

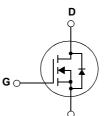
ON Semiconductor®

FDPF18N20FT-G N-Channel UniFET[™] FRFET[®] MOSFET

200 V, 18 A, 140 m

Features

- $R_{DS(on)}$ = 129 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 9 A
- Low Gate Charge (Typ. 20 nC)
- Low C_{rss} (Typ. 24 pF)
- 100% Avalanche Tested
- Improve dv/dt Capability
- RoHS Compliant


Applications

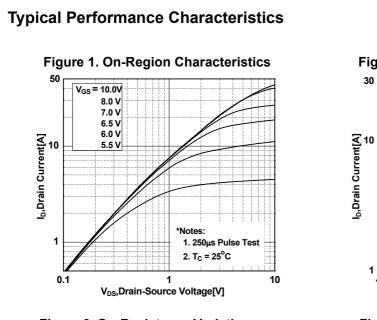
- LCD/LED TV
- Consumer Appliances
- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

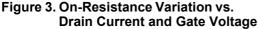
Description

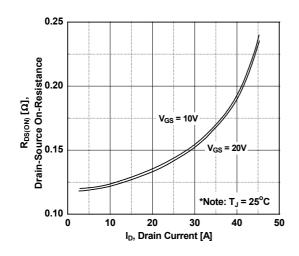
UniFET[™] MOSFET is ON Semiconductor[®]'s high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. The body diode's reverse recovery performance of UniFET FRFET[®] has been enhanced by lifetime control. Its t^{rr} is less than 100nsec and the reverse dv/dt immunity is 15V/ns while normal planar MOSFETs have over 200nsec and 4.5V/nsec respectively. Therefore, it can remove additional component and improve system reliability in certain applications in which the performance of MOSFET's body diode is significant. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

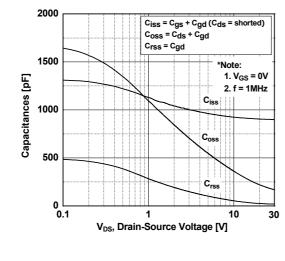
Symbol		FDPF18N20FT-G	Unit			
V _{DSS}	Drain to Source Voltage			200	V	
V _{GSS}	Gate to Source Voltage			±30	V	
I _D	Drain Current	-Continuous (T _C = 25 ^o C)		18*		
	DrainCurrent	-Continuous (T _C = 100 ^o C)		10.8*	- A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	72*	Α	
E _{AS}	Single Pulsed Avalanche E	(Note 2)	324	mJ		
I _{AR}	Avalanche Current		(Note 1)	18	Α	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	10	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.5	V/ns	
P _D	Dower Dissinction	(T _C = 25 ^o C)		35	W	
	Power Dissipation	- Derate above 25ºC		0.27	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

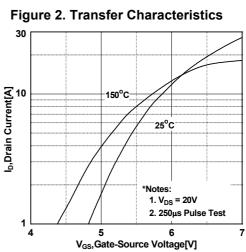

Thermal Characteristics

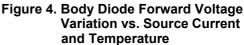

Symbol	Parameter	FDPF18N20FT-G	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	3.6	
$R_{\theta CS}$	Thermal Resistance, Case to Sink, Typ.	0.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	Ī

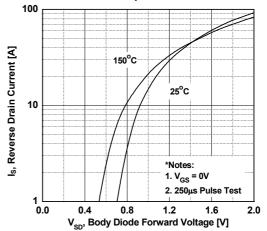

Device Mark	ing Device		Package	🧼 Eco Status	Reel Size	Tape Width		Quantity	
FDPF18N20	FT	FDPF18N20F-G	TO-220F	Green/RoHS	-	-		50	
	Ch	aracteristic	_				.		
Symbol		Param	eter	Test C	onditions	Min.	Тур.	Max.	Uni
Off Charact	teris	tics							
BV _{DSS}	Drai	n to Source Breako	lown Voltage	I _D = 250μA, V _{GS}	= 0V, T _J = 25 ^o C	200	-	-	V
ΔBV_{DSS}	Brea	akdown Voltage Ter	nperature	I _D = 250μA, Refe	-	_	0.2		V/º
ΔT_J	Coe	fficient				-	0.2	-	V/°
lace	7erc	o Gate Voltage Drai	n Current	V _{DS} = 200V, V _G	-	-	-	10	
DSS	2010			V_{DS} = 160V, T_{C}		-	-	100	μA
I _{GSS}	Gate	e to Body Leakage	Current	V_{GS} = ±30V, V_{DS}	_S = 0V	-	-	±100	n/
On Charact	eris	tics							
V _{GS(th)}	Gate	e Threshold Voltage	9	$V_{GS} = V_{DS}, I_D =$	250μΑ	3.0	-	5.0	V
	+	in Dunin to Courses				-	0.12	0.14	Ω
	Stat	ic Drain to Source (Jn Resistance	V _{GS} = 10V, I _D =	9A	-	0.12	0.14	
R _{DS(on)} 9 _{FS} Dynamic C C _{iss}	Forv hara	ward Transconducta		V _{DS} = 20V, I _D =	9A (Note 4)	-	13.6 885	- 1180	S pF
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss}	Forv hara Inpu Outp Reve	ward Transconducta cteristics t Capacitance but Capacitance erse Transfer Capa	citance		9A (Note 4)		13.6	-	pF pF
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)}	Forv hara Inpu Outp Revo Tota	ward Transconducta Icteristics It Capacitance out Capacitance erse Transfer Capa I Gate Charge at 10	citance	$V_{DS} = 20V, I_D =$ $V_{DS} = 25V, V_{GS}$ f = 1MHz	9A (Note 4) = 0V		13.6 885 200 24 20	- 1180 270	pF pF pF
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs}	Forv hara Inpu Outp Revo Tota Gate	ward Transconducta acteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 e to Source Gate C	ance citance DV harge	$V_{DS} = 20V, I_D =$ $V_{DS} = 25V, V_{GS}$ f = 1MHz $V_{DS} = 160V, I_D =$	9A (Note 4) = 0V		13.6 885 200 24 20 5	- 1180 270 35	pF pF pF
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)}	Forv hara Inpu Outp Revo Tota Gate	ward Transconducta Icteristics It Capacitance out Capacitance erse Transfer Capa I Gate Charge at 10	ance citance DV harge	$V_{DS} = 20V, I_D =$ $V_{DS} = 25V, V_{GS}$ f = 1MHz	9A (Note 4) = 0V		13.6 885 200 24 20	- 1180 270 35	pF pF pF nC
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd}	Forventies	ward Transconducta acteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 e to Source Gate C	ance citance DV harge	$V_{DS} = 20V, I_D =$ $V_{DS} = 25V, V_{GS}$ f = 1MHz $V_{DS} = 160V, I_D =$	9A (Note 4) = 0V = 18A		13.6 885 200 24 20 5	- 1180 270 35 26 -	pF pF pF nC
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd}	Forv hara Inpu Outr Revo Tota Gate Gate	ward Transconducta acteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 e to Source Gate C e to Drain "Miller" C	ance citance DV harge	$V_{DS} = 20V, I_{D} =$ $V_{DS} = 25V, V_{GS}$ $f = 1MHz$ $V_{DS} = 160V, I_{D} =$ $V_{GS} = 10V$	9A (Note 4) = 0V = 18A (Note 4, 5)		13.6 885 200 24 20 5	- 1180 270 35 26 -	pF pF nC nC
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching (Forv hara Inpu Out Revo Tota Gate Gate Char	vard Transconducta icteristics It Capacitance out Capacitance erse Transfer Capa I Gate Charge at 10 e to Source Gate C e to Drain "Miller" C racteristics	ance citance DV harge	$V_{DS} = 20V, I_{D} =$ $V_{DS} = 25V, V_{GS}$ $f = 1MHz$ $V_{DS} = 160V, I_{D} =$ $V_{GS} = 10V$ $V_{DD} = 100V, I_{D} =$	9A (Note 4) = 0V = 18A (Note 4, 5)		13.6 885 200 24 20 5 9	- 1180 270 35 26 - -	pF pF nC nC nC
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gd} Switching (t _{d(on)} t _r	Forventies for the forventies of the forventies	ward Transconducta icteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 e to Source Gate C e to Drain "Miller" C racteristics -On Delay Time	ance citance DV harge	$V_{DS} = 20V, I_{D} =$ $V_{DS} = 25V, V_{GS}$ $f = 1MHz$ $V_{DS} = 160V, I_{D} =$ $V_{GS} = 10V$	9A (Note 4) = 0V = 18A (Note 4, 5)	-	13.6 885 200 24 20 5 9	- 1180 270 355 26 - - - - 40	pF pF pF nC nC nC
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gd} Switching (Forvent	ward Transconducta acteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 e to Source Gate C e to Drain "Miller" C cacteristics -On Delay Time -On Rise Time	ance citance DV harge	$V_{DS} = 20V, I_{D} =$ $V_{DS} = 25V, V_{GS}$ $f = 1MHz$ $V_{DS} = 160V, I_{D} =$ $V_{GS} = 10V$ $V_{DD} = 100V, I_{D} =$	9A (Note 4) = 0V = 18A (Note 4, 5)	-	13.6 885 200 24 20 5 9 9	- 1180 270 35 26 - - - 40 110	pF pF pF nC nC nC
R _{DS(on)} 9 _{FS} Dynamic C C _{iss} C _{oss} C _{rss} Qg(tot) Qgg Qgd Switching (t _{d(on)} t _r t _{d(off)} t _f	Forv hara Inpu Out Rev Tota Gate Gate Gate Turm Turm Turm	ward Transconducta acteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 a to Source Gate C a to Source Gate C a to Drain "Miller" C Cacteristics -On Delay Time -On Rise Time -Off Delay Time	ance citance DV harge harge	$V_{DS} = 20V, I_{D} =$ $V_{DS} = 25V, V_{GS}$ $f = 1MHz$ $V_{DS} = 160V, I_{D} =$ $V_{GS} = 10V$ $V_{DD} = 100V, I_{D} =$	9A (Note 4) = 0∨ = 18A (Note 4, 5) = 18A	-	13.6 885 200 24 20 5 9 9 16 50 50	- 1180 270 35 26 - - - 40 110 110	PF PF PF nC nC nC
$\begin{array}{c} & \mathbb{R}_{\text{DS(on)}} \\ & \mathbb{9}_{\text{FS}} \\ \hline \\ & \mathbb{Dynamic C} \\ & \mathbb{C}_{iss} \\ & \mathbb{C}_{css} \\ & \mathbb{C}_{css} \\ & \mathbb{C}_{css} \\ & \mathbb{Q}_{g(tot)} \\ & \mathbb{Q}_{gs} \\ & \mathbb{Q}_{gd} \\ \hline \\ & \mathbb{Switching (} \\ & \mathbb{Switching (} \\ & \mathbb{F}_{d(off)} \\ & \mathbb{F}_{d(off)} \\ & \mathbb{F}_{tr} \\ \hline \\ & \mathbb{Drain-Sourr} \\ & \mathbb{F}_{tr} \\ \hline \end{array}$	Forv hara Inpu Out Rev Tota Gate Gate Char Turm Turm Turm	ward Transconducta acteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 to Source Gate C to Source Gate C to Drain "Miller" C racteristics -On Delay Time -Off Delay Time -Off Fall Time tiode Characte	ristics	$V_{DS} = 20V, I_{D} =$ $V_{DS} = 25V, V_{GS}$ $f = 1MHz$ $V_{DS} = 160V, I_{D} =$ $V_{GS} = 10V$ $V_{DD} = 100V, I_{D} =$	9A (Note 4) = 0V = 18A (Note 4, 5) = 18A (Note 4, 5)	-	13.6 885 200 24 20 5 9 9 16 50 50	- 1180 270 35 26 - - - 40 110 110	pF pF pF nC nC nC
R _{DS(on)} 9FS Dynamic C Ciss Coss Crss Qg(tot) Qgd Switching (t _{d(off)} t _f Drain-Sour	Forv hara Inpu Out Revo Tota Gate Gate Char Turn Turn Turn Turn Turn Maxi	ward Transconducta acteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 to Source Gate C to Source Gate C to Drain "Miller" C racteristics -On Delay Time -Off Delay Time -Off Fall Time tiode Characte	icitance DV harge harge ristics Drain to Source D	$V_{DS} = 20V, I_{D} = V_{DS} = 25V, V_{GS}$ $f = 1MHz$ $V_{DS} = 160V, I_{D} = V_{GS} = 10V$ $V_{DD} = 100V, I_{D} = R_{G} = 25\Omega$ biode Forward Current	9A (Note 4) = 0V = 18A (Note 4, 5) = 18A (Note 4, 5)	- - - - - - - - - - - - -	13.6 885 200 24 20 5 9 9 16 50 50 40	- 1180 270 35 26 - - - 40 110 110 90	PF PF PF nC nC nC
$\begin{array}{c} & \mathbb{R}_{\text{DS(on)}} \\ & \mathbb{9}_{\text{FS}} \\ \hline \\ & \mathbb{Dynamic C} \\ & \mathbb{C}_{iss} \\ & \mathbb{C}_{css} \\ & \mathbb{C}_{css} \\ & \mathbb{C}_{css} \\ & \mathbb{Q}_{g(tot)} \\ & \mathbb{Q}_{gs} \\ & \mathbb{Q}_{gd} \\ \hline \\ & \mathbb{Switching (} \\ & \mathbb{Switching (} \\ & \mathbb{F}_{d(off)} \\ & \mathbb{F}_{d(off)} \\ & \mathbb{F}_{tr} \\ \hline \\ & \mathbb{Drain-Sourr} \\ & \mathbb{F}_{tr} \\ \hline \end{array}$	Forv hara Inpu Out Rev Tota Gate Gate Gate Turm Turm Turm Turm Turm Maxi	ward Transconducta acteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 to Source Gate C to Source Gate C to Drain "Miller" C racteristics -On Delay Time -Off Delay Time -Off Delay Time -Off Fall Time tiode Characte mum Continuous D	citance DV harge harge ristics Drain to Source D to Source Diode	$V_{DS} = 20V, I_{D} = V_{DS} = 25V, V_{GS}$ $f = 1MHz$ $V_{DS} = 160V, I_{D} = V_{GS} = 10V$ $V_{DD} = 100V, I_{D} = R_{G} = 25\Omega$ biode Forward Current	9A (Note 4) = 0V = 18A (Note 4, 5) = 18A (Note 4, 5)	- - - - - - - - - - - - - - -	13.6 885 200 24 20 5 9 16 50 50 40	- 1180 270 35 26 - - - 40 110 110 90	PF pF pF nC nC nC nC
R _{DS(on)} 9FS Dynamic C C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gd} Switching (t _{d(off)} t _f Drain-Sour I _S	Forv hara Inpu Out Rev Tota Gate Gate Gate Turm Turm Turm Turm Turm Turm Turm Turm	ward Transconducta acteristics It Capacitance but Capacitance erse Transfer Capa I Gate Charge at 10 e to Source Gate C e to Drain "Miller" C cacteristics -On Delay Time -On Rise Time -Off Delay Time -Off Fall Time iode Characte imum Continuous D imum Pulsed Drain	incitance DV harge harge fistics Drain to Source D to Source Diode Forward Voltage	$V_{DS} = 20V, I_D =$ $V_{DS} = 25V, V_{GS}$ $f = 1MHz$ $V_{DS} = 160V, I_D =$ $V_{GS} = 10V$ $V_{DD} = 100V, I_D =$ $R_G = 25\Omega$ Forward Current	9A (Note 4) = 0V = 18A (Note 4, 5) = 18A (Note 4, 5) t 18A	- - - - - - - - - - - - - - -	13.6 885 200 24 20 5 9 9 16 50 50 40 - -	- 1180 270 35 26 - - - 40 110 110 110 90 8 18 72	PF PF PF nC nC nC nC nS ns ns A A

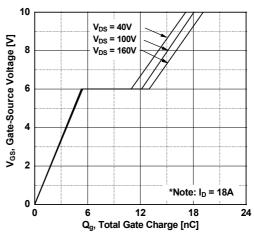
4. Pulse Test: Pulse width $\leq 300 \mu s,$ Duty Cycle $\leq 2\%$

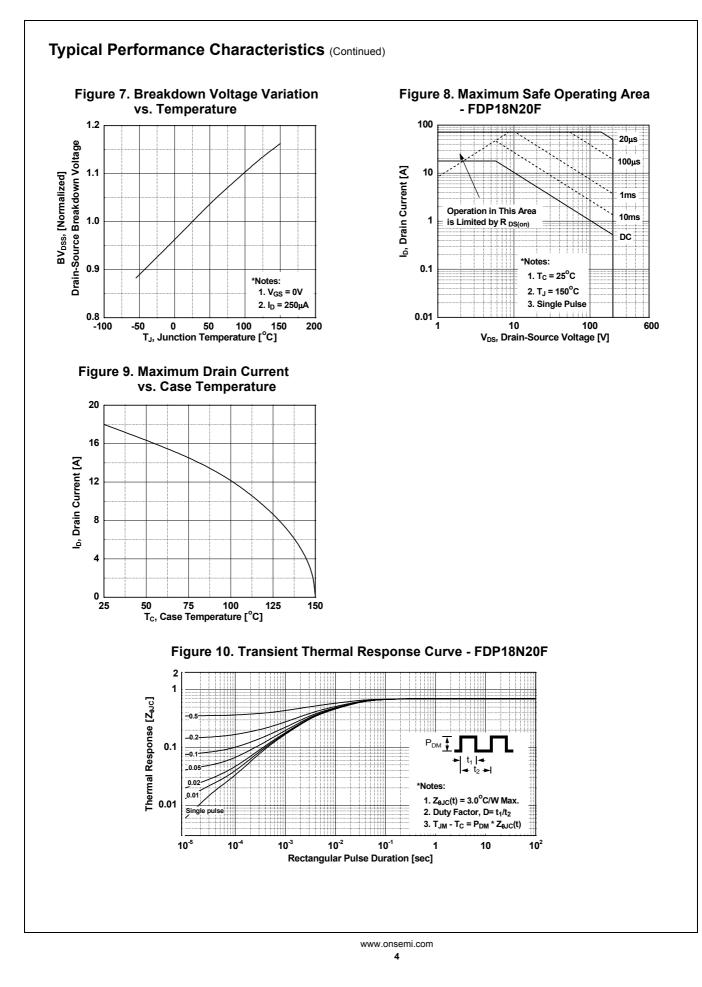

5. Essentially Independent of Operating Temperature Typical Characteristics

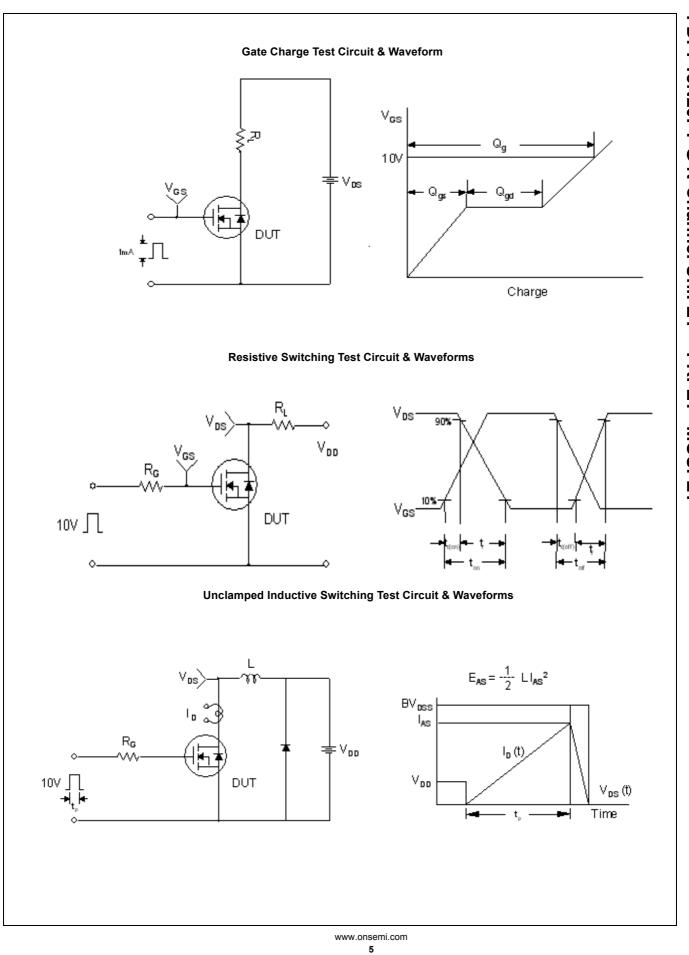


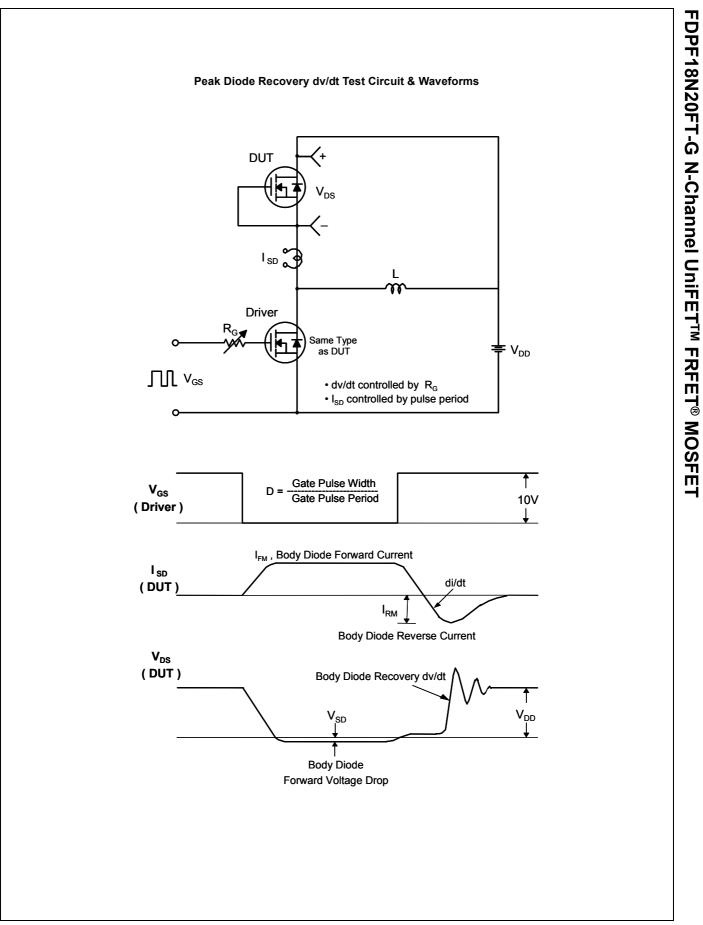


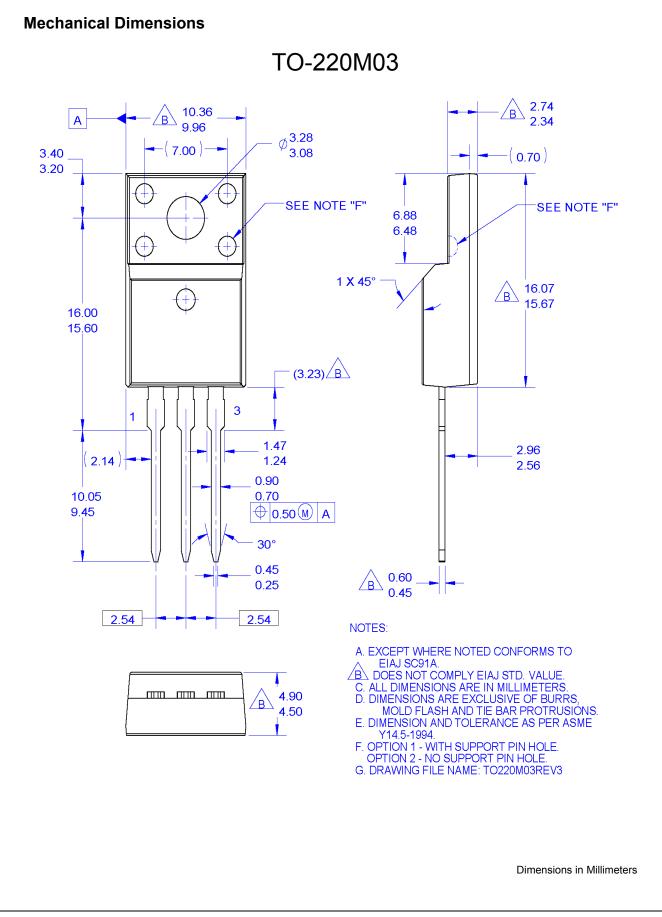









www.onsemi.com 3


FDPF18N20FT-G N-Channel UniFETTM FRFET[®] MOSFET

FDPF18N20FT-G N-Channel UniFET[™] FRFET[®] MOSFET

www.onsemi.com 6

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative