14-Bit, High Speed, 1.8V MicroPower Sampling ANALOG-TO-DIGITAL CONVERTER

FEATURES

- BIPOLAR INPUT RANGE
- 1.8V OPERATION
- 50kHz SAMPLING RATE
- MICRO POWER:
5.0 mW at 2.7 V
2.5 mW at 1.8 V
- POWER DOWN: $3 \mu \mathrm{~A}$ max
- MSOP-8 PACKAGE
- PIN-COMPATIBLE TO 12-BIT ADS7817
- SERIAL (SPI/SSI) INTERFACE

APPLICATIONS

- BATTERY OPERATED SYSTEMS
- REMOTE DATA ACQUISITION
- ISOLATED DATA ACQUISITION
- SIMULTANEOUS SAMPLING, MULTI-CHANNEL SYSTEMS
- INDUSTRIAL CONTROLS
- ROBOTICS
- VIBRATION ANALYSIS

DESCRIPTION

The ADS8324 is a 14-bit, sampling Analog-to-Digital (A/D) converter with tested specifications using a 1.8 V supply voltage. It requires very little power, even when operating at the full 50 kHz data rate. At lower data rates, the high speed of the device enables it to spend most of its time in the power-down mode-the average power dissipation is less than 1 mW at 10 kHz data rate.
The ADS8324 also features a synchronous serial (SPI/SSI compatible) interface, and a differential input. The reference voltage can be set to any level within the range of 500 mV to $\mathrm{V}_{\mathrm{CC}} / 2$.
Ultra-low power and small size make the ADS8324 ideal for portable and battery-operated systems. It is also a perfect fit for remote data acquisition modules, simultaneous multi-channel systems, and isolated data acquisition. The ADS8324 is available in an MSOP-8 package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^0]ABSOLUTE MAXIMUM RATINGS(1)

V_{CC}	+6V
Analog Input	-0.3 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Logic Input	. -0.3 V to 6 V
Case Temperature $+100^{\circ} \mathrm{C}$
Junction Temperature	$\ldots+150^{\circ} \mathrm{C}$
Storage Temperature	$+125^{\circ} \mathrm{C}$
External Reference Voltage +5.5 V

NOTE: (1) Stresses above these ratings may permanently damage the device.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN CONFIGURATION

PIN ASSIGNMENTS

PIN	NAME	DESCRIPTION
1	$\mathrm{V}_{\text {REF }}$	Reference Input
2	+ In	Non Inverting Input
3	-In	Inverting Input
4	GND	Ground
5	$\overline{\mathrm{CS}} / \mathrm{SHDN}$	Chip Select when LOW, Shutdown Mode when HIGH.
6	$\mathrm{D}_{\text {OUT }}$	The serial output data word is comprised of 16 bits of data. In operation, the data is valid on the rising edge of DCLOCK. The fifth falling edge of DCLOCK after the falling edge of $\overline{C S}$ enables the serial output. After one null bit, data is valid for the next 16 edges.
7	DCLOCK	Data Clock synchronizes the serial data transfer and determines conversion speed.
8	$+\mathrm{V}_{\text {CC }}$	Power Supply

PACKAGE/ORDERING INFORMATION

PRODUCT	MAXIMUM INTEGRAL LINEARITY ERROR (LSB)	NO MISSING CODES ERROR (LSB)	PACKAGE	PACKAGE DRAWING NUMBER ${ }^{(1)}$	SPECIFICATION TEMPERATURE RANGE	PACKAGE MARKING ${ }^{(2)}$	ORDERING NUMBER ${ }^{(3)}$	TRANSPORT MEDIA
ADS8324E	± 3	14	$\begin{aligned} & \hline \mathrm{MSOP} \\ & \hline \end{aligned}$	337	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	A24	ADS8324E/250 ADS8324E/2K5	Tape and Reel Tape and Reel
ADS8324EB	$\pm{ }^{ \pm}$	14	MSOP	337 10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	A24	ADS8324EB/250 ADS8324EB/2K5	Tape and Reel Tape and Reel

NOTES: (1) For detail drawing and dimension table, please see end of data sheet or package drawing file on web. (2) Performance grade information is marked on the reel. (3) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "ADS8324EB/2K5" will get a single 2500-piece Tape and Reel.

ELECTRICAL CHARACTERISTICS: $+\mathrm{V}_{\mathrm{Cc}}=+1.8 \mathrm{~V}$

At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}=0.9 \mathrm{~V},-\mathrm{In}=0.9 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=50 \mathrm{kHz}$, and $\mathrm{f}_{\mathrm{CLK}}=24 \cdot \mathrm{f}_{\text {SAMPLE }}$, unless otherwise specified.

PARAMETER	CONDITIONS	ADS8324E			ADS8324EB			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
RESOLUTION				14			*	Bits
ANALOG INPUT Full-Scale Input Span Absolute Input Range Capacitance Leakage Current	$\begin{gathered} +\ln -(-\ln) \\ +\ln \\ -\ln \end{gathered}$	$\begin{gathered} -V_{\text {REF }} \\ -0.1 \\ 0.8 \end{gathered}$	$\begin{gathered} 25 \\ 1 \end{gathered}$	$+V_{\text {REF }}$ $V_{C C}+0.1$ $+1.0$	$\begin{aligned} & \text { * } \\ & \text { * } \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & \text { * } \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{pF} \\ \mathrm{nA} \end{gathered}$
SYSTEM PERFORMANCE No Missing Codes Integral Linearity Error Bipolar Zero Error Bipolar Zero Error Drift Gain Error Gain Temperature Drift Noise Common-Mode Rejection Ratio Power Supply Rejection Ratio	$\begin{gathered} \text { at } \mathrm{D}_{\mathrm{cc}} \\ +1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}<+3.6 \mathrm{~V} \end{gathered}$	14	$\begin{gathered} \pm 4 \\ \pm 0.1 \\ \pm 4 \\ \pm 0.4 \\ 60 \\ 74 \\ 3 \end{gathered}$	$\begin{aligned} & \pm 3 \\ & \pm 8 \\ & \pm 8 \end{aligned}$	14	$\begin{gathered} \pm 2 \\ * \end{gathered}$ * * * * *	$\begin{aligned} & \pm 2 \\ & \pm 4 \\ & * \end{aligned}$	$\begin{gathered} \text { Bits } \\ \mathrm{LSB} \\ \mathrm{LSB} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mathrm{LSB} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} \mathrm{rms} \\ \mathrm{~dB} \\ \mathrm{LSB}(1) \end{gathered}$
SAMPLING DYNAMICS Conversion Time Acquisition Time Throughput Rate Clock Frequency Range		$\begin{gathered} 4.5 \\ 0.024 \end{gathered}$		$\begin{aligned} & 16 \\ & \\ & 50 \\ & 1.8 \end{aligned}$	* *		* * *	CIk Cycles Clk Cycles kHz MHz
DYNAMIC CHARACTERISTICS Total Harmonic Distortion SINAD Spurious Free Dynamic Range SNR	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{Vp}-\mathrm{p} \text { at } 10 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{Vp}-\mathrm{p} \text { at } 10 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{Vp}-\mathrm{p} \text { at } 10 \mathrm{kHz} \end{aligned}$		$\begin{gathered} -84 \\ 77 \\ 85 \\ 78 \end{gathered}$			$\begin{gathered} -86 \\ 78 \\ 86 \\ * \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
REFERENCE INPUT Voltage Range Resistance Current Drain	$\begin{gathered} \overline{\mathrm{CS}}=\mathrm{GND}, \mathrm{f}_{\mathrm{SAMPLE}}=0 \mathrm{~Hz} \\ \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}} \\ \mathrm{f}_{\mathrm{SAMPLE}}=10 \mathrm{kHz} \\ \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}} \end{gathered}$	0.5	$\begin{gathered} 5 \\ 5 \\ 40 \\ 0.8 \\ 0.1 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} / 2 \\ 80 \\ 3 \end{gathered}$	*	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	* *	V $\mathrm{G} \Omega$ $\mathrm{G} \Omega$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
DIGITAL INPUT/OUTPUT Logic Family Logic Levels: V_{IH} V_{IL} V_{OH} V_{OL} Data Format	$\begin{aligned} \mathrm{I}_{\mathrm{IH}} & =+5 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{IL}} & =+5 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}} & =-250 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}} & =250 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 1.3 \\ -0.3 \\ 1.4 \\ \\ \text { Binary } \end{gathered}$	CMOS o's Com	$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \mathrm{V}_{\mathrm{CC}}+0.3 \\ 0.5 \\ \\ 0.4 \\ \text { iplement } \end{array}\right. \\ \hline \end{array}$	*	*	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$ *	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
POWER SUPPLY REQUIREMENTS $V_{C C}$ $V_{C C}$ Range ${ }^{(2)}$ Quiescent Current Power Dissipation Power Down	Specified Performance $\begin{aligned} \mathrm{f}_{\mathrm{SAMPLE}} & =10 \mathrm{kHz}(3,4) \\ \mathrm{V}_{\mathrm{CC}} & =1.8 \mathrm{~V} \\ \mathrm{CS} & =\mathrm{V}_{\mathrm{CC}} \end{aligned}$	1.8	$\begin{gathered} 1.8 \\ 1400 \\ 250 \\ 2.5 \\ 0.3 \end{gathered}$	$\begin{gathered} 3.6 \\ 1700 \\ \\ 3.0 \\ 3.0 \end{gathered}$	*	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ mW $\mu \mathrm{A}$
TEMPERATURE RANGE Specified Performance		-40		+85	*		*	${ }^{\circ} \mathrm{C}$

* Specifications same as ADS8324E.

NOTES: (1) LSB means Least Significant Bit. (2) See Typical Performance Curves for more information. (3) $\mathrm{f}_{\mathrm{CLK}}=1.2 \mathrm{MHz}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}$ for 216 clock cycles out of every 240. (4) See the Power Dissipation section for more information regarding lower sample rates.

TYPICAL CHARACTERISTICS

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0.9 \mathrm{~V}, \mathrm{f}_{\mathrm{SAMPLE}}=50 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=24 \bullet \mathrm{f}_{\mathrm{SAMPLE}}$, unless otherwise specified.

TYPICAL CHARACTERISTICS (Cont.)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0.9 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=50 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=24 \bullet \mathrm{f}_{\text {SAMPLE }}$, unless otherwise specified.

TYPICAL CHARACTERISTICS (Cont.)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0.9 \mathrm{~V}, \mathrm{f}_{\mathrm{SAMPLE}}=50 \mathrm{kHz}, \mathrm{f}_{\mathrm{CLK}}=24 \bullet \mathrm{f}_{\mathrm{SAMPLE}}$, unless otherwise specified.

CHANGE IN BPZ vs REFERENCE VOLTAGE

THEORY OF OPERATION

The ADS8324 is a classic Successive Approximation Register (SAR) A/D converter. The architecture is based on capacitive redistribution that inherently includes a sample-and-hold function. The converter is fabricated on a 0.6μ CMOS process. The architecture and process allow the ADS8324 to acquire and convert an analog signal at up to 50,000 conversions per second while consuming less than 3.0 mW from $+\mathrm{V}_{\mathrm{CC}}$.

The ADS8324 requires an external reference, an external clock, and a single power source $\left(\mathrm{V}_{\mathrm{CC}}\right)$. The external reference can be any voltage between 500 mV and $\mathrm{V}_{\mathrm{CC}} / 2$. The value of the reference voltage directly sets the range of the analog input. The reference input current depends on the conversion rate of the ADS8324.

The external clock can vary between 24 kHz (1 kHz throughput) and 1.2 MHz (50 kHz throughput). The duty cycle of the clock is essentially unimportant as long as the minimum high and low times are at least 200ns. The minimum clock frequency is set by the leakage on the capacitors internal to the ADS8324.
The analog input is provided to two input pins: +In and -In. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.
The digital result of the conversion is clocked out by the DCLOCK input and is provided serially, most significant bit first, on the $\mathrm{D}_{\text {Out }}$ pin. The digital data that is provided on the $\mathrm{D}_{\text {OUT }}$ pin is for the conversion currently in progress-there is no pipeline delay. It is possible to continue to clock the ADS8324 after the conversion is complete and to obtain the serial data least significant bit first. See the digital timing section for more information.

ANALOG INPUT

The analog input is bipolar and fully differential. There are two general methods of driving the analog input of the ADS8324: single-ended or differential, as shown in Figure 1. When the input is single-ended, the -In input is held at a fixed voltage. The + In input swings around the same voltage and the peak-to-peak amplitude is $2 \cdot \mathrm{~V}_{\mathrm{REF}}$. The value of $\mathrm{V}_{\mathrm{REF}}$ determines the range over which the common voltage may vary, as shown in Figure 2.

When the input is differential, the amplitude of the input is the difference between the + In and - In input, or, + In $-(-\operatorname{In})$. A voltage or signal is common to both of these inputs. The peak-to-peak amplitude of each input is $\mathrm{V}_{\text {REF }}$ about this common voltage. However, since the inputs are 180° out-ofphase, the peak-to-peak amplitude of the difference voltage is $2 \cdot \mathrm{~V}_{\text {REF }}$. The value of $\mathrm{V}_{\text {REF }}$ also determines the range of the voltage that may be common to both inputs, as shown in Figure 3.
In each case, care should be taken to ensure that the output impedance of the sources driving the + In and - In inputs are matched. If this is not observed, the two inputs could have

FIGURE 1. Methods of Driving the ADS8324—Single-Ended or Differential.

FIGURE 2. Single-Ended Input-Common Voltage Range vs $\mathrm{V}_{\mathrm{REF}}$.

FIGURE 3. Differential Input-Common Voltage Range vs $\mathrm{V}_{\text {REF }}$.
different settling times. This may result in offset error, gain error, and linearity error that changes with both temperature and input voltage. If the impedance cannot be matched, the errors can be lessened by giving the ADS8324 additional acquisition time.
The input current on the analog inputs depends on a number of factors: sample rate, input voltage, and source impedance. Essentially, the current into the ADS8324 charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance $(25 \mathrm{pF})$ to the 14 -bit settling level within 4.5 clock cycles. When the converter goes into the hold mode, or while it is in the power-down mode, the input impedance is greater than $1 \mathrm{G} \Omega$.
Care must be taken regarding the absolute analog input voltage. The +In input should always remain within the range of $\mathrm{GND}-100 \mathrm{mV}$ to $\mathrm{V}_{\mathrm{CC}}+100 \mathrm{mV}$. The -In input should always remain within the range of GND -100 mV to 2 V . Outside of these ranges, the converter's linearity may not meet specifications.

REFERENCE INPUT

The external reference sets the analog input range. The ADS8324 will operate with a reference in the range of 500 mV to $\mathrm{V}_{\mathrm{CC}} / 2$. There are several important implications of this. As the reference voltage is reduced, the analog voltage weight of each digital output code is reduced. This is often referred to as the Least Significant Bit (LSB) size and is equal to $2 \cdot \mathrm{~V}_{\text {REF }}$ divided by 16,384 . This means that any offset or gain error inherent in the A/D converter will appear to increase, in terms of LSB size, as the reference voltage is reduced.
The noise inherent in the converter will also appear to increase with lower LSB size. With a 0.9 V reference, the internal noise of the converter typically contributes only 5LSB peak-to-peak of potential error to the output code. When the external reference is 500 mV , the potential error contribution from the internal noise will be 7LSBs. The errors due to the internal noise are gaussian in nature and can be reduced by averaging consecutive conversion results.
For more information regarding noise, consult the typical performance curve "Noise vs Reference Voltage." Note that the Effective Number of Bits (ENOB) figure is calculated based on the converter's signal-to-(noise + distortion) ratio with a $1 \mathrm{kHz}, 0 \mathrm{~dB}$ input signal. SINAD is related to ENOB as follows:

$$
\mathrm{SINAD}=6.02 \cdot \mathrm{ENOB}+1.76
$$

With lower reference voltages, extra care should be taken to provide a clean layout including adequate bypassing, a clean power supply, a low-noise reference, and a low-noise input signal. Because the LSB size is lower, the converter will also be more sensitive to external sources of error such as nearby digital signals and electromagnetic interference.

NOISE

The noise floor of the ADS8324 itself is extremely low, as can be seen from Figure 4, and is much lower than competing A/D converters. It was tested by applying a low noise DC input and a 0.9 V reference to the ADS8324 and initiating 5,000 conversions. The digital output of the A/D converter will vary in output code due to the internal noise of the ADS8324. This is true for all 14-bit SAR-type A/D converters. Using a histogram to plot the output codes, the distribution should appear bell-shaped, with the peak of the bell curve representing the nominal code for the input value. The $\pm 1 \sigma, \pm 2 \sigma$, and $\pm 3 \sigma$ distributions will represent the $68.3 \%, 95.5 \%$, and 99.7%, respectively, of all codes. The transition noise can be calculated by dividing the number of codes measured by 6 and this will yield the $\pm 3 \sigma$ distribution or 99.7% of all codes. Statistically, up to 3 codes could fall outside the distribution when executing 1000 conversions. The ADS8324, with five output codes for the $\pm 3 \sigma$ distribution, will yield a $\pm 0.8 \mathrm{LSB}$ transition noise. Remember, to achieve this low-noise performance, the peak-to-peak noise of the input signal and reference must be $<50 \mu \mathrm{~V}$.

FIGURE 4. Histogram of 5,000 Conversions of a DC Input at the Code Transition.

AVERAGING

The noise of the A/D converter can be compensated by averaging the digital codes. By averaging conversion results, transition noise will be reduced by a factor of $1 / \sqrt{n}$, where n is the number of averages. For example, averaging 4 conversion results will reduce the transition noise by $1 / 2$ to $\pm 0.25 \mathrm{LSB}$. Averaging should only be used for input signals with frequencies near DC.
For AC signals, a digital filter can be used to low-pass filter and decimate the output codes. This works in a similar manner to averaging; for every decimation by 2 , the signal-to-noise ratio will improve 3 dB .

DIGITAL INTERFACE

SIGNAL LEVELS

The CMOS digital output ($\mathrm{D}_{\text {OUT }}$) will swing from 0 V to V_{CC}. If V_{CC} is 3 V , and this output is connected to a 5 V CMOS logic input, then that IC may require more supply current than normal and may have a slightly longer propagation delay.

SERIAL INTERFACE

The ADS8324 communicates with microprocessors and other digital systems via a synchronous 3-wire serial interface, as shown in Figure 5 and Table I. The DCLOCK signal synchronizes the data transfer with each bit being transmitted on the falling edge of DCLOCK. Most receiving systems will capture the bitstream on the rising edge of DCLOCK. However, if the minimum hold time for $\mathrm{D}_{\text {OUT }}$ is acceptable, the system can use the falling edge of DCLOCK to capture each bit.
A falling $\overline{\mathrm{CS}}$ signal initiates the conversion and data transfer. The first 4.5 to 5.0 clock periods of the conversion cycle are used to sample the input signal. After the fifth falling DCLOCK edge, $\mathrm{D}_{\text {OUT }}$ is enabled and will output a LOW value for one clock period. For the next 16 DCLOCK periods, $\mathrm{D}_{\text {OUT }}$ will output the conversion result, most significant bit first followed by two zeros on clock cycles 15 and 16 . After the two zero "dummy bits" have been output, subsequent clocks will repeat the output data but in a least significant bit first format starting with a zero.
$\overline{\mathrm{CS}}$ must be taken HIGH following a conversion in order to place DOUT in tri-state. Subsequent clocks will have no effect on the converter. A new conversion is initiated only when $\overline{\mathrm{CS}}$ has been taken HIGH and returned LOW.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {SMPL }}$	Analog Input Sample Time	4.5		5.0	Clk Cycles
$\mathrm{t}_{\text {conv }}$	Conversion Time		16		Clk Cycles
$\mathrm{t}_{\mathrm{cyc}}$	Throughput Rate			50	kHz
$\mathrm{t}_{\text {csD }}$	$\overline{\text { CS Falling to }}$			0	ns
	DCLOCK LOW				
$\mathrm{t}_{\text {sucs }}$	$\overline{\text { CS Falling to }}$	50			ns
	DCLOCK Rising				
$\mathrm{thDo}^{\text {che }}$	DCLOCK Falling to Current Dout Not Valid	5	20		ns
$\mathrm{t}_{\mathrm{dDO}}$	DCLOCK Falling to Next Dout Valid		100	250	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\text { CS }}$ Rising to Dout Tri-State		50	100	ns
$t_{\text {en }}$	DCLOCK Falling to Dout Enabled		100	200	ns
t_{f}	Dout Fall Time		50	150	ns
t_{r}	Dout Rise Time		75	200	ns

TABLE I. Timing Specifications $\left(\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}\right)-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
See Figure 6 for test conditions.

DATA FORMAT

The output data from the ADS8324 is in Binary Two's Complement format, as shown in Table II. This table represents the ideal output code for the given input voltage and does not include the effects of offset, gain error, or noise.

DESCRIPTION	ANALOG VALUE	DIGITAL OUTPUT BINARY TWO'S COMPLEMENT	
Full-Scale Range Least Significant Bit (LSB)	$\begin{gathered} 2 \cdot V_{\text {REF }} \\ 2 \cdot V_{\text {REF }} / 16384 \end{gathered}$		
		BINARY CODE	HEX CODE
+Full Scale	$+V_{\text {REF }}-1$ LSB	0111111111111100	7FFC
Midscale	OV	0000000000000000	0000
Midscale - 1LSB	OV - 1 LSB	1111111111111100	FFFC
-Full Scale	$-\mathrm{V}_{\text {REF }}$	1000000000000000	8000

TABLE II. Ideal Input Voltages and Output Codes.

NOTE: Minimum 22 clock cycles required for 14 -bit conversion. Shown are 24 clock cycles.
If $\overline{C S}$ remains LOW at the end of conversion, a new datastream with LSB-first is shifted out again.

FIGURE 5. ADS8324 Basic Timing Diagrams.

POWER DISSIPATION

The architecture of the converter, the semiconductor fabrication process, and a careful design allow the ADS8324 to convert at up to a 50 kHz rate while requiring very little power. Still, for the absolute lowest power dissipation, there are several things to keep in mind.
The power dissipation of the ADS8324 scales directly with the conversion rate. Therefore, the first step to achieving the lowest power dissipation is to find the lowest conversion rate that will satisfy the requirements of the system.

In addition, the ADS8324 is in power-down mode under two conditions: when the conversion is complete and whenever $\overline{\mathrm{CS}}$ is HIGH (see Figure 5). Ideally, each conversion should occur as quickly as possible, preferably at a 1.2 MHz clock rate. This way, the converter spends the longest possible time in the power-down mode. This is very important as the converter not only uses power on each DCLOCK transition (as is typical for digital CMOS components) but also uses some current for the analog circuitry, such as the comparator. The analog section dissipates power continuously, until the power-down mode is entered.

NOTES: (1) Waveform 1 is for an output with internal conditions such that the output is HIGH unless disabled by the output control. (2) Waveform 2 is for an output with internal conditions such that the output is LOW unless disabled by the output control.

FIGURE 6. Timing Diagrams and Test Circuits for the Parameters in Table I.

Figure 7 shows the current consumption of the ADS8324 versus sample rate. For this graph, the converter is clocked at 1.2 MHz regardless of the sample rate- $\overline{\mathrm{CS}}$ is HIGH for the remaining sample period. Figure 8 also shows current consumption versus sample rate. However, in this case, the DCLOCK period is $1 / 24^{\text {th }}$ of the sample period- $\overline{\mathrm{CS}}$ is HIGH for one DCLOCK cycle out of every 16.

There is an important distinction between the power-down mode that is entered after a conversion is complete and the full power-down mode that is enabled when $\overline{\mathrm{CS}}$ is HIGH. $\overline{\mathrm{CS}}$ LOW will shut down only the analog section. The digital section is completely shutdown only when $\overline{\mathrm{CS}}$ is HIGH. Thus, if $\overline{\mathrm{CS}}$ is left LOW at the end of a conversion and the converter is continually clocked, the power consumption will not be as low as when $\overline{\mathrm{CS}}$ is HIGH, shown in Figure 9.

FIGURE 7. Maintaining $\mathrm{f}_{\mathrm{CLK}}$ at the Highest Possible Rate Allows Supply Current to Drop Linearly with Sample Rate.

FIGURE 8. Scaling $\mathrm{f}_{\text {CLK }}$ Reduces Supply Current Only Slightly with Sample Rate.

FIGURE 9. Shutdown Current with $\overline{\mathrm{CS}}$ HIGH is 50 nA Typically, Regardless of the Clock. Shutdown Current with CS LOW Varies with Sample Rate.

LAYOUT

For optimum performance, care should be taken with the physical layout of the ADS8324 circuitry. This will be particularly true if the reference voltage is low and/or the conversion rate is high. At a 50 kHz conversion rate, the ADS8324 makes a bit decision every 213 ns . That is, for each subsequent bit decision, the digital output must be updated with the results of the last bit decision, the capacitor array appropriately switched and charged, and the input to the comparator settled to a 14-bit level all within one clock cycle.
The basic SAR architecture is sensitive to spikes on the power supply, reference, and ground connections that occur just prior to latching the comparator output. Thus, during any single conversion for an n-bit SAR converter, there are n "windows" in which large external transient voltages can easily affect the conversion result. Such spikes might originate from switching power supplies, digital logic, and high power devices, to name a few. This particular source of error can be very difficult to track down if the glitch is almost synchronous to the converter's DCLOCK signal-as the phase difference between the two changes with time and temperature, causing sporadic misoperation.
With this in mind, power to the ADS8324 should be clean and well bypassed. A $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor should be placed as close to the ADS8324 package as possible. In addition, a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor and a 5Ω or 10Ω series resistor may be used to low-pass filter a noisy supply.

The reference should be similarly bypassed with a $0.1 \mu \mathrm{~F}$ capacitor. Again, a series resistor and large capacitor can be used to low-pass filter the reference voltage. If the reference voltage originates from an op amp, be careful that the op
amp can drive the bypass capacitor without oscillation (the series resistor can help in this case). Keep in mind that while the ADS8324 draws very little current from the reference on average, there are still instantaneous current demands placed on the external input and reference circuitry.

Texas Instruments OPA627 op amp provides optimum performance for buffering both the signal and reference inputs. For low-cost, low-voltage, single-supply applications, the OPA2350 or OPA2340 dual op amps are recommended.
Also, keep in mind that the ADS8324 offers no inherent rejection of noise or voltage variation in regards to the reference input. This is of particular concern when the reference input is tied to the power supply. Any noise and ripple from the supply will appear directly in the digital results. While high frequency noise can be filtered out as described in the previous paragraph, voltage variation due to the line frequency $(50 \mathrm{~Hz}$ or 60 Hz$)$, can be difficult to remove.

The GND pin on the ADS8324 should be placed on a clean ground point. In many cases, this will be the "analog" ground. Avoid connecting the GND pin too close to the grounding point for a microprocessor, microcontroller, or digital signal processor. If needed, run a ground trace directly from the converter to the power supply connection point. The ideal layout will include an analog ground plane for the converter and associated analog circuitry.

APPLICATION CIRCUITS

Figure 10 shows a basic data acquisition system. The ADS8324 input range is 0 V to V_{CC}, as the reference input is connected directly to the power supply. The 5Ω resistor and $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ capacitor filter the microcontroller "noise" on the supply, as well as any high-frequency noise from the supply itself. The exact values should be picked such that the filter provides adequate rejection of the noise.

FIGURE 10. Basic Data Acquisition System.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
ADS8324E/250	ACTIVE	VSSOP	DGK	8	250	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	A24	Samples
ADS8324E/250G4	ACTIVE	VSSOP	DGK	8	250	Green (RoHS $\&$ no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	A24	Samples
ADS8324E/2K5	ACTIVE	VSSOP	DGK	8	2500	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	A24	Samples
ADS8324EB/2K5	ACTIVE	VSSOP	DGK	8	2500	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	A24	Samples
ADS8324EB/2K5G4	ACTIVE	VSSOP	DGK	8	2500	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	A24	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of $<=1000$ ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by Tl to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS8324E/250 | VSSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |
| ADS8324E/2K5 | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |
| ADS8324EB/2K5 | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ADS8324E/250	VSSOP	DGK	8	250	210.0	185.0	35.0
ADS8324E/2K5	VSSOP	DGK	8	2500	367.0	367.0	35.0
ADS8324EB/2K5	VSSOP	DGK	8	2500	367.0	367.0	35.0

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLAStic SmALL OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: All trademarks are the property of their respective owners.

