

PRELIMINARY SHEET

TTL02, TTL04, TTL06, TTL08, TTL12, TTL20, TTL25

±5%, ±1%, ±0.5%

High Power Thin Film Current Sensor

Size:0201,0402,0603,0805,1206,2010,2512

*Contents in this sheet are subject to change without prior notice.

Page 1 of 12 PI_TTL Series_V01 MAR. 2018

FEATURES

- 1. Extra high power rating and low TCR.
- 2. Extra low resistance and high precision.
- 3. High component and equipment reliability
- 4. Low resistances applied to current sensing
- 5. RoHS compliant & Halogen Free.
- 6. Suitable for lead free soldering.

APPLICATIONS

- Current sensor
- Medical equipment
- Measuring instrument
- Communication device
- Power supply

Computer

DESCRIPTION

This specification describes TTL series current sensor – Extra high power and low TCR with lead-free terminations made by metal film with substrate.

Quick Reference Data

		ļ			Fu	ınction	al code)				
Series	Size Code	TOWEL		TCR	Resistance Resistance Tolerance							
		G	Н	I	J	K	М	Р	Q			
	0201 (0603)	1/10W	1/8W	1/5W	1/4W	1/3W				350ppm/℃	5~20m Ω	
	0402 (1005)		1/8W	1/5W	1/4W	1/3W	1/2W			150ppm/℃	2.5~20m Ω	
	0603 (1608)			1/5W	1/4W	1/3W	1/2W			75ppm/℃	5~20m Ω	. 0. 50/
	0805 (2012)				1/4W	1/3W	1/2W	15		75ppm/ ℃	5~20m Ω	±0.5% (>10m Ω)
TTL	1206 (3216)		/	档	1/4W	1/3W	1/2W	1W	THI	75 ppm/℃	5~20m Ω	±1%
	2010 (5025)	/1	机		X	LIX	ַתו.	1W	2W	50ppm/°C 75ppm/°C 100ppm/°C	5~20m Ω	±5%
	2512 (6342)		#	#	_		5/	1W	2W	50ppm/°C 75ppm/°C 100ppm/°C	5~20m Ω	

Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by $RCWV = \sqrt{Rated Power \times Resistance Value}$
- 3. Operating Temperature Range 0201/0402 : -55°C to +125°C

0603/0805/1206/2010/2512: -55°C to +170°C

DIMENSIONS:(unit:mm)

Туре	Resistance Range	L(mm)	W(mm)	H(mm)	l1(mm)
TTL02	5~20m Ω	0.60±0.03	0.31±0.04	Max:0.30	0.14±0.16
TTL04	2.5~20m Ω	1.00±0.10	0.55±0.10	Max:0.35	0.25±0.10
TTL06	5~20mΩ	1.60±0.20	0.76±0.25	0.56±0.25	0.38±0.25
TTL08	5~20mΩ	2.03±0.25	1.27±0.25	0.56±0.25	0.38±0.25
TTL12	5~20mΩ	3.20±0.25	1.60±0.25	0.64±0.25	0.51±0.25
TTL20	5~20mΩ	5.08±0.25	2.54±0.25	0.64±0.25	0.51±0.25
TTL25	5~20m Ω	6.35±0.25	3.18±0.25	0.64±0.25	0.76±0.25

0603/0805/1206/2010/2512

Marking 0201/0402(No Marking)

0603/0805(3 digits)

020=20m Ω

1206/2010/2512(4 digits)

R020

R020=20m Ω

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E96 & E24 series for resistors with a tolerance of $\pm 5.0\%, \pm 1.0\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063".

Preliminary Sheet

DERATING

The power that the resistor can dissipate depends on the operating temperature; see Fig.1&Fig2

Fig.1 Maximum dissipation in percentage of rated power

As a function of the ambient temperature

Fig.2 Maximum dissipation in percentage of rated power
As a function of the ambient temperature

Page 6 of 12 PI_TTL Series_V01 MAR. 2018

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds within lead-free solder bath. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering profile and condition that provide reliable joints without any damage are given in Fig 3. and Table 1.

Fig. 3 Infrared soldering profile for Chip Resistors

Table 1. Infrared soldering condition for Chip Resistors

Temperature Condition	Exposure Time
Average ramp-up rate (217°C to 260°C)	Less than 3°C/second
Between 150 and 200°C	Between 60-120 seconds
> 217°C	Between 60-150 seconds
Peak Temperature	260°C +0/-5°C
Time within 245°C	Min. 30 seconds
Ramp-down rate (Peak to 217°C)	Less than 6°C/second
Time from 25°C to Peak	No greater than 480 seconds

Page 7 of 12 PI_TTL Series_V01 MAR. 2018

CATALOGUE NUMBERS

TTL	02	Q	N	XXXX	F	Т	L
Type code Low Resistance	Size code 02: 0201 04: 0402 06: 0603 08: 0805 12: 1206 20: 2010 25: 2512	Power Rating Q:2W P:1W M:1/2W K:1/3W J:1/4W I:1/5W H:1/8W G:1/10W	TCR N:50ppm/°C O:75ppm/°C P:100ppm/°C Q:150ppm/°C R:200ppm/°C U:350ppm/°C	Resistance e.g. : $R020 = 20m\Omega$ $R005 = 5m\Omega$ $R2L5 = 2.5m\Omega$	D: 0.5% F: 1.0% J: 5.0%	Packaging code T: 7" Taped & Reeled	Termination Code L: Sn base (lead-free)

Recommend Solder Pad Dimensions

9//////		1 1410		
Resistance Range	A(mm)	B(mm)	C(mm)	D(mm)
5~20m Ω	1.00	0.30	0.35	0.40
2.5~20m Ω	2.00	0.40	0.80	0.60
5~20m Ω	2.52	0.50	1.01	1.01
5~20m Ω	2.54	0.50	1.02	1.27
5~20m Ω	3.90	0.76	1.57	1.78
5~20m Ω	6.10	3.30	1.40	3.05
5~20m Ω	7.36	4.06	1.65	3.68
	$5~20m\Omega$ $2.5~20m\Omega$ $5~20m\Omega$ $5~20m\Omega$ $5~20m\Omega$ $5~20m\Omega$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5~20m\Omega$ 1.00 0.30 $2.5~20m\Omega$ 2.00 0.40 $5~20m\Omega$ 2.52 0.50 $5~20m\Omega$ 2.54 0.50 $5~20m\Omega$ 3.90 0.76 $5~20m\Omega$ 6.10 3.30	5~20m Ω 1.00 0.30 0.35 $2.5~20m Ω$ 2.00 0.40 0.80 $5~20m Ω$ 2.52 0.50 1.01 $5~20m Ω$ 2.54 0.50 1.02 $5~20m Ω$ 3.90 0.76 1.57 $5~20m Ω$ 6.10 3.30 1.40

TEST AND REQUIREMENTS(JIS C 5201-1: 1998)

		REQUIREMENT
TEST	PROCEDURE	Resistor
DC resistance IEC 60115-1 / JIS C 5201-1 , Clause 4.5	D: ±0.5%,F: ±1%, G: ±5%	Within the specified tolerance
Temperature Coefficient of Resistance(T.C.R)	Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \end{magesize}$ (ppm/ C) $R_1: \text{Resistance at reference temperature}$ $R_2: \text{Resistance at test temperature}$ $t_1: 20^\circ\text{C}+5^\circ\text{C}-1^\circ\text{C}$ $t2: 125^\circ\text{C}+5^\circ\text{C}-1^\circ\text{C}$	Refer to " QUICK REFERENCE DATA"
Short time overload (S.T.O.L) IEC60115-1 4.13	5 times of rated power for 5 seconds at room temperature	No visible damage ±(1.0%+0.0005Ω)
Resistance to soldering heat(R.S.H) MIL-STD-202G- method 210F IEC 60115-1 4.18	Condition B, no pre-heat of samples Leadfree solder, 260 °C, 10 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	No visible damage $\pm (0.5\% + 0.0005\Omega)$
Solderability IPC/JEDEC J-STD-002B test B	SMD conditions: 1st step: method B, aging 4 hours at 155 °C dry heat = 2nd step: leadfree solder bath at 245± 3 °C Dipping time: 3± 0.5 seconds	good tinning (>95% covered) no visible damage
Thermal Shock MIL-STD-202G- method 107	-55/+125 °C Note: Number of cycles required is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	±(1.0%+0.0005Ω)
Endurance MIL-STD-202G- method 108 IEC 60115-1 4.25.1	70±2°C, 1000 hours, loaded with RCWV,,1.5 hours on and 0.5 hours off	±(1.0%+0.0005Ω)
Bias Humidity MIL-STD-202 Method 103	1,000 hours at 85°C/85%R.H. 10% of operating power, no condensation on the devices, circulating air.	±(1.0%+0.0005Ω)
Bending Strength IEC60115-1 4.33	Device mounted on PCB test board as described, only 1 board bending required Bending for 0201: 3mm 0402 and above: 2mm Holding time: minimum 60 seconds	±(1.0%+0.0005Ω)
High Temperature Exposure MIL-STD-202G- method 108 IEC 60115-1 4.25.3	1,000 hours at maximum operating temperature depending on specification, unpowered No direct impingement of forced air to the parts Tolerances: 0201/0402 125± 3°C 0603 and above 170± 3°C	±(1.0%+0.0005Ω)

Preliminary Sheet

Moisture Resistance	Each temperature / humidity cycle is defined at 8 hours	± (0.5%+0.0005 Ω)
MIL-STD-202G-	(method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65	
method 106	°C 95% R.H, without steps 7a & 7b, unpowered	
	Parts mounted on test-boards, without condensation on	
	parts	
	Measurement at 24± 2 hours after test conclusion	

PACKAGING

Paper Tape specifications (unit: mm)

	44//7						
Series No.	Α	В	w	F	E		
TTL02	0.720±0.05	0.42±0.05	8.00±0.30	3.50±0.05	1.75±0.10		
TTL04	1.20±0.10	0.7±0.10	8.00±0.30	3.50±0.05	1.75±0.10		
TTL06	1.90±0.20	1.10±0.20	8.00±0.30	3.50±0.20	1.75±0.10		
TTL08	2.40±0.20	1.65±0.20	8.00±0.30	3.50±0.20	1.75±0.10		
TTL12	3.60±0.20	2.00±0.20	8.00±0.30	3.50±0.20	1.75±0.10		
TTL20	5.50±0.20	2.80±0.20	12.00±0.30	5.50±0.10	1.75±0.10		
TTL25	6.90±0.20	3.60±0.20	12.00±0.30	5.50±0.10	1.75±0.10		

	//	7 4/10,	- 01/11/11/10 -	
Series No.	P1	P0	ΦD	Т
TTL02	2.00±0.10	4.00±0.10	Ф1.50 ^{+0.1} _{-0.0}	0.4±0.05
TTL04	2.00±0.10	4.00±0.10	Ф1.50 ^{+0.1} _{-0.0}	0.40±0.05
TTL06	4.00±0.10	4.00±0.10	Ф1.50 ^{+0.1} _{-0.0}	0.65±0.05
TTL08	4.00±0.10	4.00±0.10	Ф1.50 ^{+0.1} _{-0.0}	Max. 1.0
TTL12	4.00±0.10	4.00±0.10	Ф1.50 ^{+0.1} _{-0.0}	Max. 1.0
TTL20	4.00±0.10	4.00±0.10	Ф1.50 ^{+0.1} _{-0.0}	Max 1.2
TTL25	4.00±0.10	4.00±0.10	Ф1.50 ^{+0.1} _{-0.0}	Max 1.2

Reel Dimensions:

Symbol	Α	В	С	D
(unit : mm)	Ф178.0±2.0	Φ60.0±1.0	13.0±0.2	9.0±0.5

Taping Quantity

- Chip resistors 4,000 pcs per reel (TTL25, TTL20)
- Chip resistors 5,000 pcs per reel (TTL12, TTL08, TTL06)
 Chip resistors 10,000 pcs per reel (TTL04)
 Chip resistors 15,000 pcs per reel (TTL02)