network access products

RS89558

Application and Channel Unit Software
Developer’'s Guide

=
100418C ((J C ONEXANT™
=

May 2000

© 1999, 2000, Conexant Systems, Inc.
All Rights Reserved.

Information in this document is provided in connection with Conexant Systems, Inc. (“Conexant”) products. These materials are
provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no
responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at
any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING
TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE
ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE
MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE
OF THESE MATERIALS.

Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling
Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages
resulting from such improper use or sale.

The following are trademarks of Conexant Systems, Inc.: Conexant™, the Conexant C symbol, and “What’s Next in Communications
Technologies”™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of
third parties. Third-party brands and names are the property of their respective owners.

For additional disclaimer information, please consult Conexant’s Legal Information posted at www.conexant.com, which is
incorporated by reference.

Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and
suggestions to tech.pubs@conexant.com. For technical questions, contact your local Conexant sales office or field applications
engineer.

100418C Conexant

http://www.conexant.com
mailto:tech.pubs@conexant.com

Table of Contents

LISt Of FIQUIES. . . Xiii

Listof Tables. XV

1.0 INtrOdUCHION. . ..o 1-1
1.1 What’s New in Channel Unit Version 6.X.t e 1-2

1.1.1 Bt8953A Revision C and RS8953B SUPPOrt. ot v i e 1-2

1.1.2 RS8973 versus Bt8970 Line Card Supportt 1-2

1.1.3 EOC ProtoCOl. . ..ottt 1-2

1.1.4 Dynamic Loop Reversal and Master LOOp oo 1-2

1.1.5 Performance MONItONG.o ottt 1-2

1.1.6 Channel BloCKINgot 1-2

117 Bt8370 SUPPOI . . oottt 1-3

1.2 Features and Functionality Not Supported. 1-3

2.0 EVM SPECITIC. ... 2-1
2.1 HDSLEVM Hardwaret e 2-1

211 DIP SWItCh. . .o 2-2

212 ChannelUnitLEDS oot 2-3

2.2 General Purpose TIMEISo i 2-5

221 ContinUOUS MOGE. . . . ottt e 2-6

222 0N SeCONd TIMEr . . o\ttt e e e e 2-6

3.0 DIreCtory StrUCTUIe 3-1
3.1 MAIN (Application) DIreCIOrYottt e e 3-2

3.2 BITPUMP DIFECIOIY . . o vttt e e e e e e e e e e e e e e 3-3

3.3 CHANUNIT DIFECIONY .« . v ottt e e e e e e e e e e e e e e e e e 3-4

3.4 Header File DEpendenCIeSottt 3-5

3.5 TYPEDERS. H . o 3-6
100418C Conexant i

Table of Contents

RS8953B

Application and Channel Unit Software Developer’s Guide

4.0 Compiling and Linking Application Examples, 4-1
4.1 Using the Keil uVision Project Managerov ettt e e e ine s 4-1
4.2 UsingaMakefile. e 4-1
4.3 LINKEr Flags . ..ot e 4-2
4.4 Compiler FIags oo e 4-2

441 CHAN UNIT . oo e e e e 4-4
442 TWO _LOOPS . . o 4-4
443 CU EOC. . .o e 4-4
4.4.4 PERF_MONITOR . .o\ttt e e e e e 4-4
445 CU 2T . o 4-4
446 CU 2Bl . . i 4-4
44T CU BEL. . i e 4-5
448 CU LT . o 4-5
449 CU LEL. .o 4-5
4410 CU CUSTOM ..ttt e e e e e e e e 4-5
4411 TIEL FRAMER ..ot 4-5
4412 CU LED. . . 4-5
4413 BIT _REVERSE . ..ttt e 4-6
4414 ZIPSOCKET . ottt 4-6

5.0 Application Code 5-1
5.1 Software FIow. 5-1
5.2 DSLLOOP MaNAGET . . o . vttt e et e e e e 5-3
5.3 Software and Devices Initializations i 5-4
5.4 Activation State Managerot 5-6

5.4.1 HTU-CACHIVALIONo 5-9
5.4.1.1 Configuration Statet 5-11

54.1.2 Inactive Stateo 5-11

54.1.3 Activating State. e 5-11

54.1.4 Activating State SL e 5-12

5415 Active RXState e 5-12

5416 Active TXSTate . . .ottt 5-13

5.4.1.7 GOTO Pair ID Validation Statet 5-13

5.4.1.8 PID Validation State it 5-14

5419 GOTOActive TX/RX State.ot 5-14

5.4.1.10 Active TX/RX State. . . oottt 5-14

5.4.1.11 Pending Deactivated State. 5-15

5.4.1.12 Deactivated Statet 5-15

54.1.13 Systemldle Statet e 5-15

iv Conexant 100418C

RS8953B

Table of Contents

Application and Channel Unit Software Developer’s Guide

5.4.2 HTU-RACHVALION o 5-16
5.4.2.1 Configuration Statet 5-17

5.4.2.2 Inactive Stateo i 5-17

5423 Activating State. 5-17

5424 Activating State SL 5-18

5425 Active RXState e 5-18

5426 Active TXSTate . ..ot 5-19

5427 GOTOPair ID Validation Statec it 5-19

5.4.2.8 PID Validation Statet i 5-19

5429 GOTOActive TX/RXState.ot e 5-20

54210 Active TX/IRX State. . . oottt 5-20

5.4.2.11 Pending Deactivated State. 5-20

54212 Deactivated Statet 5-21

54213 Systemldle State e 5-21

6.0 Channel Unit Code. 6-1
6.1 Configurations 6-1
B.1.0 CU 2T L. o 6-3

B.1.2 CU 2Bl . .. e 6-4

B.1.3 CU BEL. .. it e 6-5

B.1.4 CU AT L. o 6-6

B.1.5 CU LEL. ..o e 6-7

6.1.6 Modifying the Code for Custom Applications (CU_ CUSTOM) 6-7
6.1.6.1 Rate values[][]. ...« oo e 6-7

6.1.6.2 CU MAPC .. 6-7

6.2 Interrupt Handler.o 6-8
B.2.1 SYNC StAUS . . . vttt 6-8

6.2.2 Error Status RePOItiNg . . . v ottt 6-8

6.2.3 TX/RXFIFOErrorHandlingot 6-8

6.2.4 DPLLErrorHandlingot e e 6-9

6.25 EOC Terminationt 6-10

6.2.6 Pair ID Termination (EL MOdE)ttt 6-10

6.2.7 Indicator Bit Terminationttt 6-10

6.2.8 T1/E1 Framer Interrupt Handling—6 ms Polling 6-10

8.3 BER MEter. . .o 6-11
6.4 DYNamiC Master LOOP . . . v ot vttt et e e 6-11
6.5 TIp/RING REVErsalt 6-11
6.6 LOOP REVEISAl. . ..ot 6-11
6.7 EOC OPEIatiON. . .\ vttt ittt e e 6-12
6.7.1 EOCData FOrmatot 6-12

6.7.2 EOC-Related Data. oottt 6-13

6.7.3 Supported EOC COMMANASottt e e 6-13
100418C Conexant v

Table of Contents RS8953B

Application and Channel Unit Software Developer’s Guide

6.7.4 EOCHandlingonthe HTU-RSIdettt e e 6-14
6.7.41 EOCSIaVe. . .o\ttt 6-14

6.7.4.2 EOC Task Handler Relatedtothe EOCSlave 6-16

6.7.5 EOCHandlingonthe HTU-CSide it e e 6-17
B.7.5.1 EOC MaSter. . .\ttt 6-17

6.7.5.2 EOC Task Handler Related tothe EOCMaster. 6-20

6.8 Performance MonItOringot 6-23
6.9 Channel BIOCKINGot 6-24
6.10 TI/E1 Framerand LIU SUPPOIt oot 6-24
7.0 Serial Communication Interface 7-1
7.1 Communication Protocol. 7-1
7.2 MESSAgE StIUCIUIE . . oottt e e et e e 7-1
7.2.1 Destination Field (BitS E3—EQ).ttt 7-2

7.2.2 Opcode Field (Bits O7—00)o o et 7-2

7.2.3 Parameter Field (BitS P7—P0) i 7-2

7.3 Message Transfer Protocolt 7-3
7.4 Checksum FUNCLION.o 7-4
7.5 ACKNOWIEdge MESSA0E oottt 7-4
8.0 APICommand Set 8-1
8.1 Level 3API Commands oot e e 8-1
8.1.1 DSLCONMIOL. . vttt 8-1
8.1.1.1 ReSetthe DSL.ttt 8-1

8.1.1.2 Enable or Disable Activation State Manager 8-2

8.1.2 DSL StatUS. . . vttt 8-2
8.1.2.1 Historyof LinkinSyncStatust 8-2

8.1.2.2 Overall DSL Statusot e e e e 8-3

8.1.23 DSLLOOP StatUS. . o v ot et e 8-5

8.1.24 DSL ZipStartup Status.ot 8-6

8.1.2.5 DSL VerSION . . oot e 8-6

8.1.3 Performance MONItOriNG. oottt 8-6
8.1.3.1 Enable or Disable Performance Monitoring Update. 8-6

8.1.3.2 Set Starting Address to Check Performance Record at Interval 1. 8-7

8.1.3.3 Set Starting Address to Check Performance Record at Interval 2. 8-7

8.1.3.4 Set Starting Address to Check Performance Record at Interval 3. 8-7

8.1.3.5 Performance Records at Different Intervals 8-8

8.1.3.6 Latest Performance Record at Different Intervals 8-9

Vi Conexant 100418C

RS8953B Table of Contents

Application and Channel Unit Software Developer’s Guide

8.2 Level 2 API COomMMaNGSot 8-11
8.2.1 Channel BIoCKINgot e 8-11
8.2.1.1 Channel Blocking Time Slot Location. oo, 8-11

8.2.1.2 Channel Blocking Time Slot Enable/Disable 8-11

8.2.1.3 Channel Blocking Configuration. 8-11

8.2.1.4 Setall TIMe SIOtS oo 8-12

8.2.1.5 Channel Blocking Time SlotUsage.t 8-12

8.2.2 DIAgNOSHIC . . . o o et e 8-13
8.2.21 DSLLOOPDACKS. . . . it 8-13

8.2.22 DSLTeStMOOES . ..ttt 8-13

8.2.2.3 Sending APl Commands Through EOC Channel 8-14

8.2.3 DSL StalUS. . . oot 8-15
8.2.3.1 FarEnd Signal Attenuation. vt e 8-15

8.2.3.2 NOISEMargin 8-15

8.2.4 ERLE TESt ..ttt e 8-16
8.2.4.1 Backgroundand ERLE TestMode i, 8-16

8.2.4.2 ERLE RESUItS . ..o 8-17

8.24.3 AAGC RESUISo 8-18

8.2.5 DPLLStatus Commandttt 8-19
8.2.5.1 Readthe DPLL State.t e 8-19

8.2.6 Channel Unit Indicator Bit Commands. 8-19
8.2.6.1 Write Indicator LOWBYte.o 8-19

8.2.6.2 Write Indicator HighByte 8-19

8.2.6.3 ReadIndicator LOByte i 8-20

8.2.6.4 Read Indicator HiByte. e 8-20

8.2.7 Single Loop COMMaANSottt e 8-21
8.2.7.1 Set Number of PCM Time Slots Used. 8-21

8.2.7.2 Set Number of HDSL Payload Bytes. 8-21

8.2.7.3 Set Number of Occupied HDSL Payload Bytes and PCM Time Slots Used . . . 8-22

8.2.7.4 SetF-bitPresent. 8-22

8.2.75 SetDerived MCIkValue. i 8-22

8.2.7.6 Configure Single LOOP.o vt 8-23

8.28 EOC COMMANGS. . . . oottt ittt e e e 8-23
8.28.1 EOCRegister Select e e e 8-24

8.2.8.2 EOC REQISIEr SIiZ€ . . . o ottt 8-24

8.2.8.3 EOC Byte Number Locationot 8-25

8.284 EOCWrite Register Datao v e e 8-25

8.2.8.,5 Start EOC Read/Write Operation. 8-26

8.2.8.6 Set EOC Control Commands it 8-26

8.2.8.7 Set EOC Address Destination. 8-27

8.2.8.8 INSErt CRCEFTOrS . . o\t e e 8-27

8.2.8.9 EOC Query Received NewDatao 8-27

8.2.8.10 EOCRead RegiSter . .. oot e e 8-28

8.2.8.11 Read EOC Status. oo ottt e 8-28

100418C Conexant Vii

Table of Contents

RS8953B

Application and Channel Unit Software Developer’s Guide

8.3 Application EXamples 8-30
8.3.1 Read Exampleo 8-30
8.3.1.1 Step 1: Select HTU-C Register Name 8-30

8.3.1.2 Step 2: Select H-TU-C Register Size, 8-30

8.3.1.3 Step 3: Set Up HTU-R Register Nameand Size. 8-30

8.3.1.4 Step4:Load HTU-R Read Register D. 8-31

8.3.1.5 Step 5: Set Command for HTU-C to Read HTU-R RegisterD............. 8-31

8.3.16 Step6:ReadNew DataFlags.o 8-31

8.3.1.7 Step 7: Set Index to O for Read Register D 8-31

8.3.1.8 Step8: Read RegiSterDot e 8-32

8.3.2 Write EXampleo 8-32
8.3.2.1 Step 1: Set Up HTU-C Register Number 8-32

8.3.22 Step2:SetUpHTU-CRegister Size.ovvv i 8-32

8.3.2.3 Step 3: Set Up HTU-R Register Number and Size 8-32

8.3.24 Step 4: Load the HTU-C Write Register B.t 8-33

8.3.25 Step 5: Set HTU-C Start Sending Command to Write HTU-R Register B. 8-33

8.3.2.6 Step 6: Read the Received Data Status. 8-33

8.3.2.7 Step 7: Set Byte Number Location i 8-33

8.3.28 Step8:ReadtheBDataRegister.......... ..., 8-34

8.3.3 HTU-C CRC Check Command Example 8-34
8.3.3.1 Step 1: HTU-C Receives Corrupted CRC from HTU-R.. 8-34

8.3.3.2 Step 2: Set the End Corrupted CRCCommand 8-34

8.3.4 HTU-R CRC Check Command Example e 8-34
8.3.4.1 Step 1: Notify the HTU-R of Corrupted CRC it 8-34

8.3.4.2 Step2:Send Corrupted CRCottt 8-35

8.4 Level LAPICOMMANGSo\t 8-36
8.4.1 Bit PUMP APIS . . .o 8-36
8.4.1.1 Input Signal Level 8-36

8.4.1.2 INPUEt DC OffSet. . ..ot 8-36

8.4.1.3 BitPUMpBERMeter. 8-37

8.4.1.4 Self-teSt 8-37

8.5 Channel Unit AP1 Commands.ottt 8-38
8.5.1 Setthe PCM Multiframe Length 8-38
8.5.2 Channel Unit Error COUNEEISottt e e e e 8-38
8.5.3 Modify Receive CombinationTable i 8-39
8.5.4 Modify Transmit Routing Table 8-40
8.5.5 Modify Transmit Payload Mapper (TMAPS)t 8-41
8.5.6 Modify Receive Payload Mapper (RMAPS) i 8-42
8.5.7 Modify Data Bank Patterns (DBANKS) oot 8-43
8.5.8 SetChannel Unit Frame Format. e 8-43
8.5.9 Reset Transmit/Receive FIFOS. it 8-44
8.5.10 Set Transmit/Receive FIFO Water Levels 8-44
8.5.11 Set MaSter LOOP. . ot vttt et 8-45
8.5.12 Channel Unit SYNC Statusot e 8-45
8.5.13 Channel Unit BER Meter. i e 8-45
viii Conexant 100418C

RS8953B Table of Contents

Application and Channel Unit Software Developer’s Guide

9.0

10.0

11.0

SHTUCTUNES . o 9-1
9.1 CU WR . oot e e e e 9-1
0.2 CU R ittt e 9-2
9.3 CU_FLAGS & oottt e e e 9-3
9.4 CU_REG_COPY . .ttt et e e e e e e e 9-4
0. IRR . 9-5
Global Variables 10-1
10,0 U W ottt e e 10-1
10,2 U M .t e 10-1
10.3 NUM_ DIt PUMPS .« oo e 10-1
10.4 bp_POSItION[] . . oottt 10-2
10.5 rate_values[I[] - -« -« oo oo 10-3
10.6 rate INOEX. . ..ot 10-4
10.7 htu_values]][] . - -« oot 10-4
10.8 U INdeX . ..ot e 10-5
10.9 route table[Ba].o 10-6
10.10 combine_table[B4] oo e 10-8
10.11 tmap_table[9][NO_OF LOOPS].ttt e e e 10-10
10.12 rmap_table[6][NO_OF _LOOPS]. . . .ottt e 10-12
10.13 _CURIAQS. . o e 10-13
IO oW I = o] o) 10-13
FUNCEIONS . . 11-1
11.1 DSL Initialization FUNCLIONS o 11-1
11.1.1 void _DSLlInitialization(void)o 11-1
11.1.2 BP_U_8BIT _IsChannelUnitEvmPresent (void) oo, 11-1
11.1.3 BP_U_8BIT _InitChannelUnitEvmBoard (VOid).ot 11-2
11.1.3.1 BP_U_8BIT _CulnitFramer (void).o 11-2

11.2 Channel Unit Initialization FUNCLIONS. s 11-3
11.2.1 BP_U_8BIT _CulnitChannelUnit (void)o 11-3
11.2.2 void _CulnitAddresses (VOId)ot e 11-3
11.2.3 void _CulnitCommONREJISLErS ottt e 11-3
11.2.4 void _CulnitHASILOOPS . . . v ot e e 11-3

100418C Conexant ix

Table of Contents RS8953B

Application and Channel Unit Software Developer’s Guide

11.3 Channel Unit Mapping FUNCLIONS. ot e e e e 11-4
11.3.1 void _CuDefaultRouteLoops(void)o 11-4
11.3.2 void _CuDefaultCombineLoops(void)ot 11-4
11.3.3 void _CulnitMapper(void)ot e 11-4
11.3.4 CulnitRouteTable e 11-4
11.3.5 _CulnitCombineTableo e 11-5
11.3.6 _CuWriteMapRouteCombine. it e 11-5

11.4 void _ActivationStateManager(BP_U 8BITbp)t 11-6

11.5 void ZipStartValidationManager(BP_U 8BITbp).ot 11-6

11.6 Channel Unit ASM-Related FUNCLIONS ot s 11-7
11.6.1 void _CuForceOnes(BP_U_8BIT state, BP_U 8BITloop), 11-7
11.6.2 void _CuConfigureBeginStartup (BP_U 8BITIoop) 11-7
11.6.3 void _CuConfigureTransmitS1(BP_U 8BITI00p). 11-7
11.6.4 void _CuHohEn(BP_U_8BIT state, BP_U 8BITloop), 11-7
11.6.5 void _CuConfigureStartupComplete (BP_U 8BITloop), 11-8
11.6.6 void CuSetRtrind(BP_U_8BIT state, BP_U 8BITloop).covvvvnennn... 11-8
11.6.7 void _CuSetPid(BP_U _8BIT100p) oottt e 11-8
11.6.8 void _CuSetPidToAllOnes(BP_U 8BITIOOP) vt i 11-8

11.7 Channel Unit Interrupt Handlers o e e 11-9
11.7.1 void _CulnterruptHandler (void) interrupt 2. o 11-9
11.7.2 void _CuTxInterrupt (BP_U_8BITI00pP) oo 11-9
11.7.3 void _CuRxInterrupt (BP_U 8BITI00P). ... oo ot 11-9
11.7.4 void _CuDpllinterrupt (VOid) oot 11-9
11.7.5 void _CuFramerinterrupt (Void).ot 11-9
11.7.6 void E1_Pairid_Validation(BP_U 8BITI00P)o 11-9

11.8 DSL Dynamic Loop Managing FUnctions. i e 11-10
11.8.1 wvoid _DSLLoopHandler(void)o 11-10
11.8.2 void _Set 2E1_PairlD(BP_U 8BIThp) oo 11-10
11.8.3 void _Set 2T1 SyncWord(BP_U 8BIThbp) 11-10
11.8.4 void _Set 3E1 PairlD1(BP_U 8BIThp) ..ot 11-10
11.85 void _Set 3E1_PairlD2(BP_U_8BIThp)o 11-10
11.8.6 void Reset Pid Validation(BP_U 8BITbp)ccvvviiviii .. 11-10

11.9 Channel Unit Dynamic Loop Managing Functionscoiiienen... 11-11
11.9.1 void _CuSetMasterLoop(BP_U 8BITI00P)o oo i 11-11
11.9.2 void _CuReverseLoops(VOId) vv v 11-11
11.9.3 void _Configure_Channel_Blocking(void) 11-11
11.9.4 void _CuCheckForLoopReversal(void). i 11-11

X Conexant 100418C

RS8953B Table of Contents

Application and Channel Unit Software Developer’s Guide

11,20 APLRUNCHIONS . . oot 11-12
11.10.1 _BtStatus(no, opcode, parameter, *indication) 11-13
11.10.1.1 _DSLStatus(no, opcode, parameter, *indication) 11-13

11.10.1.2 _CuStatus(no, opcode, parameter, *indication) 11-13

11.10.1.3 _FramerStatus(no, opcode, parameter, *indication) 11-13

11.10.1.4 _BitpumpStatus(no, opcode, parameter, *indication) 11-13

11.10.2 _BtControl(no, opcode, parameter). v v et 11-14
11.10.2.1 _DSLControl(no, opcode, parameter).ottt 11-14

11.10.2.2 _CuControl(no, opcode, parameter).t 11-14

11.10.2.3 _FramerControl(no, opcode, parameter)couvvirenn.. 11-14

11.10.2.4 _BitpumpControl(no, opcode, parameter), 11-14

11.11 Channel Unit EOC FUNCLIONS oot e e 11-15
11.11.1 EOC Protocol Handler. o 11-15
11.11.1.1 void EocMaster(BP_U 8BITI00P)o vt v i 11-15

11.12.1.2 void EocSlave(BP_U 8BITI00P) . .. oo vt 11-15

11.11.2 EOC Task Handler.o 11-15
11.11.2.1 void EocTaskHandler CO(BP_U 8BITIoop)t 11-15

11.11.2.2 void EocTaskHandler RT(BP_U _8BITloop), 11-15

11.11.3 Other EOC Related FUNCEIONS s 11-15
11.11.3.1 BP_U_8BIT EocGetData(BP_U_8BIT IByte, BP_U_8BIT hByte) 11-15

11.11.3.2 BP_U_16BIT EocSendWord(BP_U_8BIT command, BP_U_8BIT header) .. 11-15

11.12 Channel Unit Utility FUNCLIONS. oo e 11-16
11.12.1 void _CuHandleFlags(void). oo 11-16
11.12.2 void _CuWriteMasterCmd5(void)t 11-16
11.12.3 void _CuClearCounters(BP_U_8BIT loop, BP_U 8BITcntr) 11-16
11.12.4 void _CuResetTXFIFO(VOId)o e e e e e 11-16
11.12.5 void _CuResetRXFIFO(VOId) oo e 11-17
11.12.6 void _CuResetReceiver(void)t 11-17
11.12.7 TX_RD *get tx_rd_ptr(BP_U 8BITIOOP)ot 11-17
11.12.8 RX_RD *get rx_rd_ptr(BP_U 8BITI00P) oo ot 11-17

11.13 General Purpose Timer FUNCLIONS oottt e e 11-18
11.13.1 void _InitGenPurposeTimer(void) vt 11-18
11.13.2 void _LoadGenPurposeTimerinterval(void) 11-18
11.13.3 void _EnableGenPurposeTimer(bp, timer,value), 11-18
11.13.4 void _ContinuousGenPurposeTimer(bp, timer, state). 11-18
11.13.5 void _DisableGenPurposeTimer(bp, timer) 11-18
11.13.6 BP_U_B8BIT _GetGenPurposeTimerStatus(bp, timer) 11-19
11.13.7 BP_U_32BIT _GetGenPurposeContCount(bp, timer) 11-19
11.13.8 _TIMer0 ISR ..t e e 11-19

100418C Conexant Xi

Table of Contents RS8953B
Application and Channel Unit Software Developer’s Guide

11.14 Performance Monitoring FUNCLIONSottt 11-20

11.14.1 void InitPMRecord(BP_U_8BIT 100pP)« oot 11-20

11.14.2 void UpdatePMRecord(BP_U 8BIT100p)o 11-20

11.14.2.1 void UpdatelntervalL(BP_U 8BITIo0p)cvvviii i 11-20

11.14.2.2 void Updatelnterval2(BP_U 8BITloop), 11-20

11.14.2.3 void Updatelnterval3(BP_U _8BITloop), 11-20

11.15 void _Configure_Channel_Blocking(void) 11-21

11.16 DSL Miscellaneous FUNCLIONSot it e 11-21

11.16.1 void Cu_Led Update(bp, State). e 11-21

11.16.2 void _Bp_Led_Update(bp, State).o 11-21

Appendix A: Acronyms and Abbreviations. A-1
Appendix B: REfEreNnCeS. B-1

Xii Conexant 100418C

RS8953B

List of Figures

Application and Channel Unit Software Developer’s Guide

List of Figures

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 7-1.
Figure 7-2.
Figure 8-1.
Figure 11-1.

Software OVEIVIBW oo e e e e 1-1
HDSL EVM Terminal Unit.o e 2-1
DIP Switch Mode Configuration it 2-2
CU_LEDL REQISIEr. . o oottt et e e e e e e e e e e e e 2-3
CU_LED2 REQISTEr. . o oottt e e e e e e e e e 2-4
CU _LEDS REGISIEr. o v vttt ettt e e e e 2-4
Main Program FIOW.o 5-2
DSL MaANAGET . . ot ettt e e 5-3
Bit PUMpP Start-Up SEOUENCE vt ettt e e e 5-7
Activation State Machine at HTU-C e 5-10
Activation State Machine at HTU-R o e 5-16
HDSL Frame StrUCTUIE e 6-2
Payload Block Structure for 2T1 Application. o i 6-3
Payload Block Structure for 2E1 Application. i 6-4
Payload Block Structure for 3E1 Application. 6-5
Payload Block Structure for 1T1 Application. i 6-6
Payload Block Structure for 1E1 Application. i 6-7
DPLL State Machine 6-9
State Transition Diagram for EOC Slave. 6-14
State Transition Diagram for the EOC Master, 6-17
CRC and FEBE Error Records at Three Time Intervals. 6-23
Host Processor to 8032 Message Structuret 7-1
8032 to Host Processor Message Structuret 7-3
LOOP REVEISAl . . . ottt 8-4
APl Command Parsing Structure it 11-12

100418C

Conexant Xiii

List of Figures RS8953B
Application and Channel Unit Software Developer’s Guide

Xiv Conexant 100418C

RS8953B List of Tables

Application and Channel Unit Software Developer’s Guide

List of Tables
Table 2-1. CU_LEDN MEMOIY Map. . . oottt et e e e e et e e e e e e 2-3
Table 2-2. General Purpose Status Bit Definitions 2-6
Table 3-1. Source Files Under the Main DIreCtoryt e et 3-2
Table 3-2. Source Files Under BITPUMP DIreCtoryot 3-3
Table 3-3. Source Files Under CHANUNIT Subdirectory. e 3-4
Table 3-4. Header File DEPeNdenCiesSo vt 3-5
Table 3-5. Data Type Definitions 3-6
Table 4-1. HEX RIS . . oo 4-1
Table 4-2. ComMPIlEr DIFECHIVES . . o vttt e 4-3
Table 5-1. Software Initialization FUNCLIONSo 5-4
Table 5-2. Bit Pump Initialization Commands i e 5-5
Table 5-3. Channel Unit Initialization Commands. e 5-5
Table 5-4. Cross Reference of DSL Functions vs. ASM States.t 5-8
Table 6-1. HDSL Frame Structure and Overhead Bit Allocation oot 6-1
Table 6-2. 2T L FrAMING &« e ettt 6-3
Table 6-3. 2EL Framingoe it 6-4
Table 6-4. BE L FraMING .« o oottt 6-5
Table 6-5. 5 = 2 113 6-6
Table 6-6. TEL Framing . .o oottt et et e e 6-7
Table 6-7. HDSL EOC Frame StruCture.o ottt et e e 6-12
Table 6-8. EOC Command Processing in EOC_CMD_RESPONS 2 ..., 6-15
Table 6-9. Buffer Values for EOC Registers (RTside) 6-15
Table 6-10. Tasks of the HTU-C-EOC Task Handler i 6-20
Table 6-11. Status Flags withinthe EOC Master.t e 6-21
Table 6-12. Buffer Values for EOC Registers (HTU-Cside) i, 6-22
Table 7-1. Destination Field Specification i e 7-2
Table 7-2. ACKNOWIEAGE MESSAQE .« . v v v v ettt et e e e 7-4
Table 8-1. Opcode: 0X01 ((DSL RESET) . .ot ottt e e e e 8-1
Table 8-2. Opcode: 0x02 ((DSL_ASM _ENABLE)ottt e e 8-2
Table 8-3. Opcode: 0x85 (_DSL_AVAILABLE_SECONDS)ottt e 8-2
Table 8-4. Opcode: 0X82 ((DSL _STATUS) . .. vttt e e e e 8-3
Table 8-5. StatUS ReQISTEr 0. . . ottt e 8-3
Table 8-6. StAtUS REQISIEr L. o o ottt e 8-4
Table 8-7. Opcode: 0x83 ((DSL_LOOP_STATUS) . .ottt et e it 8-5
Table 8-8. Opcode: 0x83 ((DSL_LOOP_STATUS) . ..ottt i et 8-6
Table 8-9. Opcode: 0X81 ((DSL _VERSION). . .o\ v vttt e e e e 8-6
Table 8-10. Opcode: 0x10 (_SET_PERFMONITOR _STATE) . ..ottt et 8-6
Table 8-11. Opcode: 0x11 (_INTERVALL_ADDR_LO) ...\ttt e 8-7
Table 8-12. Opcode: 0x12 (_INTERVALLI_ADDR_HI). . ..ot 8-7

100418C Conexant XV

List of Tables RS8953B
Application and Channel Unit Software Developer’s Guide

Table 8-13. Opcode: 0x13 (_INTERVALZ2_ADDR). . . .« ottt ettt e e 8-7
Table 8-14. Opcode: 0x14 (_INTERVAL3 _ADDR). . . . oottt e et 8-7
Table 8-15. Opcode: 0x90 (_ CRC_ERR_AT INTERVALL)ot 8-8
Table 8-16. Opcode: 0x91 (_CRC_ERR_AT_INTERVAL2)ot 8-8
Table 8-17. Opcode: 0x92 (_CRC_ERR_AT _INTERVAL3)ottt 8-8
Table 8-18. Opcode: 0x93 (_FEBE_ERR_AT INTERVALL)ttt 8-8
Table 8-19. Opcode: 0x94 (_FEBE_ERR_AT INTERVAL2) it 8-8
Table 8-20. Opcode: 0x95 (_FEBE_ERR_AT INTERVAL3)ottt 8-8
Table 8-21. Opcode: 0x96 (_LAST CRC_ERR_INTERVALL)ttt 8-9
Table 8-22. Opcode: 0x97 (_LAST_CRC_ERR_INTERVAL2)\t 8-9
Table 8-23. Opcode: 0x98 (_LAST_CRC_ERR_INTERVAL3)\t tiiieeiieeee 8-9
Table 8-24. Opcode: 0x99 (_LAST _FEBE ERR_INTERVALL).\ttt 8-9
Table 8-25. Opcode: 0x9A (_LAST FEBE_ERR_INTERVAL2).ot 8-10
Table 8-26. Opcode: 0x9B (_LAST FEBE_ERR_INTERVAL3).t 8-10
Table 8-27. Opcode: 0x30 (_CB_TIMESLOT LOCATION)ttt 8-11
Table 8-28. Opcode: 0x31 (CB_TIMESLOT STATE). ...ttt ittt e e aas 8-11
Table 8-29. Opcode: 0x32 (_CONFIGURE_CHANNEL_BLOCKING) 8-11
Table 8-30. Opcode: 0x33 (_SET_ALL _TIMESLOTS). ...ttt 8-12
Table 8-31. Opcode: 0XA3 (_CB_TIMESLOT _USAGE)\ttt 8-12
Table 8-32. Opcode: 0x20 (_ DSL_LOOPBACK) . ..ottt e e 8-13
Table B-33. 8-13
Table 8-34. Opcode: 0x21 (DSL_TESTMODE)ot i et e e 8-13
Table 8-35. Opcode: 0X22 (APL DEST) ..\ vttt e e e 8-14
Table 8-36. Opcode: 0x23 (L API_OPCODE).ottt e e 8-14
Table 8-37. Opcode: 0X24 (APL DATA) ..ottt e 8-14
Table 8-38. Opcode: 0x25 ((APL _SEND) . ..ottt e 8-15
Table 8-39. Opcode: OXA2 (_API_RESULT) . .o\ttt e 8-15
Table 8-40. Opcode: OXBO ((DSL_FELM). . ..ot e e 8-15
Table 8-41. Opcode: OXBL ((DSL NMR) . .. oot 8-15
Table 8-42. Opcode 0x18 (_ ERLE_TEST MODE).\ttt it 8-16
Table 8-43. _ERLE TEST MODE Parameterttt et e e 8-16
Table 8-44. Opcode 0x85 (_STARTUP_STATUS)ottt 8-16
Table 8-45. STARTUP_STATUS ReturnValue.ot e 8-17
Table 8-46. Meaningful Values Returned for Different Tests 8-17
Table 8-47. Opcode 0x93 (ERLE_RESULTS)\ttt e i 8-17
Table 8-48. Opcode 0x94 (L AAGC _RESULTS) . ..\ttt e e 8-18
Table 8-49. Opcode: 0x90 (CU READ DPLL) ...\ttt e 8-19
Table 8-50. Opcode: 0x35 (_CU_WRITE_IND_LO)\ttt e 8-19
Table 8-51. Opcode: 0x36 (CU WRITE_IND _HI). ... e i 8-19
Table 8-52. Opcode: 0x91 (_CU_READ_IND_LO) ...ttt e e 8-20
Table 8-53. Low Byte Return Status Bit Definitionsc i 8-20
Table 8-54. Opcode: 0x92 (_CU_READ_IND_HI). ..ot i 8-20
Table 8-55. High Byte Return Status Bit Definitions. i 8-20
Table 8-56. Opcode: 0x40 (_SP_TOTAL_PCM_TSLOT) . ..ottt e e e 8-21
Table 8-57. Opcode: 0x41 (_SP_TOTAL_HDSL TSLOT) ..ottt et 8-21
Table 8-58. Opcode: 0x42 ((SP_USED _TSLOT) ..ottt ittt et et et 8-22
XVi Conexant 100418C

RS8953B List of Tables

Application and Channel Unit Software Developer’s Guide
Table 8-59. Opcode: 0x43 (_SP_FBIT_PRESENT)ottt e 8-22
Table 8-60. Opcode: 0x44 (_ SP_DERIVED MCLK)ot e e 8-22
Table 8-61. Opcode: 0x45 (_SP_CONFIGURE).ttt 8-23
Table 8-62. Opcode: 0x35 (EOC_ REG SELECT)t a s 8-24
Table 8-63. Opcode: 0x36 (_ EOC REG SIZE) .. .ottt et 8-24
Table 8-64. Opcode: 0x37 (_EOC_BYTE_NUM_LOC). ...\ttt 8-25
Table 8-65. Opcode: 0x38 (EOC_WRITE_REG_DATA) vttt 8-25
Table 8-66. Opcode 0x39 (EOC_SEND RD WR).ttt e 8-26
Table 8-67. Opcode: 0x3A (_ EOC_SET CONTROL) . .o\ttt et et e e e e 8-26
Table 8-68. Opcode 0x3B (EOC_ADD DEST). ..ttt ettt 8-27
Table 8-69. Opcode: OX3C (_INSERT CRCB)ttt e e 8-27
Table 8-70. Opcode: 0x86 (_ EOC_RCVD_NEWDATA STATUS) . ..\t tieeeeeeeeieeeean 8-27
Table 8-71. Opcode: 0x87 (_LEOC_READ_REG_DATA) . . .ottt e et 8-28
Table 8-72. Opcode: 0x88 (EOC _STATUS) . .. v ittt e e e 8-28
Table 8-73. Opcode: OX80 ((SLM)ot 8-36
Table 8-74. Opcode: 0x81 (DC_METER)ttt 8-36
Table 8-75. Opcode: 0x15 ((BER_METER_START)ottt e 8-37
Table 8-76. Opcode: 0x16 (BER_METER_STOP)ottt ettt e i 8-37
Table 8-77. Opcode: 0x92 (_ BER_METER_STATUS)ottt 8-37
Table 8-78. Opcode: OX8C ((SELF TEST) ..ot ittt e e 8-37
Table 8-79. Opcode: 0x24 (_CU_SET MFRAME). oot 8-38
Table 8-80. Opcode: 0x86 (_ CU_ERROR_COUNTERS LO)ttt 8-38
Table 8-81. Opcode: 0x87 (_ CU_ERROR_COUNTERS HI)t 8-38
Table 8-82. Opcode: 0X0A (_CU_CLEAR_ERROR_COUNTERS). vii i 8-39
Table 8-83. Opcode: 0x13 (_ CU_COMBINE_ADDR). . .. oottt et 8-39
Table 8-84. Opcode: 0x11 (_CU_COMBINE_VALUE)t 8-39
Table 8-85. Opcode: 0x12 (_CU_COMBINE_WRITE)ottt 8-39
Table 8-86. Opcode: 0x8B (_ CU_READ _COMBINE).ttt e 8-40
Table 8-87. Opcode: 0x16 (CU_ROUTE_ADDR). ...t i ittt ettt 8-40
Table 8-88. Opcode: 0x14 (_CU ROUTE VALUE)ttt e 8-40
Table 8-89. Opcode: 0x15 (CU_ROUTE WRITE)ottt e 8-40
Table 8-90. Opcode: 0x8C ((CU_ READ _ROUTE) . ..ottt ettt 8-40
Table 8-91. Opcode: 0x1B (_(CU_TMAPL VALUE)ottt e e i 8-41
Table 8-92. Opcode: 0X1C (_LCU_TMAP2_VALUE)ottt e e 8-41
Table 8-93. Opcode: 0X1D (_CU_TMAP3_VALUE). oot 8-41
Table 8-94. Opcode: OX1E (_CU_TMAP4 VALUE)ot 8-41
Table 8-95. Opcode: OX1F (_(CU_TMAPS _VALUE) o e 8-41
Table 8-96. Opcode: 0x20 (CU WRITE_TMAP) . . . oottt e e e e 8-41
Table 8-97. Opcode: 0x8D (_CU_READ _TMAP). .. .o\t 8-42
Table 8-98. Opcode: 0x21 (_CU_RMAPL_VALUE).ot 8-42
Table 8-99. Opcode: 0x22 (CU_RMAP2 VALUE).ottt 8-42
Table 8-100. Opcode: 0x23 (_CU_RMAP3 VALUE).ot e 8-42
Table 8-101. Opcode: 0x24 (_CU_WRITE_RMAP). . . .o e 8-42
Table 8-102. Opcode: OX8E (_CU_READ _RMAP). . ..ottt 8-42
Table 8-103. Opcode: Ox17 ((CU _DBANK 1) ...t e e 8-43
Table 8-104. Opcode: 0x18 (CU DBANK 2) ...ttt e e 8-43

100418C Conexant XVii

List of Tables RS8953B
Application and Channel Unit Software Developer’s Guide

Table 8-105. Opcode: 0x19 (CU DBANK 3) ..\ttt e e e 8-43
Table 8-106. Opcode: 0x09 (CU_FRAME _FORMAT) ... ittt et e 8-43
Table 8-107. Opcode: 0X0B (_(CU_RESET TX FIFO)\ttt 8-44
Table 8-108. Opcode: 0x04 (CU RESET RX _FIFO) . ..ot e s 8-44
Table 8-109. Opcode: OXOE (CU_TFIFO WL) . ..ottt e e et 8-44
Table 8-110. Opcode: OXOF (_CU_RFIFO_ WL _LO). ..ottt e 8-44
Table 8-111. Opcode: 0x10 (_LCU_RFIFO_WL_HI) . ..ot e 8-45
Table 8-112. Opcode: 0x27 (_CU_SET_MASTER_LOOP)\ttt 8-45
Table 8-113. Opcode: 0x27 (_CU_SET_MASTER _LOOP)\ttt 8-45
Table 8-114. Opcode: 0x25 (CU BER _START) ...\ttt et ettt e s 8-45
Table 8-115. Opcode: 0x26 (_CU_BER_CONFIGURE)t 8-45
Table 8-116. BER Parameter 8-46
Table 8-117. Opcode: 0X8A (_CU_MEASURE_BER)t 8-46
Table 8-118. Opcode: 0x89 (CU BER _STATUS) ...ttt e e e e 8-46
Table 10-1. Possible Location Values of the Line Interface Cards 10-2
Table 10-2. Channel Unit Configuration Index it e 10-4
Table 10-3. Channel Unit htu_index Values i e e 10-5
Table 10-4. Route Table Entry Definition 10-6
Table 10-5. Combine Table Entry Definition. i 10-8
Table 10-6. Transmit Payload Map (TMAP _1) ot e 10-10
Table 10-7. Transmit Payload Map (TMAP_2) s 10-10
Table 10-8. Transmit Payload Map (TMAP _3)ot 10-10
Table 10-9. Transmit Payload Map (TMAP _4) i e s 10-10
Table 10-10. Transmit Payload Map (TMAP_5) s 10-10
Table 10-11. Transmit Payload Map (TMAP_B)ot e 10-11
Table 10-12. Transmit Payload Map (TMAP _7)ottt e e 10-11
Table 10-13. Transmit Payload Map (TMAP_8) o 10-11
Table 10-14. Transmit Payload Map (TMAP_9) e 10-11
Table 10-15. Receive Payload Map (RMAP_1). oottt 10-12
Table 10-16. Receive Payload Map (RMAP_2). o e 10-12
Table 10-17. Receive Payload Map (RMAP_3).ottt e e e 10-12
Table 10-18. Receive Payload Map (RMAP_4). ot e e 10-12
Table 10-19. Receive Payload Map (RMAP_5). 10-12
Table 10-20. Receive Payload Map (RMAP_B).ottt 10-13
Table 11-1. Initial PID Values (EL MOME)ottt e e 11-8
Table 11-2. APIFUNCLIONSot e e e e e 11-12
XViii Conexant 100418C

1.0 Introduction

This document describes the application and channel unit code distributed with the Conexant
Evaluation Module Systems (EVMs). The application and channel unit code and bit pump code
provide a complete DSL application. Refer to the ZipWire Software User Guide (100417C) for

details of the bit pump code.

In Versions 5.3 and earlier, the channel unit code was primarily regarded as sample code for the
evaluation boards. The code was written so the customer would be able to use it; however, it was

incomplete and required extensive efforts by the end user.

\ersion 6.x is a more thorough software package. The main focus of the channel unit code is for
the standard 1T1, 2T1, 1E1, 2E1, and 3E1 HDSL transport applications.
The channel unit is an extremely flexible device that can fit many applications. Even with all of
the improvements, for many applications, the customer must modify the code.
Figure 1-1 illustrates the software overview and interface to the HDSL chip sets. The bit pump
code manages the transceiver functionality and the channel unit code is responsible for the framing
functionality. The application code lays on top of the bit pump code and channel unit code and calls
them to activate and maintain the system. The serial interface provides customer control of the

system through a host computer.

Figure 1-1. Software Overview

Application Code

API Interface

Test MAIN Activation State BT Serial : - I_-io_st_ - :
Modes [Machine API »[Comm. [processor |
1 \ - -71T -/ ~°-~-=°°
- Y / »| DSL
- | API
Channel Unit Code Bit Pump Code
Channel Unit ’ . Bit Pump
API Functions | »| BtMain AP
A | A
y Y Y Y L] L] Y
Channel Unit || | 1ost Modes Interrupt HTU-C HTU-R Test Interrupt
Initialization Handler Activation Activation Modes Handler
A 1 A 1 A A A

Y Y Y Y

Y

Y

Y

Bt8953 Channel Unit Registers | |

Bt8973 Bit Pump Registers

100418C Conexant

1-1

1.0 Introduction RS8953B

1.1 What’s New in Channel Unit Version 6.x Application and Channel Unit Software Developer’s Guide

1.1 What’s New in Channel Unit Version 6.x

The following features are added to the channel unit code version 6.x. See Chapter 6.0 for a detailed
description of each feature.

1.1.1 Bt8953A Revision C and RS8953B Support

Channel unit code version 6.x supports the newest channel unit devices: Bt8953A Rev. C and
RS8953B.

1.1.2 RS8973 versus Bt8970 Line Card Support

The channel unit PLL and stuffing values are based on the RS8973 XOUT values. The Bt8970
device will not work with any channel unit device (including the Conexant EVMs) because the
Bt8970 XOUT frequency is different than the RS8973 XOUT frequency.

Customers who have both a Bt8970 and channel unit device must define the MCLK 1024
directive.

1.1.3 EOC Protocol

Previous versions of channel unit code did not support the ANSI/ETSI Embedded Operation
Channel (EOC) protocol. In channel unit code version 6.x, the EOC protocol has been added and
can be enabled by the CU_EOC compiler flag defined in TYPEDEFS.H.

1.1.4 Dynamic Loop Reversal and Master Loop

In channel unit code version 6.X, the master loop and the loop connections between the HTU-C and
HTU-R are no longer fixed and can change dynamically.

1.1.5 Performance Monitoring

In channel unit code version 6.x, Performance monitoring has been added to keep a history of CRC
and FEBE errors at different time intervals. Performance monitoring can be enabled with the
PERF_MONITOR compiler flag defined in TYPEDEFS.H.

1.1.6 Channel Blocking

Standard 2T1/2E1 channel blocking is implemented in channel unit code version 6.x.

1-2 Conexant 100418C

RS8953B 1.0 Introduction

Application and Channel Unit Software Developer’s Guide 1.2 Features and Functionality Not Supported

1.1.7 Bt8370 Support

The Bt8370 T1/E1 framer/LIU support is added to the channel unit code version 6.x. The framer
code configures the Bt8370 for either T1 or E1 mode. Bt8370 support can be enabled with the
BT8370_FRAMER compiler flag defined in TYPEDEFS.H.

1.2 Features and Functionality Not Supported

The following features or functionality are not by channel unit code version 6.x:

Bt8953A Evaluation Boards: Support for the Bt8510, Bt8360, and Bt8069 are compiler options
in version 6.x, which minimizes waste on ROM space. To revert to
the Bt8510/Bt8360/Bt8069 framers, the compiler options must be
enabled in the “TYPEDEFS.H” file. When using the Bt8510 or
Bt8360 channel unit EVMs, the Bt8069 option should be enabled.

Loop Relativity: The term “loop relativity” is used to describe the EVM
motherboard slot where each line card is connected. Currently, if
1E1 or 1T1 is simulated, the line card must be in slot one. If the
line card is in slot two or three, some application and channel unit
code features do not function properly.

Multiple Channel Unit Devices: The current release does not support multiple channel unit devices.
Contact Conexant for assistance.

100418C Conexant 1-3

1.0 Introduction RS8953B

1.2 Features and Functionality Not Supported Application and Channel Unit Software Developer’s Guide

1-4 Conexant 100418C

2.0 EVM Specific

This section describes any interaction of the software that is specific to the HDSL EVMs.
Customers may need to modify the EVM-specific code for their platform.

2.1 HDSL EVM Hardware

The modular HDSL EVM hardware is designed to accommodate the standard 1T1, 2T1, 1E1, 2E1,
and 3E1 configurations. As illustrated in Figure 2-1, the HDSL EVM terminal unit consists of the
following:

* Motherboard
e 1,2, 0r3Line Interface Cards (LIC)
e Channel Unit (CU) card or BNC connector card

Figure 2-1. HDSL EVM Terminal Unit

|DIP SW
LIC2 LIC1
CU or BNC LIC3
Motherboard

Although the code is written for the HDSL EVMs, it is also written with consideration of
porting to other hardware environments.

100418C Conexant 2-1

2.0 EVM Specific RS8953B
2.1 HDSL EVM Hardware Application and Channel Unit Software Developer’s Guide

2.1.1 DIP Switch

In the HDSL EVM, the Dual In-line Package (DIP) switch is used to determine the system
configuration, test modes, etc. Customers must mimic this selection process based on their system
architecture or hardware. Figure 2-2 illustrates the DIP switch mode configuration.

NOTE: The DIP switch numbers on the motherboard are transposed compared with the P1 port
(DipSw #1 is connected to P1 #7, DipSw #2 is connected to P1 #6, etc.). The DIP
switch is labeled 1-8, and the P1 port is labeled 0-7.

Figure 2-2. DIP Switch Mode Configuration

SW1 (DIP Switches #1-8)
[8]7]6f[5[a]3[2]1]

Operating Mode #8 |
Standalone Mode 0
UIP Mode 1

#7-1: Only valid in Standalone Mode

Single Pair BNC (Bit Pump Only)

Data Rate #6 # - —————— —— |

1,168 kbps 0 0 |

784 kbps 0 1 |

144 kbps 1 0 |

2,320 kbps 1 1 |
|
|
|

Channel Unit Present
BP Data PCM Rate | Application #6 | #7 -
Rate
1,168 kbps 2.048 M 2E1 or o—2E1
784 kbps 1.544 M 2T1 or 2-2T1
1,552 kbps 1.544 M 1T1
2,320 kbps 2.048 M 1E1
784 kbps 2.048 M 3E1

o|r|r|olo
r|r|o|r|o

Test Mode

Normal Operation

BP Isolated +3

BP Continuous 4-Level

BP External Analog Loopback
BP Digital Loopback

Channel Unit PRA to PRA
Loopback*

LIU Line Loopback*

Normal Operation—-Unframed* 1

RO |lo|o|o|H
O|Oo|k |+ |o|o|H#
[l (=] (e o Fol b=

[N
[N
o

S
S

A

[Reserved (should be kept in the down position) | #2

Terminal Type #1 |
Local (HTU-C) 0
Remote (HTU-R) 1

2-2 Conexant 100418C

RS8953B 2.0 EVM Specific
Application and Channel Unit Software Developer’s Guide 2.1 HDSL EVM Hardware

2.1.2 Channel Unit LEDs

The three CU_LED registers are 8-bit write only registers that display status information via LEDs
the channel unit and line interface cards. The LEDs are lit when a 1 is present in the corresponding
register bit. Table 2-1 lists the memory map for the CU_LED registers. Figure 2-3 through

Figure 2-5 define the CU_LED Registers.

Table 2-1. CU_LEDn Memory Map

Address Range Description
0XC600-O0XC7FF CU_LED1 (Write Only)
0XC800—-0XCIFF CU_LED2 (Write Only)
OXCAO0—OXCBFF CU_LED3 (Write Only)

Figure 2-3. CU_LED1 Register

[7]6]5]4]3]2]1]0] Write Only

CU IN SYNC (Loop 1)

CU OUT OF SYNC (Loop 1)

CU TFIFO ERR (Loop 1)

CU RFIFO ERR (Loop 1)

CU IN SYNC (Loop 2)

CU OUT OF SYNC (Loop 2)

CU TFIFO ERR (Loop 2)

CU RFIFO ERR (Loop 2)

100418C Conexant 2-3

2.0 EVM Specific

RS8953B

2.1 HDSL EVM Hardware

Figure 2-4. CU_LED2 Register

Application and Channel Unit Software Developer’s Guide

[7]e]5]4]3[2]1]o]

Write Only

CU IN SYNC (Loop 3)

CU OUT OF SYNC (Loop 3)

CU TFIFO ERR (Loop 3)

CU RFIFO ERR (Loop 3)

CU DPLL ERR

T1/E1 SYNC

T1/E1 LOF

T1/E1 ERROR

Figure 2-5. CU_LED3 Register

[7]e]5]al32]1]o] Write Only

Green HDSL Bit pump 1 in ACTIVE_TX_RX_STATE

Red HDSL Bit pump 1 not in ACTIVE_TX_RX_STATE

Green HDSL Bit pump 2 in ACTIVE_TX_RX_STATE

Red HDSL Bit pump 2 not in ACTIVE_TX_RX_STATE

Green HDSL Bit pump 3 in ACTIVE_TX_RX_STATE

Red HDSL Bit pump 3 not in ACTIVE_TX_RX_STATE
Not Used
Not Used

2-4 Conexant 100418C

RS8953B 2.0 EVM Specific

Application and Channel Unit Software Developer’s Guide 2.2 General Purpose Timers

2.2 General Purpose Timers

The 80C32 timer #0 implements a general purpose timer function (timer #1 is used as a baud rate
generator). The timer structure is a two-dimensional array to index multiple bit pumps and general
purpose timers. Currently, one general purpose timer per bit pump is used for the LOSWT (loss of
sync word timer). (See Section 11.13 for a detailed description.) See Table 2-2 lists General
Purpose Status bits definitions.

/* Found in TIMER H */

/* Timer indexes */

#defi ne _NO GEN_PURPCSE_TI MERS 1
#def i ne PENDI NG_DEACTI VATE_TI MER 0

/* Timer Structure */
t ypedef uni on
{
BP_U 8BIT reg;
struct
{
BP_BI T_FI ELD state: 1,
BP_BI T_FI ELD conpl et e: 1;
BP_BI T_FI ELD conti nuous: 1;
BP_BI T_FI ELD reserved: 5;
} bits;
} GEN_PURPOSE_TI MER_STATUS;

t ypedef struct
{
BP_U 16BI T count er _val ue;
GEN_PURPCSE_TI MER_STATUS st at us;
} GEN_PURPOSE_TI MER;

t ypedef struct
{

BP_U 16BI T | oad_val ue;

BP_U 32BI T el apsed_counter;
} GEN_PURPOSE_CONT_TI MER;

/* Found in TIMER C */
static GEN_PURPCSE_TI MER

gen_tinmer[_NO OF_LOOPS] [_NO _GEN_PURPCSE_TI MERS] ;
static GEN_PURPOSE_CONT_TI MER

gen_cont _timer[_NO OF LOOPS] [_NO_GEN_PURPOCSE TI MERS];

100418C Conexant 2-5

2.0 EVM Specific

RS8953B

2.2 General Purpose Timers

Application and Channel Unit Software Developer’s Guide

Table 2-2. General Purpose Status Bit Definitions

Bit Description 0 Value 1 Value
0 State Disabled Enabled
1 Complete Not complete Complete
(Expired)
2 Continuous Not continuous Continuous
3-7 Reserved — —
NOTE(S):
1. To add more timers, increase the _"NO_GEN_PURPOSE_TIMERS definition, and add the appropriate timer
index definitions.
2. If the user employs a microcontroller other than 80C32 and wants a general purpose timer, similar functions
should be implemented.

2.2.1 Continuous Mode

In this mode, the timer continuously counts the specified time interval. The elapsed_counter
infinitely tracks the number of continuous timer expirations. The load_value sets the timer interval
when the continuous timer is reloaded. The _ContinuousGenPurposeTimer() function enables or

disables the continuous timer.

2.2.2 One Second Timer

The one second timer is a continuous mode timer, used by the application code to track when to:

« Estimate bit pump activation time.
* Run awatchdog timer in the WAIT_FOR_LOS and WAIT_FOR_LOST states.

» Determine when to update the ZipStartup coefficients.

2-6

Conexant

100418C

3.0 Directory Structure

The directory structure is partitioned into three directories: the MAIN (application-specific)
directory as the root, the bit pump code as a subdirectory labeled BITPUMP, and the channel unit
code as a subdirectory labeled CHANUNIT.

MAIN

—— BITPUMP

——— CHANUNIT

The application examples, hex files, build script files, etc., are located in the MAIN directory.
The bit pump source code and header files are in the BITPUMP subdirectory. The channel unit
source code and header files are in the CHANUNIT subdirectory.

NOTE: It is recommended that the application have separate subdirectories for the bit pump
and channel unit code to more easily manage the software and future upgrades.
However, the user can specify their own directory and file structure.

100418C

Conexant 3-1

3.0 Directory Structure RS8953B
3.1 MAIN (Application) Directory Application and Channel Unit Software Developer’s Guide

3.1 MAIN (Application) Directory

Table 3-1 lists all C source files in the MAIN (application) directory.

Table 3-1. Source Files Under the Main Directory

Files Description
DSL_MAIN.C Main() routine for HDSL EVM system.
DSL_INIT.C HDSL initialization functions.
DSL_ASM.C HDSL activation state manager (ASM).
DSL_MAN.C HDSL dynamic loop control functions.
DSL_MISC.C HDSL miscellaneous functions.
DSL_API.C HDSL application-level API commands.
BT_API.C HDSL APl command-wrapper.
ZIPVALID.C ZIPSTARTUP validation function.(!)
TIMER.C 80C32 general purpose timer functions.
NOTE(S):

(@) ZIPSTARTUP is an add-on feature that offers an 8-fold reduction to start-up times. For
ordering information contact Conexant.

3-2 Conexant 100418C

RS8953B

3.0 Directory Structure

Application and Channel Unit Software Developer’s Guide 3.2 BITPUMP Directory

3.2 BITPUMP Directory

Table 3-2 lists all C source files in the BITPUMP subdirectory.

Table 3-2. Source Files Under BITPUMP Directory

Files Description

API.C Bit pump APIs.

BTMAIN.C Bit pump main routine.

BTINT.C Bit pump interrupt handler.

BITPUMP.C Handle bit pump interrupt status and temperature changes.

INIT51.C Routines for initializing 80C32 interrupts, timers, and serial port.

MAIL.C RS-232 communication support. Manage receive messages, transmit messages, and read/write to
mail boxes.

MONITOR.C RS-232 Printf support (used only with TDEBUG compiler flag).

SERINT.C Serial communication interrupt handler.

SUC.C Startup control process for HTU-C terminal.

SUR.C Startup control process for HTU-R terminal.

SUUTIL.C Startup utility routines common to HTU-C and HTU-R.

TESTMODE.C | Performs test modes: loopbacks, isolated transmit pulse, scrambled 1s, VCXO control voltage
test. Performs bit pump self-test.

USER.C User-modifiable code. Definitions of the absolute addresses of bit pump devices, and routines for
initializing the bit pump pointers to these addresses.

UTIL.C Bit pump utility routines.

ZIPSTART.C Save and load the ZipStartup registers (requires ZipStartup software package).

100418C

Conexant 3-3

3.0 Directory Structure

RS8953B

3.3 CHANUNIT Directory

3.3 CHANUNIT Directory

Application and Channel Unit Software Developer’s Guide

Table 3-3 lists all C source files in the CHANUNIT directory.

Table 3-3. Source Files Under CHANUNIT Subdirectory

Files Description

CU_INIT.C Channel unit initialization functions.(®)

CU_INT.C Channel unit interrupt handlers.

CU_MAP.C Transmit routing table, receive combination table,
transmit payload map and receive payload map
initialization functions.

CU_ASM.C Channel unit functions called by ASM.

CU_LOOPRC Channel unit functions for dynamic loop control.

CU_UTILS.C Channel unit utility functions.

CU_EOC.C Embedded operation channel protocol and task
handlers.

CU_PERFEC Performance monitoring functions and global
variables.

CU_API.C Channel unit APIs.

CU_LED.C Channel unit LED functions.

FRAMER.C T1/E1 framer functions.

FRMR_API.C T1/E1 framer APlIs.

NOTE(S):

@ In channel unit V 5.3 and earlier, the channel unit initialization functions were located in

CHANUNIT.C rather than CU_INIT.C.

3-4

Conexant

100418C

RS8953B

3.0 Directory Structure

Application and Channel Unit Software Developer’s Guide 3.4 Header File Dependencies

3.4 Header File Dependencies

Table 3-4 lists the header file dependencies for the application, bit pump, and channel unit code.

Table 3-4. Header File Dependencies

Files

Source Files Depend on...

Application Files

Application Header Files:
DSL_MAIN.H, DSL_INIT.H, DSL_INCL.H, DSL_MAN.H, DSL_MISC.H, DSL_API.H, BT_API.H,
ZIPVALID.H, TIMER.H, TYPEDEFS.H

Bit pump Header Files:
BTMAIN.H, APL.H, USER.H, BITPUMP.H, SUC.H, TESTMODE.H, EXTERN.H, ZIPSTART.H,
MAIL.H, INIT51.H

Channel Unit Header Files:
CU_APL.H, CU.H, FRMR_API.H, FRAMER.H, CU_TABLE.H, CU_ASM.H, CU_MAP.H,
CU_LOOP.H, CU_UTILS.H, CU_INIT.H, CU_EOC.H, CU_PERFH

Bit pump Files

Application Header Files:
BT_API.H, TYPEDEFS.H

Bit pump Header Files:
API.H, BITPUMP.H, BTMAIN.H, EXTERN.H, FIFO.H, INIT51.H, MAIL.H, PTRDEFH, SERINT.H,
SUC.H, SUR.H, SUUTIL.H, TESTMODE.H, USER.H, UTIL.H, ZIPSTART.H

Channel Unit Header Files: none

Channel Unit Files

Application Header Files:
DSL_MAIN.H, BT_API.H, TYPEDEFS.H

Bit pump Header Files:
BITPUMP.H, BTMAIN.H, API.H, EXTERN.H, MAIL.H, SERINT.H, TESTMODE.H

Channel Unit Header Files:
CU_APLH, CU.H, FRMR_APIL.H, FRAMER.H, CU_TABLE.H, CU_ASM.H, CU_MAPH,
CU_LOOPH, CU_UTILS.H, CU_INIT.H, CU_EOC.H, CU_PERFH

100418C

Conexant 3-5

3.0 Directory Structure

RS8953B

3.5 TYPEDEFS.H

3.5 TYPEDEFS.H

Application and Channel Unit Software Developer’s Guide

TYPEDEFS.H is located in the MAIN directory and contains the data type definitions for a Keil
compiler. It also contains some compiler flag definitions (see Chapter 4.0 for a detailed description
of each compiler flag). Table 3-5 lists the data types that must be specified.

Table 3-5. Data Type Definitions

1. The code is targeted towards the Keil compiler.
2. Assuming 32-bit GNU C compiler.
3. The data, idata, pdata, and xdata types are unique to the Keil 80C32 compiler.

Data Type Description Keil Equivalent(GNU C Equivalent(®
BP_BIT_FIELD 1-bit field unsigned char unsigned char
BP_S_8BIT Signed 8-bit char char
BP_U_8BIT Unsigned 8-bit unsigned char unsigned char
BP_S_16BIT Signed 16-bit short short
BP_U_16BIT Unsigned 16-bit unsigned short unsigned short
BP_S_32BIT Signed 32-bit long int
BP_U_32BIT Unsigned 32-bit unsigned long unsigned int
BP_TABLE Signed 16-bit short short
BP_CONSTANT Constant code const
BP_VOLATILE Volatile N/A volatile
BP_DATA Internal Memory data® N/A
BP_IDATA Indirect Internal Memory idata® N/A
BP_PDATA External Memory pdata(3) N/A
BP_XDATA External Memory xdata® N/A
NOTE(S):

3-6

Conexant

100418C

4.0 Compiling and Linking Application

Examples

Table 4-1 lists the HEX files that can be built.

Table 4-1. HEX Files

flags.

Application Example HEX File Description
Single Processor ZIPWIREC.HEX EVM version (standalone and User Interface Program
HTU-C Terminal control).
TDEBUG TDEBUG.HEX Bit pump Debug version (bit pump only).
NOTE(S):

1. Itis assumed the user knows how to compile and link the source code with the necessary compiler and linker

2. The HDSL EVM Bt8952-001 motherboard external RAM address begins at address 0x8000.

4.1 Using the Keil uVision Project Manager

The ZIPWIRE.PRJ and TDEBUG.PRJ are Keil uVision Project Files. The uVision tool includes an
Integrated Development Environment (IDE) to edit, compile, and link the code. The Keil compiler
is specific to the 8051 microcontroller family. Table 4-2 lists the compiler directives.

4.2 Using a Makefile

The SCRIPT.BLD file in the MAIN directory contains information to generate the different
application examples. The SCRIPT.BLD file is an Intersolv® Configuration Builder 5.0 script file
(makefile). The SCRIPT.BLD file provides the ability to generate additional HEX files not

specified in Table 4-1.

100418C

Conexant

4-1

4.0 Compiling and Linking Application Examples RS8953B

4.3 Linker Flags Application and Channel Unit Software Developer’s Guide

4.3 Linker Flags

The LFLAGS variable specifies the linker flags. All HEX files use the same linker flags:
XDATA(8000) RAM 256)

The XDATA(8000) specifies the base address of the external RAM memory mapping. The
RAM(256) specifies that the micro controller contains 256 bytes of internal RAM.

4.4 Compiler Flags

The CFLAGS variable specifies the compiler flags which are unique to each application. There are
two aspects to the CFLAGS list: 8032 compiler options and Bt8970 bit pump compiler switches,
denoted by the DF<directories>. Each bit pump switch is defined in the ZipWire Software User
Guide (100417C).

The CHANNEL_UNIT flag in SCRIPT.BLD determines if the channel unit code is compiled in
the build. The default is set to 1; set this flag to 0 to not compile in the channel unit code.

4-2 Conexant 100418C

081¥00T

uexauodn

ev

Table 4-2. Compiler Directives

@ The following are default options in typedefs.h:
BP_MASK_INTERRUPTS, NO_INDIRECT_RAM_VARS, PRINTF_NOT_SUPPORTED are not defined.
If CHAN_UNIT is defined, then MCLK_1024, CU_BUG is defined.
If ZIP_START is defined, then ZIP_START_EC_BUG is defined.
@ The following are default options in btmain.h:
If ZIP_SOCKET is defined, then _NO_OF_LOOPS = 2.
If TWO_LOOPS, SINGLE_LOOP and ZIP_SOCKET are not defined, then _NO_OF_LOOPS = 3.

Keil Project Options typedefs.h® btmain.h
|

e W | w | m >

o n 2| = 43|33

52| w m Z| 2 |xlQ|nlz |2 == 2 h| 8|3 F|3 2

projectFite| _ | 83| 8|z |z |8 |m|8|8|B|2| 2|0 |2|2(8|2|2|g|ele|els|F|a8B|E| <
SR =R = = S A P g R T o R Rl RN T il O L [N N D e e R -
Plmligs|lslm|lealmmi=|lQ|alc|izl=z]! ol m|m|g|ad|m|m|L4|>|3|D| DI o

1| = = o|l@m|Z || |BB|lo|Q|=z|o|l—=-|~|r|FrlolzlZ|lZ2|2|C o

e 0 = — N o

< | O o) O | » SRR Il o) =< = | m | Z |2 |2 | C 0

m o | Q | m|m|m (28

= T || S

ZIPWIRER X X[X | X] X X | X X X X[X[X | X[X[X| X[X]X]|X 3
ZIPWIREC X | X | XX X | X | X X X X[X | X | X[X]|X]|X X | X 3
ZSTARTR X X[X | X]| X X | X X | X X X[X[X | X | X]|X X | X 3
ZSTARTC X X | XX X | X | X X | X X X[X[X | X | X]|X X | X 3
ZIPREG X | X[X[X | X[X]|X]|X X | X | X X | X | X X X | X 2
TDEBUG X | X | X X | X[X | X X 3

NOTE(S):

apIng s,4adojans@ a1emios Jun [auuey) pue uoiedljddy

sbe|4 Jojidwo) '

a€368sy

sajdwex3 uoneaijddy Burjuiq pue Buijidwo) o'y

4.0 Compiling and Linking Application Examples RS8953B

4.4 Compiler Flags

4.4.1 CHAN_UNIT

4.4.2 TWO_LOOPS

4.4.3 CU_EOC

4.4.4 PERF_MONITOR

4.4.5 CU_2T1

4.4.6 CU_2E1

Application and Channel Unit Software Developer’s Guide

The CHAN_UNIT flag tells the compiler whether to compile in the channel unit
code.

The TWO_LOOPS compiler flag, defined in the bit pump software, is also used by
the channel unit code. If the TWO_LOOPS is declared, the channel unit code only
allocates memory for the first two loops, and the developer is unable to access the
third Loop.

When the CU_EOC compiler flag is defined, the EOC-related operations are
available in the channel unit code. To make ZIP_START work, CU_EOC should
be defined, because it is used in the ZIP_STARTUP validation procedure.

When the PERF_MONITOR compiler flag is defined, performance
monitoring-related functions, such as available seconds for each loop since
power-on, CRC and FEBE history maintenance, are available in the channel unit
code.

The CU_2T1 compiler flag enables ANSI standard 2T1 operation in the channel
unit code. Two HDSL links are established with each link carrying half the
payload from T1. The data rate for each link is 784 kbps.

The CU_2E1 compiler flag enables ETSI standard 2E1 operation in the channel
unit code. Two HDSL links are established with each link carrying half the
payload from E1. The data rate for each link is 1168 kbps.

4-4

Conexant 100418C

RS8953B

4.0 Compiling and Linking Application Examples

Application and Channel Unit Software Developer’s Guide 4.4 Compiler Flags

4.4.7 CU_3E1

4.4.8 CU_1T1

4.4.9 CU_1E1

4.4.10 CU_CUSTOM

4.4.11 T1E1_FRAMER

4.4.12 CU_LED

The CU_3E1 compiler flag enables ETSI standard 3E1 operation in the channel
unit code. Three HDSL links are established with each link carrying one-third the
payload from E1. The data rate for each link is 784 kbps.

The CU_1T1 compiler flag enables the 1T1 operation in the channel unit code.
When this compiler is used, only one HDSL loop is established. The data rate for
the link is 1552 kbps.

The CU_1E1 compiler flag enables the 1E1 operation in the channel unit code.
When this compiler is used, only one HDSL loop is established. The data rate for
the link is 2320 kbps.

When CU_CUSTOM is enabled, customers can experiment with different
configurations for the system by modifying the CU_CUSTOM entries in the
RATE_VALUESI][] array (see Section 10.5)

The TIE1_FRAMER compiler flag enables the codes in the channel unit code that
handles the T1 or E1 framer. It should always be defined when the CHAN_UNIT
compiler flag is defined.

The CU_LED compiler flag enables the codes in the channel unit code that
handles the channel unit LED updates. It should always be defined when the
CHAN_UNIT compiler flag is defined.

100418C

Conexant 4-5

4.0 Compiling and Linking Application Examples RS8953B

4.4 Compiler Flags Application and Channel Unit Software Developer’s Guide

4.4.13 BIT_REVERSE

The BIT_REVERSE compiler flag controls the bit field definitions. When
defining a C structure containing bit fields, such as in the text below, the first bit
is normally allocated to the least significant bit in the byte.

typedef struct {

BP_BI T_FI ELD scr_en: 1;
BP_BI T_FIELD two_| evel : 1;
BP_BIT FIELD icrc_err:1;
BP_BI T_FI ELD sync_sel : 1;
BP_BI T_FI ELD hoh_en: 1;
BP_BI T_FIELD force_one: 1;
BP_BIT_FIELD tx_err_en:1;
BP_BI T_FI ELD reserved: 1;
} TCVD_1;

NOTE: This fact is critical when bit fields are used to access external
addresses.

The BIT_REVERSE flag must be declared if the compiler allocates the first
bit-field to the most significant bit in the byte.

4.4.14 ZIPSOCKET

The ZIPSOCKET compiler flag is for the Zipsocket product and is not used in the
normal EVM system.

4-6 Conexant 100418C

5.0 Application Code

This section describes an overview of the application code.

5.1 Software Flow

Figure 5-1 illustrates a detailed block diagram of the main program flow.

100418C Conexant

5.0 Application Code

RS8953B

5.1 Software Flow

Figure 5-1. Main Program Flow

Application and Channel Unit Software Developer’s Guide

_DSL Initialization

[

v

y Y

Enable

Bit-pumpl

Enable
Bit-pump3

L e

|_InitChanneIUnitEvaoard |

v

Y ¥

Configure Configure Configure
Bit-pumpl Bit-pump2 Bit-pump3
Handle Handle Handle
Test Mode 1 Test Mode 2 Test Mode 3

System Idle System Idle System Idle
State State State
\
DSL Yes
Reset?
No
v v L
BtMain 1 BtMain 2 BtMain 3

ASM 1 ASM 2 ASM 3

1

|_DisplayStartUpStageNumber

_DSLLoopHandler | |
ji

_CuHandleFlags |

1

|_HandIeTransmitMessages|

Y

|_HandIeReceiveMessages |

5-2

Conexant

100418C

RS8953B 5.0 Application Code
Application and Channel Unit Software Developer’s Guide 5.2 DSL Loop Manager

5.2 DSL Loop Manager

Figure 5-2 illustrates the functional overview of the DSL manager. The DSL manager administers
system initialization, configuration, activation state management, HDSL link, and any test mode
operation.

Figure 5-2. DSL Manager

Power On
API Command or
Software Reset
or
Reset Request

Handle Initialize
Test Mode System
Y A
Test Mode Configure
Complete tem

(2]

<
L %)
- —

I
ASM1 ASM2 | Asm3 |

-

Switch
SetL Master Master
oop Loop
A
Y
Handle Loop
Reversal
‘ No
Loop(s) Failed Yes
System In p(s) Fai Has Master Loop
Normal Failed?

100418C Conexant 5-3

5.0 Application Code RS8953B

5.3 Software and Devices Initializations Application and Channel Unit Software Developer’s Guide

5.3 Software and Devices Initializations

The functions listed in Table 5-1 initialize the software (hardware pointers, timers, etc.). These
functions are called in the _DSL Initialization() function.

The APl commands listed in Table 5-2 initialize the bit pump device. These functions are called
in the EnableBitpump() and ConfigureBitpump() functions.

The APl commands listed in Table 5-3 initialize the channel unit and framer devices. These
functions are called in the _InitChannelUnitEvmBoard() function.

The configure channel unit command initializes all channel unit registers for the specified
configuration. The configure framer and configure LIU commands initialize the framer and L1U for
transparent operation.

Table 5-1. Software Initialization Functions

Functions Descriptions

_BtSwPowerUp() Software power-up initialization.

_MaskBtHomerInt() Masks for all bit pumps, interrupts.

_Init8051() 8051 configuration initialization. Calls initialization routines for interrupts,
internal timers, and serial port parameters (assuming 80C32 family
processor).

_InitGenPurposeTimers() Initialize the interrupt #1 which decrements the timer counters when timer
#0 expires.

_CulnitAddress() Initialize the channel unit EVM board base addresses.

5-4 Conexant 100418C

RS8953B

5.0 Application Code

Application and Channel Unit Software Developer’s Guide

Table 5-2. Bit Pump Initialization Commands

5.3 Software and Devices Initializations

APl Command Name Parameter Remarks
Bit pump ON/OFF _PRESENT Turn bit pump ON.
Symbol Rate Symbol rate is set according to | API value = (Symbol Rate / 4000) i.e., 98 = 392k / 4000

SWi1.

(784 kbps data rate).

Terminal Type

_HTUC or _HTUR

Central office or remote terminal.

Start-up Sequence Source _EXTERNAL Use externally generated scrambled data from channel unit
during activation.

Transmit Scrambler _BYPASS Bypass bit pump scrambler.(t)

Receive Scrambler _BYPASS Bypass bit pump descrambler.®)

Framer Format _SERIAL_SWAP Sign bit followed by Magnitude bit.

Other Side Bit Pump _BT Assume other terminal is a Conexant bit pump.

LOST Time Period 10 Set LOST =1 second.

Auto Tip/Ring Reversal

_AUTO_TIP_RING_OFF

Disable tip/ring reversal by software because channel unit has
automatic tip/ring reversal logic.

NOTE(S):

@ Channel unit provides necessary scrambled data.
2. The bit pump on and off, and symbol rate commands must be called first and second, respectively. The other API commands

can be called in any order.

Table 5-3. Channel Unit Initialization Commands

APl Command Name

Parameter

Remarks

Terminal Type

_HTUC or _HTUR

Central office or remote terminal.

Configure Channel Unit _2T1, 2E1, 3E1, 1T1,or 1E1 Configuration is set according to SW1 (see
Figure 2-2).
Configure Framer _BT8360(T1) or _BT8510(E1) or Configuration is determined by querying the framer
_BT8370(T1/E1) type.
Framer PCM Mode TlorEl Configuration is set according to SW1 (see
Figure 2-2).

Configure LIU

_ELS_T1_0_110(T1)or
_ELS_E1_PCM30(E1)

Configuration is based on the framer PCM mode.

100418C

Conexant 5-5

5.0 Application Code RS8953B

5.4 Activation State Manager Application and Channel Unit Software Developer’s Guide

5.4 Activation State Manager

This section describes how the Activation State Manager (ASM) is implemented using the bit pump
and channel unit code. The ASM is based on the ETSI TS-101-135 and ANSI T1E1.4 HDSL
specifications.

For each state, the functions of the application code, the bit pump code, and the channel unit
code are unique. The application code accesses the bit pump code and channel unit code by calling
the _BtControl() and _BtStatus() functions. These functions, in turn, call _BitpumpControl() and
_BitpumpStatus() to handle bit pump-related requests, and _CuControl() and _CuStatus() to handle
channel unit-related requests. See Section 11.10 for details on API function structure.

The ASM must issue only three APl commands to control the bit pump portion, assuming the
bit pump is properly configured using appropriate APl commands. The bit pump API commands
and their descriptions are as follows:

_STARTUP_STATUS Monitors the bit pump activation status, which allows the
application code to determine what state the bit pump is in and to
detect any error conditions.

_ACTIVATE Initiates the bit pump activation.
_DEACTIVATE Deactivates the bit pump.
The ASM controls the channel unit by issuing the following list of APl commands and

functions. In this list, APl commands are all capitals, and functions are denoted by the
parentheses ():

_CU_USE_SAME_TAP Configure Tx/Rx to use HTU-C SCR/DSCR tap #5 while in
normal operation.
_CU_SYNC Monitors the channel unit sync status.

_CU_FORCE_SCR_ONES Configure the channel unit to transmit framed scrambled 1s; both
the overhead and payload are set to all 1s.

_CuConfigureTransmitS1() Configure the channel unit for S1 data; overhead enabled but the
payload data is still all 1s.

_CuSetRtrInd() Set the RTR (Ready To Receive) indicator bit.
_CuForceOnes() Enable the payload data (by disabling the force payload 1s).
_CusSetPid() Initialize the loops pair ID transmitted by the HTU-C.
_CusSetPidToAllOnes() Initialize the loops pair ID transmitted by the HTU-R to all 1s.

_CU_TRANSMIT_PAYLOAD Complete channel unit configuration for normal operation.

5-6 Conexant 100418C

RS8953B 5.0 Application Code

Application and Channel Unit Software Developer’s Guide 5.4 Activation State Manager

Figure 5-4 illustrates the state diagram for activating the HTU-C and HTU-R, respectively.
Upon an activation request, the HTU-C side transmits a two-level signal to the far end. The HTU-R
side, upon an activation request, waits for the HTU-C signal. Once the HTU-C two-level signal is
detected, the HTU-R performs frequency lock, line characterization, and echo cancellation
coefficient calculation. Upon completion, HTU-R transmits a two-level signal back to HTU-C and
waits for a four-level signal. The HTU-C then performs characterization based on the HTU-R
two-level signal. When HTU-C completes its characterization, it sends a four-level 2B1Q signal. At
this stage, normal operation is reached with transmission of a 2B1Q signal across the link.

Figure 5-3. Bit Pump Start-up Sequence

l init l init
Inactive Inactive
Activate Activate
Y \
Tx 2 Level, 2 Level Signal o Wait for
Wait for signal o Signal
Y \
Signal . 2 Level Signal o Tx 2 Level
Detected [| Wait for 4 Level
L 4 Level Signal L I
> Signal
Tx 4 Level) 2 Level Signal Detected
Y \
Signal P 4 Level Signal o
Detected - > Tx 4 Level
Y A
Normal » 4 Level Signal o Normal
Operation - o Operation
coT RT 3

The bit pump activation is controlled by a separate state machine. The application code must
repeatedly call the _BtMain() function to proceed through the bit pump state machine. Refer to the
ZipWire Software User Guide (100417C) for further details about the bit pump state machine.

Table 5-4 lists DSL functions and the corresponding ASM state or states. Each activation state
is illustrated in Figure 5-4 and Figure 5-5. Except where noted as “HTU-C only” or “HTU-R only,”
the states are applicable to both the HTU-C and HTU-R. The software processing within each state
and between each state (i.e., the state transitions) is discussed in the following two sections.

100418C Conexant 5-7

5.0 Application Code

RS8953B

5.4 Activation State Manager

Application and Channel Unit Software Developer’s Guide

Table 5-4. Cross Reference of DSL Functions vs. ASM States

DSL Function

ASM States

Standby

SYSTEM_IDLE

Configuration and initialization

CONFIGURATION_STATE,
INACTIVE_STATE

Start-up of the bit pump device
(e.g., RS8953B)

ACTIVATING_STATE,
ACTIVATING_STATE_S1

Start-up of the channel unit device
(e.g., RS8953B)

ACTIVE_RX_STATE, ACTIVE_TX_STATE,
GOTO_PID_VALIDATION_STATE,
PID_VALIDATION_STATE,
GOTO_ACTIVE_TX_RX_STATE

Normal operation (both bit pump and
channel unit)

ACTIVE_TX_RX_STATE

Error processing and shutdown

PENDING_DEACTIVATED_STATE,
DEACTIVATED_STATE,
WAIT_FOR_LOST (HTU-C only),
WAIT_FOR_LOS (HTU-R only)

5-8

Conexant

100418C

RS8953B 5.0 Application Code

Application and Channel Unit Software Developer’s Guide 5.4 Activation State Manager

5.4.1 HTU-C Activation

Figure 5-4 illustrates the state diagram for activation at the HTU-C side.

NOTE: There are several states that are not explicity stated in the TS-101-135 HDSL standard.
These extra states were added to ease implementation of the HDSL standard for the bit
pump and channel unit devices.

100418C Conexant 5-9

5.0 Application Code RS8953B

5.4 Activation State Manager Application and Channel Unit Software Developer’s Guide

Figure 5-4. Activation State Machine at HTU-C

Power On
-Bit-pump not present Confslgt;utratlon
-Enter loopback/testmodes ate
-Shut off ASM Tx: Silent
- System Idle
State
- (Do nothing) ConfigureBitpump();
. CU_USE_SAME_TAP,
-Exit loopback/testmodes CU FORCE SCR ONES
-Turn on ASM 2 sec. (LOSWT) timeout T T
Deactived State 1sec. (LOS) timeout y
Pending]
Deactivated State _DEACTIVATE bitpump Wait for Inactive State
»| Cu FORCE_SCR ONES w| LOST >
Tx:2B1Q _Reset_Pid_Validation() s Tx: Silent
Rx:2B10Q Tx: Silent Tx: Silent
A
LOSW =0 LOSW=1
Increment

Decrement
good_loop_cntr

ACTREQ =1
_Reset_Pid_Validation()
_CU_FORCE_SCR_ONES

good_loop_cntr

Active_Tx_Rx
State

Tx: 2B1Q
Rx: 2B1Q

A

Increment good_loop_cntr
_CU_TRANSMIT_PAYLOAD

GOTO —
Active_Tx_RXx Activating State
state Tx: Silent, SO
Pair ID A Tx 4-Level)
validated CuConfigureTransmitS1()
PID Validation
State

T o ACTIVE_RX_STATE
For repeater, Restart SetPID to &Dgﬁx e
Activation Timer Default %o?ﬂ Tx s1 I
c\)??)meO Rx: Ready
GOTO Pair ID Activating
Validation State S1
State - >
(In g7~~~ j————— == —-- - Tx: S1
VNe 4x =~ z
€ Anp i - | ACTIVE_TX_STATE
T a or R = O‘*] b=
=3Cl gy, . Tx: Read hul
~Clha—8% y g
w :_ Rx: S1 E
) _________ c

NOTE(S): ACTREQ = Activation Request
T-ACT Exp = Activation timer expired
Tx 4-Level = Bit pump is transmitting a 4-level signal

5-10 Conexant 100418C

RS8953B 5.0 Application Code

Application and Channel Unit Software Developer’s Guide 5.4 Activation State Manager

5.4.1.1 Configuration State

In the configuration state, the bit pump is reconfigured as depicted in Table 5-2. The activation state
is changed to inactive after preliminary channel unit configuration.

Bit pump code: The bit pump code processes the APl commands.

Channel unit code: The channel unit code issues _CU_USE_SAME_TAP to
configure Tx/Rx to use HTU-C SCR/DSCR tap #5 while in
normal operation. _CU_FORCE_SCR_ONES is issued to
configure the channel unit for startup.

NOTE: There is some redundancy in the configuration state, and some APIs or functions are
duplicated in other states. This is because the configuration state serves as an exit point
for test modes and loopback operations. The redundancy guarantees that, after exiting
from test modes or loopbacks, the bit pumps and channel unit are properly configured.

5.4.1.2 Inactive State

ASM: In the inactive state, the ACTIVATE and
_CU_FORCE_SCR_ONES API commands are issued to initiate
the activation process. The transmitter is initially silent. The
activation request signal is always considered to be true
(ACTREQ = 1). The activation state variable changes to the
activating state.

Bit pump code: The bit pump activation state machine is idle during the inactive
state. The bit pump waits for the _ACTIVATE APl command.
When _ACTIVATE is detected, the activation state machine
initializes the bit pump for the activation process.

Channel unit code: The channel unit code waits for the CU_FORCE_SCR_ONES
API command. When the command is received, the channel unit
configures the HDSL transmitter to framed scrambled 1s where
both the overhead and payload data are all 1s. The Tx/Rx 6 ms
interrupts are masked and the DPLL is set to open mode for the
master loop (See Section 11.6.2).

5.4.1.3 Activating State

ASM: In the activating state, the application code monitors the bit pump
activation status. If the bit pump T-Act timer expires, the activation
state changes to the deactivated state. If the bit pump Tx 4-level
flag is detected, the channel unit enables the S1 signal (enable
overhead). The activation state changes to the activating S1 state.

Bit pump code: The bit pump code begins transmitting the SO signal and monitors
the received signal for SO (LOS = 0). When the signal is detected,
the bit pump performs the optimized phase search and adapts
filters, etc. The bit pump code then transmits the S1 signal.

Channel unit code: When the Tx 4-level is enabled, the channel unit enables the Tx/Rx
6 ms interrupts and the overhead data (see Section 11.6.3).

100418C Conexant 5-11

5.0 Application Code

RS8953B

5.4 Activation State Manager

5.4.1.4 Activating State S1

ASM:

Bit pump code:

Channel unit code:

5.4.1.5 Active Rx State
ASM:

Bit pump code:

Channel unit code:

Application and Channel Unit Software Developer’s Guide

In the activating state S1, the ASM monitors the bit pump
activation status and channel unit status bits. If the bit pump T-Act
timer expires, the activation state changes to the deactivated state.
If the channel unit InSync flag is detected, and the noise margin
reading (NMR) is ok, the RTR indicator bit is set and the activation
state changes to the active Rx state. If the INDR flag is detected,
the payload data is enabled, and the activation state changes to the
active Tx state.

The INDR flag is an HDSL overhead bit received from HTU-R
(refer to the rtr flag in Table 6-1). The rtr flag is transmitted by
both the HTU-C and HTU-R and indicates the other side is in sync.

The bit pump transmits the S1 and monitors the received signal for
S1. When the S1 signal is detected, the bit pump code performs a
final adaptation.

The channel unit code monitors the sync word and indicator bits.
When the sync word is detected, the channel unit sync status is set
to CU_IN_SYNC. If the RTR indicator bit is detected, the INDR
bit is set. After a status is detected, the channel unit code sets the
appropriate configuration bits as determined by the application
code.

In the active Rx state, the ASM monitors bit pump activation and
channel unit status. If the bit pump TS101 Activation Timer
expires or the INDR bit is detected, the payload data is enabled.
The activation state is changed to the GOTO Pair ID validation
state.

The bit pump ASM finalizes its activation process.

The channel unit code monitors the indicator bits. If the RTR
indicator bit is detected, the INDR bit is set. When the enable
payload command is issued, the following occurs:

e the payload data is enabled

e the pair ID is set (per ETSI specification)

e the Tx/Rx FIFO buffers are reset

e the DPLL is closed and the DPLL interrupt is enabled for the
master loop (see Section 11.6.5)

5-12

Conexant 100418C

RS8953B

5.0 Application Code

Application and Channel Unit Software Developer’s Guide 5.4 Activation State Manager

5.4.1.6 Active Tx State

The active Tx state path is typically not taken; therefore, it is shown as dashed lines.

ASM:

Bit pump code:

Channel unit code:

In the active Tx state, the ASM monitors bit pump activation and
channel unit status. If the bit pump TS101 activation timer expires
or the combination of the InSync flag is set and NMR ok, the
payload data is enabled. The activation state is changed to GOTO
Pair ID validation state.

The bit pump activation state machine finalizes its activation
process.

The channel unit code monitors the sync status. If the InSync bit is
detected, the INDC bit is set. When the enable payload command
is issued, the following occurs:

¢ the payload data is enabled

e the pair ID (ETSI) is set

» the Tx/Rx FIFOs are reset

e if the master loop, the DPLL is closed and the DPLL interrupt
is enabled (see Section 11.6.5).

5.4.1.7 GOTO Pair ID Validation State

ASM:

Bit pump code:

Channel unit code:

In the GOTO pair ID validation state, if it is the E1 application, the
loop’s pair ID is initialized to the default values. The expected pair
loop ID and corresponding received valid pair ID counter are reset
to start the pair ID validation procedure. The activation state then
changes to Pair ID validation state.

If it is not an E1 application, the activation state goes directly to
Pair ID validation state without doing anything.

The bit pump activation state machine remains in normal
operation.

The channel unit code processes the Tx/Rx 6 ms interrupts and
monitors whether or not the pair 1D validation procedure should
start.

100418C

Conexant 5-13

5.0 Application Code

RS8953B

5.4 Activation State Manager

5.4.1.8 PID Validation State
ASM:

Bit pump code:

Channel unit code:

Application and Channel Unit Software Developer’s Guide

In the PID validation state, if it is an E1 application, the ASM
monitors whether or not the loop’s pair ID is validated. If the loop’s
pair ID is validated before the activation timer expires, the
activation state is changed to GOTO active Tx/Rx state; otherwise,
the activation state is changed to the deactivated state and the
loop’s pair ID validation procedure is reset.

If it is not an E1 application, the activation state is changed to
GOTO active Tx/Rx state.

The bit pump activation state machine remains in normal
operation.

The channel unit code processes the Tx/Rx 6 ms interrupts and
monitors the received pair ID for pair ID validation.

5.4.1.9 GOTO Active Tx/Rx State

ASM:

Bit pump code:

Channel unit code:

5.4.1.10 Active Tx/Rx State
ASM:

Bit pump code:

Channel unit code:

In the GOTO active Tx/Rx state, the ASM initializes timers,
performance monitoring records, and the EOC state, and updates
the loop’ sync LED. The channel unit is configured to transmit
payloads and the activation state is changed to active Tx/Rx state.

The bit pump activation state machine remains in normal
operation.

The channel unit code processes the Tx/Rx 6 ms interrupts.

In the active Tx/Rx state, the ASM monitors the channel unit sync
status. If the LOSW =1 flag is detected, the activation state is
changed to the pending deactivated state.

The bit pump code handles any temperature and environmental
changes. Different status responses are continuously monitored
and can be probed by issuing the corresponding status request
commands.

The channel unit code processes the Tx/Rx 6 ms interrupts. The
appropriate status bits are set according to the status registers.

5-14

Conexant 100418C

5.0 Application Code

Application and Channel Unit Software Developer’s Guide

5.4 Activation State Manager

5.4.1.11 Pending Deactivated State

ASM:

Bit pump code:

Channel unit code:

5.4.1.12 Deactivated State
ASM:

Bit pump code:

Channel unit code:

5.4.1.13 System Idle State
ASM:

Bit pump code:

Channel unit code:

In the pending deactivated state, the ASM monitors the channel
unit status. If the LOSW = 0 (return of sync word) flag becomes
valid again within 2 seconds, the activation state is changed back
to the active Tx/Rx state. If the LOSWT =1 (loss of sync word
timer) is detected, the activation state is changed to the deactivated
state.

The bit pump activation state machine behaves similarly to the
active Tx/Rx state.

The channel unit code behaves similarly to the active Tx/Rx state.

In the deactivated state, the ASM issues the bit pump
_DEACTIVATE API command to turn off the bit pump transmitter
and _CuConfigureBeginStartup() function to mask the channel
unit Tx/Rx 6 ms interrupts. The ASM then polls for LOST = 1.
When LOST =1 is true, the activation state changes to the inactive
state.

The bit pump interrupt handler starts the LOS Timer (LOST) when
the DEACTIVATE API command is received and when the LOS
flag is TRUE (LOS = 1). The bit pump interrupt handler sets the
LOST flag (LOST = 1) when the LOST expires.

The channel unit code performs the same tasks as before it entered
this state.

In the system idle state, the ASM is idle. This allows the system to
perform test modes, loopbacks, etc. The activation state should be
changed back to the configuration state after test modes or
loopbacks are done.

The bit pump code does what it is requested to do, i.e., test modes
and loopbacks.

The channel unit code does what it is requested to do, i.e., test
modes and loopbacks.

Conexant 5-15

5.0 Application Code RS8953B
5.4 Activation State Manager Application and Channel Unit Software Developer’s Guide

5.4.2 HTU-R Activation

Figure 5-5. Activation State Machine at HTU-R

Power On
-Bit-pump not present Confslgutratlon
-Enter loopback/testmodes ate
-Shut off ASM Tx: Silent
Lt System Idle
State
-t (Do nothing)

-Exit loopback/testmodes

-Turn on ASM 2 sec. (LOSWT) timeout

Y

Pending

A D i .
Deactivated State eactived State Wait for

= Inactive State
LOS LOS l;

Y
/

Tx:5B1Q . Tx: Silent
Rx:5B10Q Tx: Silent Tx: Silent

LOSW=0 LOSW =1

Increment Decrement
good_loop_cntr ' good_loop_cntr

Active_Tx_Rx
State

Tx: 2B1Q
Rx: 2B1Q

A

Increment good_loop_cntr
_CU_TRANSMIT_PAYLOAD

Y

GOTO
Active_Tx_Rx
State

Activating State

Tx: Silent, SO

Tx 4-Level

Pair ID 2o
CuConfigureTransmitS1()

validated

Pair
ID Validation
State

ACTIVE_RX_STATE
CuSetPidToAllOnes()

Tx: S1
Rx: Ready (In S Y
GOTO Pair ID oy f& /VM/? Activating
Validation \W o State S1
State ‘?tr/,,d()@ e
|- === === B oead Tx: S1
N . I O
&, | oLz N3
rENyg s : ACTIVE_TX_STATE | ,/’\\«000(@9@
“CosLexpire OK)op ™3 s g
USGI‘R,,IH’S ro| Tx: Ready | o¥° S
) ! Rx: S1 - E
L2 I g

5-16 Conexant 100418C

RS8953B

5.0 Application Code

Application and Channel Unit Software Developer’s Guide

5.4.2.1 Configuration State

ASM:

Bit pump code:

Channel unit code:

5.4.2.2 Inactive State
ASM:

Bit pump code:

Channel unit code:

5.4.2.3 Activating State
ASM:

Bit pump code:

Channel unit code:

5.4 Activation State Manager

In the configuration state, the ASM is configured as indicated in
Table 5-2. The activation state changes to inactive after
preliminary channel unit configuration.

The bit pump code processes the APl commands.

The channel unit code issues the CU_USE_SAME_TAP to API
sets the HTU-C scrambler and descrambler taps to #5 for normal
operation. The _CuConfigureBeginStartup() function is called to
configure the channel unit for startup.

In the inactive state, the _ACTIVATE and
_CU_FORCE_SCR_ONES API commands are issued to initiate
the activation process. The transmitter is initially silent. If the bit
pump LOS = 1 is detected, the activation state is changed to the
activating state.

The bit pump activation state machine does nothing during the
inactive state. The bit pump waits for the ACTIVATE API
command. When _ACTIVATE is detected, the activation state
machine initializes the bit pump for the activation process. The bit
pump code waits until an SO signal is detected (LOS = 0).

The channel unit code waits for the _ CU_FORCE_SCR_ONES
APl command. When the command is received, the channel unit
configures the HDSL transmitter to framed scrambled 1s, where
both the overhead and payload data are all 1s. The Tx/Rx 6 ms and
interrupts are masked and the DPLL is set to open mode for the
master loop (see Section 11.6.2).

In the activating state, the ASM monitors the bit pump activation
status. If the bit pump T-Act timer expires, the activation state is
changed to deactivated. If the bit pump Tx 4-level flag is detected,
the channel unit enables the S1 signal (enable overhead). The
activation state is changed to the activating S1 state.

The bit pump code transmits the SO signal and monitors the
received signal for SO (LOS = 0). When the signal is detected, the
bit pump performs frequency lock, optimizes phase search, adapts
filters, etc. The bit pump code transmits the SO signal and monitors
the received signal for S1. When the S1 signal is detected, the bit
pump code performs adaptations and transmits the S1 signal; the
Tx 4-level flag is set.

When the Tx 4-level is enabled, the channel unit enables the Tx/Rx
6 ms interrupts and the overhead data (see Section 11.6.3).

100418C

Conexant 5-17

5.0 Application Code RS8953B
5.4 Activation State Manager Application and Channel Unit Software Developer’s Guide

5.4.2.4 Activating State S1

This state is not part of the ETR-152 HDSL standard, but is required for the implementation of the
bit pump and channel unit devices.

ASM: In the activating state S1, the ASM monitors the bit pump
activation status and channel unit status bits. If the bit pump T-Act
timer expires, the activation state is changed to the deactivated
state. If the channel unit InSync flag is detected, and the NMR is
ok, the RTR indicator bit is set and the activation state is changed
to the active Rx state. If the INDC flag is validated, the payload
data is enabled and the activation state is changed to the active Tx
state.

Bit pump code: The bit pump transmits the S1 and monitors the received signal for
S1. When the S1 signal is detected, the bit pump code will perform
some final adaptation.

Channel unit code: The channel unit code monitors the sync word and indicator bits.
When the sync word is detected, the channel unit sync status is set
to CU_IN_SYNC. If the RTR indicator bit is detected for six
consecutive frames, the RTR valid flag is set.

5.4.2.5 Active Rx State

ASM: In the active Rx state, the ASM monitors the bit pump activation
and channel unit status. If the bit pump T-Act expires or the
channel unit INDC bit is detected, the payload data is enabled. The
activation state is changed to the active Tx/Rx state.

Bit pump code: The bit pump activation state machine finalizes its activation
process.
Channel unit code: The channel unit code monitors the indicator bits. If the RTR

indicator bit is detected, the INDC bit is set. When the enable
payload command is issued, the following occurs:

e the payload data is enabled

e the pair ID is set (per ETSI specification)

e the Tx/Rx FIFO buffers are reset

e if the master loop, the DPLL is closed and the DPLL interrupt
is enabled (see Section 11.6.5)

5-18 Conexant 100418C

RS8953B

5.0 Application Code

Application and Channel Unit Software Developer’s Guide 5.4 Activation State Manager

5.4.2.6 Active Tx State

The active Tx state path is typically not taken; therefore, it is shown as dashed lines.

ASM:

Bit pump code:

Channel unit code:

In the active Tx state, the ASM monitors the bit pump activation
and channel unit status. If the bit pump T-Act timer expires or the
combination of the InSync flag is set and NRM ok, the payload
data is enabled. The activation state is changed to the GOTO Pair
ID validation state.

The bit pump activation state machine finalizes its activation
process.

The channel unit code monitors the sync status. If the InSync bit is
detected, the INDR bit is set. When the enable payload command
is issued, the following occurs:

¢ the payload data is enabled

e the pair ID (ETSI) is set

» the Tx/Rx FIFOs are reset

e if the master loop, the DPLL is closed and the DPLL interrupt
is enabled (see Section 11.6.5)

5.4.2.7 GOTO Pair ID Validation State

ASM:

5.4.2.8 PID Validation State
Bit pump code:

Channel unit code:

In the GOTO pair ID validation state, if it is the E1 application, the
loop’s pair ID is initialized to all 1s. The expected pair ID and the
corresponding received valid pair ID counter are reset to start the
pair ID validation procedure. The activation state is then changed
to the pair ID validation state.

Ifitis notan E1 application, the activation state goes directly to the
pair ID validation state.

The bit pump activation state machine remains in normal
operation.

The channel unit code processes the Tx/Rx 6 ms interrupts and
monitors the received pair ID for pair ID validation. If the pair ID
is validated, the validated pair ID is transmitted to the HTU-C.

100418C

Conexant 5-19

5.0 Application Code

RS8953B

5.4 Activation State Manager

Application and Channel Unit Software Developer’s Guide

5.4.2.9 GOTO Active Tx/Rx State

ASM:

Bit pump code:

Channel unit code:

5.4.2.10 Active Tx/Rx State
ASM:

Bit pump code:

Channel unit code:

In the GOTO active Tx/Rx state, the ASM initializes timers,
performance monitoring records, and the EOC state and updates
the loop’ sync LED. The channel unit is configured to transmit
payloads, and the activation state is changed to the active Tx/Rx
state.

The bit pump activation state machine remains in normal
operation.

The channel unit code processes the Tx/Rx 6 ms interrupts.

In the active Tx/Rx state, the ASM monitors the channel unit sync
status. If the LOSW = 1 flag is detected, the activation state is
changed to the pending deactivated state.

The bit pump code handles any temperature and environmental
changes. Different status responses are continuously monitored
and can be probed by issuing the corresponding status request
commands.

The channel unit code processes the Tx/Rx 6 ms interrupts. The
code reads status registers in the device and sets the corresponding
software bits.

5.4.2.11 Pending Deactivated State

ASM:

Bit pump code:

Channel unit code:

In the pending deactivated state, the ASM monitors the channel
unit status. I1f the LOSW =1 (loss of sync word) flag becomes false
within 2 seconds, the activation state is changed back to the active
Tx/Rx state. If the LOSWT =1 (loss of sync word timer) is
detected, then the activation state changes to the deactivated state.

The bit pump activation state machine behaves similarly to the
active Tx/Rx state.

The channel unit code behaves similarly to the active Tx/Rx state.

5-20

Conexant 100418C

RS8953B

5.0 Application Code

Application and Channel Unit Software Developer’s Guide 5.4 Activation State Manager

5.4.2.12 Deactivated State
ASM:

Bit pump code:

Channel unit code:

5.4.2.13 System Idle State
ASM:

Bit pump code:

Channel unit code:

In the deactivated state, the ASM issues the bit pump
_DEACTIVATE API command to turn off the bit pump transmitter
and channel unit _CuConfigureBeginStartup() function to mask
the Tx/Rx 6 ms interrupts. The application code waits for LOS = 1.
When LOS =1 is true, the activation state is changed to the
inactive state.

The bit pump interrupt handler sets the LOS = 1 when the loss of
signal is detected.

The channel unit code performs the same tasks as before it entered
this state.

In the system idle state, the ASM does nothing. This allows the
system to perform test modes, loopbacks, etc. The activation state
should be changed back to the configuration state after test modes
or loopbacks are done.

The bit pump code does what it is requested to do, i.e., test modes
and loopbacks.

The channel unit code does what it is requested to do, i.e., test
modes and loopbacks.

100418C

Conexant 5-21

5.0 Application Code RS8953B
5.4 Activation State Manager Application and Channel Unit Software Developer’s Guide

5-22 Conexant 100418C

6.0 Channel Unit Code

This chapter discusses the details of the channel unit code found in the CHANUNIT subdirectory.

6.1 Configurations

The system supports several kinds of configurations for T1 and E1 transmission using HDSL
technology. The basic structure of an HDSL frame is listed in Table 6-1, where each frame is
nominally 6 ms in length and consists of 48 payload blocks. Each payload block contains a single
F- or Z-bit plus an application-specific number of payload bytes. Groups of 12 payload blocks are
concatenated and separated by an ordered set of HDSL overhead bits, where a 14-bit SYNC word
pattern identifies the starting location of the HDSL frame. Fifty overhead bits are defined in one
HDSL frame, but the last 4 STUFF bits are nominally present in alternate frames. Therefore, one
frame contains an average of 48 overhead bits. Figure 6-1 illustrates the frame structure. The
payload block structures for different applications are illustrated in the following subsections.

Table 6-1. HDSL Frame Structure and Overhead Bit Allocation (1 of 2)

HOH Bit Symbol Bit Name HOH Register Bit
1-14 swl-swl4 SYNC Word —
15 losd Loss of Signal IND[O]

16 febe Far-End Block Error IND[1]

Payload Blocks 1-12

17-20 eocl-eocd Embedded Operation Channel EOC[0]-EOC[3]
21-22 crcl-crc2 Cyclic Redundancy Check —
23 psl HTU-R Power Status IND[2]

24 ps2 Power Status Bit 2 IND[3]

25 bpv Bipolar Violation IND[4]

26 eocs Embedded Operation Channel EOC[4]

Payload Blocks 13-24

27-30 eoc6-eoc9 Embedded Operation Channel EOC[5]-EOC[8]
31-32 crc3-crcd Cyclic Redundancy Check —
33 hrp HDSL Repeater Present IND[5]

100418C

Conexant

6-1

6.0 Channel Unit Code RS8953B

6.1 Configurations Application and Channel Unit Software Developer’s Guide

Table 6-1. HDSL Frame Structure and Overhead Bit Allocation (2 of 2)

HOH Bit Symbol Bit Name HOH Register Bit
34 rrbe Repeater Remote Block Error IND[6]
35 rcbe Repeater Central Block Error IND[7]
36 rega Repeater Alarm IND[8]

Payload Blocks 25-36

37-40 eoc10-eocl3 Embedded Operation Channel EOC[9]-EOC[12]
41-42 crc5—cre6 Cyclic Redundancy Check —
43 rta Remote Terminal Alarm IND[9]

44 rtr Ready To Receive IND[10]

45 uib Unspecified Indicator Bit IND[11]

46 uib Unspecified Indicator Bit IND[12]

Payload Blocks 37-48

47 sql Stuff Quat Sign STUFF[0]
48 sq2 Stuff Quat Magnitude STUFF[1]
49 sq3 Stuff Quat Sign STUFF[2]
50 sq4 Stuff Quat Magnitude STUFF[3]

Figure 6-1. HDSL Frame Structure

1 One HDSL Frame !

I o -
-— —I ____: ________
1 1
's|s| syne |H|B([B B[H|B|B B|H|B|B B|H|B|B BlS|S|sync !
Q|| worp |O|0]0 1|o|1]1 2|o|2]2 3lo|3]3 41Q|Q|worD !
:1 2 Hl1[2 2|H| 3[4 41H|[5]6 6(H|7(8 8112 !
L= o f———————————S——— ———— ————— ———— — e b e 1
1 1 1 1
1 1 1 1
! LEGEND: roo
H Bnn = Payload blocks 1-48 !
0ms HOH = HDSL overhead 6 ms

SQn = Stuff Quat

NOTE(S): In the EVM system, the bit pumps and channel unit are configured based on the DIP switch settings illustrated in
Figure 2-2.

6-2 Conexant 100418C

RS8953B 6.0 Channel Unit Code

Application and Channel Unit Software Developer’s Guide

6.1 Configurations

6.1.1 CU_2T1

The CU_2T1 compiler flag enables standard 2-loop T1 mapping at 784 kbps with each loop
carrying one-half of the payloads from T1. Each payload block contains 1 F-bit followed by 12
payload bytes (Figure 6-2). The relation between the payload bytes and PCM time slot is listed in

Table 6-2.

Figure 6-2. Payload Block Structure for 2T1 Application

CH1 F | BYTEL | BYTE2 | BYTE3 BYTE12
1 1 1
"1 Bit! 8 Bits !

CH2 F | BYTE13 | BYTE14 |BYTE15 BYTE24

Table 6-2. 2T1 Framing

Channel 1
Byte 1 2 3 4 5 6 7 8 9 10 11 12
Time slot 1 2 3 4 5 6 7 8 9 10 11 12
Channel 2
Byte 13 14 15 16 17 18 19 20 21 22 23 24
Time slot 13 14 15 16 17 18 19 20 21 22 23 24
Conexant

100418C

6.0 Channel Unit Code

RS8953B

6.1 Configurations

6.1.2 CU_2E1

Application and Channel Unit Software Developer’s Guide

The CU_2E1 compiler flag enables standard two-loop E1 mapping at 1168 kbps with each loop
carrying one-half of the E1 payload. Each payload block contains one Z-bit followed by 18 payload
bytes (Figure 6-3). The relation between the payload bytes and PCM time slot is listed in Table 6-3.

Figure 6-3. Payload Block Structure for 2E1 Application

CH1 Zn | BYTE1 BYTE3 BYTE5 BYTE35
51 Biti 8 Bits '
CH2 Zn | BYTE2 BYTE4 | BYTE6 BYTE36
Table 6-3. 2E1 Framing
Channel 1
Byte 1 3 5 7 9 | 11| 13| 15| 17| 19| 21| 23| 25| 27| 29| 31| 33 35
Timeslot | 0 1 3 7 9 |11 |13 |15 |16 |18 | 20 | 22 | 24 | 26 | 28 | 30 | DBANK
Channel 2
Byte 2 4 6 8 | 10| 12| 14| 16| 18| 20| 22| 24| 26| 28| 30| 32| 34 36
Timeslot | 0 2 4 6 8 10 |12 | 14 | 16 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 DBANK
6-4 Conexant 100418C

RS8953B

6.0 Channel Unit Code

Application and Channel Unit Software Developer’s Guide

6.1.3 CU_3E1

The CU_3E1 compiler flag enables standard 3-loop E1 mapping at 784 kbps with each loop

6.1 Configurations

carrying one-third of the E1 payload. Each payload block contains 1 Z-bit followed by 12 payload

bytes (Figure 6-4). The relation between the payload bytes and the PCM time slot is listed in

Table 6-4.
Figure 6-4. Payload Block Structure for 3E1 Application
CH1 Zn | BYTEL BYTE4 | BYTE? BYTE34
1 1 1
|1 Bit} 8Bits |
CH2 Zn | BYTE2 BYTE5 | BYTES BYTE35
CH3 Zn | BYTE3 BYTE6 | BYTE9 BYTE36
Table 6-4. 3E1 Framing
Channel 1
Byte 1 7 10 13 16 19 22 25 28 31 34
Time slot 0 4 7 10 13 16 17 20 23 26 29
Channel 2
Byte 2 8 11 14 17 20 23 26 29 32 35
Time slot 0 5 8 11 14 16 18 21 24 27 30
Channel 3
Byte 3 9 12 15 18 21 24 27 30 33 36
Time slot 0 6 9 12 15 16 19 22 25 28 31
Conexant 6-5

100418C

RS8953B

6.0 Channel Unit Code
Application and Channel Unit Software Developer’s Guide

6.1 Configurations

6.1.4 CU_1T1
The CU_1T1 runs the standard 1-loop T1 mapping at 1,552 kbps with 1 loop carrying all the T1
payload. Each payload block contains 1 F-bit followed by 24 payload bytes (Figure 6-5). The

relation between the payload bytes and PCM time slot is listed in Table 6-5.

Figure 6-5. Payload Block Structure for 1T1 Application

CH1 F | BYTE1 BYTE2 | BYTE3 BYTE24
Table 6-5. 1T1 Framing
Byte 1 2 3 4 5 6 7 8 9 10 11 12
Time slot 1 2 3 4 5 6 7 8 9 10 11 12
Byte 13 14 15 16 17 18 19 20 21 22 23 24
Time slot 13 14 15 16 17 18 19 20 21 22 23 24
Conexant 100418C

6-6

RS8953B 6.0 Channel Unit Code

Application and Channel Unit Software Developer’s Guide 6.1 Configurations

6.1.5 CU_1E1

The CU_1E1 runs the standard one-loop E1 mapping at 2320 kbps with one loop carrying all the E1
payload. Each payload block contains one Z-bit followed by 36 payload bytes (Figure 6-6). The
relation between the payload bytes and PCM time slot is listed in Table 6-6.

Figure 6-6. Payload Block Structure for 1E1 Application

CH1 Zn | BYTEl BYTE2 BYTES o BYTE36

Table 6-6. 1E1 Framing
Byte 1 2 3 4 5 6 7 8 9| 10| 11| 12| 13| 14| 15| 16| 17 | 18

Timeslot | O 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17

Byte 19| 20| 21| 22| 23| 24| 25| 26| 27| 28| 29| 30| 31| 32| 33| 34| 35| 36

Timeslot | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 * * * *

NOTE(S): * = DBANK

6.1.6 Modifying the Code for Custom Applications (_CU_CUSTOM)

To customize the channel unit code for applications other than standard 1T1, 2T1, 1E1, 2E1, and
3E1, the following parts of the channel unit code must be modified.

6.1.6.1 Rate_values[][]

The rate_values[][] array is a matrix of register values for the various rate configurations, i.e., 1T1,
2T1,1E1, 2E1, 3E1, and _CU_CUSTOM. The rate_values[][] array is defined in CU_INIT.C. Only
registers that require different programming values between the various configurations are included
in this matrix. Other registers that are programmed to the same value between various
configurations are hard coded into the various initialization functions. The first dimension of the
array indexes the rate, and the second dimension indexes the channel unit register. See
CU_TABLE.H for the list of registers. The channel unit initialization functions index this array to
determine the desired register value for the current configuration.

6.1.6.2 CU_MAP.C

Three functions in the CU_MAP.C file initialize the transmit routing table (see Section 10.9),
receive combination table (see Section 10.10), transmit payload map registers (see Section 10.11)
and receive payload map registers (see Section 10.12) based on the channel unit configuration.

e _CulnitMapper()
e _CulnitRouteTable()
e _CulnitCombineTable()

The customer must modify the portions of the code in the above functions that are surrounded
by CU_CUSTOM compiler flag.

100418C Conexant 6-7

6.0 Channel Unit Code RS8953B

6.2 Interrupt Handler Application and Channel Unit Software Developer’s Guide

6.2 Interrupt Handler

The interrupt handlers in CU_INT.C process the HDSL 6 ms Tx/Rx and T1/E1 framer interrupts.
Sync status, error status, and indication bits are checked and updated; Tx/Rx FIFO buffer and DPLL
errors are handled when they occur; any EOC requests are processed, and the pair ID is validated
during the start-up stage.

6.2.1 Sync Status

Loop’s synchronization status is checked and updated every 6 ms.

6.2.2 Error Status Reporting

The Tx/Rx Interrupt functions check the status registers or indication bits for errors. When an error
occurs, the corresponding error counter increments. The following error counters are maintained by
the system:

_CU_OUT_OF_SYNC_CTR
« _CU_CRC_ERR CTR

_CU_RFIFO_FULL_CTR
_CU_RFIFO_EMPTY_CTR
_CU_RFIFO_SLIP_CTR

« _CU_TFIFO_FULL_CTR
_CU_TFIFO_EMPTY_CTR
_CU_TFIFO_SLIP_CTR

_CU_TFIFO_STUFF_CTR
« _CU_DPLL_ERROR CTR
_CU_FEBE_ERROR_CTR
_CU_LOSD_ERROR_CTR

6.2.3 Tx/Rx FIFO Error Handling

In the Tx/Rx Interrupt functions, when a FIFO error occurs, the corresponding FIFO buffer is reset.
Resetting the FIFO corrupts the next three HDSL frames which cause additional Tx/Rx FIFO
errors. However, the FIFO error check is bypassed when processing the next three Tx/Rx interrupts.

6-8 Conexant 100418C

RS8953B 6.0 Channel Unit Code

Application and Channel Unit Software Developer’s Guide 6.2 Interrupt Handler

6.2.4 DPLL Error Handling

The _CuDpllInterrupt() function processes DPLL errors. Figure 6-7 illustrates the DPLL state
machine. The DPLL Error Interrupt is triggered when the DPLL Phase Error (0x38) exceeds the
—128 or +127 threshold. When no DPLL error is detected, the DPLL state machine is called every
6 ms. The 6 ms interval is based on the master loop’s Rx 6 ms interrupt.

Figure 6-7. DPLL State Machine

DPLL Error
MAX_GAIN_STATE

Phase Error < 40
for 40 Frames

MED_GAIN_STATE

Phase Error < 20
for 40 Frames

MIN_GAIN_STATE Do —

RX_RST
RFIFO_RST

IDLE_GAIN_STATE

Normal Operation

The DPLL state machine increases (opens up) the DPLL bandwidth when an error occurs, to
allow the DPLL to increase its capture range. Then as the DPLL locks onto the far-end PCM clock,
the DPLL bandwidth is decreased to minimize the PCM RCLK jitter. The DPLL bandwidth is set by
register 0xD8.

MAX_GAIN_STATE: When a DPLL error occurs, the DPLL state is set to
MAX_GAIN_STATE. The DPLL bandwidth is set to 0x34
(MAX_DPLL_GAIN_VALUE). The DPLL Error LED is set.
When the DPLL Phase Error reads less than 40 for 40 consecutive
frames, the DPLL state is set to MED_GAIN_STATE.

MED_GAIN_STATE: The DPLL bandwidth is set to 0x22
(MED_DPLL_GAIN_VALUE). When the DPLL Phase Error
reads less then 20 for 40 consecutive frames, the DPLL state is set
to MIN_GAIN_STATE.

MIN_GAIN_STATE: The DPLL bandwidth is set to 0x10
(MIN_DPLL_GAIN_VALUE). A RX_RST (0xF1), and a
RFIFO_RST (0x62, 0x82, 0xAZ2) are issued which resynchronizes
the PCM timebase using the stable RCLK. The DPLL Error LED
is cleared. The DPLL state is set to IDLE_GAIN_STATE.

IDLE_GAIN_STATE: The DPLL is now assumed to be stable, and the DPLL state
machine does nothing.

100418C Conexant 6-9

6.0 Channel Unit Code RS8953B

6.2 Interrupt Handler Application and Channel Unit Software Developer’s Guide

6.2.5 EOC Termination

TEOC registers are updated with eocSendMessage every 6 ms in the HDSL transmit interrupt
handler. eocSendMessage contains the EOC messages sent by the HTU-C and HTU-R. It is updated
by EOC protocol. eocReceiveMessage is updated every 6 ms in the HDSL receive interrupt handler
by extracting the information field from REOC registers. It contains the messages received from the
other side. In the HDSL receive interrupt handler, EocMaster() and EocTaskHandler_CO() are
called to handle the EOC protocol on the HTU-C, while EocSlave() and EocTaskHandler_RT() are
called to handle the EOC protocol on the HTU-R.

6.2.6 Pair ID Termination (E1 Mode)

In the HDSL receive interrupt handler, if a loop’s pair ID (E1 application only) has not been
validated, the E1 pair ID validation function is called. A loop’s pair ID is considered as validated
only after a valid, unique pair ID is received consecutively for 6 frames.

6.2.7 Indicator Bit Termination

If a CRC error is detected, the FEBE indication bit is cleared; if an E1/T1 LOS or OOF is detected,
the LOSD indication bit is cleared. The updated indication bits are written to the TIND register in
the HDSL transmit interrupt handler.

6.2.8 T1/E1 Framer Interrupt Handling—6 ms Polling

This function polls the Framer Status registers, and the LEDs are updated accordingly. The framer
interrupt handler is called every 6 ms, an interval based on the master loop’s Rx 6 ms interrupt.

6-10 Conexant 100418C

RS8953B 6.0 Channel Unit Code
Application and Channel Unit Software Developer’s Guide 6.3 BER Meter

6.3 BER Meter

The internal BER meter is used to test the HDSL link without an external BER tester or data. PCM
time slots from TSER or RSER can be examined for test patterns on a per time slot basis, or the
entire framed or unframed PCM channel from TSER can be examined; choose from four
Pseudo-Random Bit Sequence (PRBS) patterns or an 8-bit fixed pattern. The MPU configures
BER_SCALE to determine the test measurement by issuing BER_RST, then monitors the test
results (BER_METER) and test status (BER_STATUS).

6.4 Dynamic Master Loop

The master loop is responsible for extracting the framing and signaling information (F-bit for T1 or
TSO/TS16 for E1) from the HDSL frame into the PCM data. The DSL loop handler monitors the
number of loops in normal operation as well as the loop’s pair ID or sync word. When a master loop
failure is detected, the system switches the master loop to the next available loop in normal
operation.

The master loop provides the extraction of time slots 0 and 16. The rmap table for the master
loop is programmed to extract these time slots. The master loop also provides the frame sync signal
to the DPLL and PCM formatter in the channel unit device.

6.5 Tip/Ring Reversal

Tip/ring reversal is the reversal of a twisted pair of wires. The channel unit device automatically
handles any tip/ring reversal so the software does not need to implement this feature. There is no
way to disable the channel unit tip/ring reversal feature.

6.6 Loop Reversal

Loop reversal is the reversal of two or more pairs of wires. The HTU-R monitors the Sync Word
(T21) or the loop’s pair ID (E1) and configures the HTU-R Route, Combine, TMAP, and RMAP
tables accordingly. The loop reversal does not apply in single pair systems (1T1 and 1E1).

100418C Conexant 6-11

6.0 Channel Unit Code RS8953B

6.7 EOC Operation Application and Channel Unit Software Developer’s Guide

6.7 EOC Operation

The Embedded Operations Channel (EOC) is defined in the ANSI/ETSI standard. It uses 13 out of
50 HDSL overhead bits every 6 ms as a communication channel between the HTU-C and HTU-R in
normal operation. EOC protocol is implemented in the channel unit code and can be enabled using
the CU_EOC compiler flag.

EOC operation is handled by two sets of functions:

1. EOC protocol handler functions
2. EOC task handler functions

The EOC protocol handler is designed to handle the EOC protocol independent of the
application. This enables a reasonable portability to other applications and delivers a strong
separation between the EOC protocol and application-specific requirements. The EOC protocol is
implemented by the functions EocMaster on the HTU-C side and EocSlave on the HTU-R side.

The EOC task handler coordinates the application-specific access to the EOC channel and
performs some application-specific code that is related to the EOC commands. New applications
using EOC may require modifications to the EOC Task Handler.

There is a well-defined interface between the EOC protocol handler and EOC task handler that
enables controlling the EOC protocol handler with no restrictions.

The EOC tasks on the HTU-C and the HTU-R differ considerably. The HTU-C serves as the
EOC Master, and the HTU-R is the slave that only responds to commands from the HTU-C. On the
HTU-C side, the EOC task handler responds to requests from other tasks. On the HTU-R side, the
EOC task handler only has to set or reset flags or to read or write registers.

6.7.1 EOC Data Format

EOC channel uses 13 of the available 50 HDSL overhead bits every 6 ms. The definitions of the 13
bits are listed in Table 6-7.

Table 6-7. HDSL EOC Frame Structure

Bit Position # of Bits Description Remarks
1-2 2 Destination Address Can address 4 locations
3 1 Data(0)/Message(1) indicator —
4 1 0dd(1)/Even(0) bit For multibyte transmission
5 1 Unused —
6-13(1) 8 Information Field 256 opcodes, 8 bit data
NOTE(S):
(@) EOC6 contains the MSB, and EOC13 contains the LSB of the opcode/data.

6-12

Conexant 100418C

RS8953B 6.0 Channel Unit Code
Application and Channel Unit Software Developer’s Guide 6.7 EOC Operation

6.7.2 EOC-Related Data

According to ANSI/ETSI standards, a maximum of 16 registers (Registers 0—-F) can be read and
written using the EOC protocol. Each register can contain one or more bytes. channel unit code 6.0
only supports registers A—F, and registers 0-9 are not implemented.

The data structure for the EOC registers is defined below:

t ypedef uni on

{
BP_U 8BIT buffer[8]; /* Linear address space of ECCregisters
*/
struct
{
BP_U 8BI T eocRegA; /* APl Status Result*/
BP_U 8BI T eocRegB; /* Not used */
BP_U 8BI T eocRegC; /* Not used */
BP_U 8BI T eocRegD; /* HTUR ZI P Status */
BP_U 8BI T eocRegE; /* Not used */
BP_U 8BI T eocRegF[3]; /* APl comands contents */
}fields;

} Bt 8953_EOC_DATA;

6.7.3 Supported EOC Commands

Channel unit code 6.0 implements a generic method of sending API commands through the EOC
channel. It uses eocRegF[1]-eocRegF[3] to store the API’s destination, opcode, and parameter. An
EOC write register request is issued to send eocRegF[1]-[3] to the HTU-R. After the HTU-R
successfully receives the APl and correctly interprets it, the APl command is executed. If the APl is
a control command, the HTU-R takes the requested action; if the API is a status checking command,
the HTU-R stores the status checking result in eocRegA. Another EOC request can then be issued
to read eocRegA to get the API result.

Channel unit code 6.0 also uses EOC internally to check the HTU-R ZIP status. The requested
ZIP status is stored in eocRegD.

100418C Conexant 6-13

6.0 Channel Unit Code RS8953B
6.7 EOC Operation Application and Channel Unit Software Developer’s Guide

6.7.4 EOC Handling on the HTU-R Side

This section discusses the operation of the EOC slave software.

6.7.4.1 EOC Slave

Figure 6-8 illustrates the state transition diagram for the EOC slave. The diagram includes the three
main states, EOC_DATA_WR_STATE, EOC_DATA RD_STATE, and EOC_UTC_STATE. These
three states transition to the EOC_ECHO_RESPONSE state after three consecutive EOC_RTN or
EOC_HOLD commands are received from the HTU-C. The four temporary states (xx_RTN1/2 and
xx_HOLD1/2) for each of the main states verify the reception of these three consecutive commands.
Unable To Comply (UTC) is entered when the received command is not supported or the HTU-C
sends a data write command after the HTU-R register is completely written.

Figure 6-8. State Transition Diagram for EOC Slave

EOC_IDLE
DSL_READY
EOC_END_OF_DATA

#(EOC_ECHO
EOC_END_OF_DATA RESPONSE,
EQC_WR - Command = cho Resy invalid : .
END2 execute command EOC CMD cor‘{%l':gnd invalid
EOC_END_OF_DATA

RESPONS_1

valid
command

EOC_NEXT_BYTE
Transmit Register Value

EOC_NEXT

. READ2
invalid
EOC_NEXT_
EOC_NEXT_ BYTE

EOC DATA Command Type = Data Write

invalid P\ WR_STATE

Command Type =

Data Read
EOC_NEXT Data message “ A Unknown
WRITEL Command
£0C RTN BYTE EOC_NEXT
: b o \ T "\ reror
EOC_NEXT (EOC_UTC
WRITE2 — ™ staE
DATA message £oC RTN EOC_HOLD invalid EOC_HOLD
Write Register Value ! invalid ﬂ —
WRITE WRITE EOC_RTN EOC_HOLD READ READ
RTN1 HOLD1 - RTNL HOLD1
EOC_RTN
EOC_RTN EOC_HOLD invalid = EOC_HOLD
Y Y \i Y
WRITE WRITE A READ READ
RTN2 HOLD2 utc utc RTN2 HOLD2
RTNL HOLD1
EOC_RTN EOC_HOLD EOC_RTN EOC_HOLD
EOC_RTN
Y y EOC_HOLD
EOC_ECHO EOC_ECHO
RESPONSE, (uTC) (uTC) RESPONSE,

HOLD2

|
EOC_RTN EOC_HOLD
EOC_ECHO
RESPONSE,

EOC slave contains five main states, marked as grayed ovals. All other (white) states are
temporary states that track the consecutive reception of three valid commands or data messages. A
temporary state is entered if a valid EOC command is received. If the next frame receives a
repetition of the valid command, the state machine transitions forward to the next state or returns to
the original main state. These transitions back to the main state are labeled invalid in Figure 6-8.

Usually, the second of the two temporary states decides on the action to perform. In these states,
if the third valid command or data message is received, an action is taken.

All messages received from the HTU-C must be verified three consecutive times. This includes
data messages and commands such as EOC_RTN and EOC_HLD.

6-14 Conexant 100418C

RS8953B

6.0 Channel Unit Code

Application and Channel Unit Software Developer’s Guide

EOC_IDLE

6.7 EOC Operation

EOC_IDLE is the EOC slave’s reset state which is entered on power-on or if the DSL is not ready.
Because EOC communication should also be possible if the RT transmits scrambled 1s but the
HTU-C does not, transparency in this special case is not assumed in both directions but is dependent
on the framer being synchronized.

EOC_ECHO_RESPONSE

EOC_ECHO_RESPONSE can be regarded as a ready state. If there is no EOC transmission in
progress, the HTU-C sends EOC_RTN or EOC_HOLD, causing the EOC slave to remain in
EOC_ECHO_RESPONSE. If a different message is received from the EOC channel, the message is
saved and the EOC_CMD_RESPONS_1 state is entered. Changes of the received message within
the next two frames cause a return to EOC_ECHO_RESPONSE.

If the message remains constant for three consecutive frames, it is treated as a command and
interpreted using a switch instruction. For all commands, the RT transmits a response to the HTU-C
to inform the EOC master that the command has been received. The HTU-C treats this response as
an echo.

Table 6-8 lists the five types of commands processed in the EOC_CMD_RESPONS_2 state
and the next state.

Table 6-8. EOC Command Processing in EOC_CMD_RESPONS_2

Command Type

Next State

Message/Echo Response

EOC_ECHO_RESPONSE

Data Read

EOC_DATA_RD_STATE

Data Write

EOC_DATA_WR_STATE

Unknown command

EOC_UTC_STATE

Invalid command

EOC_ECHO_RESPONSE

For message and echo response commands, an EOC task flag is set to notify the EOC task
handler. In certain applications, the EOC_CMD_RESPONS?2 state could become
application-dependent.

For data read and data write commands, a data transfer is required. Based on which register is
being read or written, the EOC slave sets the values for the array index of eocData.buffer[] and the
buffer size as listed in Table 6-9. These variables are called dataBuffindex and dataBuffSize.

Table 6-9. Buffer Values for EOC Registers (RT side)

EOC Register dataBufflndex DataBuffSize
EocRegA 0 1
EocRegD 3 1
EocRegF[3] 7 3

EOC_UTC_STATE

EOC_UTC_STATE is a lock state that is entered when an unknown command is received three
times. This state can only be left by receiving an EOC_RTN or EOC_HOLD command from the
EOC master.

100418C

Conexant 6-15

6.0 Channel Unit Code RS8953B

6.7 EOC Operation Application and Channel Unit Software Developer’s Guide

EOC_DATA_WR_STATE

The EOC_DATA_WR_STATE is a starting state for a sequence of one or more write operations. A
write operation is started with an EOC message that contains data and has the odd-bit set to 1. If the
message is received consecutively three times, the value is written to the register specified by the
EOC command (e.g., EOC_WRITE_REGISTER_F) and the EOC_DATA_WR_STATE is
re-entered.

The EOC_DATA_WR_STATE distinguishes between an EOC_END_OF_DATA command
and a data byte by checking the message/data indicator bit (eoc3). If eoc3 is high, then EOC bits 6
to 13 represent a command.

In the EOC_NEXT_WRITE?2 state, the dataRecCtr counter records the number of data bytes
received. In EOC_DATA_WR_STATE, dataRecCtr must be less than dataBuffSize before more
data is accepted. If dataRecCtr equals or exceeds dataBuffSize, the next state is EOC_UTC_STATE.

The write operation is completed if the HTU-R receives three consecutive
EOC_END_OF_DATA messages. This sequence of states is shown as EOC_WR_END1 and
EOC_WR_END2. When the third EOC_END_OF_DATA is received, the state machine transitions
from EOC_WR_END2 to EOC_ECHO_RESPONSE and notifies the EOC task handler that the
write operation is complete. EOC_WRITE_END? is the second state that may contain
application-specific code.

EOC_DATA_RD_STATE

A read operation is similar to a write operation from the HTU-R’s point of view. The data read
command specifies which register to read, and the HTU-C sends the EOC_NEXT_BYTE command
with the odd-bit set to 1. After receiving three consecutive EOC_NEXT_BYTE requests, the EOC
slave reads the register and transmits the value to the HTU-C.

Asillustrated in Figure 6-8, the read operation is stopped when the HTU-C sends EOC_RTN or
EOC_HOLD.

6.7.4.2 EOC Task Handler Related to the EOC Slave

The EOC task handler is a function that performs application-specific actions after an EOC
command is received or a data transfer is completed. It is called each time the EOC slave is called,
but takes action only if an appropriate flag is set. After the APl command is successfully written to
eocRegF[1]-eocRegF[3], the eocTasks.bits.eocWrRegF flag is set to inform the EOC task handler
that the EOC operation is complete, and API contents are now available. The EOC task handler can
then informs the application to execute the requested APl command.

6-16

Conexant 100418C

RS8953B

6.0 Channel Unit Code

Application and Channel Unit Software Developer’s Guide

6.7.5 EOC Handling on the HTU-C Side

6.7.5.1 EOC Master

6.7 EOC Operation

Figure 6-9 illustrates the state transition diagram for the EOC master.

Figure 6-9. State Transition Diagram for the EOC Master

3rd valid echo
__to command
clear EOC_STATUS_RUN

COMMAND
RESP2
A
1st valid echo

COMMAND to command
2nd valid echo RESP1

to command

invalid
echo

timeout
clear EOC_STATUS_RUN
set EOC_STATUS_ERROR

DATA echo AND
all data sent
send END_OF_DATA
clear EOC_STATUS_RUN

_>(EO—C_CMD> Response command
-\ REQUEST

Eoc_CMD\<

» (READY /s

(EOC_WRITE) .
>\ REQUEST

send Message/Echo

Y

Power-On

DSL NOT READY
clear all EOC STATUS bits

Any State

EOC_IDLE

DSL READY
set EOC_STATUS_AVAILABLE

DATA message AND
all data received
1. read data
2. prepare EOC_HOLD or

Eoc_RTN command

A

send Data Read
command

send Data Write
command

EOC_READ)
REQUEST /

invalid response

echo

DATA_WRITE
echo
o WCMD
invalid < ACK1)‘ timeout
echo
prepare EOC_RTN
or EOC_HOLD
command
WCMD "
(ACK2) DATA_WRITE

EOC_UTC_STATE

((set EOC_STATUS_ERROR)) “

DATA_WRITE echo

DATA_READ
echo

timeout "

RCMD
ACK1
DATA_READ
RCMD
ACK2

echo
DATA_READ echo
send NEXT_BYTE command

+ A

(EOC_DATA
READ_STATE

send data i
EOC_DATA timeout
WRITE_STATE “
DATA A |
echo NEXT_BYTE
" NEXT_BYTE echo
echo
EOC_BYTE EOC_NEXT
WRITEL ACK2
2@‘;’3 invalid e/ DATA message
echo
\i NEXT_BYTE DATA message AND
N\ echo all data not received
EOW%—I_BI_;(; E Y 1.read data
DATA ocho AND (EOC_DATA) DATA message 2.send NEXT_BYTE
/E command
all data not sent RECEIVERSTATE
send more data A
Yy DATA
(EoC_BYTE) _ Message
READ1
invalid
echo
/EOC_BYTE
READ2
100418C Conexant 6-17

6.0 Channel Unit Code RS8953B

6.7 EOC Operation Application and Channel Unit Software Developer’s Guide

EOC_IDLE

Similar to the HTU-R, this state is the EOC master reset state and is entered at power-on. For all
states, if DSL_NOT_READY becomes true, EOC_IDLE state is also entered. In this state, the
DSL_READY flag is checked and if true, it indicates that the EOC channel is available. In this case,
the EOC master enters the EOC_CMD_READY state and sets the EOC_STATUS_AVAILABLE
flag. For a complete description of the EOC status flags, refer to Table 6-11.

EOC_CMD_READY

The EOC_CMD_READY state indicates that the EOC master is ready to perform EOC activities.
When an application requests the EOC task handler to send an EOC message, the EOC task handler
sets the EOC_STATUS_RUN flag to request the EOC master to start the EOC message transfer. In
the EOC_CMD_READY state, the EOC master determines which command to transmit. If the
eocCtrl.command byte is a data read or data write command, the EOC master transfers the
command to the TEOC register. It then enters either the EOC_READ_REQUEST or
EOC_WRITE_REQUEST state and waits for the first echo from the HTU-R. If the value in the
eocCtrl.command byte is a Message/Echo Response command, the command is sent and a first
response is awaited in the EOC_CMD_REQUEST state. The EOC master does not check the
validity of the command, which allows for the addition of future commands without requiring
modifications to the EOC master.

EOC_UTC_STATE

The EOC master does not directly check for the receipt of an EOC_UTC response; however, many
states will time-out if the desired response is not received. The time-out period is 20 HDSL frames.
Receipt of an EOC_UTC response eventually causes these states to time-out and enter the
EOC_UTC_STATE.

Inthe EOC_UTC_STATE, the EOC master notifies the EOC task handler of an error condition
by setting the EOC_STATUS ERROR flag.

If the EOC_STATUS_HOLD flag is set, the EOC master sends an EOC_HOLD command,;
otherwise, it sends an EOC_RTN command. If the EOC slave is in EOC_UTC_STATE, either of
these commands cause it to transition into EOC_ECHO_RESPONSE. From the
EOC_UTC_STATE, the EOC master transitions to EOC_CMD_READY. The
EOC_STATUS_RUN flag remains set indicating that the communication is not completed.

EOC_CMD_REQUEST

In this state, the EOC master requires the first echo response from the EOC slave to the previous
command. If it receives two echoes, it goes through COMMAND_RESP1 and
COMMAND_RESP2. On the third echo, the EOC master clears the EOC_STATUS_RUN flag.
This flag informs the EOC task handler to start the next action or to perform some
application-specific activities as a result of the completed EOC action.

EOC_WRITE_REQUEST

The EOC_WRITE_REQUEST state is similar to EOC_CMD_REQUEST. The EOC master waits
for the first echo response to the previous Data Write command. If three consecutive echoes are
received, the EOC master transitions to the EOC_DATA_WRITE_STATE. If no response is
received within 20 HDSL frames, the Data Write sequence is aborted and the EOC master enters
EOC_UTC_STATE.

6-18

Conexant 100418C

RS8953B

6.0 Channel Unit Code

Application and Channel Unit Software Developer’s Guide 6.7 EOC Operation

EOC_READ_REQUEST

Similarto EOC_CMD_REQUEST, the EOC master waits for the first echo response to the previous
Data Read command. If three consecutive echoes are received, the EOC master transitions to
EOC_DATA_READ_STATE. If an echo is not received within 20 HDSL frames, the Data Read
command is aborted and the EOC master enters the EOC_UTC_STATE.

EOC_DATA_WRITE _STATE

On the transition from WCMD_ACK2 to EOC_DATA WRITE_STATE, the EOC master transmits
a data message that contains a value from the eocData.buffer[] array. The index of the array is preset
by the EOC task handler and is incriminated each time a byte is sent to the HTU-R.

If the EOC master receives three consecutive data echoes, it enters EOC_BYTE_WRITE2,
which checks if all register data was sent. If all data was not sent, EOC_DATA_WRITE_STATE is
re-entered; otherwise, an END_OF _DATA command is sent and the EOC master enters
EOC_CMD_REQUEST.

EOC_DATA_READ_STATE

On the transition from RCMD_ACK2 to EOC_DATA READ_STATE, the EOC task handler
transmits an EOC_NEXT_BYTE command to request a data response from the HTU-R.

The transmitted odd-even bit is set to the current value of eocCtrl.oddEvenCtr. On the transition
from RCMD_ACK2 to EOC_DATA_READ_STATE, this bit is set by default to an odd value set on
the EOC_CMD_READY to EOC_READ_REQUEST transition. On the transition from
EOC _BYTE_READ2to EOC_DATA READ_STATE, the eocCtrl.oddEvenCtr bit is toggled.

If the HTU-R receives three consecutive EOC_CMD_NEXT_BYTE commands, it sends the
requested value in a data message to the HTU-C. If the EOC master receives three
EOC_NEXT_BYTE commands, it enters EOC_DATA_RECEIVE_STATE. If a data message is
received in EOC_NEXT_ACK1 or EOC_NEXT_ACK2, EOC_BYTE_READL1 is entered.

EOC_DATA_RECEIVE _STATE

The EOC_DATA_RECEIVE_STATE waits for the reception of data messages if three consecutive
EOC_NEXT_BYTE messages are received. It also provides a re-try procedure if three consecutive
data messages are not received. The re-try occurs if the EOC master transitions from
EOC_BYTE_READ1 or EOC_BYTE_READ2 to EOC_DATA_ RECEIVE_STATE.

If three consecutive data messages are received, the received data is written to the
eocData.buffer[] array on the transition from EOC_BYTE_READ? to either
EOC_DATA_READ_STATE or EOC_CMD_READY. If all data was received, the EOC master
prepares to send an EOC_RTN or EOC_HOLD command and enters EOC_CMD_READY. If all
data was not received, the EOC master enters EOC_DATA READ_STATE and sends
EOC_NEXT_BYTE to request more data from the HTU-R.

100418C

Conexant 6-19

6.0 Channel Unit Code

RS8953B

6.7 EOC Operation

Status

Application and Channel Unit Software Developer’s Guide

6.7.5.2 EOC Task Handler Related to the EOC Master

The EOC task handler on the HTU-C coordinates requests for EOC services that may come from
different parts of the application. Similar to the HTU-R, the application sets flags to inform the EOC
task handler which tasks to perform, as listed in Table 6-10.

Table 6-10. Tasks of the HTU-C-EOC Task Handler

EOC Task Flag

Action

EocTask.bits.eocRdRegA

Request the API result after sending a status checking APl command through
EOC channel.

EocTask.hits.eocZipStatus

Request Zip status of HTU-R (eocRegD is used to store the Zip status).

EocTask.hits.eocWrRegF

Send an APl command stored in eocRegF[1]-eocRegF[3] to HTU-R.

If the EOC_STATUS_AVAILABLE flag is set, the EOC task handler knows that the EOC
master is ready and prepares the appropriate EOC action. For this preparation, it uses a special data

structure that controls the EOC

t ypedef struct

{

BP_U 8BI T status; /*
BP_U 8BI T command; /*
BP_U 8BI T dataSi zeCtr; /*
BP_U 8BI T dat aBufflndex; /*
BP_U 8BI T eocSl ave; /*
BP_U 8BI T oddEvenCtr; /*

} Bt 8953_EOC_CTRL;

master and looks like the text below:

current status of EOC master*/
requested command to perfornt/

nunber of bytes to xmit/receive*/
current index within eocData. buffer*/
EOC- Sl ave to access (0=RT, 1=Repeater)*/
buf fer for current ODD/ EVEN-fl ag*/

This structure is used only on the HTU-C side and is assigned to the variable eocCtrl. It is used
by both the EOC master and the EOC Task Handler.
The elements of the eocCtrl data structure are explained below:

The status byte contains inform

ation about the EOC master and EOC task handler activities.

Individual bits are cleared as described in Table 6-11; all status bits are cleared upon initialization
and when the EOC master enters the EOC_IDLE state. The bits are defined in the file CU_EOC.H

and listed in Table 6-11.

6-20

Conexant 100418C

RS8953B 6.0 Channel Unit Code
Application and Channel Unit Software Developer’s Guide 6.7 EOC Operation

Table 6-11. Status Flags within the EOC Master

Bit Status Flag Description
0 EOC_STATUS_AVAILABLE Set by EOC master if its state is not EOC_IDLE; otherwise, the flag is cleared.
Checked by the EOC task handler before it checks for EOC task flags set by
applications.
1 EOC_STATUS_BUSY(l) Only one EOC message sequence at a time can be started. The EOC task

handler uses this flag as a semaphore for EOC services. It checks the flag
before starting a EOC message sequence, sets it while waiting for the EOC
message sequence to complete, and clears it after completing the EOC
service requested by an application.

2 EOC_STATUS_RUN Set by the EOC task handler to request the EOC master to start an EOC
transmission. Checked by the EOC master in the EOC_CMD_READY state.
Cleared by the EOC master to inform the EOC task handler that the EOC
transmission is complete.

3 EOC_STATUS_HOLD Indicates a hold condition in the HTU-R. This flag is set if a latched EOC
command is sent to the HTU-R. The EOC task handler assumes that these
EOC commands are latched by the HTU-R:

-EOC_LOOP_NTU

-EOC_NTU_CCRC_REQ

The EOC master clears the flag if it sends either a EOC_HTU-RN command
or a EOC_NTU_CCRC_END command and receives three echoes. The EOC
master checks the flag to determine whether to send a EOC_HTU-RN or an
EOC_HOLD command as part of the Data Read command sequence.

4 EOC_STATUS_ERROR Set by the EOC master if it enters the EOC_UTC_STATE state. Checked by
the EOC task handler to determine if the EOC transmission was successful
or not.

NOTE(S):

(@ A task that uses the EOC master is responsible for releasing it after finishing the EOC communication by clearing the
EOC_STATUS_BUSY semaphore flag. Furthermore, the application must not use a spin loop to wait for the completion of the
EOC action, as indicated by the EOC_STATUS_RUN flag. A spin loop would delay the processing of other tasks by at least
30 ms.

Command
The command byte tells the EOC master which command type to transmit. The EOC master only
distinguishes among three different command types (Message/Echo Response, Data Read, and Data
Write). For each particular Data Read and Data Write command, the EOC task handler loads the
dataSizeCtr and dataBuffIndex variables with the correct values.

dataSizeCtr
The dataSizeCtr byte specifies the number of bytes to transmit from the HTU-C to the HTU-R in a
Data Write command, or the number of bytes to receive in a Data Read command. The value
corresponds to the size (in bytes) of the EOC register that is written or read.

dataBufflndex
The dataBuffindex byte specifies the start index of the eocData.buffer[] array. The index points to
the first byte transmitted as data in a Data Write command sequence or the first location assigned
when data is received in a Data Read command sequence. Table 6-12 lists the buffer values for the
EOC registers.

100418C Conexant 6-21

6.0 Channel Unit Code

RS8953B

6.7 EOC Operation

Table 6-12. Buffer Values for EOC Registers (HTU-C side)

Application and Channel Unit Software Developer’s Guide

EOC Register

DataBufflndex

DataSizeCtr

EocRegA

0

1

EocRegD

3

1

EocRegF[3]

5

3

eocSlave

The eocSlave byte corresponds to the destination address in Table 6-7. This byte is provided to
allow accessing two EOC slaves with different EOC addresses. Because there is no repeater in the

system, this byte is always set to the HTU-R’s address.

oddEvenCtr

The oddEvenCtr byte corresponds to the odd-even bit in Table 6-7. The bit toggles each time a data
byte has been transferred over the EOC channel. The software implements the toggle operation
using an addition operation, which explains the use of “Ctr” in the variable name. The element is

only used and initialized by the EOC master and should not be used by other tasks.

6-22

Conexant

100418C

RS8953B

6.0 Channel Unit Code

Application and Channel Unit Software Developer’s Guide 6.8 Performance Monitoring

6.8 Performance Monitoring

Performance monitoring maintains a history of CRC and FEBE errors at different time intervals.
Figure 6-10 illustrates the structure of the records.

Figure 6-10. CRC and FEBE Error Records at Three Time Intervals

Interval 1 o123,/ "7 896 897 898 899

1 second

>| 15 minutes = 900 seconds |<
Interval 2 o123|/ "0 92 93 94 95

15 minutes

>| 1 day = 96 x 15 minutes |<
Interval 3 012 3 456

1 day
_>| 7 days I‘“

Intervall records the number of CRC and FEBE errors occurring every second during a
15-minute interval and are updated every second. Interval2 records the accumulated CRC and
FEBE errors occurring in each 15-minute interval for 24 hours and are updated every 15 minutes.
Interval3 records the accumulated CRC and FEBE errors occurring every 24 hours for 7 days and
are updated daily.

100418C

Conexant 6-23

6.0 Channel Unit Code RS8953B

6.9 Channel Blocking Application and Channel Unit Software Developer’s Guide

6.9 Channel Blocking

Channel blocking allows selected PCM time slots to be used or replaced with DBANK _1 values.
The number of time slots is constant, but the active number of time slots can vary. Channel blocking
should be done at HTU-C only; it causes temporary data corruption. To simplify the channel
blocking operation, APIs are provided to select or disable a PCM time slot. Once the PCM time slot
usage is determined, another APl command can be issued to reconfigure the transmit routing table,
receive combination table, transmit payload mapper, and receive payload mapper based on the time
slot selection.

6.10 T1/E1 Framer and LIU Support

The channel unit code 6.0 provides support for a T1/E1 Framer and LIU (Line Interface Unit). The
framer and L1U code contain the minimum drivers necessary to configure the framer and LIU for a
transparent mode. The code supports the Bt8360 (T1), Bt8370(T1/E1), and Bt8510 (E1) framers.
The code only supports the Bt8069 LIU. In addition, a minimal set of APl commands is supported
to configure the framer and LIU from a host processor.

6-24 Conexant 100418C

7.0 Serial Communication Interface

7.1 Communication Protocol

The 8032 communicates with the host processor using a standard UART interface. The physical
connection includes two lines: RXD (pin 24) and TXD (pin 25). The data is transferred in
asynchronous format: 19200 baud, 1 start bit, 8 data bits, 1 stop bit, no parity.

7.2 Message Structure

All messages are 4 bytes long. Figure 7-1 illustrates the structure of a message sent by the host
processor to the 8032. The first 3 bytes are the command bytes, the fourth byte (last transmitted
byte) contains checksum information that is a function of the first 3 bytes. See Section 7.4 for
checksum details. The checksum considerably reduces the probability of the 8032 misinterpreting
an incoming message.

The commands are interpreted according to the destination, opcode and parameter fields.

Figure 7-1. Host Processor to 8032 Message Structure

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

11111 1]|E3|E2|E1]|EO O7]06|05|/04|03|02]|01]|00
First Byte—Destination Second Byte—-Opcode

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

D7 (D6 | D5| D4 | D3| D2|D1]| DO

Third Byte—Parameter

CS7|CS6|CS5|CS4|{CS3|CS2|CS1|CS0o

Fourth Byte—Checksum

100418C

Conexant

7-1

7.0 Serial Communication Interface RS8953B

7.2 Message Structure Application and Channel Unit Software Developer’s Guide

7.2.1 Destination Field (Bits E3-EQ)

Table 7-1 lists the destination field to which the command is targeted.

Table 7-1. Destination Field Specification

E3 E2 El EO Destination

0 0 0 0 _BIT_PUMPO

0 0 0 1 _BIT_PUMP1

0 0 1 0 _BIT_PUMP2(

0 0 1 1 _CU_COMMON

0 1 0 0 _ CU_CHAN1

0 1 0 1 _CU_CHAN2

0 1 1 0 _CU_CHAN3®

1 0 0 0 _DSL_APPLICATION

1 0 0 1 _DSL_CHANNELO

1 0 1 0 _DSL_CHANNEL1

1 0 1 1 _DSL_CHANNEL2(
NOTE(S):
(@ Reserved for future designs.

7.2.2 Opcode Field (Bits 07-00)

The opcode field specifies the command or status request to be executed.

7.2.3 Parameter Field (Bits P7—P0)

The parameter field uses commands where additional data or parameter selection is required. In
commands with no need for additional data, zeros are placed as the data byte to ensure future
compatibility.

7-2 Conexant 100418C

RS8953B 7.0 Serial Communication Interface

Application and Channel Unit Software Developer’s Guide 7.3 Message Transfer Protocol

7.3 Message Transfer Protocol

The application sends a command to any of the bit pumps in the system by transmitting a message
over the serial communication channel. Every command that is correctly received and decoded by
the 8032 is acknowledged by sending an acknowledge message back to the application. In response
to a status request command, the 8032 sends a status response message containing the requested
information.

The 8032 acknowledges a received message within 200 ms, except during activation where
larger delays (up to 2 seconds) may be present. The host processor retransmits a message not
acknowledged within this time limit. No new message from the host processor should be sent before
the previous one is acknowledged, unless the time limit has been exceeded.

When the 8032 receives a status request command, it responds (after acknowledging the
command) by sending a status message to the host processor. The structure of a status message is
similar to the structure of a host-t0-8032 message, as illustrated in Figure 7-2.

The first 2 bytes are identical to the first 2 bytes of the corresponding status request command.
Bits S3-S0 of the first byte are interpreted, according to Table 7-1, as the source bit pump for the
status response. The second opcode byte (bits O7-00) contains the opcode of the command
requesting the information.

The third byte (bits D7-D0) contains the requested information. The fourth byte (bits
CS7-CS0) is the checksum value, calculated according to the equation described in Section 7.4.

Figure 7-2. 8032 to Host Processor Message Structure

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
1|21 1|1]S3|S2]|S1|S0 O7]|06|05|]04|03]02|01]|00
First Byte—Destination Second Byte—Opcode
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
D7 (D6 |D5|D4| D3| D2|D1]| DO CS7|CS6|CS5|CS4|CS3|CS2|CSs1{Cso
Third Byte-B Data Fourth Byte—Checksum

100418C Conexant 7-3

7.0 Serial Communication Interface

RS8953B

7.4 Checksum Function

7.4 Checksum Function

Application and Channel Unit Software Developer’s Guide

For every command sent by the host processor, a checksum function value is calculated and sent as
the fourth byte of the message. This value is calculated using the following equation:

CS = (Byte #1) [1 (Byte #2) [(Byte #3) L1 (0xAA)

Where “[1” denotes a bit-wise exclusive OR operation, and 0XAA is the binary byte 10101010.
The 8032 uses the same rule to calculate the checksum byte of status message sent to the host

processor.

7.5 Acknowledge Message

The format of the acknowledge message is as follows:

Table 7-2. Acknowledge Message

Byte 1

Byte 2

Byte 3

Checksum

OxFF

OxFF

OxFF

0x55

7-4

Conexant

100418C

8.1 Level 3 API Commands

8.0 APl Command Set

Channel Unit Code 6.0 provides the complete software suite in order to simplify the integration of
the module into the system. A modular API-based command set allows a seamless initialization of
the application layer and Channel Unit. Once in operation, a comprehensive set of diagnostic and
testing commands assist in performance monitoring and fault detection and isolation tasks. The

command set is grouped at 3 levels:

* Level 1 APl commands
API commands at this level are used at normal operation, and are provided to access the
system at the application layer. They can be used to check the system version, control the

activation state, and monitor the performance for each individual loop.

* Level 2 APl commands
API commands at this level are used to configure the system (such as channel blocking),
diagnose problems and check DSL status.

» Level 3 APl commands
API commands at this level are lower level Channel Unit-related APIs. They can be used

to access the Channel Unit directly.

Table 8-1 through Table 8-118 describes the commands for all three levels.

Level 1 APl commands are used during normal operation.

8.1.1 DSL Control

8.1.1.1 Reset the DSL

Table 8-1. Opcode: 0x01 (_DSL_RESET)

Destination

Description

Parameter

_DSL_APPLICATION

Restart the program, reset all internal registers, and set all
programmable options to default values.

0x01

100418C

Conexant

8.0 API Command Set RS8953B
8.1 Level 3 API Commands Application and Channel Unit Software Developer’s Guide

8.1.1.2 Enable or Disable Activation State Manager

Table 8-2. Opcode: 0x02 (_DSL_ASM_ENABLE)

Destination Description Parameter

_DSL_APPLICATION Enable or disable the activation state manager. 0x00 (disable)
0x01 (enable)

When the Activation State Machine (ASM) is enabled, HTU-C and HTU-R will go through the
activation process (Figures 5-4 and 5-5) to reach the normal operation. When the ASM is disabled,
the link is not activated.

8.1.2 DSL Status
8.1.2.1 History of Link in Sync Status

Table 8-3. Opcode: 0x85 (_DSL_AVAILABLE_SECONDS)

Destination Description Parameter
_DSL_CHANNELO-2 Return the available seconds for specific Ioop.(l) 0x00 (Byte 1)
0x01 (Byte 2)
0x02 (Byte 3)
0x03 (Byte 4)
NOTE(S):
@ Available seconds is a 32-bit variable.

Available seconds for a specific loop is the accumulated time that the loop is in normal operation
since power-on.

8-2 Conexant 100418C

RS8953B

8.0 API Command Set

Application and Channel Unit Software Developer’s Guide

8.1.2.2 Overall DSL Status

Table 8-4. Opcode: 0x82 (_DSL_STATUS)

8.1 Level 3 API Commands

Destination

Description

Parameter

_DSL_APPLICATION

Return the overall DSL status.

0x00 (Status register 0)
0x01 (Status register 1)

Table 8-5. Status Register 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Terminal type Reserved Alarm Sync_1 Sync_2 Test mode T1_E1_mode Reserved
T1 E1 mode: 0-E1
1-T1
Test Mode: 0 — Normal Operation
1 — Test Mode
Sync_1: 0 — Loop 1 out of sync
1-Loop 1linsync
Sync_2: 0 — Loop 0 out of sync
1-Loop 0insync
Alarm: 0 — Normal Operation

Terminal Type:

1 - Bit pump or Channel Unit not present

0 — HDSL Terminal Unit Central (HTU-C)
1 - HDSL Terminal Unit Remote (HTU-R)

100418C

Conexant

8-3

8.0 API Command Set

RS8953B

8.1 Level 3 API Commands

Table 8-6. Status Register 1

Application and Channel Unit Software Developer’s Guide

Bit 7

Bit 5-6

Bit 3-4 Bit 2 Bit 1 Bit 0

Reserved

Good_loop_cnt

Master_loop Loop_reversal Cu_present Reserved

Cu_present:

Loop_reversal:

Master_loop:

Good_loop_cnt:

0 — Channel Unit not present
1 — Channel Unit present

0 — Loops not reversed
1 — Loops reversed

00 - Loop 0 is the master loop
01 - Loop 1 is the master loop
10 — Reserved for future use
11 — Reserved for future use

0 — None of the loops are in normal operation
1 -1 loop is in normal operation
2 — 2 loops are in normal operation

NOTE: Loop_reversal returns a value representing whether or not the physical loops
connections are reversed. When a loop reversal occurs, only the HTU-R reverses the
loops. The HTU-C never detects any loop reversal; therefore, the user only needs to
check the loop reversal at the HTU-R.

Figure 8-1. Loop Reversal

HTU-C

HTU-C

HTU-R

A

\

A

Loops Not Reversed

Loops Reversed

\

HTU-R

8-4

Conexant

100418C

RS8953B

8.0 API Command Set

Application and Channel Unit Software Developer’s Guide 8.1 Level 3 API Commands

8.1.2.3 DSL Loop Status

Table 8-7. Opcode: 0x83 (_DSL_LOOP_STATUS)

Destination Description Parameter
_DSL_CHANNELO-2 Return the loop status. 0x00
Bit 3-7 Bit 1-2 Bit 0
Activation_state Zip_start_attempt Present
Present: 0 — Bit pump not present

1 - Bit pump present

Zip_start_attempt: 0 — Cold startup
>0 — ZipStartup

Activation_state: 0-SYSTEM_IDLE
1 - CONFIGURATION_STATE
2 - INACTIVE_STATE
3 - ACTIVATING_STATE
4 — ACTIVATING_STATE_S1
5 - ACTIVE_RX_STATE
6 — ACTIVE_TX_STATE
7 - GOTO_PID_VALIDATION_STATE
8 — PID_VALIDATION_STATE
9 - GOTO_ACTIVE_TX_RX_STATE
10 - ACTIVE_TX_RX_STATE
11 - PENDING_DEACTIVATED STATE
12 - DEACTIVATED_STATE
13- WAIT_FOR_LOST
14 - WAIT_FOR_LOS
20 - BACKGROUND_TESTMODE
21 - ERLE_TESTMODE
22 - AAGC_TESTMODE
23 - AAGC2_TESTMODE
25- ANALOG_LB _TESTMODE
26 — ANALOG_LB2_TESTMODE

100418C Conexant

8-5

8.0 API Command Set RS8953B

8.1 Level 3 API Commands Application and Channel Unit Software Developer’s Guide

8.1.2.4 DSL ZipStartup Status

Table 8-8. Opcode: 0x84 (_DSL_ZIP_STATUS)

Destination Description Parameter
_DSL_CHANNELO-2 Return the ZipStartup status. 0x00 (_LOCAL)
Bit 4-7 Bit 1-3 Bit 0
Reserved Zip_start_state Enable
Enabled: 0 — ZipStartup is disabled

1 - ZipStartup is enabled

Zip_start_state: 0-ZIP_START _IDLE
1-ZIP_START VALIDATION_STATEO
2-ZIP_START_VALIDATION_STATE1l
3-ZIP_START_UPDATE_STATE
4 - ZIP_START_WAIT_STATE

8.1.2.5 DSL Version

Table 8-9. Opcode: 0x81 (_DSL_VERSION)

Destination Description Parameter

_DSL_APPLICATION Return the system version. _DSL_SW_VERSION (0x00)
_DSL_HW_VERSION (0x01)

The actual software version is the return value divided by 10. For instance, if the return value is 12,
the software version is 1.2.

8.1.3 Performance Monitoring

Channel Unit Code 6.0 maintains CRC and FEBE error history at three different intervals. See
Section 6.8 for more information.

8.1.3.1 Enable or Disable Performance Monitoring Update

Table 8-10. Opcode: 0x10 (_SET_PERFMONITOR_STATE)

Destination Description Parameter
_DSL_CHANNELO-2 Enable or disable the performance monitoring 0x00 (disable)
update. 0x01 (enable)

8-6 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.1 Level 3 API Commands

8.1.3.2 Set Starting Address to Check Performance Record at Interval 1

Table 8-11. Opcode: 0x11 (_INTERVAL1_ADDR_LO)

Destination Description Parameter

_DSL_CHANNELO-2 Set the lower byte of the starting index to check 0x00
network management records at Intervall.

Table 8-12. Opcode: 0x12 (_INTERVAL1_ADDR_HI)

Destination Description Parameter

_DSL_CHANNELO-2 Set the higher byte of the starting record index to 0x00
check network management records at Intervall.

8.1.3.3 Set Starting Address to Check Performance Record at Interval 2

Table 8-13. Opcode: 0x13 (_INTERVAL2_ADDR)

Destination Description Parameter

_DSL_CHANNELO-2 Set the starting record index to check network 0x00
management records at Interval2.

8.1.3.4 Set Starting Address to Check Performance Record at Interval 3

Table 8-14. Opcode: 0x14 (_INTERVAL3_ADDR)

Destination Description Parameter

_DSL_CHANNELO-2 Set the starting record index to check network 0x00
management records at the Interval3.

100418C Conexant 8-7

8.0 API Command Set

RS8953B

8.1 Level 3 API Commands

Application and Channel Unit Software Developer’s Guide

8.1.3.5 Performance Records at Different Intervals

Intervall performance records are 8 bits each, and Interval2 and 3 records are 32 bits each. After
setting the starting record index, the internal pointer is pointed to read the first byte of the record.
For the 32-bit records, the internal pointer increments after each call; the record index is
incremented only when the fourth byte of the record is read. For 8-bit records, the record index

increments after each call.

Table 8-15. Opcode: 0x90 (_CRC_ERR_AT_INTERVALL)

Destination Description Parameter
_DSL_CHANNELO-2 Return the CRC error at Intervall at the record index. 0x00
The record index increments after each call.
Table 8-16. Opcode: 0x91 (_CRC_ERR_AT_INTERVALZ2)
Destination Description Parameter
_DSL_CHANNELO-2 Return the CRC error at Interval2 at the record index. 0x00
Table 8-17. Opcode: 0x92 (_CRC_ERR_AT_INTERVAL3)
Destination Description Parameter
_DSL_CHANNELO-2 Return the CRC error at Interval3 at the record index. 0x00
Table 8-18. Opcode: 0x93 (_FEBE_ERR_AT INTERVAL1)
Destination Description Parameter
_DSL_CHANNELO-2 Return the FEBE error at Intervall at the record index. 0x00
The record index increments after each call.
Table 8-19. Opcode: 0x94 (_FEBE_ERR_AT INTERVAL2)
Destination Description Parameter
_DSL_CHANNELO-2 Return the FEBE error at Interval2 at the record index. 0x00
Table 8-20. Opcode: 0x95 (_FEBE_ERR_AT_INTERVAL3)
Destination Description Parameter
_DSL_CHANNELO-2 Return the FEBE error at Interval3 at the record index. 0x00

Conexant

100418C

RS8953B 8.0 APl Command Set
Application and Channel Unit Software Developer’s Guide 8.1 Level 3 API Commands

8.1.3.6 Latest Performance Record at Different Intervals

The last CRC/FEBE performance records show the latest errors for each interval. Intervall is
updated every second and returns the CRC/FEBE error for the previous second. The Interval2 is
updated every 15 minutes and shows the errors for the previous 15 minutes. Interval3 is updated
every 24 hours and shows the errors for the previous 24 hours.

NOTE: These APl commands do not require Performance Monitoring Update to be disabled.

Table 8-21. Opcode: 0x96 (_LAST_CRC_ERR_INTERVAL1)

Destination Description Parameter

_DSL_CHANNELO-2 Return the number of CRC errors during the last 0x00
second for the specific loop.

Table 8-22. Opcode: 0x97 (_LAST_CRC_ERR_INTERVAL2)

Destination Description Parameter
_DSL_CHANNELO-2 Return the number of CRC errors during the last 15 0x00 (Byte 1)
minutes for the specific loop. 0x01 (Byte 2)

0x02 (Byte 3)

0x03 (Byte 4)

Table 8-23. Opcode: 0x98 (_LAST_CRC_ERR_INTERVAL3)

Destination Description Parameter
_DSL_CHANNELO-2 Return the number of CRC errors during the last hour 0x00 (Byte 1)
for the specific loop. 0x01 (Byte 2)

0x02 (Byte 3)

0x03 (Byte 4)

Table 8-24. Opcode: 0x99 (_LAST_FEBE_ERR_INTERVAL1)

Destination Description Parameter

_DSL_CHANNELO-2 Return the number of FEBE errors during the last 0x00 (Byte 1)
second for the specific loop.

100418C Conexant 8-9

8.0 API Command Set

RS8953B

8.1 Level 3 API Commands

Table 8-25. Opcode: 0x9A (_LAST_FEBE_ERR_INTERVAL2)

Application and Channel Unit Software Developer’s Guide

Destination Description

Parameter

_DSL_CHANNELO-2 Return the number of FEBE errors during the last 15
minutes for the specific loop.

0x00 (Byte 1)
0x01 (Byte 2)
0x02 (Byte 3)
0x03 (Byte 4)

Table 8-26. Opcode: 0x9B (_LAST_FEBE_ERR_INTERVAL3)

Destination Description

Parameter

_DSL_CHANNELO-2 Return the number of FEBE errors during the last hour
for the specific loop.

0x00 (Byte 1)
0x01 (Byte 2)
0x02 (Byte 3)
0x03 (Byte 4)

8-10

Conexant

100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.2 Level 2 API Commands

8.2 Level 2 API Commands

Level 2 APl commands configure the system for other than standard 1T1 and 1E1, isolate and
identify problems, and check important system status parameters.

8.2.1 Channel Blocking
8.2.1.1 Channel Blocking Time Slot Location

Table 8-27. Opcode: 0x30 (_CB_TIMESLOT_LOCATION)

Destination Description Parameter
_DSL_APPLICATION Set the time slot number that needs to be 0 ~ 31 for 2E1 blocking
blocking. 0 ~ 23 for 2T1 blocking

8.2.1.2 Channel Blocking Time Slot Enable/Disable

Table 8-28. Opcode: 0x31 (_CB_TIMESLOT_STATE)

Destination Description Parameter

_DSL_APPLICATION Enable or disable selected time slot. 0 _TIMESLOT_BLOCKED
1 _TIMESLOT_IN_USE

8.2.1.3 Channel Blocking Configuration

Table 8-29. Opcode: 0x32 (_CONFIGURE_CHANNEL_BLOCKING)

Destination Description Parameter

_DSL_APPLICATION Configure the Channel Unit based on the time 0x00
slot selection.

NOTE(S): Transmit routing table, receive combine table, transmit payload mapper, and receive payload mapper will
be modified based on the time slot selection. Issuing the APl command may cause corrupted data for about one
second.

100418C Conexant 8-11

8.0 API Command Set

RS8953B

8.2 Level 2 API Commands

8.2.1.4 Set all Time Slots

Table 8-30. Opcode: 0x33 (_SET_ALL_TIMESLOTS)

Application and Channel Unit Software Developer’s Guide

Destination Description

Parameter

_DSL_APPLICATION Block or unblock all the timeslots.

0 Block all timeslots
1 Unblock all timeslots

8.2.1.5 Channel Blocking Time Slot Usage

Table 8-31. Opcode: 0xA3 (_CB_TIMESLOT_USAGE)

Destination Description

Parameter

_DSL_APPLICATION
time slot usage.

Return the value indicating the current

0x00 Timeslots 0-7
0x01 Timeslots 8-15
0x02 Timeslots 16—-23
0x03 Timeslots 24-31

The returned value:

Parameter Bit7 Bit6 Bitb Bit4 Bit3 Bit2 Bitl Bit0

0x00 TS7 TS6 TS5 TS4 TS3 TS2 TS1 TSO

0x01 TS15 TS14 TS13 TS12 TS11 TS10 TS9 TS8

0x10 TS23 TS22 TS21 TS20 TS19 TS18 TS17 TS16
0ox11 TS31 TS30 TS29 TS28 TS27 TS26 TS25 TS24
TS0-TS31 0 — Time slot blocked and replaced with DBANK1 values

1 - Time slot in use
8-12 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.2 Level 2 API Commands

8.2.2 Diagnostic

8.2.2.1 DSL Loopbacks

Four loopback tests are supported by the HTU-C and the HTU-R. The APl commands place the
system in the invoked loopback state. A single LOOPBACKS_OFF API returns the device to
“normal operation” mode. PCM to PCM and HDSL to PCM loopbacks are addressed to
_DSL_APPLICATION; analog loopbacks are addressed to the intended _DSL_CHANNEL.

Table 8-32. Opcode: 0x20 (_DSL_LOOPBACK)

Destination Description Parameter
_DSL_APPLICATION Turn off loopback test for all _LOOPBACKS_OFF 0
loops.
Turn on loopback test for all _CU_PCM_ON_PCM 1
loops. _CU_HDSL_ON_PCM 2
_BP_ISOLATED_ANALOG_LOOPBACK 3
_BP_EXTERNAL_ANALOG_LOOPBACK 4
Table 8-33.
Destination Description Parameter
_DSL_CHANNELO-2 Turn off loopback test for _LOOPBACKS_OFF 0
selected loop.
Turn on loopback test for _BP_ISOLATED_ANALOG_LOOPBACK 3
selected loop. _BP_EXTERNAL_ANALOG_LOOPBACK 4

8.2.2.2 DSL Test Modes

The DSL Testmode API command supports eight test modes. Parameters 1-4 measure pulse
templates for internal use. Parameters 5 and 6 measure the transmit signal power. Parameters 7 and
8 can be used for manufacturing test and analog front-end verification.

Table 8-34. Opcode: 0x21 (_DSL_TESTMODE)

Destination Description Parameter
_DSL_CHANNELO-2 Operates the bit pump in special | _BP_TESTMODE_OFF
test modes. _BP_ISOLATED_PULSE_PLUS3

_BP_ISOLATED_PULSE_PLUS1
_BP_ISOLATED_PULSE_MINUS1
_BP_ISOLATED_PULSE_MINUS3
_BP_FOUR_LEVEL_SCR
_BP_TWO_LEVEL_SCR
_BP_ERLE_TEST
_BP_MEASURE_AAGC

ONO Ol WNBEFE O

100418C Conexant 8-13

8.0 API Command Set RS8953B

8.2 Level 2 API Commands Application and Channel Unit Software Developer’s Guide

8.2.2.3 Sending APl Commands Through EOC Channel

This set of APl commands is provided so the HTU-C can send a defined APl command through the
EOC channel to control the HTU-R or check its status. Because the HTU-C is the EOC master
according to the HDSL ANSI/ETSI standard, only the HTU-C can use these APl commands. The
EOC channel is only available when the associated loop is in normal operation. There are two EOC
channels when the system is in normal operation, and the user can choose which channel to use by
specifying the destination field.

To implement this feature, first use APIs _API_DEST, API_OPCODE, and _API_DATA to
specify the APl command that needs to be sent, then use APl command _API_SEND to send it
through the chosen EOC channel. If the API sent is a control command, the user sees the expected
action at HTU-R; if it is a status command, use _API_RESULT to check the return results from the
HTU-R. The reason that an additional API is needed to get the status checking result is that EOC
protocol needs time to handle each EOC request.

For example, to send APl command _DSL_ZIP_STATUS to HTU-R to determine if
ZIP_STARTUP is enabled or not, choose an available EOC channel. Assuming
_DSL_CHANNELDO is available, perform the following steps:

1. Use API _API_DEST with the destination = _DSL_CHANNELO (0x09) and
parameter = 0x00.

2. Use APl _API_OPCODE with the destination = _DSL_CHANNELO (0x09) and
parameter = _DSL_ZIP_STATUS (0x84).

3. Use APl _API_DATA with the destination = _DSL_CHANNELO (0x09) and
parameter = 0x00.

4. Use APl _API_SEND with the destination = _DSL_CHANNELO (0x09) and
parameter = 0x00.

5. Use APl _API_RESULT with the destination = _DSL_CHANNELO (0x09) and
parameter = 0x00 to check the returned result from HTU-R.

Table 8-35. Opcode: 0x22 (_API_DEST)

Destination Description Parameter

_DSL_CHANNELO-2 Set the destination of the APl command. 0-11

Table 8-36. Opcode: 0x23 (_API_OPCODE)

Destination Description Parameter

_DSL_CHANNELO-2 Set the opcode of the APl command. Valid API opcode.

Table 8-37. Opcode: 0x24 (_API_DATA)

Destination Description Parameter
_DSL_CHANNELO-2 Set the parameter of the API command. Necessary parameter or
0x00 if no parameter is
needed.

8-14 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.2 Level 2 API Commands
Table 8-38. Opcode: 0x25 (_API_SEND)
Destination Description Parameter
_DSL_CHANNELO-2 Send the APl command through EOC channel. 0x00

Table 8-39. Opcode: 0xA2 (_API_RESULT)

Destination Description Parameter

_DSL_CHANNELO-2 Check the result of the API command (status API 0x00
only) sent through EOC.

8.2.3 DSL Status

8.2.3.1 Far End Signal Attenuation

The return value is a 1-byte unsigned integer x (0-255) which indicates the overall signal power
attenuation in units of 0.5 dB. For example, a value of 60 means total cable attenuation of 30 dB.

The result is calibrated to represent the overall signal power attenuation over the cable in dB.
The result is calibrated for the nominal 13.5 dBm transmit power at the far_end.

Table 8-40. Opcode: 0xBO (_DSL_FELM)

Destination Description Parameter

_DSL_CHANNELO-2 Request a value of the far_end signal 0x00
attenuation. This value is based on measuring
the average far_end signal level after echo
cancellation.

8.2.3.2 Noise Margin

The return value is a 1-byte signed integer x (-128 through 127) which indicates the noise margin in
units of 0.5 dB. For example, a value of -8 means a noise margin of -4 dB.

Table 8-41. Opcode: 0xB1 (_DSL_NMR)

Destination Description Parameter

_DSL_CHANNELO-2 Request a value of the noise margin of the 0x00
receiver. The noise margin is defined as the
maximum tolerable increase in external noise
povx7/er that still allows for BER of less than 1 x
107,

100418C Conexant 8-15

8.0 API Command Set RS8953B
8.2 Level 2 API Commands Application and Channel Unit Software Developer’s Guide

8.2.4 ERLE Test

8.2.4.1 Background and ERLE Test Mode

NOTE: The Background Noise Test and ERLE Test are typically run with the NLEC bypassed,
transmitter set to 4-level, and AAGC set to 12 db. A 150 Q termination between the Tx
and Rx signals on the line side of the transformer is used for benchmarking.

Table 8-42. Opcode 0x18 (_ERLE_TEST_MODE)

Destination Description Parameter

BITPUMPO-2 Allows user to customize ERLE test setup. Pass in desired ERLE Bit definitions.

Table 8-43. ERLE_TEST MODE Parameter

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
NLEC Mode Transmit Analog Gain Setting Reserved Reserved Transmitter
Level State
NLEC Mode: 0 — Disable the NLEC

1 — Enable the NLEC

Transmit Level: 0 — Set transmitter to 4-level
1 — Set transmitter to 2-level

Analog Gain Setting: 0 — Set Analog gain to 0 db
1 - Set Analog gain to 3 db
2 — Set Analog gain to 6 db
3 — Set Analog gain to 9 db
4 — Set Analog gain to 12 db
5 — Set Analog gain to 15 db

Transmitter State: 0 — Disables transmitter, used to measure the background noise
1 — Enables transmitter, used to measure ERLE

The ERLE test takes approximately 5 seconds to complete. Query the _STARTUP_STATUS to
determine when the ERLE test is complete.

Table 8-44. Opcode 0x85 (_STARTUP_STATUS)

Destination Description Parameter

BITPUMPO0-2 Status of the ERLE test. 0x00

8-16 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.2 Level 2 API Commands

Table 8-45. _STARTUP_STATUS Return Value

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Normal Tx 4-level Reserved NMR_OK Activation Tip/Ring LOST LOS
Operation Timer

When the ERLE test is complete, the Normal Operation (bit 7) is set to 1, indicating the
_ERLE_RESULTS are valid. If the ERLE test times out, the Activation Timer (bit 3) is set to 1,
indicating that the ERLE test failed, and the results are invalid.

When the ERLE test has successfully completed, the ERLE RESULTS are valid and the
analog and digital ERLE can be calculated.

8.2.4.2 ERLE Results

This command queries for the Background and ERLE Test Mode results. Both the Background and
ERLE Test execute the same code (with one difference—transmitter OFF vs. transmitter ON,
respectively) and thus use the same result fields. However, when analyzing the results, Table 8-46
lists the meaningful values.

Table 8-46. Meaningful Values Returned for Different Tests

Test Meaningful Values

Background Only SLM and FELM

ERLE Test All Results

Table 8-47. Opcode 0x93 (ERLE_RESULTS)

Destination Description Parameter
BIT_PUMPO0-2 Low Byte SLM result 0x00
High Byte SLM result 0x01
Low Byte FELM result 0x02
High Byte FELM result 0x03
Low Byte, SLM2, bypassing hybrid input result 0x04
High Byte, SLM2, bypassing hybrid input result 0x05
DC Offset Low Byte result 0x06
DC Offset High Byte result 0x07

Use the following formula to convert the low and high bytes into a 16-bit value:
16-hit value = (high byte <<8) + (low byte)
The ERLE and Analog ERLE measurements are determined by the following formulas:

ERLE = 20x|og(leL—L'\,’\'A-)

SLMZ)
SLM

AERLE = 20 x Iog(

100418C Conexant 8-17

8.0 API Command Set

RS8953B

8.2 Level 2 API Commands

8.2.4.3 AAGC Results

Application and Channel Unit Software Developer’s Guide

This command queries for the AAGC Test results.

Table 8-48. Opcode 0x94 (_AAGC_RESULTS)

Destination Description Parameter
BIT_PUMPOQ-2 SLM @ 0 db Setting Low Byte 0x00
SLM @ 0 db Setting High Byte 0x01
SLM @ 3 db Setting Low Byte 0x02
SLM @ 3 db Setting High Byte 0x03
SLM @ 6 db Setting Low Byte 0x04
SLM @ 6 db Setting High Byte 0x05
SLM @ 9 db Setting Low Byte 0x06
SLM @ 9 db Setting High Byte 0x07
SLM @ 12 db Setting Low Byte 0x08
SLM @ 12 db Setting High Byte 0x09
SLM @ 15 db Setting Low Byte 0x0A
SLM @ 15 db Setting High Byte 0x0B

Use the following formula to convert the low and high bytes into a 16-bit value:

16-bit value = (high byte <<8) + (low byte)

The AAGC measurements are normalized to the 0db SLM reading and determined by the

following formula:

AAGC(n) = 20 x Iog(

where n is 0 db to 15 db.

8-18

Conexant

100418C

RS8953B

8.0 API Command Set

Application and Channel Unit Software Developer’s Guide

8.2.5 DPLL Status Command

8.2.5.1 Read the DPLL State

This command returns the current state of the DPLL state machine.

Table 8-49. Opcode: 0x90 (_CU_READ_DPLL)

8.2 Level 2 API Commands

Destination Description Parameter
_CU_COMMON Reads the DPLL state machine. 0x00
DPLL State Return Value
Stable 0
Minimum Gain setting 1
Medium Gain setting 2
Maximum Gain setting 3

8.2.6 Channel Unit Indicator Bit Commands

The following four APl commands allow access to the 13 channel unit indicator bits.

8.2.6.1 Write Indicator Low Byte

This command writes the indicator low byte, which is sent to the far-end HDSL unit every 6 ms
HDSL frame. The EVM code may overwrite the LOSD, FEBE, RRBE and RCBE bits.

Table 8-50. Opcode: 0x35 (_CU_WRITE_IND_LO)

Destination

Description

Parameter

_CU_CHANO-2

Returns indicator bits 0-7.

User-defined

8.2.6.2 Write Indicator High Byte

This commands writes the upper 5 indicator bits in the indicator high byte. These bits are sent to the
far-end HDSL unit every 6 ms HDSL frame.

Table 8-51. Opcode: 0x36 (_CU_WRITE_IND_HI)

Destination

Description

Parameter

_CU_CHANO-2

Returns indicator bits 8-13.

User-defined

100418C

Conexant

8-19

8.0 API Command Set RS8953B

8.2 Level 2 API Commands Application and Channel Unit Software Developer’s Guide

8.2.6.3 Read Indicator Lo Byte
This command reads the first 8 indicator bits in the channel unit. These bits are received from the
far-end every 6 ms HDSL frame.

Table 8-52. Opcode: 0x91 (_CU_READ_IND_LO)

Destination Description Parameter

_CU_CHANO-2 Returns indicator bits 0-7. 0x00

Table 8-53. Low Byte Return Status Bit Definitions

Bit 7

Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

rche

rrbe hrp bpv ps2 psl febe losd

NoTE: All indicator bits are active low.

8.2.6.4 Read Indicator Hi Byte
This command reads the upper 5 indicator bits in the channel unit. These bits are received from the
far-end every 6 ms HDSL frame.

Table 8-54. Opcode: 0x92 (_CU_READ_IND_HI)

Destination Description Parameter

_CU_CHANO-2 Returns indicator bits 8-15. 0x00

Table 8-55. High Byte Return Status Bit Definitions

Bit 7

Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Manufacturing code Reserved rtr rta rega

Manufacturing code: 0-Loop 1 orloop 3

1-Loop?2
rega, rta, rtr: Active low
8-20 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.2 Level 2 API Commands

8.2.7 Single Loop Commands

The following six commands apply to single loop applications only. These commands allow the user
to set up the system for any HDSL data rate between 208 kbps and 2320 kbps in 64 kbps steps.
These commands are used only with the RS8973 and RS8953 products. For information on how to
use these commands with the Bt8970, contact local technical support.

NoTE: The following single loop API’s have only been verified with the
_SP_TOTAL_PCM_TSLOT equal to _SP_TOTAL_HDSL_TSLOT.

8.2.7.1 Set Number of PCM Time Slots Used

This command selects the total number of PCM time slots on the PCM bus. For a PCM rate of
2.048 Mbps the parameter is 32 (0x20). For a PCM rate 1544 kbps (or 1536 kbps if Fbit_present is
0) the parameter is 24 (0x18). The PCM data rate is calculated with the following formula:

(Parameter x 64 kbps) = PCM datarate
Example: parameter of 32; (32 x 64 kbps) = 2048 kbps

Table 8-56. Opcode: 0x40 (_SP_TOTAL_PCM_TSLOT)

Destination Description Parameter
_DSL_APPLICATION Sets the number PCM time slots to calculate the PCM | E1-32 (0x20)
rate. T1-24 (0x18)

8.2.7.2 Set Number of HDSL Payload Bytes

This command selects the number of HDSL payload bytes used and the HDSL data rate. To
calculate the HDSL data rate use this formula:

((Parameter x 64) + 16) kbps = HDSL datarate

Example: parameter of 0x04; ((4 x 64) + 16) kbps = 272 kbps.

If a parameter of 2 is used, the stuff thresholds must be changed. Contact Conexant for more
details.
Table 8-57. Opcode: 0x41 (_SP_TOTAL_HDSL_TSLOT)

Destination Description Parameter

_DSL_APPLICATION Total number of HDSL payload bytes to send over 2-36
the HDSL.

100418C Conexant 8-21

8.0 API Command Set RS8953B
8.2 Level 2 API Commands Application and Channel Unit Software Developer’s Guide

8.2.7.3 Set Number of Occupied HDSL Payload Bytes and PCM Time Slots Used

This command selects the number HDSL payload bytes out of the “total number of HDSL payload
bytes” that transmit over the HDSL link. This command selects the first n number of bytes of the
parameter. If the parameter is 5, payload bytes 0, 1, 2, 3, and 4 are used for payload.

This number cannot be greater than the “Total Number of HDSL Payload Bytes” or “Total
Number of PCM Time Slots”.

Table 8-58. Opcode: 0x42 (_SP_USED_TSLOT)

Destination Description Parameter

_DSL_APPLICATION Total number of payload channels used. 3-36

8.2.7.4 Set F-bit Present

This command sets whether or not the F-bit is present. When PCM rate of 1544 kbps is selected and
no F-bit is inserted, the payload bandwidth is 1536 kbps. With the current 8973/8953B EVM
application, when the F-bit is present, the framer mode is set as T1; otherwise, the framer mode is

El.
Table 8-59. Opcode: 0x43 (_SP_FBIT_PRESENT)
Destination Description Parameter
_DSL_APPLICATION Sets whether or not the F-bit is present. 0-Not Present
1-Present

8.2.7.5 Set Derived MCIk Value
This command sets the derived MCIk. To calculate the parameter use the formula:
Parameter = MCIk frequency / 128 kHz

On the EVM, XOUT from the RS8973 drives the MCLK signal to the channel unit. Because
XOUT equals 10.24 Mhz, the parameter is set to 80 (0x50).

Table 8-60. Opcode: 0x44 (_SP_DERIVED_MCLK)

Destination Description Parameter

_DSL_APPLICATION The parameter is multiplied by 128 kHz to equal 30-145
MCLK input frequency.

8-22 Conexant 100418C

RS8953B 8.0 APl Command Set
Application and Channel Unit Software Developer’s Guide 8.2 Level 2 API Commands

8.2.7.6 Configure Single Loop

This command takes all previous single loop APl command parameters and calculates the required
channel unit and bit pump registers.
The system transits as follows:

« Initialize: Sets bit pump to idle.
« Configure: Reconfigures the system for the new data rate.
» Restart: Performs a DSL activation at the new data rate.

This command only supports water level adjustments for PCM 24 and 32.

Table 8-61. Opcode: 0x45 (_SP_CONFIGURE)

Destination Description Parameter

_DSL_CHANNELO-2 Configures channel unit and bit pump and restarts 0x00
system.

8.2.8 EOC Commands

The Embedded Operations Channel (EOC) has two software levels:

1. The higher level API modifies the EOC register contents and control when messages are
transferred.

2. The lower level drivers move the data back and forth through the channel and perform error
checking.

The user does not need access to the lower level drivers to use the EOC channel.

The following ten commands are additional higher level APl commands for the channel unit’s
EOC channel. This channel is used to communicate with the far-end channel unit and host
processor. The customer must add any vendor-defined specifics from the HDSL standard. All
reserved bits should be set to 0.

100418C Conexant 8-23

8.0 API Command Set RS8953B

8.2 Level 2 API Commands Application and Channel Unit Software Developer’s Guide

8.2.8.1 EOC Register Select

This command selects an EOC register name and the register type (write or read). This API must be
selected before modifying any different registers (0—F). This command also resets the byte number
location to 0.

The value of the register type is stored and affects the operation of the _EOC_REG_SIZE,
_EOC BYTE_NUM _LOC, and _EOC WRITE_REG_DATA commands.

Table 8-62. Opcode: 0x35 (_EOC_REG_SELECT)

Destination Description Parameter
_DSL_CHANNEL 0-2 Selects the register to modify with the following APl | See Parameter Field
commands. Definitions

Parameter Field Definitions

Byte 7-5 Bit 4 Bits 3-0
Reserved Register type Register Name
Register type: 0 — Write register

1 — Read register

8.2.8.2 EOC Register Size

This command sets the register byte size, from 0-16 bytes. The EOC_REG_SELECT must be set
prior to modifying the register size. Because there are read and write registers for each register
name, registers with the same name may have two different sizes.

Example: “write register A” can have a register size of 16 while “read register A” has a size
of 1. All sizes default to 0. When the size is 0 and a command is performed, the return value from
the HTU-R will be Unable To Comply (UTC).

Table 8-63. Opcode: 0x36 (_ EOC_REG_SIZE)

Destination Description Parameter
_DSL_CHANNELO-2 Selects the size of the selected EOC register. See Parameter Field
Definitions

Parameter Field Definitions
Byte 7-5 Bits 4-0

Reserved Register Name

8-24 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.2 Level 2 API Commands

8.2.8.3 EOC Byte Number Location

This command sets the location within the rdRegSize[] or wrRegSize[] array initially accessed by
the _EOC_WRITE_REG_DATA and _EOC_READ_REG_DATA API commands.

NOTE: When writing to or reading from the register, the first byte number location is 0 and the
last byte number is the register size minus 1.

Table 8-64. Opcode: 0x37 (_EOC_BYTE_NUM_LOC)

Destination Description Parameter

_DSL_CHANNELO-2 Selects which byte of the register to modify. 0—(register size-1)

8.2.8.4 EOC Write Register Data

This command writes the 8-bit parameter value into the wrRegData[] or rdRegData[] arrays based
on the current register type setting. The EOC Write Register Data APl command copies this value
into the first byte of the shadow buffer bytes. After the API is executed, it increments the byte
number location by one. When the next EOC Write Register Data API is executed, the parameter is
written to the second byte number location of the shadow buffer. This continues until all bytes are
filled, then the shadow buffer is copied into the correct register when the EOC channel is inactive.
This shadow buffer prevents corruption of the EOC data registers while sending data.

The HTU-C (the EOC master) should only write to the wrRegData[] (control) with the
parameter information to be sent to the HTU-R (the EOC slave). The HTU-R should only write to
the rdRegData[] (status) with the parameter information that is returned to the HTU-C. The API
command returns a fail if a write operation to the improper register type is attempted.

The rdRegData[] on the HTU-R must be loaded before the HTU-C reads it.

NOTE: For previous compatibility, the HTU-R wrRegData D byte 0 should be updated only
after a system reset, once NORMAL OPERATION is met.

Table 8-65. Opcode: 0x38 (_ EOC_WRITE_REG_DATA)

Destination Description Parameter

_DSL_CHANNELO-2 Writes an eight-bit value to the selected register. 0-OxFF

100418C Conexant 8-25

8.0 API Command Set RS8953B

8.2 Level 2 API Commands Application and Channel Unit Software Developer’s Guide

8.2.8.5 Start EOC Read/Write Operation

This command starts a read or write process. Only the HTU-C can issue this command. When
performing a write command the HTU-C sends its wrRegData[]. If performing a read (status)
command, the HTU-C requests HTU-R to send its rdRegData[].

NOTE: Register Read E is in the HDSL standard as a special purpose register. To read noise
margin, the user only has to issue this command and read the returned value. (See ETSI
TS 152 Edition 4 under EOC Coding of the noise margin.)

Table 8-66. Opcode 0x39 (_EOC_SEND_RD_WR)

Destination Description Parameter
_DSL_CHANNELO-2 Performs the write/read process based on See Parameter Field
parameter. Definitions

Parameter Field Definitions
Byte 7-5 Bit 4 Bits 3-0

Reserved Write or read process. Register Name

Write or read process: 0 — Write process
1 — Read process

8.2.8.6 Set EOC Control Commands

This command requires one of the following parameters in the table. Once this API is executed, the
appropriate EOC command is executed. (See ETSI TS 152 Edition 4 under HDSL EOC
requirements for control definitions.)

Table 8-67. Opcode: 0x3A (_ EOC_SET_CONTROL)

Destination Description Parameter
_DSL_CHANNELO-2 Controls the HTU-R via the EOC to perform one of See Parameter Field
the functions. Definitions
Parameter Field Definitions

C Constant Hex Code Description
EOC_CMD_RTN 0x07 Disables all hold states (loopbacks).
EOC_CMD_LOOP_NTU 0x08 Enables loopback (HDSL to PCM) in channel unit.
EOC_CMD_HOLD 0x10 Sets a hold state.
EOC_CMD_ALOOP_REG 0x19 Sets analog loop back. User-defined.
EOC_CMD_NTU_CCRC_REQ 0x20 RegR sends inverted CRC6 to HTU-C.
EOC_CMD_REGC_CCRC_REQ 0x22 RegC sends inverted CRC6 to HTU-R.
EOC_CMD_NTU_CCRC_END 0x28 RegR stops inverted CRC6 to HTU-C.
EOC_CMD_REGC_CCRC_END 0x29 RegC stops inverted CRC6 to HTU-R.
EOC_CMD_NTU_CCRC_IND Ox3F Notify RegR CRC6 is being sent.
EOC_CMD_REGC_CCRC_IND 0x50 Notify RegC CRC6 is being sent.
EOC_CMD_NTU_CRC_OK Ox5F Notify RegR CRC6 is not being sent.
EOC_CMD_REGC_CRC_OK 0x60 Notify RegC CRC6 is not being sent.

8-26 Conexant 100418C

8.0 API Command Set

Application and Channel Unit Software Developer’s Guide 8.2 Level 2 API Commands

8.2.8.7 Set EOC Address Destination

For the HTU-C, this command selects the destination of the EOC command or message. The
command or message can be routed to either the repeater or HTU-R.

Table 8-68. Opcode 0x3B (_EOC_ADD_DEST)

Destination Description Parameter

_DSL_CHANNELO-2 Sets where command is sent. Defaults to HTU-R. | 0-Send to Repeater
1-Send to HTU-R

8.2.8.8 Insert CRC Errors

This command continuously injects CRC-6 errors by inverting the CRC 6-bit calculation. Errors
continue every 6 ms HDSL frame until the command is disabled. This is used to test far-end CRC
detection capabilities.

Table 8-69. Opcode: 0x3C (_INSERT_CRC6)

Destination Description Parameter

_DSL_CHANNELO-2 Enables CRC6 errors to be sent to the far-end. O—disable CRC errors
1-enable CRC errors

8.2.8.9 EOC Query Received New Data

This command is used to determine when either the HTU-C or HTU-R has received an EOC
read/write message from the far-end. The flags are then cleared after the status is returned. This
command does not return the contents of the EOC rd/wrRegData buffer.

For the HTU-C, these flags should be queried after an EOC Read Register command is sent and
before another EOC Read Register command of the same register is sent.

For the HTU-R, this command checks for updated wrRegData from the HTU-C.

When a newDataFlag bit is set, the host processor can read the EOC register contents by using
the EOC Read Register command.

The register is cleared after EOC_RCVD_NEWDATA_STATUS is queried.

Table 8-70. Opcode: 0x86 (_EOC_RCVD_NEWDATA_STATUS)

Destination Description Parameter
_DSL_CHANNELO-2 Return the received new data status then clears the 0-Request Lo Byte
register. 1-Request Hi Byte

Return Status Bit Definitions

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
Reg 7 Reg 6 Reg 5 Reg 4 Reg 3 Reg 2 Reg 1 Reg 0
High Byte 1 Reg F Reg E Reg D Reg C Reg B Reg A Reg 9 Reg 8

The newDataFlags is a 16-bit variable. A parameter of 0x00 returns and clears the lower 8-bits
of the variable. The parameter of 0x01 returns and clears the upper 8-bits of the 16-bit variable.

Conexant 8-27

8.0 API Command Set RS8953B

8.2 Level 2 API Commands Application and Channel Unit Software Developer’s Guide

8.2.8.10 EOC Read Register

This command extracts the contents of the EOC buffer. The HTU-C returns the contents of the
rdRegData[] buffer; the HTU-R returns the contents of the wrRegData[] buffer.

This command requires that the parameter contain the selected rd/wrRegister. The command
increments the byte number location after every read. The system must repeatedly call this
command for the same number of times as the register size. If the byte number location is greater
than the register size, this command returns a failed response and the data is invalid. In addition, the
EOC Byte Number location APl command can be used at any time to reset the buffer index pointer.

Table 8-71. Opcode: 0x87 (_ EOC_READ_REG_DATA)

Destination Description Parameter

_DSL_CHANNELO-2 Returns 8-bit value in the register selected. See Parameter Field Definitions

Parameter Field Definitions

Byte 7-5 Bit 4 Bits 3-0
Reserved Register type Register Name
Register type: 0 — Write
1 - Read

8.2.8.11 Read EOC Status

This command queries the low level EOC protocol status.

Table 8-72. Opcode: 0x88 (_EOC_STATUS)

Destination Description Return Value HTU-C

_DSL_CHANNELO-2 Returns the EOC status based on parameter. See HTU-C and HTU-R Return Status Bit
Definitions.

For the HTU-C the parameter is 0 and returns the eocCtrl.status. The API allows the user to
query the HTU-C status activity.

HTU-C Return Status Bit Definitions

C Constant Hex Code Description
EOC_STATUS_AVAILABLE 0x01 EOC channel is transparent
EOC_STATUS_BUSY 0x02 EOC handler is reserved
EOC_STATUS_RUN 0x04 EOC handler performs EOC action
EOC_STATUS_HOLD 0x08 Latched EOC command sent out
EOC_STATUS_ERROR 0x10 EOC action failed

8-28 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.2 Level 2 API Commands

For the HTU-R, the parameter is 1 and returns the eocHoldStates[]. This API allows the user to
query which EOC commands are currently latched (in-progress).

HTU-R Return Status Bit Definitions

Opcode Description Hex Code Definition
EOC_REQ_LOOP_RT EOC_REQ_CCRC_RT 0x01 HP loopback
Reserved _NMR EOC_REQ_ALOOP_RT 0x02 HTU-R inserts corrupted CRC
EOC_REQ_CCRC_CO EOC_REQ_NOT_CCRC_RT 0x04 Reserved for NMR
EOC_REQ_NOT_CCRC_CO 0x08 Analog loopback
0x10 Reg-C inserts corrupted CRC
0x20 HTU-R is notified of CRC
0x40 HTU-C in notified of CRC

100418C Conexant 8-29

8.0 API Command Set RS8953B

8.3 Application Examples Application and Channel Unit Software Developer’s Guide

8.3 Application Examples

APl commands have three parts:

1. Destination
2. Opcode
3. Parameter

Destinations for the following examples use _DSL_CHANNELO (0xF9).

8.3.1 Read Example

This section provides EOC read examples. The steps below show how:

1. Select HTU-C and HTU-R Register D.

2. Select HTU-C and HTU-R Register size for register D.
3. Load the register D value into the HTU-R.

4. Read the HTU-Rs register D value from the HTU-C.

8.3.1.1 Step 1: Select HTU-C Register Name

After the EOC available flag is set and startup is complete the EOC channel is ready. This example
sets the HTU-C register D. The ETSI standard specifies that register D contains the device 1D value.
The vendor must define the Device ID value. The HTU-C selects the register to modify by using the
EOC Register Select API.

O0xF9-DSL_CHANNELDO.

0x35-EOC Register Select.

0x1D-The 1 is for read; D is for Register D.

8.3.1.2 Step 2: Select HTU-C Register Size

Select the register size. This example sets the HTU-C read register D size to 8 bytes.
O0xF9-DSL_CHANNELDO.
0x36—EOC Register Size.
0x08-Set Read register D to 8 bytes.

8.3.1.3 Step 3: Set Up HTU-R Register Name and Size
Repeat steps 1 and 2, except on the HTU-R.

8-30

Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.3 Application Examples

8.3.1.4 Step 4: Load HTU-R Read Register D

The HTU-R must load values into the read registers. The HTU-R registers must be loaded before
the HTU-C can read them.

NOTE: The EOC Register Select command is not needed because read register D is the current
register.

After the EOC Register Select API, the EOC byte number location is set to 0. The EOC Write
Register Data APl command copies the 8-bit parameter value into the first byte of the shadow buffer
bytes and increments the byte number location by one. When the next EOC Write Register Data API
is executed, the parameter is written to the second byte number location of the shadow buffer. This
continues until all 8 bytes are filled; then the shadow buffer is copied into the correct register when
the EOC channel is inactive. This shadow buffer step was added to make it impossible to corrupt the
EOC data registers while sending the EOC data.

The following API writes the data into read register D.

O0xF9-DSL_CHANNELDO.

0x38-EOC Write Register Data.

0x55-This is user-defined, in this case 0x55 is the first byte of the Device ID.

This API, with user-defined parameters, is repeated seven times until all eight bytes are filled.

8.3.1.5 Step 5: Set Command for HTU-C to Read HTU-R Register D

The HTU-C issues the Start EOC Read/Write Operation to read HTU-R Register D.
O0xF9-DSL_CHANNELDO.
0x39-Start EOC Read/Write Operation.
0x1D-1 is for read and D is for register D.
This command forces the HTU-R to return all 8 bytes of read register D.

8.3.1.6 Step 6: Read New Data Flags

After the read command is sent, the HTU-C waits until the HTU-R returns the information. The
HTU-C can read the EOC_RCVD_NEWDATA_STATUS API. This command’s result indicates
which EOC register has valid receive data from the EOC channel. When the
_EOC_RCVD_NEWDATA _STATUS result for register D is 1, the data is valid and the flag is
cleared.

O0xF9-DSL_CHANNELDO.

0x86—Read the Received Data Status.

0x01-Read the higher 8-bits of the 16-bit EOC_RCVD_NEWDATA_STATUS register.

8.3.1.7 Step 7: Set Index to O for Read Register D

For the HTU-C to query the value from the first byte, use the following API:
O0xF9-DSL_CHANNELDO.
0x37-Byte Number Location.
0x00-Byte 0 will be read next time.

100418C Conexant 8-31

8.0 API Command Set RS8953B

8.3 Application Examples Application and Channel Unit Software Developer’s Guide

8.3.1.8 Step 8: Read Register D

The EOC Read Register command allows the HTU-C to read the returned value.
0xF9-DSL_CHANNELDO.
0x87—Read EOC Regjister.
0x1D-The 1 is for read; the D is for register D.
When the API is executed the return value is 0x55. Re-executing the APl increments the byte
number location and returns the next read register D value.

8.3.2 Write Example

This section provides a write EOC example. The following steps show how to:

» Set-up the write register size for register B.
* Load the register value.

« Send the register value.

e Inform the HTU-R about the new data.

* Read the register value at the HTU-R.

8.3.2.1 Step 1: Set Up HTU-C Register Number

After the EOC available flag is set and startup is complete, the EOC channel is ready. The ETSI
standard specifies that register B contains the Network Termination Unit (NTU) configuration. The
HTU-C selects the register to modify by using the EOC Register Select API.

O0xF9-DSL_CHANNELDO.

0x35-EOC register select.

0x0B-The 0 is for write register, the B is for register B.

8.3.2.2 Step 2: Set Up HTU-C Register Size

Select the register size. This example sets the HTU-C write register B size to 10 bytes.
O0xF9-DSL_CHANNELDO.
0x36—EOC register size.
O0x0A-Set Write register B to 10 bytes.

8.3.2.3 Step 3: Set Up HTU-R Register Number and Size
Repeat steps 1 and 2, except on the HTU-R.

8-32 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.3 Application Examples

8.3.2.4 Step 4: Load the HTU-C Write Register B

The HTU-C must load the values to send to the HTU-R’s Write Register B.

NOTE: The EOC Register Select command does not need to be set again because Write
Register B is the current register.

After the EOC Register Select API, the EOC Byte Number Location is set to 0. The EOC Write
Register Data API writes the 8-bit parameter into the first byte of the shadow buffer bytes and
increments the byte number location by one. When the next EOC Write Register Data APl is
executed, the parameter is written to the second byte number location of the shadow buffer. This
continues until all 10 bytes are filled; then the shadow buffer is copied into the correct register when
the EOC channel is inactive. This shadow buffer step was added to make it impossible to corrupt the
EOC data registers while sending the EOC data.

The following API writes the data into Read Register B:

O0xF9-DSL_CHANNELDO.

0x38-EOC Write Register Data.

OxAA-This is user-defined; in this case, OXAA is the first byte of the NTU-Configuration.

This API is repeated nine times until all bytes are filled. After the last byte is written and the
EOC channel is available, the shadow buffer is written to Write Register B.

8.3.2.5 Step 5: Set HTU-C Start Sending Command to Write HTU-R Register B

For the HTU-C to write the Write Register B value it issues the Start EOC Read/Write Operation.
0xF9-DSL_CHANNELDO.
0x39-Start EOC Read/Write Operation.
0x0B-The 0 is for write the B is for register B.
This command sends 10 NTU-Configuration bytes to the HTU-R.

8.3.2.6 Step 6: Read the Received Data Status

This command allows the HTU-R to query if any write registers have been updated. If it returns a
zero, no registers have been updated via the EOC channel. If it returns a number, that number will
correspond to the register number with new data.

O0xF9-DSL_CHANNELDO.

0x86—New Data Flag.

0x01-Reads New data flags for registers 8—F.

The return value is 0x08, which corresponds to register B. If register 9 was updated, the value
would be 0x02, A would be a 0x04 and so on. Once the APl command has read the New Data Flags
they are cleared.

8.3.2.7 Step 7: Set Byte Number Location

Set the api_dataBufflndex[] to 0.
O0xF9-DSL_CHANNELDO.
0x37—EOC Byte Number Location.
0x0B-The 0 is for write and the B is Register B.
The byte location is pointing to the first byte.

100418C Conexant 8-33

8.0 API Command Set RS8953B

8.3 Application Examples Application and Channel Unit Software Developer’s Guide

8.3.2.8 Step 8: Read the B Data Register

To read the byte at the byte location issue the EOC Read Register APl command.
0xF9-DSL_CHANNELDO.
0x87—EOC Read Data Register.
0x0B-0 is for write B is Register B.
The return value is OXAA.

8.3.3 HTU-C CRC Check Command Example

Example steps 1 and 2 explain how to test the HTU-C CRC detector.

8.3.3.1 Step 1: HTU-C Receives Corrupted CRC from HTU-R.

To verify the HTU-C CRC detector unit is functioning, the HTU-C requests that the HTU-R send
corrupted CRC-6 errors.

OxF9-DSL_CHANNELDO.

0x3A-Set EOC Control Commands.

0x20-Request corrupted CRC-6 from the HTU-R.

This command sends corrupted CRC-6 every multi-frame until the End of Corrupted CRC-6
command (0x28) is sent. (See the ETSI TS 152 Edition 4 under HDSL EOC opcode messages for
more information.)

The user monitors the HTU-Cs CRC-6 errors counter to verify CRC detector functionality.

8.3.3.2 Step 2: Set the End Corrupted CRC Command

To disable the HTU-R sending corrupted CRC-6 issue the following values.
0xF9-DSL_CHANNELDO.
0x3A-Set EOC Control Commands.
0x28-Request End of Corrupted CRC-6 from the HTU-R.
Stops the HTU-R from sending corrupted CRC-6.

8.3.4 HTU-R CRC Check Command Example
The example steps 1 and 2 explain how to test the HTU-R CRC detector.

8.3.4.1 Step 1: Notify the HTU-R of Corrupted CRC

The HTU-C can notify the HTU-R that it will be sending CRC-6 errors. This will be used in the
HTU-R to disable alarm indication circuitry activated by the detection of corrupted CRC-6.
O0xF9-DSL_CHANNELDO.
0x3A-Set EOC Control Commands.
0x3F-Notify HTU-R the HTU-C will send corrupted CRC-6, disable any alarms.

8-34 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.3 Application Examples

8.3.4.2 Step 2: Send Corrupted CRC

The HTU-C can insert corrupted CRC-6 to every HDSL 6 ms frame with the following API
command.

OxF9-DSL_CHANNELDO.

0x3C-Insert CRC Errors.

0x01-Enable CRC-6 injection.

To disable the insert CRC-6:
OxF9-DSL_CHANNELDO.
0x3C-Insert CRC Errors.
0x00-Disable CRC-6 injection.

100418C Conexant 8-35

8.0 API Command Set RS8953B
8.4 Level 1 API Commands Application and Channel Unit Software Developer’s Guide

8.4 Level 1 API Commands

Use these APl commands to access the bit pump or channel unit directly. They are typically not used
in the ZipSocket system.

8.4.1 Bit Pump APIs
8.4.1.1 Input Signal Level

Table 8-73. Opcode: 0x80 (_SLM)

Destination Description Parameter

_BIT_PUMPOQ-2 Requests the level of average signal level at the 0x00
ADC input.

The return value is an integer (0-255) that is relative to the average absolute value of the ADC input
signal. The measurement scale is such that a value of 255 corresponds to the ADC positive full scale
value.

8.4.1.2 Input DC Offset

Table 8-74. Opcode: 0x81 (_DC_METER)

Destination Description Parameter

_BIT_PUMPOQ-2 Requests the value of the average DC level at the 0x00
ADC input.

The return value is a signed integer (=128 through 127) that is relative to the average DC offset per
ADC sample. The measurement scale is such that the actual DC offset in units of ADC LSB is 32x.
If the DC offset is outside the representable range (—4096 through 4095), the nearest representable
value is used.

8-36 Conexant 100418C

RS8953B 8.0 APl Command Set

Application and Channel Unit Software Developer’s Guide 8.4 Level 1 API Commands

8.4.1.3 Bit Pump BER Meter

Table 8-75. Opcode: 0x15 (_BER_METER_START)

Destination Description Parameter

_BIT_PUMPO-2 Start BER meter. 0x00

Activates the BER meter. The bit pump is set to transmit an internal 4-level scrambled 1s pattern.
The enabled bit is set and the bit_errors and meter_intervals variables are reset to 0. This command
should only be called during the bit pump’s normal operation.

Table 8-76. Opcode: 0x16 (BER_METER_STOP)

Destination Description Parameter

_BIT_PUMPO-2 Stop BER meter. 0x00

Deactivates the BER meter. The bit pump is set to transmit external 4-level data. The enabled bit is
set to OFF. The bit_errors and meter_intervals variables are unmodified so they can still be read.

Table 8-77. Opcode: 0x92 (_BER_METER_STATUS)

Destination Description Parameter

_BIT_PUMPOQ-2 Reads the BER meter status. 0x00
Reads the low byte of the number of bit errors. 0x01
Reads the high byte of the number of bit errors. 0x02
Reads the low byte of the number of meter 0x03
intervals elapsed.
Reads the high byte of the number of meter 0x04
intervals elapsed.

8.4.1.4 Self-test

Table 8-78. Opcode: 0x8C (_SELF_TEST)

Destination Description Parameter
_BIT_PUMPOQ-2 Execute a bit pump self test. Verifies read/write 0x00
operations. 0x01

The return value 0x00 is a bit pump self-test pass; 0x01 is a bit pump self-test fail.

100418C Conexant 8-37

8.0 API Command Set RS8953B
8.5 Channel Unit API Commands Application and Channel Unit Software Developer’s Guide

8.5 Channel Unit APl Commands

These API commands can be used to access the Channel Unit directly.

8.5.1 Set the PCM Multiframe Length

Table 8-79. Opcode: 0x2A (_CU_SET_MFRAME)

Destination Description Parameter

_CU_COMMON Changes the multi-frame sync to the desired 0x00-0x2F
length between 1-48 frames.

The parameter value should equal the desired multi-frame length minus 1. For example, if one
frame per multi-frame is desired, set the parameter to 0. The following settings are used for various
Conexant devices.

* Bt8370 (T1/E1) 48 frames/multi-frame
* Bt8360 (T1) 24 frames/multi-frame
« Bt8510 (E1) 16 frames/multi-frame

8.5.2 Channel Unit Error Counters

APl commands _CU_ERROR_COUNTERS_LO and _CU_ERROR_COUNTERS_HI together
can be used to query a specific error counter in the Channel Unit.

Table 8-80. Opcode: 0x86 (_CU_ERROR_COUNTERS_LO)

Destination Description Parameter

_CU_CHAN1-3 Return lower byte of the specified error counter 0-11
value.

NOTE(S): Refer to Table 8-82 for a description of each error counter.

Table 8-81. Opcode: 0x87 (_CU_ERROR_COUNTERS_HI)

Destination Description Parameter

_CU_CHAN1-3 Return higher byte of the specified error counter 0-11
value.

NOTE(S): See Table 8-82 for the purpose of each error counter.

8-38 Conexant 100418C

RS8953B

8.0 API Command Set

Application and Channel Unit Software Developer’s Guide

Table 8-82. Opcode: 0x0A (_CU_CLEAR_ERROR_COUNTERS)

8.5 Channel Unit API Commands

Destination

Description

Parameter

_CU_COMMON
_CU_CHAN1-3

Clear all the errors counters.

Clear _CU_OUT_OF_SYNC_CTR error counter.

Clear _CU_CRC_ERR_CTR error counter.
Clear _CU_RFIFO_FULL_CTR error counter.
Clear _CU_RFIFO_EMPTY_CTR error counter.
Clear _CU_RFIFO_SLIP_CTR error counter.
Clear _CU_TFIFO_FULL_CTR error counter.
Clear _CU_TFIFO_EMPTY_CTR error counter.
Clear _CU_TFIFO_SLIP_CTR error counter.
Clear _CU_TFIFO_STUFF_CTR error counter.
Clear _CU_DPLL_ERROR_CTR error counter.
Clear _CU_FEBE_ERROR_CTR error counter.
Clear _CU_LOSD_ERROR_CTR error counter.

-

o
[EENIN <
Lo © N o O B~ wONPE O

If the destination of the APl is_CU_COMMON, the specified error counter for all loops is
cleared,; if the destination is a specific loop, this command clears the specified error counter for that

loop only.

8.5.3 Modify Receive Combination Table

Refer to Section 10.10 for a detailed description of receive combination table.

Table 8-83. Opcode: 0x13 (_CU_COMBINE_ADDR)

Destination

Description

Parameter

_CU_COMMON

Change the combine table pointer

modification.

(combine_address) to the value specified by the
parameter. This is the starting address for the

Desired combine table
address (0-63)

Table 8-84. Opcode: 0x11 (_CU_COMBINE_VALUE)

Destination

Description

Parameter

_CU_COMMON

Change the combine table value at
combine_address. Combine_address
increments at each call.

Desired combine table value.

Table 8-85. Opcode: 0x12 (_CU_COMBINE_WRITE)

Destination

Description

Parameter

_CU_COMMON

Update the modified combine table.

0x00

100418C

Conexant

8-39

8.0 API Command Set

RS8953B

8.5 Channel Unit API Commands

Application and Channel Unit Software Developer’s Guide

Table 8-86. Opcode: 0x8B (_CU_READ_COMBINE)

Destination

Description

Parameter

_CU_COMMON

Read the combine table value at the address
specified by the parameter.

Combine table address.

Use _CU_READ_COMBINE to check the current combine table value. To modify the combine
table for fractional T1/E1 application, follow these steps:

1. Use _CU_COMBINE_ADDR to set the starting address in the combine table that needs

modification.

2. Use CU_COMBINE_VALUE to change the combine table values that needs

modification.

3. Use CU_COMBINE_UPDATE to update the modified combine table.

8.5.4 Modify Transmit Routing Table

See Section 10.9 for detailed description of transmit routing table.

Table 8-87. Opcode: 0x16 (_CU_ROUTE_ADDR)

Destination

Description

Parameter

_CU_COMMON

Change the route table pointer (route_address)
to the value specified by the parameter.

Desired route table entry
address (0-63)

Table 8-88. Opcode: 0x14 (_CU_ROUTE_VALUE)

Destination

Description

Parameter

_CU_COMMON

Change the route table value at entry
combine_address to the parameter.

Desired route table value.

Table 8-89. Opcode: 0x15 (_CU_ROUTE_WRITE)

Destination Description Parameter
_CU_COMMON Update the modified route table. 0x00
Table 8-90. Opcode: 0x8C (_CU_READ_ROUTE)
Destination Description Parameter
_CU_COMMON Read the route table value specified by the Route table address.

parameter.

Conexant

100418C

RS8953B

Application and Channel Unit Software Developer’s Guide

8.0 API Command Set
8.5 Channel Unit API Commands

Use CU_READ_ROUTE to check the current route table value. To modify the routing table
for fractional T1/E1 application, follow these steps:

1. Use _CU_ROUTE_ADDR to set the starting address in the route table that needs
modification.
. Use _CU_ROUTE_VALUE to change the route table values that needs modification.
3. Use CU_ROUTE_UPDATE to update the modified route table.

8.5.5 Modify Transmit Payload Mapper (TMAPS)

See Section 10.11 for a detailed description of transmit payload mapper.

Table 8-91. Opcode: 0x1B (_CU_TMAP1_VALUE)

Destination Description Parameter
_CU_CHAN1-3 Changes loop specific TMAP1 register value. Desired TMAP1 value.
Table 8-92. Opcode: 0x1C (_CU_TMAP2_VALUE)
Destination Description Parameter
_CU_CHAN1-3 Changes loop specific TMAP2 register value. Desired TMAP2 value.
Table 8-93. Opcode: 0x1D (_CU_TMAP3_VALUE)
Destination Description Parameter
_CU_CHAN1-3 Changes loop specific TMAP3 register value. Desired TMAP3 value.
Table 8-94. Opcode: Ox1E (_CU_TMAP4_VALUE)
Destination Description Parameter
_CU_CHAN1-3 Changes loop specific TMAPA4 register value. Desired TMAPA4 value.
Table 8-95. Opcode: Ox1F (_CU_TMAP5_VALUE)
Destination Description Parameter
_CU_CHAN1-3 Changes loop specific TMAPS register value. Desired TMAPS value.
Table 8-96. Opcode: 0x20 (_CU_WRITE_TMAP)
Destination Description Parameter
_CU_COMMON Updates the modified transmit mapping table. 0x00

Conexant

8-41

8.0 API Command Set RS8953B

8.5 Channel Unit API Commands Application and Channel Unit Software Developer’s Guide
Table 8-97. Opcode: 0x8D (_CU_READ_TMAP)
Destination Description Parameter
_CU_CHAN1-3 Reads specified TMAP register value. TMAP register number.

Use _CU_READ_TMAP to check the current transmit payload map value. To modify any of
the five TMAP registers for fractional T1/E1 application, follow these steps:

1. Use _CU_TMAPx_VALUE to change the corresponding TMAP register value.
2. Use CU_WRITE_TMAP to update the Transmit Payload Mapper.

8.5.6 Modify Receive Payload Mapper (RMAPS)

See Section 10.12 for detailed description of receive payload mapper.

Table 8-98. Opcode: 0x21 (_CU_RMAP1_VALUE)

Destination Description Parameter

_CU_CHAN1-3 Changes loop specific RMAP1 register value. Desired RMAP1 value.

Table 8-99. Opcode: 0x22 (_CU_RMAP2_VALUE)

Destination Description Parameter

_CU_CHAN1-3 Changes loop specific RMAP2 register value. Desired RMAP2 value.

Table 8-100. Opcode: 0x23 (_CU_RMAP3_VALUE)

Destination Description Parameter

_CU_CHAN1-3 Changes loop specific RMAP3 register value. Desired RMAP3 value.

Table 8-101. Opcode: 0x24 (_CU_WRITE_RMAP)

Destination Description Parameter

_CU_COMMON Updates the modified receive mapping table. 0x00

Table 8-102. Opcode: 0x8E (_CU_READ_RMAP)

Destination Description Parameter

_CU_CHAN1-3 Reads specified RMAP register values. RMAP register number.

Use _CU_READ_RMAP to check the current receive payload map value. To modify any of the
three RMAP registers for fractional T1/E1 application, follow these steps:

1. Use _CU_RMAPx_VALUE to change the corresponding RMAP register value.
2. Use CU_WRITE_RMAP to update the receive payload mapper.

8-42 Conexant 100418C

RS8953B

8.0 API Command Set

Application and Channel Unit Software Developer’s Guide

8.5.7 Modify Data Bank Patterns (DBANKS)

Table 8-103. Opcode: 0x17 (_CU_DBANK_1)

8.5 Channel Unit API Commands

Destination

Description

Parameter

_CU_COMMON

Change the DBANK1 register to the desired
pattern specified by the parameter.

Desired pattern for DBANK1

Table 8-104. Opcode: 0x18 (_CU_DBANK_2)

Destination

Description

Parameter

_CU_COMMON

Change the DBANK2 register to the desired
pattern specified by the parameter.

Desired pattern for DBANK2

Table 8-105. Opcode: 0x19 (_CU_DBANK_3)

Destination

Description

Parameter

_CU_COMMON

Change the DBANKS3 register to the desired
pattern specified by the parameter.

Desired pattern for DBANK3

1. DBANK 1-3, each holds an 8-bit programmable pattern that can be used to replace
transmit HDSL payload bytes or receive PCM time slots according to the transmit payload
map (Section 10-11) and receive combination table (Section 10-10) selections.

2. Multiple DBANK registers may be needed to fill transmit HDSL payload bytes reserved by
ETSI standards for future applications.

8.5.8 Set Channel Unit Frame Format

Table 8-106. Opcode: 0x09 (_CU_FRAME_FORMAT)

Destination Description Parameter
_CU_COMMON Framed: MSYNC accepts TMSYNC as transmit 0x00
sync reference.
_CU_COMMON Unframed: MSYNC ignores TMSYNC. 0x01

100418C

Conexant

8-43

8.0 API Command Set

RS8953B

8.5 Channel Unit API Commands

Application and Channel Unit Software Developer’s Guide

8.5.9 Reset Transmit/Receive FIFOs

If the destination of the APl is_CU_COMMON, transmit FIFOs for all loops will be reset; if the
destination is a specific loop, this command resets the transmit FIFO for that loop only.

Table 8-107. Opcode: 0x0B (_CU_RESET_TX_FIFO)

Destination Description Parameter
_CU_COMMON Reset the transmit FIFO. 0x00
_CU_CHAN1-3

If the destination of the APl is _CU_COMMON, receive FIFO for all loops will be reset; if the
destination is a specific loop, this command resets the receive FIFO for that loop only.

Table 8-108. Opcode: 0x04 (_CU_RESET_RX_FIFO)

Destination Description Parameter
_CU_COMMON Reset the receive FIFO. 0x00
_CU_CHAN1-3

8.5.10 Set Transmit/Receive FIFO Water Levels

TFIFO water level specifies the phase offset between the PCM and HDSL 6 ms frames. It is
programmed as the number of TCLK cycle delays from the start of PCM 6 ms sync to the start of
HDSL 6 ms frame. This phase offset determines the amount of PCM data written to the TFIFO
before the HDSL transmitter begins extracting data from the TFIFO, which also defines each
transmitter’s data throughput delay and subsequently the differential delay with respect to other
HDSL channels.

RFIFO water level determines the PCM and HDSL receiver’s phase error tolerance and receive
throughput data delay by establishing a fixed phase offset between the master HDSL channel’s
receive 6 ms frame and the PCM 6 ms sync. It selects the number of RCLK delays from HDSL to
PCM 6 ms frames and controls the amount of time available for the HDSL receiver to map data into
the RFIFO before the PCM receiver begins extracting data from RFIFO.

Table 8-109. Opcode: OXOE (_CU_TFIFO_WL)

Destination Description Parameter

_CU_CHAN1-3 Set transmit FIFO water level. Desired water level.

Table 8-110. Opcode: OXOF (_CU_RFIFO_WL_LO)

Destination Description Parameter

_CU_COMMON Sets receive FIFO water level. Desired water level (low).

Conexant 100418C

RS8953B

8.0 API Command Set

Application and Channel Unit Software Developer’s Guide

Table 8-111. Opcode: 0x10 (_CU_RFIFO_WL_HI)

8.5 Channel Unit API Commands

Destination Description

Parameter

_CU_COMMON Sets receive FIFO water level.

Desired water level (high).

8.5.11 Set Master Loop

Table 8-112. Opcode: 0x27 (_CU_SET_MASTER_LOOP)

Destination Description

Parameter

_CU_COMMON Sets the specified loop to be master.

Desired master loop.

8.5.12 Channel Unit SYNC Status

Table 8-113. Opcode: 0x81 (_CU_SYNC)

Destination Description Parameter
_CU_COMMON Channel Unit synchronization status. 0x00
_CU_CHAN1-3
If the destination is _CU_COMMON, the return value:
1 —all the loops are IN_SYNC
0 — not all the loops are IN_SYNC
If the destination is a specific loop, the return value:
0-CU_OUT_OF_SYNC
1-CU_ACQUIRING_SYNC
2-CU_IN_SYNC
3-CU_LOSING_SYNC
8.5.13 Channel Unit BER Meter
Table 8-114. Opcode: 0x25 (_CU_BER_START)
Destination Description Parameter
_CU_COMMON Start Channel Unit BER meter. 0x00
Table 8-115. Opcode: 0x26 (_CU_BER_CONFIGURE)
Destination Description Parameter
_CU_COMMON Configure Channel Unit BER meter. BER parameter (see
Table 8-116)
100418C Conexant 8-45

8.0 API Command Set RS8953B
8.5 Channel Unit API Commands Application and Channel Unit Software Developer’s Guide

Table 8-116. BER Parameter

Bit 7 Bit 5-6 Bit 3-4 Bit 2 Bit 0-1
Reserved PRBS mode BER scale Reserved BER select
(test pattern) (test interval)
BER select: 00 — Normal

10 — Reserved
01 - PCM Framed
11 — PCM Serial

BER scale: 00 — 231 pits
01 — 228 bits
10 — 22° bits
11 - 221 bits

PRBS mode: 00 - 2%
01-2%
10-2%
11-2%
NOTE: Refer to Command Register 3 (CMD_3) and Command Register 6 (CMD_6) in the
[N8953BDSA] for additional information.

References:
1. [N8953BDSA] RS8953B/RS8953SPB HDSL Channel Unit Data Sheet, August, 1998.
2. [G.991.1] International Telecommunication Union. High Speed Digital Subscriber

Line (HDSL) Transceivers. October, 1998.

Table 8-117. Opcode: 0x8A (_CU_MEASURE_BER)

Destination Description Parameter

_CU_COMMON Check Channel Unit BER meter. 0x00

Table 8-118. Opcode: 0x89 (_CU_BER_STATUS)

Destination Description Parameter

_CU_COMMON Check Channel Unit BER meter status. 0x00

1. Refer to the Bt8953 data sheet for detailed information on command register 6 BER_SEL
options.
2. These BER meter-related APIs are not supported in Channel Unit 6.0.

8-46 Conexant 100418C

9.0 Structures

9.1 CU WR

CU_WR is a global structure that holds several register structures. It maps all the write registers in
the channel unit. All related structures are defined in CU.H, and definitions register can be found in
the channel unit data sheet.

t ypedef struct

{
TX WR tx_wr_loopl; /* 0Ox00 - Ox1F */
TX WR tx_wr_loop2; /* 0x20 - Ox3F */
TX WR tx_wr_loop3; /* 0x40 - Ox5F */
RX WR rx_wr _| oopl; /* 0x60 - 0x6B */
BP_U 8BIT reservedl[4]; /* Ox6C - Ox6F */
PRA TX WR pra_tx_w; /* 0x70 - 0x74 */
BP_U 8BIT reserved2[11]; /* Ox75 - Ox7F */
RX_ WR rx_wr _| oop2; /* 0x80 - 0x8B */
BP_U 8BIT reserved3[20]; /* Ox8C - Ox9F */
RX WVR rx_wr _| oop3; /* OxAO - OxAB */
BP_U 8BIT reserved4[4]; /* OxAC - OxAF */
PRA RX WR pra_rx_w; /* 0OxBO - 0xB4 */
BP_U 8BIT reserved5[11]; /* OxB5 - OxBF */
COVWON_WR comon_wr _regs; /* 0xC0 - OxFF */
} CUWR

100418C

Conexant

9-1

9.0 Structures RS8953B
9.2 CU_RD Application and Channel Unit Software Developer’s Guide

9.2 CU_RD

CU_RD is a global structure that holds several register structures. It maps all the read registers in
the channel unit. All related structures are defined in CU.H, and definitions register can be found in
the channel unit data sheet [N8953BDSB].

t ypedef struct

{
RX RD rx_rd_| oopl;
TX_RD tx_rd_Il oopl;
RX_RD rx_rd_| oop2;
TX_RD tx_rd_I| oop2;
RX_RD rx_rd_| oop3;
TX_RD tx_rd_I| oop3;
COVWWON_RD comon_rd_regs;
PRA TX RD pra_tx_rd;
BP_U 8BI T reservedl[56];
PRA_RX _RD pra_rx_rd;

} CU_RD;

9-2 Conexant 100418C

RS8953B 9.0 Structures
Application and Channel Unit Software Developer’s Guide 9.3 CU_FLAGS

9.3 CU_FLAGS

CU_FLAGS structure holds six important channel unit status flags.

t ypedef struct

{
BP_BI T_FI ELD _Culast er Loop: 2;

BP_BI T_FI ELD _CuLoopsReversed: 1;
BP_BI T_FI ELD _CuFranmeFor mat : 1;
BP_BI T_FI ELD _CuUpdat eLeds: 1;
BP_BI T_FI ELD _CuAut oRestart: 1,
BP_BI T_FI ELD : 2;

} CU_FLAGS;

_CuMasterLoop Current master loop
00—Loop 0 is the master loop
01—Loop 1 is the master loop
10—Loop 2 is the master loop
11—Reserved for future use
_CuLoopsReversed Current loop connection status
0—No loop reversal
1—L oops reversed
_CuFrameFormat Current channel unit frame format
0—Framed data
1—Unframed data
_CuUpdateLeds Enable/Disable the channel unit LED update
0—Disable the channel unit LED update
1—Enable the channel unit LED update
_CuAutoRestart Activation State Machine (ASM) status
0—ASM is disabled
1—ASM is enabled

100418C Conexant 9-3

9.0 Structures RS8953B
9.4 CU_REG_COPY Application and Channel Unit Software Developer’s Guide

9.4 CU_REG_COPY

CU_REG_COPY structure keeps copies of values written to a subset of all the write registers that
are not Write/Readable. The structures within this structure are defined in CU.H. To keep track of a
write register value, update the corresponding register in CU_REG_COPY before writing the value
to the chip. This structure can be expanded to keep track of more write registers when necessary.

t ypedef struct

{
COMWON_CMVD 1 cnd_1;
COMWON_CMD 2 cnd_2;
COMWON_CMVD_3 cnd_3;
COMWON_CMD 5 cnd_5;
COMWON_CMD 6 cnd_6;
COMWON_CMD 7 cnd_7;
TCVD_1 tcnd_1[_NO OF_LOOPS];
TCVD_2 tcnmd_2[_NO OF_LOOPS];
RCVD_1 rcnd_1[_NO OF _LOOPS];
RCVD 2 rcnd_2[_NO _OF _LOOPS];
IRR inr;
DPLL_GAI N dpl | _gai n;
BP_U 8BIT dpll _factor;
CU IND_LO tind_|l o[_NO OF LOOPS];
CU IND_H tind_hi[_NO OF LOOPS];
CU ZBIT_PID tzbit_pid[_NO OF_LOOPS];
BP_U 8BIT zbits_conmon[5] ;

} CU_REG_COPY;

9-4 Conexant 100418C

RS8953B 9.0 Structures
Application and Channel Unit Software Developer’s Guide 9.5IRR

9.5 IRR

IRR structure holds the bits indicating any of the eight interrupt events. When a bit is set to 1, the
corresponding interrupt happens.

t ypedef uni on

{
BP_U 8BIT reg;
struct
{
BP_BI T_FI ELD tx1: 1,
BP_BI T_FI ELD tx2: 1,
BP_BI T_FI ELD t x3: 1,
BP_BI T_FI ELD rx1: 1;
BP_BI T_FI ELD rx2: 1,
BP_BI T_FI ELD rx3: 1;
BP_BI T_FIELD tx_err:1;
BP_BI T_FIELD rx_err:1;
} bits;
}IRR

tx1-tx3 Transmit HDSL 6 ms Frame Interrupt—reported coincident with the start of the
transmit 6 ms frame for the respective HDSL channel.

rx1-rx3 Receive HDSL 6 ms Frame Interrupt—reported coincident with the start of the
receive 6 ms frame for the respective HDSL channel.

tx_err Transmit Error Interrupt—the transmit stuffing and TFIFO errors from all enabled
error sources are logically OR’d to form TX_ERR.

rx_err Receive Error Interrupt—Framer state transitions, RFIFO errors, CRC and FEBE
counter overflows, and DPLL errors from all enabled error sources are logically ORed
to form RX_ERR.

100418C Conexant 9-5

9.0 Structures RS8953B
9.5IRR Application and Channel Unit Software Developer’s Guide

9-6 Conexant 100418C

10.0 Global Variables

10.1 *cu_wr

Type: CU_WR
File: CU_INIT.C

*cu_wr is a pointer to the write register structure for the channel unit. See Section 9-1 for the
definition of structure CU_WR.

10.2 *cu_rd

Type: CU_RD
File: CU_INIT.C

*cu_rd is a pointer to the read register structure for the channel unit. See Section 9-2 for the
definition of structure CU_RD.

10.3 num_bit_pumps

Type: BP_U_8BIT
File: CU_UTILS.C

The num_bit_pumps variable contains the number of Line Interface Cards (LIC) found on the EVM
motherboard. The value is from 0 to 3. The application code determines the num_bit_pumps value
by issuing the _BITPUMP_PRESENT API command to all motherboard slots and counting the
number of successful responses.

100418C

Conexant 10-1

10.0 Global Variables RS8953B
10.4 bp_position[] Application and Channel Unit Software Developer’s Guide

10.4 bp_position[]

Type: BP_U_8BIT
File: CU_UTILS.C

The bp_position[NUM_LOOPS] array contains the physical position of the LICs as they are located
on the motherboard. The application code determines the bp_position[] values by issuing the
_BITPUMP_PRESENT API command to all motherboard slots. Table 10-1 lists the possible
location values of the LIC.

Table 10-1. Possible Location Values of the Line Interface Cards

Motherboard Slot No. Value
1 0
2 1
3 2

bp_position[0] contains the location of the first LIC found.
bp_position[1] contains the location of the second LIC found.
bp_position[2] contains the location of the third LIC found.

If a bp_position[] index is unused because there was not a sufficient number of LICs for the
current application to fill all EVM motherboard slots, the unused bp_position[] values are set to
OxFF.

Examples:
In a 2E1 system with the LICs located in slots #1 and #3, the bp_position[] array will look as
follows:

bp_position[0] =0
bp_position[1] =2
bp_position[2] = OXFF

In a one pair system with the LIC located in slot #2, the bp_position[] array will look as follows:
bp_position[0] =1

bp_position[1] = OXFF
bp_position[2] = OXFF

10-2 Conexant 100418C

RS8953B 10.0 Global Variables

Application and Channel Unit Software Developer’s Guide 10.5 rate_values([][]

10.5 rate_values[][]

Type: BP_U_8BIT
File: CU_INIT.C

The first index of the rate_values[][] arrays is specified by the rate_index variable.

The rate_values[][] array contains register values for the standard rate configurations, i.e., 2T1,
2E1, 3E1, and 1E1 (see Section 10.6).

The second dimension of the rate_values[][] determines which channel unit register is being
indexed. See CU_TABLE.H for the list of registers.

The channel unit initialization functions index this array to determine the desired register value
for the current configuration.

Those registers requiring different programming values among the configurations are included
in this matrix. The other registers, programmed identically between the various configurations, are
hard-coded.

NOTE: Inthe EVM system, the rate_values[][] array is maintained in external RAM and
consumes a large amount of memory. For many systems with limited external RAM,
this array could cause memory problems. Developers should hard-code the register
values for their specific application configuration into the appropriate initialization
function. The rate_values[][] and rate_index variables should then be deleted.

100418C Conexant 10-3

10.0 Global Variables RS8953B

10.6 rate_index Application and Channel Unit Software Developer’s Guide

10.6 rate_index

Type: BP_U_8BIT
File: CU_INIT.C

The rate_index variable contains the channel unit configuration index. The rate_index indexes the

rate_values[][] array when programming the channel unit registers. The channel unit configuration
index is defined in Table 10-2.

Table 10-2. Channel Unit Configuration Index

Configuration Value Macro Definition
2T1 0 oM
2E1 1 _2F1
3E1 2 _3E1
Custom 3 _CU_CUSTOM
171 4 in
1E1 5 _1E1

The channel unit_CU_CONFIGURE API command sets the rate_index variable.

10.7 htu_values[][]

Type: BP_U_8BIT
File: CU_INIT.C

The htu_values[][] array contains register values for HTU types, i.e., HTU-C and HTU-R (see
Section 10.8).

The second dimension of htu_values[][] determines which channel unit register is being
indexed. See CU_TABLE.H for the list of registers.

The channel unit initialization functions index this array to determine the desired register value
for the current HTU type.

Only registers that require different programming values between the various HTU types are
included in this matrix. The registers that are programmed the same between the various
configurations are hard-coded.

10-4 Conexant 100418C

RS8953B

10.0 Global Variables

Application and Channel Unit Software Developer’s Guide

10.8 htu_index

Type: BP_U_8BIT

File: CU_INIT.C

10.8 htu_index

The htu_index variable contains the channel unit HTU type index. The htu_index indexes the
htu_values[][] array when programming the channel unit registers. Table 10-3 lists the channel unit

terminal index.

Table 10-3. Channel Unit htu_index Values

HTU Type Value Macro Definition
HTU-C 0 _HTUC
HTU-R 1 _HTUR

The channel unit_CU_TERMINAL_TYPE API command sets the htu_index variable.

100418C

Conexant

10-5

10.0 Global Variables RS8953B
10.9 route_table[64] Application and Channel Unit Software Developer’s Guide

10.9 route_table[64]

Type: BP_U_8BIT
File: CU_MAPC

The Route table array has up to 64 entries, each containing the routing information for the
corresponding time slot. Standard E1 requires 32 table writes, corresponding to 32 time slots.
Standard T1 requires 25 table writes, where the F-bit location is treated as the 25th time slot.
Table 10-4 lists each entry in the transmit routing table.

Table 10-4. Route Table Entry Definition

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
— INSERT_EN ROUTE[1:0] CH3 ROUTE[1:0] CH2 ROUTE[1:0] CH1
ROUTEJ1:0] Routing Code—Three identical routing codes are present in each

table entry to select which data source is routed to each of three
HDSL channel destinations (CH1-CH3). Route data is available
from three sources: PCM Transmit Serial Data (TSER), PCM
Insert Serial Data (INSDAT), and PRBS generator data. In
addition, TSER data is available from an 8-bit delay buffer to allow
routing codes to use the same TSER byte twice as a data source.
PCM time slot data can also be discarded by selecting no
destination channels. INSDAT is available only from the 8-bit
delay buffer, and cannot be repeated in the same manner as TSER.
INSDAT occupies delay buffer space and prevents routing of
previous TSER data during the time slot following INSERT_EN.
For example, if INSERT_EN is active in the time slot 1 table entry,
during time slot 2 the delay buffer contains INSDAT, not the
previous TSER. The PRBS generator is active only during time
slots that select PRBS data, which allows discontinuous time slots
to be tested with a single continuous PRBS test pattern. Sequential
time slot routing is performed from inputs to destination channels
without time slots reordering.

ROUTE[1:0] Source of Transmit HDSL Channel Data

00 Discard, do not route time slot data

01 TSER

10 PRBS (or FILL_PATT, if PRBS_DIS = 1)

11 Previous TSER (or INSDAT) from delay buffer

10-6 Conexant 100418C

RS8953B

10.0 Global Variables

Application and Channel Unit Software Developer’s Guide 10.9 route_table[64]

INSERT_EN

Enable INSERT—Controls the state of the internal mux and the
INSERT output pin during the corresponding PCM time slot’s
sample time. The next table entry is programmed to select the
previous time slot (ROUTE = 11) to place INSDAT data from the
previous time slot into the TFIFO.

INSERT output pin remains inactive (low)

INSERT output pin active (high)

100418C

Conexant 10-7

10.0 Global Variables

RS8953B

10.10 combine_table[64]

10.10 combine_table[64]

Type: BP_U_8BIT
File: CU_MAPC

Application and Channel Unit Software Developer’s Guide

The Combine_table array has up to 64 entries, each containing the combination information for the
corresponding time slot. Standard E1 requires 32 table writes, corresponding to 32 time slots.
Standard T1 requires 25 table writes, where the F-bit location is treated as the 25th time slot.
Table 10-5 lists each entry in the receive combination table.

Table 10-5. Combine Table Entry Definition

Bit 7

Bit 6

Bit5

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DBANK

DROP_EN BER_EN COMBINE[:0]

COMBINE[1:0]

00
01
10
11

BER_EN

DROP_EN

Source of RSER Output Data

Combine Code—Selects one of four data sources for output on
RSER during the respective receive PCM time slot destination.
The data source is selected from one of three HDSL receive
channels or the DBANK register. The first combine code that
selects data from a HDSL channel receives the first payload byte
mapped from that channel’s payload block, as determined by the
payload map. When COMBINE[1:0] is not 00, DBANK_SEL[1:0]
must be 00.

Determined by DBANK_SEL[1:0]
HDSL receive channell
HDSL receive channel2
HDSL receive channel3

BER Meter Enable—Places a copy of the respective PCM time
slot’s data into the BER meter. Any number of time slots can be
copied without affecting throughput.

BER meter ignores PCM time slot
BER meter receives copy of PCM time slot data from RSER

Enable DROP—Controls the state of the DROP output pin which
marks the respective time slot coincident with data output on
RSER.

DROP output pin remains inactive (low)

DROP output pin active (high)

10-8

Conexant 100418C

RS8953B 10.0 Global Variables
Application and Channel Unit Software Developer’s Guide 10.10 combine_table[64]

DBANK _SEL[1:0] Source of RSER Output Data
Data Bank Select (applicable only if COMBINE = 00)—Selects
one of three DBANK registers to output on RSER during the
respective time slot.

00 Determined by COMBINE[1:0]
01 DBANK_1

10 DBANK_2

11 Determined by RSIG_EN

DBANK_3 (when RSIG_EN = 0)
RSIG_TBL (when RSIG_EN = 1)

100418C Conexant 10-9

10.0 Global Variables
10.11 tmap_table[9][_NO_OF_LOOPS]

RS8953B
Application and Channel Unit Software Developer’s Guide

10.11 tmap_table[9][NO_OF LOOPS]

Type: BP_U_8BIT
File: CU_MAPC

The transmit payload map (TMAP_1-TMAP_9, defined in Table 10-6 through Table 10-14),
determines whether HDSL payload bytes (bytes 1-36) are supplied from PCM time slots, DBANK
registers, or the HDSL auxiliary channel data. All routed time slots to a given channel’s TFIFO
buffer must also be mapped out of the buffer. If PCM transmit data is input-aligned to MSYNC, the
first TMAP byte to select PCM receives the first routed PCM time slot from the transmit PCM
multiframe (i.e., PCM frame 0 maps to HDSL payload block 1). If PCM data is not aligned to
MSYNC, payload bytes mapped from the TFIFO buffer are not aligned to PCM time slots and
HDSL payload blocks are not aligned to PCM frames.

Table 10-6. Transmit Payload Map (TMAP_1)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BYTE 4 TMAP[1:0] BYTE 3 TMAP[1:0] BYTE 2 TMAP[1:0] BYTE 1 TMAP[1:0]
Table 10-7. Transmit Payload Map (TMAP_2)
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BYTE 8 TMAP[1:0] BYTE 7 TMAP[1:0] BYTE 6 TMAP[1:0] BYTE 5 TMAP[1:0]
Table 10-8. Transmit Payload Map (TMAP_3)
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BYTE 12 TMAP[1:0] BYTE 11 TMAP[1:0] BYTE 10 TMAP[1:0] BYTE 9 TMAP[1:0]
Table 10-9. Transmit Payload Map (TMAP_4)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BYTE 16 TMAP[1:0] BYTE 15 TMAP[1:0] BYTE 14 TMAP[1:0] BYTE 13 TMAP[1:0]
Table 10-10. Transmit Payload Map (TMAP_5)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BYTE 20 TMAP[1:0] BYTE 19 TMAP[1:0] BYTE 18 TMAP[1:0] BYTE 17 TMAP[1:0]
10-10 Conexant 100418C

RS8953B 10.0 Global Variables
Application and Channel Unit Software Developer’s Guide 10.11 tmap_table[9][NO_OF LOOPS]

Table 10-11. Transmit Payload Map (TMAP_6)
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BYTE 24 TMAP[1:0] BYTE 23 TMAP[1:0] BYTE 22 TMAP[1:0] BYTE 21 TMAP[1:0]

Table 10-12. Transmit Payload Map (TMAP_7)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BYTE 28 TMAP[1:0] BYTE 27 TMAP[1:0] BYTE 26 TMAP[1:0] BYTE 25 TMAP[1:0]

Table 10-13. Transmit Payload Map (TMAP_8)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BYTE 32 TMAP[1:0] BYTE 31 TMAP[1:0] BYTE 30 TMAP[1:0] BYTE 29 TMAP[1:0]

Table 10-14. Transmit Payload Map (TMAP_9)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BYTE 36 TMAP[1:0] BYTE 35 TMAP[1:0] BYTE 34 TMAP[1:0] BYTE 33TMAP[1:0]
TMAP[1:0] Transmit HDSL Payload Source
00 PCM data from TFIFO
01 DBANK_1
10 DBANK_2
11 DBANK_3

100418C Conexant 10-11

10.0 Global Variables RS8953B

10.12 rmap_table[6][_ NO_OF LOOPS] Application and Channel Unit Software Developer’s Guide

10.12 rmap_table[6][NO_OF LOOPS]

Type: BP_U_8BIT
File: CU_MAPC

The receive payload map (RMAP_1-RMAP_6), defined in Table 10-15 through Table 10-20,
controls placement of HDSL payload bytes (bytes 1-36) into the RFIFO. It accomplishes this by
instructing the mapper to place or discard payload bytes from the received payload block (the
RFIFO outputs to reconstruct the PCM channel). RMAP is programmed to discard bytes within the
payload block that are not needed for PCM reconstruction. In T1 mode, RMAP must be
programmed to choose which HDSL channel supplies F-bits, by enabling one extra byte of payload
at the end of the payload block.

Table 10-15. Receive Payload Map (RMAP_1)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
— — RMAP[5:0]

Table 10-16. Receive Payload Map (RMAP_2)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
— — RMAP[11:6]

Table 10-17. Receive Payload Map (RMAP_3)
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
— — RMAP[17:12]

Table 10-18. Receive Payload Map (RMAP_4)
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
— — RMAP[23:18]

Table 10-19. Receive Payload Map (RMAP_5)
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
— — RMAP[29:24]

10-12 Conexant 100418C

RS8953B 10.0 Global Variables

Application and Channel Unit Software Developer’s Guide 10.13 _CuFlags

Table 10-20. Receive Payload Map (RMAP_6)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
— — RMAP[35:30]
RMAP[35:0] Receive Payload Map—Six registers hold a 36-bit value to define

which of the received HDSL payload bytes (bytes 1-36) are placed
into the RFIFO. RMAP[0] corresponds with the first HDSL
payload byte (byte 1). In T1 mode, F-bits are mapped by enabling
one extra byte after the last payload-mapped byte. For example,
RMAP[12] controls F-bit mapping to the RFIFO in 2T1
applications.

If RMAP[x] = 0, discard payload byte (x + 1)
If RMAP[x] = 1, map payload byte (x + 1) to RFIFO

10.13 _CuFlags

Type: CU_FLAGS
File: CU_INIT.C

The _CuFlags variable contains channel unit status flags, which dictate the flow of the channel unit
code.

10.14 cu_reg_copy

Type: CU_REG_COPY
File: CU_INIT.C

The cu_reg_copy variable maintains a copy of registers that could change during typical channel
unit operating conditions. This is different from the rate_values and htu_values arrays in that those
arrays are only programmed during channel unit initialization.

The cu_reg_copy variable is used primarily by the bit-wise registers (CMD_1, CMD_2, etc.)
because the channel unit does not have any write or read capability. When a register or bit-field is
changed, the specific register is modified in the cu_reg_copy variable. The entire contents of the
cu_reg_copy variable are then written to the part.

100418C Conexant 10-13

10.0 Global Variables RS8953B
10.14 cu_reg_copy Application and Channel Unit Software Developer’s Guide

10-14 Conexant 100418C

11.0 Functions

11.1 DSL Initialization Functions

This section discusses DSL or application level initialization functions are discussed. These
functions can be found in DSL_INIT.C in the MAIN directory.

11.1.1 void _DSLInitialization(void)

This function initializes the HDSL system in this order:
1. Initialize software upon power-up
2. Initialize DIP switch
3. Initialize 8051
4. Initialize Global parameter
5. Check the presence of bit pumps and channel unit

Called by:
Application code
Application code

11.1.2 BP_U_8BIT _IsChannelUnitEvmPresent (void)

This function checks whether or not the channel unit card is present. If present, channel unit-related
LEDs are turned off.

The return value is:
1=_PRESENT
2=_NOT_PRESENT

This function only needs to be called once during system initialization.

Called by:
Application code

100418C Conexant 11-1

11.0 Functions RS8953B

11.1 DSL Initialization Functions Application and Channel Unit Software Developer’s Guide

11.1.3 BP_U_8BIT _InitChannelUnitEvmBoard (void)

This function initializes the channel unit EVM board. Sequence of events:

Determine framer type

Determine the EVM configuration

Initialize channel unit using the _CU_CONFIGURE command
Initialize framer using the _FRAMER_CONFIGURE command
Initialize L1U using the LIU_CONFIGURE command

AN -

The return values are:
0= _PASS successfully completed operation
1=_FAIL an error occurred

This function only needs to be called once during system initialization.

Called by:
Application code

11.1.3.1 BP_U_8BIT _CulnitFramer (void)
This function initializes the framer (Bt8510, Bt8360, or Bt8370).

11-2 Conexant 100418C

RS8953B 11.0 Functions

Application and Channel Unit Software Developer’s Guide 11.2 Channel Unit Initialization Functions

11.2 Channel Unit Initialization Functions

This section discusses channel unit initialization functions found in CU_INIT.C in the CHANUNIT
subdirectory.

11.2.1 BP_U_8BIT _CulnitChannelUnit (void)

This function initializes all channel unit registers for a specific configuration and terminal unit.
After initialization, the channel unit is in idle mode.
This function must be called during the initial configuration and when the channel unit is reset.
Called by:
CU_API.C (_CU_CONFIGURE API command)

11.2.2 void _CulnitAddresses (void)

This function initializes the channel unit EVM base addresses and channel unit, framer, and LI1U
pointers and masks all framer interrupts. In addition, _CuChipVersion.present is initialized to Not
Present, the master loop is set to the location of the first LIC found, and the EOC handler state is
initialized to be EOC_IDLE.
This function only needs to be called once during system initialization.
Called by:
Application code

11.2.3 void _CulnitCommonRegisters

This function initializes the channel unit's common registers.
Called by:
_CulnitChannelUnit()

11.2.4 void _CulnitHdslLoops

This function initializes the HDSL transmitter- and receiver-specific registers for all current loops.
Any loop that does not connect to a LIC is not initialized.
Called by:
_CulnitChannelUnit()

100418C Conexant 11-3

11.0 Functions RS8953B
11.3 Channel Unit Mapping Functions Application and Channel Unit Software Developer’s Guide

11.3 Channel Unit Mapping Functions

This section discusses the channel unit mapping functions. These functions are responsible for
initializing the transmit routing table, receive combination table, transmit payload mapper, receive
payload mapper, and water levels based on the system configuration. They can be found in
CU_MAP.C in the CHANUNIT subdirectory.

11.3.1 void _CuDefaultRouteLoops(void)

This function sets the default route_loop[] values. The default routes the channel unit channels 1, 2,
and 3 to the LIC 1, 2, and 3 respectively.
Called by:
_CulnitChannel()

11.3.2 void _CuDefaultCombineLoops(void)

This function sets the default combine_loop[] values. The default combines the channel unit
channels 1, 2, and 3 from the LIC 1, 2, and 3 respectively.
Called by:
_CulnitChannel()

11.3.3 void _CulnitMapper(void)

This function initializes the HDSL transmitter and receiver payload mappers (TMAP and RMAP)
global arrays.
Called by:
_CulnitChannel()
_CuReverseLoops()

11.3.4 _CulnitRouteTable

This function initializes the route table. The global array route_loop[] determines how to route.
Called by:
_CulnitChannel()
_CuReverseLoops()

11-4 Conexant 100418C

RS8953B 11.0 Functions

Application and Channel Unit Software Developer’s Guide 11.3 Channel Unit Mapping Functions

11.3.5 _CulnitCombineTable

This function initializes the combination table. The global array combine_loop[] determines how to
set the combine table.
Called by:
_CulnitChannel()
_CuReverseLoops()

11.3.6 _CuWriteMapRouteCombine

This function writes the channel unit map, and route and combine tables, and resets the Rx receiver
and Tx and Rx FIFOs.
Called by:
_CulnitChannel()
_CuReverseLoops()

100418C Conexant 11-5

11.0 Functions RS8953B
11.4 void _ActivationStateManager(BP_U_8BIT bp) Application and Channel Unit Software Developer’s Guide

11.4 void _ActivationStateManager(BP_U_8BIT bp)

This function manages the system state flow for the specified loop and is located in DSL_ASM.C.
Figures 2-3 and 2-4 illustrate how the system transits from one state to another for HTU-C and
HTU-R, respectively.
Called by:
Application code

11.5 void _ZipStartValidationManager(BP_U_8BIT bp)

This function validates the ZipStart after the specified loop reaches normal operation, and is located
in DSL_MAIN.C. It is only compiled and linked when the ZIP_START directive is used.
Called by:
_ActivationStateManager

11-6 Conexant 100418C

RS8953B 11.0 Functions

Application and Channel Unit Software Developer’s Guide 11.6 Channel Unit ASM-Related Functions

11.6 Channel Unit ASM-Related Functions

This section discusses channel unit functions called by the ASM. These functions are located in
CU_ASM.C in the CHANUNIT subdirectory.

11.6.1 void _CuForceOnes(BP_U_8BIT state, BP_U_8BIT loop)

This function programs the HDSL to transmit forced 1s.
Called by:
_ActivationStateManager

11.6.2 void _CuConfigureBeginStartup (BP_U_8BIT loop)

This function configures the specified channel unit for startup in this order:

Set HDSL overhead and ZBits to all 1s

Set payload to all 1s

Disable Tx and Rx error interrupts

Disable Tx and Rx 6 ms interrupts

Disable DPLL error interrupt (if master loop)
Open DPLL NCO (if master loop)

ook~ wDN P

Called by:
_ActivationStateManager()
_CU_FORCE_SCR_ONES API command

11.6.3 void _CuConfigureTransmitS1(BP_U_8BIT loop)

This function configures the specified channel unit for S1 Transmission.
Called by:
_ActivationStateManager()

11.6.4 void CuHohEn(BP_U_8BIT state, BP_U_8BIT loop)

This function enables and disables the HDSL overhead state. Setting the state to O disables the
HDSL overhead by forcing the overhead to all 1s. Setting the state to 1 enables the HDSL overhead.
Called by:
_CuConfigureTransmitS1()

100418C Conexant 11-7

11.0 Functions RS8953B
11.6 Channel Unit ASM-Related Functions Application and Channel Unit Software Developer’s Guide

11.6.5 void _CuConfigureStartupComplete (BP_U_8BIT loop)

This function configures the specified channel unit for startup. The following is performed:

Set HDSL overhead normal

Set Z-Bit PID (E1)

Set Payload to normal

Enable Tx and Rx error interrupts (should already be done)
Enable DPLL error interrupt (if Master Loop)

Close the DPLL (if master loop)

Reset Rx receiver (if master loop)

Reset Tx and Rx FIFOs

© N gk~ wbdhRE

Called by:
Channel unit API command _CU_TRANSMIT_PAYLOAD

11.6.6 void _CuSetRtrind(BP_U_8BIT state, BP_U_8BIT loop)

This function sets the transmit Ready To Receive (RTR) indicator bit.
Called by:
_ActivationStateManager()
_CuConfigureBeginStartup()
_CuConfigureStartupComplete()

11.6.7 void _CuSetPid(BP_U_8BIT loop)

This function initializes the first three Z-bits, also called the pair identification bits (PID) at the
HTU-C. Table 11-1 lists initial pair IDs.

Table 11-1. Initial PID Values (E1 Mode)

Z1 z2 Z3
Loop 1 1 0 0
Loop 2 0 1 0
Loop 3 0 0 1

Called by:
_CulnitHdslLoop()
_ActivationStateManager()

11.6.8 void _CuSetPidToAllOnes(BP_U_8BIT loop)

This function initializes PID values at the HTU-R to all 1s.
Called by:
_ActivationStateManager()

11-8 Conexant 100418C

RS8953B

11.0 Functions

Application and Channel Unit Software Developer’s Guide

11.7 Channel Unit Interrupt Handlers

11.7 Channel Unit Interrupt Handlers

This section discusses channel unit interrupt handlers. These functions are located in CU_INT.C in

the CHANUNIT subdirectory.

11.7.1 void _CulnterruptHandler (void) interrupt 2

This function determines what caused the interrupt and handles the event appropriately. Depending
on the type of interrupt, the corresponding interrupt handler (_CuTxInterrupt, _CuRxInterrupt,

_CubDpllinterrupt, and _CuFramerlinterrupt) is called. The DPLL interrupt handler and framer

interrupt handler are called every 6 ms for the master loop.

11.7.2 void _CuTxInterrupt (BP_U_8BIT loop)

This function handles the transmitter interrupts.
Called by:
_CulnterruptHandler()

11.7.3 void _CuRxInterrupt (BP_U_8BIT loop)

This function handles the receiver interrupts.
Called by:
_CulnterruptHandler()

11.7.4 void _CuDpllinterrupt (void)

This function handles the DPLL interrupts.
Called by:
_CulnterruptHandler()

11.7.5 void _CuFramerinterrupt (void)

This function handles the transmitter interrupts.
Called by:
_CulnterruptHandler()

11.7.6 void E1_Pairid_Validation(BP_U_8BIT loop)

This function implements the E1 pair ID validation mechanism.

Called by:
_CuRxInterrupt()

100418C Conexant

11-9

11.0 Functions RS8953B

11.8 DSL Dynamic Loop Managing Functions Application and Channel Unit Software Developer’s Guide

11.8 DSL Dynamic Loop Managing Functions

This section discusses DSL dynamic loop managing functions. These functions are located in
DSL_MAN.C in the MAIN directory.

11.8.1 void _DSLLoopHandler(void)

This function handles master loop switch and loop reversal dynamically.
Called by:
Application code

11.8.2 void _Set 2E1 PairlD(BP_U_8BIT bp)

This function sets the 2E1 pair IDs after one loop reaches normal operation and its pair ID is
validated.
Called by:
_DSLLoopHandler()

11.8.3 void _Set 2T1 SyncWord(BP_U_8BIT bp)

This function sets the 2T1 sync words after one loop reaches normal operation.
Called by:
_DSLLoopHandler()

11.8.4 void _Set 3E1 PairlD1(BP_U_8BIT bp)

This function sets the 3E1 pair ID after one loop reaches normal operation and its pair ID is
validated.
Called by:
_DSLLoopHandler()

11.8.5 void _Set 3E1_PairlD2(BP_U_8BIT bp)

This function sets the 3E1 pair ID after two of the three loops reach normal operation and their pair
IDs are validated.
Called by:
_DSLLoopHandler()

11.8.6 void Reset Pid Validation(BP_U_8BIT bp)

This function resets the PID reservation for E1 applications.
Called by:
Application code

11-10 Conexant 100418C

RS8953B 11.0 Functions

Application and Channel Unit Software Developer’s Guide 11.9 Channel Unit Dynamic Loop Managing Functions

11.9 Channel Unit Dynamic Loop Managing Functions

This section discusses channel unit loop manager functions located in CU_LOOP.C in the
CHANUNIT subdirectory.

11.9.1 void _CuSetMasterLoop(BP_U_8BIT loop)

This function sets the master loop to the specified loop.
Called by:
_DSLLoopHandler()

11.9.2 void _CuReverselLoops(void)

This function handles any possible loop reversal conditions by modifying transmit routing table,
receive combination table, transmit payload mapper, and receive payload mapper based on the
loops’ pair IDs (E1 application) or synchronization words (T1 application).
Called by:
_DSLLoopHandler()

11.9.3 void _Configure_Channel_Blocking(void)

This function is used to configure the fractional T1 or E1 operation based on the time slot selection.
The function modifies the:

« Transmit routing table

* Receive combine table

e Transmit payload mapping register
» Receive payload mapping register

Called by:
_DSLLoopHandler()
DSL APl _CONFIGURE_CHANNEL_BLOCKING

11.9.4 void _CuCheckForLoopReversal(void)

This function checks to see if any loops are reversed. The global flag (_ CuLoopReversed) is set.
Called by:
DSL APl _DSL_STATUS

100418C Conexant 11-11

11.0 Functions RS8953B
11.10 API Functions Application and Channel Unit Software Developer’s Guide

11.10 API Functions

This section discusses API functions. Table 11-2 lists all API functions and their origin. Figure 11-1
illustrates the API set structure.

Table 11-2. API Functions

API| Functions Source File Directory
_BtStatus, _BtControl BT_API.C MAIN
_DSLStatus, _DSLControl DSL_API.C MAIN
_CusStatus, _CuControl CU_API.C CHANUNIT
_BitpumpStatus, _BitpumpControl APIL.C BITPUMP
_FramerStatus, _FramerControl FRMR_API.C CHANUNIT

Figure 11-1. APl Command Parsing Structure

_BtStatus,
_BtControl

_DSLStatus,
_DSLControl
Application
_FramerStatus, _CusStatus, _BitPumpStatus,
_FramerControl _CuControl _BitPumpControl
T1/E1 Framer Channel Unit Bit Pump

11-12 Conexant 100418C

RS8953B 11.0 Functions
Application and Channel Unit Software Developer’s Guide 11.10 API Functions

11.10.1 _BtStatus(no, opcode, parameter, *indication)

This function executes any status-checking APl command. Depending on the destination of the API
request, _DSL Status, _CuStatus, _FramerStatus, or _BitpumpStatus is called.

Input Variables:
BP_U _8BIT no
BP_U_8BIT opcode
BP_U_8BIT parameter

Returned Value:

_PASS Command successfully interpreted, and will be executed.

_FAIL Illegal command, command not executed. Cause may be illegal
control command opcode, destination, or parameter.

BP_S 8BIT *indication (contains the requested status information)

11.10.1.1 DSLStatus(no, opcode, parameter, *indication)

This function executes any application-level status checking.
Called by:
_BtStatus()

11.10.1.2 _CuStatus(no, opcode, parameter, *indication)

This function executes any channel unit status checking.
Called by:
_BtStatus()

11.10.1.3 _FramerStatus(no, opcode, parameter, *indication)

This function executes any T1/E1 framer status checking.
Called by:
_BtStatus()

11.10.1.4 _BitpumpStatus(no, opcode, parameter, *indication)

This function executes any bit pump status checking.
Called by:
_BtStatus()

100418C Conexant 11-13

11.0 Functions RS8953B

11.10 API Functions Application and Channel Unit Software Developer’s Guide

11.10.2 _BtControl(no, opcode, parameter)

This function executes any control APl command. Depending on the destination of the API request,
_DSLControl, _CuControl, _FramerControl, or _BitpumpControl is called.

Input Variables:
BP_U _8BIT no
BP_U_8BIT opcode
BP_U_8BIT parameter

Returned Value:
_PASS Command successfully interpreted, and will be executed.
_FAIL Illegal command, command not executed. Cause may be illegal
control command opcode, destination, or parameter.

11.10.2.1 _DSLControl(no, opcode, parameter)

This function executes any application-level control APl command.
Called by:
_BtControl()

11.10.2.2 _CuControl(no, opcode, parameter)

This function executes any channel unit control APl command.
Called by:
_BtControl()

11.10.2.3 _FramerControl(no, opcode, parameter)

This function executes any T1/E1 framer control APl command.
Called by:
_BtControl()

11.10.2.4 _BitpumpControl(no, opcode, parameter)

This function executes any bit pump control APl command.
Called by:
_BtControl()

11-14 Conexant 100418C

RS8953B 11.0 Functions
Application and Channel Unit Software Developer’s Guide 11.11 Channel Unit EOC Functions

11.11 Channel Unit EOC Functions

This section discusses EOC-related functions. These functions can be found in CU_EOC.C in the
CHANUNIT subdirectory.

11.11.1 EOC Protocol Handler

11.11.1.1 void EocMaster(BP_U_8BIT loop)

This function handles the EOC protocol on the HTU-C side.
Called by:
_CuRxInterrupt() every 6 ms when CU_EOC compiler flag is used

11.11.1.2 void EocSlave(BP_U_8BIT loop)

This function handles the EOC protocol on the HTU-R side.
Called by:
_CuRxInterrupt() every 6 ms when CU_EOC compiler flag is used

11.11.2 EOC Task Handler

11.11.2.1 void EocTaskHandler_CO(BP_U_8BIT loop)

This function serves as an interface between EocMaster and application requests on the HTU-C.
Called by:
_CuRxInterrupt() every 6 ms when CU_EOC compiler flag is used.

11.11.2.2 void EocTaskHandler_RT(BP_U_8BIT loop)

This function serves as an interface between EocMaster and application requests on the HTU-C.
Called by:
_CuRxInterrupt(C) every 6 ms when CU_EOC compiler flag is used

11.11.3 Other EOC Related Functions

11.11.3.1 BP_U_8BIT EocGetData(BP_U_8BIT IByte, BP_U_8BIT hByte)

This function extracts the information field (8 bits) from the REOC registers.
Called by:
EocMaster() and EocSlave()

11.11.3.2 BP_U_16BIT EocSendWord(BP_U_8BIT command, BP_U_8BIT header)

This function passes EOC command/data and EOC header and writes them to TEOC registers.
Called by:
EocMaster() and EocSlave()

100418C Conexant 11-15

11.0 Functions RS8953B
11.12 Channel Unit Utility Functions Application and Channel Unit Software Developer’s Guide

11.12 Channel Unit Utility Functions

This section discusses channel unit utility functions. These functions can be found in CU_UTILS.C
in CHANUNIT subdirectory.

11.12.1 void _CuHandleFlags(void)

This function handles any flags that are set during an interrupt routine.
Called by:
Application code

11.12.2 void _CuWriteMasterCmd5(void)

This function writes the CMD_5 register based on the current master loop.
Called by:
_CulntiCommonRegisters()
_CuSetMasterLoop()

11.12.3 void _CuClearCounters(BP_U_8BIT loop, BP_U_8BIT cntr)

This function clears the specified Error Counters for the specified loop.
Called by:
_CuConfigureStartupComplete()
_CuRxInterrupt()
Channel unit API command:
_CU_CLEAR_ERROR_COUNTERS

11.12.4 void _CuResetTxFIFO(void)

This function resets the transmitter FIFO for all loops. FIFOs are emptied, and the HDSL
transmitter is forced to resample the transmit water level and realign the HDSL channel’s transmit 6
ms frame to the PCM 6 ms frame.
Called by:
Channel unit API commands:
_CU_RESET_TX_FIFO
_CU_RESET_PCM
_CuWriteMapRouteCombine()

11-16 Conexant 100418C

RS8953B 11.0 Functions

Application and Channel Unit Software Developer’s Guide 11.12 Channel Unit Utility Functions

11.12.5 void _CuResetRxFIFO(void)

This function resets the receiver FIFO for all loops. FIFOs are emptied and the payload mapper is
realigned with HDSL bytes with respect to the receive HDSL 6 ms frame.
Called by:
Channel unit API commands:
_CU_RESET_RX_FIFO
_CU_RFIFO_WL_LO
_CU_RFIFO_WL_HI
_CU_RESET_PCM
_CuWriteMapRouteCombine()

11.12.6 void _CuResetReceiver(void)

This function forces the PCM formatter to align the PCM receive timebase with respect to the
master HDSL channel’s receive 6 ms frame by reloading the RFIFO_WL value.
Called by:
_CuConfigureStartupComplete()
_CuWriteMapRouteCombine()
Channel unit APl commands:
_CU_RFIFO_WL_LO
_CU_RFIFO_WL_HI
_CU_RESET_PCM

11.12.7 TX_RD *get_tx_rd_ptr(BP_U_8BIT loop)

This function returns the TX_RD (transmit status, read register) pointer address for the specified
channel unit loop. The only transmit status register is the STATUS-3 register. For loop 1 it is at
address 0x07; for loop 2, 0xOF; for loop 3, 0x17.
Return:
pointer to address (success)
0—invalid LOOP (fail)

Called by:
_Custatus()

11.12.8 RX_RD *get_rx_rd_ptr(BP_U_8BIT loop)

This function returns the RX_RD (receive status, read register) pointer address for the specified
channel unit loop.
Return:
pointer to address (success)
0—invalid LOOP (fail)

Called by:
_Custatus()

100418C Conexant 11-17

11.0 Functions RS8953B

11.13 General Purpose Timer Functions Application and Channel Unit Software Developer’s Guide

11.13 General Purpose Timer Functions

This section discusses functions for general purpose timers. These functions are located in
TIMER.C in the MAIN directory.

11.13.1 void _InitGenPurposeTimer(void)

This function initializes interrupt #1, which decrements the timer counters when timer #0 expires.
The Keil compiler configures timer 0 as interrupt 1. (This function only applies if INT_BUG is not
specified.)
Called by:
Application code

11.13.2 void _LoadGenPurposeTimerinterval(void)

This function loads the microprocessor timer counter value. The counter is set to an ~50 ms interval.
Called by:
_InitGenPurposeTimer()
_Timer0_ISR()

11.13.3 void _EnableGenPurposeTimer(bp, timer, value)

This function enables the timer #0 interrupt and initializes the counter.
Called by:
Application code
_ActivationStateManager()

11.13.4 void _ContinuousGenPurposeTimer(bp, timer, state)

This function sets the specified timer to continuous or discrete.
Called by:
Application code

11.13.5 void _DisableGenPurposeTimer(bp, timer)

This function disables the timer #0 interrupt.
Called by:
Application code
_ActivationStateManager()

11-18 Conexant 100418C

RS8953B

11.0 Functions

Application and Channel Unit Software Developer’s Guide

11.13.6 BP_U_8BIT _GetGenPurposeTimerStatus(bp

This function returns the timer status.

11.13 General Purpose Timer Functions

, timer)

Bit # #define Description
0 TIMER_STATE Timer State—0=0ff, 1=0n
1 TIMER_COMPLETE Timer Complete—0=No, 1=Yes
Return:

status (success)
OxFF—invalid timer specified (fail)

Called by:

Application code
_ActivationStateManager()

11.13.7 BP_U_32BIT _GetGenPurposeContCount(bp,

timer)

This function returns the continuous-timer elapsed count.

Return:
status (success)
OxFF—invalid timer specified (fail)

Called by:
_ActivationStateManager()
_ZipStartValidationManager()

11.13.8 _TimerO_ISR

This interrupt is called when timer #0 overflows.
Called by:
Interrupt 1

100418C Conexant

11-19

11.0 Functions RS8953B

11.14 Performance Monitoring Functions Application and Channel Unit Software Developer’s Guide

11.14 Performance Monitoring Functions

This section discusses performance monitoring functions. These functions are located in
CU_PERF.C in the CHANUNIT subdirectory.

11.14.1 void InitPMRecord(BP_U_8BIT loop)

This function clears the CRC and FEBE records at different intervals, initializes the record pointers
and counters, and resets the running seconds counter.
Called by:
Application code when the specified loop reaches GOTO_ACTIVE_TX RX_STATE

11.14.2 void UpdatePMRecord(BP_U_8BIT loop)

This function updates the CRC and FEBE records for the specified loop at different time intervals
when the loop is in normal operation.
Called by:
_CuRxInterrupt every 6 ms when PERF_MONITOR compiler flag is used

11.14.2.1 void Updatelnterval1(BP_U_8BIT loop)

This function updates the CRC and FEBE records for the specified loop every second.
Called by:
UpdatePMRecord

11.14.2.2 void Updatelnterval2(BP_U_8BIT loop)

This function updates the CRC and FEBE records for the specified loop every 15 minutes.
Called by:
UpdatePMRecord

11.14.2.3 void Updatelnterval3(BP_U_8BIT loop)

This function updates the CRC and FEBE records for the specified loop every 24 hours.
Called by:
UpdatePMRecord

11-20 Conexant 100418C

RS8953B 11.0 Functions

Application and Channel Unit Software Developer’s Guide 11.15 void _Configure_Channel_Blocking(void)

11.15 void _Configure_Channel_Blocking(void)

This function configures the channel blocked T1 or E1 operation based on the time slot selection.
The function will modify these tables:

* Transmit routing

* Receive combine

e Transmit payload map

» Receive payload map

11.16 DSL Miscellaneous Functions

This section discusses DSL miscellaneous functions. These functions can be found in
DSL_MISC.C in the MAIN directory.

11.16.1 void _Cu_Led Update(bp, state)

This function updates channel unit-related LEDs. (See Figures 2-3 and 2-4 for the definition of the
LED registers.)

Called by:
Application code

11.16.2 void Bp_Led_Update(bp, state)

This function updates bit pump-related LEDs. (See Figure 2-5 for the definition of the LED
register.)
Called by:
Application code

100418C Conexant 11-21

11.0 Functions RS8953B

11.16 DSL Miscellaneous Functions Application and Channel Unit Software Developer’s Guide

11-22 Conexant 100418C

Appendix A:

Acronyms and Abbreviations

AIS
2B1Q
BER
CMOS
CRC
DPLL
EOC
ESF
FEBE
JTAG
HDSL
HOH
HRP
HTU-C
HTU-R
LIU
LOSD
LOSW
LSB
LFSR
MSB
PQFP
PLCC
PRBS
QUAT
QRSS
SF
uIB
VCXO

Alarm Indication Signal

2 Binary, 1 Quaternary

Bit Error Rate

Complementary Metal-Oxide Semiconductor
HDSL Cyclic Redundancy Check

Digital Phase Lock Loop

HDSL Embedded Operations Channel
Extended Superframe

HDSL Far-End Block Error

Joint Test Action Group

High-Bit-Rate Digital Subscriber Line
HDSL Overhead

HDSL Repeater Present

HDSL Terminal Unit at the Central Office
HDSL Terminal Unit at the Remote Distribution
Line Interface Unit

Loss of Signal - DS1

HDSL Loss-of-Sync Word

Least Significant Bit

Linear Feedback Shift Register

Most Significant Bit
Plastic Quad Flat Pack

Plastic Leaded Chip Carrier
Pseudo-Random Binary Sequence
Quaternary Symbol

Quasi-Random Sequence Signal

Super Frame

Unspecified Indicator Bit
\Voltage-Controlled Crystal Oscillator

100418C

Conexant

A-1

Appendix A: Acronyms and Abbreviations RS8953B
Application and Channel Unit Software Developer’s Guide

A-2 Conexant 100418C

Appendix B: References

RS8953B/RS8953SPB HDSL Channel Unit Data Sheet, April 1999 (N8953BDSB)

International Telecommunication Union. High Speed Digital Subscriber Line (HDSL)
Transceivers. October, 1998 (G.991.1)

ZipWire Software User Guide, May 2000 (100417C)

100418C

Conexant

B-1

Appendix B: References RS8953B
Application and Channel Unit Software Developer’s Guide

B-2 Conexant 100418C

«

=

=
— What's next in communications technologies

CONEXANT"

Further Information
literature@conexant.com

(800) 854-8099 (North America)
(949) 483-6996 (International)
Printed in USA

World Headquarters
Conexant Systems, Inc.
4311 Jamboree Road
Newport Beach, CA
92660-3007

Phone: (949) 483-4600
Fax 1: (949) 483-4078
Fax 2: (949) 483-4391

Americas

U.S. Northwest/

Pacific Northwest — Santa Clara
Phone: (408) 249-9696

Fax: (408) 249-7113

U.S. Southwest — L os Angeles
Phone: (805) 376-0559
Fax: (805) 376-8180

U.S. Southwest — Orange County
Phone: (949) 483-9119
Fax: (949) 483-9090

U.S. Southwest — San Diego
Phone: (858) 713-3374
Fax: (858) 713-4001

U.S. North Central —Illinois
Phone: (630) 773-3454
Fax: (630) 773-3907

U.S. South Central — Texas
Phone: (972) 733-0723
Fax: (972) 407-0639

U.S. Northeast — M assachusetts
Phone: (978) 367-3200
Fax: (978) 256-6868

U.S. Southeast — North Caralina
Phone: (919) 858-9110
Fax: (919) 858-8669

U.S. Southeast — Florida/
South America

Phone: (727) 799-8406
Fax: (727) 799-8306

U.S. Mid-Atlantic — Pennsylvania
Phone: (215) 244-6784
Fax: (215) 244-9292

Canada—Ontario
Phone: (613) 271-2358
Fax: (613) 271-2359

Europe

Europe Central — Germany
Phone: +49 89 829-1320
Fax: +4989834-2734

Europe North —England
Phone: +44 1344 486444
Fax: +44 1344 486555

Europe— | srael/Greece
Phone: +972 9 9524000
Fax: +972 99573732

Europe South — France
Phone: +33 141443651
Fax: +33141443690

Europe Mediterranean — Italy
Phone: +39 02 93179911
Fax: +39 0293179913

Europe — Sweden
Phone: +46 (0) 8 5091 4319
Fax: +46 (0) 8590 041 10

Europe - Finland
Phone: +358 (0) 9 85 666 435
Fax: +358 (0) 9 85 666 220

Asia — Pacific

Taiwan
Phone: (886-2) 2-720-0282
Fax: (886-2) 2-757-6760

Australia
Phone: (61-2) 9869 4088
Fax: (61-2) 9869 4077

China—Central
Phone: 86-21-6361-2515
Fax: 86-21-6361-2516

China — South
Phone: (852) 2 827-0181
Fax: (852) 2 827-6488

China - South (Satellite)
Phone: (86) 755-5182495

China—North
Phone: (86-10) 8529-9777
Fax: (86-10) 8529-9778

India
Phone: (91-11) 692-4789
Fax: (91-11) 692-4712

Korea
Phone: (82-2) 565-2880
Fax: (82-2) 565-1440

Korea (Satellite)
Phone: (82-53) 745-2880
Fax: (82-53) 745-1440

Singapore
Phone: (65) 737 7355
Fax: (65) 737 9077

Japan
Phone: (81-3) 5371 1520
Fax: (81-3) 5371 1501

www.conexant.com

	RS8953B
	Table of Contents
	List of Figures
	List of Tables
	1.0 Introduction
	Figure 1-1. Software Overview
	1.1 What’s New in Channel Unit Version 6.x
	1.1.1 Bt8953A Revision C and RS8953B Support
	1.1.2 RS8973 versus Bt8970 Line Card Support
	1.1.3 EOC Protocol
	1.1.4 Dynamic Loop Reversal and Master Loop
	1.1.5 Performance Monitoring
	1.1.6 Channel Blocking
	1.1.7 Bt8370 Support

	1.2 Features and Functionality Not Supported

	2.0 EVM Specific
	2.1 HDSL EVM Hardware
	Figure 2-1. HDSL EVM Terminal Unit
	2.1.1 DIP Switch
	Figure 2-2. DIP Switch Mode Configuration

	2.1.2 Channel Unit LEDs
	Table 2-1. CU_LEDn Memory Map
	Figure 2-3. CU_LED1 Register
	Figure 2-4. CU_LED2 Register
	Figure 2-5. CU_LED3 Register

	2.2 General Purpose Timers
	Table 2-2. General Purpose Status Bit Definitions
	2.2.1 Continuous Mode
	2.2.2 One Second Timer

	3.0 Directory Structure
	3.1 MAIN (Application) Directory
	Table 3-1. Source Files Under the Main Directory �

	3.2 BITPUMP Directory
	Table 3-2. Source Files Under BITPUMP Directory �

	3.3 CHANUNIT Directory
	Table 3-3. Source Files Under CHANUNIT Subdirectory �

	3.4 Header File Dependencies
	Table 3-4. Header File Dependencies

	3.5 TYPEDEFS.H
	Table 3-5. Data Type Definitions

	4.0 Compiling and Linking Application Examples
	Table 4-1. HEX Files
	4.1 Using the Keil uVision Project Manager
	4.2 Using a Makefile
	4.3 Linker Flags
	4.4 Compiler Flags
	Table 4-2. Compiler Directives
	4.4.1 CHAN_UNIT
	4.4.2 TWO_LOOPS
	4.4.3 CU_EOC
	4.4.4 PERF_MONITOR
	4.4.5 CU_2T1
	4.4.6 CU_2E1
	4.4.7 CU_3E1
	4.4.8 CU_1T1
	4.4.9 CU_1E1
	4.4.10 CU_CUSTOM
	4.4.11 T1E1_FRAMER
	4.4.12 CU_LED
	4.4.13 BIT_REVERSE
	4.4.14 ZIPSOCKET

	5.0 Application Code
	5.1 Software Flow
	Figure 5-1. Main Program Flow

	5.2 DSL Loop Manager
	Figure 5-2. DSL Manager

	5.3 Software and Devices Initializations
	Table 5-1. Software Initialization Functions
	Table 5-2. Bit Pump Initialization Commands �
	Table 5-3. Channel Unit Initialization Commands�

	5.4 Activation State Manager
	Figure 5-3. Bit Pump Start-up Sequence
	Table 5-4. Cross Reference of DSL Functions vs. ASM States
	5.4.1 HTU-C Activation
	Figure 5-4. Activation State Machine at HTU-C
	5.4.1.1 Configuration State
	5.4.1.2 Inactive State
	5.4.1.3 Activating State
	5.4.1.4 Activating State S1
	5.4.1.5 Active Rx State
	5.4.1.6 Active Tx State
	5.4.1.7 GOTO Pair ID Validation State
	5.4.1.8 PID Validation State
	5.4.1.9 GOTO Active Tx/Rx State
	5.4.1.10 Active Tx/Rx State
	5.4.1.11 Pending Deactivated State
	5.4.1.12 Deactivated State
	5.4.1.13 System Idle State

	5.4.2 HTU-R Activation
	Figure 5-5. Activation State Machine at HTU-R
	5.4.2.1 Configuration State
	5.4.2.2 Inactive State
	5.4.2.3 Activating State
	5.4.2.4 Activating State S1
	5.4.2.5 Active Rx State
	5.4.2.6 Active Tx State
	5.4.2.7 GOTO Pair ID Validation State
	5.4.2.8 PID Validation State
	5.4.2.9 GOTO Active Tx/Rx State
	5.4.2.10 Active Tx/Rx State
	5.4.2.11 Pending Deactivated State
	5.4.2.12 Deactivated State
	5.4.2.13 System Idle State

	6.0 Channel Unit Code
	6.1 Configurations
	Table 6-1. HDSL Frame Structure and Overhead Bit Allocation (1 of 2)
	Figure 6-1. HDSL Frame Structure
	6.1.1 CU_2T1
	Figure 6-2. Payload Block Structure for 2T1 Application
	Table 6-2. 2T1 Framing

	6.1.2 CU_2E1
	Figure 6-3. Payload Block Structure for 2E1 Application
	Table 6-3. 2E1 Framing

	6.1.3 CU_3E1
	Figure 6-4. Payload Block Structure for 3E1 Application
	Table 6-4. 3E1 Framing

	6.1.4 CU_1T1
	Figure 6-5. Payload Block Structure for 1T1 Application
	Table 6-5. 1T1 Framing

	6.1.5 CU_1E1
	Figure 6-6. Payload Block Structure for 1E1 Application
	Table 6-6. 1E1 Framing

	6.1.6 Modifying the Code for Custom Applications (_CU_CUSTOM)
	6.1.6.1 Rate_values[][]
	6.1.6.2 CU_MAP.C

	6.2 Interrupt Handler
	6.2.1 Sync Status
	6.2.2 Error Status Reporting
	6.2.3 Tx/Rx FIFO Error Handling
	6.2.4 DPLL Error Handling
	Figure 6-7. DPLL State Machine

	6.2.5 EOC Termination
	6.2.6 Pair ID Termination (E1 Mode)
	6.2.7 Indicator Bit Termination
	6.2.8 T1/E1 Framer Interrupt Handling—6 ms Polling

	6.3 BER Meter
	6.4 Dynamic Master Loop
	6.5 Tip/Ring Reversal
	6.6 Loop Reversal
	6.7 EOC Operation
	6.7.1 EOC Data Format
	Table 6-7. HDSL EOC Frame Structure

	6.7.2 EOC-Related Data
	6.7.3 Supported EOC Commands
	6.7.4 EOC Handling on the HTU-R Side
	6.7.4.1 EOC Slave
	Figure 6-8. State Transition Diagram for EOC Slave
	Table 6-8. EOC Command Processing in EOC_CMD_RESPONS_2
	Table 6-9. Buffer Values for EOC Registers (RT side) �

	6.7.4.2 EOC Task Handler Related to the EOC Slave

	6.7.5 EOC Handling on the HTU-C Side
	6.7.5.1 EOC Master
	Figure 6-9. State Transition Diagram for the EOC Master

	6.7.5.2 EOC Task Handler Related to the EOC Master
	Table 6-10. Tasks of the HTU-C-EOC Task Handler
	Table 6-11. Status Flags within the EOC Master �
	Table 6-12. Buffer Values for EOC Registers (HTU-C side)

	6.8 Performance Monitoring
	Figure 6-10. CRC and FEBE Error Records at Three Time Intervals

	6.9 Channel Blocking
	6.10 T1/E1 Framer and LIU Support

	7.0 Serial Communication Interface
	7.1 Communication Protocol
	7.2 Message Structure
	Figure 7-1. Host Processor to 8032 Message Structure
	7.2.1 Destination Field (Bits E3–E0)
	Table 7-1. Destination Field Specification

	7.2.2 Opcode Field (Bits O7–O0)
	7.2.3 Parameter Field (Bits P7–P0)

	7.3 Message Transfer Protocol
	Figure 7-2. 8032 to Host Processor Message Structure

	7.4 Checksum Function
	7.5 Acknowledge Message
	Table 7-2. Acknowledge Message

	8.0 API Command Set
	8.1 Level 3 API Commands
	8.1.1 DSL Control
	8.1.1.1 Reset the DSL
	Table 8-1. Opcode: 0x01 (_DSL_RESET)

	8.1.1.2 Enable or Disable Activation State Manager
	Table 8-2. Opcode: 0x02 (_DSL_ASM_ENABLE)

	8.1.2 DSL Status
	8.1.2.1 History of Link in Sync Status
	Table 8-3. Opcode: 0x85 (_DSL_AVAILABLE_SECONDS)

	8.1.2.2 Overall DSL Status
	Table 8-4. Opcode: 0x82 (_DSL_STATUS)
	Table 8-5. Status Register 0
	Table 8-6. Status Register 1
	Figure 8-1. Loop Reversal

	8.1.2.3 DSL Loop Status
	Table 8-7. Opcode: 0x83 (_DSL_LOOP_STATUS)

	8.1.2.4 DSL ZipStartup Status
	Table 8-8. Opcode: 0x84 (_DSL_ZIP_STATUS)

	8.1.2.5 DSL Version
	Table 8-9. Opcode: 0x81 (_DSL_VERSION)

	8.1.3 Performance Monitoring
	8.1.3.1 Enable or Disable Performance Monitoring Update
	Table 8-10. Opcode: 0x10 (_SET_PERFMONITOR_STATE)

	8.1.3.2 Set Starting Address to Check Performance Record at Interval 1
	Table 8-11. Opcode: 0x11 (_INTERVAL1_ADDR_LO)
	Table 8-12. Opcode: 0x12 (_INTERVAL1_ADDR_HI)

	8.1.3.3 Set Starting Address to Check Performance Record at Interval 2
	Table 8-13. Opcode: 0x13 (_INTERVAL2_ADDR)

	8.1.3.4 Set Starting Address to Check Performance Record at Interval 3
	Table 8-14. Opcode: 0x14 (_INTERVAL3_ADDR)

	8.1.3.5 Performance Records at Different Intervals
	Table 8-15. Opcode: 0x90 (_CRC_ERR_AT_INTERVAL1)
	Table 8-16. Opcode: 0x91 (_CRC_ERR_AT_INTERVAL2)
	Table 8-17. Opcode: 0x92 (_CRC_ERR_AT_INTERVAL3)
	Table 8-18. Opcode: 0x93 (_FEBE_ERR_AT_INTERVAL1)
	Table 8-19. Opcode: 0x94 (_FEBE_ERR_AT_INTERVAL2)
	Table 8-20. Opcode: 0x95 (_FEBE_ERR_AT_INTERVAL3)

	8.1.3.6 Latest Performance Record at Different Intervals
	Table 8-21. Opcode: 0x96 (_LAST_CRC_ERR_INTERVAL1)
	Table 8-22. Opcode: 0x97 (_LAST_CRC_ERR_INTERVAL2)
	Table 8-23. Opcode: 0x98 (_LAST_CRC_ERR_INTERVAL3)
	Table 8-24. Opcode: 0x99 (_LAST_FEBE_ERR_INTERVAL1)
	Table 8-25. Opcode: 0x9A (_LAST_FEBE_ERR_INTERVAL2)
	Table 8-26. Opcode: 0x9B (_LAST_FEBE_ERR_INTERVAL3)

	8.2 Level 2 API Commands
	8.2.1 Channel Blocking
	8.2.1.1 Channel Blocking Time Slot Location
	Table 8-27. Opcode: 0x30 (_CB_TIMESLOT_LOCATION)

	8.2.1.2 Channel Blocking Time Slot Enable/Disable
	Table 8-28. Opcode: 0x31 (_CB_TIMESLOT_STATE)

	8.2.1.3 Channel Blocking Configuration
	Table 8-29. Opcode: 0x32 (_CONFIGURE_CHANNEL_BLOCKING)

	8.2.1.4 Set all Time Slots
	Table 8-30. Opcode: 0x33 (_SET_ALL_TIMESLOTS)

	8.2.1.5 Channel Blocking Time Slot Usage
	Table 8-31. Opcode: 0xA3 (_CB_TIMESLOT_USAGE)

	8.2.2 Diagnostic
	8.2.2.1 DSL Loopbacks
	Table 8-32. Opcode: 0x20 (_DSL_LOOPBACK)
	Table 8-33.

	8.2.2.2 DSL Test Modes
	Table 8-34. Opcode: 0x21 (_DSL_TESTMODE)

	8.2.2.3 Sending API Commands Through EOC Channel
	Table 8-35. Opcode: 0x22 (_API_DEST)
	Table 8-36. Opcode: 0x23 (_API_OPCODE)
	Table 8-37. Opcode: 0x24 (_API_DATA)
	Table 8-38. Opcode: 0x25 (_API_SEND)
	Table 8-39. Opcode: 0xA2 (_API_RESULT)

	8.2.3 DSL Status
	8.2.3.1 Far End Signal Attenuation
	Table 8-40. Opcode: 0xB0 (_DSL_FELM)

	8.2.3.2 Noise Margin
	Table 8-41. Opcode: 0xB1 (_DSL_NMR)

	8.2.4 ERLE Test
	8.2.4.1 Background and ERLE Test Mode
	Table 8-42. Opcode 0x18 (_ERLE_TEST_MODE)
	Table 8-43. _ERLE_TEST_MODE Parameter
	Table 8-44. Opcode 0x85 (_STARTUP_STATUS)
	Table 8-45. _STARTUP_STATUS Return Value

	8.2.4.2 ERLE Results
	Table 8-46. Meaningful Values Returned for Different Tests
	Table 8-47. Opcode 0x93 (ERLE_RESULTS)

	8.2.4.3 AAGC Results
	Table 8-48. Opcode 0x94 (_AAGC_RESULTS)

	8.2.5 DPLL Status Command
	8.2.5.1 Read the DPLL State
	Table 8-49. Opcode: 0x90 (_CU_READ_DPLL)

	8.2.6 Channel Unit Indicator Bit Commands
	8.2.6.1 Write Indicator Low Byte
	Table 8-50. Opcode: 0x35 (_CU_WRITE_IND_LO)

	8.2.6.2 Write Indicator High Byte
	Table 8-51. Opcode: 0x36 (_CU_WRITE_IND_HI)

	8.2.6.3 Read Indicator Lo Byte
	Table 8-52. Opcode: 0x91 (_CU_READ_IND_LO)
	Table 8-53. Low Byte Return Status Bit Definitions

	8.2.6.4 Read Indicator Hi Byte
	Table 8-54. Opcode: 0x92 (_CU_READ_IND_HI)
	Table 8-55. High Byte Return Status Bit Definitions

	8.2.7 Single Loop Commands
	8.2.7.1 Set Number of PCM Time Slots Used
	Table 8-56. Opcode: 0x40 (_SP_TOTAL_PCM_TSLOT)

	8.2.7.2 Set Number of HDSL Payload Bytes
	Table 8-57. Opcode: 0x41 (_SP_TOTAL_HDSL_TSLOT)

	8.2.7.3 Set Number of Occupied HDSL Payload Bytes and PCM Time Slots Used
	Table 8-58. Opcode: 0x42 (_SP_USED_TSLOT)

	8.2.7.4 Set F-bit Present
	Table 8-59. Opcode: 0x43 (_SP_FBIT_PRESENT)

	8.2.7.5 Set Derived MClk Value
	Table 8-60. Opcode: 0x44 (_SP_DERIVED_MCLK)

	8.2.7.6 Configure Single Loop
	Table 8-61. Opcode: 0x45 (_SP_CONFIGURE)

	8.2.8 EOC Commands
	8.2.8.1 EOC Register Select
	Table 8-62. Opcode: 0x35 (_EOC_REG_SELECT)

	8.2.8.2 EOC Register Size
	Table 8-63. Opcode: 0x36 (_ EOC_REG_SIZE)

	8.2.8.3 EOC Byte Number Location
	Table 8-64. Opcode: 0x37 (_EOC_BYTE_NUM_LOC)

	8.2.8.4 EOC Write Register Data
	Table 8-65. Opcode: 0x38 (_EOC_WRITE_REG_DATA)

	8.2.8.5 Start EOC Read/Write Operation
	Table 8-66. Opcode 0x39 (_EOC_SEND_RD_WR)

	8.2.8.6 Set EOC Control Commands
	Table 8-67. Opcode: 0x3A (_EOC_SET_CONTROL)

	8.2.8.7 Set EOC Address Destination
	Table 8-68. Opcode 0x3B (_EOC_ADD_DEST)

	8.2.8.8 Insert CRC Errors
	Table 8-69. Opcode: 0x3C (_INSERT_CRC6)

	8.2.8.9 EOC Query Received New Data
	Table 8-70. Opcode: 0x86 (_EOC_RCVD_NEWDATA_STATUS)

	8.2.8.10 EOC Read Register
	Table 8-71. Opcode: 0x87 (_EOC_READ_REG_DATA)

	8.2.8.11 Read EOC Status
	Table 8-72. Opcode: 0x88 (_EOC_STATUS)

	8.3 Application Examples
	8.3.1 Read Example
	8.3.1.1 Step 1: Select HTU-C Register Name
	8.3.1.2 Step 2: Select HTU-C Register Size
	8.3.1.3 Step 3: Set Up HTU-R Register Name and Size
	8.3.1.4 Step 4: Load HTU-R Read Register D
	8.3.1.5 Step 5: Set Command for HTU-C to Read HTU-R Register D
	8.3.1.6 Step 6: Read New Data Flags
	8.3.1.7 Step 7: Set Index to 0 for Read Register D
	8.3.1.8 Step 8: Read Register D

	8.3.2 Write Example
	8.3.2.1 Step 1: Set Up HTU-C Register Number
	8.3.2.2 Step 2: Set Up HTU-C Register Size
	8.3.2.3 Step 3: Set Up HTU-R Register Number and Size
	8.3.2.4 Step 4: Load the HTU-C Write Register B
	8.3.2.5 Step 5: Set HTU-C Start Sending Command to Write HTU-R Register B
	8.3.2.6 Step 6: Read the Received Data Status
	8.3.2.7 Step 7: Set Byte Number Location
	8.3.2.8 Step 8: Read the B Data Register

	8.3.3 HTU-C CRC Check Command Example
	8.3.3.1 Step 1: HTU-C Receives Corrupted CRC from HTU-R.
	8.3.3.2 Step 2: Set the End Corrupted CRC Command

	8.3.4 HTU-R CRC Check Command Example
	8.3.4.1 Step 1: Notify the HTU-R of Corrupted CRC
	8.3.4.2 Step 2: Send Corrupted CRC

	8.4 Level 1 API Commands
	8.4.1 Bit Pump APIs
	8.4.1.1 Input Signal Level
	Table 8-73. Opcode: 0x80 (_SLM)

	8.4.1.2 Input DC Offset
	Table 8-74. Opcode: 0x81 (_DC_METER)

	8.4.1.3 Bit Pump BER Meter
	Table 8-75. Opcode: 0x15 (_BER_METER_START)
	Table 8-76. Opcode: 0x16 (_BER_METER_STOP)
	Table 8-77. Opcode: 0x92 (_BER_METER_STATUS)

	8.4.1.4 Self-test
	Table 8-78. Opcode: 0x8C (_SELF_TEST)

	8.5 Channel Unit API Commands
	8.5.1 Set the PCM Multiframe Length
	Table 8-79. Opcode: 0x2A (_CU_SET_MFRAME)

	8.5.2 Channel Unit Error Counters
	Table 8-80. Opcode: 0x86 (_CU_ERROR_COUNTERS_LO)
	Table 8-81. Opcode: 0x87 (_CU_ERROR_COUNTERS_HI)
	Table 8-82. Opcode: 0x0A (_CU_CLEAR_ERROR_COUNTERS)

	8.5.3 Modify Receive Combination Table
	Table 8-83. Opcode: 0x13 (_CU_COMBINE_ADDR)
	Table 8-84. Opcode: 0x11 (_CU_COMBINE_VALUE)
	Table 8-85. Opcode: 0x12 (_CU_COMBINE_WRITE)
	Table 8-86. Opcode: 0x8B (_CU_READ_COMBINE)

	8.5.4 Modify Transmit Routing Table
	Table 8-87. Opcode: 0x16 (_CU_ROUTE_ADDR)
	Table 8-88. Opcode: 0x14 (_CU_ROUTE_VALUE)
	Table 8-89. Opcode: 0x15 (_CU_ROUTE_WRITE)
	Table 8-90. Opcode: 0x8C (_CU_READ_ROUTE)

	8.5.5 Modify Transmit Payload Mapper (TMAPS)
	Table 8-91. Opcode: 0x1B (_CU_TMAP1_VALUE)
	Table 8-92. Opcode: 0x1C (_CU_TMAP2_VALUE)
	Table 8-93. Opcode: 0x1D (_CU_TMAP3_VALUE)
	Table 8-94. Opcode: 0x1E (_CU_TMAP4_VALUE)
	Table 8-95. Opcode: 0x1F (_CU_TMAP5_VALUE)
	Table 8-96. Opcode: 0x20 (_CU_WRITE_TMAP)
	Table 8-97. Opcode: 0x8D (_CU_READ_TMAP)

	8.5.6 Modify Receive Payload Mapper (RMAPS)
	Table 8-98. Opcode: 0x21 (_CU_RMAP1_VALUE)
	Table 8-99. Opcode: 0x22 (_CU_RMAP2_VALUE)
	Table 8-100. Opcode: 0x23 (_CU_RMAP3_VALUE)
	Table 8-101. Opcode: 0x24 (_CU_WRITE_RMAP)
	Table 8-102. Opcode: 0x8E (_CU_READ_RMAP)

	8.5.7 Modify Data Bank Patterns (DBANKs)
	Table 8-103. Opcode: 0x17 (_CU_DBANK_1)
	Table 8-104. Opcode: 0x18 (_CU_DBANK_2)
	Table 8-105. Opcode: 0x19 (_CU_DBANK_3)

	8.5.8 Set Channel Unit Frame Format
	Table 8-106. Opcode: 0x09 (_CU_FRAME_FORMAT)

	8.5.9 Reset Transmit/Receive FIFOs
	Table 8-107. Opcode: 0x0B (_CU_RESET_TX_FIFO)
	Table 8-108. Opcode: 0x04 (_CU_RESET_RX_FIFO)

	8.5.10 Set Transmit/Receive FIFO Water Levels
	Table 8-109. Opcode: 0x0E (_CU_TFIFO_WL)
	Table 8-110. Opcode: 0x0F (_CU_RFIFO_WL_LO)
	Table 8-111. Opcode: 0x10 (_CU_RFIFO_WL_HI)

	8.5.11 Set Master Loop
	Table 8-112. Opcode: 0x27 (_CU_SET_MASTER_LOOP)

	8.5.12 Channel Unit SYNC Status
	Table 8-113. Opcode: 0x81 (_CU_SYNC)

	8.5.13 Channel Unit BER Meter
	Table 8-114. Opcode: 0x25 (_CU_BER_START)
	Table 8-115. Opcode: 0x26 (_CU_BER_CONFIGURE)
	Table 8-116. BER Parameter
	Table 8-117. Opcode: 0x8A (_CU_MEASURE_BER)
	Table 8-118. Opcode: 0x89 (_CU_BER_STATUS)

	9.0 Structures
	9.1 CU_WR
	9.2 CU_RD
	9.3 CU_FLAGS
	9.4 CU_REG_COPY
	9.5 IRR

	10.0 Global Variables
	10.1 *cu_wr
	10.2 *cu_rd
	10.3 num_bit_pumps
	10.4 bp_position[]
	Table 10-1. Possible Location Values of the Line Interface Cards

	10.5 rate_values[][]
	10.6 rate_index
	Table 10-2. Channel Unit Configuration Index �

	10.7 htu_values[][]
	10.8 htu_index
	Table 10-3. Channel Unit htu_index Values

	10.9 route_table[64]
	Table 10-4. Route Table Entry Definition

	10.10 combine_table[64]
	Table 10-5. Combine Table Entry Definition

	10.11 tmap_table[9][_NO_OF_LOOPS]
	Table 10-6. Transmit Payload Map (TMAP_1)
	Table 10-7. Transmit Payload Map (TMAP_2)
	Table 10-8. Transmit Payload Map (TMAP_3)
	Table 10-9. Transmit Payload Map (TMAP_4)
	Table 10-10. Transmit Payload Map (TMAP_5)
	Table 10-11. Transmit Payload Map (TMAP_6)
	Table 10-12. Transmit Payload Map (TMAP_7)
	Table 10-13. Transmit Payload Map (TMAP_8)
	Table 10-14. Transmit Payload Map (TMAP_9)

	10.12 rmap_table[6][_NO_OF_LOOPS]
	Table 10-15. Receive Payload Map (RMAP_1)
	Table 10-16. Receive Payload Map (RMAP_2)
	Table 10-17. Receive Payload Map (RMAP_3)
	Table 10-18. Receive Payload Map (RMAP_4)
	Table 10-19. Receive Payload Map (RMAP_5)
	Table 10-20. Receive Payload Map (RMAP_6)

	10.13 _CuFlags
	10.14 cu_reg_copy

	11.0 Functions
	11.1 DSL Initialization Functions
	11.1.1 void _DSLInitialization(void)
	11.1.2 BP_U_8BIT _IsChannelUnitEvmPresent (void)
	11.1.3 BP_U_8BIT _InitChannelUnitEvmBoard (void)
	11.1.3.1 BP_U_8BIT _CulnitFramer (void)

	11.2 Channel Unit Initialization Functions
	11.2.1 BP_U_8BIT _CulnitChannelUnit (void)
	11.2.2 void _CulnitAddresses (void)
	11.2.3 void _CulnitCommonRegisters
	11.2.4 void _CulnitHdslLoops

	11.3 Channel Unit Mapping Functions
	11.3.1 void _CuDefaultRouteLoops(void)
	11.3.2 void _CuDefaultCombineLoops(void)
	11.3.3 void _CulnitMapper(void)
	11.3.4 _CulnitRouteTable
	11.3.5 _CulnitCombineTable
	11.3.6 _CuWriteMapRouteCombine

	11.4 void _ActivationStateManager(BP_U_8BIT bp)
	11.5 void _ZipStartValidationManager(BP_U_8BIT bp)
	11.6 Channel Unit ASM-Related Functions
	11.6.1 void _CuForceOnes(BP_U_8BIT state, BP_U_8BIT loop)
	11.6.2 void _CuConfigureBeginStartup (BP_U_8BIT loop)
	11.6.3 void _CuConfigureTransmitS1(BP_U_8BIT loop)
	11.6.4 void _CuHohEn(BP_U_8BIT state, BP_U_8BIT loop)
	11.6.5 void _CuConfigureStartupComplete (BP_U_8BIT loop)
	11.6.6 void _CuSetRtrInd(BP_U_8BIT state, BP_U_8BIT loop)
	11.6.7 void _CuSetPid(BP_U_8BIT loop)
	Table 11-1. Initial PID Values (E1 Mode) �

	11.6.8 void _CuSetPidToAllOnes(BP_U_8BIT loop)

	11.7 Channel Unit Interrupt Handlers
	11.7.1 void _CuInterruptHandler (void) interrupt 2
	11.7.2 void _CuTxInterrupt (BP_U_8BIT loop)
	11.7.3 void _CuRxInterrupt (BP_U_8BIT loop)
	11.7.4 void _CuDpllInterrupt (void)
	11.7.5 void _CuFramerInterrupt (void)
	11.7.6 void E1_Pairid_Validation(BP_U_8BIT loop)

	11.8 DSL Dynamic Loop Managing Functions
	11.8.1 void _DSLLoopHandler(void)
	11.8.2 void _Set_2E1_PairID(BP_U_8BIT bp)
	11.8.3 void _Set_2T1_SyncWord(BP_U_8BIT bp)
	11.8.4 void _Set_3E1_PairID1(BP_U_8BIT bp)
	11.8.5 void _Set_3E1_PairID2(BP_U_8BIT bp)
	11.8.6 void _Reset_Pid_Validation(BP_U_8BIT bp)

	11.9 Channel Unit Dynamic Loop Managing Functions
	11.9.1 void _CuSetMasterLoop(BP_U_8BIT loop)
	11.9.2 void _CuReverseLoops(void)
	11.9.3 void _Configure_Channel_Blocking(void)
	11.9.4 void _CuCheckForLoopReversal(void)

	11.10 API Functions
	Table 11-2. API Functions �
	Figure 11-1. API Command Parsing Structure
	11.10.1 _BtStatus(no, opcode, parameter, *indication)
	11.10.1.1 _DSLStatus(no, opcode, parameter, *indication)
	11.10.1.2 _CuStatus(no, opcode, parameter, *indication)
	11.10.1.3 _FramerStatus(no, opcode, parameter, *indication)
	11.10.1.4 _BitpumpStatus(no, opcode, parameter, *indication)

	11.10.2 _BtControl(no, opcode, parameter)
	11.10.2.1 _DSLControl(no, opcode, parameter)
	11.10.2.2 _CuControl(no, opcode, parameter)
	11.10.2.3 _FramerControl(no, opcode, parameter)
	11.10.2.4 _BitpumpControl(no, opcode, parameter)

	11.11 Channel Unit EOC Functions
	11.11.1 EOC Protocol Handler
	11.11.1.1 void EocMaster(BP_U_8BIT loop)
	11.11.1.2 void EocSlave(BP_U_8BIT loop)

	11.11.2 EOC Task Handler
	11.11.2.1 void EocTaskHandler_CO(BP_U_8BIT loop)
	11.11.2.2 void EocTaskHandler_RT(BP_U_8BIT loop)

	11.11.3 Other EOC Related Functions
	11.11.3.1 BP_U_8BIT EocGetData(BP_U_8BIT lByte, BP_U_8BIT hByte)
	11.11.3.2 BP_U_16BIT EocSendWord(BP_U_8BIT command, BP_U_8BIT header)

	11.12 Channel Unit Utility Functions
	11.12.1 void _CuHandleFlags(void)
	11.12.2 void _CuWriteMasterCmd5(void)
	11.12.3 void _CuClearCounters(BP_U_8BIT loop, BP_U_8BIT cntr)
	11.12.4 void _CuResetTxFIFO(void)
	11.12.5 void _CuResetRxFIFO(void)
	11.12.6 void _CuResetReceiver(void)
	11.12.7 TX_RD *get_tx_rd_ptr(BP_U_8BIT loop)
	11.12.8 RX_RD *get_rx_rd_ptr(BP_U_8BIT loop)

	11.13 General Purpose Timer Functions
	11.13.1 void _InitGenPurposeTimer(void)
	11.13.2 void _LoadGenPurposeTimerInterval(void)
	11.13.3 void _EnableGenPurposeTimer(bp, timer, value)
	11.13.4 void _ContinuousGenPurposeTimer(bp, timer, state)
	11.13.5 void _DisableGenPurposeTimer(bp, timer)
	11.13.6 BP_U_8BIT _GetGenPurposeTimerStatus(bp, timer)
	11.13.7 BP_U_32BIT _GetGenPurposeContCount(bp, timer)
	11.13.8 _Timer0_ISR

	11.14 Performance Monitoring Functions
	11.14.1 void InitPMRecord(BP_U_8BIT loop)
	11.14.2 void UpdatePMRecord(BP_U_8BIT loop)
	11.14.2.1 void UpdateInterval1(BP_U_8BIT loop)
	11.14.2.2 void UpdateInterval2(BP_U_8BIT loop)
	11.14.2.3 void UpdateInterval3(BP_U_8BIT loop)

	11.15 void _Configure_Channel_Blocking(void)
	11.16 DSL Miscellaneous Functions
	11.16.1 void _Cu_Led_Update(bp, state)
	11.16.2 void _Bp_Led_Update(bp, state)

	Appendix A: �Acronyms and Abbreviations
	Appendix B: �References
	Sales Offices

