
June 2017 DocID027448 Rev 2 1/29

STM32F401xD/E
Errata sheet

STM32F401xD and STM32F401xE device limitations

Silicon identification

This errata sheet applies to STM32F401xD/E microcontrollers.

The STM32F401xD/E devices feature an ARM® 32-bit Cortex®-M4 core with FPU, for which
an errata notice is also available (see Section 1 for details).

The full list of part numbers is shown in Table 2. The products are identifiable as shown in
Table 1:

• by the revision code marked below the order code on the device package

• by the last three digits of the Internal order code printed on the box label

Table 1. Device identification(1)

1. The REV_ID bits in the DBGMCU_IDCODE register show the revision code of the device (see the RM0368
STM32F401xx reference manual for details on how to find the revision code).

Order code Revision code marked on device(2)

2. Refer to datasheet for the device marking.

STM32F401xD, STM32F401xE “A”, “Z”

Table 2. Device summary

Reference Part number

STM32F401xD STM32F401VD, STM32F401RD, STM32F401CD

STM32F401xE STM32F401VE, STM32F401RE, STM32F401CE

www.st.com

http://www.st.com

Contents STM32F401xD/E

2/29 DocID027448 Rev 2

Contents

1 ARM® 32-bit Cortex®-M4 with FPU limitations . 6

1.1 Cortex®-M4 interrupted loads to stack pointer can cause
erroneous behavior . 6

1.2 VDIV or VSQRT instructions might not complete correctly
when very short ISRs are used . 7

2 STM32F401xD/E silicon limitations . 8

2.1 System limitations . 10

2.1.1 Debugging Stop mode and system tick timer . 10

2.1.2 Debugging Stop mode with WFE entry . 10

2.1.3 Wakeup sequence from Standby mode when using more than
one wakeup source . 10

2.1.4 Full JTAG configuration without NJTRST pin cannot be used 11

2.1.5 MPU attribute to RTC and IWDG registers could be managed
incorrectly . 11

2.1.6 Delay after an RCC peripheral clock enabling . 11

2.1.7 PB5 I/O VIN limitation . 12

2.1.8 PA0 I/O VIN limitation in Standby mode . 12

2.1.9 PH1 cannot be used as a GPIO in HSE bypass mode 12

2.2 IWDG peripheral limitations . 13

2.2.1 RVU and PVU flags are not reset in Stop mode 13

2.3 RTC limitations . 14

2.3.1 Spurious tamper detection when disabling the tamper channel 14

2.3.2 Detection of a tamper event occurring before enabling the tamper
detection is not supported in edge detection mode 14

2.3.3 RTC calendar registers are not locked properly 14

2.4 I2C peripheral limitations . 15

2.4.1 SMBus standard not fully supported . 15

2.4.2 Start cannot be generated after a misplaced Stop 15

2.4.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter . 15

2.4.4 Data valid time (tVD;DAT) violated without the OVR flag being set 16

2.4.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus
higher than ((VDD+0.3) / 0.7) V . 16

2.4.6 Spurious Bus Error detection in Master mode . 17

DocID027448 Rev 2 3/29

STM32F401xD/E Contents

4

2.5 SPI peripheral limitations . 18

2.5.1 Wrong CRC calculation when the polynomial is even 18

2.5.2 Corrupted last bit of data and/or CRC, received in Master mode with
delayed SCK feedback . 18

2.5.3 BSY bit may stay high at the end of a data transfer in Slave mode 19

2.6 I2S peripheral limitations . 20

2.6.1 In I2S Slave mode, WS level must be set by the external master
when enabling the I2S . 20

2.6.2 Corrupted last bit of data and/or CRC, received in Master mode
with delayed SCK feedback . 20

2.7 USART peripheral limitations . 21

2.7.1 Idle frame is not detected if receiver clock speed is deviated 21

2.7.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register . 21

2.7.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection . 21

2.7.4 Break frame is transmitted regardless of nCTS input line status 21

2.7.5 nRTS signal abnormally driven low after a protocol violation 22

2.7.6 Start bit detected too soon when sampling for NACK signal
from the smartcard . 22

2.7.7 Break request can prevent the Transmission Complete flag (TC)
from being set . 23

2.7.8 Guard time is not respected when data are sent on TXE events 23

2.7.9 nRTS is active while RE or UE = 0 . 23

2.8 OTG_FS peripheral limitations . 24

2.8.1 Data in RxFIFO is overwritten when all channels are disabled
simultaneously . 24

2.8.2 OTG host blocks the receive channel when receiving IN packets and no
TxFIFO is configured . 24

2.8.3 Host channel-halted interrupt not generated when the channel is
disabled . 24

2.8.4 Error in software-read OTG_FS_DCFG register values 25

2.9 SDIO peripheral limitations . 25

2.9.1 SDIO HW flow control . 25

2.9.2 Wrong CCRCFAIL status after a response without CRC is received . . . 25

2.9.3 Data corruption in SDIO clock dephasing (NEGEDGE) mode 25

2.9.4 CE-ATA multiple write command and card busy signal management . . 26

2.9.5 No underrun detection with wrong data transmission 26

2.10 ADC peripheral limitations . 27

Contents STM32F401xD/E

4/29 DocID027448 Rev 2

2.10.1 ADC sequencer modification during conversion 27

3 Revision history . 28

DocID027448 Rev 2 5/29

STM32F401xD/E List of tables

5

List of tables

Table 1. Device identification . 1
Table 2. Device summary . 1
Table 3. Cortex®-M4 core limitations and impact on microcontroller behavior 6
Table 4. Summary of silicon limitations . 8
Table 5. Maximum allowable APB frequency at 30 pF load . 18
Table 6. QUADSPI mode . 27
Table 7. Document revision history . 28

ARM® 32-bit Cortex®-M4 with FPU limitations STM32F401xD/E

6/29 DocID027448 Rev 2

1 ARM® 32-bit Cortex®-M4 with FPU limitations

An errata notice of the STM32F401xD/E core is available from http://infocenter.arm.com.

All the described limitations are minor and related to the revision r0p1-v1 of the Cortex®-M4
core. Table 3 summarizes these limitations and their implications on the behavior of
STM32F401xD/E devices.

1.1 Cortex®-M4 interrupted loads to stack pointer can cause
erroneous behavior

Description

An interrupt occurring during the data-phase of a single word load to the stack pointer
(SP/R13) can cause an erroneous behavior of the device. In addition, returning from the
interrupt results in the load instruction being executed an additional time.

For all the instructions performing an update of the base register, the base register is
erroneously updated on each execution, resulting in the stack pointer being loaded from an
incorrect memory location.

The instructions affected by this limitation are the following:

• LDR SP, [Rn],#imm

• LDR SP, [Rn,#imm]!

• LDR SP, [Rn,#imm]

• LDR SP, [Rn]

• LDR SP, [Rn,Rm]

Workaround

As of today, no compiler generates these particular instructions. This limitation can only
occur with hand-written assembly code.

Both limitations can be solved by replacing the direct load to the stack pointer by an
intermediate load to a general-purpose register followed by a move to the stack pointer.

Example:

Replace LDR SP, [R0] by

LDR R2,[R0]

MOV SP,R2

Table 3. Cortex®-M4 core limitations and impact on microcontroller behavior

ARM ID
ARM

category
ARM summary of errata

Impact on
STM32F401xD/E

752770 Cat B
Interrupted loads to SP can cause erroneous
behavior

Minor

776924 Cat B
VDIV or VSQRT instructions might not complete
correctly when very short ISRs are used

Minor

DocID027448 Rev 2 7/29

STM32F401xD/E ARM® 32-bit Cortex®-M4 with FPU limitations

28

1.2 VDIV or VSQRT instructions might not complete correctly
when very short ISRs are used

Description

On Cortex®-M4 with FPU core, 14 cycles are required to execute a VDIV or VSQRT
instruction.

This limitation is present when the following conditions are met:

• A VDIV or VSQRT is executed

• The destination register for VDIV or VSQRT is one of s0 - s15

• An interrupt occurs and is taken

• The ISR being executed does not contain a floating point instruction

• 14 cycles after the VDIV or VSQRT is executed, an interrupt return is executed

In this case, if there are only one or two instructions inside the interrupt service routine, then
the VDIV or VQSRT instruction does not complete correctly and the register bank and
FPSCR are not updated, meaning that these registers hold incorrect out-of-date data.

Workaround

Two workarounds are applicable:

• Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the
FPCCR at address 0xE000EF34).

• Ensure that every ISR contains more than 2 instructions in addition to the exception
return instruction.

STM32F401xD/E silicon limitations STM32F401xD/E

8/29 DocID027448 Rev 2

2 STM32F401xD/E silicon limitations

Table 4 gives quick references to all documented limitations.

Legend for Table 4: A = workaround available; N = no workaround available; P = partial
workaround available, ‘-’ and grayed = fixed.

Table 4. Summary of silicon limitations

Links to silicon limitations Revision A and Z

Section 2.1: System
limitations

Section 2.1.1: Debugging Stop mode and system tick timer A

Section 2.1.2: Debugging Stop mode with WFE entry A

Section 2.1.3: Wakeup sequence from Standby mode when using more
than one wakeup source

A

Section 2.1.4: Full JTAG configuration without NJTRST pin cannot be
used

A

Section 2.1.5: MPU attribute to RTC and IWDG registers could be
managed incorrectly

A

Section 2.1.6: Delay after an RCC peripheral clock enabling A

Section 2.1.7: PB5 I/O VIN limitation A

Section 2.1.8: PA0 I/O VIN limitation in Standby mode A

Section 2.1.9: PH1 cannot be used as a GPIO in HSE bypass mode N

Section 2.2: IWDG
peripheral limitations

Section 2.2.1: RVU and PVU flags are not reset in Stop mode A

Section 2.3: RTC
limitations

Section 2.3.1: Spurious tamper detection when disabling the tamper
channel

N

Section 2.3.2: Detection of a tamper event occurring before enabling
the tamper detection is not supported in edge detection mode

A

Section 2.3.3: RTC calendar registers are not locked properly A

Section 2.4: I2C
peripheral limitations

Section 2.4.1: SMBus standard not fully supported A

Section 2.4.2: Start cannot be generated after a misplaced Stop A

Section 2.4.3: Mismatch on the “Setup time for a repeated Start
condition” timing parameter

A

Section 2.4.4: Data valid time (tVD;DAT) violated without the OVR flag
being set

A

Section 2.4.5: Both SDA and SCL maximum rise time (tr) violated when
VDD_I2C bus higher than ((VDD+0.3) / 0.7) V

A

Section 2.4.6: Spurious Bus Error detection in Master mode A

Section 2.5: SPI
peripheral limitations

Section 2.5.1: Wrong CRC calculation when the polynomial is even A

Section 2.5.2: Corrupted last bit of data and/or CRC, received in
Master mode with delayed SCK feedback

A

Section 2.5.3: BSY bit may stay high at the end of a data transfer in
Slave mode

A

DocID027448 Rev 2 9/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

Section 2.6: I2S
peripheral limitations

Section 2.6.1: In I2S Slave mode, WS level must be set by the external
master when enabling the I2S

A

Section 2.6.2: Corrupted last bit of data and/or CRC, received in
Master mode with delayed SCK feedback

A

Section 2.7: USART
peripheral limitations

Section 2.7.1: Idle frame is not detected if receiver clock speed is
deviated

N

Section 2.7.2: In full-duplex mode, the Parity Error (PE) flag can be
cleared by writing to the data register

A

Section 2.7.3: Parity Error (PE) flag is not set when receiving in Mute
mode using address mark detection

N

Section 2.7.4: Break frame is transmitted regardless of nCTS input line
status

N

Section 2.7.5: nRTS signal abnormally driven low after a protocol
violation

A

Section 2.7.6: Start bit detected too soon when sampling for NACK
signal from the smartcard

A

Section 2.7.7: Break request can prevent the Transmission Complete
flag (TC) from being set

A

Section 2.7.8: Guard time is not respected when data are sent on TXE
events

A

Section 2.7.9: nRTS is active while RE or UE = 0 A

Section 2.8:
OTG_FS peripheral
limitations

Section 2.8.1: Data in RxFIFO is overwritten when all channels are
disabled simultaneously

A

Section 2.8.2: OTG host blocks the receive channel when receiving IN
packets and no TxFIFO is configured

A

Section 2.8.3: Host channel-halted interrupt not generated when the
channel is disabled

A

Section 2.8.4: Error in software-read OTG_FS_DCFG register values A

Section 2.9: SDIO
peripheral limitations

Section 2.9.1: SDIO HW flow control N

Section 2.9.2: Wrong CCRCFAIL status after a response without CRC
is received

A

Section 2.9.3: Data corruption in SDIO clock dephasing (NEGEDGE)
mode

N

Section 2.9.4: CE-ATA multiple write command and card busy signal
management

A

Section 2.9.5: No underrun detection with wrong data transmission A

Section 2.10: ADC
peripheral limitations

Section 2.10.1: ADC sequencer modification during conversion A

Table 4. Summary of silicon limitations (continued)

Links to silicon limitations Revision A and Z

STM32F401xD/E silicon limitations STM32F401xD/E

10/29 DocID027448 Rev 2

2.1 System limitations

2.1.1 Debugging Stop mode and system tick timer

Description

If the system tick timer interrupt is enabled during the Stop mode debug (DBG_STOP bit set
in the DBGMCU_CR register), it will wake up the system from Stop mode.

Workaround

To debug the Stop mode, disable the system tick timer interrupt.

2.1.2 Debugging Stop mode with WFE entry

Description

When the Stop debug mode is enabled (DBG_STOP bit set in the DBGMCU_CR register),
this allows software debugging during Stop mode.

However, if the application software uses the WFE instruction to enter Stop mode, after
wakeup some instructions could be missed if the WFE is followed by sequential instructions.
This affects only Stop debug mode with WFE entry.

Workaround

To debug Stop mode with WFE entry, the WFE instruction must be inside a dedicated
function with 1 instruction (NOP) between the execution of the WFE and the Bx LR.

Example:

__asm void _WFE(void) {

WFE

NOP

BX lr }

2.1.3 Wakeup sequence from Standby mode when using more than
one wakeup source

Description

The various wakeup sources are logically OR-ed in front of the rising-edge detector which
generates the wakeup flag (WUF). The WUF needs to be cleared prior to Standby mode
entry, otherwise the MCU wakes up immediately.

If one of the configured wakeup sources is kept high during the clearing of the WUF (by
setting the CWUF bit), it may mask further wakeup events on the input of the edge detector.
As a consequence, the MCU might not be able to wake up from Standby mode.

DocID027448 Rev 2 11/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

Workaround

To avoid this problem, the following sequence should be applied before entering Standby
mode:

• Disable all used wakeup sources,

• Clear all related wakeup flags,

• Re-enable all used wakeup sources,

• Enter Standby mode

Note: Be aware that, when applying this workaround, if one of the wakeup sources is still kept
high, the MCU enters Standby mode but then it wakes up immediately generating a power
reset.

2.1.4 Full JTAG configuration without NJTRST pin cannot be used

Description

When using the JTAG debug port in debug mode, the connection with the debugger is lost if
the NJTRST pin (PB4) is used as a GPIO. Only the 4-wire JTAG port configuration is
impacted.

Workaround

Use the SWD debug port instead of the full 4-wire JTAG port.

2.1.5 MPU attribute to RTC and IWDG registers could be managed
incorrectly

Description

If the MPU is used and the non bufferable attribute is set to the RTC or IWDG memory map
region, the CPU access to the RTC or IWDG registers could be treated as bufferable,
provided that there is no APB prescaler configured (AHB/APB prescaler is equal to 1).

Workaround

If the non bufferable attribute is required for these registers, the software could perform a
read after the write to guaranty the completion of the write access.

2.1.6 Delay after an RCC peripheral clock enabling

Description

A delay between an RCC peripheral clock enable and the effective peripheral enabling
should be taken into account in order to manage the peripheral read/write to registers.

This delay depends on the peripheral mapping:

• If the peripheral is mapped on AHB: the delay should be equal to 2 AHB cycles.

• If the peripheral is mapped on APB: the delay should be equal to 1 + (AHB/APB
prescaler) cycles.

STM32F401xD/E silicon limitations STM32F401xD/E

12/29 DocID027448 Rev 2

Workarounds

1. Use the DSB instruction to stall the Cortex®-M4 CPU pipeline until the instruction is
completed.

2. Insert “n” NOPs between the RCC enable bit write and the peripheral register writes
(n = 2 for AHB peripherals, n = 1 + AHB/APB prescaler in case of APB peripherals).

3. Or simply insert a dummy read operation from the corresponding register just after
enabling the peripheral clock.

2.1.7 PB5 I/O VIN limitation

Description

If the input voltage (VIN) applied to PB5 exceeds VDD supply voltage, an I/O leakage
current, which can impact the product lifetime, is observed.

Workaround

There is no functional limitation on PB5 pad if VIN does not exceed VDD.

2.1.8 PA0 I/O VIN limitation in Standby mode

Description

In Standby mode, if the input voltage (VIN) applied to PA0 exceeds VDD supply voltage, an
I/O leakage current, which can impact the product lifetime, is observed.

Workaround

There is no functional limitation on PA0 pad if VIN does not exceed VDD.

If the device does not operate in Standby mode, PA0 is 5 V tolerant (FT) thus allowing an
input voltage higher than VDD (according to the datasheet specifications).

2.1.9 PH1 cannot be used as a GPIO in HSE bypass mode

Description

When an external clock is used and the HSE is bypassed, PH1 cannot be used as GPIO.

Work around

None.

DocID027448 Rev 2 13/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

2.2 IWDG peripheral limitations

2.2.1 RVU and PVU flags are not reset in Stop mode

Description

The RVU and PVU flags of the IWDG_SR register are set by hardware after a write access
to the IWDG_RLR and the IWDG_PR registers, respectively. If the Stop mode is entered
immediately after the write access, the RVU and PVU flags are not reset by hardware.

Before performing a second write operation to the IWDG_RLR or the IWDG_PR register,
the application software must wait for the RVU or PVU flag to be reset. However, since the
RVU/PVU bit is not reset after exiting the Stop mode, the software goes into an infinite loop
and the independent watchdog (IWDG) generates a reset after the programmed timeout
period.

Workaround

Wait until the RVU or PVU flag of the IWDG_SR register is reset before entering the Stop
mode.

STM32F401xD/E silicon limitations STM32F401xD/E

14/29 DocID027448 Rev 2

2.3 RTC limitations

2.3.1 Spurious tamper detection when disabling the tamper channel

Description

If the tamper detection is configured for detection on falling edge event (TAMPFLT=00 and
TAMPxTRG=1) and if the tamper event detection is disabled when the tamper pin is at high
level, a false tamper event is detected.

Workaround

None

2.3.2 Detection of a tamper event occurring before enabling the tamper
detection is not supported in edge detection mode

Description

When the tamper detection is enabled in edge detection mode (TAMPFLT=00):

• When TAMPxTRG=0 (rising edge detection): if the tamper input is already high before
enabling the tamper detection, the tamper event may or may not be detected when
enabling the tamper detection. The probability to detect it increases with the APB
frequency.

• When TAMPxTRG=1 (falling edge detection): if the tamper input is already low before
enabling the tamper detection, the tamper event is not detected when enabling the
tamper detection.

Workaround

The I/O state should be checked by software in the GPIO registers, just after enabling the
tamper detection and before writing sensitive values in the backup registers, in order to
ensure that no active edge occurred before enabling the tamper event detection.

2.3.3 RTC calendar registers are not locked properly

Description

When reading the calendar registers with BYPSHAD=0, the RTC_TR and RTC_DR
registers may not be locked after reading the RTC_SSR register. This happens if the read
operation is initiated one APB clock period before the shadow registers are updated. This
can result in a non-consistency of the three registers. Similarly, RTC_DR register can be
updated after reading the RTC_TR register instead of being locked.

Workaround

1. Use BYPSHAD = 1 mode (Bypass shadow registers), or

2. If BYPSHAD = 0, read SSR again after reading SSR/TR/DR to confirm that SSR is still
the same, otherwise read the values again.

DocID027448 Rev 2 15/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

2.4 I2C peripheral limitations

2.4.1 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since It does not
support the capability to NACK an invalid byte/command.

Workarounds

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

1. Using the SMBAL pin if supported by the host

2. the alert response address (ARA) protocol

3. the Host notify protocol

2.4.2 Start cannot be generated after a misplaced Stop

Description

If a master generates a misplaced Stop on the bus (bus error) while the microcontroller I2C
peripheral attempts to switch to Master mode by setting the START bit, the Start condition is
not properly generated.

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

A software workaround consists in asserting the software reset using the SWRST bit in the
I2C_CR1 control register.

2.4.3 Mismatch on the “Setup time for a repeated Start condition” timing
parameter

Description

In case of a repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta in
the I²C specification) can be slightly violated when the I²C operates in Master Standard
mode at a frequency between 88 kHz and 100 kHz.

The limitation can occur only in the following configuration:

• in Master mode

• in Standard mode at a frequency between 88 kHz and 100 kHz (no limitation in Fast-
mode)

• SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if
the SCL rise time is less than 300 ns, the limitation cannot occur)

– If the slave stretches the clock

The setup time can be violated independently of the APB peripheral frequency.

STM32F401xD/E silicon limitations STM32F401xD/E

16/29 DocID027448 Rev 2

Workaround

Reduce the frequency down to 88 kHz or use the I²C Fast-mode, if supported by the slave.

2.4.4 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I²C standard can be violated (as well
as the maximum data hold time of the current data (tHD;DAT)) under the conditions described
below. This violation cannot be detected because the OVR flag is not set (no transmit buffer
underrun is detected).

This limitation can occur only under the following conditions:

• in Slave transmit mode

• with clock stretching disabled (NOSTRETCH=1)

• if the software is late to write the DR data register, but not late enough to set the OVR
flag (the data register is written before)

Workaround

If the master device allows it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not allow it, ensure that the software is fast enough when polling
the TXE or ADDR flag to immediately write to the DR data register. For instance, use an
interrupt on the TXE or ADDR flag and boost its priority to the higher level.

2.4.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus
higher than ((VDD+0.3) / 0.7) V

Description

When an external legacy I2C bus voltage (VDD_I2C) is set to 5 V while the MCU is powered
from VDD, the internal 5-Volt tolerant circuitry is activated as soon the input voltage (VIN)
reaches the VDD + diode threshold level. An additional internal large capacitance then
prevents the external pull-up resistor (RP) from rising the SDA and SCL signals within the
maximum timing (tr) which is 300 ns in fast mode and 1000 ns in Standard mode.

The rise time (tr) is measured from VIL and VIH with levels set at 0.3VDD_I2C and
0.7VDD_I2C.

Workaround

The external VDD_I2C bus voltage should be limited to a maximum value of
((VDD+0.3) / 0.7) V. As a result, when the MCU is powered from VDD=3.3 V, VDD_I2C
should not exceed 5.14 V to be compliant with I2C specifications.

DocID027448 Rev 2 17/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

2.4.6 Spurious Bus Error detection in Master mode

Description

In Master mode, a bus error can be detected by mistake, so the BERR flag can be wrongly
raised in the status register. This will generate a spurious Bus Error interrupt if the interrupt
is enabled. A bus error detection has no effect on the transfer in Master mode, therefore the
I2C transfer can continue normally.

Workaround

If a bus error interrupt is generated in Master mode, the BERR flag must be cleared by
software. No other action is required and the on-going transfer can be handled normally.

STM32F401xD/E silicon limitations STM32F401xD/E

18/29 DocID027448 Rev 2

2.5 SPI peripheral limitations

2.5.1 Wrong CRC calculation when the polynomial is even

Description

When the CRC is enabled, the CRC calculation will be wrong if the polynomial is even.

Work-around

Use odd polynomial.

2.5.2 Corrupted last bit of data and/or CRC, received in Master mode with
delayed SCK feedback

Description

In receive transaction, in both I2S and SPI Master modes, the last bit of the transacted frame
is not captured when the signal provided by internal feedback loop from the SCK pin
exceeds a critical delay. The lastly transacted bit of the stored data then keeps the value
from the pattern received previously. As a consequence, the last receive data bit may be
wrong and/or the CRCERR flag can be unduly asserted in the SPI mode if any data under
check sum and/or just the CRC pattern is wrongly captured.

In SPI mode, data are synchronous with the APB clock. A delay of up to two APB clock
periods can thus be tolerated for the internal feedback delay. The I2S mode is more
sensitive than the SPI mode especially at case, when odd factor of the I2S prescaler is set
and APB clock is dived by two from system clock. In this case, the margin of the internal
feedback delay is lower than 1.5 APB clock period.

The main factors contributing to the delay increase are low VDD level, high temperature,
high SCK pin capacitive load and low SCK I/O output speed. The SPI communication speed
has no impact.

Workarounds

The following workaround can be adopted, jointly or individually:

• Decrease the APB clock speed.

• Configure the IO pad of the SCK pin to be faster.

The following table gives the maximum allowable APB frequency versus GPIOx_OSPEEDR
output speed control field setting for the SCK pin, at 30 pF of capacitive load, which still
prevent the occurrence issue.

Table 5. Maximum allowable APB frequency at 30 pF load

OSPEEDR [1:0]

for SCK pin

Max. APB frequency
for SPI mode

[MHz]

Max. APB frequency
for I2S mode

[MHz]

11 (very high) 84 42

01 (medium) 70 40

00 (low) 26 12

DocID027448 Rev 2 19/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

2.5.3 BSY bit may stay high at the end of a data transfer in Slave mode

Description

BSY flag may sporadically remain high at the end of a data transfer in Slave mode. The
issue appears when an accidental synchronization happens between internal CPU clock
and external SCK clock provided by master.

This is related to the end of data transfer detection while the SPI is enabled in Slave mode.

As a consequence, the end of data transaction may be not recognized when software needs
to monitor it (e.g. at the end of session before entering the low-power mode or before
direction of data line has to be changed at half duplex bidirectional mode). The BSY flag is
unreliable to detect the end of any data sequence transaction.

Workaround

When NSS hardware management is applied and NSS signal is provided by master, the end
of a transaction can be detected by the NSS polling by slave.

• If SPI receiving mode is enabled, the end of a transaction with master can be detected
by the corresponding RXNE event signalizing the last data transfer completion.

• In SPI transmit mode, user can check the BSY under timeout corresponding to the time
necessary to complete the last data frame transaction. The timeout should be
measured from TXE event signalizing the last data frame transaction start (it is raised
once the second bit transaction is ongoing). Either BSY becomes low normally or the
timeout expires when the synchronization issue happens.

When upper workarounds are not applicable, the following sequence can be used to
prevent the synchronization issue at SPI transmit mode.

1. Write last data to data register

2. Poll TXE until it becomes high to ensure the data transfer has started

3. Disable SPI by clearing SPE while the last data transfer is still ongoing

4. Poll the BSY bit until it becomes low

5. The BSY flag works correctly and can be used to recognize the end of the transaction.

Note: This workaround can be used only when CPU has enough performance to disable SPI after
TXE event is detected while the data frame transfer is still ongoing. It is impossible to
achieve it when ratio between CPU and SPI clock is low and data frame is short especially.
In this specific case timeout can be measured from TXE, while calculating fixed number of
CPU clock periods corresponding to the time necessary to complete the data frame
transaction.

STM32F401xD/E silicon limitations STM32F401xD/E

20/29 DocID027448 Rev 2

2.6 I2S peripheral limitations

2.6.1 In I2S Slave mode, WS level must be set by the external master
when enabling the I2S

Description

In Slave mode, the WS signal level is used only to start the communication. If the I2S (in
Slave mode) is enabled while the master is already sending the clock and the WS signal
level is low (for I2S protocol) or is high (for the LSB or MSB-justified mode), the slave starts
communicating data immediately. In this case, the master and slave will be desynchronized
throughout the whole communication.

Workaround

The I2S peripheral must be enabled when the external master sets the WS line at:

• High level when the I2S protocol is selected.

• Low level when the LSB or MSB-justified mode is selected.

2.6.2 Corrupted last bit of data and/or CRC, received in Master mode
with delayed SCK feedback

The limitation described in Section 2.5.2: Corrupted last bit of data and/or CRC, received in
Master mode with delayed SCK feedback also applies to I2S interface.

DocID027448 Rev 2 21/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

2.7 USART peripheral limitations

2.7.1 Idle frame is not detected if receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter
device is faster than the USART receiver clock, the USART receive signal falls too early
when receiving the character start bit, with the result that the idle frame is not detected
(IDLE flag is not set).

Workaround

None.

2.7.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by
writing to the data register

Description

In full-duplex mode, when the Parity Error flag is set by the receiver at the end of a
reception, it may be cleared while transmitting by reading the USART_SR register to check
the TXE or TC flags and writing data to the data register.

Consequently, the software receiver can read the PE flag as '0' even if a parity error
occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

2.7.3 Parity Error (PE) flag is not set when receiving in Mute mode
using address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the
address mark detection. When the USART receiver recognizes a valid address with a parity
error, it exits the Mute mode without setting the Parity Error flag.

Workaround

None.

2.7.4 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is
set, the transmitter sends a break frame at the end of the current transmission regardless of
nCTS input line status.

Consequently, if an external receiver device is not ready to accept a frame, the transmitted
break frame is lost.

STM32F401xD/E silicon limitations STM32F401xD/E

22/29 DocID027448 Rev 2

Workaround

None.

2.7.5 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when data is
received. If this data was not read and new data is sent to the USART (protocol violation),
the nRTS signal goes back to low level at the end of this new data.

Consequently, the sender gets the wrong information that the USART is ready to receive
further data.

On USART side, an overrun is detected, which indicates that data has been lost.

Workaround

Workarounds are required only if the other USART device violates the communication
protocol, which is not the case in most applications.

Two workarounds can be used:

• After data reception and before reading the data in the data register, the software takes
over the control of the nRTS signal as a GPIO and holds it high as long as needed. If
the USART device is not ready, the software holds the nRTS pin high, and releases it
when the device is ready to receive new data.

• The time required by the software to read the received data must always be lower than
the duration of the second data reception. For example, this can be ensured by treating
all the receptions by DMA mode.

2.7.6 Start bit detected too soon when sampling for NACK signal
from the smartcard

Description

According to ISO/IEC 7816-3 standard, when a character parity error is detected, the
receiver shall transmit a NACK error signal 10.5 ± 0.2 ETUs after the character START bit
falling edge. In this case, the transmitter should be able to detect correctly the NACK signal
until 11 ± 0.2 ETUs after the character START bit falling edge.

In Smartcard mode, the USART peripheral monitors the NACK signal during the receiver
time frame (10.5 ± 0.2 ETUs), while it should wait for it during the transmitter one (11 ± 0.2
ETUs). In real cases, this would not be a problem as the card itself needs to respect a 10.7
ETU period when sending the NACK signal. However this may be an issue to undertake a
certification.

Workaround

None

DocID027448 Rev 2 23/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

2.7.7 Break request can prevent the Transmission Complete flag (TC)
from being set

Description

After the end of transmission of a data (D1), the Transmission Complete (TC) flag will not be
set if the following conditions are met:

• CTS hardware flow control is enabled.

• D1 is being transmitted.

• A break transfer is requested before the end of D1 transfer.

• nCTS is de-asserted before the end of D1 data transfer.

Workaround

If the application needs to detect the end of a data transfer, the break request should be
issued after checking that the TC flag is set.

2.7.8 Guard time is not respected when data are sent on TXE events

Description

In smartcard mode, when sending a data on TXE event, the programmed guard time is not
respected i.e. the data written in the data register is transferred on the bus without waiting
the completion of the guardtime duration corresponding to the previous transmitted data.

Workaround

Write the data after TC is set because in smartcard mode, the TC flag is set at the end of the
guard time duration.

2.7.9 nRTS is active while RE or UE = 0

Description

The nRTS line is driven low as soon as RTSE bit is set even if the USART is disabled (UE =
0) or if the receiver is disabled (RE=0) i.e. not ready to receive data.

Workaround

Configure the I/O used for nRTS as an alternate function after setting the UE and RE bits.

STM32F401xD/E silicon limitations STM32F401xD/E

24/29 DocID027448 Rev 2

2.8 OTG_FS peripheral limitations

2.8.1 Data in RxFIFO is overwritten when all channels are disabled
simultaneously

Description

If the available RxFIFO is just large enough to host 1 packet + its data status, and is
currently occupied by the last received data + its status and, at the same time, the
application requests that more IN channels be disabled, the OTG_FS peripheral does not
first check for available space before inserting the disabled status of the IN channels. It just
inserts them by overwriting the existing data payload.

Workaround

Use one of the following recommendations:

1. Configure the RxFIFO to host a minimum of 2 × MPSIZ + 2 × data status entries.

2. The application has to check the RXFLVL bit (RxFIFO non-empty) in the
OTG_FS_GINTSTS register before disabling each IN channel. If this bit is not set, then
the application can disable an IN channel at a time. Each time the application disables
an IN channel, however, it first has to check that the RXFLVL bit = 0 condition is true.

2.8.2 OTG host blocks the receive channel when receiving IN packets and no
TxFIFO is configured

Description

When receiving data, the OTG_FS core erroneously checks for available TxFIFO space
when it should only check for RxFIFO space. If the OTG_FS core cannot see any space
allocated for data transmission, it blocks the reception channel and no data is received.

Workaround

Set at least one TxFIFO equal to the maximum packet size. In this way, the host application,
which intends to supports only IN traffic, also has to allocate some space for the TxFIFO.

Since a USB host is expected to support any kind of connected endpoint, it is good practice
to always configure enough TxFIFO space for OUT endpoints.

2.8.3 Host channel-halted interrupt not generated when the channel is
disabled

Description

When the application enables, then immediately disables the host channel before the
OTG_FS host has had time to begin the transfer sequence, the OTG_FS core, as a host,
does not generate a channel-halted interrupt. The OTG_FS core continues to operate
normally.

Workaround

Do not disable the host channel immediately after enabling it.

DocID027448 Rev 2 25/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

2.8.4 Error in software-read OTG_FS_DCFG register values

Description

When the application writes to the DAD and PFIVL bitfields in the OTG_FS_DCFG register,
and then reads the newly written bitfield values, the read values may not be correct.

The values written by the application, however, are correctly retained by the core, and the
normal operation of the device is not affected.

Workaround

Do not read from the OTG_FS_DCFG register’s DAD and PFIVL bitfields just after
programming them.

2.9 SDIO peripheral limitations

2.9.1 SDIO HW flow control

Description

When enabling the HW flow control by setting bit 14 of the SDIO_CLKCR register to ‘1’,
glitches can occur on the SDIOCLK output clock resulting in wrong data to be written into
the SD/MMC card or into the SDIO device. As a consequence, a CRC error will be reported
to the SD/SDIO MMC host interface (DCRCFAIL bit set to ‘1’ in SDIO_STA register).

Workaround

None.

Note: Do not use the HW flow control. Overrun errors (Rx mode) and FIFO underrun (Tx mode)
should be managed by the application software.

2.9.2 Wrong CCRCFAIL status after a response without CRC is received

Description

The CRC is calculated even if the response to a command does not contain any CRC field.
As a consequence, after the SDIO command IO_SEND_OP_COND (CMD5) is sent, the
CCRCFAIL bit of the SDIO_STA register is set.

Workaround

The CCRCFAIL bit in the SDIO_STA register shall be ignored by the software. CCRCFAIL
must be cleared by setting CCRCFAILC bit of the SDIO_ICR register after reception of the
response to the CMD5 command.

2.9.3 Data corruption in SDIO clock dephasing (NEGEDGE) mode

Description

When NEGEDGE bit is set to ‘1’, it may lead to invalid data and command response read.

STM32F401xD/E silicon limitations STM32F401xD/E

26/29 DocID027448 Rev 2

Workaround

None. A configuration with the NEGEDGE bit equal to ‘1’ should not be used.

2.9.4 CE-ATA multiple write command and card busy signal management

Description

The CE-ATA card may inform the host that it is busy by driving the SDIO_D0 line low, two
cycles after the transfer of a write command (RW_MULTIPLE_REGISTER or
RW_MULTIPLE_BLOCK). When the card is in a busy state, the host must not send any
data until the BUSY signal is de-asserted (SDIO_D0 released by the card).

This condition is not respected if the data state machine leaves the IDLE state (Write
operation programmed and started, DTEN = 1, DTDIR = 0 in SDIO_DCTRL register and
TXFIFOE = 0 in SDIO_STA register).

As a consequence, the write transfer fails and the data lines are corrupted.

Workaround

After sending the write command (RW_MULTIPLE_REGISTER or
RW_MULTIPLE_BLOCK), the application must check that the card is not busy by polling the
BSY bit of the ATA status register using the FAST_IO (CMD39) command before enabling
the data state machine.

2.9.5 No underrun detection with wrong data transmission

Description

In case there is an ongoing data transfer from the SDIO host to the SD card and the
hardware flow control is disabled (bit 14 of the SDIO_CLKCR is not set), if an underrun
condition occurs, the controller may transmit a corrupted data block (with wrong data word)
without detecting the underrun condition when the clock frequencies have the following
relationship:

[3 x period(PCLK2) + 3 x period(SDIOCLK)] >= (32 / (BusWidth)) x period(SDIO_CK)

Workaround

Avoid the above-mentioned clock frequency relationship, by:

• Incrementing the APB frequency

• or decreasing the transfer bandwidth

• or reducing SDIO_CK frequency

DocID027448 Rev 2 27/29

STM32F401xD/E STM32F401xD/E silicon limitations

28

2.10 ADC peripheral limitations

2.10.1 ADC sequencer modification during conversion

Description

If an ADC conversion is started by software (writing the SWSTART bit), and if the
ADC_SQRx or ADC_JSQRx registers are modified during the conversion, the current
conversion is reset and the ADC does not restart a new conversion sequence automatically.

If an ADC conversion is started by hardware trigger, this limitation does not apply. The ADC
restarts a new conversion sequence automatically.

Workaround

When an ADC conversion sequence is started by software, a new conversion sequence can
be restarted only by setting the SWSTART bit in the ADC_CR2 register.

Do not use dummy cycles for creating latency between address phase and data phase, in
indirect write mode. Instead, use alternate bytes to substitute the dummy cycles. The same
latency can be achieved if the number of dummy cycles to substitute with alternate-byte
cycles is an integer multiple of the number of cycles required for transferring one alternate
byte, as shown in the table:

For example, the latency corresponding to eight dummy cycles can be exactly substituted
with one single alternate byte in 1-data-line SDR mode, but two alternate bytes are required
in 2-data-line SDR mode. One single dummy cycle can only exactly be substituted in 4-data-
line DDR mode, using one alternate byte.

Table 6. QUADSPI mode

QUADSPI mode Number of cycles per alternate byte

4-data-line DDR 1

4-data-line SDR 2

2-data-line SDR 4

1-data-line SDR 8

Revision history STM32F401xD/E

28/29 DocID027448 Rev 2

3 Revision history

Table 7. Document revision history

Date Revision Changes

23-Mar-2015 1 Initial release.

01-Jun-2017 2

Added workaround in Section 2.1.6: Delay after an RCC peripheral
clock enabling.

Added RTC limitations:

– Section 2.3.1: Spurious tamper detection when disabling the
tamper channel

– Section 2.3.2: Detection of a tamper event occurring before
enabling the tamper detection is not supported in edge detection
mode

– Section 2.3.3: RTC calendar registers are not locked properly.

Updated limitation description in Section 2.4.2: Start cannot be
generated after a misplaced Stop.

Added Section 2.4.6: Spurious Bus Error detection in Master mode.

Added SPI limitations:

– Section 2.5.1: Wrong CRC calculation when the polynomial is
even

– Section 2.5.2: Corrupted last bit of data and/or CRC, received in
Master mode with delayed SCK feedback

– Section 2.5.3: BSY bit may stay high at the end of a data transfer
in Slave mode

Added I2S limitation:

– Section 2.6.2: Corrupted last bit of data and/or CRC, received in
Master mode with delayed SCK feedback

DocID027448 Rev 2 29/29

STM32F401xD/E

29

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	Table 1. Device identification
	Table 2. Device summary
	1 ARM® 32-bit Cortex®-M4 with FPU limitations
	Table 3. Cortex®-M4 core limitations and impact on microcontroller behavior
	1.1 Cortex®-M4 interrupted loads to stack pointer can cause erroneous behavior
	Description
	Workaround

	1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used
	Description
	Workaround

	2 STM32F401xD/E silicon limitations
	Table 4. Summary of silicon limitations
	2.1 System limitations
	2.1.1 Debugging Stop mode and system tick timer
	Description
	Workaround

	2.1.2 Debugging Stop mode with WFE entry
	Description
	Workaround

	2.1.3 Wakeup sequence from Standby mode when using more than one wakeup source
	Description
	Workaround

	2.1.4 Full JTAG configuration without NJTRST pin cannot be used
	Description
	Workaround

	2.1.5 MPU attribute to RTC and IWDG registers could be managed incorrectly
	Description
	Workaround

	2.1.6 Delay after an RCC peripheral clock enabling
	Description
	Workarounds

	2.1.7 PB5 I/O VIN limitation
	Description
	Workaround

	2.1.8 PA0 I/O VIN limitation in Standby mode
	Description
	Workaround

	2.1.9 PH1 cannot be used as a GPIO in HSE bypass mode
	Description
	Work around

	2.2 IWDG peripheral limitations
	2.2.1 RVU and PVU flags are not reset in Stop mode
	Description
	Workaround

	2.3 RTC limitations
	2.3.1 Spurious tamper detection when disabling the tamper channel
	Description
	Workaround

	2.3.2 Detection of a tamper event occurring before enabling the tamper detection is not supported in edge detection mode
	Workaround

	2.3.3 RTC calendar registers are not locked properly
	Description
	Workaround

	2.4 I2C peripheral limitations
	2.4.1 SMBus standard not fully supported
	Description
	Workarounds

	2.4.2 Start cannot be generated after a misplaced Stop
	Description
	Workaround

	2.4.3 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	Description
	Workaround

	2.4.4 Data valid time (tVD;DAT) violated without the OVR flag being set
	Description
	Workaround

	2.4.5 Both SDA and SCL maximum rise time (tr) violated when VDD_I2C bus higher than ((VDD+0.3) / 0.7) V
	Description
	Workaround

	2.4.6 Spurious Bus Error detection in Master mode
	Description
	Workaround

	2.5 SPI peripheral limitations
	2.5.1 Wrong CRC calculation when the polynomial is even
	Description
	Work-around

	2.5.2 Corrupted last bit of data and/or CRC, received in Master mode with delayed SCK feedback
	Description
	Workarounds
	Table 5. Maximum allowable APB frequency at 30 pF load

	2.5.3 BSY bit may stay high at the end of a data transfer in Slave mode
	Description
	Workaround

	2.6 I2S peripheral limitations
	2.6.1 In I2S Slave mode, WS level must be set by the external master when enabling the I2S
	Description
	Workaround

	2.6.2 Corrupted last bit of data and/or CRC, received in Master mode with delayed SCK feedback

	2.7 USART peripheral limitations
	2.7.1 Idle frame is not detected if receiver clock speed is deviated
	Description
	Workaround

	2.7.2 In full-duplex mode, the Parity Error (PE) flag can be cleared by writing to the data register
	Description
	Workaround

	2.7.3 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	Description
	Workaround

	2.7.4 Break frame is transmitted regardless of nCTS input line status
	Description
	Workaround

	2.7.5 nRTS signal abnormally driven low after a protocol violation
	Description
	Workaround

	2.7.6 Start bit detected too soon when sampling for NACK signal from the smartcard
	Description
	Workaround

	2.7.7 Break request can prevent the Transmission Complete flag (TC) from being set
	Description
	Workaround

	2.7.8 Guard time is not respected when data are sent on TXE events
	Description
	Workaround

	2.7.9 nRTS is active while RE or UE = 0
	Description
	Workaround

	2.8 OTG_FS peripheral limitations
	2.8.1 Data in RxFIFO is overwritten when all channels are disabled simultaneously
	Description
	Workaround

	2.8.2 OTG host blocks the receive channel when receiving IN packets and no TxFIFO is configured
	Description
	Workaround

	2.8.3 Host channel-halted interrupt not generated when the channel is disabled
	Description
	Workaround

	2.8.4 Error in software-read OTG_FS_DCFG register values
	Description
	Workaround

	2.9 SDIO peripheral limitations
	2.9.1 SDIO HW flow control
	Description
	Workaround

	2.9.2 Wrong CCRCFAIL status after a response without CRC is received
	Description
	Workaround

	2.9.3 Data corruption in SDIO clock dephasing (NEGEDGE) mode
	Description
	Workaround

	2.9.4 CE-ATA multiple write command and card busy signal management
	Description
	Workaround

	2.9.5 No underrun detection with wrong data transmission
	Description
	Workaround

	2.10 ADC peripheral limitations
	2.10.1 ADC sequencer modification during conversion
	Description
	Workaround
	Table 6. QUADSPI mode

	3 Revision history
	Table 7. Document revision history

