3.3 V/5 V ECL 9-Bit Shift Register

MC100EP142

Description

The MC100EP142 is a 9-bit shift register, designed with byte-parity applications in mind. The MC100EP142 is capable of performing serial/parallel data into serial/parallel out and shifting in only one direction. The nine inputs D0 - D8 accept parallel input data, while S-IN accepts serial input data. The QT0:87 outputs do not need to be terminated for the shift operation to function. To minimize power, any Q output not used should be left unterminated.

The SEL (Select) input pin is used to switch between the two modes of operation - SHIFT and LOAD. The shift direction is from Bit 0 to Bit 8. Input data is accepted by the registers a set-up time before the positive going edge of CLK0 or CLK1; shifting is also accomplished on the positive clock edge. A HIGH on the Master Reset pin (MR) asynchronously resets all the registers to zero, overriding CLK0 and CLK1 inputs.

The 100 Series contains temperature compensation.

Features

- Shift Frequency $>2.8 \mathrm{GHz}$ (Typical)
- 9-Bit for Byte-Parity Applications
- Asynchronous Master Reset
- Dual Clocks
- PECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

LQFP-32
FA SUFFIX CASE 561AB

MARKING DIAGRAM*

A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping
MC100EP142FAG	LQFP-32 (Pb-Free)	250 Units / Tray

MC100EP142

Figure 1. Pinout: LQFP-32 (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Default State	Description
$1,31,30,29,27, ~$ $26,25,24,23$	D[0:8]	ECL Input	Low	Single-Ended Parallel Data Inputs [0:8]. Internal $75 \mathrm{k} \Omega$ to V_{EE}.
2	S-IN	ECL Input	Low	Noninverted Differential Serial Input. Internal $75 \mathrm{k} \Omega$ to V_{EE}.
3	S-IN	ECL Input	High	Inverted Differential Serial Input. Internal $75 \mathrm{k} \Omega$ to V_{EE} and $36.5 \mathrm{k} \Omega$ to V_{CC}
4	CLK0	ECL Input	Low	Noninverted Differential CLK0 Input. Internal $75 \mathrm{k} \Omega$ to V_{EE}.

1. All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

MC100EP142

Table 2. TRUTH TABLE

Function (Note 2)	SEL	S-IN	MR	CLKO	CLK1	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
Load	L	X	L	Z	Z	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9
Shift	H	L	L	Z	Z	L	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
	H	H	L	Z	Z	H	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Reset	X	X	H	Z	Z	L	L	L	L	L	L	L	L	L	L

2. All Load and Shift functions are accomplished on the positive edge of CLK0 or CLK1.

MC100EP142

Table 3. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor (R1)	$75 \mathrm{k} \Omega$
Internal Input Pullup Resistor (R2)	$37.5 \mathrm{k} \Omega$
ESD Protection Human Body Model Machine Model Charged Device Model	$>2 \mathrm{kV}$ $>100 \mathrm{~V}$ $>2 \mathrm{kV}$
Moisture Sensitivity (Note 3) LQFP-32	Level 2
Flammability Rating Oxygen Index: 28 to 34	UL-94 V-0 @ 0.125 in
Transistor Count	405 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

3. For additional information, refer to Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{Cc}	Positive Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		8	V
V_{EE}	Negative Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-8	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	$\begin{aligned} & \text { LQFP-32 } \\ & \text { LQFP-32 } \end{aligned}$	$\begin{aligned} & 80 \\ & 55 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	LQFP-32	12 to 17	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free	$\leq 3 \mathrm{sec}$ @ $260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MC100EP142

Table 5. 100EP DC CHARACTERISTICS, PECL $V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 4)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
IEE	Negative Power Supply Current	105	125	145	105	130	150	105	130	150	mA
V_{OH}	Output HIGH Voltage (Note 5)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V_{OL}	Output LOW Voltage (Note 5)	1305	1480	1605	1305	1480	1605	1305	1480	1605	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	1305		1675	1305		1675	1305		1675	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 6)	2.0		3.3	2.0		3.3	2.0		3.3	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current (@ V_{IH})			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current (@ VIL) CLKO, CLK1, D, S-IN CLKO, CLK1, S-IN	$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
4. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{EE}}$ can vary +0.3 V to -2.2 V .
5. All loading with 50Ω to $\mathrm{V}_{\mathrm{cc}}-2.0 \mathrm{~V}$.
6. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

Table 6. 100EP DC CHARACTERISTICS, PECL $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 7)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
IEE	Negative Power Supply Current (Note 8)	105	125	145	105	130	150	105	130	150	mA
V_{OH}	Output HIGH Voltage (Note 9)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 9)	3005	3180	3305	3005	3180	3305	3005	3180	3305	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	3775		4120	3775		4120	3775		4120	mV
V_{IL}	Input LOW Voltage (Single-Ended)	3005		3375	3005		3375	3005		3375	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10)	2.0		5.0	2.0		5.0	2.0		5.0	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current (@ V_{IH})			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current (@ VIL) CLKO, CLK1, D, S-IN CLKO, CLK1, S-IN	$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
7. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{EE}}$ can vary +2.0 V to -0.5 V .
8. Required 500 lfpm air flow when using +5 V power supply. For $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)>3.3 \mathrm{~V}, 5 \Omega$ to 10Ω in line with $\mathrm{V}_{E E}$ required for maximum thermal protection at elevated temperatures. Recommend $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$ operation at $\leq 3.3 \mathrm{~V}$.
9. All loading with 50Ω to $V_{C C}-2.0 \mathrm{~V}$.
10. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 7. 100EP DC CHARACTERISTICS, NECL $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$ to -3.0 V (Note 11)

	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Negative Power Supply Current (Note 12)	105	125	145	105	130	150	105	130	150	mA
V_{OH}	Output HIGH Voltage (Note 13)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 13)	-1995	-1820	-1695	-1995	-1820	-1695	-1995	-1820	-1695	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 14)	$\mathrm{V}_{\mathrm{EE}+2.0}$		0.0	$\mathrm{V}_{\mathrm{EE}+2.0}$		0.0	$\mathrm{V}_{\mathrm{EE}+2.0}$		0.0	V
I_{IH}	Input HIGH Current (@ V IH)			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current (@ VIL) CLK0, CLK1, D, S-IN CLKO, CLK1, S-IN	$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \\ \hline \end{gathered}$			$\begin{gathered} 0.5 \\ -150 \\ \hline \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.
11. Input and output parameters vary $1: 1$ with V_{CC}.
12. Required 500 lfpm air flow when using -5 V power supply. For $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)>3.3 \mathrm{~V}, 5 \Omega$ to 10Ω in line with V_{EE} required for maximum thermal protection at elevated temperatures. Recommend $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ operation at $\leq 3.3 \mathrm{~V}$.
13. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
14. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 8. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -5.5 V (Note 15)

Symbol	Characteristic		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {SHIFT }}$	Maximum Shift Frequency						2.8					GHz
${ }^{\text {tpLH }}$, $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay to Output	$\begin{gathered} \text { CLKx } \\ \text { MR } \end{gathered}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 625 \\ & 625 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	$\begin{aligned} & 550 \\ & 550 \end{aligned}$	$\begin{aligned} & 675 \\ & 675 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 575 \\ & 575 \end{aligned}$	$\begin{aligned} & 700 \\ & 700 \end{aligned}$	$\begin{aligned} & 825 \\ & 825 \end{aligned}$	ps
$\mathrm{t}_{\text {s }}$	Setup Time	$\begin{array}{r} D \\ \text { SEL } \end{array}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{gathered} -50 \\ 50 \end{gathered}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{gathered} -50 \\ 50 \end{gathered}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{gathered} -50 \\ 50 \end{gathered}$		ps
$t_{\text {h }}$	Hold Time	$\begin{array}{r} D \\ \text { SEL } \end{array}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{gathered} 50 \\ -50 \end{gathered}$		$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{gathered} 50 \\ -50 \end{gathered}$		$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{gathered} 50 \\ -50 \end{gathered}$		ps
t_{RR}	Reset Recovery Time						800					ps
t_{pw}	Minimum Pulse Width						200					ps
${ }^{\text {tskEW }}$	Within-Device Skew (Note 16) Duty Cycle Skew (Note 17)	$\mathrm{Q}, \overline{\mathrm{Q}}$		$\begin{gathered} 50 \\ 5.0 \end{gathered}$	$\begin{aligned} & \hline 100 \\ & 20 \end{aligned}$		$\begin{aligned} & \hline 50 \\ & 5.0 \end{aligned}$	$\begin{gathered} 100 \\ 20 \end{gathered}$		$\begin{aligned} & 50 \\ & 5.0 \end{aligned}$	$\begin{gathered} 100 \\ 20 \end{gathered}$	ps
$\mathrm{t}_{\text {JITTER }}$	Random Clock Jitter (Figure 3)			1	2		1	2		1	2	ps
$\mathrm{V}_{\text {inpp }}$	Input Voltage Swing/Sensitivity (Differential Configuration)		150	800	1200	150	800	1200	150	800	1200	mV
$\begin{gathered} \mathrm{t}_{\mathrm{r}_{1}} \\ \mathrm{t}_{\mathrm{f}} \end{gathered}$	$\begin{aligned} & \text { Rise/Fall Times @ } 50 \text { MHz } \\ & (20-80 \%) \end{aligned}$		110	180	250	125	190	275	150	215	300	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
15. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
16. Within-device skew is defined as identical transitions on similar paths through a device.
17. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

Figure 3. Output Voltage Amplitude / RMS Jitter vs. Input Frequency at Ambient Temperature (Typical)

MC100EP142

Figure 4. AC Reference Measurement

Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)
Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS ${ }^{m s}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

LQFP-32, 7x7
CASE 561AB-01
ISSUE O
DATE 19 JUN 2008

ALL DIMENSIONS IN MM

DOCUMENT NUMBER:	98AON30893E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	$\mathbf{3 2}$ LEAD LQFP, 7X7		PAGE 1 OF 1

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

