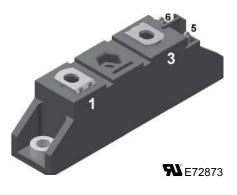
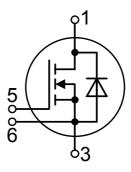


HiPerFET™ Power Module Preliminary

 $V_{DSS} = 500 V$


 $I_{D25} = 60 A$


 $R_{DS(on)} = 65 \, m\Omega$

High dv/dt, Low t_{rr}, HDMOS™ Family

Part number

VMO60-05F

Features / Advantages:

- Single MOSFET
- Direct copper bonded Al₂O₃ ceramic base plate
- $\bullet \ \mathsf{Low} \ \mathsf{R}_{\mathsf{DS}(\mathsf{on})} \ \mathsf{HDMOS^{\mathsf{TM}}} \ \mathsf{process}$
- Low package inductance for high speed switching
- Kelvin source contact
- Keyed twin plugs
- High power density
- Low losses

Applications:


- Switched-mode and resonant-mode power supplies
- Uninterruptible power supplies (UPS)
- DC servo and robot drives
- DC choppers

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- · Advanced power cycling

Disclaimer Notice

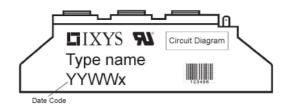
Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

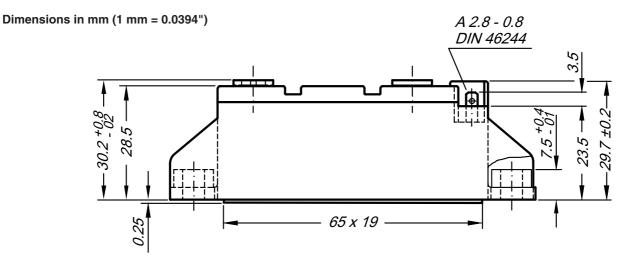


Preliminary

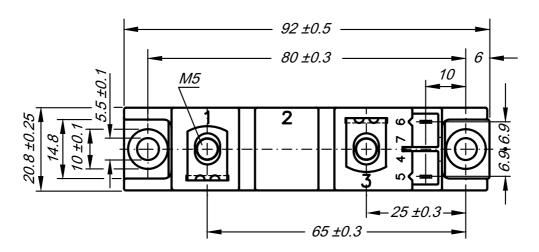
MOSFETs		Ratings				
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
V _{DSS}	drain source breakdown voltage	$T_{VJ} = 25^{\circ}C \text{ to}150^{\circ}C$			500	V
V _{DGR}	drain gate voltage	$R_{GS} = 10 \text{ k}\Omega$ $T_{VJ} = 25^{\circ}\text{C to}150^{\circ}\text{C}$			500	V
\mathbf{V}_{GS} \mathbf{V}_{GSM}	gate source voltage max. transient gate source voltage	Continuous Transient			±20 ±30	V V
I _{D25} I _{D100} I _{DM}	continuous drain current drain current maximum pulsed drain current	$$T_{\text{C}}$= 25^{\circ}\text{C}$$ $$T_{\text{C}}$= 100^{\circ}\text{C}$$ $$t_{\text{p}}$= 10 \ \mu\text{s}, pulse width limited by T_{JM}}$ $$T_{\text{C}}$= 25^{\circ}\text{C}$$			60 37 240	A A A
P_{tot}	total power dissipation	$T_{c} = 25^{\circ}C$			590	W
V _{DSS}	drain source breakdown voltage	$V_{GS} = 0 V$	500			V
$V_{GS(th)}$	gate threshold voltage	$V_{DS} = V_{GS}$; $I_D = 24 \text{ mA}$	2		4	V
I _{GSS}	gate source leakage current	$V_{GS} = \pm 20 \text{ V DC}; V_{DS} = 0$			500	nA
I _{DSS}	drain source leakage current	$V_{DS} = V_{DSS};$ $V_{GS} = 0 \text{ V}$ $T_{VJ} = 25^{\circ}\text{C}$ $V_{DS} = 0.8 \bullet V_{DSS};$ $V_{GS} = 0 \text{ V}$ $T_{VJ} = 125^{\circ}\text{C}$			600 3	μA mA
R _{DS(on)}	staticdrain source on resistance	V_{GS} = 10 V; I_D = 0.5 • I_{D25} T_{VJ} = 25°C Pulse test, t ≤ 300 µs, duty cycle d ≤ 2 %		65	75	mΩ
g _{fs}	forward transconductance	V _{DS} = 10 V; I _D = 0.5 • I _{D25} pulsed	30	60		S
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer (Miller) capacitance			12.6 1.35 0.405		nF nF nF
$\begin{array}{c} \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time	$V_{GS} = 10 \text{ V; } V_{DS} = 0.5 \bullet V_{DSS}; I_D = 0.5 \bullet I_{D25}$ $R_G = 1 \Omega \text{ (external), resistive load}$		50 45 250 30		ns ns ns ns
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	total gate charge gate source charge gate drain (Miller) charge			405 90 180		nC nC nC
\mathbf{R}_{thJC} \mathbf{R}_{thJH}	thermal resistance junction to case thermal resistance junction to heatsink	with heat transfer paste		0.41	0.21	K/W K/W

Source-Drain Diodes				Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.		
Is	continuous source current	$V_{GS} = 0 V$			60	Α	
I _{SM}	maximum pulsed source current	Repetitive; pulse width limited by T _{JM}			240	Α	
V _{SD}	forward voltage drop	$I_F = I_S; V_{GS} = 0 \text{ V}$ Pulse test, $t \le 300 \mu\text{s}, \text{ duty cycle } d \le 2 \%$			1.5	V	
t _{rr}	reverse recovery time	$I_F = I_S$, -di/dt = 100 A/ μ s; $V_{DS} = 100$ V; $V_{GS} = 0$ V			250	ns	


Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated. $T_J = 25^{\circ}C$, unless otherwise specified

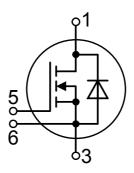

Preliminary

Package	TO-240AA				Ratings			
Symbol	Definitions	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature				-40		150	°C
T _{VJM}	maximum virtual junction temperature						150	°C
T _{stg}	storage temperature				-40		125	°C
Weight						76		g
M _D M _T	mounting torque terminal torque				2.5 2.5		4 4	Nm Nm
d _{Spp/App}	creepage distance on surface striking dist	a Latriking diatanga through air	terminal to terminal	13.0	9.7			mm
$\mathbf{d}_{Spb/Apb}$		e i striking distance trilough air	terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS, I _{ISOL} ≤ 1 mA		4800			V
		t = 1 minute			4000			V



Preliminary

Outlines TO-240AA



General tolerance: DIN ISO 2768 class "c"

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red Type ZY 200L (L = Left for pin pair 4/5) Type ZY 200R (R = Right for pin pair 6/7) UL 758, style 3751

