

SN74LVC2G02

SCES194N - APRIL 1999-REVISED MAY 2019

SN74LVC2G02 Dual 2-Input Positive-NOR Gate

Features

- Available in the Texas Instruments NanoFree™ package
- Supports 5-V V_{CC} operation
- Inputs accept voltages to 5.5 V
- Max t_{pd} of 4.9 ns at 3.3 V
- Low power consumption, 10-μA Max I_{CC}
- ±24-mA Output drive at 3.3 V
- Typical V_{OLP} (output ground bounce) $<0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (output V_{OH} undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} supports partial-power-down mode operation
- Latch-up performance exceeds 100 mA er JESD 78, class II
- ESD protection exceeds JESD 22
 - 2000-V Human-body model (A114-A)
 - 1000-V Charged-device model (C101)

Applications

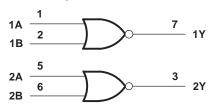
- AV receiver
- Audio dock: portable
- Blu-ray player and home theater
- Embedded PC
- MP3 Player/recorder (portable audio)
- Personal digital assistant (PDA)
- Power: Telecom/server AC/DC supply: single controller: analog and digital
- Solid state drive (SSD): client and enterprise
- TV: LCD/digital and high-definition (HDTV)
- Tablet: enterprise
- Video analytics: server
- Wireless headset, keyboard, and mouse

3 Description

This dual 2-input positive-NOR gate is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC2G02 device performs the Boolean function $Y = \overline{A + B}$ or $Y = \overline{A} \times \overline{B}$ in positive logic.

NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.


This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Device Information⁽¹⁾

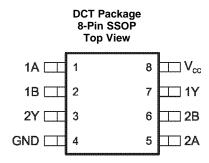
PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LVC2G02DCT	SSOP (8)	2.95 mm × 2.8 mm
SN74LVC2G02DCU	VSSOP (8)	2.3 mm × 2.0 mm
SN74LVC2G02YZP	DSBGA (8)	1.91 mm × 0.91 mm

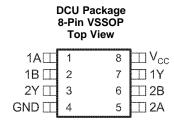
(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

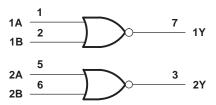
1	Features 1		8.1 Overview	9
2	Applications 1		8.2 Functional Block Diagram	9
3	Description 1		8.3 Feature Description	9
4	Revision History2		8.4 Device Functional Modes	9
5	Pin Configuration and Functions	9	Application and Implementation	10
6	Specifications4		9.1 Application Information	10
U	6.1 Absolute Maximum Ratings		9.2 Typical Application	10
	6.2 ESD Ratings	10	Power Supply Recommendations	
	6.3 Recommended Operating Conditions	11	Layout	11
	6.4 Thermal Information		11.1 Layout Guidelines	
	6.5 Electrical Characteristics		11.2 Layout Example	
	6.6 Switching Characteristics	12	Device and Documentation Support	12
	6.7 Switching Characteristics		12.1 Community Resources	12
	6.8 Operating Characteristics		12.2 Trademarks	12
	6.9 Typical Characteristics		12.3 Electrostatic Discharge Caution	12
7	Parameter Measurement Information 8		12.4 Glossary	12
8	Detailed Description9	13	Mechanical, Packaging, and Orderable Information	12


4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision M (November 2013) to Revision N	Page
Updated document to new TI data sheet format.	1
Added Device Information table.	1
Added T _J (Max) spec to Abs Max Ratings table	4
Moved T _{stg} spec to Abs Max Ratings table.	4
Changes from Revision L (April 1999) to Revision M	Page
Removed Ordering Information table.	1

5 Pin Configuration and Functions


YZP Package 8-Pin DSBGA Bottom View

GND	0450	2A
2Y	0360	2B
1B	0270	1Y
1A	0180	Vc

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
1A	1	Input	Channel 1 input A
1B	2	Input	Channel 1 input B
2Y	3	Output	Channel 2 output Y
GND	4	_	Ground
2A	5	Input	Channel 2 input A
2B	6	Input	Channel 2 input B
1Y	7	Output	Channel 1 output Y
VCC	8	_	Positive supply

Logic Diagram (Positive Logic)

Copyright © 1999–2019, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the	high-impedance or power-off state (2)	-0.5	6.5	V
Vo	Voltage range applied to any output in the	high or low state (2)(3)	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		– 50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1500	V

Product Folder Links: SN74LVC2G02

Submit Documentation Feedback

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V	Complexional	Operating	1.65	5.5	V
vcc	Supply voltage	Data retention only	1.5		V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
V	High level input valtage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
VIH	High-level input voltage	V _{CC} = 3 V to 3.6 V	2		V
V _{IH} High-level input voltage V _{IL} Low-level input voltage V _I Input voltage V _O Output voltage I _{OH} High-level output current	V _{CC} = 4.5 V to 5.5 V	0.7 × V _{CC}			
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}	
V	Input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
VIL	Low-level input voltage	V _{CC} = 3 V to 3.6 V		0.8	V
		V _{CC} = 4.5 V to 5.5 V		0.3 × V _{CC}	
V_{I}	Input voltage	•	0	5.5	V
V_{O}	Output voltage		0	V_{CC}	V
-		V _{CC} = 1.65 V		-4	
	Input voltage Output voltage High-level output current		-8		
I_{OH}		output current		-16	mA
		V _{CC} = 3 V		-24	
		$V_{CC} = 4.5 \text{ V}$		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
I_{OL}	Low-level output current	V _{CC} = 3 V		16	mA
		V _{CC} = 3 V		24	
		$V_{CC} = 4.5 \text{ V}$		32	
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
$\Delta t/\Delta v$	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$		5	
T _A	Operating free-air temperature		-40	125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

6.4 Thermal Information

			SN74LVC2G02					
	THERMAL METRIC ⁽¹⁾	DCT (SSOP)	DCU (VSSOP)	YZP (DSBGA)	UNIT			
		8 PINS	8 PINS	8 PINS				
$R_{\theta JA}$	Junction-to-ambient thermal resistance	182.8	201.8	99.9	°C/W			
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	87.8	93.3	1.0	°C/W			
$R_{\theta JB}$	Junction-to-board thermal resistance	97.9	124.0	27.8	°C/W			
ΨЈТ	Junction-to-top characterization parameter	20.7	32.3	0.4	°C/W			
ΨЈВ	Junction-to-board characterization parameter	96.6	123.6	27.8	°C/W			
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	°C/W			

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

Product Folder Links: SN74LVC2G02

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

		.,	-40°C	to 85°C	-40°C	C to 125°C		
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾ MAX	MIN	TYP ⁽¹⁾	MAX	UNIT
	I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} - 0.1		V _{CC} - 0.1			
	I _{OH} = -4 mA	1.65 V	1.2		1.2			
V	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9		1.9			V
V _{OH}	I _{OH} = -16 mA	3 V	2.4		2.4			V
	$I_{OH} = -24 \text{ mA}$	3 V	2.3		2.3			
	$I_{OH} = -32 \text{ mA}$	4.5 V	3.8		3.8			
	I _{OL} = 100 μA	1.65 V to 5.5 V		0.1			0.1	
	I _{OL} = 4 mA	1.65 V		0.45			0.45	
V	I _{OL} = 8 mA	2.3 V		0.3			0.3	V
V _{OL}	I _{OL} = 16 mA	3 V		0.4			0.4	V
	I _{OL} = 24 mA	3 V		0.55			0.75	
	I _{OL} = 32 mA	4.5 V		0.55			0.75	
I _I A or B inputs	V _I = 5.5 V or GND	0 to 5.5 V		±5			±5	μΑ
I _{off}	V_I or $V_O = 5.5 \text{ V}$	0		±10			±10	μА
I _{CC}	$V_I = 5.5 \text{ V or GND}, \qquad I_O = 0$	1.65 V to 5.5 V		10			10	μА
Δl _{CC}	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	3 V to 5.5 V		500			500	μА
C _i	$V_I = V_{CC}$ or GND	3.3 V		5		5		pF

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

6.6 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

						-40°C	to 85°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V				V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or B	Υ	3.2	8.9	1	5.4	1	4.9	1	4.4	ns

6.7 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

						−40°C to	125°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or B	Y	3.2	10.9	1	6.4	1	5.9	1	5.4	ns

6.8 Operating Characteristics

 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 1.8 V V _{CC} = 2.5 V V _{CC}		V _{CC} = 5 V	UNIT	
	FARANIETER	TEST CONDITIONS	TYP	TYP	TYP	TYP	UNIT	
C_{pd}	Power dissipation capacitance	f = 10 MHz	18	18	19	22	pF	

Product Folder Links: SN74LVC2G02

6.9 Typical Characteristics

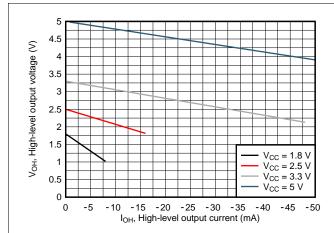
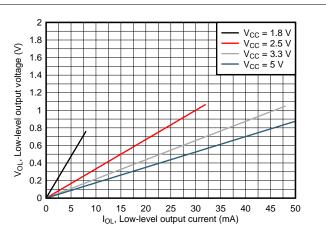
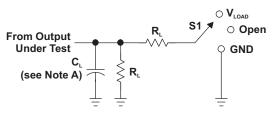


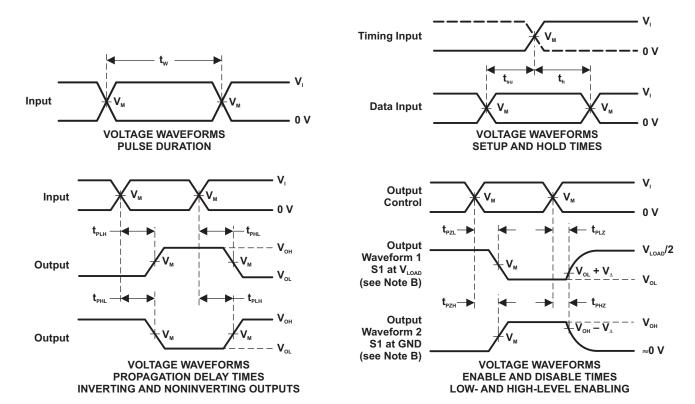
Figure 1. Simulated typical high-level output voltage (V_{OH}) across high-level output current (I_{OH}) at common supply values




Figure 2. Simulated typical low-level output voltage (V_{OL}) across low-level output current (I_{OL}) at common supply values

Copyright © 1999–2019, Texas Instruments Incorporated

Submit Documentation Feedback


7 Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

.,	INPUTS			v			.,
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _L	R _⊾	V _Δ
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
$2.5~\textrm{V}~\pm~0.2~\textrm{V}$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$3.3~V~\pm~0.3~V$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

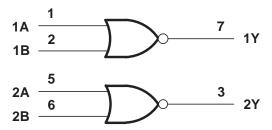
NOTES: A. C, includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{o} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} .
- F. $t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}.$
- G. t_{PlH} and t_{PHl} are the same as t_{pol}
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 1999–2019, Texas Instruments Incorporated



8 Detailed Description

8.1 Overview

The SN74LVC2G02 device contains two 2-input positive-NOR gates and each gate performs the Boolean function $Y = \overline{A} + B$ or $Y = \overline{A} \bullet \overline{B}$. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

8.3 Feature Description

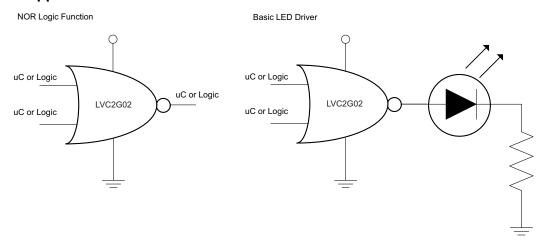
- Wide operating voltage range.
 - Operates from 1.65 V to 5.5 V.
- · Allows down voltage translation.
- Inputs accept voltages to 5.5 V.
- I_{off} feature allows voltages on the inputs and outputs, when V_{CC} is 0 V.

8.4 Device Functional Modes

Table 1. Function Table (Each Gate)

INP	JTS	OUTPUT
Α	В	Y
Н	Χ	L
Χ	Н	L
L	L	Н

Copyright © 1999–2019, Texas Instruments Incorporated



9 Application and Implementation

9.1 Application Information

The SN74LVC2G02 is a high-drive CMOS device that can be used for implement NOR logic with a high output drive, such as an LED application. It can produce 24-mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high speed applications up to 100 Mhz. The inputs are 5.5-V tolerant allowing translation down to $V_{\rm CC}$.

9.2 Typical Application

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions:
 - Rise time and fall time specs. See $(\Delta t/\Delta V)$ in the *Recommended Operating Conditions* table.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in the Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V_I max) in the Recommended Operating
 Conditions table at any valid V_{CC}.

2. Recommend Output Conditions:

- Load currents should not exceed (I_O max) per output and should not exceed total current (continuous current through V_{CC} or GND) for the part. These limits are located in the *Absolute Maximum Ratings* table.
- Outputs should not be pulled above V_{CC}.

Submit Documentation Feedback

Typical Application (continued)

9.2.3 Application Curves

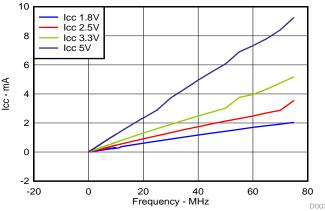
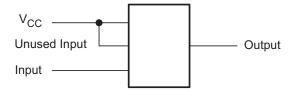


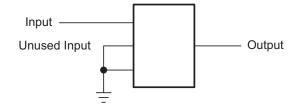
Figure 4. I_{CC} vs Frequency

10 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in the *Recommended Operating Conditions* table.

Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F capacitor is recommended. If there are multiple VCC pins, then a 0.01- μ F or 0.022- μ F capacitor is recommended for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


11 Layout


11.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or VCC, whichever makes more sense or is more convenient.

11.2 Layout Example

Product Folder Links: SN74LVC2G02

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Lise

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

NanoFree, E2E are trademarks of Texas Instruments.

12.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74LVC2G02

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC2G02DCTR	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C02 (R, Z)	Samples
SN74LVC2G02DCTRE4	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C02 (R, Z)	Samples
SN74LVC2G02DCUR	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C02Q, C02R)	Samples
SN74LVC2G02DCUT	ACTIVE	VSSOP	DCU	8	250	Green (RoHS & no Sb/Br)	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C02Q, C02R)	Samples
SN74LVC2G02YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 125	CBN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

6-Feb-2020

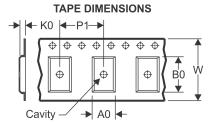
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC2G02:

● Enhanced Product: SN74LVC2G02-EP

NOTE: Qualified Version Definitions:


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

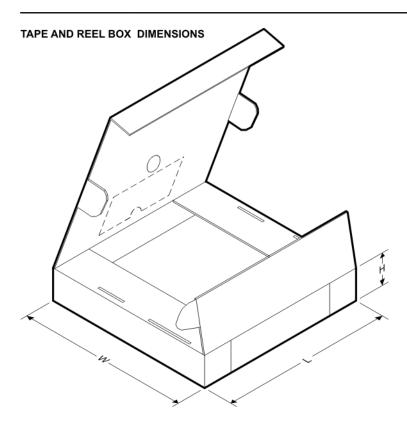
PACKAGE MATERIALS INFORMATION

www.ti.com 17-Apr-2020

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

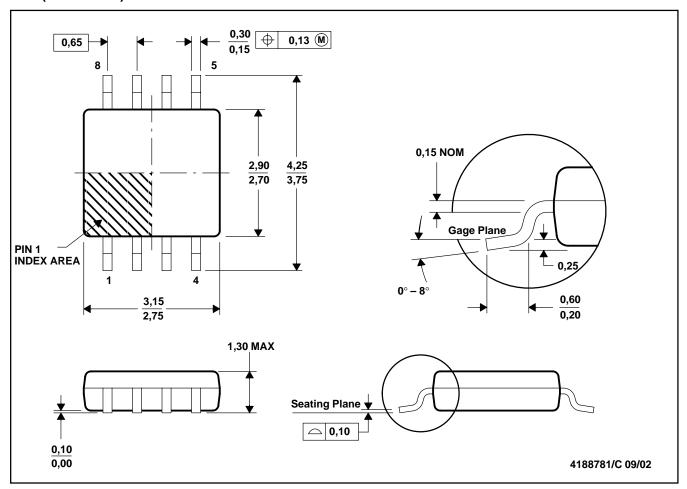


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC2G02DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC2G02DCUR	VSSOP	DCU	8	3000	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G02DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G02DCUT	VSSOP	DCU	8	250	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G02YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Apr-2020

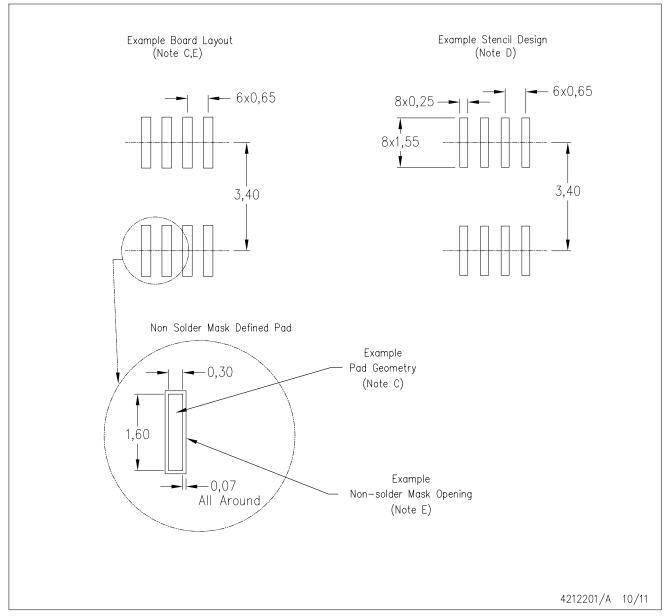


*All dimensions are nominal

7 til diffictionolog are floriffial							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC2G02DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
SN74LVC2G02DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC2G02DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74LVC2G02DCUT	VSSOP	DCU	8	250	202.0	201.0	28.0
SN74LVC2G02YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0

DCT (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

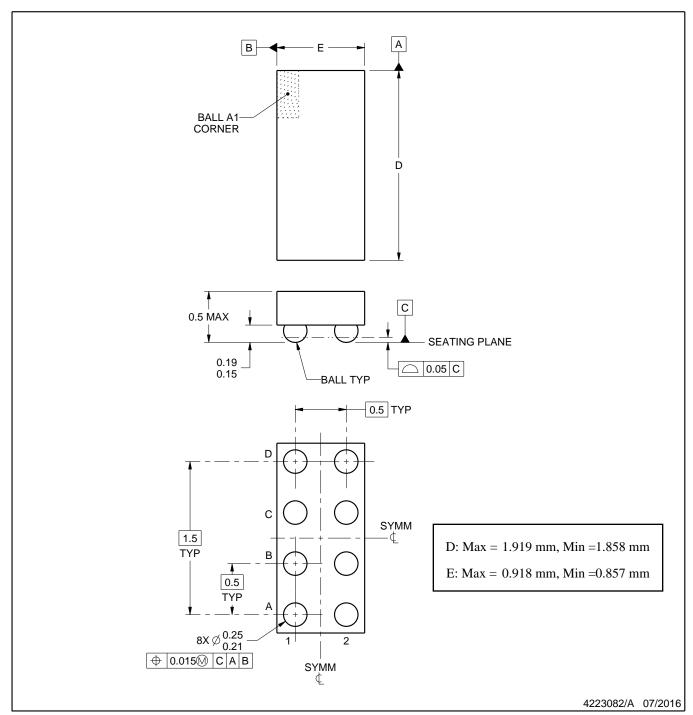


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. Falls within JEDEC MO-187 variation DA.

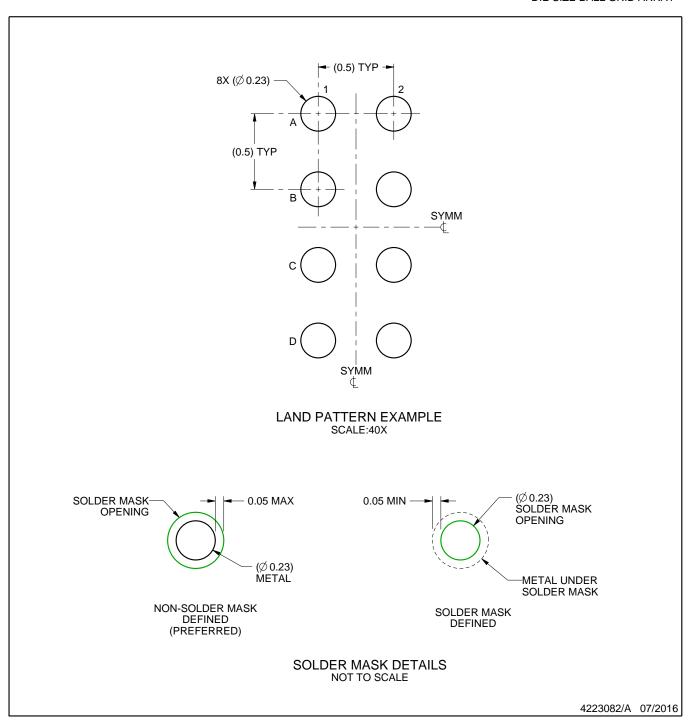
DCT (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

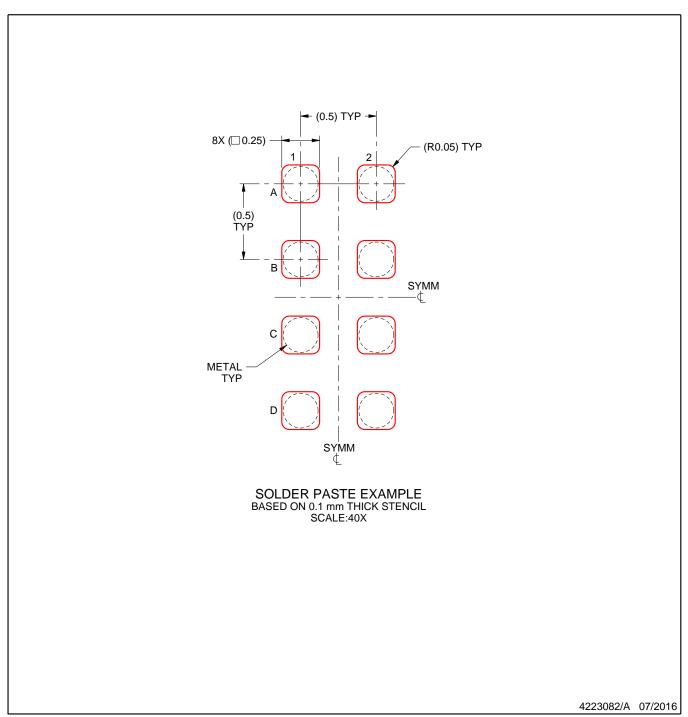
DIE SIZE BALL GRID ARRAY



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

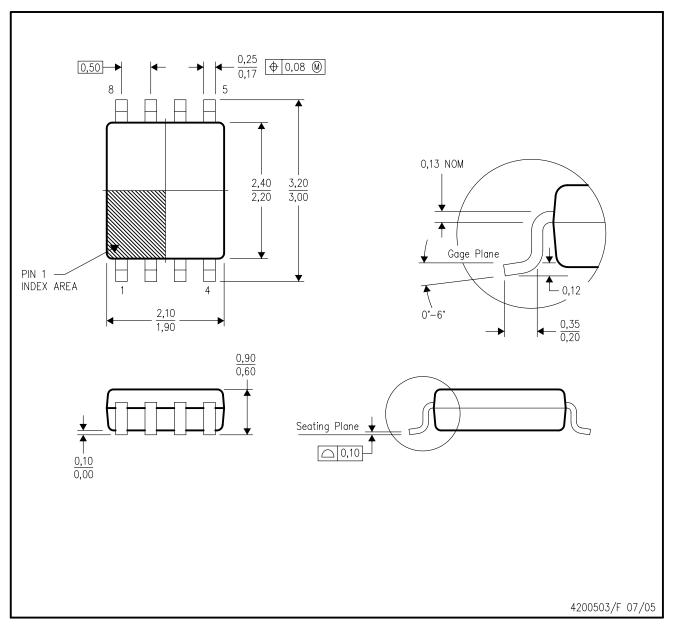
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

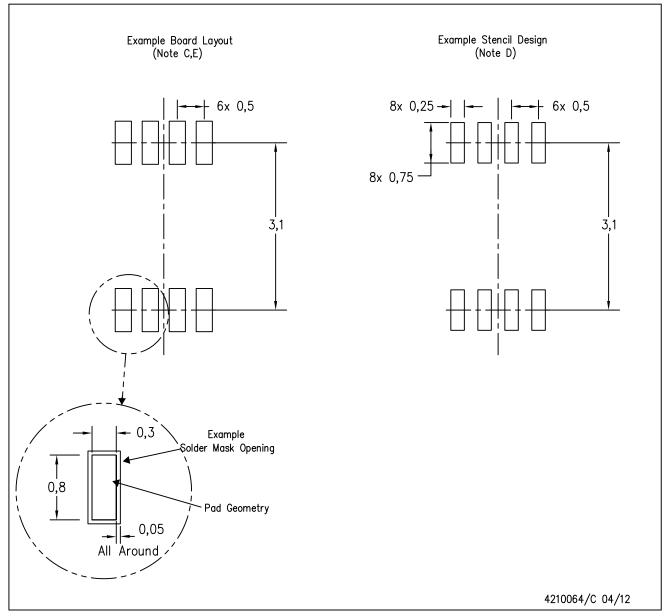
DIE SIZE BALL GRID ARRAY


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated