PIC18(L)F67K40 Family Silicon Errata and Data Sheet Clarification

The PIC18(L)F67K40 family devices that you have received conform functionally to the current Device Data Sheet (DS40001841D), except for the anomalies described in this document.
The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC18(L)F67K40 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A3).

Data Sheet clarifications and corrections start on page 6, following the discussion of silicon issues.
The silicon revision level can be identified using the current version of MPLAB ${ }^{\circledR}$ IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate website (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

1. Using the appropriate interface, connect the device to the hardware debugger.
2. Open an MPLAB IDE project.
3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
4. Based on the version of MPLAB IDE you are using, do one of the following:
a) For MPLAB IDE 8, select Programmer > Reconnect.
b) For MPLAB X IDE, select Window > Dashboard and click the Refresh Debug Tool Status icon (B 2).
5. Depending on the development tool used, the part number and Device Revision ID value appear in the Output window.
Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.
The DEVREV values for the various PIC18(L)F67K40 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

Part Number	DEVICE ID<13:0>(1),(2)	Revision ID for Silicon Revision	
		A2	A3
PIC18F67K40	6AC0h	A002	A003
PIC18LF67K40	6B20h	A002	A003

Note 1: The Device ID is located in addresses 3FFFFCh-3FFFFDh and 3FFFFEn-3FFFFFFh.
2: Refer to the "PIC18(L)F6XK40 Memory Programming Specification" (DS40001822) for detailed information on Device and Revision IDs for your specific device.

TABLE 2: SILICON ISSUE SUMMARY

Module	Feature	Item No.	Issue Summary	Affected Revisions ${ }^{(1)}$	
				A2	A3
Analog-to-Digital Converter (ADC)	ADC Conversion	1.1	Delay of one instruction cycle required prior to setting the ADGO bit when using ADCRC as the ADCC clock source.	X	
Analog-to-Digital Converter (ADC)	ADCRC oscillator operation in Sleep	1.2	The ADCRC oscillator does not stop after conversion is complete in Sleep mode.	X	X
Analog-to-Digital Converter (ADC)	ADC Conversion with FVR	1.3	Using the FVR as the ADC positive voltage reference can cause missing codes.	X	X
PIC18 Debug Executive	Data Write Match Breakpoints	2.1	Data write match breakpoints do not work when used on a location GPR space.	X	
PIC18 Core	TBLRD instruction	3.1	TBLRD requires NVMREG value to point to appropriate memory.	X	
Program Flash Memory	Endurance of PFM Cell	4.1	Endurance of the PFM cell is lower than specified.	X	X
MSSP	SMBus 2.0 Voltage Level	5.1	Input low voltage threshold level is dependent on Vdd.	X	X
Electrical Specifications for LF Devices Only	Min Vdd specification	6.1	VDDMIN specifications are changed for LF devices only at $-40^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$.		X
Electrical Specifications	FVR Specification	7.1	FVR specifications require use above $-20^{\circ} \mathrm{C}$.	X	X
Timer0	Clock Source	8.1	Operation of Timer0 is incorrect when Fosc/4 is used as the clock source.	X	X

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A3).

1. Module: Analog-to-Digital Converter (ADC)

1.1 ADC Conversion

When using the ADCRC as the clock source for ADCC, there is a delay of one instruction cycle between the user setting the ADGO bit and being able to read it set. This can lead to a false conversion complete scenario (i.e., ADGO being cleared), depending if the user code has a bit clear test (BTFSC instruction on the ADGO bit, immediately after setting the ADGO bit. See code example below.
e.g.

```
BSF ADCONO, ADGO ; Start conversion
BTSFC ADCONO, ADGO ; Is conversion done?
GOTO $-1 ; No, test again
```

The BTFSC will pass the very first time in this situation.

Work around

Add a NOP instruction after setting the ADGO bit and before testing the bit for completion of conversion. See code example below.
e.g.

BSF ADCONO, ADGO ; Start conversion
NOP
BTSFC ADCONO, ADGO ; Is conversion done?
GOTO \$-1 ; No, test again
Affected Silicon Revisions

A2	A3						
X							

1.2 ADCRC Oscillator Operation in Sleep

If the part is in Sleep and the ADCRC oscillator is used as the clock source to the ADC, the oscillator continues to run after the conversion is complete. This will increase the current consumption in Sleep mode. The oscillator will stop after the device exits Sleep mode and resumes normal code execution.

Work around

None.

Affected Silicon Revisions

A2	A3						
X	X						

1.3 ADC Conversion with FVR

Using the FVR as the positive voltage reference for the ADC can cause an increase in missing codes.

Work around

Increase the bit conversion time, known as TAD, to $8 \mu \mathrm{~s}$ or higher.

Affected Silicon Revisions

A2	A3						
X	X						

2. Module: PIC18 Debug Executive

2.1 Data Write Match Breakpoints

If the data in a GPR location is modified using any arithmetic instruction like INCF, ADDWF, SETF, CLRF, etc., the data write match breakpoint does not work. It works with MOVF, which moves the data into the same memory location.

```
e.g.
1.
\begin{tabular}{lll} 
MOVLB & \(0 \times 00\) & \\
CLRF & \(0 \times 08\) & \\
LOOP & & \\
INCF & \(0 \times 08\) & \begin{tabular}{l}
; Doesn't break when data \\
breakpoint set @ \(0 \times 08\) \\
with data match for 0xAA
\end{tabular} \\
GOTO & LOOP &
\end{tabular}
2.
MOVLB \(0 \times 00\)
MOVLW 0xAA
MOVF \(0 \times 08\)
;Breaks when data
breakpoint set @ 0x08
with data match for \(0 x A A\)
```


Work around

Use data write breakpoints without matching wherever possible.

Affected Silicon Revisions

A2	A3						
X							

3. Module: PIC18 Core

3.1 TBLRD requires NVMREG value to point to appropriate memory
The affected silicon revisions of the PIC18FXXK40 devices improperly require the NVMREG<1:0> bits in the NVMCON register to be set for TBLRD access of the various memory regions. The issue is most apparent in compiled C programs when the user defines a const type and the compiler uses TBLRD instructions to retrieve the data from program Flash memory (PFM). The issue is also apparent when the user defines an array in RAM for which the complier creates start-up code, executed before main(), that uses TBLRD instructions to initialize RAM from PFM.

Work around

Assembly code:

Set the NVMREG<1:0> bits to select the appropriate memory region before executing TBLRD instructions.

C code:

Create an assembly file named power-up.as and include this file with the other files in the project. This file will change the NVMREG<1:0> bits to point to program Flash before any code is executed.

Contents of the powerup.as file:

```
#include <xc.inc>
    GLOBAL powerup, start
    PSECT powerup, class=CODE, delta=1,
        reloc=2
powerup:
    BSF NVMCON1, 7
    GOTO start
    end
```

If there is a need to change the NVMREG<1:0> value to anything other than ' 10 ' and the Interrupt Service Routine uses constants or literal strings, then interrupts must be disabled before the change and restored to ' 10 ' before interrupts are enabled.

Affected Silicon Revisions

A2	A3						
X							

4. Module: Program Flash Memory

4.1 Endurance of PFM is Lower than Specified

The Flash memory cell endurance specification (Parameter MEM30) is 1 K cycles.

Work around

None.

Affected Silicon Revisions

A2	A3						
X	X						

5. Module: MSSP

5.1 SMBus 2.0 Voltage Level

The input low-voltage threshold level (VIL) depends on VDD, as follows:

- VIL $=0.7$ for $\mathrm{VDD}<4 \mathrm{~V}$
- VIL $=0.8$ for VDD $>4 \mathrm{~V}$

Work around

None.
Affected Silicon Revisions

A2	A3						
X	X						

6. Module: Electrical Specifications for LF Devices Only

6.1 Min VDD specification

VDDMIN specifications are changed for LF devices only.
Vddmin for $-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}=2.3 \mathrm{~V}$
Vddmin for $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}=2.1 \mathrm{~V}$

Work around

None.
Affected Silicon Revisions

A2	A3						
	X						

7. Module: Electrical Specifications

7.1 Fixed Voltage Reference (FVR)

At temperatures below $-20^{\circ} \mathrm{C}$, the output voltage for the FVR may be greater than the levels specified in the data sheet. This will apply to all three gain amplifier settings, (1X, 2X, 4X). The affected parameter numbers found in the data sheet are: FVR01 (1X gain setting), FVR02 (2X gain setting), and FVR03 (4X gain setting).

Work around

At temperatures above $-20^{\circ} \mathrm{C}$, the stated tolerances in the data sheet remain in effect. Operate the FVR only at temperatures above $20^{\circ} \mathrm{C}$.

Affected Silicon Revisions

A2	A3						
X	X						

8. Module: Timer0

8.1 Clock Source

Clearing the TOASYNC bit in the TOCON1 register when Timer0 is configured to use Fosc/4 may cause incorrect behavior.
This issue is only valid when Fosc/4 is used as the clock source.

Work around

Set the TOASYNC bit in the TOCON1 register when using Fosc/4 as the Timer0 clock.

Affected Silicon Revisions

A2	A3						
X	X						

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS40001841D):

Note: Corrections are shown in bold. Where possible, the original bold text formatting has been removed for clarity.

1. Module: Core Features

1.1 Operating Speed on Pg. 1

The bullet point mentioning the operating speed is incorrect. The correct text is shown below.

- Operating Speed:
- DC-64 MHz clock input
- 62.5 ns minimum instruction cycle

APPENDIX A: DOCUMENT

REVISION HISTORY

Rev A Document (09/2016)

Initial release of this document.

Rev B Document (12/2016)

Silicon Errata Issues: Removed section 1.2
Computation Overflow Bit; Added new sections 1.2
ADCRC Oscillator Operation in Sleep and 1.3 ADC Conversion with FVR to Module 1 Analog-to-Digital Converter (ADC).

Rev C Document (3/2017)

Added silicon module 6.1; other minor corrections.

Rev D Document (5/2018)

Added Module 7: Electrical Specifications (FVR) and Module 8: Timer0.

Data Sheet Clarifications: Added Module 1 (Core Features).

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its $P I C^{\circledR}$ MCUs and dsPIC® DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, InterChip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix,
RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2016-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2973-9

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office 2355 West Chandler Blvd.
 Chandler, AZ 85224-6199
 Tel: 480-792-7200
 Fax: 480-792-7277
 Technical Support:
 http://www.microchip.com/ support
 Web Address:
 www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

