LC87F1M16A Evaluation Board User's Manual

ON Semiconductor®

www.onsemi.com

EVAL BOARD USER'S MANUAL

Summary

This document describes the specification of this product "LC87F1MADG1AGEVK", and it uses the following software.

Table 1. SUMMARY

Kind of Software	Name of the Software
Microcontroller	LC87F1M16A Version 0x1000
Application for PC	LC87F1MADG1AGEVK_Application.exe
Driver	LC87F1MADG1AGEVK_driver.inf

Content

Evaluation Board (USB-DG1-1Ma1-EVK): 1
USB-mini Cable: 1
Connector (FSS-43085-05 HIROSUGI-KEIKI): 1
CD-ROM*: 1

*Please use the included CD-ROM for the documentations, driver for this software, application software, and sample application software.

About Application

Required OS: Windows XP or later
Profile Needed: .NET Framework4 Client Profile

Summary of the Product

This product is for data receiving/transmitting by changing the various input/output formats listed below from PC to device and vice versa.

- I²C
- SPI
- PWM
- Digital Input/Output (GPIO)
- ADC

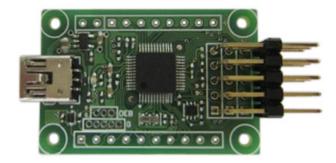
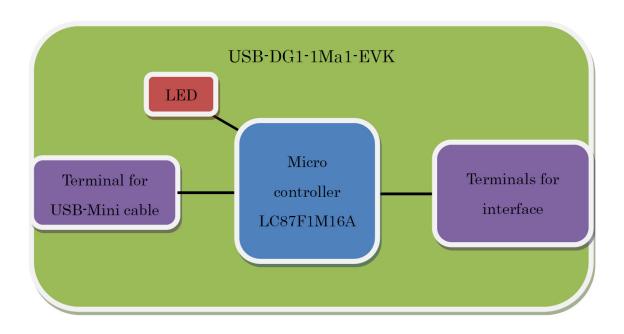



Figure 1. LC87F1M16A

COMPOSITION OF THIS PRODUCT

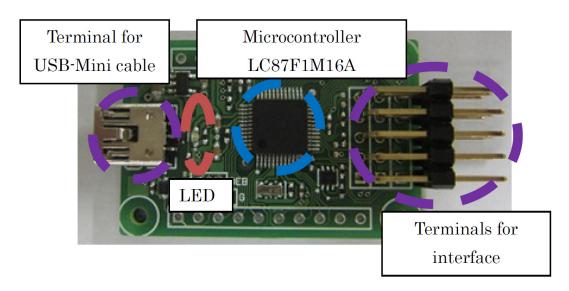
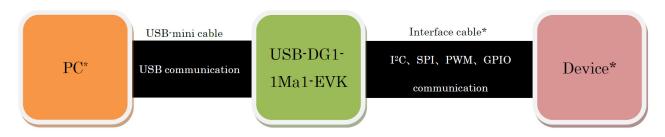



Figure 2. Composition

CONNECTION DIAGRAM WHEN USE

*PC, Device and Interface cable is not included.

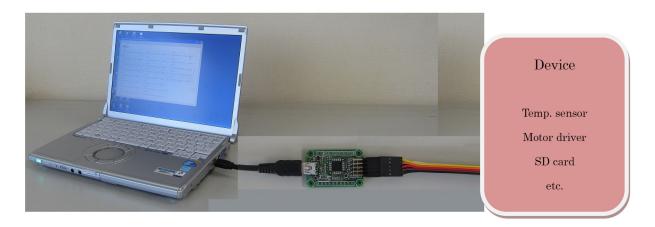


Figure 3. Connection Diagram

SUMMARY OF THE PINS ON THE PRODUCT

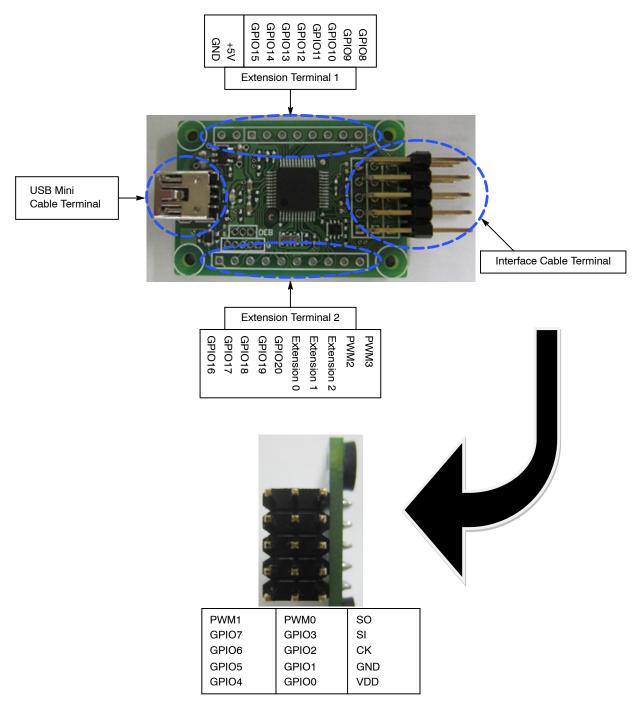


Figure 4. Summary of the Pins

USB-Mini Cable Terminal

USB2.0 compliant

Corresponding to Full Speed (12 Mbps)

Please connect the USB-Mini cable terminal to the PC using the included USB-Mini cable.

LED

Initial state of the LED is OFF.

It will light-up when driver is installed and USB communication is established. After that, it will light-up once every one communication with the data.

Table 2. INTERFACE CABLE TERMINAL

Name of the Pin	I/O Setting	State of the Possible Setting of the Terminal	Input Voltage Range	Max. Output Current
SO	0	SIO	-	Refer to the Micro's Catalogue
SI	I/O	SIO	0 to 3.3 V	Refer to the Micro's Catalogue
CK	I/O	SIO	0 to 3.3 V	Refer to the Micro's Catalogue
GND	-	-	-	-
VDD	-	-	-	100 mA
PWM0	0	PWM	-	Refer to the Micro's Catalogue
PWM1	0	PWM	-	Refer to the Micro's Catalogue
GPIO0	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO1	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO2	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO3	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO4	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO5	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO6	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO7	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue

NOTE: Internal pull-up is connected to 3.3 V through 18 k to 150 k Ω inside of the microcontroller.

Table 3. EXTENSION TERMINAL 1

Name of the Pin	I/O Setting	State of the Possible Setting of the Terminal	Input Voltage Range	Max. Output Current
GPIO8	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO9	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO10	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO11	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO12	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO13	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO14	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO15	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
+5V	-	-	-	100 mA
GND	-	-	-	-

Table 4. EXTENSION TERMINAL 2

Name of the Pin	I/O Setting	State of the Possible Setting of the Terminal	Input Voltage Range	Max. Output Current
GPIO16	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO17	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO18	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO19	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
GPIO20	I/O	Open, Internal Pull-Up, Low, High	0 to 3.3 V	Refer to the Micro's Catalogue
PWM2	0	PWM	-	Refer to the Micro's Catalogue
PWM3	0	PWM	-	Refer to the Micro's Catalogue
Extension 0	-	-	-	-
Extension 1	-	-	-	-
Extension 2	_	-	_	-

HOW TO USE THIS PRODUCT

Basic steps of the operation

• Connect the PC and this product via USB-Mini cable

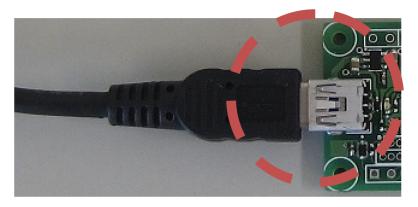


Figure 5. Connection via USB-Mini Cable

- After connected, below window appears automatically
- Install the driver in PC (In case of Windows XP 32bit)

Figure 6. Driver Installation - Step 1

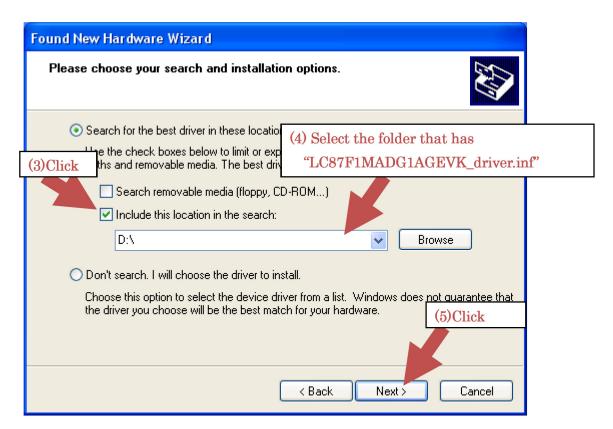


Figure 7. Driver Installation - Step 2

Figure 8. Driver Installation - Step 3

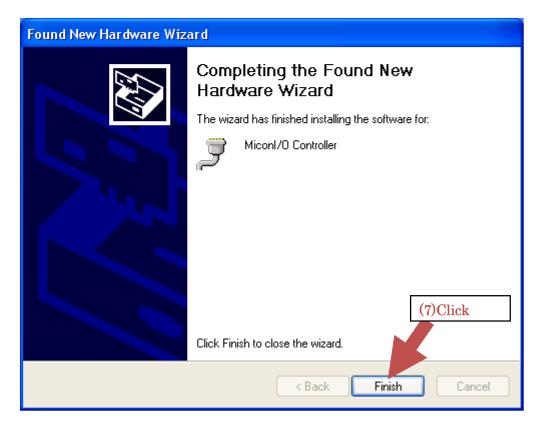


Figure 9. Driver Installation - Step 4

- LED will light-up if the installation is successful
- Connect the device and the interface cable of this product
- Start the application named "LC87F1MADG1AGEVK_Application.exe"

Figure 10. Device Connection

SPECIFICATION OF THE INPUT/OUTPUT TYPES

I²C Communication

1. Summary:

SIO of LC87F1M16A microcontroller is used for this communication...

This communication format is based on "THE I²C–BUS SPECIFICATION VERSION 2.1"

2. Pins to Be Used:

SI: used as SDA of I²C bus CK: used as SCL of I²C bus

- 3. Summary of the Communication:
 - Only Supports Single Master Mode
 - Only Supports Fast-mode (Bit Rate is 400 kbps)
 - Number of Receivable Data at One Communication is 0 to 62 Byte (in Case of 10 Bit Address, 61 Byte)
 - Number of Transmittable Data at One Communication is 0 to 62 Byte
 - Corresponding Address

Table 5. SUMMARY OF THE COMMUNICATION

Address Value	Value I	Next to the Address Value	Summary of the Address Value		
0b0000 0000	General Call Pro	cessing	General Call Address		
	Value	Summary			
	0x06	Reset of the Slave			
	0x04	Initialization of the Slave Address			
	0x00	Do Not Use			
	0bXXXX XXX1	X are Master Address			
0b0000 0001		None	Start Byte		
0b0000 001X		None	CBUS Address (No comm.)		
0b0000 010X		None	No Communication		
0b0000 011X		None	No Communication		
0b0000 1XXX		None	No Communication		
0b1111 1XXX		None	No Communication		
0b1111 0XXZ	Lower	r 8bit of the Slave Address	10bit Slave Address (XX is the Higher 2bit of the Slave Address) Transmission when Z = 0 Reception When Z = 1		
Other		nission Data if Transmission. If Reception Data if Reception.	7bit Slave Address Transmission when Lower1 Bit is 0 Reception when Lower1 Bit is 1		

NOTE: X denotes 0 or 1.

4. Application Window:

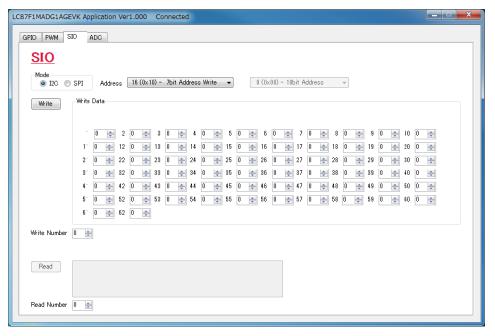


Figure 11. Application Window (I²C)

SPI

- 1. Summary:
 - SIO of LC87F1M16A microcontroller is used for this communication...
 - This communication is based on "SPI Block Guide V4.01"
- 2. Pins to Be Used:
 - SO: used as MOSI of SPI

- SI: used as MISO of SPI CK: used as SCK of SPI GPIO: used as SS of SPI
- 3. Communication Summary:
 - Only SupportsNormal Mode
 - Bit Rate is 400 kbps
- 4. Application Window:

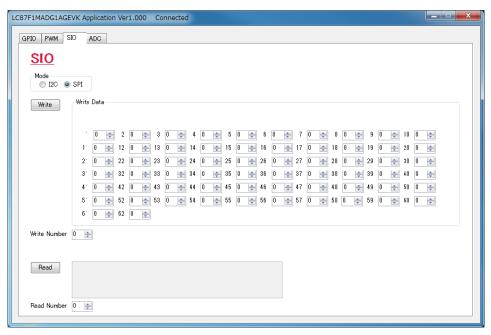


Figure 12. Application Window (SPI)

PWM

1. Summary:

Synchronous×2ch, asynchronous×2ch, total of 4ch can be output as PWM.

Using filter, it is capable of small DC voltage step control.

2. Pins to Be Used:

PWM0: Frequency is synchronized with PWM1 (Duty can be set separately)

PWM1: Frequency is synchronized with PWM0

(Duty can be set separately)

PWM2: Frequency and duty can be set asynchronously.

PWM3: Frequency and duty can be set asynchronously.

- 3. Output Summary: PWM0, 1 and PWM2, 3
- 4. Application Window:

Table 6. PWM0, 1

Frequency	Duty Changeable Step
750.0 [kHz]	16 steps
375.0 [kHz]	32 steps
250.0 [kHz]	48 steps
187.5 [kHz]	64 steps
150.0 [kHz]	80 steps
125.0 [kHz]	96 steps
107.1 [kHz]	112 steps
93.8 [kHz]	128 steps
83.3 [kHz]	144 steps
75.0 [kHz]	160 steps
68.2 [kHz]	176 steps
62.5 [kHz]	192 steps
57.7 [kHz]	208 steps
53.6 [kHz]	224 steps
50.0 [kHz]	240 steps

Table 7. PWM2, 3

Frequency	Duty Changeable Step
15.625 [kHz]	256 steps
7.813 [kHz]	256 steps
3.906 [kHz]	256 steps
1.953 [kHz]	256 steps
0.977 [kHz]	256 steps
0.488 [kHz]	256 steps
0.244 [kHz]	256 steps
0.122 [kHz]	256 steps

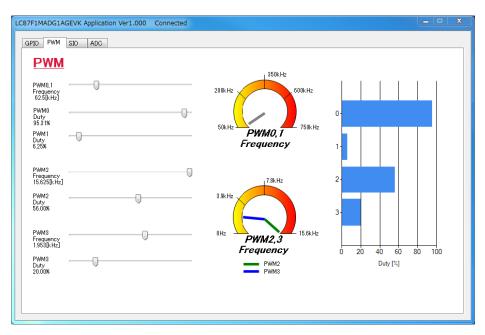


Figure 13. Application Window (PWM)

Digital Input/Output (GPIO)

1. Summary:

Capable of selecting 3.3 V or 0 V of input/output

2. Pins to Be Used:

GPIO0: Select Low/High when output, and select Open/Pull-up when input.

GPIO1: Select Low/High when output, and select Open/Pull-up when input.

GPIO2: Select Low/High when output, and select Open/Pull-up when input.

GPIO3: Select Low/High when output, and select Open/Pull-up when input.

GPIO4: Select Low/High when output, and select Open/Pull-up when input.

GPIO5: Select Low/High when output, and select Open/Pull-up when input.

GPIO6: Select Low/High when output, and select Open/Pull-up when input.

GPIO7: Select Low/High when output, and select Open/Pull-up when input.

GPIO8: Select Low/High when output, and select Open/Pull-up when input.

GPIO9: Select Low/High when output, and select Open/Pull-up when input.

GPIO10: Select Low/High when output, and select Open/Pull-up when input.

GPIO11: Select Low/High when output, and select

Open/Pull-up when input.

GPIO12: Select Low/High when output, and select Open/Pull-up when input.

GPIO13: Select Low/High when output, and select Open/Pull-up when input.

GPIO14: Select Low/High when output, and select Open/Pull-up when input.

GPIO15: Select Low/High when output, and select Open/Pull-up when input.

GPIO16: Select Low/High when output, and select Open/Pull-up when input.

GPIO17: Select Low/High when output, and select Open/Pull-up when input.

GPIO18: Select Low/High when output, and select Open/Pull-up when input.

GPIO19: Select Low/High when output, and select Open/Pull-up when input.

GPIO20: Select Low/High when output, and select Open/Pull-up when input.

3. State of Terminal:

Open input

Input with pull-up

Low output

High output

4. Application Window:

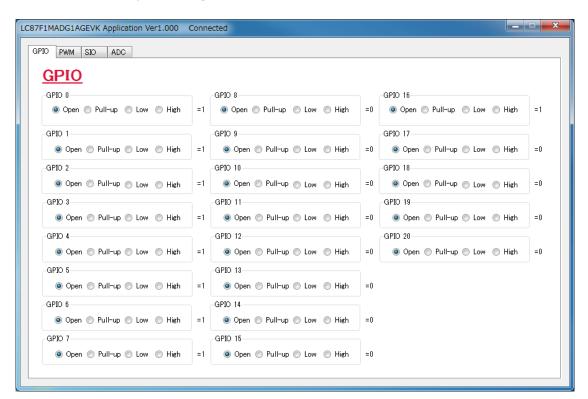


Figure 14. Application Window (GPIO)

ADC

1. Summary:

Converts the voltage to the value

2. Pins to be used:

GPIO0: ADC port 0 GPIO1: ADC port 1 GPIO2: ADC port 2 GPIO3: ADC port 3 GPIO4: ADC port 4 GPIO5: ADC port 5 GPIO6: ADC port 6 GPIO7: ADC port 7

Note: Set the GPIO to Open when conversion

- 3. Setting:
 - 8bitAD/12bitAD
 - Selection of conversion time

8bitAD Conversion Time	12bitAD Conversion Time	Unit
2.8	4.5	μs
5.5	8.8	μs
10.8	17.5	μs
21.5	34.8	μs
42.8	69.5	μs
85.5	138.8	μs
170.8	277.5	μs
341.5	554.8	μs

4. Application Setting Window:

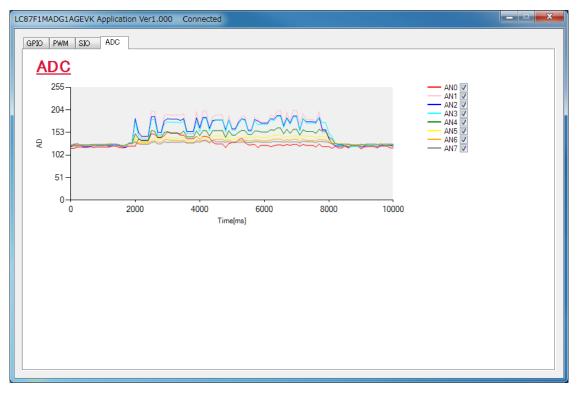
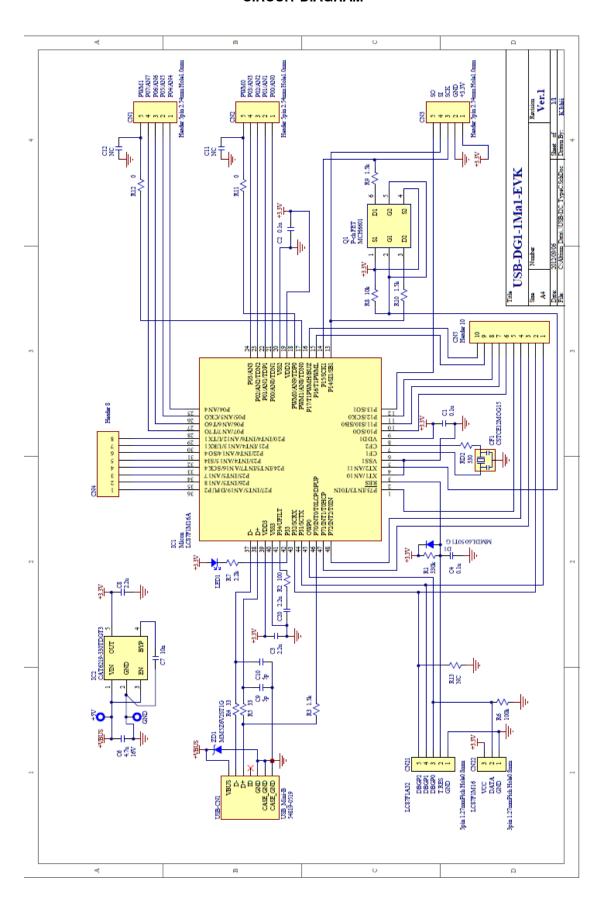
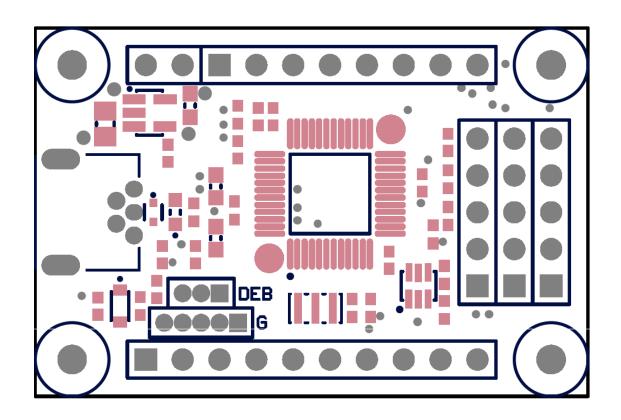
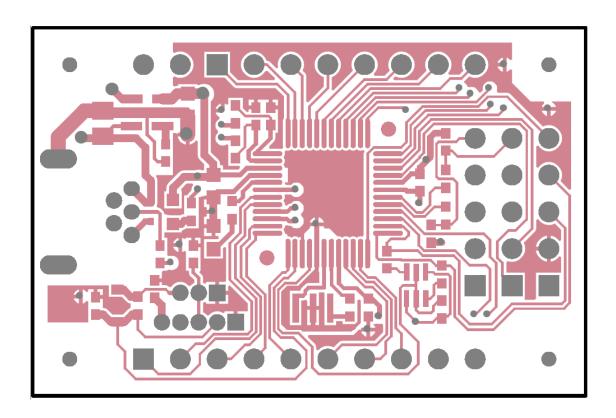



Figure 15. Application Setting Window (ADC)

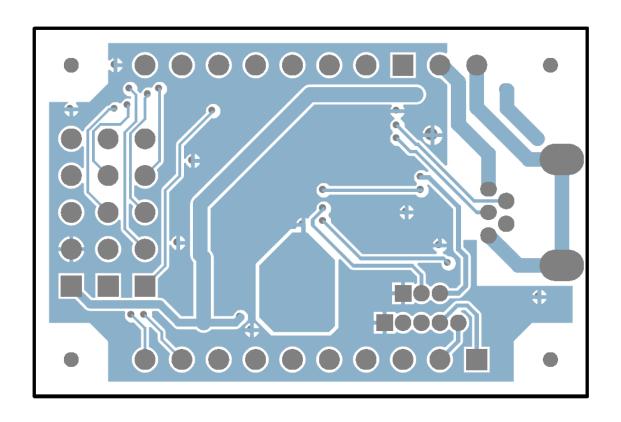
CIRCUIT DIAGRAM

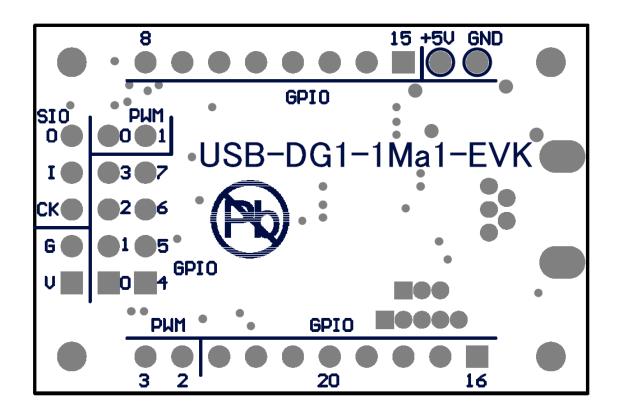
PARTS LIST

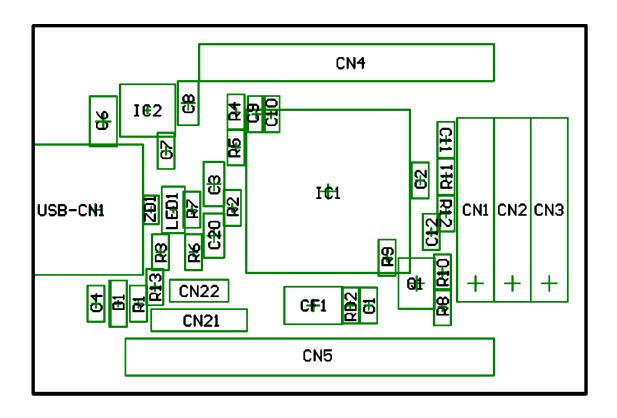

Table 8. BILL OF MATERIALS


Designator	Qty.	Description	Value	Tolerance	Footprint inch (mm)	Manufacturer	Manufacturer Part Number	Substitution Allowed
C1, C2, C3	3	Capacitor SMD	0.1 μF, 10 V	±10%	0402 (1005)	Murata	GRM155B11A104KA01#	Yes
C3, C8, C20	3	Capacitor SMD	2.2 μF, 10 V	±20%	0603 (1608)	Murata	GRM188B31A225ME33#	Yes
C6	1	Capacitor SMD	4.7 μF, 16 V	±10%	0805 (2012)	Murata	GRM21BB31C475KA87L	Yes
C7	1	Capacitor SMD	0.01 μF, 10 V	±10%	0402 (1005)	Murata	GRM155R61A103KA01#	Yes
C9, C10	2	Capacitor SMD	5 pF, 50 V	±0.25 pF	0402 (1005)	Murata	GRM1552P1H5R0CZ01#	Yes
C11, C12	2	Open	NC	-	-	-	-	-
CF1	1	Ceramic Resonator	12 MHz, 33 pF	±0.07%	CE	Murata	CSTCE12M0GH5L	Yes
ZD1	1	Zener Diode	6.2 V, 200 mW		SOD-523	ON Semiconductor	MM5Z6V2ST1G	Yes
D1	1	Diode			SOD-323-2	ON Semiconductor	MMDL6050T1G	Yes
IC1	1	Micro Controller			SQFP48 (7 × 7)	ON Semiconductor	LC87F1M16AF5ZA0WA-6H	No
IC2	1	LDO Regulator	3.3 V, 500 mA		TSOT23	ON Semiconductor	CAT6219-330TDGT3	Yes
LED1	1	LED SMD	RED		0603 (1608)	STANLEY	UR111C	Yes
Q1	1	Dual Pch-MOS	−30 V, −0.2 A	±5%	0402 (1005)	ON Semiconductor	MCH6601	Yes
R6	1	Resistor SMD	100 kΩ, 0.063 W	±5%	0402 (1005)	Rohm	MCR01MZPJ104	Yes
R1	1	Resistor SMD	330 kΩ, 0.063 W	±5%	0402 (1005)	Rohm	MCR01MZPJ334	Yes
R2	1	Resistor SMD	100 Ω, 0.063 W	±5%	0402 (1005)	Rohm	MCR01MZPJ101	Yes
R4, R5	2	Resistor SMD	33 Ω, 0.063 W	±5%	0402 (1005)	Rohm	MCR01MZPJ330	Yes
R3, R9, R10	3	Resistor SMD	1.5 kΩ, 0.063 W	±5%	0402 (1005)	Rohm	MCR01MZPJ152	Yes
R8	1	Resistor SMD	10 kΩ, 0.063 W	±5%	0402 (1005)	Rohm	MCR01MZPJ103	Yes
R11, R12	2	Resistor SMD	0 Ω, 0.063 W	±5%	0402 (1005)	Rohm	MCR01MZPJ000	Yes
R13	1	Open	NC	-	-	-	-	-
RD2	1	Resistor SMD	330 Ω, 0.063 W	±5%	0402 (1005)	Rohm	MCR01MZPJ331	Yes
R7	1	Resistor SMD	2.2 kΩ, 0.063 W	±5%	0402 (1005)	Rohm	MCR01MZPJ222	Yes
USB_CN1	1	Connecter	USB-B Connector (MINI)	-	-	Molex	54819-0519	Yes
CN 1, 2, 3	1	Pin Header 5 × 3	5×3			HIROSUGI	PSR-430256-05	Yes
Included	1	Pin Header	5×3			HIROSUGI	FSS-43085-05	Yes

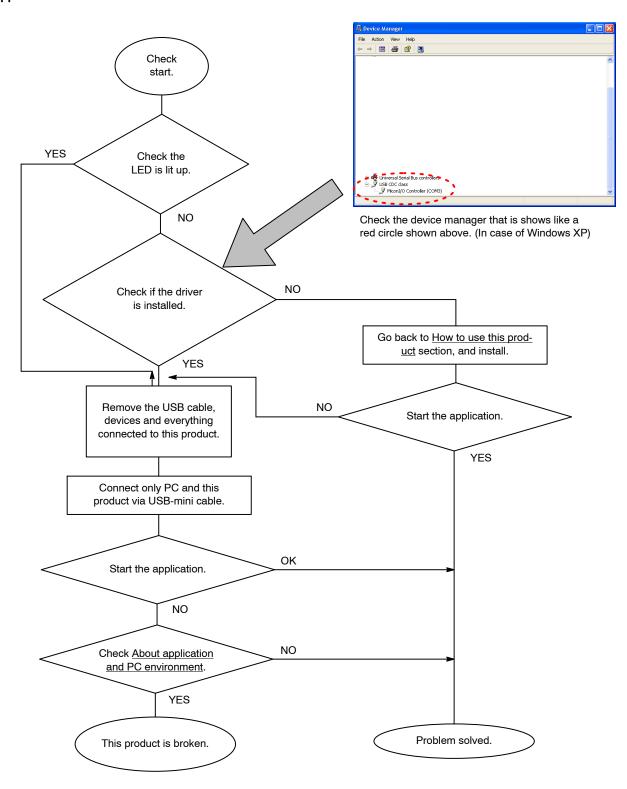
ncluded Parts	1	Pin Header Socket 5 × 3	5×3		HIROSUGI	FSS-43085-05	Yes


NOTE: All devices are Pb-Free.


PATTERN DIAGRAM - FRONT



PATTERN DIAGRAM - BACK



PATTERN DIAGRAM - LOCATION OF THE PARTS

IF YOU THINK IT IS BROKEN

Application Does Not Start

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is as such not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and should as such only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

The board is delivered "AS IS" and without warranty of any kind including, but not limited to, that the board is production—worthy, that the functions contained in the board will meet your requirements, or that the operation of the board will be uninterrupted or error free. ON Semiconductor expressly disclaims all warranties, express, implied or otherwise, including without limitation, warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

ON Semiconductor reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by ON Semiconductor shall not constitute any representation or warranty by ON Semiconductor, and no additional obligations or liabilities shall arise from ON Semiconductor having provided such information or services.

The boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the board for any such unintended or unauthorized application, you shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by ON Semiconductor to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

ON Semiconductor does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: ON Semiconductor shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if ON Semiconductor is advised of the possibility of such damages. In no event shall ON Semiconductor's aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any. For more information and documentation, please visit www.onsemi.com.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:

Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative