Features

- Broadband Performance, 26 to 40 GHz
- Low Loss $<1 \mathrm{~dB}$
- High Isolation $>38 \mathrm{~dB}$
- Up to 13 W CW Power, $+85^{\circ} \mathrm{C}$
- Die with G-S-G RF Pads and DC Bias Pads
- Includes DC Blocks and RF Bias Networks
- 23 dBm power handling in terminated port

Description

The MASW-011036 is a high power SPDT with 50Ω terminated RF ports. This broadband, high linearity, SPDT switch was developed for Ka-Band applications that require up to 13 W of power handling while maintaining low insertion loss and high isolation.

The SPDT MMIC utilizes MACOM's proven AIGaAs PIN diode technology. The switch is fully passivated with silicon nitride and has an added polymer layer for scratch protection. The protective coating prevents damage to the junction and the anode airbridge during handling and assembly. The die has backside metallization to facilitate an epoxy die attach process.

Ordering Information ${ }^{1}$

Part Number	Package
MASW-011036-1413WF	Separated Die on Metal Frame 1
MASW-011036-14130G	Die in Gel Pack ${ }^{1}$

1. Die quantity varies.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM class 1A devices.

Functional Diagram

Pin Configuration:

(Back Metal is RF, D.C., and Thermal Ground)

Pin	Function
1	RF $_{\text {common }}$
2	BIAS 1
3	RF1
4	RF2
5	BIAS 2

Die Outline

Dimensions indicated in $\mu \mathrm{m}$.
Die Thickness : $100 \mu \mathrm{~m}$
RF Pads $(1,3,4)$ are $100 \times 200 \mu \mathrm{~m}$. DC Bias Pads (2 \& 5) are $100 \times 100 \mu \mathrm{~m}$.
Meets JEDEC moisture sensitivity level 1 requirements.

[^0]
Ka-Band High Power Terminated SPDT PIN Switch,

Electrical Specifications:

Freq. $=28-30 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+4.0 \mathrm{~V} @+25 \mathrm{~mA} /-15 \mathrm{~V} @ 0 \mathrm{~mA}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	$\begin{aligned} & 26-28 \mathrm{GHz} \\ & 28-32 \mathrm{GHz} \\ & 32-36 \mathrm{GHz} \\ & 36-40 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{gathered} 0.80 \\ 0.70 \\ 0.70 \\ 1.5 \end{gathered}$	1.0 -
Isolation ${ }^{2}$	$\begin{aligned} & 26-28 \mathrm{GHz} \\ & 28-32 \mathrm{GHz} \\ & 32-36 \mathrm{GHz} \\ & 36-40 \mathrm{GHz} \end{aligned}$	dB	$\begin{aligned} & \overline{34} \\ & - \end{aligned}$	$\begin{aligned} & 38 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	-
Input / Output Return Loss On state	$\begin{aligned} & 26-28 \mathrm{GHz} \\ & 28-32 \mathrm{GHz} \\ & 32-36 \mathrm{GHz} \\ & 36-40 \mathrm{GHz} \end{aligned}$	dB	$\begin{aligned} & \overline{13} \\ & - \\ & \hline- \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 12 \end{aligned}$	-
RF1, 2 Return Loss, Off state	$\begin{aligned} & 26-28 \mathrm{GHz} \\ & 28-32 \mathrm{GHz} \\ & 32-36 \mathrm{GHz} \\ & 36-40 \mathrm{GHz} \end{aligned}$	dB	7.5 -	$\begin{gathered} \hline 8 \\ 10 \\ 18 \\ 18 \\ \hline \end{gathered}$	-
Switching Speed-Ton	50\% DC to 90\% RF	ns	-	30	-
Switching Speed-Toff	50\% DC to 10\% RF	ns	-	21	-
Rise Time - Tr	10\% to 90\% RF	ns	-	10	-
Fall Time - Tf	90\% to 10\% RF	ns	-	8	-
CW Input Power ${ }^{3}$	-25 V @ +85 ${ }^{\circ} \mathrm{C}$	dBm	-	41.2	-
Reverse Bias Voltage ${ }^{3}$	-	V	-32	-15	-5
Reverse Bias Current ${ }^{3}$	-15 V	nA	-	25	-
Forward Bias Current ${ }^{4}$	+4V	mA	-	25	-

2. Isolation defined with 1 port in low loss state.
3. Reverse bias voltage should be determined based on working conditions. For example, $-25 \mathrm{~V} @ 41.2 \mathrm{dBm}$ input power. For lower power applications, a less negative voltage can be used.
4. Forward bias voltage should be determined based on working conditions.

Absolute Maximum Ratings ${ }^{5,6}$

Parameter	Absolute Maximum
Reverse Bias Voltage	-50 V
Forward Bias Current	40 mA
CW Incident Power	43 dBm
CW Incident Power (Terminated Port)	26 dBm
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Truth Table ${ }^{3,4}$

RFсоммом Path	Bias 1	Bias 2
RF1 Insertion Loss RF2 Isolation	-15 V	4 V
RF2 Insertion Loss RF1 Isolation	4 V	-15 V

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. $M / A C O M$ does not recommend sustained operation near these survivability limits.

Ka-Band High Power Terminated SPDT PIN Switch,

Typical Performance @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Insertion Loss (On State)

RF comмол $^{\text {Return Loss (On State) }}$

Isolation (Off State)

RF1, 2 Return Loss (On State)

RF1, 2 Return Loss (Off State)

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

