

PIC16LF1554/1559

PIC16LF1554/1559 Family Silicon Errata and Data Sheet Clarification

The PIC16LF1554/1559 family devices that you have received conform functionally to the current Device Data Sheet (DS40001761**E**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC16LF1554/1559 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A2).

Data Sheet clarifications and corrections start on page 5, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB[®] IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

TABLE 1: SILICON DEVREV VALUES

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

- 1. Using the appropriate interface, connect the device to the hardware debugger.
- 2. Open an MPLAB IDE project.
- 3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
- 4. Based on the version of MPLAB IDE you are using, do one of the following:
 - a) For MPLAB IDE 8, select <u>Programmer ></u> <u>Reconnect</u>.
 - b) For MPLAB X IDE, select <u>Window ></u> <u>Dashboard</u> and click the Refresh Debug Tool Status icon ().
- 5. Depending on the development tool used, the part number *and* Device Revision ID value appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC16LF1554/ 1559 silicon revisions are shown in Table 1.

	DEVICE ID<13:0> ^{(1),(2)}					
Part Number	DEV<8:0>	REV<4:0> Silicon Revisio				
		A1	A2			
PIC16LF1554	10 1111 001	0 0001	0 0010			
PIC16LF1559	10 1111 001	0 0001	0 0010			

Note 1: The Device ID is located in the configuration memory at address 8006h.

2: Refer to the *"PIC16LF1554/1559 Memory Programming Specification"* (DS40001743) for detailed information on Device and Revision IDs for your specific device.

Module	Feature	Item Number	Issue Summary	Affected Revisions ⁽¹⁾	
		Number		A1	A2
Port A	RA3 Input	1.1	When MSSP is enabled in I ² C mode, reading the PORTA3 bit produces incorrect value.	Х	Х
Enhanced Universal Synchronous Asyn- chronous Receiver Transmitter (EUSART)	Transmit Mode	2.1	Possible duplicate byte transmitted.	х	Х
Master Synchronous Serial Port (MSSP)	SPI Slave Mode	3.1	SPI master releasing Slave Select during Slave Sleep mode corrupts data.	Х	х
Master Synchronous Serial Port (MSSP)	SPI Slave Mode	3.2	SPI master enabling Slave Select too early could lose received data in slave.	Х	х
Master Synchronous Serial Port (MSSP)	SPI Slave Mode	3.3	WCOL is erroneously set in SPI Slave mode during Sleep.	Х	Х
Device Configuration Bit	Flash Memory Self- Write	4.1	Self-Write Protection protects unintended memory range.	Х	Х

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (**A2**).

1. Module: Port A

1.1 RA3 Input

When the MSSP is enabled in I^2C mode, reading the value of the PORTA3 bit will produce the value of the current SDA pin.

When the MSSP is enabled in a non-I²C mode, PORTA3 provides the correct value.

When the MSSP is disabled, PORTA3 provides the correct value.

Work around

If I²C is used in the application and an input is required, place the SDA function on RA3 using the APFCON register and use the other SDA pin option as the required input. This is the recommended work around.

Alternatively, disable the MSSP when reading the PORTA3 bit.

Alternatively, use the interrupt-on-change feature of RA3 to be notified when a state change has occurred, and track the current state in the application's firmware.

Affected Silicon Revisions

A1	A2			
Х	Х			

2. Module: Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)

2.1 Transmit Mode

Under certain conditions, a byte written to the TXREG register can be transmitted twice. This happens when a byte is written to TXREG just as the TSR register becomes empty. This new byte is immediately transferred to the TSR register, but also remains in the TXREG register until the completion of the current instruction cycle. If the new byte in the TSR register is transmitted before this instruction cycle has completed, the duplicate in the TXREG register will subsequently be transferred to the TSR register on the following instruction clock cycle and transmitted.

Work around

Method 1: Monitor the Transmit Interrupt Flag bit (TXIF). Writes to the TXREG register can be performed once the TXIF bit is set, indicating that the TXREG register is empty.

Method 2: Monitor the TMRT bit of the TXxSTA register. Writes to the TXREG register can be performed once the TMRT bit is set, indicating that the Transmit Shift Register (TSR) is empty.

Affected Silicon Revisions

4	A 1	A2			
	Х	Х			

3. Module: Master Synchronous Serial Port (MSSP)

3.1 SPI Slave Mode

When the MSSP module is configured in SPI Slave mode with \overline{SS} pin control enabled (SSPM = 0100) and the device is in Sleep mode during SPI activity, if the SPI master releases the \overline{SS} line (\overline{SS} goes high) before the device wakes from Sleep and updates SSPBUF, the received data will be lost.

Work around

Method 1: The SPI master must wait a minimum of parameter SP83 (1.5 T_{CY} + 40 nS) after the last SCK edge AND the additional wake-up time from Sleep (device dependent) before releasing the \overline{SS} line.

Method 2: If both the master and slave devices have an available pin, once the slave has completed the transaction and BF or SSPIF is set, the slave could toggle an output to inform the master that the transaction is complete and that it is safe to release the \overline{SS} line.

Affected Silicon Revisions

A1	A2			
Х	Х			

3.2 SPI Slave Mode

When the MSSP module is configured in SPI Slave mode with \overline{SS} pin control enabled (SSPM = 0100) and the device is in Sleep mode during SPI activity, if the SPI master enables \overline{SS} (\overline{SS} goes low) within 1 T_{CY} before Sleep is executed, the data written into the SSPBUF by the slave for transmission will remain in the SSPBUF, and the byte received by the slave will be completely discarded. The MSb of the data byte that is currently loaded into SSPBUF will be transmitted on each of the eight SCK clocks, resulting in either a 0x00 or 0xFF to be incorrectly transmitted. This issue typically occurs when the device wakes up from Sleep to process data and immediately goes back to Sleep during the next transmission

Work around

The SPI slave must wait a minimum of $2.25 * T_{CY}$ from the time the \overline{SS} line becomes active (\overline{SS} goes low) before executing the Sleep command.

Affected Silicon Revisions

A	\1	A2			
)	X	Х			

3.3 SPI Slave Mode

When the MSSP module is configured with either of the Slave modes listed below and Sleep is executed during transmission, the WCOL bit is erroneously set. Although the WCOL bit is set, it does not cause a break in transmission or reception.

Mode 1: SPI Slave mode with \overline{SS} disabled (SSPM = 0101) and CKE = 0.

Mode 2: SPI Slave mode with \overline{SS} enabled (SSPM = 0100) and \overline{SS} is not set and then cleared before each consecutive transmission. This typically occurs during multiple byte transmissions in which the master does not release the \overline{SS} line until all transmission has completed.

Work around

Method 1:The WCOL bit can be ignored since the issue does not interfere with the MSSP hardware.

Method 2: Clear the SSPEN after each transaction then set SSPEN before next transaction.

Affected Silicon Revisions

A1	A2			
Х	Х			

4. Module: Device Configuration Bit

4.1. Flash Memory Self-Write Protection

When Flash Memory Self-Write Protection bits (WRT) are set to 10, besides the specified range 000h-1FFh, the Flash Memory of 400h-5FFh is also write-protected.

Work around

None.

Affected Silicon Revisions

A1	A2			
Х	Х			

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS40001761E):

Note:	Corrections are shown in bold . Where
	possible, the original bold text formatting
	has been removed for clarity.

None.

PIC16LF1554/1559

APPENDIX A: DOCUMENT REVISION HISTORY

Rev A Document (07/2014)

Initial release of this document.

Rev B Document (08/2014)

Added Silicon Revision A1.

Rev C Document (10/2015)

Added Module 2 and 3; Other minor corrections.

Rev D Document (01/2017)

Added Module 4. Device Configuration Bit. Other minor corrections.

Rev E Document (05/2017)

Added new Work around section to Module 2. Other minor corrections.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch Iogo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\textcircled{\mbox{\sc op}}$ 2014-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1776-7

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820