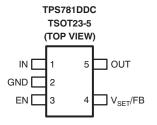
www.ti.com

150mA, Low-Dropout Regulator, Ultralow-Power, I_Q 1 μ A with Pin-Selectable, Dual-Level Output Voltage

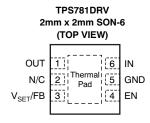
FEATURES


- Low I₀: 1μA
- 150mA, Low-Dropout Regulator with Pin-Selectable Dual Voltage Level Output
- Low Dropout: 200mV at 150mA
- 3% Accuracy Over Load/Line/Temperature
- Available in Dual-Level, Fixed Output Voltages from 1.5V to 4.2V Using Innovative Factory EPROM Programming
- Available in an Adjustable Version from 1.22V to 5.25V or a Dual-Level Output Version
- V_{SET} Pin Toggles Output Voltage Between Two Factory-Programmed Voltage Levels
- Stable with a 1.0μF Ceramic Capacitor
- Thermal Shutdown and Overcurrent Protection
- CMOS Logic Level-Compatible Enable Pin
- Available in DDC (TSOT23-5) or DRV (2mm × 2mm SON-6) Package Options

APPLICATIONS

- TI MSP430 Attach Applications
- Power Rails with Programming Mode
- Dual Voltage Levels for Power-Saving Mode
- Wireless Handsets, Smartphones, PDAs, MP3
 Players, and Other Battery-Operated Handheld
 Products

DESCRIPTION


The TPS781 family of low-dropout (LDO) regulators offer the benefits of ultralow power ($I_Q = 1\mu A$), miniaturized packaging (2×2 SON-6), and selectable dual-level output voltage levels. An adjustable version is also available, but does not have the capability to shift voltage levels.

The V_{SET} pin allows the end user to switch between two voltage levels *on-the-fly* through a microprocessor-compatible input. This LDO is designed specifically for battery-powered applications where dual-level voltages are needed. With ultralow I_Q (1 μ A), microprocessors, memory cards, and smoke detectors are ideal applications for this device.

The ultralow-power and selectable dual-level output voltages allow designers to customize power consumption for specific applications. Designers can now shift to a lower voltage level in a battery-powered design when the microprocessor is in sleep mode, further reducing overall system power consumption. The two voltage levels are preset at the factory through a unique architecture using an EPROM. The EPROM technique allows for numerous output voltage options between V_{SET} low (1.5V to 4.2V) and V_{SET} high (2.0V to 3.0V) in the fixed output version only. Consult with your local factory representative for exact voltage options and ordering information; minimum order quantities may apply.

The TPS781 series are designed to be compatible with the TI MSP430 and other similar products. The enable pin is compatible with standard CMOS logic. This LDO is stable with any output capacitor greater than 1.0µF. Therefore, implementations of this device require minimal board space because of miniaturized packaging and a potentially small output capacitor. The TPS781 series $I_{\rm Q}$ (1µA) also come with thermal shutdown and current limit to protect the device during fault conditions. All packages have an operating temperature range of $T_{\rm J}=-40\,^{\circ}{\rm C}$ to +125°C. For high-performance applications requiring a dual-level voltage option, consider the TPS780 series, with an $I_{\rm Q}$ of 500nA and dynamic voltage scaling.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)(2)

PRODUCT	V _{out}
TPS781vvvxxxyyyz	VVV is the nominal output voltage for $V_{OUT(HIGH)}$ and corresponds to V_{SET} pin low. XXX is the nominal output voltage for $V_{OUT(LOW)}$ and corresponds to V_{SET} pin high. YYY is the package designator. Z is the tape and reel quantity (R = 3000, T = 250). Adjustable version ⁽³⁾⁽⁴⁾

- (1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Additional output voltage combinations are available on a quick-turn basis using innovative, factory EPROM programming. Minimum-order quantities apply; contact your sales representative for details and availability.
- (3) To order the adjustable version, use TPS78101YYYZ.
- (4) The device is either fixed voltage, dual-level V_{OUT}, or adjustable voltage only. Device design does not permit a fixed and adjustable output simultaneously.

ABSOLUTE MAXIMUM RATINGS(1)

At $T_J = -40^{\circ}$ C to +125°C, unless otherwise noted. All voltages are with respect to GND.

PARAMETER		TPS781 Series	UNIT			
Input voltage rang	ge, V _{IN}	-0.3 to +6.0 V				
Enable and V _{SET}	voltage range, V _{EN} and V _{VSET}	-0.3 to V _{IN} + 0.3 ⁽²⁾ V				
Output voltage ra	nge, V _{OUT}	-0.3 to V _{IN} + 0.3V V				
Maximum output	current, I _{OUT}	Internally limited				
Output short-circu	uit duration	Indefinite				
Total continuous	power dissipation, P _{DISS}	See the Dissipation Ration	ngs table			
EOD actions	Human body model (HBM)	2	kV			
ESD rating	Charged device model (CDM)	500	V			
Operating junction	n temperature range, T _J	-40 to +125 °C				
Storage temperat	ure range, T _{STG}	-55 to +150				

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

DISSIPATION RATINGS

BOARD	PACKAGE	$R_{ heta JC}$	$R_{ hetaJA}$	DERATING FACTOR ABOVE T _A = +25°C	T _A < +25°C	T _A = +70°C	T _A = +85°C
High-K ⁽¹⁾	DRV	20°C/W	65°C/W	15.4mW/°C	1540mW	845mW	615mW
High-K ⁽¹⁾	DDC	90°C/W	200°C/W	5.0mW/°C	500mW	275mW	200mW

(1) The JEDEC high-K (2s2p) board used to derive this data was a 3-inch × 3-inch, multilayer board with 1-ounce internal power and ground planes and 2-ounce copper traces on top and bottom of the board.

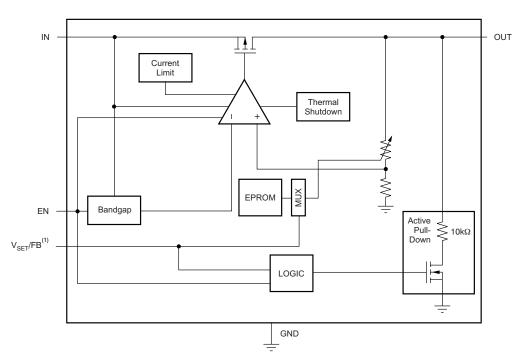
⁽²⁾ V_{EN} and V_{VSET} absolute maximum rating are V_{IN} + 0.3V or +6.0V, whichever is less.

www.ti.com

ELECTRICAL CHARACTERISTICS

Over operating temperature range ($T_J = -40^{\circ}C$ to +125°C), $V_{IN} = V_{OUT(NOM)} + 0.5V$ or 2.2V, whichever is greater; $I_{OUT} = 100\mu A$, $V_{VSET} = V_{EN} = V_{IN}$, $C_{OUT} = 1.0\mu F$, fixed or adjustable, unless otherwise noted. Typical values at $T_J = +25^{\circ}C$.

					TPS	781 Serie	s	
	PARAMETER		TEST CO	MIN	TYP	MAX	UNIT	
V _{IN}	Input voltage range				2.2		5.5	V
		Nominal	$T_J = +25^{\circ}C$, $V_{SET} = hi$	igh/low	-2	±1	+2	%
V _{OUT} ⁽¹⁾	DC output accuracy	Over V _{IN} , I _{OUT} , temperature	$V_{OUT} + 0.5V \le V_{IN} \le 5.5V$, $V_{OMA} \le I_{OUT} \le 150$ mA, $V_{SET} = high/low$		-3.0	±2.0	+3.0	%
V _{FB}	Internal reference ⁽²⁾ (adjustable version or	,	$T_J = +25^{\circ}C, V_{IN} = 4.0$	V, I _{OUT} = 75mA		1.216		V
V _{OUT_RANGE}	Output voltage range (adjustable version or		$V_{IN} = 5.5V, I_{OUT} = 100$	0μA ⁽²⁾	V_{FB}	5.25		V
$\Delta V_{OUT}/\Delta V_{IN}$	Line regulation		$V_{OUT(NOM)} + 0.5V \le V$	$I_{IN} \le 5.5 \text{V}, I_{OUT} = 5 \text{mA}$	-1		+1	%
$\Delta V_{OUT}/\Delta I_{OUT}$	Load regulation		$0mA \le I_{OUT} \le 150mA$		-2		+2	%
V_{DO}	Dropout voltage (5)		$V_{IN} = 95\% V_{OUT(NOM)}$, I _{OUT} = 150mA			250	mV
V _N	Output noise voltage		BW = 100Hz to 100kł $V_{OUT} = 1.2V$, $I_{OUT} = 1$	Hz , $V_{IN} = 2.2V$, mA		86		μV_{RMS}
V _{HI}	V _{SET} high (output V _{OU} selected), or EN high	JT(LOW) (enabled)			1.2		V_{IN}	V
V _{LO}	V _{SET} low (output V _{OU} -selected), or EN low (т(нідн) (disabled)			0		0.4	V
I _{CL}	Output current limit		$V_{OUT} = 0.90 \times V_{OUT(N)}$	150	230	400	mA	
	I _{GND} Ground pin current		I _{OUT} = 0mA		1.0	1.3	μΑ	
'GND			$I_{OUT} = 150 \text{mA}$			8		μΑ
I _{SHDN}	Shutdown current (I _{GI}	_{ND})	$V_{EN} \le 0.4V, 2.2V \le V_{I}$ $T_{J} = -40^{\circ}C \text{ to } +100^{\circ}C$		18	130	nA	
I _{VSET}	V _{SET} pin current		$V_{EN} = V_{VSET} = 5.5V$			70	nA	
I _{EN}	EN pin current		$V_{EN} = V_{VSET} = 5.5V$			40	nA	
I _{FB}	FB pin current ⁽⁶⁾ (adjustable version or	nly)	V _{IN} = 5.5V, V _{OUT} = 1.			10	nA	
			$V_{IN} = 4.3V,$	f = 10Hz		40		dB
PSRR	Power-supply rejection	n ratio	$V_{OUT} = 3.3V$,	f = 100Hz		20		dB
			$I_{OUT} = 150mA$	f = 1kHz		15		dB
t _{TR(H→L)}	V_{OUT} transition time (I $V_{OUT} = 97\% \times V_{OUT(H)}$		$V_{OUT_LOW} = 2.2V, V_{OI}$ $I_{OUT} = 10$ mA	_{UT(HIGH)} = 3.3V,		800		μs
t _{TR(L→H)}	V_{OUT} transition time (I $V_{OUT} = 97\% \times V_{OUT(L)}$	low-to-high)	$V_{OUT_HIGH} = 3.3V$, $V_{OUT(LOW)} = 2.2V$, $I_{OUT} = 10$ mA			800		μs
t _{STR}	Startup time ⁽⁷⁾		C _{OUT} = 1.0μF, V _{OUT} = 10% V _{OUT(NOM)} to V _{OUT} = 90% V _{OUT(NOM)}			500		μs
t _{SHDN}	Shutdown time ⁽⁸⁾		I_{OUT} = 150mA, C_{OUT} : V_{OUT} = 90% $V_{OUT(NON)}$	= $1.0\mu\text{F}$, $V_{OUT} = 2.8V$, M) to $V_{OUT} = 10\%$		500 ⁽⁹⁾		μs
T _{SD}	Thermal shutdown ter	mnerature	Shutdown, temperatu	re increasing		+160		°C
'80	omai onataowii tei	mporataro	Reset, temperature de	ecreasing		+140		°C
TJ	Operating junction ter	nperature			-40		+125	°C


⁽¹⁾ The output voltage for V_{SET} = low/high is programmed at the factory.

Adjustable version only.

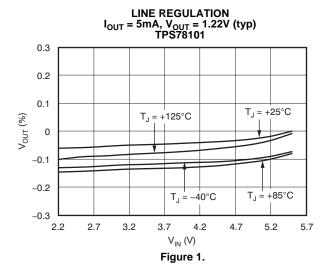
Adjustable version only. No V_{SET} pin on the adjustable version. No dynamic voltage scaling on the adjustable version. V_{DO} is not measured for devices with $V_{OUT(NOM)} < 2.3V$ because minimum $V_{IN} = 2.2V$. The TPS78101 FB pin is tied to V_{OUT} . Adjustable version only. Time from $V_{EN} = 1.2V$ to $V_{OUT} = 90\%$ ($V_{OUT(NOM)}$). Time from $V_{EN} = 0.4V$ to $V_{OUT} = 10\%$ ($V_{OUT(NOM)}$). See *Shutdown* in the *Application Information* section for more details. (5)

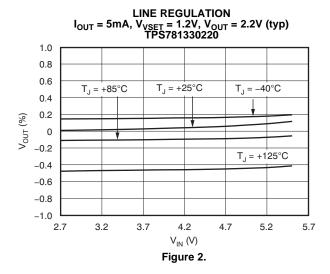
FUNCTIONAL BLOCK DIAGRAM

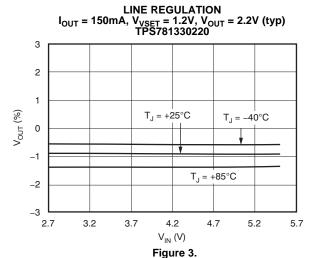
(1) Feedback pin (FB) for adjustable versions; V_{SET} for fixed voltage versions.

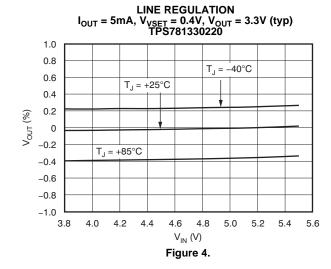
PIN CONFIGURATIONS

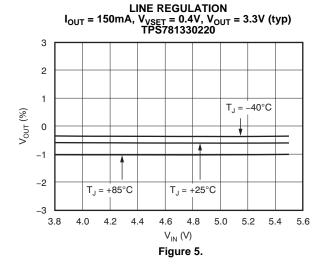
(1) It is recommended that the SON package thermal pad be connected to ground.

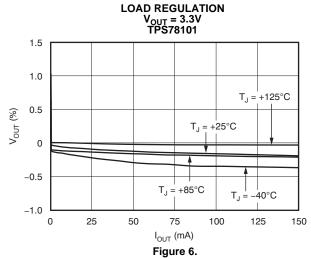

Table 1. TERMINAL FUNCTIONS

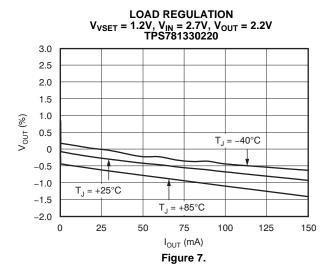

	TERMINAL		
NAME	DRV	DDC	DESCRIPTION
OUT	1	5	Regulated output voltage pin. A small (1µF) ceramic capacitor is needed from this pin to ground to assure stability. See the <i>Input and Output Capacitor Requirements</i> in the Application Information section for more details.
N/C	2		Not connected.
V _{SET} /FB	3	4	Feedback pin (FB) for adjustable versions; V_{SET} for fixed voltage versions. Driving the select pin (V_{SET}) below 0.4V selects preset output voltage high. Driving the V_{SET} pin over 1.2V selects preset output voltage low.
EN	4	3	Driving the enable pin (EN) over 1.2V turns on the regulator. Driving this pin below 0.4V puts the regulator into shutdown mode, reducing operating current to 18nA typical.
GND	5	2	Ground pin.
IN	6	1	Input pin. A small capacitor is needed from this pin to ground to assure stability. Typical input capacitor = $1.0\mu F$. Both input and output capacitor grounds should be tied back to the IC ground with no significant impedance between them.
Thermal pad	Thermal pad		It is recommended that the SON package thermal pad be connected to ground.

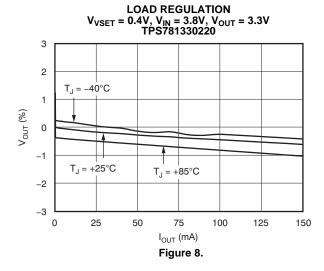


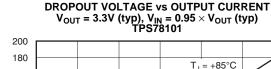

TYPICAL CHARACTERISTICS

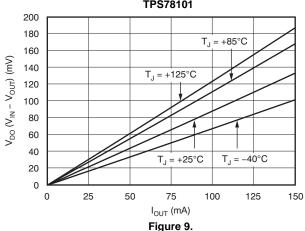

Over the operating temperature range of $T_J = -40^{\circ}C$ to $+125^{\circ}C$, $V_{IN} = V_{OUT(TYP)} + 0.5V$ or 2.2V, whichever is greater; $I_{OUT} = 100\mu A$, $V_{EN} = V_{VSET} = V_{IN}$, $C_{OUT} = 1\mu F$, and $C_{IN} = 1\mu F$, unless otherwise noted.

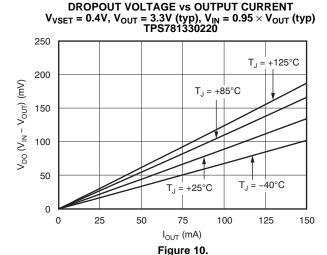


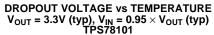


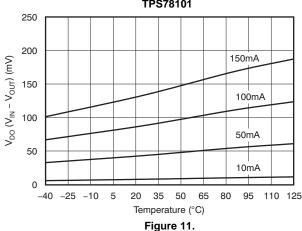







Over the operating temperature range of $T_J = -40^{\circ}C$ to +125°C, $V_{IN} = V_{OUT(TYP)} + 0.5V$ or 2.2V, whichever is greater; $I_{OUT} = 100\mu A$, $V_{EN} = V_{VSET} = V_{IN}$, $C_{OUT} = 1\mu F$, and $C_{IN} = 1\mu F$, unless otherwise noted.





 V_{VSET} = 0.4V, V_{OUT} = 3.3V (typ), V_{IN} = 0.95 \times V_{OUT} (typ) TPS781330220 250 200 150mA

DROPOUT VOLTAGE vs TEMPERATURE

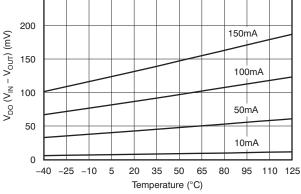
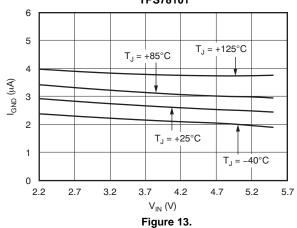
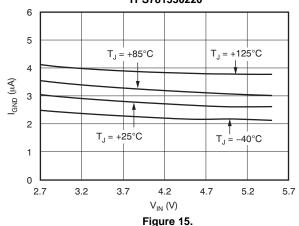
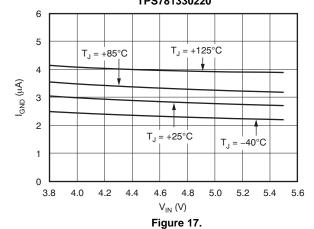
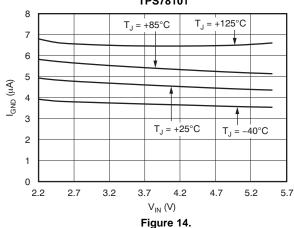



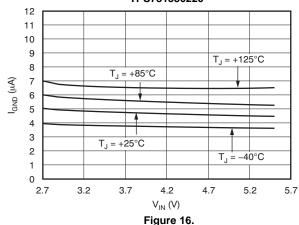
Figure 12.

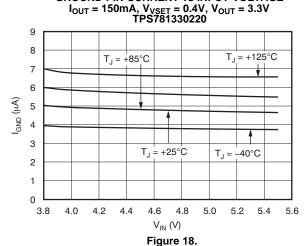


Over the operating temperature range of $T_J = -40^{\circ}C$ to +125°C, $V_{IN} = V_{OUT(TYP)} + 0.5V$ or 2.2V, whichever is greater; $I_{OUT} = 100\mu A$, $V_{EN} = V_{VSET} = V_{IN}$, $C_{OUT} = 1\mu F$, and $C_{IN} = 1\mu F$, unless otherwise noted.

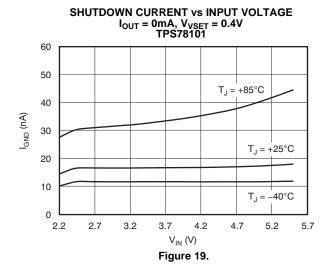

GROUND PIN CURRENT vs INPUT VOLTAGE I_{OUT} = 50mA, V_{OUT} = 1.22V TPS78101

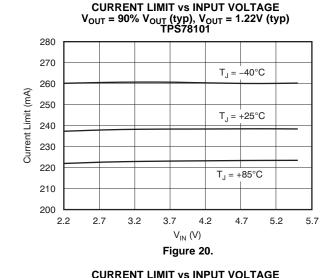

GROUND PIN CURRENT vs INPUT VOLTAGE $I_{OUT} = 50$ mA, $V_{VSET} = 1.2$ V, $V_{OUT} = 2.2$ V TPS781330220

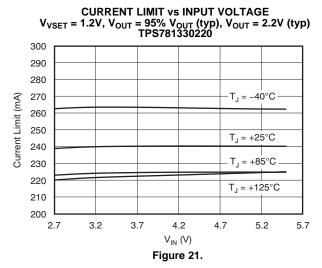

GROUND PIN CURRENT vs INPUT VOLTAGE $I_{OUT} = 50$ mA, $V_{VSET} = 0.4$ V, $V_{OUT} = 3.3$ V TPS781330220

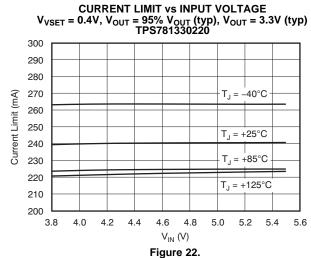

GROUND PIN CURRENT vs INPUT VOLTAGE I_{OUT} = 150mA, V_{OUT} = 1.22V TPS78101

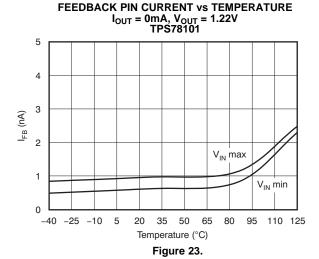
GROUND PIN CURRENT vs INPUT VOLTAGE I_{OUT} = 150mA, V_{VSET} = 1.2V, V_{OUT} = 2.2V TPS781330220

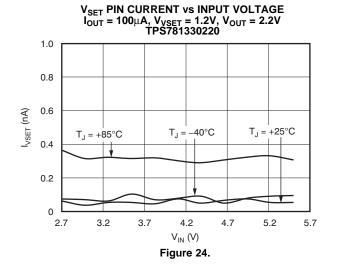

GROUND PIN CURRENT vs INPUT VOLTAGE

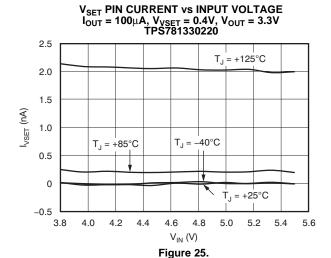


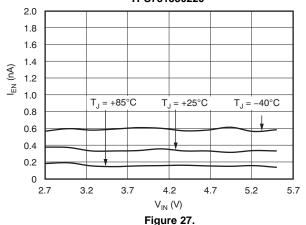

Submit Documentation Feedback

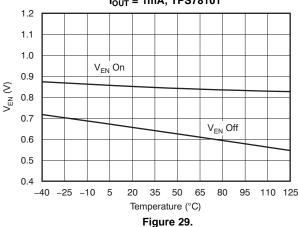


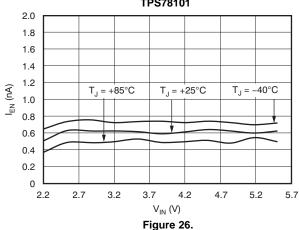

Over the operating temperature range of $T_J = -40^{\circ}C$ to $+125^{\circ}C$, $V_{IN} = V_{OUT(TYP)} + 0.5V$ or 2.2V, whichever is greater; $I_{OUT} = 100\mu A$, $V_{EN} = V_{VSET} = V_{IN}$, $C_{OUT} = 1\mu F$, and $C_{IN} = 1\mu F$, unless otherwise noted.

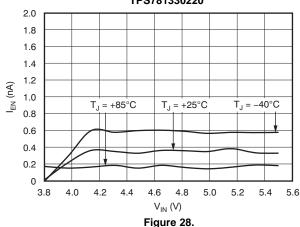







Over the operating temperature range of $T_J = -40^{\circ}C$ to +125°C, $V_{IN} = V_{OUT(TYP)} + 0.5V$ or 2.2V, whichever is greater; $I_{OUT} = 100\mu A$, $V_{EN} = V_{VSET} = V_{IN}$, $C_{OUT} = 1\mu F$, and $C_{IN} = 1\mu F$, unless otherwise noted.


ENABLE PIN CURRENT vs INPUT VOLTAGE I_{OUT} = 100 μ A, V_{SET} = 1.2V, V_{OUT} = 2.2V TPS781330220


ENABLE PIN HYSTERESIS vs TEMPERATURE I_{OUT} = 1mA, TPS78101

ENABLE PIN CURRENT vs INPUT VOLTAGE $I_{OUT} = 1mA$, $V_{OUT} = 1.22V$ TPS78101

ENABLE PIN CURRENT vs INPUT VOLTAGE $I_{OUT} = 100\mu A, V_{VSET} = 0.4V, V_{OUT} = 3.3V$ TPS781330220

ENABLE PIN HYSTERESIS vs TEMPERATURE I_{OUT} = 1mA, TPS781330220

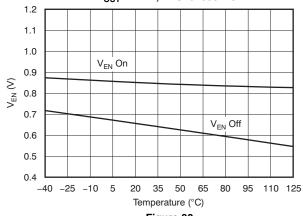
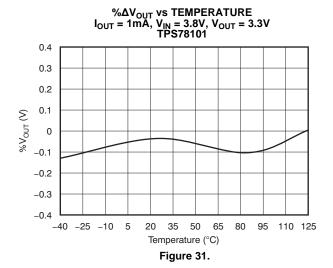



Figure 30.

Over the operating temperature range of $T_J = -40^{\circ}C$ to +125°C, $V_{IN} = V_{OUT(TYP)} + 0.5V$ or 2.2V, whichever is greater; $I_{OUT} = 100\mu A$, $V_{EN} = V_{VSET} = V_{IN}$, $C_{OUT} = 1\mu F$, and $C_{IN} = 1\mu F$, unless otherwise noted.

 $\%\Delta V_{OUT}$ vs TEMPERATURE $V_{VSET} = 0.4V, V_{IN} = 3.8V, V_{OUT} = 3.3V$ (typ) TPS781330220

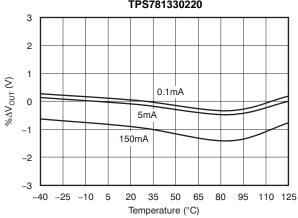


Figure 33.

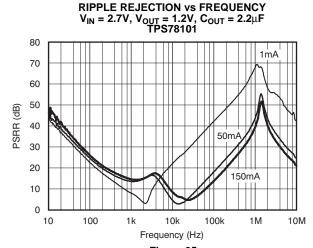
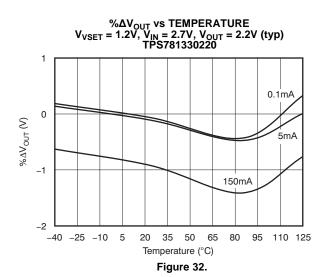



Figure 35.

OUTPUT SPECTRAL NOISE DENSITY vs FREQUENCY C_{IN} = 1 μ F, C_{OUT} = 2.2 μ F, V_{VSET} = 1.2V, V_{IN} = 2.7V TPS781330220

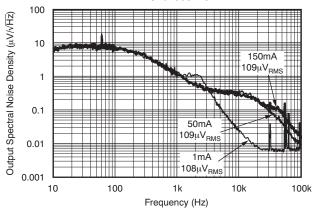


Figure 34.

INPUT VOLTAGE RAMP vs OUTPUT VOLTAGE TPS781330220

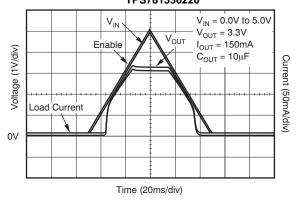


Figure 36.

Over the operating temperature range of $T_J = -40^{\circ}C$ to +125°C, $V_{IN} = V_{OUT(TYP)} + 0.5V$ or 2.2V, whichever is greater; $I_{OUT} = 100\mu A$, $V_{EN} = V_{VSET} = V_{IN}$, $C_{OUT} = 1\mu F$, and $C_{IN} = 1\mu F$, unless otherwise noted.

OUTPUT VOLTAGE vs ENABLE (SLOW RAMP) TPS781330220

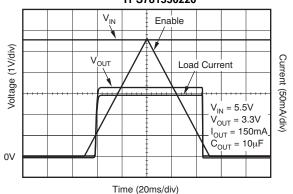
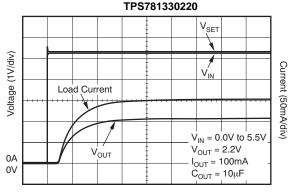
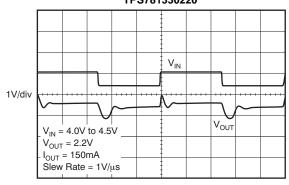



Figure 37.



INPUT VOLTAGE vs DELAY TO OUTPUT

Time (1ms/div)

Figure 38.

LINE TRANSIENT RESPONSE TPS781330220

Time (200µs/div) Figure 39.

LINE TRANSIENT RESPONSE TPS781330220

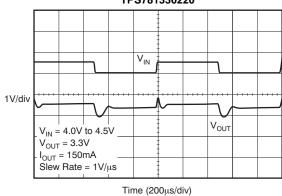


Figure 40.

LOAD TRANSIENT RESPONSE

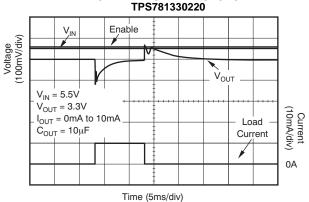


Figure 41.

LOAD TRANSIENT RESPONSE TPS781330220

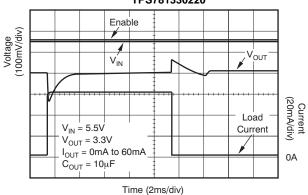
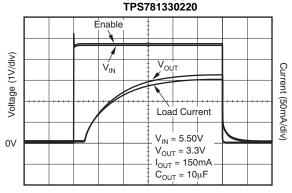
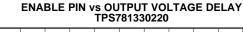
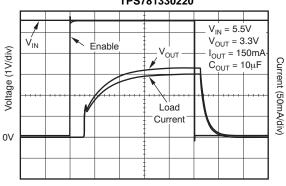



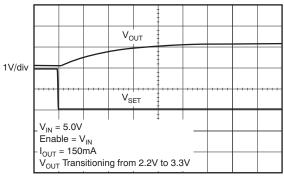
Figure 42.


Over the operating temperature range of $T_J = -40^{\circ}C$ to +125°C, $V_{IN} = V_{OUT(TYP)} + 0.5V$ or 2.2V, whichever is greater; $I_{OUT} = 100\mu A$, $V_{EN} = V_{VSET} = V_{IN}$, $C_{OUT} = 1\mu F$, and $C_{IN} = 1\mu F$, unless otherwise noted.


ENABLE PIN vs OUTPUT VOLTAGE RESPONSE AND OUTPUT CORRENT

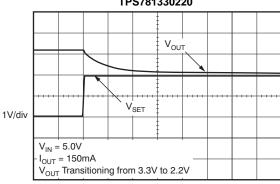
Time (1ms/div)

Figure 43.



Time (1ms/div)

Figure 44.



Time (500µs/div)

Figure 45.

V_{SET} PIN TOGGLE TPS781330220

Time (500µs/div)

Figure 46.

V_{SET} PIN TOGGLE (SLOW RAMP) TPS781330220

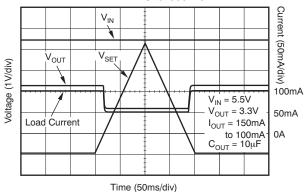


Figure 47.

APPLICATION INFORMATION

APPLICATION EXAMPLES

The TPS781 series of LDOs typically take less than 800µs to transition from a lower voltage of 2.2V to a higher voltage of 3.3V under an output load of 150mA; see Figure 45. Additionally, the TPS781 series contain active pull-down circuitry that automatically pulls charge out of the voltage capacitor to transition the output voltage from the higher voltage to the lower voltage, even with no load connected. Output voltage overshoots undershoots are minimal under this load condition. The TPS781 series typically take less than 800µs to transition from V_{SET} low (3.3V to 2.2V), or V_{SET} high (2.2V to 3.3V); see Figure 45 and Figure 46. Both states of the TPS781 series factory-programmable between 1.5V to 4.2V. Note that during startup or steady-state conditions, it is important that the EN pin and V_{SET} pin voltages never exceed V_{IN} + 0.3V.

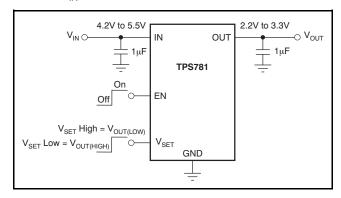


Figure 48. Typical Application Circuit

The TPS781 series is also used effectively in dynamic voltage scaling (DVS) applications. DVS applications are required to dynamically switch between a high operational voltage to a low standby voltage in order to reduce power consumption. Modern multimillion gate microprocessors fabricated with the latest sub-micron processes save power by transitioning to a lower voltage to reduce leakage currents while maintaining content. This architecture enables the microprocessor to transition quickly into an operational state (wake up) without requiring a reload of the states from external memory, or a reboot.

Programming the TPS78101 Adjustable LDO Regulator

The output voltage of the TPS78101 adjustable regulator is programmed using an external resistor divider as shown in Figure 49. The output voltage operating range is 1.2V to 5.1V, and is calculated using Equation 1:

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R_1}{R_2}\right) \tag{1}$$

Where:

 $V_{FB} = 1.216V$ typ (the internal reference voltage)

Resistors R₁ and R₂ should be chosen for approximately 1.2µA divider current. Lower value resistors can be used for improved noise performance, but the solution consumes more power. Higher resistor values should be avoided as leakage current into/out of FB across R₁/R₂ creates an offset voltage that artificially increases/decreases the feedback voltage and thus erroneously decreases/increases V_{OUT}. Table 2 lists several common output voltages and resistor values. The recommended design procedure is to choose R₂ = $1M\Omega$ to set the divider current at 1.2 μ A, and then calculate R₁ using Equation 2:

$$R_1 = \left(\frac{V_{OUT}}{V_{FB}} - 1\right) \times R_2 \tag{2}$$

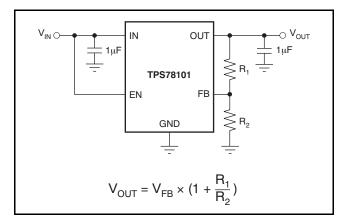


Figure 49. TPS78101 Adjustable LDO Regulator Programming

Table 2. Output Voltage Programming Guide

OUTPUT VOLTAGE	R ₁	R ₂
1.8V	0.499ΜΩ	1ΜΩ
2.8V	1.33ΜΩ	1ΜΩ
5.0V	3.16ΜΩ	1ΜΩ

Powering the MSP430 Microcontroller

Several versions of the TPS781 are ideal for powering the MSP430 microcontroller. Table 3 shows potential applications of some voltage versions.

Table 3. Typical MSP430 Applications

DEVICE	V _{OUT(HIGH)} (TYP)	V _{OUT(LOW)} (TYP)	APPLICATION
TPS781360200	3.6V	2.0V	V _{OUT, MIN} > 1.800V required by many MSP430s. Allows lowest power consumption operation.
TPS781360220	3.6V	2.2V	V _{OUT, MIN} > 2.200V required by some MSP430s FLASH operation.
TPS781360300	3.6V	3.0V	V _{OUT, MIN} > 2.700V required by some MSP430s FLASH operation.
TPS781360220	3.6V	2.2V	V _{OUT, MIN} < 3.600V required by some MSP430s. Allows highest speed operation.

The TPS781 family offers many output voltage versions to allow designers to optimize the supply voltage for the processing speed required of the MSP430. This flexible architecture minimizes the supply current consumed by the particular MSP430 application. The MSP430 total system power can be reduced by substituting the 1 μ A I $_Q$ TPS781 series LDO in place of an existing, older-technology LDO. Additionally, DVS allows for increasing the clock speed in active mode (MSP430 V $_{CC}$ = 3.6V). The 3.6V V $_{CC}$ reduces the MSP430 time in active mode. In low-power mode, MSP430 system power can be further reduced by lowering the MSP430 V $_{CC}$ to 2.2V in sleep mode.

Key features of the TPS781 series are an ultralow quiescent current (1µA), DVS, and miniaturized packaging. The TPS781 family are available in SON-6 and TSOT-23 packages. Figure 50 shows a typical MSP430 circuit powered by an LDO without DVS. Figure 51 is an MSP430 circuit using a TPS781 LDO that incorporates an integrated DVS, thus simplifying the circuit design. In a circuit without DVS, as Figure 50 illustrates, V_{CC} is always at 3.0V. When the MSP430 goes into sleep mode, V_{CC} remains at 3.0V; if DVS is applied, V_{CC} could be reduced in sleep mode. In Figure 51, the TPS781 LDO with integrated DVS maintains 3.6V V_{CC} until a logic high signal from the MSP430 forces V_{OUT} to level shift V_{OUT} from 3.6V down to 2.2V; thus reducing power in sleep mode.

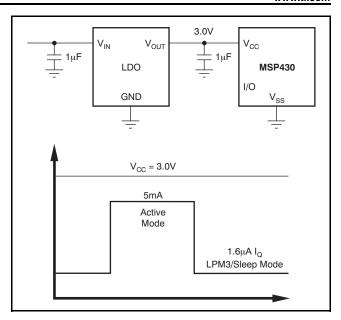


Figure 50. Typical LDO without DVS

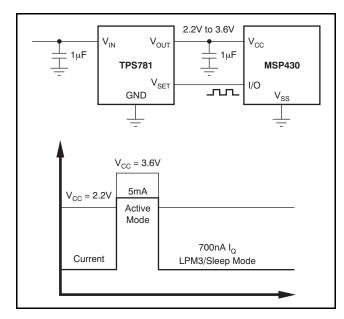


Figure 51. TPS781 with Integrated DVS

The other benefit of DVS is that it allows a higher $V_{\rm CC}$ voltage on the MSP430, increasing the clock speed and reducing the active mode dwell time.

www.ti.com

INPUT AND OUTPUT CAPACITOR REQUIREMENTS

Although an input capacitor is not required for stability, it is good analog design practice to connect a $0.1\mu F$ to $1.0\mu F$ low equivalent series resistance (ESR) capacitor across the input supply near the regulator. This capacitor counteracts reactive input sources and improves transient response, noise rejection, and ripple rejection. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated, or if the device is not located near the power source. If source impedance is not sufficiently low, a $0.1\mu F$ input capacitor may be necessary to ensure stability.

The TPS781 series are designed to be stable with standard ceramic capacitors with values of $1.0\mu F$ or larger at the output. X5R- and X7R-type capacitors are best because they have minimal variation in value and ESR over temperature. Maximum ESR should be less than 1.0Ω . With tolerance and dc bias effects, the minimum capacitance to ensure stability is $1\mu F$.

BOARD LAYOUT RECOMMENDATIONS TO IMPROVE PSRR AND NOISE PERFORMANCE

To improve ac performance (such as PSRR, output noise, and transient response), it is recommended that the printed circuit board (PCB) be designed with separate ground planes for $V_{\rm IN}$ and $V_{\rm OUT}$, with each ground plane connected only at the GND pin of the device. In addition, the ground connection for the output capacitor should connect directly to the GND pin of the device. High ESR capacitors may degrade PSRR.

INTERNAL CURRENT LIMIT

The TPS781 is internally current-limited to protect the regulator during fault conditions. During current limit, the output sources a fixed amount of current that is largely independent of output voltage. For reliable operation, the device should not be operated in a current limit state for extended periods of time.

The PMOS pass element in the TPS781 series has a built-in body diode that conducts current when the voltage at OUT exceeds the voltage at IN. This current is not limited, so if extended reverse voltage operation is anticipated, external limiting to 5% of rated output current may be appropriate.

SHUTDOWN

The enable pin (EN) is active high and is compatible with standard and low-voltage CMOS levels. When shutdown capability is not required, EN should be connected to the IN pin, as shown in Figure 52. Figure 53 shows both EN and $V_{\rm SET}$ connected to IN. The TPS781 series, with internal active output pull-down circuitry, discharges the output to within 5% $V_{\rm OUT}$ with a time (t) shown in Equation 3:

$$t = 3 \left[\frac{10k\Omega \times R_L}{10k\Omega + R_L} \right] \times C_{OUT}$$
(3)

Where:

 R_L = output load resistance C_{OUT} = output capacitance

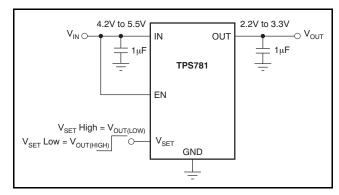


Figure 52. Circuit Showing EN Tied High when Shutdown Capability is Not Required

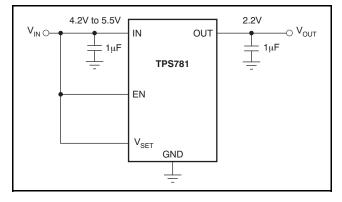


Figure 53. Circuit to Tie Both EN and V_{SET} High

DROPOUT VOLTAGE

The TPS781 series use a PMOS pass transistor to achieve low dropout. When $(V_{IN}-V_{OUT})$ is less than the dropout voltage (V_{DO}) , the PMOS pass device is the linear region of operation and the input-to-output resistance is the $R_{DS(ON)}$ of the PMOS pass element. V_{DO} approximately scales with output current because the PMOS device behaves like a resistor in dropout. As with any linear regulator, PSRR and transient response are degraded as $(V_{IN}-V_{OUT})$ approaches dropout. This effect is shown in the Typical Characteristics section. Refer to application report SLVA207, *Understanding LDO Dropout*, available for download from www.ti.com.

TRANSIENT RESPONSE

As with any regulator, increasing the size of the output capacitor reduces over/undershoot magnitude but increases duration of the transient response. For more information, see Figure 42.

ACTIVE V_{OUT} PULL-DOWN

In the TPS781 series, the active pull-down discharges V_{OUT} when the device is off. However, the input voltage must be greater than 2.2V for the active pull-down to work.

MINIMUM LOAD

The TPS781 series are stable with no output load. Traditional PMOS LDO regulators suffer from lower loop gain at very light output loads. The TPS781 employs an innovative, low-current circuit under very light or no-load conditions, resulting in improved output voltage regulation performance down to zero output current. See Figure 41 for the load transient response.

16

www.ti.com

THERMAL INFORMATION

THERMAL PROTECTION

Thermal protection disables the output when the junction temperature rises to approximately +160°C, allowing the device to cool. Once the junction temperature cools to approximately +140°C, the output circuitry is enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off again. This cycling limits the dissipation of the regulator, protecting it from damage as a result of overheating.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink. For reliable operation, junction temperature should be limited to +125°C maximum. To estimate the margin of safety in a complete design heatsink), increase the (including temperature until the thermal protection is triggered; use worst-case loads and signal conditions. For good reliability, thermal protection should trigger at least +35°C above the maximum expected ambient condition of your particular application. This configuration produces a worst-case junction temperature of +125°C at the highest expected ambient temperature and worst-case load.

The internal protection circuitry of the TPS781 series has been designed to protect against overload conditions. However, it is not intended to replace proper heatsinking. Continuously running the TPS781 series into thermal shutdown degrades device reliability.

POWER DISSIPATION

The ability to remove heat from the die is different for each package type, presenting different considerations in the PCB layout. The PCB area around the device that is free of other components moves the heat from the device to the ambient air. Performance data for JEDEC low- and high-K boards are given in the Dissipation Ratings table. Using heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat-dissipating layers Power improves the heatsink effectiveness. dissipation depends on input voltage and load conditions. Power dissipation (PD) is equal to the product of the output current times the voltage drop across the output pass element (VIN to VOUT), as shown in Equation 4:

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$
(4)

PACKAGE MOUNTING

Solder pad footprint recommendations for the TPS781 series are available from the Texas Instruments web site at www.ti.com through the TPS781 series product folders.

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TPS78101DDCR	ACTIVE	SOT-23-THIN	DDC	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	(3) Level-2-260C-1 YEAR	-40 to 125	(4/5) CEB	Samples
TPS78101DDCT	ACTIVE	SOT-23-THIN	DDC	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	СЕВ	Samples
TPS78101DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	СЕВ	Samples
TPS78101DRVT	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	CEB	Samples
TPS781250200DDCR	ACTIVE	SOT-23-THIN	DDC	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	SAN	Samples
TPS781250200DDCT	ACTIVE	SOT-23-THIN	DDC	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	SAN	Samples
TPS781330220DDCR	ACTIVE	SOT-23-THIN	DDC	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	CED	Samples
TPS781330220DDCRG4	ACTIVE	SOT-23-THIN	DDC	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	CED	Samples
TPS781330220DDCT	ACTIVE	SOT-23-THIN	DDC	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	CED	Samples
TPS781330220DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	CED	Samples
TPS781330220DRVT	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	CED	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

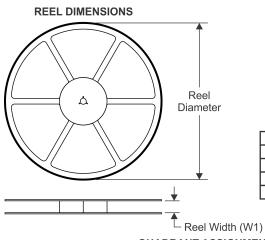
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

PACKAGE OPTION ADDENDUM

24-Aug-2018

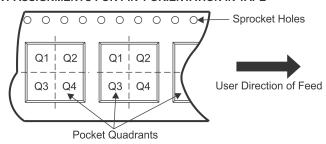
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 8-May-2018


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

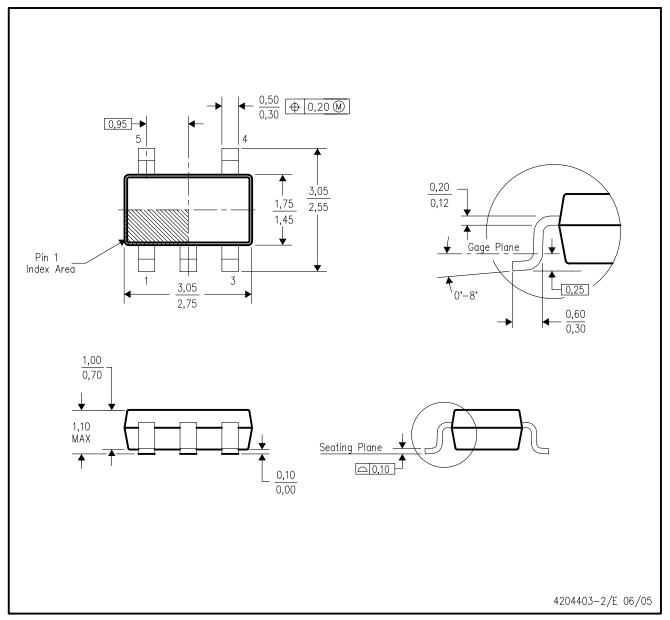
A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS78101DDCR	SOT- 23-THIN	DDC	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS78101DDCT	SOT- 23-THIN	DDC	5	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS78101DRVR	WSON	DRV	6	3000	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS78101DRVR	WSON	DRV	6	3000	178.0	8.4	2.25	2.25	1.0	4.0	8.0	Q2
TPS78101DRVT	WSON	DRV	6	250	178.0	8.4	2.25	2.25	1.0	4.0	8.0	Q2
TPS78101DRVT	WSON	DRV	6	250	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS781250200DDCR	SOT- 23-THIN	DDC	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS781250200DDCT	SOT- 23-THIN	DDC	5	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS781330220DDCR	SOT- 23-THIN	DDC	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS781330220DDCT	SOT- 23-THIN	DDC	5	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS781330220DRVR	WSON	DRV	6	3000	178.0	8.4	2.25	2.25	1.0	4.0	8.0	Q2
TPS781330220DRVR	WSON	DRV	6	3000	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS781330220DRVT	WSON	DRV	6	250	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
TPS781330220DRVT	WSON	DRV	6	250	178.0	8.4	2.25	2.25	1.0	4.0	8.0	Q2

www.ti.com 8-May-2018

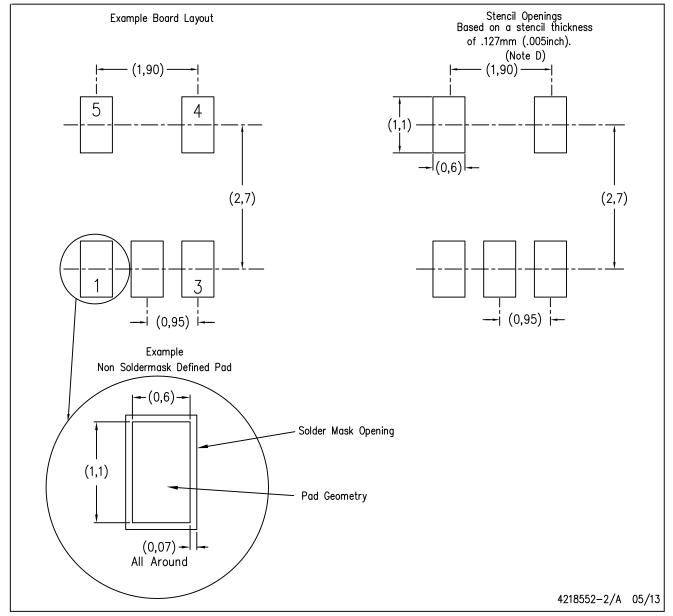


*All dimensions are nominal

^All dimensions are nominal	Г	I			1		
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS78101DDCR	SOT-23-THIN	DDC	5	3000	195.0	200.0	45.0
TPS78101DDCT	SOT-23-THIN	DDC	5	250	195.0	200.0	45.0
TPS78101DRVR	WSON	DRV	6	3000	203.0	203.0	35.0
TPS78101DRVR	WSON	DRV	6	3000	205.0	200.0	33.0
TPS78101DRVT	WSON	DRV	6	250	205.0	200.0	33.0
TPS78101DRVT	WSON	DRV	6	250	203.0	203.0	35.0
TPS781250200DDCR	SOT-23-THIN	DDC	5	3000	195.0	200.0	45.0
TPS781250200DDCT	SOT-23-THIN	DDC	5	250	195.0	200.0	45.0
TPS781330220DDCR	SOT-23-THIN	DDC	5	3000	195.0	200.0	45.0
TPS781330220DDCT	SOT-23-THIN	DDC	5	250	195.0	200.0	45.0
TPS781330220DRVR	WSON	DRV	6	3000	205.0	200.0	33.0
TPS781330220DRVR	WSON	DRV	6	3000	203.0	203.0	35.0
TPS781330220DRVT	WSON	DRV	6	250	203.0	203.0	35.0
TPS781330220DRVT	WSON	DRV	6	250	205.0	200.0	33.0

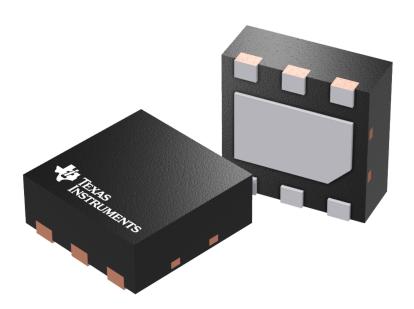
DDC (R-PDSO-G5)

PLASTIC SMALL-OUTLINE


NOTES:

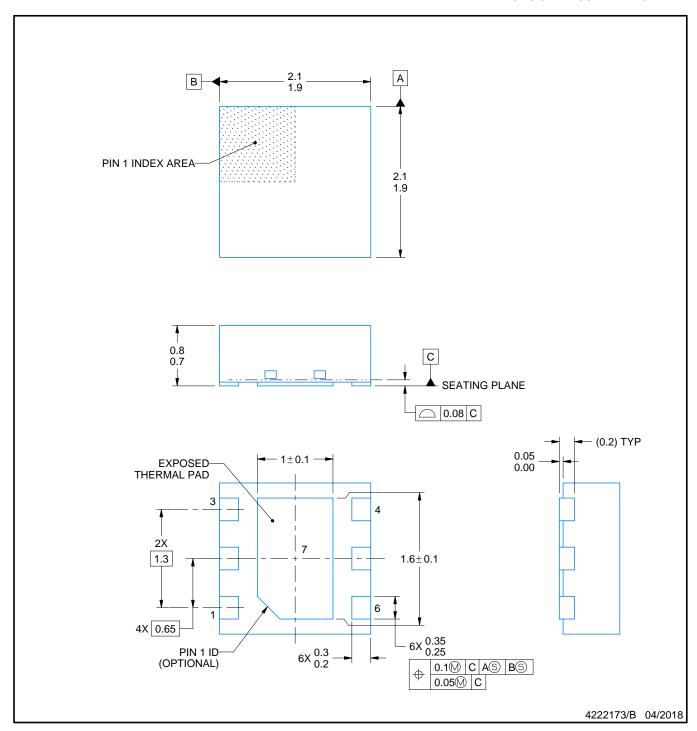
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-193 variation AB (5 pin).

DDC (R-PDSO-G5)


PLASTIC SMALL OUTLINE

NOTES:

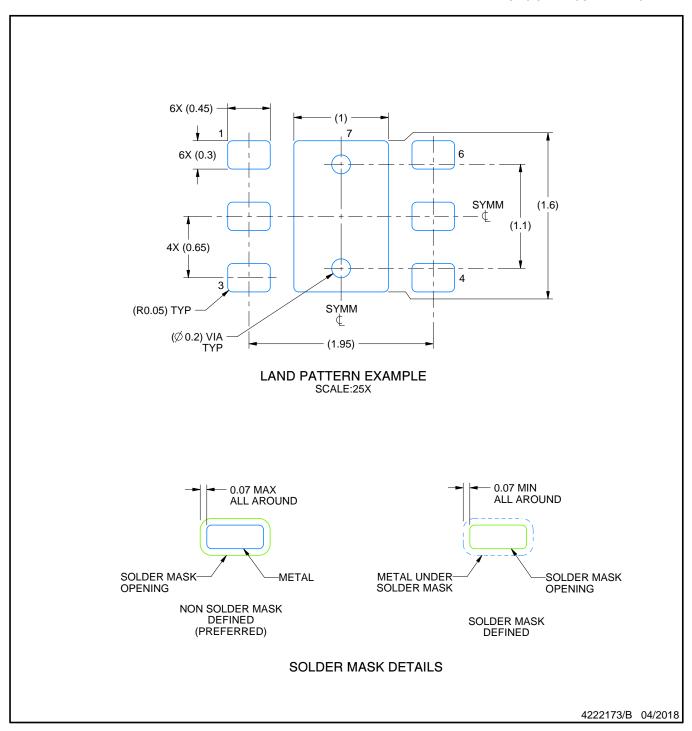
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4206925/F

PLASTIC SMALL OUTLINE - NO LEAD

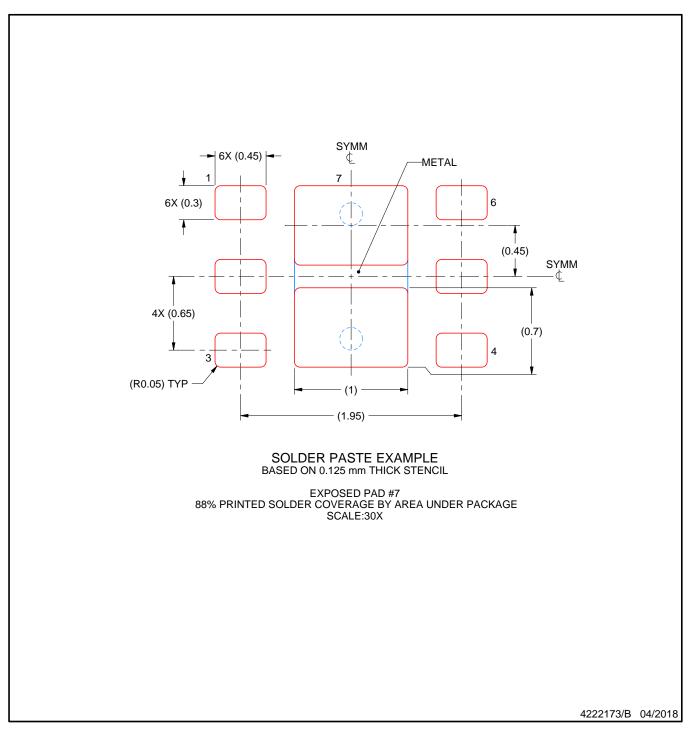
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature
- number SLUA271 (www.ti.com/lit/slua271).

 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.