

AN–1239 LM2642 Evaluation Board

1 Introduction

The LM2642 evaluation board has been developed to aid in the design and evaluation of dc/dc converters based on the LM2642 controller IC. As shown in Figure 1, the evaluation board is configured to provide two outputs of 2.5 V/2A and 1.8 V/2A from an input range of 4.5 V to 20 V. The corresponding bill of materials is given in Table 1. Figure 2 and Figure 3 show the evaluation board layout.

2 Optional Components

The evaluation board provides several optional component pads for flexibility in changing components.

For more information regarding device operation and component selection, see the *LM26420/LM26420Q Dual 2.0A, High Frequency Synchronous Step-Down DC-DC Regulator Data Sheet* (SNVS579).

In switching power supplies, the rapid increase of drain current in the top FET coupled with parasitic inductance generates unwanted $L\Delta i/\Delta t$ noise spikes at the source node of the FET (SWx node) and also at the V_{IN} node.

The resistor in series with the SWx pin (**R6**, **R11**) slows down the gate drive (HDRVx), thus slowing the rise and fall time of the top FET, yielding a longer drain current transition time and reducing switch node ringing. Top FET switching losses will increase with higher resistance values. Small resistors (1-5 Ω) can also be placed in series with the CBOOTx pin (**R7**, **R12**). A CBOOT resistor will slow the rise time of the FET, to reduce switch node ringing.

To maintain stable regulation, the FBx pins should remain free of noise. The LM2642 evaluation board has components **C15** and **C22** installed to suppress noise that may be picked up by the FBx traces. Notice that both of these capacitors are placed physically close to the FBx nodes. Pads **C17** and **C23** are provided for additional output capacitors.

3 Powering Up

Before powering up the LM2642 evaluation board, all external connections should be verified. The power supply input must be turned off and connected with proper polarity to the VIN post, also marked as **P1**. The channel 1 and channel 2 loads should be connected at the V_{OUT} posts, marked as **P2** and **P3**. Any type of load is acceptable up to 2A. The load can be on or off at startup. Output voltage can be monitored with a DVM or oscilloscope by connecting probes to the V_{OUT} posts, P2 and P3. The GND posts are provided primarily for scope probe ground connections. The PGOOD signal can be monitored with a scope probe or DVM at the **PGOOD** test pin.

Once all connections have been verified, input power can be applied. The input voltage must be set between 4.5 V and 20 V. The enable switches for each channel, **ON1** and **ON2**, can be used to turn on the evaluation board once the input power is on. Each channel may be enabled or disabled independently. The switches may also be left on for enabling the evaluation board directly from the power supply input.

1

Figure 1. Complete Evaluation Board Schematic

Table 1.	Bill of	Materials
----------	---------	------------------

Part #	Value	Supplier	
C1	Cer Cap 1F 50 V Y5V 0805	Taiyo Yuden UMK212F105ZG	
C2	Cer Cap 47 nF 50 V 10% 0805	Vishay VJ0805Y473KXA	
C3	Cer Cap 10 nF 50 V 10% 0805	Vishay VJ0805Y103KXA	
C4	Cer Cap 10 nF 50 V 10% 0805	Vishay VJ0805Y103KXA	
C5	Cer Cap 220 pF 25 V 10% 0805	Vishay VJ0805Y221KXA	
C6	Cer Cap 6.8 nF 50 V 10% 0805	Vishay VJ0805Y682KXA	
C7	Cer Cap 6.8 nF 50 V 10% 0805	Vishay VJ0805Y682KXA	
C8	Cer Cap 470 pF 25 V 10% 0805	Vishay VJ0805Y471KXA	
C9	Cer Cap 4.7 µF 10 V X7R 1206	Taiyo Yuden LMK316BJ475ML	
C10	Cer Cap 1 µF 10 V X7R 0805	Taiyo Yuden LMK212BJ105ZG	
C11	Cer Cap 10 nF 50 V 10% 0805	Vishay VJ0805Y103KXA	
C12	Cer Cap 10 µF 35 V Y5V 1210	Taiyo Yuden GMK325F106ZH	
C13	Electro Cap 33 µF 50 V	Panasonic EEU-FC1H330	

SNVA055H–July 2002–Revised April 2013 Submit Documentation Feedback

www.ti.com

Part #	Value	Supplier	
C14	Cer Cap 0.1 µF 50 V 10% 0805	Vishay VJ0805Y104KXA	
C15	Cer Cap 0.1 µF 50 V 10% 0805	Vishay VJ0805Y104KXA	
C16	Cap-SP 150 µF 6.3 V 20%	Panasonic EEFUEOJ151R	
C17	Not Installed		
C18	Cer Cap 10 nF 50 V 10% 0805	Vishay VJ0805Y103KXA	
C19	Cer Cap 10 µF 35 V Y5V 1210	Taiyo Yuden GMK325F106ZH	
C20	Electro Cap 33 µF 50 V	Panasonic EEU-FC1H330	
C21	Cer Cap 0.1 µF 50 V 10% 0805	Vishay VJ0805Y104KXA	
C22	Cer Cap 0.1 µF 50 V 10% 0805	Vishay VJ0805Y104KXA	
C23	Not Installed		
C24	Cap-SP 150 µF 6.3 V 20%	Panasonic EEFUEOJ151R	
D1	Switching Diode-Dual 70 V 200 mA BAW56F	Fairchild BAW56F	
D2	Schottky Diode 40 V 1A	On Semiconductor MBRS140T31A	
D3	Schottky Diode 40 V 1A	On Semiconductor MBRS140T31A	
L1	Inductor 6 µH	Sumida CEP125-6R0MC	
L2	Inductor 4.3 µH	Sumida CEP125-4R3MC	
Q1	Si9936DY	Vishay	
Q2	Si9936DY	Vishay	
R1	Res 220 kΩ 0.1W 5% 0805	Vishay CRCW0805224J	
R2	Res 20 kΩ 0.1W 5% 0805	Vishay CRCW0805203J	
R3	Res 20 kΩ 0.1W 5% 0805	Vishay CRCW0805203J	
R4	Res 4.7 Ω 0.1W 5% 0805	Vishay CRCW08054R7J	
R5	Res 13.7 kΩ 0.1W 1% 0805	Vishay CRCW08051372F	
R6	Res 4.7 Ω 0.1W 5% 0805	Vishay CRCW08054R7J	
R7	Res 0 Ω 0.1W 5% 0805	Vishay CRCW08050RJ	
R8	Res 20.5 kΩ 0.1W 1% 0805	Vishay CRCW08052052F	
R9	Res 20 kΩ 0.1W 1% 0805	Vishay CRCW08052002F	
R10	Res 13.7 kΩ 0.1W 1% 0805	Vishay CRCW08051372F	
R11	Res 4.7 Ω 0.1W 5% 0805	Vishay CRCW08054R7J	
R12	Res 0 Ω 0.1W 5% 0805	Vishay CRCW08050RJ	
R13	Res 9.09 kΩ 0.1W 1% 0805	Vishay CRCW08059092F	
R14	Res 20 kΩ 0.1W 1% 0805	Vishay CRCW08052002F	
S1	Switch SPST 0.4VA 28 V AC/DC A12AB	NKK A12AB	
S2	Switch SPST 0.4VA 28 V AC/DC A12AB	NKK A12AB	

3

Powering Up

www.ti.com

Figure 2. Top Layer

Figure 3. Bottom Layer

4

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated