April 2001 Revised July 2002 # FST32211 40/48-Bit Bus Switch #### **General Description** The Fairchild Switch FST32211 provides up to 48-bits of high-speed CMOS TTL-compatible bus switching. The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. The device can be organized as four 12-bit, two 24-bit, or one 48-bit bus switch. When routed as a 40-bit bus switch, the device can be organized as four 10-bit, two 20-bit or one 40-bit bus switch. When $\overline{\text{OE}}_1$ is LOW, the switch is ON and Port 1A is connected to Port 1B. When $\overline{\text{OE}}_2$ is LOW, the switch is ON and Port 2A is connected to Port 2B. When $\overline{\text{OE}}_3$ is LOW, the switch is ON and Port 3A is connected to Port 3B. When $\overline{\text{OE}}_4$ is LOW, the switch is ON and Port 4A is connected to Port 4B. When $\overline{\text{OE}}_1$, $\overline{\text{OE}}_2$, $\overline{\text{OE}}_3$, or $\overline{\text{OE}}_4$ are HIGH, a high impedance state exists between the A and B Ports. #### **Features** - \blacksquare 4 Ω switch connection between two ports - Minimal propagation delay through the switch - Low I_{CC} - Zero bounce in flow-through mode - Control inputs compatible with TTL level - Packaged in plastic Fine Pitch Ball Grid Array (FBGA) ### **Ordering Code:** | Order Number | Package Number | Package Description | |-------------------------------|----------------|--| | FST32211G
(Note 1)(Note 2) | BGA114A | 114-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide | Note 1: Ordering code "G" indicates Trays. Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. #### **Logic Diagram** # **Connection Diagram** (Top Thru View) ## **Pin Descriptions** | Pin Name | Description | |--|--------------------| | $\overline{OE}_1, \overline{OE}_2, \overline{OE}_3, \overline{OE}_4$ | Bus Switch Enables | | 1A, 2A, 3A, 4A | Bus A | | 1B, 2B, 3B, 4B | Bus B | ## **FBGA Pin Assignments** (40-Bit Routing) | | 1 | 2 | 3 | 4 | 5 | 6 | |---|------------------|------------------|-----------------|-----------------|------------------|------------------| | Α | 1A ₂ | 1A ₁ | NC | OE ₂ | 1B ₁ | 1B ₂ | | В | 1A ₄ | 1A ₃ | GND | OE ₁ | 1B ₃ | 1B ₄ | | С | 1A ₆ | 1A ₅ | GND | GND | 1B ₅ | 1B ₆ | | D | 1A ₈ | 1A ₇ | GND | GND | 1B ₇ | 1B ₈ | | E | 1A ₁₀ | 1A ₉ | V_{CC} | V_{CC} | 1B ₉ | 1B ₁₀ | | F | 2A ₂ | 2A ₁ | V_{CC} | V _{CC} | 2B ₁ | 2B ₂ | | G | 2A ₄ | 2A ₃ | V _{CC} | GND | 2B ₃ | 2B ₄ | | Н | 2A ₆ | 2A ₅ | GND | GND | 2B ₅ | 2B ₆ | | J | 2A ₈ | 2A ₇ | 2A ₉ | 2B ₉ | 2B ₇ | 2B ₈ | | K | 2A ₁₀ | 3A ₁₀ | GND | GND | 3B ₁₀ | 2B ₁₀ | | L | 3A ₉ | 3A ₈ | GND | GND | 3B ₈ | 3B ₉ | | M | 3A ₇ | 3A ₆ | GND | V_{CC} | 3B ₆ | 3B ₇ | | N | 3A ₅ | 3A ₄ | V _{CC} | V _{CC} | 3B ₄ | 3B ₅ | | Р | 3A ₃ | 3A ₂ | V_{CC} | V_{CC} | 3B ₂ | 3B ₃ | | R | 3A ₁ | 4A ₁₀ | GND | GND | 4B ₁₀ | 3B ₁ | | T | 4A ₉ | 4A ₈ | GND | GND | 4B ₈ | 4B ₉ | | U | 4A ₇ | 4A ₆ | GND | 4B ₁ | 4B ₆ | 4B ₇ | | ٧ | 4A ₅ | 4A ₄ | 4A ₁ | OE ₄ | 4B ₄ | 4B ₅ | | W | 4A ₃ | 4A ₂ | OE ₃ | NC | 4B ₂ | 4B ₃ | ### **Truth Tables** | Inp | uts | Inputs/Outputs | | | | |-----------------|-----------------|----------------|---------|--|--| | OE ₁ | OE ₂ | 1A, 1B | 2A, 2B | | | | L | L | 1A = 1B | 2A = 2B | | | | L | Н | 1A = 1B | Z | | | | Н | L | Z | 2A = 2B | | | | Н | Н | Z | Z | | | | Inp | uts | Inputs/Outputs | | | | |-----------------|-----------------|----------------|---------|--|--| | OE ₃ | OE ₄ | 3A, 3B | 4A, 4B | | | | L | L | 3A = 3B | 4A = 4B | | | | L | Н | 3A = 3B | Z | | | | Н | L | Z | 4A = 4B | | | | Н | Н | Z | Z | | | # **Connection Diagram** (Top Thru View) ## **Pin Descriptions** | Pin Name | Description | |--|--------------------| | $\overline{OE}_1, \overline{OE}_2, \overline{OE}_3, \overline{OE}_4$ | Bus Switch Enables | | 1A, 2A, 3A, 4A | Bus A | | 1B, 2B, 3B, 4B | Bus B | ## **FBGA Pin Assignments** (48-Bit Routing) | | 1 | 2 | 3 | 4 | 5 | 6 | |---|------------------|------------------|------------------|------------------|------------------|------------------| | Α | 1A ₂ | 1A ₁ | NC | OE ₂ | 1B ₁ | 1B ₂ | | В | 1A ₄ | 1A ₃ | 1A ₇ | OE ₁ | 1B ₃ | 1B ₄ | | С | 1A ₆ | 1A ₅ | GND | 1B ₇ | 1B ₅ | 1B ₆ | | D | 1A ₁₀ | 1A ₉ | 1A ₈ | 1B ₈ | 1B ₉ | 1B ₁₀ | | E | 1A ₁₂ | 1A ₁₁ | 2A ₁ | 2B ₁ | 1B ₁₁ | 1B ₁₂ | | F | 2A ₄ | 2A ₃ | 2A ₂ | 2B ₂ | 2B ₃ | 2B ₄ | | G | 2A ₆ | 2A ₅ | V_{CC} | GND | 2B ₅ | 2B ₆ | | Н | 2A ₈ | 2A ₇ | GND | GND | 2B ₇ | 2B ₈ | | J | 2A ₁₀ | 2A ₉ | 2A ₁₁ | 2B ₁₁ | 2B ₉ | 2B ₁₀ | | K | 2A ₁₂ | 3A ₁₂ | GND | GND | 3B ₁₂ | 2B ₁₂ | | L | 3A ₁₁ | 3A ₁₀ | GND | GND | 3B ₁₀ | 3B ₁₁ | | М | 3A ₉ | 3A ₈ | GND | V_{CC} | 3B ₈ | 3B ₉ | | N | 3A ₇ | 3A ₆ | 3A ₂ | 3B ₂ | 3B ₆ | 3B ₇ | | Р | 3A ₅ | 3A ₄ | 3A ₁ | 3B ₁ | 3B ₄ | 3B ₅ | | R | 3A ₃ | 4A ₁₂ | 4A ₈ | 4B ₈ | 4B ₁₂ | 3B ₃ | | Т | 4A ₁₁ | 4A ₁₀ | 4A ₇ | 4B ₇ | 4B ₁₀ | 4B ₁₁ | | U | 4A ₉ | 4A ₆ | GND | 4B ₁ | 4B ₆ | 4B ₉ | | ٧ | 4A ₅ | 4A ₄ | 4A ₁ | OE ₄ | 4B ₄ | 4B ₅ | | W | 4A ₃ | 4A ₂ | OE ₃ | NC | 4B ₂ | 4B ₃ | #### **Truth Tables** | Inp | uts | Inputs/Outputs | | | |-----------------|-----------------|----------------|---------|--| | OE ₁ | OE ₂ | 1A, 1B | 2A, 2B | | | L | L | 1A = 1B | 2A = 2B | | | L | Н | 1A = 1B | Z | | | Н | L | Z | 2A = 2B | | | Н | Н | Z | Z | | | Inp | uts | Inputs/Outputs | | | | |-----------------|-----------------|----------------|---------|--|--| | OE ₃ | ŌE ₄ | 3A, 3B | 4A, 4B | | | | L | L | 3A = 3B | 4A = 4B | | | | L | Н | 3A = 3B | Z | | | | Н | L | Z | 4A = 4B | | | | Н | Н | Z | Z | | | #### **Absolute Maximum Ratings**(Note 3) Storage Temperature Range (T_{STG}) #### -65°C to +150 °C # Recommended Operating Conditions (Note 6) Power Supply Operating (V_{CC}) 4.0V to 5.5V Input Voltage (V_{IN}) 0V to 5.5V Output Voltage (V_{OUT}) 0V to 5.5V 128 mA Input Rise and Fall Time (t_r, t_f) $\begin{array}{lll} \mbox{Switch Control Input} & \mbox{0 ns/V to 5 ns/V} \\ \mbox{Switch I/O} & \mbox{0 ns/V to DC} \end{array}$ Free Air Operating Temperature (T_A) $\,$ -40 °C to +85 °C $\,$ Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation. Note 4: V_S is the voltage observed/applied at either A or B Ports across the switch. **Note 5:** The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed. Note 6: Unused control inputs must be held HIGH or LOW. They may not float #### **DC Electrical Characteristics** | | | V _{CC} | $T_A = -40~^{\circ}C$ to $+85~^{\circ}C$ | | | | | |------------------|---------------------------------------|-----------------|--|-----------------|------|-------|---| | Symbol | Parameter | (V) | Min | Typ
(Note 7) | Max | Units | Conditions | | V _{IK} | Clamp Diode Voltage | 4.5 | | | -1.2 | V | I _{IN} = -18 mA | | V _{IH} | HIGH Level Input Voltage | 4.0-5.5 | 2.0 | | | V | | | V _{IL} | LOW Level Input Voltage | 4.0-5.5 | | | 0.8 | V | | | II | Input Leakage Current | 5.5 | | | ±1.0 | μΑ | 0 ≤ V _{IN} ≤ 5.5V | | | | 0 | | | 10 | μΑ | V _{IN} = 5.5V | | I _{OZ} | OFF-STATE Leakage Current | 5.5 | | | ±1.0 | μΑ | 0 ≤ A, B ≤ V _{CC} | | R _{ON} | Switch On Resistance | 4.5 | | 4 | 7 | Ω | V _{IN} = 0V, I _{IN} = 64 mA | | | (Note 8) | 4.5 | | 4 | 7 | Ω | V _{IN} = 0V, I _{IN} = 30 mA | | | | 4.5 | | 8 | 12 | Ω | V _{IN} = 2.4V, I _{IN} = 15 mA | | | | 4.0 | | 11 | 20 | Ω | V _{IN} = 2.4V, I _{IN} = 15 mA | | I _{CC} | Quiescent Supply Current | 5.5 | | | 3 | μΑ | $OE_1 = OE_2 = GND$ | | | | | | | | | $V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$ | | ΔI _{CC} | Increase in I _{CC} per Input | 5.5 | | | 2.5 | mA | One Input at 3.4V | | | | | | | | | Other Inputs at V _{CC} or GND | Note 7: Typical values are at V_{CC} = 5.0V and T_A= +25°C Note 8: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins. ## **AC Electrical Characteristics** | | - | | T _A = -40 °C
= 50pF, Rl | | | | 2 151 | Figure | |-------------------------------------|---------------------------------------|---------------------|---------------------------------------|-------------------|--------|--------------------|---|-----------------| | Symbol | Parameter | V _{CC} = 4 | .5 – 5.5V | V _{CC} = | = 4.0V | - Units Conditions | | Number | | | | Min | Max | Min | Max | | | | | t _{PHL} , t _{PLH} | Propagation Delay Bus to Bus (Note 9) | | 0.25 | | 0.25 | ns | V _I = OPEN | Figures
1, 2 | | t _{PZH} , t _{PZL} | Output Enable Time | 1.5 | 6.0 | | 6.5 | ns | $V_I = 7V$ for t_{PZL}
$V_I = OPEN$ for t_{PZH} | Figures
1, 2 | | t _{PHZ} , t _{PLZ} | Output Disable Time | 1.5 | 7.0 | | 7.2 | | $V_I = OPEN \text{ for } t_{PHZ}$ $V_I = OPEN \text{ for } t_{PHZ}$ | Figures 1, 2 | Note 9: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance). #### Capacitance (Note 10) | Symbol | Parameter | Тур | Max | Units | Conditions | |------------------|-------------------------------|-----|-----|-------|-----------------------------------| | C _{IN} | Control Pin Input Capacitance | 3 | | pF | V _{CC} = 5.0V | | C _{I/O} | Input/Output Capacitance | 6 | | pF | V_{CC} , $\overline{OE} = 5.0V$ | Note 10: T_A = +25°C, f = 1 MHz, Capacitance is characterized but not tested. #### **AC Loading and Waveforms** Note: Input driven by 50Ω source terminated in 50Ω Note: C_L includes load and stray capacitance Note: Input PRR = 1.0 MHz, t_W = 500 ns FIGURE 1. AC Test Circuit FIGURE 2. AC Waveforms #### Physical Dimensions inches (millimeters) unless otherwise noted #### NOTES: - A. THIS PACKAGE CONFORMS TO JEDEC M0-205 B. ALL DIMENSIONS IN MILLIMETERS - D. ALAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined) .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS D. DRAWING CONFORMS TO ASME Y14.5M-1994 BGA114ArevE 114-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA114A #### **Technology Description** The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product. Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com