Low Offset, Low Noise, RRO Operational Amplifier
 Check for Samples: SM73308

FEATURES

(Unless Otherwise Noted, Typical Values at V_{S} $=2.7 \mathrm{~V}$)

- Renewable Energy Grade
- Ensured 2.7V and 5V Specifications
- Maximum $\mathrm{V}_{\text {os }} 850 \mu \mathrm{~V}$ (Limit)
- Voltage noiseN
- f = $\mathbf{1 0 0 ~ H z ~ 1 2 . 5 n V / / H z ~}$
- $\mathrm{f}=\mathbf{1 0 \mathrm { kHz } 7 . 5 \mathrm { nV } / \sqrt { \mathrm { Hz } } , ~}$
- Rail-to-Rail Output Swing
- $R_{L}=600 \Omega 100 \mathrm{mV}$ From Rail
- $R_{L}=2 k \Omega 50 \mathrm{mV}$ From Rail
- Open Loop Gain With $R_{L}=2 k \Omega \mathbf{1 0 0 d B}$
- $\mathrm{V}_{\mathrm{CM}} 0$ to $\mathrm{V}^{+}-0.9 \mathrm{~V}$
- Supply Current $550 \mu \mathrm{~A}$
- Gain Bandwidth Product 3.5 MHz
- Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

APPLICATIONS

- Transducer Amplifier
- Instrumentation Amplifier
- Precision Current Sensing
- Data Acquisition Systems
- Active Filters and Buffers
- Sample and Hold
- Portable/battery Powered Electronics
- Automotive

DESCRIPTION

The SM73308 is a single low noise precision operational amplifier intended for use in a wide range of applications. Other important characteristics include: an extended operating temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, the tiny SC70-5 package, and low input bias current.
The extended temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ allows the SM73308 to accommodate a broad range of applications. The SM73308 expands TI's Silicon Dust ${ }^{\top \mathrm{M}}$ amplifier portfolio offering enhancements in size, speed, and power savings. The SM73308 is ensured to operate over the voltage range of 2.7 V to 5.0 V and has rail-to-rail output.

The SM73308 is designed for precision, low noise, low voltage, and miniature systems. This amplifier provides rail-to-rail output swing into heavy loads. The maximum input offset is $850 \mu \mathrm{~V}$ at room temperature and the input common mode voltage range includes ground.

The SM73308 is offered in the tiny SC70-5 package.

Connection Diagram

Figure 1. SC70-5 - Top View See Package Number DCK

[^0]
Instrumentation Amplifier

$$
\begin{equation*}
V_{O}=-K(2 a+1)\left(V_{1}-V_{2}\right) \tag{1}
\end{equation*}
$$

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings ${ }^{(1)(2)}$

	Machine Model	200 V
ESD Tolerance ${ }^{(3)}$	Human Body Model	2000 V
Differential Input Voltage		\pm Supply Voltage
Voltage at Input Pins		$\left(\mathrm{V}^{+}\right)+0.3 \mathrm{~V},\left(\mathrm{~V}^{-}\right)-0.3 \mathrm{~V}$
Current at Input Pins		$\pm 10 \mathrm{~mA}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)		5.75 V
Output Short Circuit to V^{+}		See ${ }^{(4)}$
Output Short Circuit to V^{-}		See ${ }^{(5)}$
Mounting Temperture	Infrared or Convection (20 sec)	$235{ }^{\circ} \mathrm{C}$
	Wave Soldering Lead Temp (10 sec)	$260^{\circ} \mathrm{C}$
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature ${ }^{(6)}$		$150^{\circ} \mathrm{C}$

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) Human Body Model is $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine Model is 0Ω in series with 20 pF .
(4) Shorting output to V^{+}will adversely affect reliability.
(5) Shorting output to V^{-}will adversely affect reliability.
(6) The maximum power dissipation is a function of $T_{J(M A X)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.

Operating Ratings ${ }^{(1)}$

Supply Voltage	2.7 V to 5.5 V
Temperature Range	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	$440^{\circ} \mathrm{C} / \mathrm{W}$

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.

2.7V DC Electrical Characteristics ${ }^{(1)}$

Unless otherwise specified, all limits are ensured for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\mathbf{M i n}^{(2)}$	Typ ${ }^{(3)}$	Max ${ }^{(2)}$	Units
$\mathrm{V}_{\text {Os }}$	Input Offset Voltage			0.3	$\begin{gathered} 0.85 \\ \mathbf{1 . 0} \end{gathered}$	mV
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			-0.45		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current ${ }^{(4)}$	$\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$		-0.1	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	pA
los	Input Offset Current ${ }^{(4)}$			0.004	100	pA
I_{5}	Supply Current			550	$\begin{aligned} & 900 \\ & 910 \end{aligned}$	$\mu \mathrm{A}$
CMRR	Common Mode Rejection Ratio	$0.5 \leq \mathrm{V}_{\text {CM }} \leq 1.2 \mathrm{~V}$	$\begin{aligned} & 74 \\ & 72 \end{aligned}$	80		dB
PSSR	Power Supply Rejection Ratio	$2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}$	$\begin{aligned} & 82 \\ & 76 \end{aligned}$	90		dB
$\mathrm{V}_{C M}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	0		1.8	V
A_{V}	Large Signal Voltage Gain ${ }^{(5)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 92 \\ & 80 \end{aligned}$	100		dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 98 \\ & 86 \\ & \hline \end{aligned}$	100		
V_{0}	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 1.35 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.14 \end{aligned}$	$\begin{gathered} 0.084 \text { to } \\ 2.62 \end{gathered}$	$\begin{aligned} & 2.59 \\ & 2.56 \\ & \hline \end{aligned}$	V
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.06 \end{aligned}$	$\begin{gathered} 0.026 \text { to } \\ 2.68 \end{gathered}$	$\begin{aligned} & 2.65 \\ & 2.64 \end{aligned}$	
Io	Output Short Circuit Current	$\begin{aligned} & \text { Sourcing, } V_{O}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 18 \\ & 11 \end{aligned}$	24		mA
		$\begin{aligned} & \text { Sinking, } \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=-100 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 18 \\ & 11 \\ & \hline \end{aligned}$	22		

(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_{J}=T_{A}$.
(2) All limits are ensured by testing or statistical analysis.
(3) Typical values represent the most likely parametric norm.
(4) Limits ensured by design.
(5) R_{L} is connected to mid-supply. The output voltage is set at 200 mV from the rails. $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}+0.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+}-0.2 \mathrm{~V}$

2.7V AC Electrical Characteristics ${ }^{(1)}$

Unless otherwise specified, all limits are ensured for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\mathbf{M i n}{ }^{(2)}$	Typ ${ }^{(3)}$	Max ${ }^{(2)}$	Units
SR	Slew Rate ${ }^{(4)}$	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		1.4		V/us
GBW	Gain-Bandwidth Product			3.5		MHz
Φ_{m}	Phase Margin			79		Deg
G_{m}	Gain Margin			-15		dB
e_{n}	Input-Referred Voltage Noise (Flatband)	$\mathrm{f}=10 \mathrm{kHz}$		7.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
e_{n}	Input-Referred Voltage Noise (I/f)	$\mathrm{f}=100 \mathrm{~Hz}$		12.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$		0.001		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & f=1 \mathrm{kHz}, A_{V}=+1 \\ & R_{L}=600 \Omega, V_{I N}=1 V_{P P} \end{aligned}$		0.007		\%

[^1]
5.0V DC Electrical Characteristics ${ }^{(1)}$

Unless otherwise specified, all limits are ensured for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	$\mathbf{M i n}^{(2)}$	Typ ${ }^{(3)}$	Max ${ }^{(2)}$	Units
V Os	Input Offset Voltage			0.25	$\begin{gathered} 0.85 \\ \mathbf{1 . 0} \end{gathered}$	mV
TCV ${ }_{\text {OS }}$	Input Offset Voltage Average Drift			-0.35		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current ${ }^{(4)}$	$\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$		-0.23	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	pA
los	Input Offset Current ${ }^{(4)}$			0.017	100	pA
I_{5}	Supply Current			600	$\begin{aligned} & 950 \\ & 960 \end{aligned}$	$\mu \mathrm{A}$
CMRR	Common Mode Rejection Ratio	$0.5 \leq \mathrm{V}_{\text {CM }} \leq 3.5 \mathrm{~V}$	$\begin{aligned} & 80 \\ & 79 \end{aligned}$	90		dB
PSRR	Power Supply Rejection Ratio	$2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}$	$\begin{aligned} & 82 \\ & 76 \end{aligned}$	90		dB
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	0		4.1	V
A_{V}	Large Signal Voltage Gain ${ }^{(5)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } 2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 4.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 92 \\ & 89 \end{aligned}$	100		dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 4.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 98 \\ & 95 \\ & \hline \end{aligned}$	100		
V_{0}	Output Swing	$\begin{aligned} & R_{L}=600 \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.23 \end{aligned}$	$\begin{gathered} 0.112 \text { to } \\ 4.9 \\ \hline \end{gathered}$	$\begin{aligned} & 4.85 \\ & 4.77 \end{aligned}$	V
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.07 \end{aligned}$	$\begin{gathered} 0.035 \text { to } \\ 4.97 \end{gathered}$	$\begin{aligned} & 4.94 \\ & 4.93 \end{aligned}$	
Io	Output Short Circuit Current ${ }^{(4)(6)}$	$\begin{aligned} & \text { Sourcing, } V_{O}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	75		mA
		$\begin{aligned} & \text { Sinking, } \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=-100 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	66		

[^2]
5.0V AC Electrical Characteristics ${ }^{(1)}$

Unless otherwise specified, all limits are ensured for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min ${ }^{(2)}$	Typ ${ }^{(3)}$	Max ${ }^{(2)}$	Units
SR	Slew Rate ${ }^{(4)}$	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		1.4		V/us
GBW	Gain-Bandwidth Product			3.5		MHz
$\Phi_{\text {m }}$	Phase Margin			79		Deg
G_{m}	Gain Margin			-15		dB
e_{n}	Input-Referred Voltage Noise (Flatband)	$\mathrm{f}=10 \mathrm{kHz}$		6.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
e_{n}	Input-Referred Voltage Noise (l/f)	$f=100 \mathrm{~Hz}$		12		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$		0.001		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & f=1 \mathrm{kHz}, A_{V}=+1 \\ & R_{L}=600 \Omega, V_{I N}=1 V_{P P} \end{aligned}$		0.007		\%

[^3]Typical Performance Characteristics

Figure 2.

Figure 4.

Figure 6.

Figure 3.

Figure 5.

Figure 7.

Figure 9.

Figure 11.
Sinking Current

Figure 13.

Figure 15.

Figure 17.

Figure 19.

Typical Performance Characteristics (continued)

Figure 20.

Figure 22.

Figure 24.

Open Loop Frequency Response Over Temperature

Figure 21.

Figure 23.
Open Loop Gain \& Phase with Cap. Loading

Figure 25.

Typical Performance Characteristics (continued)

TIME (10 $\mu \mathrm{s} / \mathrm{div}$)
Figure 26.

TIME ($10 \mu \mathrm{~s} / \mathrm{div}$)
Figure 28.

TIME ($10 \mu \mathrm{~s} / \mathrm{div}$)
Figure 30.

Figure 27.
Non-Inverting Large Signal Pulse Response

TIME (10 $\mu \mathrm{s} / \mathrm{div}$)
Figure 29.

Figure 31.

Typical Performance Characteristics (continued)

TIME (10 $\mu \mathrm{s} / \mathrm{div}$)
Figure 32.

TIME (10 $\mu \mathrm{s} / \mathrm{div}$)
Figure 34.

TIME ($10 \mu \mathrm{~s} / \mathrm{div}$)
Figure 36.

Figure 33.

TIME (10 $\mu \mathrm{s} / \mathrm{div}$)
Figure 35.
Inverting Large Signal Pulse Response

TIME ($10 \mu \mathrm{~s} / \mathrm{div}$)
Figure 37.

Figure 39.

Figure 41.

APPLICATION NOTE

SM73308

The SM73308 is a precision amplifier with very low noise and ultra low offset voltage. SM73308's extended temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ enables the user to design a variety of applications including automotive.
The SM73308 has a maximum offset voltage of 1 mV over the extended temperature range. This makes the SM73308 ideal for applications where precision is important.

INSTRUMENTATION AMPLIFIER

Measurement of very small signals with an amplifier requires close attention to the input impedance of the amplifier, gain of the overall signal on the inputs, and the gain on each input since we are only interested in the difference of the two inputs and the common signal is considered noise. A classic solution is an instrumentation amplifier. Instrumentation amplifiers have a finite, accurate, and stable gain. Also they have extremely high input impedances and very low output impedances. Finally they have an extremely high CMRR so that the amplifier can only respond to the differential signal. A typical instrumentation amplifier is shown in Figure 42.

Figure 42. Instrumentation Amplifier
There are two stages in this amplifier. The last stage, output stage, is a differential amplifier. In an ideal case the two amplifiers of the first stage, input stage, would be set up as buffers to isolate the inputs. However they cannot be connected as followers because of real amplifier's mismatch. That is why there is a balancing resistor between the two. The product of the two stages of gain will give the gain of the instrumentation amplifier. Ideally, the CMRR should be infinite. However the output stage has a small non-zero common mode gain which results from resistor mismatch.
In the input stage of the circuit, current is the same across all resistors. This is due to the high input impedance and low input bias current of the SM73308. With the node equations we have:

$$
\begin{equation*}
\text { GIVEN: } I_{R_{1}}=I_{R_{11}} \tag{2}
\end{equation*}
$$

By Ohm's Law:

$$
\begin{align*}
V_{\mathrm{O} 1}-V_{O 2} & =\left(2 R_{1}+R_{11}\right) I_{R_{11}} \\
& =(2 a+1) R_{11} \cdot I_{R_{11}} \\
& =(2 a+1) V_{R_{11}} \tag{3}
\end{align*}
$$

However:

$$
\begin{equation*}
v_{R_{11}}=V_{1}-v_{2} \tag{4}
\end{equation*}
$$

So we have:

$$
\begin{equation*}
V_{O 1}-V_{O 2}=(2 a+1)\left(V_{1}-V_{2}\right) \tag{5}
\end{equation*}
$$

Now looking at the output of the instrumentation amplifier:

$$
\begin{align*}
\mathrm{V}_{\mathrm{O}} & =\frac{\mathrm{KR} 2}{R_{2}}\left(\mathrm{~V}_{\mathrm{O} 2}-\mathrm{V}_{\mathrm{O} 1}\right) \\
& =-\mathrm{K}\left(\mathrm{~V}_{\mathrm{O} 1}-\mathrm{V}_{\mathrm{O} 2}\right) \tag{6}
\end{align*}
$$

Substituting from Equation 5:

$$
\begin{equation*}
V_{O}=-K(2 a+1)\left(V_{1}-V_{2}\right) \tag{7}
\end{equation*}
$$

This shows the gain of the instrumentation amplifier to be:

$$
\begin{equation*}
-K(2 a+1) \tag{8}
\end{equation*}
$$

Typical values for this circuit can be obtained by setting: $\mathrm{a}=12$ and $\mathrm{K}=4$. This results in an overall gain of -100 .
Figure 43 shows typical CMRR characteristics of this Instrumentation amplifier over frequency. Three SM73308 amplifiers are used along with 1% resistors to minimize resistor mismatch. Resistors used to build the circuit are: $R_{1}=21.6 \mathrm{k} \Omega, R_{11}=1.8 \mathrm{k} \Omega, R_{2}=2.5 \mathrm{k} \Omega$ with $K=40$ and $a=12$. This results in an overall gain of $-1000,-K(2 a+1)$ $=-1000$.

Figure 43. CMRR vs. Frequency

ACTIVE FILTER

Active filters are circuits with amplifiers, resistors, and capacitors. The use of amplifiers instead of inductors, which are used in passive filters, enhances the circuit performance while reducing the size and complexity of the filter.

The simplest active filters are designed using an inverting op amp configuration where at least one reactive element has been added to the configuration. This means that the op amp will provide "frequency-dependent" amplification, since reactive elements are frequency dependent devices.

LOW PASS FILTER

The following shows a very simple low pass filter.

Figure 44. Lowpass Filter
The transfer function can be expressed as follows:
By KCL:

$$
\begin{equation*}
\frac{-V_{i}}{R_{1}}-\frac{V_{O}}{\left[\frac{1}{j w c}\right]}-\frac{V_{O}}{R_{2}}=0 \tag{9}
\end{equation*}
$$

Simplifying this further results in:

$$
\begin{equation*}
V_{O}=\frac{-R_{2}}{R_{1}}\left[\frac{1}{j w c R_{2}+1}\right] V_{i} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{V_{0}}{V_{i}}=\frac{-R_{2}}{R_{1}}\left[\frac{1}{j w c R_{2}+1}\right] \tag{11}
\end{equation*}
$$

Now, substituting $\omega=2 \pi f$, so that the calculations are in $f(\mathrm{~Hz})$ and not $\omega(\mathrm{rad} / \mathrm{s})$, and setting the DC gain $\mathrm{H}_{\mathrm{O}}=$ $-\mathrm{R}_{2} / \mathrm{R}_{1}$ and $\mathrm{H}=\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{\mathrm{O}}\left[\frac{1}{\mathrm{j} 2 \pi \mathrm{fc} \mathrm{R}_{2}+1}\right] \tag{12}
\end{equation*}
$$

Set: $f_{0}=1 /\left(2 \pi R_{1} C\right)$

$$
\begin{equation*}
H=H_{O}\left[\frac{1}{1+j\left(f / f f_{0}\right)}\right] \tag{13}
\end{equation*}
$$

Low pass filters are known as lossy integrators because they only behave as an integrator at higher frequencies. Just by looking at the transfer function one can predict the general form of the bode plot. When the $\mathrm{f} / \mathrm{f}_{\mathrm{O}}$ ratio is small, the capacitor is in effect an open circuit and the amplifier behaves at a set DC gain. Starting at $\mathrm{f}_{\mathrm{O}},-3 \mathrm{~dB}$ corner, the capacitor will have the dominant impedance and hence the circuit will behave as an integrator and the signal will be attenuated and eventually cut. The bode plot for this filter is shown in the following picture:

Figure 45. Lowpass Filter Transfer Function

HIGH PASS FILTER

In a similar approach, one can derive the transfer function of a high pass filter. A typical first order high pass filter is shown below:

Figure 46. Highpass FIlter
Writing the KCL for this circuit :
(V_{1} denotes the voltage between C and R_{1})

$$
\begin{equation*}
\frac{V_{1}-V_{i}}{\frac{1}{j w C}}=\frac{V_{1}-V^{-}}{R_{1}} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{V^{-}+V_{1}}{R_{1}}=\frac{V^{-}+V_{0}}{R_{2}} \tag{15}
\end{equation*}
$$

Solving these two equations to find the transfer function and using:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{O}}=\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}} \tag{16}
\end{equation*}
$$

(high frequency gain) $H_{0}=\frac{-R_{2}}{R_{1}}$ and $H=\frac{V_{0}}{V_{i}}$
Which results:

$$
\begin{equation*}
H=H_{O} \frac{j\left(f / f_{0}\right)}{1+j\left(f / f_{0}\right)} \tag{17}
\end{equation*}
$$

Looking at the transfer function, it is clear that when $\mathrm{f} / \mathrm{f}_{\mathrm{O}}$ is small, the capacitor is open and hence no signal is getting in to the amplifier. As the frequency increases the amplifier starts operating. At $f=f_{0}$ the capacitor behaves like a short circuit and the amplifier will have a constant, high frequency, gain of H_{O}. Figure 47 shows the transfer function of this high pass filter:

Figure 47. Highpass Filter Transfer Function

BAND PASS FILTER

Figure 48. Bandpass Filter
Combining a low pass filter and a high pass filter will generate a band pass filter. In this network the input impedance forms the high pass filter while the feedback impedance forms the low pass filter. Choosing the corner frequencies so that $f_{1}<f_{2}$, then all the frequencies in between, $f_{1} \leq f \leq f_{2}$, will pass through the filter while frequencies below f_{1} and above f_{2} will be cut off.
The transfer function can be easily calculated using the same methodology as before.

$$
H=H_{O} \frac{j\left(f / f_{1}\right)}{\left[1+j\left(f / f_{1}\right)\right]\left[1+j\left(f / f_{2}\right)\right]}
$$

where

$$
\begin{align*}
& f_{1}=\frac{1}{2 \pi R_{1} C_{1}} \\
& f_{2}=\frac{1}{2 \pi R_{2} C_{2}} \\
& H_{0}=\frac{-R_{2}}{R_{1}} \tag{18}
\end{align*}
$$

The transfer function is presented in the following figure.

Figure 49. Bandpass filter Transfer Function

STATE VARIABLE ACTIVE FILTER

State variable active filters are circuits that can simultaneously represent high pass, band pass, and low pass filters. The state variable active filter uses three separate amplifiers to achieve this task. A typical state variable active filter is shown in Figure 50. The first amplifier in the circuit is connected as a gain stage. The second and third amplifiers are connected as integrators, which means they behave as low pass filters. The feedback path from the output of the third amplifier to the first amplifier enables this low frequency signal to be fed back with a finite and fairly low closed loop gain. This is while the high frequency signal on the input is still gained up by the open loop gain of the 1st amplifier. This makes the first amplifier a high pass filter. The high pass signal is then fed into a low pass filter. The outcome is a band pass signal, meaning the second amplifier is a band pass filter. This signal is then fed into the third amplifiers input and so, the third amplifier behaves as a simple low pass filter.

Figure 50. State Variable Active Filter
The transfer function of each filter needs to be calculated. The derivations will be more trivial if each stage of the filter is shown on its own.

The three components are:

For A_{1} the relationship between input and output is:

$$
\begin{equation*}
V_{O 1}=\frac{-R_{4}}{R_{1}} V_{0}+\left[\frac{R_{6}}{R_{5}+R_{6}}\right]\left[\frac{R_{1}+R_{4}}{R_{1}}\right] V_{I N}+\left[\frac{R_{5}}{R_{5}+R_{6}}\right]\left[\frac{R_{1}+R_{4}}{R_{1}}\right] V_{O 2} \tag{19}
\end{equation*}
$$

This relationship depends on the output of all the filters. The input-output relationship for A_{2} can be expressed as:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{O} 2}=\frac{-1}{\mathrm{~s} \mathrm{C}_{2} \mathrm{R}_{2}} \mathrm{~V}_{\mathrm{O} 1} \tag{20}
\end{equation*}
$$

And finally this relationship for A_{3} is as follows:

$$
\begin{equation*}
V_{\mathrm{O}}=\frac{-1}{\mathrm{~s} \mathrm{C}_{3} \mathrm{R}_{3}} \mathrm{~V}_{\mathrm{O} 2} \tag{21}
\end{equation*}
$$

Re-arranging these equations, one can find the relationship between V_{O} and $\mathrm{V}_{\mathbb{I N}}$ (transfer function of the lowpass filter), $\mathrm{V}_{\mathrm{O} 1}$ and V_{IN} (transfer function of the highpass filter), and $\mathrm{V}_{\mathrm{O} 2}$ and V_{IN} (transfer function of the bandpass filter) These relationships are as follows:

Lowpass Filter

$$
\begin{equation*}
\frac{V_{O}}{V_{I N}}=\frac{\left[\frac{R_{1}+R_{4}}{R_{1}}\right]\left[\frac{R_{6}}{R_{5}+R_{6}}\right]\left[\frac{1}{C_{2} C_{3} R_{2} R_{3}}\right]}{s^{2}+s\left[\frac{1}{C_{2} R_{2}}\right]\left[\frac{R_{5}}{R_{5}+R_{6}}\right]\left[\frac{R_{1}+R_{4}}{R_{1}}\right]+\left[\frac{1}{C_{2} C_{3} R_{2} R_{3}}\right]} \tag{22}
\end{equation*}
$$

Highpass Filter

$$
\begin{equation*}
\frac{V_{O 1}}{V_{\text {IN }}}=\frac{s^{2}\left[\frac{R_{1}+R_{4}}{R_{1}}\right]\left[\frac{R_{6}}{R_{5}+R_{6}}\right]}{s^{2}+s\left[\frac{1}{C_{2} R_{2}}\right]\left[\frac{R_{5}}{R_{5}+R_{6}}\right]\left[\frac{R_{1}+R_{4}}{R_{1}}\right]+\left[\frac{1}{C_{2} C_{3} R_{2} R_{3}}\right]} \tag{23}
\end{equation*}
$$

Bandpass Filter

$$
\begin{equation*}
\frac{V_{\mathrm{O} 2}}{V_{\text {IN }}}=\frac{s\left[\frac{1}{C_{2} R_{2}}\right]\left[\frac{R_{1}+R_{4}}{R_{1}}\right]\left[\frac{R_{6}}{R_{5}+R_{6}}\right]}{s^{2}+s\left[\frac{1}{C_{2} R_{2}}\right]\left[\frac{R_{5}}{R_{5}+R_{6}}\right]\left[\frac{R_{1}+R_{4}}{R_{1}}\right]+\left[\frac{1}{C_{2} C_{3} R_{2} R_{3}}\right]} \tag{24}
\end{equation*}
$$

The center frequency and Quality Factor for all of these filters is the same. The values can be calculated in the following manner:

$$
\begin{align*}
& \omega_{C}=\sqrt{\frac{1}{C_{2} C_{3} R_{2} R_{3}}} \\
& \text { and } \\
& Q=\sqrt{\frac{C_{2} R_{2}}{C_{3} R_{3}}\left[\frac{R_{5}+R_{6}}{R_{6}}\right]\left[\frac{R_{1}}{R_{1}+R_{4}}\right]} \tag{25}
\end{align*}
$$

A design example is shown here:
Designing a bandpass filter with center frequency of 10 kHz and Quality Factor of 5.5
To do this, first consider the Quality Factor. It is best to pick convenient values for the capacitors. $\mathrm{C}_{2}=\mathrm{C}_{3}=$ 1000 pF . Also, choose $R_{1}=R_{4}=30 \mathrm{k} \Omega$. Now values of R_{5} and R_{6} need to be calculated. With the chosen values for the capacitors and resistors, Q reduces to:

$$
\begin{equation*}
\mathrm{Q}=\frac{11}{2}=\frac{1}{2}\left[\frac{R_{5}+R_{6}}{R_{6}}\right] \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{5}=10 R_{6} R_{6}=1.5 \mathrm{k} \Omega R_{5}=15 \mathrm{k} \Omega \tag{27}
\end{equation*}
$$

Also, for $f=10 \mathrm{kHz}$, the center frequency is $\omega_{\mathrm{c}}=2 \pi \mathrm{f}=62.8 \mathrm{kHz}$.
Using the expressions above, the appropriate resistor values will be $R_{2}=R_{3}=16 \mathrm{k} \Omega$.
The following graphs show the transfer function of each of the filters. The DC gain of this circuit is:

$$
\begin{equation*}
\text { DC GAIN }=\left[\frac{R_{1}+R_{4}}{R_{1}}\right]\left[\frac{R_{6}}{R_{5}+R_{6}}\right]=-14.8 \mathrm{~dB} \tag{28}
\end{equation*}
$$

REVISION HISTORY

Changes from Revision A (April 2013) to Revision B Page

- Changed layout of National Data Sheet to TI format .. 19

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SM73308MG/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	SN	Level-1-260C-UNLIM	-40 to 125	S08	Samples
SM73308MGE/NOPB	ACTIVE	SC70	DCK	5	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	SN	Level-1-260C-UNLIM	-40 to 125	S08	Samples
SM73308MGX/NOPB	ACTIVE	SC70	DCK	5	3000	Green (RoHS \& no Sb/Br)	SN	Level-1-260C-UNLIM	-40 to 125	S08	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SM73308MG/NOPB | SC70 | DCK | 5 | 1000 | 178.0 | 8.4 | 2.25 | 2.45 | 1.2 | 4.0 | 8.0 | Q3 |
| SM73308MGE/NOPB | SC70 | DCK | 5 | 250 | 178.0 | 8.4 | 2.25 | 2.45 | 1.2 | 4.0 | 8.0 | Q3 |
| SM73308MGX/NOPB | SC70 | DCK | 5 | 3000 | 178.0 | 8.4 | 2.25 | 2.45 | 1.2 | 4.0 | 8.0 | Q3 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SM73308MG/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
SM73308MGE/NOPB	SC70	DCK	5	250	210.0	185.0	35.0
SM73308MGX/NOPB	SC70	DCK	5	3000	210.0	185.0	35.0

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^1]: (1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_{J}=T_{A}$.
 (2) All limits are ensured by testing or statistical analysis.
 (3) Typical values represent the most likely parametric norm.
 (4) The number specified is the slower of positive and negative slew rates.

[^2]: (1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_{J}=T_{A}$.
 (2) All limits are ensured by testing or statistical analysis.
 (3) Typical values represent the most likely parametric norm.
 (4) Limits ensured by design.
 (5) R_{L} is connected to mid-supply. The output voltage is set at 200 mV from the rails. $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}+0.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+}-0.2 \mathrm{~V}$
 (6) Continuous operation of the device with an output short circuit current larger than 35 mA may cause permanent damage to the device.

[^3]: (1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_{J}=T_{A}$.
 (2) All limits are ensured by testing or statistical analysis.
 (3) Typical values represent the most likely parametric norm.
 (4) The number specified is the slower of positive and negative slew rates.

