MOSFET - Symmetrical Dual N-Channel

60 V, 9 mΩ, 38 A

NTTFD9D0N06HL

General Description

This device includes two specialized N–Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q2) and synchronous (Q1) have been designed to provide optimal power efficiency.

Features

Q1: N-Channel

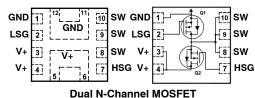
- Max $r_{DS(on)} = 9.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10 \text{ A}$
- Max $r_{DS(on)} = 13 \text{ m}\Omega$ at $V_{GS} = 4.5$, $I_D = 8.0 \text{ A}$
- Q2: N-Channel
- Max $r_{DS(on)} = 9.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10 \text{ A}$
- Max $r_{DS(on)} = 13 \text{ m}\Omega$ at $V_{GS} = 4.5$, $I_D = 8.0 \text{ A}$
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- RoHS Compliant

Typical Applications

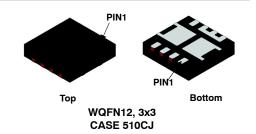
- Computing
- Communications
- General Purpose Point of Load

PIN DESCRIPTION

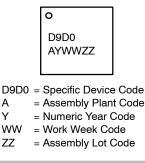
Pin	Name	Description
1, 11, 12	GND (LSS)	Low Side Source
2	LSG	Low Side Gate
3, 4, 5, 6	V + (HSD)	High Side Drain
7	HSG	High Side Gate
8, 9, 10	SW	Switching Node, Low Side Drain



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60.1/	9 mΩ @ 10 V	38 A
60 V	13 mΩ @ 4.5 V	38 A


ELECTRICAL CONNECTION

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping†
NTTFD9D0N06HLTWG	WQFN12 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MOSFET MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified)

Symbol	Parameter			Q1	Q2	Units
V _{DS}	Drain-to-Source Voltage			60	60	V
V _{GS}	Gate-to-Source Voltage			±20	±20	V
I _D	Drain Current -Continuous	$T_C = 25^{\circ}C$	(Note 4)	38	38	А
	-Continuous	$T_C = 100^{\circ}C$	(Note 4)	23	23	
	-Continuous	$T_A = 25^{\circ}C$		9 (Note 1a)	9 (Note 1b)	
	-Pulsed	$T_A = 25^{\circ}C$		349	349	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	46	46	mJ
PD	Power Dissipation for Single Operation	$T_{C} = 25^{\circ}C$		26	26	W
	Power Dissipation for Single Operation	$T_A = 25^{\circ}C$		1.7 (Note 1a)	1.7 (Note 1b)	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			–55 to	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Q1	Q2	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	4.8	4.8	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a), max copper	ient (Note 1a), max copper 70 (Note 1a)		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1c), min copper	135 (Note 1a)	135 (Note 1b)	

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS						

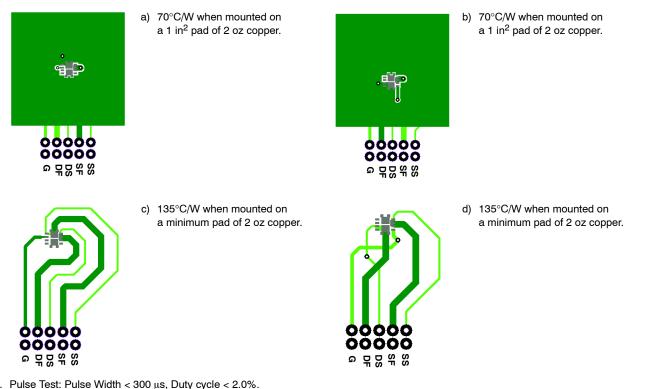
BV _{DSS}	Drain-to-Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	Q1	60			V
		$I_{D} = 250 \ \mu A, \ V_{GS} = 0 \ V$	Q2	60			
$\Delta {\sf BV}_{\sf DSS}$		I_D = 250 $\mu A,$ referenced to 25°C	Q1		37.38		mV/°C
ΔT_{J}		I_D = 250 μ A, referenced to 25°C	Q2		37.38		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	Q1			10	μΑ
		$V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	Q2			10	
I _{GSS}	Gate-to-Source Leakage Current,	V_{GS} = +20/-16 V, V_{DS} = 0 V	Q1			±100	nA
	Forward	V_{GS} = +20/-16 V, V_{DS} = 0 V	Q2			±100	

ON CHARACTERISTICS

V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 50 \ \mu A$	Q1	1.2	1.6	2.0	V
		$V_{GS} = V_{DS}, I_D = 50 \ \mu A$	Q2	1.2	1.6	2.0	
$\Delta V_{GS(th)}$	Gate-to-Source Threshold Voltage	$I_D = 50 \ \mu$ A, referenced to 25°C	Q1		-6.19		mV/°C
ΔT_{J}	Temperature Coefficient	$I_D = 50 \ \mu$ A, referenced to 25°C	Q2		-6.19		
r _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 10 A	Q1		7.3	9.0	mΩ
		V_{GS} = 4.5 V, I _D = 8 A			9.8	13	
		V_{GS} = 10 V, I_D = 10 A, T_J = 125°C			12.7		
r _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 10 A	Q2		7.3	9.0	mΩ
		V_{GS} = 4.5 V, I _D = 8 A			9.8	13	
		V_{GS} = 10 V, I_D = 10 A, T_J = 125°C			12.7		
9 _{FS}	Forward Transconductance	V _{DS} = 15 V, I _D = 10 A	Q1		53		S
		V _{DS} = 15 V, I _D = 10 A	Q2		53		

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

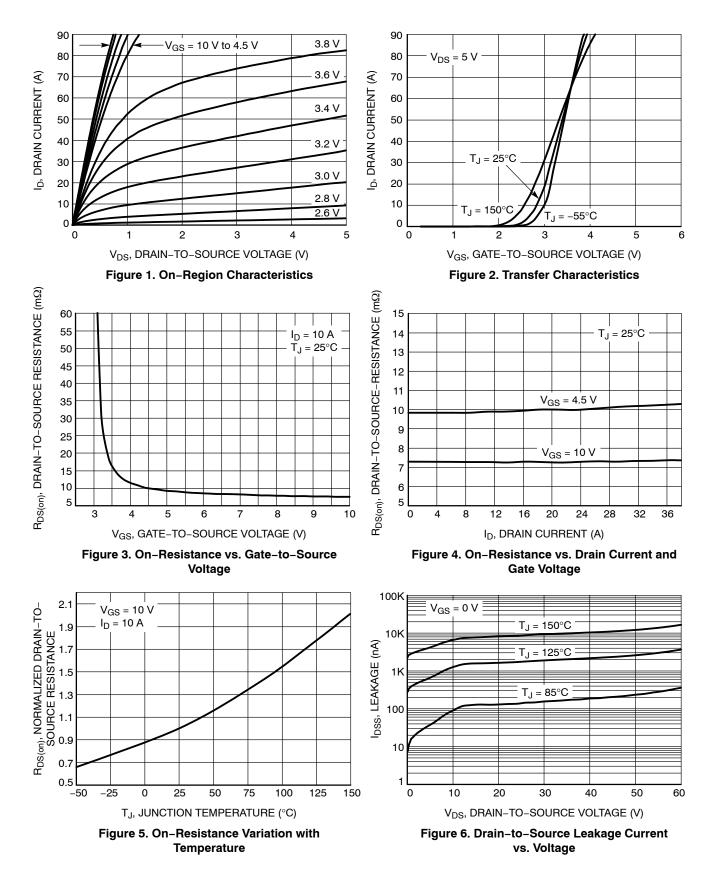
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
DYNAMIC	CHARACTERISTICS			-		-	-
C _{ISS}	Input Capacitance	Q1:	Q1		948		pF
		V _{DS} = 30 V, V _{GS} = 0 V, f = 1 Mhz	Q2		948		
C _{OSS}	Output Capacitance	Q2:	Q1		188		pF
		V_{DS} = 30 V, V_{GS} = 0 V, f = 1 MHz	Q2		188		
C _{RSS}	Reverse Transfer Capacitance		Q1		12.3		pF
			Q2		12.3		
R_{G}	Gate Resistance	T _A = 25°C	Q1		2.0		Ω
			Q2		2.0		

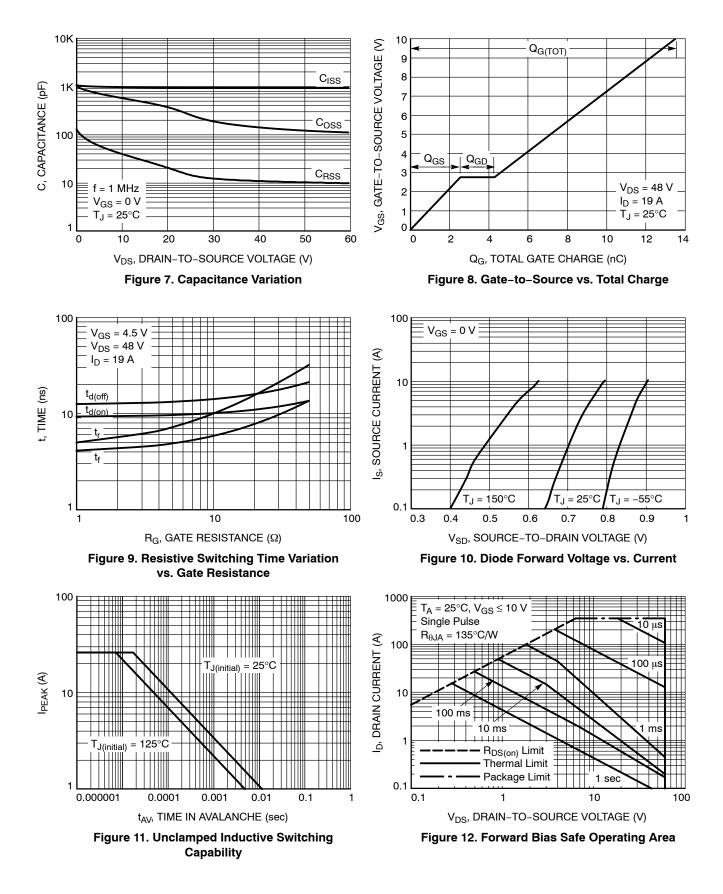

SWITCHING CHARACTERISTICS

td _(ON)	Turn-On Delay Time	Q1: V _{DD} = 48 V, I _D = 19 A,	Q1	9.4	ns
		$V_{GS} = 4.5 \text{ V}, \text{ R}_{GEN} = 2.5 \Omega$	Q2	9.4	
t _r	Rise Time	Q2:	Q1	5.8	ns
		V _{DD} = 48 V, I _D = 19 A,	Q2	5.8	
t _{D(OFF)}	Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V}, \text{ R}_{GEN} = 2.5 \Omega$	Q1	12.8	ns
			Q2	12.8	
t _f	Fall Time		Q1	4.4	ns
			Q2	4.4	
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V	Q1	13.5	nC
			Q2	13.5	
Qg	Total Gate Charge	V _{GS} = 0 V to 4.5 V	Q1	6.4	nC
		Q1:	Q2	6.4	
Q _{gs}	Gate-to-Source Gate Charge	V _{DD} = 48 V,	Q1	2.6	nC
		l _D = 19 A Q2:	Q2	2.6	
Q _{gd}	Gate-to-Drain "Miller" Charge	V _{DD} = 48 V,	Q1	2.8	nC
		I _D = 19 A	Q2	2.8	

DRAIN-SOURCE DIODE CHARACTERISTICS

V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 10 A (Note 2)	Q1	0.79	1.2	V
		V _{GS} = 0 V, I _S = 10 A (Note 2)	Q2	0.79	1.2	
t _{rr}	Reverse Recovery Time	Q1:	Q1	29		ns
		I _F = 19 A, di/dt = 100 A/μs Q2:	Q2	29		
Q _{rr}	Reverse Recovery Charge	I _F = 19 A, di/dt = 100 A/μs	Q1	14		nC
			Q2	14		


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
 R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. R_{θCA} is determined by the user's board design.


- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- Q1: E_{AS} of 46 mJ is based on starting T_J = 25°C; N-ch: L = 1 mH, I_{AS} = 9.6 A, V_{DD} = 60 V, V_{GS} = 10 V. 100% test at L = 1 mH, I_{AS} = 9.6 A. Q2: E_{AS} of 46 mJ is based on starting T_J = 25°C; N-ch: L = 1 mH, I_{AS} = 9.6 A, V_{DD} = 60 V, V_{GS} = 10 V. 100% test at L = 1 mH, I_{AS} = 9.6 A.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

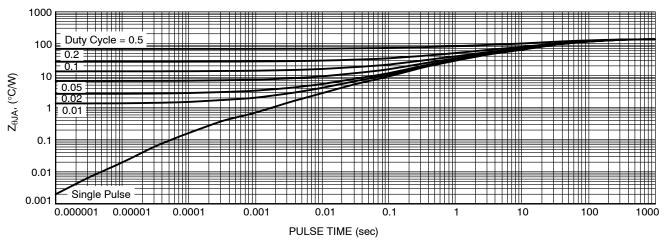


Figure 13. Transient Thermal Impedance

PACKAGE DIMENSIONS

WQFN12 3.3X3.3, 0.65P CASE 510CJ ISSUE O

0.300

1.060

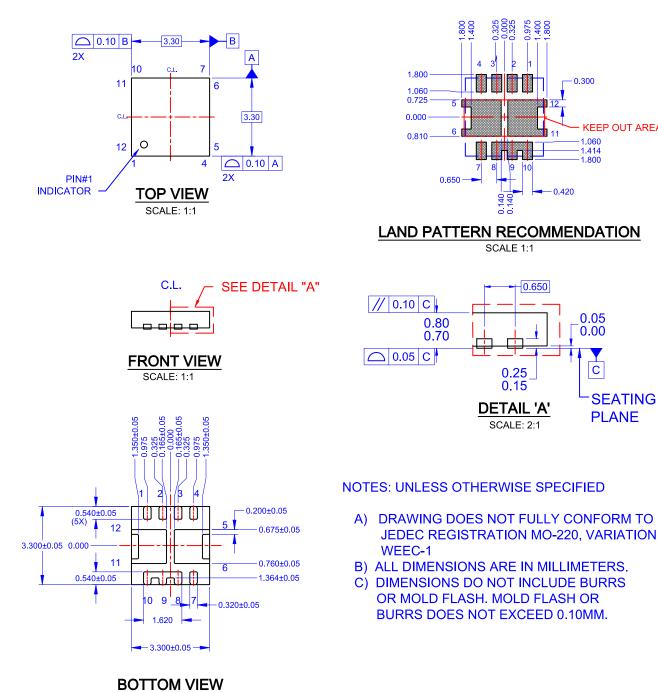
1.414

0.05

0.00

С

SEATING


PLANE

KEEP OUT AREA

8 12

11

0.420

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmlese against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of pe

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative