New Generation of WICOP # High-Power LED – WICOP2 Z8 Y19 SZ8-Y19-XX-XX (Cool, Neutral, Warm) ### **Product Brief** ### **Description** - The WICOP2 series is designed for high flux output applications with high current operation capability. - Compact footprint(1.81x1.81mm) enables system level cost saving - It incorporates state of the art SMD design and low thermal resistant material. The WICOP2 is ideal light sources for directional lighting applications such as Spot Lights, various outdoor applications, automotive lightings and high performance torches. #### **Features and Benefits** - Designed for high current operation - Low Thermal Resistance - A wide CCT range of 2,600~7,000K - ANSI compliant Binning - RoHS compliant - Phosphor film directly attached to chip surface #### **Key Applications** - Residential Replacement lamps - Commercial/Industrial Retail Display - Outdoor area Flood/Street light, High Bay **Table 1. Product Selection Table** | Dort Number | | ССТ | | CRI | |---------------|---------------|--------|--------|-----| | Part Number | Color | Min. | Max. | Min | | SZ8-Y19-W0-C7 | Cool White | 4,700K | 7,000K | 70 | | SZ8-Y19-W0-C8 | Cool White | 4,700K | 7,000K | 80 | | SZ8-Y19-W0-C9 | Cool White | 4,700K | 7,000K | 90 | | SZ8-Y19-WN-C7 | Neutral White | 3,700K | 4,700K | 70 | | SZ8-Y19-WN-C8 | Neutral White | 3,700K | 4,700K | 80 | | SZ8-Y19-WN-C9 | Neutral White | 3,700K | 4,700K | 90 | | SZ8-Y19-WW-C7 | Warm White | 2,600K | 3,700K | 70 | | SZ8-Y19-WW-C8 | Warm White | 2,600K | 3,700K | 80 | | SZ8-Y19-WW-C9 | Warm White | 2,600K | 3,700K | 90 | # **Table of Contents** | Inde | ex | | |------|-------------------------------------|----| | • | Product Brief | 1 | | • | Table of Contents | 2 | | • | Performance Characteristics | 3 | | • | Characteristics Graph | 7 | | • | Color bin structure | 12 | | • | Mechanical Dimensions | 21 | | • | Material Structure | 22 | | • | Reflow Soldering Characteristics | 23 | | • | Emitter Tape & Reel Packaging | 24 | | • | Handling of Silicone Resin for LEDs | 26 | | • | Precaution For Use | 27 | | • | Company Information | 30 | ### **Performance Characteristics** Table 2. Electro Optical Characteristics, $I_F = 350 \text{mA}$ (CRI 70) | Part Number | ССТ | [K] ^[1] | Min. L | Min. Luminous Flux ^[2]
Φ _V ^[3] [lm] | | | ıminous
³¹ [lm]@ 8 | | CRI ^[4] ,
R _a | |----------------|------|--------------------|--------|---|-----------------------|-------|-----------------------|------|--| | | Min. | Max. | Group | Flux
[lm]
@85°C | Flux
[lm]
@25°C | 700mA | 1.0A | 1.5A | Min. | | | | | W4 | 160 | 175 | 285 | 376 | 510 | | | SZ8-Y19-W0-C7 | 4700 | 7000 | W3 | 152 | 167 | 271 | 357 | 485 | 70 | | S26-119-W0-C7 | 4700 | 7000 | W2 | 142 | 156 | 254 | 335 | 455 | 70 | | | | | W1 | 133 | 146 | 237 | 313 | 424 | | | | | 00 4700 | W4 | 160 | 175 | 285 | 376 | 510 | | | SZ8-Y19-WN-C7 | 3700 | | W3 | 152 | 167 | 271 | 357 | 485 | 70 | | 526-119-WIN-C7 | 3700 | | W2 | 142 | 156 | 254 | 335 | 455 | 70 | | | | | W1 | 133 | 146 | 237 | 313 | 424 | | | | | | W3 | 152 | 167 | 271 | 357 | 485 | | | 670 V40 M/M 67 | 2600 | 2700 | W2 | 142 | 156 | 254 | 335 | 455 | 70 | | SZ8-Y19-WW-C7 | 2600 | 3700 - | W1 | 133 | 146 | 237 | 313 | 424 | 70 | | | | | V3 | 125 | 137 | 223 | 294 | 399 | | - (1) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. - Color coordinate : ± 0.005 , CCT $\pm 5\%$ tolerance. - (2) Seoul Semiconductor maintains a tolerance of $\pm 7\%$ on flux and power measurements. - (3) Φ_V is the total luminous flux output as measured with an integrating sphere. - (4) Tolerance is ± 2.0 on CRI measurements. ### **Performance Characteristics** Table 2. Electro Optical Characteristics, I_F = 350mA (CRI 80) | | ССТ | [K] ^[1] | Min. L | Min. Luminous Flux ^[2]
Φ _V ^[3] [lm] | | | uminous
^{3]} [lm] @ 8 | | CRI ^[4] ,
R _a | |-----------------|------|--------------------|--------|---|-----------------------|-------|-----------------------------------|------|--| | Part Number | Min. | Max. | Group | Flux
[lm]
@85°C | Flux
[lm]
@25°C | 700mA | 1.0A | 1.5A | Min. | | | | | W3 | 152 | 167 | 271 | 357 | 485 | | | SZ8-Y19-W0-C8 | 4700 | 7000 | W2 | 142 | 156 | 254 | 335 | 455 | 80 | | S26-119-WU-C6 | 4700 | 7000 | W1 | 133 | 146 | 237 | 313 | 424 | 80 | | | | | V3 | 125 | 137 | 223 | 294 | 399 | | | | | 00 4700 | W3 | 152 | 167 | 271 | 357 | 485 | | | SZ8-Y19-WN-C8 | 3700 | | W2 | 142 | 156 | 254 | 335 | 455 | 80 | | 526-1 19-WIN-C6 | 3700 | | W1 | 133 | 146 | 237 | 313 | 424 | 00 | | | | | V3 | 125 | 137 | 223 | 294 | 399 | | | | | | W1 | 133 | 146 | 237 | 313 | 424 | | | SZ8-Y19-WW-C8 | 2000 | 2700 | V3 | 125 | 137 | 223 | 294 | 399 | 00 | | | 2600 | 3700 - | V2 | 116 | 128 | 208 | 274 | 372 | 80 | | | | | V1 | 109 | 120 | 195 | 257 | 349 | | - (1) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. - Color coordinate : ± 0.005 , CCT $\pm 5\%$ tolerance. - (2) Seoul Semiconductor maintains a tolerance of $\pm 7\%$ on flux and power measurements. - (3) Φ_V is the total luminous flux output as measured with an integrating sphere. - (4) Tolerance is ± 2.0 on CRI measurements. ### **Performance Characteristics** Table 2. Electro Optical Characteristics, $I_F = 350 \text{mA}$ (CRI 90) | | ССТ | ССТ [К] ^[1] | | Min. Luminous Flux ^[2]
Φ _v ^[3] [lm] | | | ıminous
^{3]} [lm] @ 8 | | CRI ^[4] ,
R _a | |---------------|------|------------------------|-------|---|-----------------------|-------|-----------------------------------|------|--| | Part Number | Min. | Max. | Group | Flux
[lm]
@85°C | Flux
[lm]
@25°C | 700mA | 1.0A | 1.5A | Min. | | | · | | W1 | 133 | 146 | 237 | 313 | 424 | | | SZ8-Y19-W0-C9 | 4700 | 7000 | V3 | 125 | 137 | 223 | 294 | 399 | 90 | | S26-119-W0-C9 | 4700 | 7000 | V2 | 116 | 128 | 208 | 274 | 372 | . 90 | | | | | V1 | 109 | 120 | 195 | 257 | 349 | | | | | | W1 | 133 | 146 | 237 | 313 | 424 | | | SZ8-Y19-WN-C9 | 3700 | | V3 | 125 | 137 | 223 | 294 | 399 | 90 | | 526-119-WN-C9 | 3700 | 4700 | V2 | 116 | 128 | 208 | 274 | 372 | 90 | | | | | V1 | 109 | 120 | 195 | 257 | 349 | | | | | | V2 | 116 | 128 | 208 | 274 | 372 | | | SZ8-Y19-WW-C9 | 2600 | 2700 | V1 | 109 | 120 | 195 | 257 | 349 | 90 | | | 2600 | 2600 3700 - | U3 | 102 | 112 | 182 | 240 | 326 | 90 | | | | | U2 | 96 | 106 | 172 | 227 | 308 | - | - (1) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram. Color coordinate : ± 0.005 , CCT $\pm 5\%$ tolerance. - (2) Seoul Semiconductor maintains a tolerance of $\pm 7\%$ on flux and power measurements. - (3) Φ_V is the total luminous flux output as measured with an integrating sphere. - (4) Tolerance is ± 2.0 on CRI measurements. ### **Performance Characteristics** **Table 3. Absolute Maximum Ratings** | Parameter | Cumbal | | Value | | Unit | |---------------------------------|-------------------|-------|--|--|--------| | rarameter | Symbol | Min. | Тур. | Max. | Onit | | Forward Current [1] | I _F | - | - | 1.5 ^[4]
2.0 ^[3] | А | | Power Dissipation | P_{D} | - | - | 7.8 | W | | Junction Temperature | T _j | - | - | 145 | °C | | Operating Temperature | T_{opr} | - 40 | - | 125 | ۰C | | Storage Temperature | T_{stg} | - 40 | - | 125 | ۰C | | Viewing angle | θ | | 140 | | degree | | Thermal resistance (J to S) [2] | Rθ _{J-S} | - | 3 ^[3]
4.5 ^[4] | - | K/W | | ESD Sensitivity(HBM) | | Class | 2 JESD22-A | 114-E | | - (1) At Junction Temperature 85 °C condition. - (2) $R\theta_{J-S}$ is tested at 700mA. - (3) Using Metal PCB (Dielectric layer 5W/m·K and Cu pattern of 2oz). - (4) Using Metal PCB (Normal type). - Thermal resistance can be increased substantially depending on the heat sink design/operating condition, and the maximum possible driving current will decrease accordingly. Fig 1. Color Spectrum Fig 2. Typical Spatial Distribution Fig 3. Forward Voltage vs. Forward Current, T_i =85 $^{\circ}$ C Fig 4. Forward Current vs. Relative Luminous Flux, T_i=85 ℃ Fig 5. Forward Current vs. CIE X, Y Shift Fig 6. Junction Temp. vs. CIE X, Y Shift Fig 7. Relative Light Output vs. Junction Temperature, I_F=700mA Fig 8. Relative Forward Voltage vs. Junction Temperature, I_F=700mA Fig 9. Maximum Forward Current vs. Ambient Temperature, $T_i(max.)=145\,^{\circ}C$, $I_F=2A$ ### **Color Bin Structure** Table 4. Bin Code description, I_F=700mA, T_i=85 ℃ (CRI 70) | Part Number | Luminous Flux [lm] | | | Color
Chromaticity | Typical For | Typical Forward Voltage [V _F] ^{[1]*} | | | | |-----------------|--------------------|------|------|---------------------------------|-------------|---|------|--|--| | | Bin Code | Min. | Max. | Coordinate | Bin Code | Min. | Max. | | | | | W1 | 237 | 254 | -
_ Refer to page
15
- | G | 2.75 | 3.00 | | | | SZ8-Y19-W0-C7 | W2 | 254 | 271 | | | 2.75 | 3.00 | | | | 320-119-00-07 | W3 | 271 | 285 | | Н | 3.00 | 3.25 | | | | | W4 | 285 | 299 | | П | 3.00 | 3.25 | | | | | W1 | 237 | 254 | Refer to page. | G | 2.75 | 3.00 | | | | SZ8-Y19-WN-C7 | W2 | 254 | 271 | | G | | 3.00 | | | | 326-1 19-WIN-C/ | W3 | 271 | 285 | 16~17 | | 0.00 | 2.05 | | | | | W4 | 285 | 299 | | Н | 3.00 | 3.25 | | | | | V3 | 223 | 237 | | | 0.75 | 2.00 | | | | C70 V40 M/M C7 | W1 | 237 | 254 | Refer to page. | G | 2.75 | 3.00 | | | | SZ8-Y19-WW-C7 | W2 | 254 | 271 | 18~20 | | | 2.05 | | | | | W3 | 271 | 285 | | Н | 3.00 | 3.25 | | | #### Table 5. Luminous Flux rank distribution (CRI 70) Available Rank | сст | CIE | Luminous Flux Rank | | | | | | | | | |----------------|-----|--------------------|----|----|----|----|----|--|--|--| | 6,000 ~ 7,000K | Α | V2 | V3 | W1 | W2 | W3 | W4 | | | | | 5,300 – 6,000K | В | V2 | V3 | W1 | W2 | W3 | W4 | | | | | 4,700 ~ 5,300K | С | V2 | V3 | W1 | W2 | W3 | W4 | | | | | 4,200 ~ 4,700K | D | V2 | V3 | W1 | W2 | W3 | W4 | | | | | 3,700 ~ 4,200K | E | V2 | V3 | W1 | W2 | W3 | W4 | | | | | 3,200 ~ 3,700K | F | V2 | V3 | W1 | W2 | W3 | W4 | | | | | 2,900 ~ 3,200K | G | V2 | V3 | W1 | W2 | W3 | W4 | | | | | 2,600 ~ 2,900K | Н | V2 | V3 | W1 | W2 | W3 | W4 | | | | - (1) Tolerance is $\pm 0.06V$ on forward voltage measurements. - (2) All measurements were made under the standardized environment of Seoul Semiconductor In order to ensure availability, single color rank will not be orderable. ### **Color Bin Structure** Table 4. Bin Code description, I_F=700mA, T_i=85 ℃ (CRI 80) | Part Number | Luminous Flux [lm] | | | Color
Chromaticity | Typical For | Typical Forward Voltage [V _F] ^{[1]*} | | | | |-----------------|--------------------|------|------|---------------------------------|-------------|---|------|--|--| | | Bin Code | Min. | Max. | Coordinate | Bin Code | Min. | Max. | | | | | V3 | 223 | 237 | -
_ Refer to page
15
- | G | 2.75 | 3.00 | | | | SZ8-Y19-W0-C8 | W1 | 237 | 254 | | | 2.75 | 3.00 | | | | 320-119-00-00 | W2 | 254 | 271 | | Н | 2.00 | 3.25 | | | | | W3 | 271 | 285 | | П | 3.00 | 3.25 | | | | | V3 | 223 | 237 | Refer to page. | G | 2.75 | 3.00 | | | | SZ8-Y19-WN-C8 | W1 | 237 | 254 | | G | | 3.00 | | | | 326-1 19-WIN-C6 | W2 | 254 | 271 | 16~17 | | 0.00 | 2.05 | | | | | W3 | 271 | 285 | | Н | 3.00 | 3.25 | | | | | V1 | 195 | 208 | | G | 0.75 | 2.00 | | | | 070)/40) | V2 | 208 | 223 | Refer to page. | G | 2.75 | 3.00 | | | | SZ8-Y19-WW-C8 | V3 | 223 | 237 | 18~20 | | | 2.05 | | | | | W1 | 237 | 254 | ' | Н | 3.00 | 3.25 | | | ### Table 5. Luminous Flux rank distribution (CRI 80) Available Rank | сст | CIE | Luminous Flux Rank | | | | | | | | |----------------|-----|--------------------|----|----|----|----|----|--|--| | 6,000 ~ 7,000K | Α | V1 | V2 | V3 | W1 | W2 | W3 | | | | 5,300 – 6,000K | В | V1 | V2 | V3 | W1 | W2 | W3 | | | | 4,700 ~ 5,300K | С | V1 | V2 | V3 | W1 | W2 | W3 | | | | 4,200 ~ 4,700K | D | V1 | V2 | V3 | W1 | W2 | W3 | | | | 3,700 ~ 4,200K | Е | V1 | V2 | V3 | W1 | W2 | W3 | | | | 3,200 ~ 3,700K | F | V1 | V2 | V3 | W1 | W2 | W3 | | | | 2,900 ~ 3,200K | G | V1 | V2 | V3 | W1 | W2 | W3 | | | | 2,600 ~ 2,900K | Н | V1 | V2 | V3 | W1 | W2 | W3 | | | #### Notes - (1) Tolerance is ± 0.06 V on forward voltage measurements. - (2) All measurements were made under the standardized environment of Seoul Semiconductor In order to ensure availability, single color rank will not be orderable. Rev2.1, Apr 15, 2016 13 www.seoulsemicon.com ### **Color Bin Structure** Table 4. Bin Code description, I_F=700mA, T_i=85 ℃ (CRI 90) | Part Number | Lum | inous Flux | [lm] | Color
Chromaticity | Typical For | Typical Forward Voltage [V _F] ^{[1]*} | | | | |-------------------|----------|------------|------|--------------------------|-------------|---|------|--|--| | | Bin Code | Min. | Max. | Coordinate | Bin Code | Min. | Max. | | | | | V1 | 195 | 208 | | G | 0.75 | 3.00 | | | | SZ8-Y19-W0-C9 | V2 | 208 | 223 | Refer to page
15
- | | 2.75 | 3.00 | | | | 320-119-00-09 | V3 | 223 | 237 | | Н | 3.00 | 3.25 | | | | | W1 | 237 | 254 | | П | 3.00 | 3.25 | | | | | V1 | 195 | 208 | Refer to page. | G | 2.75 | 3.00 | | | | SZ8-Y19-WN-C9 | V2 | 208 | 223 | | G | | 3.00 | | | | 326-119-WN-C9 | V3 | 223 | 237 | 16~17 | | 0.00 | 2.05 | | | | | W1 | 237 | 254 | | Н | 3.00 | 3.25 | | | | | U2 | 172 | 182 | | G | 0.75 | 2.00 | | | | 670 3/40 34/34 60 | U3 | 182 | 195 | Refer to page. | G | 2.75 | 3.00 | | | | SZ8-Y19-WW-C9 | V1 | 195 | 208 | 18~20 | | | 2.05 | | | | | V2 | 208 | 223 | ' | Н | 3.00 | 3.25 | | | ### Table 5. Luminous Flux rank distribution (CRI 90) **Available Rank** | сст | CIE | Luminous Flux Rank | | | | | | | | |----------------|-----|--------------------|----|----|----|----|----|--|--| | 6,000 ~ 7,000K | Α | U2 | U3 | V1 | V2 | V3 | W1 | | | | 5,300 – 6,000K | В | U2 | U3 | V1 | V2 | V3 | W1 | | | | 4,700 ~ 5,300K | С | U2 | U3 | V1 | V2 | V3 | W1 | | | | 4,200 ~ 4,700K | D | U2 | U3 | V1 | V2 | V3 | W1 | | | | 3,700 ~ 4,200K | Е | U2 | U3 | V1 | V2 | V3 | W1 | | | | 3,200 ~ 3,700K | F | U2 | U3 | V1 | V2 | V3 | W1 | | | | 2,900 ~ 3,200K | G | U2 | U3 | V1 | V2 | V3 | W1 | | | | 2,600 ~ 2,900K | Н | U2 | U3 | V1 | V2 | V3 | W1 | | | - (1) Tolerance is $\pm 0.06V$ on forward voltage measurements. - (2) All measurements were made under the standardized environment of Seoul Semiconductor In order to ensure availability, single color rank will not be orderable. ### **Color Bin Structure** ### CIE Chromaticity Diagram (Cool white), T_j =85 $^{\circ}$ C, I_F =700mA | | 40 | А | .1 | A: | 2 | А | 3 | |--------|----------------|--------|--------|--------|--------|--------|--------| | CIE x | CIE y | | 0.3028 | 0.3304 | 0.3115 | 0.3393 | 0.3041 | 0.3240 | 0.3126 | 0.3324 | | 0.3041 | 0.3240 | 0.3126 | 0.3324 | 0.3055 | 0.3177 | 0.3136 | 0.3256 | | 0.3126 | 0.3324 | 0.3210 | 0.3408 | 0.3136 | 0.3256 | 0.3216 | 0.3334 | | 0.3115 | 0.3393 | 0.3205 | 0.3481 | 0.3126 | 0.3324 | 0.3210 | 0.3408 | | F | \ 4 | A | .5 | В | 0 | В | 1 | | CIE x | CIE y | | 0.3055 | 0.3177 | 0.3136 | 0.3256 | 0.3207 | 0.3462 | 0.3292 | 0.3539 | | 0.3068 | 0.3113 | 0.3146 | 0.3187 | 0.3212 | 0.3389 | 0.3293 | 0.3461 | | 0.3146 | 0.3187 | 0.3221 | 0.3261 | 0.3293 | 0.3461 | 0.3373 | 0.3534 | | 0.3136 | 0.3256 | 0.3216 | 0.3334 | 0.3292 | 0.3539 | 0.3376 | 0.3616 | | E | 32 | В | 3 | В | 4 | В | 5 | | CIE x | CIE y | | 0.3212 | 0.3389 | 0.3293 | 0.3461 | 0.3217 | 0.3316 | 0.3293 | 0.3384 | | 0.3217 | 0.3316 | 0.3293 | 0.3384 | 0.3222 | 0.3243 | 0.3294 | 0.3306 | | 0.3293 | 0.3384 | 0.3369 | 0.3451 | 0.3294 | 0.3306 | 0.3366 | 0.3369 | | 0.3293 | 0.3461 | 0.3373 | 0.3534 | 0.3293 | 0.3384 | 0.3369 | 0.3451 | | C | 0 | С (| 1 | C. | 2 | С | 3 | | CIE x | CIE y | | 0.3376 | 0.3616 | 0.3463 | 0.3687 | 0.3373 | 0.3534 | 0.3456 | 0.3601 | | 0.3373 | 0.3534 | 0.3456 | 0.3601 | 0.3369 | 0.3451 | 0.3448 | 0.3514 | | 0.3456 | 0.3601 | 0.3539 | 0.3669 | 0.3448 | 0.3514 | 0.3526 | 0.3578 | | 0.3463 | 0.3687 | 0.3552 | 0.3760 | 0.3456 | 0.3601 | 0.3539 | 0.3669 | | C | C4 | C | 5 | | | | | | CIE x | CIE y | CIE x | CIE y | | | | | | 0.3369 | 0.3451 | 0.3448 | 0.3514 | | | | | | 0.3366 | 0.3369 | 0.3440 | 0.3428 | | | | | | 0.3440 | 0.3428 | 0.3514 | 0.3487 | | | | | | 0.3448 | 0.3514 | 0.3526 | 0.3578 | | | | | ### **Color Bin Structure** ### CIE Chromaticity Diagram (Neutral White), T_j =85 $^{\circ}$ C, I_F =700mA | D. | 11 | D | 21 | D3 | 31 | D | 41 | |---|---|---|---|---|---|---|---| | CIE x | CIE y | | 0.3548 | 0.3736 | 0.3595 | 0.3770 | 0.3641 | 0.3804 | 0.3689 | 0.3839 | | 0.3539 | 0.3668 | 0.3584 | 0.3701 | 0.3628 | 0.3733 | 0.3674 | 0.3767 | | 0.3584 | 0.3701 | 0.3628 | 0.3733 | 0.3674 | 0.3767 | 0.3720 | 0.3800 | | 0.3595 | 0.3770 | 0.3641 | 0.3804 | 0.3689 | 0.3839 | 0.3736 | 0.3874 | | D. | 12 | D | 22 | D3 | 32 | D ₁ | 42 | | CIE x | CIE y | | 0.3539 | 0.3668 | 0.3584 | 0.3701 | 0.3628 | 0.3733 | 0.3674 | 0.3767 | | 0.3530 | 0.3601 | 0.3573 | 0.3632 | 0.3616 | 0.3663 | 0.3659 | 0.3694 | | 0.3573 | 0.3632 | 0.3616 | 0.3663 | 0.3659 | 0.3694 | 0.3703 | 0.3726 | | 0.3584 | 0.3701 | 0.3628 | 0.3733 | 0.3674 | 0.3767 | 0.3720 | 0.3800 | | | | | | | | | | | D. | 13 | D: | 23 | D3 | 33 | D ₄ | 43 | | CIE x | CIE y | CIE x | 23
CIE y | CIE x | CIE y | CIE x | 43
CIE y | | | | | | | | | | | CIE x | CIE y | | CIE x
0.3530 | CIE y
0.3601 | CIE x
0.3573 | CIE y
0.3632 | CIE x
0.3616 | CIE y
0.3663 | CIE x
0.3659 | CIE y
0.3694 | | CIE x
0.3530
0.3520 | CIE y
0.3601
0.3533 | CIE x
0.3573
0.3562 | CIE y
0.3632
0.3562 | CIE x
0.3616
0.3603 | CIE y
0.3663
0.3592 | CIE x
0.3659
0.3645 | CIE y
0.3694
0.3622 | | CIE x
0.3530
0.3520
0.3562
0.3573 | CIE y
0.3601
0.3533
0.3562 | CIE x
0.3573
0.3562
0.3603
0.3616 | CIE y
0.3632
0.3562
0.3592 | CIE x
0.3616
0.3603
0.3645 | CIE y 0.3663 0.3592 0.3622 0.3694 | CIE x
0.3659
0.3645
0.3687
0.3703 | CIE y
0.3694
0.3622
0.3652 | | CIE x
0.3530
0.3520
0.3562
0.3573 | CIE y 0.3601 0.3533 0.3562 0.3632 | CIE x
0.3573
0.3562
0.3603
0.3616 | CIE y 0.3632 0.3562 0.3592 0.3663 | CIE x
0.3616
0.3603
0.3645
0.3659 | CIE y 0.3663 0.3592 0.3622 0.3694 | CIE x
0.3659
0.3645
0.3687
0.3703 | CIE y 0.3694 0.3622 0.3652 0.3726 | | CIE x
0.3530
0.3520
0.3562
0.3573 | CIE y 0.3601 0.3533 0.3562 0.3632 | CIE x
0.3573
0.3562
0.3603
0.3616 | CIE y 0.3632 0.3562 0.3592 0.3663 | CIE x
0.3616
0.3603
0.3645
0.3659 | CIE y 0.3663 0.3592 0.3622 0.3694 | CIE x 0.3659 0.3645 0.3687 0.3703 | CIE y 0.3694 0.3622 0.3652 0.3726 | | 0.3530
0.3520
0.3562
0.3573 | CIE y 0.3601 0.3533 0.3562 0.3632 14 CIE y | CIE x 0.3573 0.3562 0.3603 0.3616 D) CIE x | CIE y 0.3632 0.3562 0.3592 0.3663 24 CIE y | CIE x 0.3616 0.3603 0.3645 0.3659 D3 CIE x | CIE y 0.3663 0.3592 0.3622 0.3694 34 CIE y | CIE x 0.3659 0.3645 0.3687 0.3703 D.CIE x | CIE y 0.3694 0.3622 0.3652 0.3726 44 CIE y | | CIE x 0.3530 0.3520 0.3562 0.3573 CIE x 0.3520 | CIE y 0.3601 0.3533 0.3562 0.3632 14 CIE y 0.3533 | CIE x 0.3573 0.3562 0.3603 0.3616 D: CIE x 0.3562 | CIE y 0.3632 0.3562 0.3592 0.3663 24 CIE y 0.3562 | CIE x 0.3616 0.3603 0.3645 0.3659 D3 CIE x 0.3603 | CIE y 0.3663 0.3592 0.3622 0.3694 34 CIE y 0.3592 | CIE x 0.3659 0.3645 0.3687 0.3703 December 2 | CIE y 0.3694 0.3622 0.3652 0.3726 44 CIE y 0.3622 | ### **Color Bin Structure** ### CIE Chromaticity Diagram (Neutral White), T_j =85 $^{\circ}$ C, I_F =700mA | E ^r | 11 | E | 21 | E3 | 31 | E | 41 | |----------------|--------|--------|--------|--------|--------|--------|--------| | CIE x | CIE y | | 0.3736 | 0.3874 | 0.3804 | 0.3917 | 0.3871 | 0.3959 | 0.3939 | 0.4002 | | 0.3720 | 0.3800 | 0.3784 | 0.3841 | 0.3849 | 0.3881 | 0.3914 | 0.3922 | | 0.3784 | 0.3841 | 0.3849 | 0.3881 | 0.3914 | 0.3922 | 0.3979 | 0.3962 | | 0.3804 | 0.3917 | 0.3871 | 0.3959 | 0.3939 | 0.4002 | 0.4006 | 0.4044 | | E ² | 12 | E | 22 | E3 | 32 | E. | 42 | | CIE x | CIE y | | 0.3720 | 0.3800 | 0.3784 | 0.3841 | 0.3849 | 0.3881 | 0.3914 | 0.3922 | | 0.3703 | 0.3726 | 0.3765 | 0.3765 | 0.3828 | 0.3803 | 0.3890 | 0.3842 | | 0.3765 | 0.3765 | 0.3828 | 0.3803 | 0.3890 | 0.3842 | 0.3952 | 0.3880 | | 0.3784 | 0.3841 | 0.3849 | 0.3881 | 0.3914 | 0.3922 | 0.3979 | 0.3962 | | E. | 13 | E | 23 | E3 | 33 | E. | 43 | | CIE x | CIE y | | 0.3703 | 0.3726 | 0.3765 | 0.3765 | 0.3828 | 0.3803 | 0.3890 | 0.3842 | | 0.3687 | 0.3652 | 0.3746 | 0.3689 | 0.3806 | 0.3725 | 0.3865 | 0.3762 | | 0.3746 | 0.3689 | 0.3806 | 0.3725 | 0.3865 | 0.3762 | 0.3925 | 0.3798 | | 0.3765 | 0.3765 | 0.3828 | 0.3803 | 0.3890 | 0.3842 | 0.3952 | 0.3880 | | E. | 14 | E | 24 | E3 | 34 | E. | 44 | | CIE x | CIE y | | 0.3687 | 0.3652 | 0.3746 | 0.3689 | 0.3806 | 0.3725 | 0.3865 | 0.3762 | | 0.3670 | 0.3578 | 0.3727 | 0.3613 | 0.3784 | 0.3647 | 0.3841 | 0.3682 | | 0.3727 | 0.3613 | 0.3784 | 0.3647 | 0.3841 | 0.3682 | 0.3898 | 0.3716 | | 0.0121 | 0.0010 | 0.0704 | 0.00+1 | 0.3041 | 0.0002 | 0.0000 | | ### **Color Bin Structure** ### CIE Chromaticity Diagram (Warm White), T_j =85 $^{\circ}$ C, I_F =700mA | F1 | l1 | F: | 21 | F3 | 31 | F4 | 41 | |---|---|---|---|---|---|---|---| | CIE x | CIE y | | 0.3996 | 0.4015 | 0.4071 | 0.4052 | 0.4146 | 0.4089 | 0.4223 | 0.4127 | | 0.3969 | 0.3934 | 0.4042 | 0.3969 | 0.4114 | 0.4005 | 0.4187 | 0.4041 | | 0.4042 | 0.3969 | 0.4114 | 0.4005 | 0.4187 | 0.4041 | 0.4261 | 0.4077 | | 0.4071 | 0.4052 | 0.4146 | 0.4089 | 0.4223 | 0.4127 | 0.4299 | 0.4165 | | F1 | 12 | F: | 22 | F3 | 32 | F4 | 42 | | CIE x | CIE y | | 0.3969 | 0.3934 | 0.4042 | 0.3969 | 0.4114 | 0.4005 | 0.4187 | 0.4041 | | 0.3943 | 0.3853 | 0.4012 | 0.3886 | 0.4082 | 0.3920 | 0.4152 | 0.3955 | | 0.4012 | 0.3886 | 0.4082 | 0.3920 | 0.4152 | 0.3955 | 0.4223 | 0.3990 | | 0.4042 | 0.3969 | 0.4114 | 0.4005 | 0.4187 | 0.4041 | 0.4261 | 0.4077 | | F1 | 13 | F: | 23 | F3 | 33 | F4 | 43 | | • | | | | | | | | | CIE x | CIE y | | | | | | | | | CIE y
0.3955 | | CIE x | CIE y | CIE x | CIE y | CIE x | CIE y | CIE x | | | CIE x
0.3943 | CIE y
0.3853 | CIE x
0.4012 | CIE y
0.3886 | CIE x
0.4082 | CIE y
0.3920 | CIE x
0.4152 | 0.3955 | | CIE x
0.3943
0.3916 | CIE y
0.3853
0.3771 | CIE x
0.4012
0.3983 | CIE y
0.3886
0.3803 | CIE x
0.4082
0.4049 | CIE y
0.3920
0.3836 | CIE x
0.4152
0.4117 | 0.3955 | | CIE x
0.3943
0.3916
0.3983 | CIE y 0.3853 0.3771 0.3803 0.3886 | CIE x
0.4012
0.3983
0.4049
0.4082 | CIE y
0.3886
0.3803
0.3836 | CIE x
0.4082
0.4049
0.4117 | CIE y 0.3920 0.3836 0.3869 0.3955 | CIE x
0.4152
0.4117
0.4185
0.4223 | 0.3955
0.3869
0.3902 | | CIE x
0.3943
0.3916
0.3983
0.4012 | CIE y 0.3853 0.3771 0.3803 0.3886 | CIE x
0.4012
0.3983
0.4049
0.4082 | CIE y 0.3886 0.3803 0.3836 0.3920 | CIE x
0.4082
0.4049
0.4117
0.4152 | CIE y 0.3920 0.3836 0.3869 0.3955 | CIE x
0.4152
0.4117
0.4185
0.4223 | 0.3955
0.3869
0.3902
0.3990 | | CIE x
0.3943
0.3916
0.3983
0.4012 | CIE y 0.3853 0.3771 0.3803 0.3886 | CIE x
0.4012
0.3983
0.4049
0.4082 | CIE y 0.3886 0.3803 0.3836 0.3920 | CIE x
0.4082
0.4049
0.4117
0.4152 | CIE y 0.3920 0.3836 0.3869 0.3955 | CIE x
0.4152
0.4117
0.4185
0.4223 | 0.3955
0.3869
0.3902
0.3990 | | CIE x 0.3943 0.3916 0.3983 0.4012 F ² CIE x | CIE y 0.3853 0.3771 0.3803 0.3886 14 CIE y | CIE x 0.4012 0.3983 0.4049 0.4082 | CIE y 0.3886 0.3803 0.3836 0.3920 24 CIE y | CIE x 0.4082 0.4049 0.4117 0.4152 FX CIE x | CIE y 0.3920 0.3836 0.3869 0.3955 34 CIE y | CIE x 0.4152 0.4117 0.4185 0.4223 CIE x | 0.3955
0.3869
0.3902
0.3990
44
CIE y | | CIE x 0.3943 0.3916 0.3983 0.4012 F7 CIE x 0.3916 | CIE y 0.3853 0.3771 0.3803 0.3886 14 CIE y 0.3771 | CIE x 0.4012 0.3983 0.4049 0.4082 CIE x 0.3983 | CIE y 0.3886 0.3803 0.3836 0.3920 24 CIE y 0.3803 | CIE x 0.4082 0.4049 0.4117 0.4152 CIE x 0.4049 | CIE y 0.3920 0.3836 0.3869 0.3955 34 CIE y 0.3836 | CIE x 0.4152 0.4117 0.4185 0.4223 F2 CIE x 0.4117 | 0.3955
0.3869
0.3902
0.3990
44
CIE y
0.3869 | ### **Color Bin Structure** ### CIE Chromaticity Diagram (Warm White), T_j =85 $^{\circ}$ C, I_F =700mA | G. | 11 | G | 21 | G | 31 | G | 41 | |--|---|--|---|---|---|---|---| | CIE x | CIE y | | 0.4299 | 0.4165 | 0.4364 | 0.4188 | 0.4430 | 0.4212 | 0.4496 | 0.4236 | | 0.4261 | 0.4077 | 0.4324 | 0.4099 | 0.4387 | 0.4122 | 0.4451 | 0.4145 | | 0.4324 | 0.4100 | 0.4387 | 0.4122 | 0.4451 | 0.4145 | 0.4514 | 0.4168 | | 0.4365 | 0.4189 | 0.4430 | 0.4212 | 0.4496 | 0.4236 | 0.4562 | 0.4260 | | G. | 12 | G | 22 | G | 32 | G. | 42 | | CIE x | CIE y | | 0.4261 | 0.4077 | 0.4324 | 0.4100 | 0.4387 | 0.4122 | 0.4451 | 0.4145 | | 0.4223 | 0.3990 | 0.4284 | 0.4011 | 0.4345 | 0.4033 | 0.4406 | 0.4055 | | 0.4284 | 0.4011 | 0.4345 | 0.4033 | 0.4406 | 0.4055 | 0.4468 | 0.4077 | | 0.4324 | 0.4100 | 0.4387 | 0.4122 | 0.4451 | 0.4145 | 0.4515 | 0.4168 | | G. | 12 | c | 23 | G | 2 | G | 43 | | | 19 | G. | 20 | G. | ာ | <u> </u> | | | CIE x | CIE y | | | | | | | | | | | CIE x | CIE y | | CIE x
0.4223 | CIE y
0.3990 | CIE x
0.4284 | CIE y
0.4011 | CIE x
0.4345 | CIE y
0.4033 | CIE x
0.4406 | CIE y
0.4055 | | CIE x
0.4223
0.4185 | CIE y
0.3990
0.3902 | CIE x
0.4284
0.4243 | CIE y
0.4011
0.3922 | CIE x
0.4345
0.4302 | CIE y
0.4033
0.3943 | CIE x
0.4406
0.4361 | CIE y
0.4055
0.3964 | | CIE x
0.4223
0.4185
0.4243 | CIE y 0.3990 0.3902 0.3922 0.4011 | CIE x
0.4284
0.4243
0.4302
0.4345 | CIE y
0.4011
0.3922
0.3943 | CIE x
0.4345
0.4302
0.4361 | CIE y 0.4033 0.3943 0.3964 0.4055 | CIE x
0.4406
0.4361
0.4420
0.4468 | CIE y
0.4055
0.3964
0.3985 | | CIE x
0.4223
0.4185
0.4243
0.4284 | CIE y 0.3990 0.3902 0.3922 0.4011 | CIE x
0.4284
0.4243
0.4302
0.4345 | CIE y 0.4011 0.3922 0.3943 0.4033 | CIE x
0.4345
0.4302
0.4361
0.4406 | CIE y 0.4033 0.3943 0.3964 0.4055 | CIE x
0.4406
0.4361
0.4420
0.4468 | CIE y 0.4055 0.3964 0.3985 0.4077 | | CIE x 0.4223 0.4185 0.4243 0.4284 G | CIE y 0.3990 0.3902 0.3922 0.4011 | CIE x 0.4284 0.4243 0.4302 0.4345 | CIE y 0.4011 0.3922 0.3943 0.4033 | CIE x
0.4345
0.4302
0.4361
0.4406 | CIE y 0.4033 0.3943 0.3964 0.4055 | CIE x
0.4406
0.4361
0.4420
0.4468 | CIE y 0.4055 0.3964 0.3985 0.4077 | | CIE x 0.4223 0.4185 0.4243 0.4284 G: CIE x | CIE y 0.3990 0.3902 0.3922 0.4011 14 CIE y | CIE x 0.4284 0.4243 0.4302 0.4345 G CIE x | CIE y 0.4011 0.3922 0.3943 0.4033 24 CIE y | CIE x
0.4345
0.4302
0.4361
0.4406 | CIE y 0.4033 0.3943 0.3964 0.4055 34 CIE y | CIE x
0.4406
0.4361
0.4420
0.4468
GCIE x | CIE y 0.4055 0.3964 0.3985 0.4077 44 CIE y | | CIE x 0.4223 0.4185 0.4243 0.4284 G: CIE x 0.4243 | CIE y 0.3990 0.3902 0.3922 0.4011 14 CIE y 0.3922 | CIE x 0.4284 0.4243 0.4302 0.4345 G CIE x 0.4302 | CIE y 0.4011 0.3922 0.3943 0.4033 24 CIE y 0.3943 | CIE x 0.4345 0.4302 0.4361 0.4406 GG CIE x 0.4302 | CIE y 0.4033 0.3943 0.3964 0.4055 34 CIE y 0.3943 | CIE x 0.4406 0.4361 0.4420 0.4468 GCIE x 0.4361 | CIE y 0.4055 0.3964 0.3985 0.4077 44 CIE y 0.3964 | ### **Color Bin Structure** ### CIE Chromaticity Diagram (Warm White), T_j =85 $^{\circ}$ C, I_F =700mA | H1 | 11 | H | 21 | H | 31 <u> </u> | H | 41 | |---|---|---|---|---|---|---|---| | CIE x | CIE y | | 0.4562 | 0.4260 | 0.4625 | 0.4275 | 0.4687 | 0.4289 | 0.4750 | 0.4304 | | 0.4515 | 0.4168 | 0.4575 | 0.4182 | 0.4636 | 0.4197 | 0.4697 | 0.4211 | | 0.4575 | 0.4182 | 0.4636 | 0.4197 | 0.4697 | 0.4211 | 0.4758 | 0.4225 | | 0.4625 | 0.4275 | 0.4687 | 0.4289 | 0.4750 | 0.4304 | 0.4810 | 0.4319 | | H1 | 12 | H | 22 | На | 32 | H ₄ | 42 | | CIE x | CIE y | | 0.4515 | 0.4168 | 0.4575 | 0.4182 | 0.4636 | 0.4197 | 0.4697 | 0.4211 | | 0.4468 | 0.4077 | 0.4526 | 0.4090 | 0.4585 | 0.4104 | 0.4644 | 0.4118 | | 0.4526 | 0.4090 | 0.4585 | 0.4104 | 0.4644 | 0.4118 | 0.4703 | 0.4132 | | 0.4575 | 0.4182 | 0.4636 | 0.4197 | 0.4697 | 0.4211 | 0.4758 | 0.4225 | | H1 | 13 | H | 23 | нз | 33 | H | 43 | | | | | | | | | | | CIE x | CIE y | | CIE x
0.4468 | CIE y
0.4077 | CIE x
0.4526 | CIE y
0.4090 | CIE x
0.4585 | CIE y
0.4104 | CIE x
0.4644 | CIE y
0.4118 | | | | | | | | | <u> </u> | | 0.4468 | 0.4077 | 0.4526 | 0.4090 | 0.4585 | 0.4104 | 0.4644 | 0.4118 | | 0.4468
0.4420 | 0.4077 | 0.4526
0.4477 | 0.4090 | 0.4585
0.4534 | 0.4104 | 0.4644
0.4591 | 0.4118
0.4025 | | 0.4468
0.4420
0.4477 | 0.4077
0.3985
0.3998
0.4090 | 0.4526
0.4477
0.4534
0.4585 | 0.4090
0.3998
0.4012 | 0.4585
0.4534
0.4591 | 0.4104
0.4012
0.4025
0.4118 | 0.4644
0.4591
0.4648 | 0.4118
0.4025
0.4038
0.4132 | | 0.4468
0.4420
0.4477
0.4526 | 0.4077
0.3985
0.3998
0.4090 | 0.4526
0.4477
0.4534
0.4585 | 0.4090
0.3998
0.4012
0.4104 | 0.4585
0.4534
0.4591
0.4644 | 0.4104
0.4012
0.4025
0.4118 | 0.4644
0.4591
0.4648
0.4703 | 0.4118
0.4025
0.4038
0.4132 | | 0.4468
0.4420
0.4477
0.4526 | 0.4077
0.3985
0.3998
0.4090 | 0.4526
0.4477
0.4534
0.4585 | 0.4090
0.3998
0.4012
0.4104 | 0.4585
0.4534
0.4591
0.4644 | 0.4104
0.4012
0.4025
0.4118 | 0.4644
0.4591
0.4648
0.4703 | 0.4118
0.4025
0.4038
0.4132 | | 0.4468
0.4420
0.4477
0.4526
H1 | 0.4077
0.3985
0.3998
0.4090 | 0.4526
0.4477
0.4534
0.4585
H:
CIE x | 0.4090
0.3998
0.4012
0.4104
CIE y | 0.4585
0.4534
0.4591
0.4644
H3 | 0.4104
0.4012
0.4025
0.4118
34
CIE y | 0.4644
0.4591
0.4648
0.4703
H4 | 0.4118
0.4025
0.4038
0.4132
44
CIE y | | 0.4468
0.4420
0.4477
0.4526
H'
CIE x
0.4420 | 0.4077
0.3985
0.3998
0.4090
14
CIE y
0.3985 | 0.4526
0.4477
0.4534
0.4585
H:
CIE x
0.4477 | 0.4090
0.3998
0.4012
0.4104
24
CIE y
0.3998 | 0.4585
0.4534
0.4591
0.4644
H3
CIE x
0.4534 | 0.4104
0.4012
0.4025
0.4118
34
CIE y
0.4012 | 0.4644
0.4591
0.4648
0.4703
H ²
CIE x
0.4591 | 0.4118
0.4025
0.4038
0.4132
44
CIE y
0.4025 | ### **Mechanical Dimensions** - (1) All dimensions are in millimeters. - (2) Scale: none - (3) Undefined tolerance is ± 0.2 mm < Inner circuit > ## **Material Structure** | No. | List | Material | |-----|---------------|--------------------| | 1 | Encapsulation | Silicone, Phosphor | | 2 | Chip Source | GaN ON SAPPHIRE | | 3 | Solder-PAD | Metal (Au) | ### **Reflow Soldering Characteristics** | Profile Feature | Pb-Free Assembly | |--|------------------------------------| | Average ramp-up rate (Tsmax to Tp) | 3° C/second max. | | Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (Tsmin to Tsmax) (ts) | 150 °C
180 °C
80-120 seconds | | Time maintained above: - Temperature (TL) - Time (tL) | 217~220°C
80-100 seconds | | Peak Temperature (Tp) | 250~255℃ | | Time within 5°C of actual Peak
Temperature (tp)2 | 20-40 seconds | | Ramp-down Rate | 6 °C/second max. | | Time 25°C to Peak Temperature | 8 minutes max. | | Atmosphere | Nitrogen (O2<1000ppm) | #### Caution - (1) Reflow soldering is recommended not to be done more than two times. In the case of more than 24 hours passed soldering after first, LEDs will be damaged. - (2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED's characteristics should be carefully checked before and after such repair.. - (3) Do not put stress on the LEDs during heating. - (4) After reflow, do not clean PCB by water or solvent. #### SMT recommendation - (1) After reflow, Over 80% reflectance of PSR is recommended. → Tamura RPW-8000-xx - (2) Solder paste materials (SAC 305, No Cleaning Paste) → Senju M705-GRN360-KV - (3) We recommend TOV Test 1.8v~2.8v at 1uA (per LED) - (4) We recommend IR Test 0~1uA at -5V (per LED) ### **Emitter Tape & Reel Packaging** #### Notes: (1) Quantity: 1,500pcs/Reel (empty slot possible in taping reel) (2) Cumulative Tolerance : Cumulative Tolerance/10 pitches to be ± 0.2 mm (3) Adhesion Strength of Cover Tape : Adhesion strength to be 0.1-0.7N when the cover tape is turned off from the carrier tape at the angle of 10° to the carrier tape (4) Package: P/N, Manufacturing data Code No. and quantity to be indicated on a damp proof Package # **Packaging Information** ### **Handling of Silicone Resin for LEDs** (1) During processing, mechanical stress on the surface should be minimized as much as possible. Sharp objects of all types should not be used to pierce the sealing compound. - (2) Do not use tweezers to pick up or handle WICOP2 LEDs. A vacuum pick up should only be used. - (3) When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the surface of the resin must be prevented. This is assured by choosing a pick and place nozzle which is smaller than the LED's area. - (4) Silicone differs from materials conventionally used for the manufacturing of LEDs. These conditions must be considered during the handling of such devices. Compared to standard encapsulants, silicone is generally softer, and the surface is more likely to attract dust. As mentioned previously, the increased sensitivity to dust requires special care during processing. - (5) Please do not mold this product into another resin (epoxy, urethane, etc) and do not handle this product with acid or sulfur material in sealed space. - (6) Avoid leaving fingerprints on silicone resin parts. ### **Precaution for Use** (1) Storage To avoid the moisture penetration, we recommend storing LEDs in a dry box with a desiccant. The recommended storage temperature range is 5° C to 30° C and a maximum humidity of RH50%. (2) Use Precaution after Opening the Packaging Use proper SMD techniques when the LED is to be soldered dipped as separation of the lens may affect the light output efficiency. Pay attention to the following: - a. Recommend conditions after opening the package - Sealing / Temperature : 5 ~ 30 °C Humidity : less than RH60% - b. If the package has been opened more than 1 year (MSL 2) or the color of the desiccant changes, components should be dried for 10-24hr at 65 ± 5 °C - (3) Do not apply mechanical force or excess vibration during the cooling process to normal temperature after soldering. - (4) Do not rapidly cool device after soldering. - (5) Components should not be mounted on warped (non coplanar) portion of PCB. - (6) Radioactive exposure is not considered for the products listed here in. - (7) Gallium arsenide is used in some of the products listed in this publication. These products are dangerous if they are burned or shredded in the process of disposal. It is also dangerous to drink the liquid or inhale the gas generated by such products when chemically disposed of. - (8) This device should not be used in any type of fluid such as water, oil, organic solvent and etc. - (9) When the LEDs are in operation the maximum current should be decided after measuring the package temperature. - (10) The appearance and specifications of the product may be modified for improvement without notice. - (11) Long time exposure of sunlight or occasional UV exposure will cause lens discoloration. ### **Precaution for Use** - (12) VOCs (Volatile organic compounds) emitted from materials used in the construction of fixtures can penetrate silicone encapsulants of LEDs and discolor when exposed to heat and photonic energy. The result can be a significant loss of light output from the fixture. Knowledge of the properties of the materials selected to be used in the construction of fixtures can help prevent these issues. - (13) The slug is electrically isolated. - (14) Attaching LEDs, do not use adhesives that outgas organic vapor. - (15) The driving circuit must be designed to allow forward voltage only when it is ON or OFF. If the rev erse voltage is applied to LED, migration can be generated resulting in LED damage. - (16) LEDs are sensitive to Electro-Static Discharge (ESD) and Electrical Over Stress (EOS). Below is a list of suggestions that Seoul Semiconductor purposes to minimize these effects. - a. ESD (Electro Static Discharge) Electrostatic discharge (ESD) is the defined as the release of static electricity when two objects come into contact. While most ESD events are considered harmless, it can be an expensive problem in many industrial environments during production and storage. The damage from ESD to an LEDs may cause the product to demonstrate unusual characteristics such as: - Increase in reverse leakage current lowered turn-on voltage - Abnormal emissions from the LED at low current The following recommendations are suggested to help minimize the potential for an ESD event. One or more recommended work area suggestions: - Ionizing fan setup - ESD table/shelf mat made of conductive materials - ESD safe storage containers One or more personnel suggestion options: - Antistatic wrist-strap - Antistatic material shoes - Antistatic clothes #### Environmental controls: - Humidity control (ESD gets worse in a dry environment) ### **Precaution for Use** b. EOS (Electrical Over Stress) Electrical Over-Stress (EOS) is defined as damage that may occur when an electronic device is subjected to a current or voltage that is beyond the maximum specification limits of the device. The effects from an EOS event can be noticed through product performance like: - Changes to the performance of the LED package (If the damage is around the bond pad area and since the package is completely encapsulated the package may turn on but flicker show severe performance degradation.) - Changes to the light output of the luminaire from component failure - Components on the board not operating at determined drive power Failure of performance from entire fixture due to changes in circuit voltage and current across total circuit causing trickle down failures. It is impossible to predict the failure mode of every LED exposed to electrical overstress as the failure modes have been investigated to vary, but there are some common signs that will indicate an EOS event has occurred: - Damaged may be noticed to the bond wires (appearing similar to a blown fuse) - Damage to the bond pads located on the emission surface of the LED package (shadowing can be noticed around the bond pads while viewing through a microscope) - Anomalies noticed in the encapsulation and phosphor around the bond wires. - This damage usually appears due to the thermal stress produced during the EOS event. - c. To help minimize the damage from an EOS event Seoul Semiconductor recommends utilizing: - A surge protection circuit - An appropriately rated over voltage protection device - A current limiting device ### **Company Information** #### Published by Seoul Semiconductor © 2013 All Rights Reserved. #### **Company Information** Seoul Semiconductor (www.SeoulSemicon.com) manufacturers and packages a wide selection of light emitting diodes (LEDs) for the automotive, general illumination/lighting, Home appliance, signage and back lighting markets. The company is the world's fifth largest LED supplier, holding more than 10,000 patents globally, while offering a wide range of LED technology and production capacity in areas such as "nPola", "Acrich", the world's first commercially produced AC LED, and "Acrich MJT - Multi-Junction Technology" a proprietary family of high-voltage LEDs. The company's broad product portfolio includes a wide array of package and device choices such as Acrich and Acirch2, high-brightness LEDs, mid-power LEDs, side-view LEDs, and through-hole type LEDs as well as custom modules, displays, and sensors. #### **Legal Disclaimer** Information in this document is provided in connection with Seoul Semiconductor products. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Seoul Semiconductor hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. The appearance and specifications of the product can be changed to improve the quality and/or performance without notice.