
	16.5.4 Priority Registers B For Slaves
	16.5.5 Master Remap Control Register
	16.5.6 Special Function Registers

	17. External Bus Interface (EBI)
	17.1 Features
	17.2 Description
	17.3 Block Diagram
	17.3.1 External Bus Interface

	17.4 I/O Lines Description
	17.5 Application Example
	17.5.1 Hardware Interface
	17.5.2 Connection Examples

	17.6 Product Dependencies
	17.6.1 I/O Lines

	17.7 Functional Description
	17.7.1 Bus Multiplexing
	17.7.2 Pull-up Control
	17.7.3 Static Memory Controller
	17.7.4 SDRAM Controller
	17.7.5 ECC Controller
	17.7.6 CompactFlash Support
	17.7.6.1 I/O Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode
	17.7.6.2 CFCE1 and CFCE2 signals
	17.7.6.3 Read/Write Signals
	17.7.6.4 Multiplexing of CompactFlash Signals on EBI Pins
	17.7.6.5 Application Example

	17.7.7 SmartMedia and NAND Flash Support
	17.7.7.1 NAND Flash Signals

	18. DMA Controller (DMACA)
	18.1 Features
	18.2 Overview
	18.3 Block Diagram
	18.4 Product Dependencies
	18.4.1 I/O Lines
	18.4.2 Power Management
	18.4.3 Clocks
	18.4.4 Interrupts
	18.4.5 Peripherals

	18.5 Functional Description
	18.5.1 Basic Definitions

	18.6 Arbitration for HSB Master Interface
	18.7 Memory Peripherals
	18.8 Handshaking Interface
	18.8.1 Software Handshaking
	18.8.1.1 Burst Transactions
	18.8.1.2 Single Transactions

	18.8.2 Hardware Handshaking
	18.8.2.1 External DMA Request Definition

	18.9 DMACA Transfer Types
	18.9.1 Multi-block Transfers
	18.9.1.1 Block Chaining Using Linked Lists
	18.9.1.2 Auto-reloading of Channel Registers
	18.9.1.3 Contiguous Address Between Blocks
	18.9.1.4 Suspension of Transfers Between Blocks

	18.9.2 Ending Multi-block Transfers

	18.10 Programming a Channel
	18.10.1 Programming Examples
	18.10.1.1 Single-block Transfer (Row 1)
	18.10.1.2 Multi-block Transfer with Linked List for Source and Linked List for Destination (Row 10)
	18.10.1.3 Multi-block Transfer with Source Address Auto-reloaded and Destination Address Auto-reloaded (Row 4)
	18.10.1.4 Multi-block Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row7)
	18.10.1.5 Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 3)
	18.10.1.6 Multi-block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)

	18.11 Disabling a Channel Prior to Transfer Completion
	18.11.1 Abnormal Transfer Termination

	18.12 User Interface
	18.12.1 Channel x Source Address Register
	18.12.2 Channel x Destination Address Register
	18.12.3 Linked List Pointer Register for Channel x
	18.12.4 Control Register for Channel x Low
	18.12.5 Control Register for Channel x High
	18.12.6 Configuration Register for Channel x Low
	18.12.7 Configuration Register for Channel x High
	18.12.8 Source Gather Register for Channel x
	18.12.9 Destination Scatter Register for Channel x
	18.12.10 Interrupt Registers
	18.12.11 Interrupt Raw Status Registers
	18.12.12 Interrupt Status Registers
	18.12.13 Interrupt Mask Registers
	18.12.14 Interrupt Clear Registers
	18.12.15 Combined Interrupt Status Registers
	18.12.16 Source Software Transaction Request Register
	18.12.17 Destination Software Transaction Request Register
	18.12.18 Single Source Transaction Request Register
	18.12.19 Single Destination Transaction Request Register
	18.12.20 Last Source Transaction Request Register
	18.12.21 Last Destination Transaction Request Register
	18.12.22 DMA Configuration Register
	18.12.23 DMA Channel Enable Register
	18.12.24 DMACA Component Id Register Low
	18.12.25 DMACA Component Id Register High

	19. Peripheral DMA Controller (PDC)
	19.1 Features
	19.2 Description
	19.3 Block Diagram
	19.4 Product Dependencies
	19.4.1 Power Management
	19.4.2 Interrupt
	19.4.3 Peripherals

	19.5 Functional Description
	19.5.1 Configuration
	19.5.2 Memory Pointers
	19.5.3 Transfer Counters
	19.5.4 Data Transfers
	19.5.5 Priority of PDC Transfer Requests

	19.6 Peripheral DMA Controller (PDC) User Interface
	19.6.1 PDC Receive Pointer Register
	19.6.2 PDC Receive Counter Register
	19.6.3 PDC Transmit Pointer Register
	19.6.4 PDC Transmit Counter Register
	19.6.5 PDC Receive Next Pointer Register
	19.6.6 PDC Receive Next Counter Register
	19.6.7 PDC Transmit Next Pointer Register
	19.6.8 PDC Transmit Next Counter Register
	19.6.9 PDC Transfer Control Register
	19.6.10 PDC Transfer Status Register

	20. Parallel Input/Output Controller (PIO)
	20.1 Features
	20.2 Description
	20.3 Block Diagram
	20.4 Product Dependencies
	20.4.1 Pin Multiplexing
	20.4.2 External Interrupt Lines
	20.4.3 Power Management
	20.4.4 Interrupt Generation

	20.5 Functional Description
	20.5.1 Pull-up Resistor Control
	20.5.2 I/O Line or Peripheral Function Selection
	20.5.3 Peripheral A or B Selection
	20.5.4 Output Control
	20.5.5 Multi-drive capability
	20.5.6 Synchronous Data Output
	20.5.7 Output Line Timings
	20.5.8 Inputs
	20.5.9 Input Glitch Filtering
	20.5.10 Input Change Interrupt

	20.6 I/O Lines Programming Example
	20.7 User Interface
	20.7.1 PIO Controller PIO Enable Register
	20.7.2 PIO Controller PIO Disable Register
	20.7.3 PIO Controller PIO Status Register
	20.7.4 PIO Controller Output Enable Register
	20.7.5 PIO Controller Output Disable Register
	20.7.6 PIO Controller Output Status Register
	20.7.7 PIO Controller Glitch Input Filter Enable Register
	20.7.8 PIO Controller Glitch Input Filter Disable Register
	20.7.9 PIO Controller Glitch Input Filter Status Register
	20.7.10 PIO Controller Set Output Data Register
	20.7.11 PIO Controller Clear Output Data Register
	20.7.12 PIO Controller Output Data Status Register
	20.7.13 PIO Controller Pin Data Status Register
	20.7.14 PIO Controller Interrupt Enable Register
	20.7.15 PIO Controller Interrupt Disable Register
	20.7.16 PIO Controller Interrupt Mask Register
	20.7.17 PIO Controller Interrupt Status Register
	20.7.18 PIO Controller Multi-driver Enable Register
	20.7.19 PIO Controller Multi-driver Disable Register
	20.7.20 PIO Controller Multi-driver Status Register
	20.7.21 PIO Pull Up Disable Register
	20.7.22 PIO Pull Up Enable Register
	20.7.23 PIO Pull Up Status Register
	20.7.24 PIO Peripheral A Select Register
	20.7.25 PIO Peripheral B Select Register
	20.7.26 PIO Peripheral A B Status Register
	20.7.27 PIO Output Write Enable Register
	20.7.28 PIO Output Write Disable Register
	20.7.29 PIO Output Write Status Register

	21. Serial Peripheral Interface (SPI)
	21.1 Features
	21.2 Description
	21.3 Block Diagram
	21.4 Application Block Diagram
	21.5 Signal Description
	21.6 Product Dependencies
	21.6.1 I/O Lines
	21.6.2 Power Management
	21.6.3 Interrupt

	21.7 Functional Description
	21.7.1 Modes of Operation
	21.7.2 Data Transfer
	21.7.3 Master Mode Operations
	21.7.3.1 Master Mode Block Diagram
	21.7.3.2 Master Mode Flow Diagram
	21.7.3.3 Clock Generation
	21.7.3.4 Transfer Delays
	21.7.3.5 Peripheral Selection
	21.7.3.6 Peripheral Chip Select Decoding
	21.7.3.7 Peripheral Deselection
	21.7.3.8 Mode Fault Detection

	21.7.4 SPI Slave Mode

	21.8 Serial Peripheral Interface (SPI) User Interface
	21.8.1 SPI Control Register
	21.8.2 SPI Mode Register
	21.8.3 SPI Receive Data Register
	21.8.4 SPI Transmit Data Register
	21.8.5 SPI Status Register
	21.8.6 SPI Interrupt Enable Register
	21.8.7 SPI Interrupt Disable Register
	21.8.8 SPI Interrupt Mask Register
	21.8.9 SPI Chip Select Register

	22. Two-wire Interface (TWI)
	22.1 Features
	22.2 Description
	22.3 Block Diagram
	22.4 Application Block Diagram
	22.4.1 I/O Lines Description

	22.5 Product Dependencies
	22.5.1 I/O Lines
	22.5.2 Power Management
	22.5.3 Interrupt

	22.6 Functional Description
	22.6.1 Transfer format
	22.6.2 Modes of Operation
	22.6.3 Transmitting Data
	22.6.4 Read/Write Flowcharts

	22.7 TWI User Interface
	22.7.1 Register Mapping
	22.7.2 TWI Control Register
	22.7.3 TWI Master Mode Register
	22.7.4 TWI Internal Address Register
	22.7.5 TWI Clock Waveform Generator Register
	22.7.6 TWI Status Register
	22.7.7 TWI Interrupt Enable Register
	22.7.8 TWI Interrupt Disable Register
	22.7.9 TWI Interrupt Mask Register
	22.7.10 TWI Receive Holding Register
	22.7.11 TWI Transmit Holding Register

	23. PS/2 Module (PSIF)
	23.1 Features
	23.2 Description
	23.3 Product Dependencies
	23.3.1 I/O Lines
	23.3.2 Power Management
	23.3.3 Interrupt

	23.4 The PS/2 Protocol
	23.4.1 Device to host communication
	23.4.2 Host to device communication

	23.5 Functional Description
	23.5.1 Prescaler
	23.5.2 Receiving data
	23.5.3 Transmitting data
	23.5.4 Interrupts

	23.6 User Interface
	23.6.1 PS/2 Control Register
	23.6.2 PS/2 Receive Holding Register
	23.6.3 PS/2 Transmit Holding Register
	23.6.4 PS/2 Status Register
	23.6.5 PS/2 Interrupt Enable Register
	23.6.6 PS/2 Interrupt Disable Register
	23.6.7 PS/2 Interrupt Mask Register
	23.6.8 PS/2 Prescale Register

	24. Synchronous Serial Controller (SSC)
	24.1 Features
	24.2 Overview
	24.3 Block Diagram
	24.4 Application Block Diagram
	24.5 I/O Lines Description
	24.6 Product Dependencies
	24.6.1 I/O Lines
	24.6.2 Power Management
	24.6.3 Interrupt

	24.7 Functional Description
	24.7.1 Clock Management
	24.7.1.1 Clock Divider
	24.7.1.2 Transmitter Clock Management
	24.7.1.3 Receiver Clock Management
	24.7.1.4 Serial Clock Ratio Considerations

	24.7.2 Transmitter Operations
	24.7.3 Receiver Operations
	24.7.4 Start
	24.7.5 Frame Sync
	24.7.5.1 Frame Sync Data
	24.7.5.2 Frame Sync Edge Detection

	24.7.6 Receive Compare Modes
	24.7.6.1 Compare Functions

	24.7.7 Data Format
	24.7.8 Loop Mode
	24.7.9 Interrupt

	24.8 SSC Application Examples
	24.9 User Interface
	24.9.1 Control Register
	24.9.2 Clock Mode Register
	24.9.3 Receive Clock Mode Register
	24.9.4 Receive Frame Mode Register
	24.9.5 Transmit Clock Mode Register
	24.9.6 Transmit Frame Mode Register
	24.9.7 SSC Receive Holding Register
	24.9.8 Transmit Holding Register
	24.9.9 Receive Synchronization Holding Register
	24.9.10 Transmit Synchronization Holding Register
	24.9.11 Receive Compare 0 Register
	24.9.12 Receive Compare 1 Register
	24.9.13 Status Register
	24.9.14 Interrupt Enable Register
	24.9.15 Interrupt Disable Register
	24.9.16 Interrupt Mask Register

	25. Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
	25.1 Features
	25.2 Overview
	25.3 Block Diagram
	25.4 Application Block Diagram
	25.5 I/O Lines Description
	25.6 Product Dependencies
	25.6.1 I/O Lines
	25.6.2 Power Manager (PM)
	25.6.3 Interrupt

	25.7 Functional Description
	25.7.1 Baud Rate Generator
	25.7.1.1 Baud Rate in Asynchronous Mode
	25.7.1.2 Baud Rate Calculation Example
	25.7.1.3 Fractional Baud Rate in Asynchronous Mode
	25.7.1.4 Baud Rate in Synchronous Mode
	25.7.1.5 Baud Rate in ISO 7816 Mode

	25.7.2 Receiver and Transmitter Control
	25.7.3 Synchronous and Asynchronous Modes
	25.7.3.1 Transmitter Operations
	25.7.3.2 Manchester Encoder
	25.7.3.3 Drift Compensation
	25.7.3.4 Asynchronous Receiver
	25.7.3.5 Manchester Decoder
	25.7.3.6 Radio Interface: Manchester Encoded USART Application
	25.7.3.7 Synchronous Receiver
	25.7.3.8 Receiver Operations
	25.7.3.9 Parity
	25.7.3.10 Multidrop Mode
	25.7.3.11 Transmitter Timeguard
	25.7.3.12 Receiver Time-out
	25.7.3.13 Framing Error
	25.7.3.14 Transmit Break
	25.7.3.15 Receive Break
	25.7.3.16 Hardware Handshaking

	25.7.4 ISO7816 Mode
	25.7.4.1 ISO7816 Mode Overview
	25.7.4.2 Protocol T = 0
	25.7.4.3 Receive Error Counter
	25.7.4.4 Receive NACK Inhibit
	25.7.4.5 Transmit Character Repetition
	25.7.4.6 Disable Successive Receive NACK
	25.7.4.7 Protocol T = 1

	25.7.5 IrDA Mode
	25.7.5.1 IrDA Modulation
	25.7.5.2 IrDA Baud Rate
	25.7.5.3 IrDA Demodulator

	25.7.6 RS485 Mode
	25.7.7 Test Modes
	25.7.7.1 Normal Mode
	25.7.7.2 Automatic Echo Mode
	25.7.7.3 Local Loopback Mode
	25.7.7.4 Remote Loopback Mode

	25.8 USART User Interface
	25.8.1 USART Control Register
	25.8.2 USART Mode Register
	25.8.3 USART Interrupt Enable Register
	25.8.4 USART Interrupt Disable Register
	25.8.5 USART Interrupt Mask Register
	25.8.6 USART Channel Status Register
	25.8.7 USART Receive Holding Register
	25.8.8 USART Transmit Holding Register
	25.8.9 USART Baud Rate Generator Register
	25.8.10 USART Receiver Time-out Register
	25.8.11 USART Transmitter Timeguard Register
	25.8.12 USART FI DI RATIO Register
	25.8.13 USART Number of Errors Register
	25.8.14 USART Manchester Configuration Register
	25.8.15 USART IrDA FILTER Register

	25.9 USART Version Register

	26. AC97 Controller (AC97C)
	26.1 Features
	26.2 Description
	26.3 Block Diagram
	26.4 Pin Name List
	26.5 Application Block Diagram
	26.6 Product Dependencies
	26.6.1 I/O Lines
	26.6.2 Power Management
	26.6.3 Interrupt

	26.7 Functional Description
	26.7.1 Protocol overview
	26.7.2 Slot Description
	26.7.2.1 Tag Slot
	26.7.2.2 Codec Slot 1
	26.7.2.3 Codec Slot 2
	26.7.2.4 Data Slots [3:12]

	26.7.3 AC97 Controller Channel Organization
	26.7.3.1 AC97 Controller Setup
	26.7.3.2 Transmit Operation
	26.7.3.3 AC97 Output Frame
	26.7.3.4 Receive Operation
	26.7.3.5 AC97 Input Frame
	26.7.3.6 Configuring and Using Interrupts
	26.7.3.7 Endianness
	26.7.3.8 To Transmit a Word Stored in Little Endian Format on AC-link
	26.7.3.9 To Transmit A Halfword Stored in Little Endian Format on AC-link
	26.7.3.10 To Transmit a10-bit Sample Stored in Little Endian Format on AC-link
	26.7.3.11 To Receive Word transfers
	26.7.3.12 To Receive Halfword Transfers
	26.7.3.13 To Receive 10-bit Samples

	26.7.4 Variable Sample Rate
	26.7.5 Power Management
	26.7.5.1 Powering Down the AC-Link
	26.7.5.2 Waking up the AC-link
	26.7.5.3 Wake-up Tiggered by the AC97 Controller
	26.7.5.4 Wake-up Triggered by the AC97 Codec
	26.7.5.5 AC97 Codec Reset
	26.7.5.6 Cold AC97 Reset
	26.7.5.7 Warm AC97 Reset

	26.8 AC97 Controller (AC97C) User Interface
	26.8.1 AC97 Controller Mode Register
	26.8.2 AC97 Controller Input Channel Assignment Register
	26.8.3 AC97 Controller Output Channel Assignment Register
	26.8.4 AC97 Controller Codec Channel Receive Holding Register
	26.8.5 AC97 Controller Codec Channel Transmit Holding Register
	26.8.6 AC97 Controller Channel A, Channel B Receive Holding Register
	26.8.7 AC97 Controller Channel A, channel B Transmit Holding Register
	26.8.8 AC97 Controller Channel A Status Register
	26.8.9 AC97 Controller Channel B Status Register
	26.8.10 AC97 Controller Codec Channel Status Register
	26.8.11 AC97 Controller Channel A Mode Register
	26.8.12 AC97 Controller Channel B Mode Register
	26.8.13 AC97 Controller Codec Channel Mode Register
	26.8.14 AC97 Controller Status Register
	26.8.15 AC97 Controller Interrupt Enable Register
	26.8.16 AC97 Controller Interrupt Disable Register
	26.8.17 AC97 Controller Interrupt Mask Register

	27. Audio Bitstream DAC (ABDAC)
	27.1 Features
	27.2 Description
	27.3 Block Diagram
	27.4 Pin Name List
	27.5 Product Dependencies
	27.5.1 I/O Lines
	27.5.2 Power Management
	27.5.3 Clock Management
	27.5.4 Interrupts
	27.5.5 DMA

	27.6 Functional Description
	27.6.1 Equalization Filter
	27.6.2 Interpolation filter
	27.6.3 Sigma Delta Modulator
	27.6.4 Data Format

	27.7 Audio Bitstream DAC User Interface
	27.7.1 Audio Bitstream DAC Sample Data Register
	27.7.2 Audio Bitstream DAC Control Register
	27.7.3 Audio Bitstream DAC Interrupt Mask Register
	27.7.4 Audio Bitstream DAC Interrupt Enable Register
	27.7.5 Audio Bitstream DAC Interrupt Disable Register
	27.7.6 Audio Bitstream DAC Interrupt Clear Register
	27.7.7 Audio Bitstream DAC Interrupt Status Register

	27.8 Frequency Response

	28. Static Memory Controller (SMC)
	28.1 Features
	28.2 Overview
	28.3 Block Diagram
	28.4 I/O Lines Description
	28.5 Product Dependencies
	28.5.1 I/O Lines
	28.5.2 Clocks

	28.6 Functional Description
	28.6.1 Application Example
	28.6.2 External Memory Mapping
	28.6.3 Connection to External Devices
	28.6.3.1 Data bus width
	28.6.3.2 Byte write or byte select access
	• Byte write access
	• Byte select access
	• Signal multiplexing

	28.6.4 Standard Read and Write Protocols
	28.6.4.1 Read waveforms
	• NRD waveform
	• NCS waveform
	• Read cycle
	• Null delay setup and hold
	• Null Pulse

	28.6.4.2 Read mode
	• Read is controlled by NRD (MODE.READMODE = 1)
	• Read is controlled by NCS (MODE.READMODE = 0)

	28.6.4.3 Write waveforms
	• NWE waveforms

	28.6.4.4 NCS waveforms
	• Write cycle
	• Null delay setup and hold
	• Null pulse

	28.6.4.5 Write mode
	• Write is controlled by NWE (MODE.WRITEMODE = 1)
	• Write is controlled by NCS (MODE.WRITEMODE = 0)

	28.6.4.6 Coding timing parameters
	28.6.4.7 Usage restriction

	28.6.5 Automatic Wait States
	28.6.5.1 Chip select wait states
	28.6.5.2 Early read wait state
	28.6.5.3 Reload user configuration wait state
	• User procedure
	• Slow clock mode transition

	28.6.5.4 Read to write wait state

	28.6.6 Data Float Wait States
	28.6.6.1 Read mode
	28.6.6.2 TDF optimization enabled (MODE.TDFMODE = 1)
	28.6.6.3 TDF optimization disabled (MODE.TDFMODE = 0)

	28.6.7 External Wait
	28.6.7.1 Restriction
	28.6.7.2 Frozen mode
	28.6.7.3 Ready mode
	28.6.7.4 NWAIT latency and read/write timings

	28.6.8 Slow Clock Mode
	28.6.8.1 Slow clock mode waveforms
	28.6.8.2 Switching from (to) slow clock mode to (from) normal mode

	28.6.9 Asynchronous Page Mode
	28.6.9.1 Protocol and timings in page mode
	28.6.9.2 Byte access type in page mode
	28.6.9.3 Page mode restriction
	28.6.9.4 Sequential and non-sequential accesses

	28.7 User Interface
	28.7.1 Setup Register
	28.7.2 Pulse Register
	28.7.3 Cycle Register
	28.7.4 Mode Register

	29. SDRAM Controller (SDRAMC)
	29.1 Features
	29.2 Overview
	29.3 Block Diagram
	29.4 I/O Lines Description
	29.5 Application Example
	29.5.1 Hardware Interface
	29.5.2 Software Interface
	29.5.2.1 32-bit memory data bus width
	29.5.2.2 16-bit memory data bus width

	29.6 Product Dependencies
	29.6.1 I/O Lines
	29.6.2 Power Management
	29.6.3 Clocks
	29.6.4 Interrupts

	29.7 Functional Description
	29.7.1 SDRAM Device Initialization
	29.7.2 SDRAM Controller Write Cycle
	29.7.3 SDRAM Controller Read Cycle
	29.7.4 Border Management
	29.7.5 SDRAM Controller Refresh Cycles
	29.7.6 Power Management
	29.7.6.1 Self refresh mode
	29.7.6.2 Low power mode
	29.7.6.3 Deep power-down mode

	29.8 User Interface
	29.8.1 Mode Register
	29.8.2 Refresh Timer Register
	29.8.3 Configuration Register
	29.8.4 High Speed Register
	29.8.5 Low Power Register
	29.8.6 Interrupt Enable Register
	29.8.7 Interrupt Disable Register
	29.8.8 Interrupt Mask Register
	29.8.9 Interrupt Status Register
	29.8.10 Memory Device Register

	30. Error Corrected Code (ECC) Controller
	30.1 Features
	30.2 Description
	30.3 Block Diagram
	30.4 Functional Description
	30.4.1 Write Access
	30.4.2 Read Access

	30.5 ECC User Interface
	30.5.1 ECC Control Register
	30.5.2 ECC Mode Register
	30.5.3 ECC Status Register
	30.5.4 ECC Parity Register
	30.5.5 ECC NParity Register

	31. MultiMedia Card Interface (MCI)
	31.1 Features
	31.2 Overview
	31.3 Block Diagram
	31.4 Application Block Diagram
	31.5 I/O Lines Description
	31.6 Product Dependencies
	31.6.1 GPIO
	31.6.2 Power Manager
	31.6.3 Interrupt Controller

	31.7 Functional Description
	31.7.1 Bus Topology
	31.7.2 MultiMedia Card Operations
	31.7.2.1 Command - Response Operation
	31.7.2.2 Data Transfer Operation
	31.7.2.3 Read Operation
	31.7.2.4 Write Operation

	31.7.3 SD Card Operations
	31.7.3.1 SDIO Data Transfer Type
	31.7.3.2 SDIO Interrupts

	31.8 User Interface
	31.8.1 Control Register
	31.8.2 Mode Register
	31.8.3 Data Timeout Register
	31.8.4 SD Card/SDIO Register
	31.8.5 Argument Register
	31.8.6 Command Register
	31.8.7 Block Register
	31.8.8 Response Register
	31.8.9 Receive Data Register
	31.8.10 Transmit Data Register
	31.8.11 Status Register
	31.8.12 Interrupt Enable Register
	31.8.13 Interrupt Disable Register
	31.8.14 Interrupt Mask Register

	32. Hi-Speed USB Interface (USBA)
	32.1 Features
	32.2 Description
	32.3 Block Diagram
	32.4 Product Dependencies
	32.4.1 Power Management
	32.4.2 Interrupt

	32.5 Typical Connection
	32.6 USB V2.0 High Speed Device Introduction
	32.6.1 USB V2.0 High Speed Transfer Types
	32.6.2 USB Transfer Event Definitions
	32.6.3 USB V2.0 High Speed BUS Transactions
	32.6.4 Endpoint Configuration
	32.6.5 DMA
	32.6.6 Handling Transactions with USB V2.0 Device Peripheral
	32.6.6.1 Setup Transaction
	32.6.6.2 NYET
	32.6.6.3 Data IN
	32.6.6.4 Bulk IN or Interrupt IN
	32.6.6.5 Bulk IN or Interrupt IN: Sending a Packet Under Application Control (Device to Host)
	32.6.6.6 Bulk IN or Interrupt IN: Sending a Buffer Using DMA (Device to Host)
	32.6.6.7 Isochronous IN
	32.6.6.8 High Bandwidth Isochronous Endpoint Handling: IN Example
	32.6.6.9 Data OUT
	32.6.6.10 Bulk OUT or Interrupt OUT
	32.6.6.11 Bulk OUT or Interrupt OUT: Receiving a Packet Under Application Control (Host to Device)
	32.6.6.12 Bulk OUT or Interrupt OUT: Sending a Buffer Using DMA (Host To Device)
	32.6.6.13 High Bandwidth Isochronous Endpoint OUT
	32.6.6.14 Isochronous Endpoint Handling: OUT Example
	32.6.6.15 STALL

	32.6.7 Speed Identification
	32.6.8 USB V2.0 High Speed Global Interrupt
	32.6.9 Endpoint Interrupts
	32.6.10 Power Modes
	32.6.10.1 Controlling Device States
	32.6.10.2 From Powered State to Default State (Reset)
	32.6.10.3 From Default State to Address State (Address Assigned)
	32.6.10.4 From Address State to Configured State (Device Configured)
	32.6.10.5 Entering Suspend State (Bus Activity)
	32.6.10.6 Receiving a Host Resume
	32.6.10.7 Sending an External Resume

	32.6.11 Test Mode

	32.7 USB High Speed Device (USBA) User Interface
	32.7.1 USBA Control Register
	32.7.2 USBA Frame Number Register
	32.7.3 USBA Interrupt Enable Register
	32.7.4 USBA Interrupt Status Register
	32.7.5 USBA Clear Interrupt Register
	32.7.6 USBA Endpoints Reset Register
	32.7.7 USBA Test SOF Counter Register
	32.7.8 USBA Test A Counter Register
	32.7.9 USBA Test B Counter Register
	32.7.10 USBA Test Mode Register
	32.7.11 USBA Test Register
	32.7.12 USBA PADDRSIZE Register
	32.7.13 USBA Name1 Register
	32.7.14 USBA Name2 Register
	32.7.15 USBA Features Register
	32.7.16 USBA IP Version Register
	32.7.17 USBA Endpoint Configuration Register
	32.7.18 USBA Endpoint Control Enable Register
	32.7.19 USBA Endpoint Control Disable Register
	32.7.20 USBA Endpoint Control Register
	32.7.21 USBA Endpoint Set Status Register
	32.7.22 USBA Endpoint Clear Status Register
	32.7.23 USBA Endpoint Status Register
	32.7.24 USBA DMA Channel Transfer Descriptor
	32.7.25 USBA DMA Next Descriptor Address Register
	32.7.26 USBA DMA Channelx Address Register
	32.7.27 USBA DMA Channelx Control Register
	32.7.28 USBA DMA Channelx Status Register

	33. Timer/Counter (TC)
	33.1 Features
	33.2 Overview
	33.3 Block Diagram
	33.4 I/O Lines Description
	33.5 Product Dependencies
	33.5.1 I/O Lines
	33.5.2 Power Management
	33.5.3 Clocks
	33.5.4 Interrupts
	33.5.5 Peripheral Events
	33.5.6 Debug Operation

	33.6 Functional Description
	33.6.1 TC Description
	33.6.1.1 Channel I/O Signals
	33.6.1.2 16-bit counter
	33.6.1.3 Clock selection
	33.6.1.4 Clock control
	33.6.1.5 TC operating modes
	33.6.1.6 Trigger
	33.6.1.7 Peripheral events on TIOA inputs

	33.6.2 Capture Operating Mode
	33.6.2.1 Capture registers A and B
	33.6.2.2 Trigger conditions

	33.6.3 Waveform Operating Mode
	33.6.3.1 Waveform selection
	33.6.3.2 WAVSEL = 0
	33.6.3.3 WAVSEL = 2
	33.6.3.4 WAVSEL = 1
	33.6.3.5 WAVSEL = 3
	33.6.3.6 External event/trigger conditions
	33.6.3.7 Output controller

	33.7 User Interface
	33.7.1 Channel Control Register
	33.7.2 Channel Mode Register: Capture Mode
	33.7.3 Channel Mode Register: Waveform Mode
	33.7.4 Channel Counter Value Register
	33.7.5 Channel Register A
	33.7.6 Channel Register B
	33.7.7 Channel Register C
	33.7.8 Channel Status Register
	33.7.9 Channel Interrupt Enable Register
	33.7.10 Channel Interrupt Disable Register
	33.7.11 Channel Interrupt Mask Register
	33.7.12 Block Control Register
	33.7.13 Block Mode Register

	34. Pulse Width Modulation Controller (PWM)
	34.1 Features
	34.2 Description
	34.3 Block Diagram
	34.4 I/O Lines Description
	34.5 Product Dependencies
	34.5.1 I/O Lines
	34.5.2 Debug operation
	34.5.3 Power Management
	34.5.4 Interrupt Sources

	34.6 Functional Description
	34.6.1 PWM Clock Generator
	34.6.2 PWM Channel
	34.6.2.1 Block Diagram
	34.6.2.2 Waveform Properties

	34.6.3 PWM Controller Operations
	34.6.3.1 Initialization
	34.6.3.2 Source Clock Selection Criteria
	34.6.3.3 Changing the Duty Cycle or the Period
	34.6.3.4 Interrupts

	34.7 Pulse Width Modulation (PWM) Controller User Interface
	34.7.1 Register Mapping
	34.7.2 PWM Mode Register
	34.7.3 PWM Enable Register
	34.7.4 PWM Disable Register
	34.7.5 PWM Status Register
	34.7.6 PWM Interrupt Enable Register
	34.7.7 PWM Interrupt Disable Register
	34.7.8 PWM Interrupt Mask Register
	34.7.9 PWM Interrupt Status Register
	34.7.10 PWM Channel Mode Register
	34.7.11 PWM Channel Duty Cycle Register
	34.7.12 PWM Channel Period Register
	34.7.13 PWM Channel Counter Register
	34.7.14 PWM Channel Update Register

	35. Image Sensor Interface (ISI)
	35.1 Features
	35.2 Overview
	35.3 Block Diagram
	35.4 Product Dependencies
	35.4.1 I/O Lines
	35.4.2 Power Management
	35.4.3 Interrupt

	35.5 Functional Description
	35.5.1 Data Timing
	35.5.2 Data Ordering
	35.5.3 Clocks
	35.5.4 Preview Path
	35.5.4.1 Scaling, Decimation (Subsampling)
	35.5.4.2 Color Space Conversion
	35.5.4.3 Memory Interface
	35.5.4.4 FIFO and DMA Features
	35.5.4.5 Example

	35.5.5 Codec Path
	35.5.5.1 Color Space Conversion
	35.5.5.2 Memory Interface
	35.5.5.3 DMA Features

	35.6 Image Sensor Interface (ISI) User Interface
	35.6.1 ISI Control 1 Register
	35.6.2 ISI Control 2 Register
	35.6.3 ISI Status Register
	35.6.4 Interrupt Enable Register
	35.6.5 ISI Interrupt Disable Register
	35.6.6 ISI Interrupt Mask Register
	35.6.7 ISI Preview Size Register
	35.6.8 ISI Preview Decimation Factor Register
	35.6.9 ISI Preview Primary FBD Register
	35.6.10 ISI Codec DMA Base Address Register
	35.6.11 ISI Color Space Conversion YCrCb to RGB Set 0 Register
	35.6.12 ISI Color Space Conversion YCrCb to RGB Set 1 Register
	35.6.13 ISI Color Space Conversion RGB to YCrCb Set 0 Register
	35.6.14 ISI Color Space Conversion RGB to YCrCb Set 1 Register
	35.6.15 ISI Color Space Conversion RGB to YCrCb Set 2 Register

	36. On-Chip Debug
	36.1 Features
	36.2 Overview
	36.3 Block diagram
	36.4 Functional description
	36.4.1 JTAG-based debug features
	36.4.1.1 Debug Communication Channel
	36.4.1.2 Breakpoints
	36.4.1.3 OCD Mode
	36.4.1.4 Monitor Mode
	36.4.1.5 Program Counter monitoring
	36.4.1.6 Cyclic Redundancy Check (CRC)
	36.4.1.7 NanoTrace

	36.4.2 AUX-based debug features
	36.4.2.1 Trace operation
	36.4.2.2 Program Trace
	36.4.2.3 Data Trace
	36.4.2.4 Ownership Trace
	36.4.2.5 Watchpoint messages
	36.4.2.6 Event In and Event Out pins
	36.4.2.7 Software Quality Analysis (SQA)

	37. JTAG and Boundary Scan
	37.1 Features
	37.2 Overview
	37.3 Block diagram
	37.4 Functional description
	37.4.1 JTAG interface
	37.4.2 Typical sequence
	37.4.2.1 Scanning in JTAG instruction
	37.4.2.2 Scanning in/out data

	37.4.3 Boundary-Scan
	37.4.4 Service Access Bus
	37.4.4.1 Busy reporting
	37.4.4.2 Error reporting

	37.4.5 Memory programming

	37.5 JTAG Instruction Summary
	37.6 Public JTAG instructions
	37.6.1 IDCODE
	37.6.2 SAMPLE_PRELOAD
	37.6.3 INTEST
	37.6.4 CLAMP
	37.6.5 BYPASS

	37.7 Private JTAG Instructions
	37.7.1 Notation
	37.7.2 NEXUS_ACCESS
	37.7.3 MEMORY_WORD_ACCESS
	37.7.4 MEMORY_BLOCK_ACCESS
	37.7.5 CANCEL_ACCESS
	37.7.6 SYNC
	37.7.7 AVR_RESET

	37.8 JTAG Data Registers
	37.8.1 Device Identification Register
	37.8.1.1 Device specific ID codes

	37.8.2 Reset register
	37.8.3 Boundary-Scan Chain

	37.9 SAB address map

	38. Boot Sequence
	38.1 Starting of clocks
	38.2 Fetching of initial instructions

	39. Mechanical Characteristics
	39.1 AVR32AP7001
	39.1.1 Thermal Considerations
	39.1.1.1 Thermal Data
	39.1.1.2 Junction Temperature

	39.1.2 Package Drawings
	39.1.3 Soldering Profile

	40. Electrical Characteristics
	40.1 Absolute Maximum Ratings
	40.2 DC Characteristics
	40.3 Power Consumption
	40.3.1 Power Consumption versus Modes

	40.4 Clock Characteristics
	40.4.1 CPU Clock Characteristics
	40.4.2 XIN Clock Characteristics
	40.4.3 RESET_N Characteristics

	40.5 Crystal Oscillator Characteristics
	40.5.1 32 kHz Oscillator Characteristics
	40.5.2 Main Oscillators Characteristics
	40.5.3 PLL Characteristics

	40.6 USB Transceiver Characteristics
	40.6.1 Electrical Characteristics
	40.6.2 Switching Characteristics

	40.7 AC Characteristics
	40.8 EBI Timings
	40.8.1 SDRAM Signals

	41. Ordering Information
	42. Errata
	42.1 Rev. C
	42.2 Rev. B
	42.3 Rev. A

	43. Datasheet Revision History
	43.1 Rev. G 09/09
	43.2 Rev. F 09/09
	43.3 Rev. E 01/08
	43.4 Rev. D 09/07
	43.5 Rev. C 07/07
	43.6 Rev. B 04/07
	43.7 Rev. A 02/07

	Table of Contents

